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A B S T R A C T

Carbon nanotubes (CNTs) tend to readily agglomerate and settle down in water, while the

adsorption of compounds present in natural aquatic media could enhance their dispersion

and stabilization in the water column. We designed a new exposure protocol to compare

the biological responses of Xenopus laevis larvae exposed in semi-static conditions to

size-reduced agglomerates of multi-walled carbon nanotubes (MWCNTs) in suspension

in the water column and/or to larger agglomerates. Suspensions were prepared using a

combination of a non-covalent functionalization with a non-toxic polymer (either carboxy-

methylcellulose, CMC, or gum arabic, GA) and mechanical dispersion methods (mainly

ultrasonication). The ingestion of agglomerates which have settled down was incriminated

in the disruption of the intestinal transit and the assimilation of nutrients, leading to acute

and chronic toxicities at the highest tested concentrations. Rise in mortality, decrease in

the growth rate and induction of genotoxicity from low concentrations (1 mg/L in the pres-

ence of CMC) were evidenced in presence of suspended MWCNTs in the water column. The

biological responses seemed to be modulated when GA, a potential antioxidant, was used.

We hypothesized that MWCNTs should interfere mainly at the surface of the gills, acting as

a potential respiratory toxicant and generally inducing indirect effects.

* Corresponding author.
E-mail address: flahaut@chimie.ups-tlse.fr (E. Flahaut).



1. Introduction

Due to their nanoscale and outstanding physicochemical,

electrical, mechanical, optical and thermal properties, the

development of materials and applications including carbon

nanotubes (CNTs) is spreading in various areas, ranging from

plastics and composites markets to medicine and pharma-

ceutical applications. They are already integrated to sporting

goods and are likely to be very soon part of our everyday life.

Companies developing applications of CNTs have increas-

ingly focused on the production of multi-walled carbon nano-

tubes (MWCNTs). Thus, taking in consideration the future

demand, major players such as Bayer MaterialScience, Nano-

cyl or Arkema France, are planning to increase the global pro-

duction capacity of MWCNTs, that should reach about

14,000 tons per year by 2016 [1]. Taking into consideration

the entire life cycle of CNTs and CNT-containing composites

(i.e. from the cradle to the grave, including their use), CNTs

should be released into the environment from point sources,

such as factories, landfills and wastewater effluents, but also

from nonpoint sources, such as during the normal use of

CNT-containing products, stormwater runoff andwet deposi-

tion from the atmosphere [2], and so end-up in the aquatic

compartment, well known as the main receptacle of pollu-

tants. As well as other nanoparticles (NPs), such as nano-

TiO2 and nano-Ag, CNTs should be considered as potential

emergent contaminants and deserve special attention con-

cerning the risk assessment to aquatic organisms which

could be exposed to them.

Due to their high specific surface area and aspect ratio

(length to diameter ratio, L/D), raw CNTs tend to form large

ropes where they are tightly bound by van der Waals interac-

tion existing between tubes, but also to form larger agglomer-

ates, and actually settle down in deionised water (DW).

Furthermore, the presence of monovalent (i.e. Na+) and espe-

cially divalent cations (i.e. Ca2+ and Mg2+) in aqueous media

facilitate this phenomenon by suppressing electrostatic

repulsion [3]. On the contrary, it has been shown that the

adsorption of natural organic matter (NOM) or/and surfac-

tants present in natural systems onto raw CNTs effectively

covers their initial hydrophobic surface, but also that their

negative surface charge and their large molecular size are

respectively responsible for charge repulsion and steric hin-

drance [4]. This results in the enhancement of the dispersibil-

ity and the stabilization of CNTs at environmentally relevant

concentrations [3], depending on water physico-chemical

properties (i.e. pH, ionic strength, total organic carbon con-

tent, salt concentration). Saleh et al. [3] concluded that raw

MWCNTs are relatively stable at pH and electrolyte conditions

typical of aquatic environment. Due to the fact that individual

suspended CNTs are more mobile, and that the formation of

agglomerates followed by the settling down of CNTs initiates

partitioning, the fate and the transport of CNTs would be lar-

gely influenced by the presence in the water column of dis-

persing compounds. Moreover, Schwyzer et al. [5] reported

that the dispersion state of the CNTs during the release is cru-

cial for their environmental fate. Indeed they compared the

stability of CNT suspensions (50 mg/L) in the presence of

NOM (20 mg/L) or artificial surfactant (from 20 mg/L to 5 g/L)

