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The increasing use of nanoparticles will inevitably result in their release into the aquatic environment and there­
by cause the exposure ofliving organisms. Due to their larger surface area, high ratio of particle number to mass, 
enhanced chemical reactivity, and potential for easier penetration of cells, nanoparticles may be more taxie 
than larger particles of the same substance. Sorne researchers have been showing some relations between 
nanoparticles and certain diseases. However, the doses, surface shapes, material toxicity and persistence of 
nanoparticles may ail be factors in determining harmful biological effects. In order to better evaluate their 
risks, potential exposure route of nanoparticles has to be taken into consideration as well. Finally, a brief summa­
ry of techniques for nanoparticle removal in waters and wastewaters is presented, but it seems that no treatment 
can absolutely protect the public from exposure to a large-scale dissemination of nanomaterials. 

1. Introduction

Particles in the nano-sized range, for example soot and organic 

colloids, have been present on earth for millions of years. Recently, how­

ever, nanoparticles have attracted a lot of attention because of our 

increasing ability to synthesize and manipulate such materials [ 1 ]. 

The Woodrow Wilson Database Iisted an inventory of 1317 consumer 

products containing engineered nanoparticles (March 2011) currently 

on the market, which has grown by nearly 521% since March 2006. 

The largest product category is health and fitness (including cosmetics 

and sunscreens), with a total of 738 products, followed by home and 

garden (209), automotive (126), food and beverage (105). 

Commercially important nanoparticles include metal oxide 

nanopowders, such as silica (Si02), titania (Ti02), alumina (Ah03) or 

iron oxides (Fe304, Fe203), and other nanoparticle materials like 

semiconductors metals or alloys. Besides these, molecules of special 

interest that fall within the range of nanotechnology are fullerenes 

and dendrimers (tree-like molecules with defined cavities), which 

may find application for example as drug carriers in medicine [2]. 

Nanowires, nanotubes or nanorods as Iinear nanostructures can be 

generated from different material classes. As one of the most promising 
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linear nanostructures, carbon nanotubes can be expected to find a broad 

field of application in nanoelectronics, catalysis, design of nove) gas sen­

sors, enzymatic biosensors, immunosensors and DNA probesand, and 

also as fillers for nanocomposite materials with special properties [3-5]. 

Nanolayers are another important topic within the range of nanotech­

nology. Through nanoscale engineering of surfaces and layers, a vast 

range of functionalities and new physical effects ( e.g. magnetoelectronic 

or optical) can be achieved. Moreover, the surfaces and layers of nano­

scale are often needed to optimize the interfaces between different 

material classes (e.g. semiconductors on silicon wafers), and to have the 

desired special properties [3]. In addition, nanolayers can also be coated 

to fight erosion, corrosion in metals. 

Nanoporous ( usually called mesoporous) materials with the pore­

size in the nanometer range have a broad range of industrial applica­

tions due to their outstanding properties [2]. Their large surface area 

which generally certifies large quantities of active centers, as well as 

their narrow pore size distribution makes mesoporous materials widely 

used in shape-selective catalysis, membrane filtration and energy 

storage [6-9]. 

The reasons that make these nanomaterials so different and so in­

triguing may be as follows. The extremely small feature size at the 

nanoscale is of the same scale as the critical size for physical phe­

nomena. Fundamental electronic, magnetic, optical, chemical, and 

biological processes are different at this Ievel. Surfaces and interfaces 

are also important in explaining nanomaterial behavior. In bulk mate­

rials, only a relatively small percentage of atoms will be at or near a 

surface or interface (like a crystal grain boundary). In nanomaterials, 



the small feature size ensures that many atoms, sometimes half or 

more in some cases ( size < 5 nm ), will be near interfaces. Surface proper­

ties such as energy levels, electronic structure, and reactivity can be quite 

different from bulk ones, and then give rise to quite different material 

properties [10]. 

Such exceptional properties of nanomaterials might not only favor 

their applications, but also cause their nove! toxicity. In fact, the reactive 

surface of ultra-small particles can result in the direct generation of 

harmful oxyradicals (ROS): these can cause cell injury by attacking 

DNA, proteins and membranes [11-13]. Furthermore, the ability of 

these particles to penetrate the body and cells ( e.g., via fluid-phase 

endocytosis and caveolae) provides potential routes for the delivery 

of nanoparticle-associated toxic pollutants to sites where they would 

not normally go [ 13 ]. Nanoparticles can then behave like a vector on 

which hazardous compounds are concentrated. It is worth knowing 

that medicinal applications of nanoparticles benefit the same property 

to deliver drugs to diseased cells in order to improve the bioavailability 

of a drug; but biodistribution of some nanoparticles may not be known 

exactly, so they may accumulate in the body over time, leading to po­

tential dangers. 