over several days of horizontal shaking (to simulate natural

conditions). On the one hand, when dry CNT powder was di-

rectly added to the NOM or surfactant solutions, 20 days of

shaking were not enough to separate and effectively suspend

agglomerated raw CNTs. On the other hand, when small vol-

umes of pre-dispersed CNT stock suspensions (produced in

the presence of a dispersant such as sodium dodecyl sulphate

(SDS)) were added into the same solutions, shaking the CNT

suspensions in the same conditions allowed stabilizing up

to 65% of the added CNTs after 5 days of sedimentation. They

concluded that for raw CNTs the sediment is likely to be the

major sink and only minor amounts could be present as sus-

pended particles, while for stabilized CNTs the water column

and the sediment could comparatively be affected. The en-

hanced stability resulting from the adsorption of NOM is

likely to lead to an increased residence time in the water col-

umn and increased exposure times for pelagic organisms [6].

Thus, from an environmental point of view, and more pre-

cisely regarding the evaluation of the toxicity of MWCNTs

with aquatic organisms, such as the amphibian model Xeno-

pus laevis, it is very relevant to compare their exposure to both

raw and stabilized CNTs in laboratory conditions.

There are two distinct approaches for dispersing CNTs

which are often combined to obtain stable and homogeneous

suspensions of well-individualised CNTs. Indeed, mechanical

methods such as sonication and high shear mixing debundle

partially or totally CNTs but could also fragment them, thus

decreasing their aspect ratio [7], while surface functionaliza-

tion of CNTs is designed to alter their surface energy. There

are two ways of functionalizations: the covalent route, which

consists in the grafting of functional groups at the surface

(mainly through acid treatments), and the non-covalent one,

which involves the adsorption of a surfactant (i.e. amphi-

philic molecules) or a polymer on the surface of CNTs. In

our context, the non-covalent functionalization is more rele-

vant than the covalent one because the p-system of the CNTs

is not disturbed, and thus this method preserves their intrin-

sic properties, which is important to correctly and realistically

evaluate their potential toxic effect.

In order tomaximise the exposure to individual CNTs/bun-

dles and to limit agglomeration, it is required to prepare

homogeneous and stable suspensions of MWCNTs. A combi-

nation of mechanical dispersion methods and a non-covalent

functionalization via a dispersing agent was chosen. Two

water soluble anionic (i.e. negatively charged) polymers were

compared: sodium carboxymethylcellulose (CMC) and gum

arabic (GA). They have been selected because they are non-

toxic to organisms [8], colourless, and more generally because

they are best suited (cheap,mass-produced,water-processable

and safe) andwidely used inmany industrial products, and are

thus likely to be present in the aquatic compartment [8].

CMC (E-number 466) is an etherified derivate of natural

cellulose (i.e. made by swelling cellulose with NaOH and then

reacting it with monochloroacetic acid), widely used in food

industry, but also for cosmetic and pharmaceutical applica-

tions (e.g. creams, lotions, toothpaste formulations), for its

good binding, thickening, suspending and stabilizing proper-

ties. Since its polymeric structure acts as a film-forming

agent, it is also used to improve moisturizing effects. It plays



an important role in textile industry as a coating agent, in res-

ins, emulsion paints, adhesive and printing inks, and in coat-

ing colours for the pulp and paper industry.

GA (E-number 414), also called acacia gum, is a natural,

edible, gummy complex polysaccharide. It is defined by the

FAO/WHO Joint Expert Committee for Food Additives (JECFA)

as ‘‘a dried exudation obtained from the stems and branches

of Acacia senegal (L.) Willdenow or Acacia seyal (fam. Legumino-

sae)’’ [9]. GA consists mainly of high-molecular weight hetero-

polysaccharides and their calcium, magnesium, and

potassium salts. Size exclusion chromatography coupled with

multi-angle light scattering and refractometry allowed to iso-

late three major molecular species [10]: an arabinogalactan

(AG or AraG; ca. 90% of total mass), an arabinogalactan-

protein (AGP or AraGP; ca. 10% of total mass) and a glyclopro-

tein (GP). AGP provides excellent interfacial properties for GA,

which are attributed to ‘wattle blossom-type’ structure, in

which hydrophilic carbohydrate blocks are linked to common

hydrophobic polypeptide chain [11]. This structure contrib-

utes to the gum amphiphilicity, that favours its absorption

to air/water or oil/water surfaces [12] and confers it good

emulsification characteristics [13]. Also, the great flexibility

of AG structure allows these molecules to be easily deformed

at interfaces [14]. Therefore, GA is mainly used as emulsifier/

stabilizer. It is among the oldest and commercially-well estab-

lished anionic polysaccharides. The Ancient Egyptians com-

monly used it more than 4000 years ago as an adhesive for

mineral pigments in paints, as a fixative for ink, as a binder

in cosmetics, and as an agent in the mummification process,

but also as a pain reliever base [15]. Nowadays, it is used as an

emulsifier, stabilizer, thickener, carrier, bulking and glazing

agent [9]. It is primarily employed in the food industry (e.g.