Summarily, as the nanotechnology industries start to corne on line 

with larger scale production, it is inevitable that nanoscale products 

and by-products will enter the aquatic environment [13,14], since in­

dustrial products and wastes tend to end up in waterways ( e.g., drainage 

ditches, rivers, lakes, estuaries and coastal waters) despite safeguards. 

Accidentai spillages or permitted release of industrial effiuents in 

aquatic systems could lead to direct exposure to nanoparticles for 

humans via inhalation of water aerosols, skin contact and direct inges­

tion of contaminated drinking water or particles adsorbed on vegeta­

bles or other foodstuffs [14]. More indirect exposure could arise from 

ingestion of organisms such as fish and shellfish (i.e. mollusks and 

crustaceans) as a part of the human diet. 

2. The potential hazards of nanoparticles

Although the risks of nano- or ultrafine particles seem to be plausi­

ble, hazards relevant to humans and other mammals have been studied. 

Much of this research has been done with experimental mammals, but 

animal experiments cannot be the only basis for precise quantitative 

estimates regarding actual risk for humans because of the differences 

between experimental animais and humans that make extrapolations 

uncertain [15,16]. 

2.1. Risks of inhaled nanoparticles 

The high deposition efficiency of inhaled nanoparticles in the pul­

monary region increases in people with asthma or chronic obstructive 

Jung disease [17]. Inflammation of the Jung is often seen as a response 

to the inhalation of nanoparticles as well. In addition, exposure to car­

bon nanotubes can give rise to the formation of interstitial granulomas 

in animal experiments [15]. 

2.1.1. Meta! oxide nanoparticles (Ti02 and Si02) 

In vivo pulmonary toxicity studies in rats, Warheit et al. [18] demon­

strated that ultrafine Ti02 had low inflammatory potential and Jung 

tissue toxicity. Studying the effect of ultrafine carbon and Ti02 particles 

ranging from 12 to 220 nm, Môller et al. [19] saw evidence for impaired 

defense ability in the rat Jung. Renwick et al. [20] showed that ultra fine 

Ti02 and carbon black particles impaired phagocytosis by alveolar mac­

rophages more strongly than fine particles of the same materials. There 

was also evidence that nanoparticles might act as an adjuvant for aller­

gie sensitization [ 15 ]. 

Moreover, submicron and nanoscale amorphous silica spheres and 

rods as mode! materials were synthesized by Brown et al. [21] for 

shape-driven toxicological experimentation. Their results showed that 

shape-driven agglomeration may be a factor in the pathogenesis of 

particle-induced Jung disease. 

2.1.2. Carbon nanotubes and carbon nanoparticles 

In the studies of Môller et al. [19] and Renwick et al. [20] in 2.1.1, 

ultrafine carbon particles have been proved to be taxie to some extent. 

Deckers et al. [22] further compared the toxic effect of aluminum 

oxide, titanium oxide nanoparticles to multi-walled carbon nanotubes. 

Carbon nanotubes were more taxie than metal oxide nanoparticles. 

They also demonstrated significant difference in biological response 

as different functions of nanomaterials. Prevailing theories suggested 

that acicular or fiber-like particles induce enhanced toxicity over iso­

tropie materials through hindrance of phagocyte-mediated clearance 

mechanisms and through the aggravation of proximal cells via me­

chanical interactions. Moreover, Lundborg et al. [23,24] found that 

rat and human alveolar macrophages had impaired function due to 

aggregates of ultrafine carbon particles, which may be linked to in­

creased infection risk and decreased protection of sensitive Jung 

cells. 

2.1.3. Quantum dots (QDs) 

Recently, researchers are more and more focused on the influence of 

size, crystalline structure, and chemical composition of nanoparticles in 

the investigation of their toxicities. Clift et al. [25] studied the uptake, 

kinetics and cellular distribution of different surface coated QDs and 

demonstrated that surface coating has a significant influence on the 

mode of nanoparticle interaction with cells, as well as the subsequent 

consequences of the interaction. 

22. Risks of contacted nanoparticles

22.1. Meta! oxide nanoparticles (Ti02 and ZnO) 

Apart from exposure by inhalation, dermal penetration of nano­

particles is a matter of interest for humans. The application of Ti02 

and ZnO nanoparticles in sunscreens, currently the most important 

use of ultrafine metal oxide particles in persona! care products high­

lights the dermal penetration of nanoparticles. Ti02 and ZnO particles 

sized -15 to 50 nm can be photocatalytically active on exposure to sun­

light [15]. According to a study of Dunford et al. [26], this also holds 

for coated particles that are actually applied in sunscreens. 

Menzel et al. [27] demonstrated in experiments that Ti02 nano­

particles can penetrate pig skin through the stratum comeum into 

the underlying stratum granulosum within the first 8 h after applica­

tion. And studies with ZnO suggest that ZnO nanoparticles may 

penetrate deep into the rat and rabbit skin [26]. ZnO and Ti02 

nanoparticles may also become involved in damaging nucleic acids 

and other cell components by photocatalytic reactions on exposure 

to sunlight due to penetration into the stratum granulosum [26]. Ti02 

nanoparticles may furthermore become involved in causing allergie 

reactions [15,27]. 

Wu et al. [28] evaluated the potential toxicity of Ti02 nanoparticles 

in hairless mice and porcine skin. Their results indicate that Ti02 

nanoparticles can penetrate through the skin, reach different tissues 

and induce diverse pathological lesions in several major organs. Topical 

application of nano-Ti02 for a prolonged period can induce dermal 

toxicity, most likely associated with free radical generation, oxidative 

stress, and collagen depletion that can lead to skin aging. 

22.2. Carbon nanotube 

Dermal exposure of humans may also be important in handling 

nanoparticles in laboratories or industries. Glove deposits of single­

walled carbon nanotube during handling were estimated by Maynard 

et al. [29]. They showed that substantial deposits on skin or gloves 

could originate in handling carbon nanotubes, and presented evidence 

that ( unrefined) carbon nanotubes may cause dermal toxicity due to 

oxidative stress [ 15 ]. 



2.3. Risks of nanoparticles in the aquatic environment 

2.3.1. C50-fullerene 

For aquatic animais, other routes of entry such as the passage 

across gill and other externat suiface epithelia act. Studies with fish 

by Oberdôrster [30] indicated that C60-fullerene may be internalized 

by these routes and induce lipid peroxidation in brain of juvenile 

largemouth bass. Zhu et al. [31] investigated different toxicities to daph­

nia magna between tetrahydrofuran (lHF)-solubilized nC60 and water­

stirred-n�0. There were 100% mortality in the 1HF-n�0-exposed fish 

between 6 and 18 h, white the water-stirred-n�0-exposed fish showed 

no obvious physical effects after 48 h. I<ovochich et al. [32] found the 

same results that THF-solubilized n�0 but not fullerol or aqueous 

n�0 generated cellular toxicity in a mouse macrophage cell. These sug­

gest that the toxicity of nanoparticles can be greatly affected by various 

factors. 

2.3.2. Meta/ oxide nanoparticles (Ti02, Ce02, Si02 and Fe203) 

Zhu et al. [33] found that nTiO2 exerted minimal toxicity to daphnia 

within the traditional 48 h exposure time, but caused high toxicity 

when the exposure time was extended to 72 h. This demonstrated 

that exposure duration may be a contributing factor in nanoparticle­

mediated toxicity. Moreover, upon chronic exposure to nîiO2 for 

21 days, daphnia displayed severe growth retardation and mortality, 

as well as reproductive defects. A significant amount of nTiO2 was 

also found to be accumulated in daphnia, and these daphnia displayed 

difficulty in eliminating nîiO2 from their body, presenting increased 

bioconcentration factor values. This high level of bioaccumulation may 

interfere with food intake and ultimately affect growth and reproduction. 

Genotoxic and ecotoxic assessments of widely used nanoparticles, 

CeO2, SiO2 and TiO2, have been conducted on two aquatic sentine! spe­

cies, the freshwater crustacean daphnia magna and the larva of the 

aquatic midge chironomus riparius [34]. A statistically significant 

correlation was observed between DNA damage and mortality in the 

CeOrexposed chironomus riparius, which suggests that CeOrinduced 

DNA damage might provoke higher-level consequences. Auffan et al. 

[35] observed a reduction of 21 ± 4% of the Ce4+ atoms localized at

the surface of CeO2 nanoparticles due to the interactions with organic

molecules present in biological media. These particles induced strong 

DNA lesions and chromosome damage related to an oxidative stress. 