in soft drinks, syrups, gummy candies and marshmallows)

for its nutritional and surface properties [16], but also in the

textile, pottery, lithography, explosive, cosmetics and phar-

maceutical industries (e.g. microencapsulation or complex

coacervation processes) [17]. Finally, in folk medicine, GA is

recommended for the treatment of both internal and external

inflammation (respectively intestinal mucosa and surfaces).

Recent toxicological studies have investigated the antioxida-

tive properties of GA and reported its protective effect against

cardiotoxicity [18], hepatotoxicity [19] and nephrotoxicity [20]

induced in mice, at least partly through inhibition of the pro-

duction of oxygen free radicals.

In order to adapt current methodology applied to assess

the potential ecotoxicity of chemical contaminants with the

amphibian modelX. laevis to those of CNTs, we have designed

a new protocol to prepare MWCNT exposure medium charac-

terized by a different initial dispersion state. Larvae were ex-

posed to a range of concentration of raw MWCNT

suspensions prepared by mechanical dispersion, but also of

chemically stabilized MWCNT suspensions obtained by a

combined mechanical dispersion and non-covalent function-

alization with a biocompatible anionic polymer (CMC or GA).

Physical and chemical properties such as the length of CNTs

[21], the presence of structural defects [22], and the dispersion

state of CNTs [21] were reported to play a role in the toxicity of

CNTs. In an attempt to explain the observed effects and their

potential relation to these parameters, we have used various

methods to characterize the suspensions before and during

the biological assays, as well as multi-scale biological

observations.

2. Materials and methods

2.1. MWCNTs and dispersing agents

MWCNTs (Graphistrength batch 09215) were produced by cat-

alytic chemical vapour deposition (CCVD) by Arkema France,

using a fluidized bed process. As a precaution for safer work

conditions, MWCNTs were not supplied as dry powder but

as a suspension at 10 g/L in deionised water, which was used

to prepare the range of exposure concentrations (0.1, 1, 10 and

50 mg/L) of raw or stabilized CNTs. The carbon content of

dried MWCNTs was measured by flash combustion (heating

up to 1000 °C during about 1 s, after preheating at 925 °C;

measurement accuracy � ±2%). The metal content (i.e. cata-

lyst residues) was determined by Atomic Absorption Spec-

troscopy (AAS, measurement accuracy � ±0.1%). According

to the theory of Brunauer, Emmett and Teller (BET), the spe-

cific surface area was measured after degassing the sample

for 4 h at 120 °C in N2 and adsorption of nitrogen gas at the

temperature of liquid nitrogen (Micrometrics Flow Sorb II

2300; measurement accuracy � ±3%). According to the sup-

plier, MWCNTs had 5–15 walls, their length ranged from 0.1

to 10 lm, and their mean agglomerate size ranged between

200 and 500 lm (laser scattering granulometer, d(t; 0.5)).

CMC ([9004-32-4]; carboxymethylcellulose sodium salt)

was supplied by Fluka (Sigma Aldrich). This complex polysac-

charide is characterized by an ultra low viscosity (15–

50 mPa s), a nominal molecular weight ranging between ca.

15–50 kDa, a degree of polymerization of 60–90, a degree of

substitution (DS) of 0.60–0.95 (i.e. 6–9.5 carboxymethyl groups

per 10 anhydrous units), a density of 1.59 g/cm3 and a pH

ranging from 5.5 to 8.5 (10 mg/mL in water). GA [9000-01-5]

was supplied by Sigma Aldrich. Compared to CMC, GA is char-

acterized by a nominal molecular weight of ca. 250 kDa, a

density of 1.35 g/cm3, and an amount of insoluble residue

60.20%..

2.2. Xenopus rearing and breeding

Xenopusmaleswere injectedwith50 IUofPregnantMare’s Ser-

um Gonadotrophin (PMSG 500; Intervet, France [9002-70-4])

and the femaleswith750 IUofHumanChorionicGonadotropin

(HCG; Organon, France [9002-61-3]) to induce spawning. Each

pair was then placed together in normal tap water filtered

through active charcoal at 22 ± 2 °C. Twenty-four hours later,

the pairs were separated and viable eggs were maintained in

anaquariumalso containingnormal tapwater filtered through

active charcoal at 20–22 °C, until they reached a development

stage appropriate for experimentation (i.e. stage 50; [23]). The

larvae were fed every day on dehydrated aquarium fish food.