SiO2 nanoparticles did not seem to affect the DNA integrity; whereas, 

the mortality of both the SiOrexposed daphnia magna and chironomus 

riparius increased. In addition, the TiO2 nanoparticle did not lead to sig­

nificant alterations in geno- or ecotoxic parameters of both species in 

the work of Lee et al. [34]. 

Furthermore, Zhu et al. [36] used early life stages of the zebrafish to 

examine the ecological effects of iron oxide nanoparticles on aquatic 

species. These nFe2O3 nanoparticles aggregated rapidly and settled out 

of the water column where they contacted directly with zebrafish em­

bryos. These aggregation and sedimentation phenomenon of nFe2O3 

is similar to that of other nanoparticles, including Cu, Ag, TiO2, nZnO, 

nAl2O3, fullerene, and single-walled carbon nanotube [37-44]. Their 

studies also demonstrated that nFe2O3 aggregates caused a serious 

delay in embryo hatching, malformation in some zebrafish embryos 

and larvae, and eventually mortality. It is worth noting that the condi­

tions in the present study were those of an "ideal" experimental situa­

tion, using standard zebrafish culture medium as a simulated aquatic 

environment. However, in a real environment such as lakes and rivers, 

nFe2O3 may behave differently. 

2.3.3. Other nanoparticles ( Ag, Si, CdSe and carbon nanotube) 

Bilberg et al. [45] investigated acute toxicity of nanosivler to 

zebrafish (Danio rerio) in a 48 h static renewal study and compared 

with the toxicity of silver ions (AgNO3). The study demonstrated that 

silver nanoparticles were lethal to zebrafish. Their observations also re­

vealed increased rate of operculum movement and surface respiration 

after nanosilver exposure, suggesting respiratory toxicity. Moreover, 

the silver ions were approximately 3.4 times more toxic than the 

silver nanoparticles by mass of silver added to the tanks, indicating 

that nanoparticles form of silver are less toxic than their soluble forms 

by mass added. 

Ong et al. [46] used silicon (nSi), cadmium selenide (nCdSe), silver 

(nAg) and single-walled carbon nanotubes to assess nanoparticle effects 

on zebrafish hatch. Exposure of 10 mg/L nAg and nCdSe delayed 

zebrafish hatch, and 100 mg/L of nCdSe inhibited hatch and the embryos 

died within the chorion. Both the morphology and the movement of the 

embryos were not affected. It was determined that the main mechanism 

of hatch inhibition by nanoparticles is likely through the interaction 

of nanoparticles with the zebrafish hatching enzyme. lt was concluded 

that the observed effects arose from the nanoparticles themselves and 

not their dissolved metal components. 

In conclusion, recent studies have shown some relevancy between 

nanoparticles and pathologies by animal experiments. Although more 

precise data and the mechanism of their risks have to be further studied, 

it is important to take into account that many nanostructures may cause 

potential risks for human health. 

2.4. Physico-chemical features relevant to particle toxicology 

As mentioned above, toxicities of nanoparticles can be influenced by 

many factors. It is recognized that biologically available suiface area is 

probably the most critical parameter for the effects of the nanomaterials. 

Additionally, particle surface chemistry, biodegradability, concentration, 

shape, solubility, particle size and suiface charges are ail found to be 

significant factors in determining harmful biological effects. 

Generally, for the same mass of particles with the same chemical 

composition and crystalline structure, a greater toxicity was found 

from nanoparticles than from their larger counterparts. The higher sur­

face area of nanoparticles causes a dose dependent increase in oxidation 

and DNA damage, much higher than larger particles with the same mass 

dose [47,48]. 

For concentration-dependent toxicity of nanoparticles, there are 

many contradictory results related to their toxic effects at different con­

centrations. Comparing these results of different studies, one must take 

into account that there are differences in the aggregation properties 

of nanoparticles in air and water, causing inherent discrepancies be­

tween inhalation studies and instillation or in vitro experiments. The 

aggregation of nanoparticles may reduce their toxicity, due to a more 

effective macrophage clearance for larger particles compared to smaller 

ones [49,50]. Thus, experiments performed with high concentrations of 

nanoparticles may not be as toxic as lower concentrations of the same 

nanoparticles, because most aggregates may be formed for a high con­

centration of nanoparticles [51,52]. 