2.3. Exposure conditions

The micronucleus test (MNT) was performed according to the

International Standard 21427-1 [24]. Larvae were exposed,

during 12 days, to different conditions including (i) control

conditions (negative control [NC] and positive control [PC])



which allow checking the responsiveness of the amphibian

larvae (strain control), and (ii) test media composed of the

different MWCNT concentrations ranging from 0.1 to 50 mg/

L, corresponding to weak and potential accidental ones. The

NC was composed of reconstituted water (RW, distilled tap

water to which nutritive salts were added [294 mg/L CaCl2,

2H2O; 123.25 mg/L MgSO4, 7H2O; 64.75 mg/L NaHCO3;

5.75 mg/L KCl]), whereas the PC was composed of cyclophos-

phamide monohydrate (CP, [6055-19-2], Sigma, France) in RW

at 20 mg/L. As the influence of the dispersion state of

MWCNTs was investigated, larvae were exposed to raw

MWCNTs (MWCNTs in RW) and stabilized MWCNTs in RW

in the presence of CMC or GA, depending on the exposure

protocol used. In order to check their potential toxicity

against X. laevis, the organisms were also exposed to the an-

ionic polymer alone dispersed in RW (CMC control [CMCC]

and GA control [GAC]). To limit the number of dispersing

agent control conditions to only one, MWCNTs were dis-

persed at the same concentration of dispersing agent (i.e.

50 mg/L), which is the effective concentration to correctly dis-

perse CNTs at the maximum concentration used in our exper-

iments (i.e. 50 mg/L of MWCNTs).

Two experiments were conducted on separated X. laevis

hatches. In the first one raw and CMC-stabilized MWCNTs

were tested simultaneously (experiments I and II), while in

the second experiment only GA-stabilized MWCNTs were

tested (experiment III). Larvae were submitted to a natural

light–dark cycle at 22.0 ± 0.5 °C. They were exposed in groups

of 20 animals in crystallizing dishes which contained either a

control solution (NC or PC or CMCC or GAC) or a test suspen-

sion (0.1 mg/L or 1 mg/L or 10 mg/L or 50 mg/L of raw or dis-

persed MWNTs). Every 24 h during the exposures the larvae

were removed and placed in fresh control solutions or fresh

test suspensions (to ensure exposure consistency) [24]. Con-

cerning the replacement of test and dispersing agent control

media, 20 mL test tubes (TT) containing the appropriate

amount of MWCNTs and/or dispersing agent were before-

hand prepared according to the dispersion protocol presented

in Fig. 1 and described below. Therefore, everyday, the media

were replaced by transferring the content of the test tubes

into the corresponding crystallizing dishes before adjusting

the final volume to 2 L with RW, reintegrating larvae and feed-

ing them with dehydrated aquarium fish food.

2.4. Preparation of raw and stabilized MWCNT

suspensions

The minimal but effective dispersing agent concentration,

and the ratio between MWCNTs and dispersing agent of

stocks suspensions were investigated aiming at simplifying

the dispersion protocol applied earlier by our team for the

assessment of the potential ecotoxicity of GA-stabilized

Double-walled carbon nanotubes (DWNTs; [25]), without

decreasing its effectiveness. Studies related to the evaluation

of the ecotoxicity of DWNTs dispersed with CMC were

achieved in parallel to the present work. They showed that

10 mg/L of dispersing agent was not enough to stabilize

50 mg/L of DWNTs in the absence of organism and food (data

not shown), but 50 mg/L of CMC (0.005%) turned out to be an

effective concentration (the initial DWNT concentration and

the average one for a 24 h period was respectively estimated

at 43.31 mg/L and 42.836 ± 0.429 mg/L). This concentration

was thus chosen to disperse MWCNTs whatever the exposure

concentration (i.e. from 0.1 to 50 mg/L).

The dispersion protocol applied to prepare the test tubes

containing a given amount of MWCNTs and/or dispersing

agent for larvae exposure in the MNT is presented in Fig. 1.

A mechanical dispersion with a rotor–stator homogeniser (Ul-

tra-Turrax DI 25 Basic (UT), 50/60 Hz, 600 W, 9500 rpm, 10 min)

and a tip sonicator (Vibra Cell 75042, 20 kHz, 500 W, 40%

power with 5 s on/5 s off pulse, 30 min) was used to prepare

the raw MWCNT test tubes, while the non-covalent function-

alization with a dispersing agent (CMC or GA) was combined

with the mechanical dispersion to prepare the stabilized

MWCNT test tubes (as well as dispersing agent control test

tubes). The question of the possible shortening of MWCNTs

during this process will be discussed later. Thus, the first step

of this dispersion protocol consists in preparing a suspension

which contains only MWCNTs or both MWCNTs and the dis-

persing agent in the same weight ratio (MWCNTs were added

after the total dissolution of the dispersing agent). This first

stock suspension (SS1; concentration of MWCNTs and/or dis-

persing agent of 5 g/L) was dispersed with the UT and then

with the tip sonicator. The test tubes called ‘‘TT10’’ and

‘‘TT50’’ were prepared by sampling, with graduated glass pip-

ettes, under constant sonication, the corresponding volume

of SS1. These test tubes will be used to renew the exposure

media corresponding to the higher MWCNT concentrations

(i.e. respectively 10 and 50 mg/L). To prepare the stock suspen-

sion 2 (SS2), 15 mL of SS1 (sampling under constant sonica-

tion) was transferred in DW to adjust the concentration of

MWCNTs and/or dispersing agent to 200 mg/L. SS2 was soni-

cated using the tip sonicator (same conditions as the sonica-

tion of SS1) before preparing the test tubes ‘‘TT0.1’’ and ‘‘TT1’’

corresponding to the lower MWCNT concentrations. When

MNT included the CMCC and GAC, a stock suspension of

CMC or GA was prepared and followed the same dispersion

protocol applied to SS1 in order to prepare the test tubes

‘‘TTCMC’’ or ‘‘TTGA’’. The volume of the test tubes (except

‘‘TT50’’, ‘‘TTCMC’’ and ‘‘TTGA’’) was adjusted to 20 mL with

DW or a solution of dispersing agent. New exposure media

were daily prepared by sonicating during 10 min one test tube

per condition using an ultrasonication water bath (Bioblock

T570, 35 kHz, 160 W) and transferring the content into the

crystallizing dishes before simply adjusting the volume to

2 L with RW. No additional stirring step was required.

2.5. Characterization of raw and stabilized MWCNT

suspensions

The effectiveness of the protocol and the dispersing agent

concentration chosen (50 mg/L) was checked by regularly

examining the stability (and so the agglomeration and set-

tling down) of MWCNTs at the maximal concentration, with-

out introducing neither larvae nor food (NLNF). Besides

MWCNT dispersion state characterization of the test media

was achieved during the MNT to investigate the influence of

the presence of larvae and food. As larvae were exposed daily



to (fresh) concentrations, each monitoring was achieved only

during 24 h. Amore detailed study was achieved in the case of

MWCNTs dispersed with CMC. It included a monitoring of the

MWCNTs in the entire range of exposure conditions in pres-

ence of larvae but absence of food and vice versa. To monitor

the agglomeration vs. time, a regular visual examination of

raw and stabilized MWCNT suspensions was performed and

completed by quantifying the optical density (OD; Perkin El-

mer Lambda 2 Spectrophotometer; k = 550 nm) of 3 mL water

column samples taken at half height. The MWCNT concentra-

tion of each sample was deduced from the average of three

successive measurements using a calibration curve which

was obtained by the OD measurement of calibration suspen-

sions of known raw or stabilized MWCNT concentrations

ranging from 0 (i.e. respectively DW or dispersing agent sus-

pension at 50 mg/L) to 60 mg/L and prepared according to

the same dispersion protocol applied to the test tubes. Before

the OD measurement, calibration suspensions and samples

were placed into an ultrasonic bath during 5 min. The data

were background corrected and the deviation during the mea-

surement of each batch was regularly checked by controlling

the absorption signal of DW or the solution of dispersing

agent in DW.

Transmission electron microscopy (TEM) observations and

Raman spectra of (i) raw and stabilized MWCNT suspensions,

but also of (ii) starting material (i.e. non-sonicated) and

MWCNTs after a long period of sonication (tip sonicator;

2 h) were performed with a JEOL JEM-1400 (120 kV). CNTs

called ‘‘non-sonicated MWCNTs’’, ‘‘mechanical dispersion’’

and ‘‘long-time sonication’’ were sonicated in ethanol for

5 min (as it is usually done), whereas raw and stabilized

MWCNT suspension were directly sonicated (in water) to

avoid their alteration. Then a drop of the resulting suspension

(whatever its nature) was placed over a holey copper grid.

Images were recorded on a CCD (Coupled Charge Device)

camera.