Particle chemistry is another critical in determining nanoparticle 

toxicity. lt is especially relevant from the point of view of cell molecular 

chemistry and oxidative stress. Other words, depending on their chem­

istry, nanoparticles can show different cellular uptake, subcellular local­

ization, and ability to catalyze the production ofROS [53]. For example, 

rutile TiO2 nanoparticles (200 nm) were found to induce oxidative DNA 

damage in the absence of light, but anatase TiO2 nanoparticles of the 

same size did not [51]. 

Furthermore, particle surface plays a critical role in toxicity as makes 

contact with cells and biological materials. Suifactants can drastically 

change the physicochemical properties of nanoparticles, affecting their 

cytotoxicity. Functional groups are usually attached either covalently 

or non-covalently onto the nanoparticles by chemical processes [54]. 

For example, place-exchange reaction is the most versatile and widely 

used method for introducing functional groups to Au nanoparticles. 

Although some findings showed that functionalized Au nanoparticles 

are not cytotoxic, a slight reduction in the reactive oxygen and nitrite 

species can be caused by them [ 55 ]. Additional, nano-TiO2 has been 

reported to show adsorption behavior towards metals such as Cu (II), 



Cr (III), Mn (Il), Ni (Il), Zn (Il), Cd (Il), Mo (VI) [56]. However, when an 

aqueous suspension of bacteria and other micro-organisms is in the 

presence ofTiO2 in the dark, a slight reduction for nano-TiO2 to adsorb 

metals in the concentration of colonies was found due to the possible 

agglomeration ofîiO2 with the bacterial cells and subsequent sedimen­
tation [57]. 

2.4.1. The challenge to relate the physicochemical properties of colloidal 

nanoparticles to their cytotoxidty 

Until now, researchers cannot agree with each other on the dose at 
which nanoparticles cause a biological response. Sorne of them mea­

sured the dose of toxicity by total weight, some others by the number 

of particles per volume. Beckman 1 found that the best way to pin point

how toxic the particles are to cells was to calculate the dose based on 

the total surface area of the nanomaterial. Brown et al. [21] investigated 

the shape-driven toxicity of amorphous silica and showed that this may 

be the main reason for the pathogenesis of Jung disease. Zhu et al. [ 33] 

proposed that exposure duration has to be considered in nanoparticle­

mediated toxicity. And Auffan et al. [35] pointed out that chemically sta­

ble metallic nanoparticles have no significant cellular toxicity, whereas 

nanoparticles able to be oxidized reduced or dissolved are cytotoxic 

and even genotoxic for cellular organisms. 
It seems that different parameters play major roles under different 

conditions, complicating the toxicity evaluation of nanoparticles. Conse­

quently, there would be little pressure to defense or treat wastewaters 

containing such particles that may present nove! toxicity. 

2.4.2. Predicting nanoparticle interactions in human bodies 

The impact of nanomaterials on living cells can be broken down into 

the interactions between the nanomaterial and the individual cell com­

ponents. The membrane interface is the first interactional medium be­

tween a material and a cell [58]. Foley et al. [59] demonstrated that a 

fullerene derivative could cross the external cellular membrane and it 

localizes preferentially to the mitochondria. Yang et al. [60] pointed to 

possible negative impacts of nanomaterials in daphnia magna. They 

concluded that long-term exposure (21 days) of low-level C60 caused 

significant cellular damage, leading to cell dysfunction and cell lysis or 

necrosis in daphnia magna. 

Nanomaterials that interact with proteins may alter protein structure 

as well. Highly selective protein adsorption on nanoparticles, added to 
the fact that particles can reach subcellular locations, results in signifi­

cant new potential impacts for nanoparticles on protein interactions 

and cellular behavior. The Joss of secondary structure and consequent 

changes in the activity of proteins upon binding to nanoparticles could 
be seen as a drawback or a potential source of nanoparticle toxicity [ 61 ]. 

Other literature focuses on the detrimental effects of nanomaterial­

DNA interactions [58]. For example, hydroxyl radicals (·OH) associated 

with TiO2 nanoparticle induced cytotoxicity and oxidative DNA damage 
in fish cells [62]. A nove! fullerene-lysine conjugate has been synthe­

sized and was found to cleave the supercoiled DNA; superoxide radical 

generated on photoirradiation seems to be the ROS behind the DNA 

cleavage, which may give negative effects [63]. 

Finally, besides the potential hazards of nanoparticles, their occur­

rence and fate in aqueous system are also important in determining 

their final toxicity to public. 

3. Occurrence and fate of nanoparticles in water

Nanoparticles are expected to be present in water environments 

with very low concentration from mg/1 to µg/L according to modeling 
studies [64-67]; but it still lacks of data reporting the realistic concen­

tration ranges of nanoparticles in natural aqueous system, due to accel­
erating introduction of nanoparticles into various applications. 