Raman spectra of MWCNTs were recorded on a Horiba Jo-

bin Yvon LabRAM HR800 Raman micro-spectrometer at

633 nm (red laser excitation, He/Ne), equippedwith a thermo-

electrically cooled CCD. Five spectra were averaged for each

sample, after baseline correction, and the D-bands were nor-

malized with the G-band intensity of the corresponding

spectra.

2.6. Toxicity measurements

Acute toxicity (mortality rate, %) of larvae exposed to CNTs

was examined for 12 days according to the standardized rec-

ommendations [24] by visual inspection.

Chronic toxicity (potential growth inhibition compared to

the NC) was evaluated after 12 days of exposure. Larvae were

anesthetized (MS222, Sandoz, France) before the beginning

(d0) and at the end (d12) of the exposure in order to measure

the size of each larva using the Mesurim image analysis soft-

ware [26]. Statistical analyses were performed using SigmaS-

tat 3.5. First of all, the homogeneity of the larvae size was

verified at the beginning of the test. A oneway analysis of var-

iance (ANOVA) or a non-parametric Kruskal–Wallis analysis of

variance by ranks (if all the data were not drawn from nor-

mally distributed populations with the same standard devia-

tions) was applied to the d0-data. It revealed that there was

not a statistically significant difference between the groups.

Then the effect on the growth of larvae of the different test

conditions was evaluated at the end of the test. Treated and

controlled groups were compared using ANOVA or a Kruskal–

Wallis test, followed respectively by a Dunnet’s test or a

Fig. 1 – Preparation of test tubes corresponding to the range of raw and stabilized MWCNT concentrations and renewal of

exposure media related to the micronucleus assay. UT, Ultra-Turrax (rotor–stator homogeniser); SS1, stock suspension 1; SS2,

stock suspension 2; TT0.1, TT1, TT10, TT50: test tubes prepared to renew exposure media where MWCNT final concentration

is respectively 0.1, 1, 10 and 50 mg/L; MNT, micronucleus test.



Dunn’s test when the analysis of variance revealed a statisti-

cally significant difference. Finally, for each experimental

condition, the growth rate of larvae (r, %) was calculated with

Eq. (1), from the average length (l) of the selected larvae (d0,

20 larvae per condition), and the survival larvae (d12), which

was estimated for each condition (lX) including the NC

(lNC). Graphic representations are proposed, based on the

calculated growth rates.

r ¼ ðlXd12 ÿ lXd0Þ ÿ ðlNCd12 ÿ lNCd0Þ
lNCd12 ÿ lNCd0

� 100 ð1Þ

Genotoxicity was evaluated on each larva after intracar-

diac puncture under a binocular at the end of the exposure

time. A blood sample was obtained from each anesthetized

larva (MS222, Sandoz, France). Smears were fixed with meth-

anol and stained using Groat’s hematoxylin following the

standard recommendations [24]. The number of erythrocytes

that contained one micronucleus or more (micronucleated

erythrocytes [MNE]) was determined in a total sample of

1000 erythrocytes per larva under light microscope. Based

on median values and quartiles [27], the number of micronu-

cleated erythrocytes per thousand, MNE & is presented with

their 95% confidence limits expressed by the median

±1.57 · interquartile range (IQR; upper quartile ÿ lower quar-

tile)/
p
n. The difference between the theoretical medians of

the test groups and the theoretical median of the NC group

is significant to within 95% certainty if there is no overlap.

2.7. Larvae macro-observations and histological optical

and TEM preparations

After puncturing, the general aspect of the larvae exposed to

CNTs was visually compared with that of the NC group under

the binocular. Histological preparations from intestine, liver

and gills were prepared for optical and transmission electron

microscopy (TEM) observations at the ‘‘Centre de Microscopie

Electronique Appliquée à la Biologie’’ of the Medical Univer-

sity of Rangueil (Toulouse, France). After their sampling, these

organs were promptly fixed in gluteraldehyde solution (2% on

0.1 M Sörensen buffer at 4 °C), then post-fixed in osmium

tetroxide (1%), and finally dehydrated by bathing in ethanol

solutions of increasing alcohol concentrations (30–100°) be-

fore embedding in epoxy resin (Embed812-Araldite502 resin).