1 
M. Beckman, Nanoparticle toxidty doesn't get wacky at the smallest sizes, Pacifie Northwest 

National Laboratory, 2009. 

The aggregation and sedimentation of nanoparticles may occur 

naturally in the presence of suspended or dissolved substances in 

water (e.g. nature organic matter), which would favor the removal of 

nanoparticles from suspensions [68]. Fig. 1 gives the general schema 

of interactions in governing environmental colloidal processes and 
stability. 

However, the combined effect of pH, ionic strength, electrolyte 

species and concentrations, and other characteristics of water would 
either make nanoparticles aggregated by charge neutralization, bridging, 

electrical double layer compression and by other mechanisms [70], 
or may cause nanoparticles to be more stable [71,72]. Thus, uptake of 

nanoparticles by animais and biomagnification in the food-chain is 

always possible. 

Recently, silver nanoparticles (AgNPs) are used increasingly in con­

sumer products such as water treatment for their antimicrobial proper­

ties. This increased use raises ecological concern because of the release 

of AgNPs into the environment Once released, zero-valent silver may 

be oxidized to Ag+ and the cation liberated, or it may persist as AgNPs 

[73]. Aggregation of silver nanoparticles appears to strongly influence 

other processes, including precipitation, adsorption and dissolution, 

and thus is particularly important in determining the transport of the 

particles in aquatic systems. However, studies of aggregation stability 

of silver nanoparticles showed that aggregation is confined or limited 

to very slow rate and the particles in the system stay suspended for a 

relatively long term [74]. 

Furthermore, the dispersion stability of nanoparticles is also impor­

tant in determining their potential exposure to organisms, which will 

depend on their intrinsic properties, including sizes, shape, core com­

position, surface properties and concentrations [75]. Since most of 

the engineered nanoparticles are surface-modified, functionalized, or 

coated during manufacturing, their stability against aggregation and 

deposition may increase [76]. For example, in China and Taiwan, silica 
nanoparticles are commonly used as abrasive in chemical mechanical 

polishing (CMP) industries for the manufacture of integrated circuits 

and electronic chips. The effiuents of these factories are mainly com­

posed of silica nanoparticles (1.3-8.5 g/1 which correspond to 0.05%-

0.36% in volume ratio) with an average size around 100 nm. These 

particles present a negative charge at the surface, and the suspensions 

are very stable [77-83]. 

Other fates of aquatic nanoparticles include adsorption/desorption, 

degradation, reaction and so on; but it is likely for nanoparticles 

(maybe even bind with toxic pollutants during their exposure) to 

enter into aquatic animais, and then accumulate into human body be­

fore their removal. Therefore, it is reasonable to begin considering 

how to remove nanoparticles from water, especially from wastewater 

such as the CMP effluents that has an important total solid content in 

the nano-range and has been produced in large quantities. 

4. Technologies of nanoparticle separation

The conventional wastewater treatments including chemical, physi­

cal and biological methods may not be adapted to the recovery of nano­

scaled particles, first of ail due to their size, but also due to their original 

properties [13,15]. In the last few years, some researchers [84-88] have 

begun to study how to separate nanoparticles from waters, but com­

pared to their plentiful applications and toxicities explorations, separa­

tion researches of nanoparticles are still limited. 

4.1. Coagulation and electrocoagulation (EC) processes 

Chang et al. [89] studied the treatment of nanoparticles by chemical 

coagulation as it exists in the unity of wastewater treatment plant. Their 

structural researches on the nanoparticle agglomeration due to coagula­

tion have demonstrated the interest of coagulant addition for a good 

recovery, but its effect on nanoparticle removal ( <9%) was still not 

satisfying. Chuang et al. [90] investigated colloidal silica removal in 
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Fig. 1. General schema of interactions in governing environmental colloidal processes and stability (adapted from Grasso et al. [691). 

coagulation processes for wastewater reuse in another high-tech indus­
trial park. Experimental results illustrated two coagulants (PACI and 
Al2(OH)0Cl6_0) demonstrated the same capacity on silica nanoparticle 
removal (approximately 80%). Chemical coagulation and flocculation 
processes have the advantages to benefit a fast increase of particle size 
and an easy removal of particles by sedimentation, but the high quanti­
ties of coagulant and sludge are their shortcomings. 

EC was then tested as an alternative to chemical coagulation because 
it does not require the direct addition of a chemical coagulant [71,80]. 
Lai and Lin [77] investigated the treatment of copper CMP wastewater 
from a semiconductor plant by EC. The test results indicated that EC 
with Al/Fe electrode pair was very efficient and able to achieve 99% cop­
per ion and 96.5% turbidity removal in Jess than 30 min. Another group 
[78] used electro-coagulation-flotation (ECF) process with surfactant

to treat CMP wastewater. The addition of surfactant CTAB that could
both increase the particle size and produce positive-charged bubbles
(particles are negative-charged) effectively increased the removal of
the turbidity. The sludge volume and settling time were significantly
Jess in the solution containing CTAB than in the one without CTAB. Com­
paring with chemical coagulation process, EC process has Jess sludge
and no preliminary pH adjustments. Main disadvantage ofEC is the dis­
solution of electrodes into wastewater streams as a result of oxidation.
Thus electrodes need to be regularly replaced. Other disadvantages
contain the relatively high usage of electricity, and high conductivity
of the water suspension required.

At the present time, excellent coagulation/flocculation performances 

have been reached using organic reagents such as polyamines and 
polyDADMACs authorized by the Directorate General for Health of 
several countries. After optimization of the aggregating process with 
cationic organic polymers, the size distributions of SiO2 nanoparticles 
(about 80 nm) can reach between 10 µm and 1 mm, with fractal di­
mensions (compactness) ranging from 2.3 to 2.5. The performances 
obtained show that the use of these organic reagents is a promising 
potential route to treat other types of nanoparticles. The treatment 
also proposed to reach a ratio of average diameters dp10JdNP of 3500, 
and therefore it facilitates the elimination of these nanoparticles ag­
glomerated by filtration [91 ]. 

42. Flotation process

Lien and Liu [81] tested the treatment of CMP effiuents by dissolved 
air flotation (DAF). Very effective removal of particles (turbidity 
decrease > 98%) from wastewater was found when CTAB was used as 
a collector. It is proposed that both the change of interface properties 
and the aggregation of nanoparticles contributed to flotation removal 
ofparticles. 

Tsai et al. [83] studied nano-bubble flotation with coagulation 
by PACl/sodium oleate (NaOI) as a combination of activator/collector 
for the cost-effective treatment of CMP wastewater. Their work increased 

the wastewater clarification efficiency by 40% as compared with tradi­
tional coagulation/flocculation process. More than 95% of the turbidity, 
total solids and total silica removal efficiendes were observed. 

Furthermore, Liu et al. [92] tested the flotation ofnanosilica suspen­
sions in a new designed continuous DAF system. They showed that 
flotation had an interesting separation efficiency (removal of 99% of 
nanoparticle concentration) only when additives were added to over­
come the hydrophilic behaviors of silica. In the conditions tested in 
their work, the quantities of additives were a Iittle more than the ones 
necessary to perform aggregation and settling separation, but the flota­
tion combined with coagulation process needed much Jess time to 
achieve the separation purpose. 

4.3. Filtration process 

Due to the small size, the separation of nanoparticles from liquid 
medium by conventional filtration without pre-coagulation could be 
difficult [93]. In the Iast few years, coagulation or electrocoagulation 
with filtration was then explored by many researchers [94-95]. 

Zhong et al. [96] used the tubular ceramic membranes to remove 
nickel catalysts from slurry, indicating a separation efficiency of 100%. 
Springer et al. [97] evaluated the feasibility of membrane ultrafiltration 
for the removal of SiO2 nanoparticles (78 nm mean hydrodynamic 
diameter), the 10 kDa membrane showed the highest expectable reten­
tion rates (>99.6%). Additionally, it was demonstrated that approxi­
mately 98% of fullerol could be removed by a polyamide nanofiltration 
membrane [98]. 

Based on several studies, the removal efficiendes for nanoparticles 
could be greatly improved by using membrane filtration as the final 
process. However, membrane filtration process is mainly hindered by 
membrane fouling, leading to flux decline and the increase of operating 
costs. 

4.4. Biological process 

During conventional wastewater treatment process, the nanoparticles 
could be incorporated into the sewage sludge through aggregation and 
sorption and further accumulated in sewage sludge over time. Once 
attached to biomass, the removal of nanoparticles is assodated with the 
setting and removal of the biomass [99]. A recent full-scale wastewater 
treatment test indicated that TiO2 nanomaterials were trapped in bio­
mass, which could then be settled and removed by secondary sedimenta­
tion or membrane filtration process, and more than 96% of the TiO2 could 
be finally removed [100]. Adsorption to activated sludge seems to be the 
major removal mechanism for nanoparticles in this study. 