A substitution step in propylene oxide/resin mix is required

before placing the biological samples in moulds filled with

pure liquid resin and polymerization (60 °C, 48 h). Sets of half-

thin (about 1.0 lm thin) and ultrathin sections (about 70 nm)

were sliced from the blocks using an ultramicrotome (Ultra-

cut Reichert) equipped with a diamond knife. Note that the

first slice is never suitable for microscopic observations. The

selected halfthin sections were placed on glass slices, dried,

and stainedwith methylene blue. While the selected ultrathin

ones were collected on collodion-coated copper grids, and

stained with uranyl acetate and lead citrate, or only with ura-

nyl acetate in order to enhance the detection of MWCNTs. A

thin layer of carbon was deposited onto the microtomies (to

prevent their deterioration) before their observation in the

same conditions as those used for the characterization of

raw and stabilized MWCNTs.

3. Results

3.1. Characterization of raw and stabilized MWCNT

suspensions

The carbon content of dried MWCNTs was ca. 95 wt.%. The

final product still contained catalyst residues, including

aluminium (1.32 wt.%) and iron (0.85 wt.%). It is assumed that

the complement to 100% is likely to correspond to oxygen.

The specific surface area measured by BET was 270 m2/g.

From our own TEM observations, the outer diameter ranged

from a few nm to 20 nm.

Fig. 2 – Comparison of TEM microphotographs of raw

MWCNTs after (A) any mechanical dispersion (non-

sonicated MWCNTs), (B) mechanical dispersion (dispersion

protocol), (C) long-time sonication. Note the correlation

between the increase in sonication-time and (i) the size

reduction of the agglomerates (white arrows) and (ii) the

increase in the number of individualized MWCNTs (black

arrows).



TEM observations of raw and stabilized MWCNT

suspensions (Figs. 2 and 3) revealed the presence of both

agglomerates and individualized MWCNTs, but also some by-

products of their synthesis such as nanofibres (i.e. distorted

MWCNTs with much thicker walls and larger diameters) and

metal (or a metal compound) nanoparticles (Fig. 3, black ar-

rows) as catalyst residues encapsulatedwithin graphitic shells

orMWCNTs.Wehavenoticedboth a significant decrease of the

size of agglomerates (Fig. 2, white arrows) and the presence of

individualizedMWCNTs (Fig. 2, black arrows)when amechan-

ical dispersion (UT and tip sonicator) was applied to MWCNT

suspensions. Themore extended the sonication (tip sonicator),

themore pronounced this phenomenon. Moreover, when only

mechanical dispersion (as defined in the established disper-

sion protocol) was used the size of agglomerates could reach

several lm (Fig. 3, A.1), while they did not exceed 1 lm when

a dispersing agentwas added (Fig. 3, B.1, C.1). Finally, MWCNTs

dispersed in presence of CMC or GA (Fig. 3, B.1, C.1) seemed to

be more individualized than MWCNTs dispersed only with UT

and tip sonicator (Fig. 3, A.1). Non-sonicatedMWCNTswere so

tangled that it was impossible to estimate their length, and

thus not possible to compare it to the one of sonicated

MWCNTs. Higher magnification TEM images of samples con-

taining CMC and GA evidenced the wrapping of MWCNTs by

the dispersing agent (Fig. 3, B.2 and C.2, white arrows).

No difference was noticed between Raman spectra of

MWCNTs before (Fig. 4A, ‘‘Non-sonicatedMWCNTs’’) and after

the application of a more or less extended mechanical disper-

sion (Fig. 4A, ‘‘mechanical dispersion’’ and ‘‘extended sonica-

tion’’). Raman spectra of raw MWCNTs (mechanical

dispersion; Fig. 4B, ‘‘Raw MWCNTs’’) and those of stabilized

MWCNTs (mechanical dispersion in presence of a dispersing

agent; Fig. 4B, ‘‘MWCNTs + CMC’’ and ‘‘MWCNTs + GA’’) practi-

cally overlaid and exhibited nearly identical ID/G peak intensity

ratios. The only difference was that D and G-bands position of

stabilized MWCNT spectra were slightly up-shifted. In fact,

Fig. 3 – Comparison of TEM microphotographs of (A) raw MWCNTs (mechanical dispersion) and (B) CMC-stabilized or (C) GA-

stabilized MWCNTs (mechanical dispersion and non-covalent functionalization) at (1) low magnification and (2) high

magnification. Black arrows indicate the presence of catalyst nanoparticles, while white ones indicate the presence of

dispersing agent (CMC or GA) wrapping MWCNTs and nanofibers.



the irradiation of the samples by the Raman laser leads to a lo-

cal heating of CNTs, resulting in a shift toward lower frequen-

cies, but their dispersion provides better heat dissipation and

thus results to less down-shifted spectra.