However, Limbach et al. [87] investigated the capture of nanoparticles 
by clearing sludge. Their study demonstrated a significant influence 
of the nanoparticle surface charge and the addition of dispersion stabi­
lizing surfactants as routinely used in the preparation of nanoparticle 



derived products. A detailed investigation on the agglomeration of 
oxide nanoparticles in wastewater streams revealed a high stabilization 
of the particles against clearance ( adsorption on the bacteria from 
the sludge). Their present results indicate a limited capability of the 

biological treatrnent step to completely remove oxide nanoparticles 
from wastewater. 

Another study suggested that the predominant mechanisms of 
engineered nanoparticle removal (95% of nano-copper were removed) 
were aggregation and settling rather than biosorption in activated 

sludge biomass [101 ]. The different conclusion may be attributed 
to the different types of nanoparticles investigated in these studies. It 
should be noted that some nanoparticles entrapped within the sludge 
materials may still have an effect on the activity of the essential bacteria 
or may re-enter the environment through application of sewage sludge 
to fields, indneration or landfilling [102]. More experiments will be 

required for in depth studies on the detailed mechanism of nanoparticle 
adsorption to sludge. 

4.5. Other processes for nanoparticle separation 

Zarutskaya and Shapiro [84] applied magnetic filters to capture 

nanoparticles with permanent magnetic moments. The influence of 
filtration operating conditions and particle diameters on their behavior 
and magnetic capture efficiency was investigated numerically, but this 

work was limited to the separation of magnetic nanoparticles. 
Chin et al. [79] used synthesized magnetite nanoparticles to aggre­

gate target nanoparticles by the electrostatic attraction between the 
two oppositely charged particles. By optimizing experimental condi­
tions, the residual turbidity could be removed until less than 1 NID, 
but large amount of magnetic nanoparticles had to be used. 

Michael and Armstrong [103] summarized separation and analysis 

of nanoparticles by capillary electrophoresis. The advantage of this 
method is that the separation of different colloids is possible. However, 
ail of the above technologies have obvious disadvantage for a large scale 
wastewater ( containing nanoparticles) treatment. 

5. Conclusion

As we ail know, the potential advantages of nanomaterials are im­
mense, but so are the potential dangers. More attention on the risk 
assessment and waste management associated with nanomaterials 

are required. Nevertheless, the knowledge about occurrence, fate and 
toxicity of nanoparticles are still lacking. The pathways of nanoparticle 
penetration into bodies by food (fish and shellfish) are still uncertain. 
Consequently, characterization and quantification of nanoparticles may 

be firstly crucial to evaluate their potential risks and to compare different 
research results. 

Until now, a wide number of techniques including microscopy tech­
niques ( transmission electron microscopy, confocal laser scanning mi­
croscopy, scanning electron microscopy and atomic force microscopy), 
static and dynamic light scattering (SLS, OLS), X-ray diffraction (XRD), 

inductively coupled plasma (ICP-OES and ICP-AES), X-ray photoelec­
tron spectroscopy (XPS) have been developed for detection and charac­
terization of nanomaterials. However, it is still a great challenge to 
directly detect engineered nanoparticles in natural water due to their 
low concentrations. 

In order to promote the feasibility of these analytical techniques, 
several key issues are needed to be addressed: (i) minimizing the alter­
ation of samples and Joss of components from sampling to analysis; 

(ii) minimizing artifacts in estimation of size distribution during frac­
tionation process; (iii) ensuring the representativeness of samples;

(iv) distinguishing between engineered nanomaterials and their natu­
rally occurring counterparts; (v) validating detected results by several
methods.

On the other hand, the development of wastewater treatment contain­
ing nanoparticles is urgent for hazard reduction in aquatic environment. It 

may be difficult for one type of method to treat the complex matrix con­
taining nanoparticles, different techniques are usually required to comple­
ment one another for achieving better removal efficiency. Although some 
methods are effective in removing spedfic types of nanoparticles at labo­

ratory scale, their effidendes for difl"erent nanoparticles in full scale are 
still unknown. It might be a good news that nanoparticles could be sta­

bilized by sewage sludge in nature, even if the interaction between 
nanoparticles and sewage sludge has not been clear. More researches 
and funds are required to fill these knowledge gaps even though the reg­

ulations have not yet been imposed. 
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