3.2. Stability of MWCNT suspensions

Absorbance calibration curves used to determine the concen-

tration of MWCNTs in the water column (not shown) were all

characterized by a good correlation coefficient (i.e. r2 = 0.9985–

0.9998). In media free from larvae and food where 50 mg/L of

MWCNTs (i.e. maximum exposure concentration) were stabi-

lizedwith CMC or GA, we have respectivelymeasured during a

24 h-period a mean MWCNT concentration of 50.17 ± 0.23 mg/

L or 51.04 ± 0.19 mg/L (Fig. 5C, ‘‘NLNF’’). Regarding the whole

range of exposure conditions ‘‘MWCNTs + CMC’’, the mean

concentration was 0.25 ± 0.05 mg/L, 1.52 ± 0.06 mg/L and

10.14 ± 0.14 mg/L respectively for 0.1, 1 and 10 mg/L (Fig. 6,

‘‘NLNF’’). These results indicated that the combination of a

mechanical dispersion and a non-covalent functionalization

Fig. 4 – Raman spectra of raw and stabilized MWCNTs. Influence of (A) the mechanical dispersion and (B) the non-covalent

functionalization with an anionic polymer. D-band normalized with respect to the intensity of the G-band intensity of the

same spectra. Non-sonicated MWCNTs: MWCNTs before any mechanical dispersion and non-covalent functionalization;

Mechanical dispersion/Raw MWCNTs: MWCNTs after the application of the mechanical dispersion; Long-time sonication:

MWCNTs after a prolonged sonication using the tip sonicator; MWCNTs + CMC/GA: MWCNTs after the application of the

mechanical dispersion combined with the non-covalent functionalization (carboxymethylcellulose/gum arabic).
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with one of the chosen anionic polymers was efficient enough

to maintain during at least 24 h the initial MWCNT concentra-

tion in the water column.

Fig. 5 compares the stability of the suspensions (i.e. sedi-

mentation) of raw MWCNTs to CMC- or GA-stabilized

MWCNTs during MNT (real test conditions). It shows that,

whatever the concentration (0.1 mg/L not shown), raw

MWCNTs settled down almost instantly, and the concentra-

tion in the water column was close to zero after a few hours

of exposure (Fig. 5, ‘‘Raw MWCNTs’’). However, the concentra-

tion of stabilized MWCNTs only slowly decreased (Fig. 5,

‘‘MWCNTs + CMC’’ and ‘‘MWCNTs + GA’’) and after 24 h the

concentration of MWCNTs still present in the water column

ranged from 23% to 50% and from 11% to 39% of the initial va-

lue respectively in the case of CMC and GA. These results

indicate that CMC seems to be a more efficient dispersing

agent. Furthermore, we have observed few peaks of concen-

tration during the first hours of the study. This phenomenon

could be explained by interferences with free food particles

(see next paragraph).

The sedimentation of CMC-stabilized MWCNTs, while

food or larvae was added to the test medium, was compared

to the previous results. On the one hand, when larvae were

added (Fig. 6, ‘‘Larvae’’ and ‘‘MNT’’), MWCNT concentration

in the water column decreased progressively whereas when

there was neither food nor larvae (Fig. 6, ‘‘NLNF’’) it remained

stable. The higher the MWCNT initial concentration, the more

visible this phenomenon. On the other hand, whatever the

test condition and the sampling time, the OD (and thus the

extrapolated MWCNT concentrations) measured when only

food was added (in excess) to the medium (Fig. 6, ‘‘Food’’)

was always higher than the OD measured in media free from

food (Fig. 6, ‘‘NLNF’’ and ‘‘Larvae’’) or when both food and lar-

vae were present (Fig. 6, ‘‘MNT’’). The lower the MWCNT initial

concentration, the more important the difference between

the extrapolated concentration and the target one. For exam-

ple, the ratio between mean concentration when food was

added (Fig. 6, ‘‘Food’’) and mean concentration in media ex-

empt from food and larvae (Fig. 6, ‘‘NLNF’’) was 1.07 for the

condition ‘‘50 mg/L’’ and 27.41 for the condition ‘‘0.1 mg/L’’.

Furthermore, we observed some abrupt rises or drops, which

were similar to these noticed in Fig. 5. Taking in consideration

the fact that food was added in excess in media without lar-

vae (Fig. 6, ‘‘NLNF’’), and was only partly ingested by them

in MNT media (Fig. 6, ‘‘MNT’’), these abrupt rises could be

assimilated to artefacts due to the presence of free non-in-

gested food particles which were dispersed during sonication

of the samples (just before measuring the absorbance). The

presence of these solid particles increased the OD of samples,

and thus led to the overestimation of the extrapolated

MWCNT concentrations especially for to lowest ones (i.e. 0.1

and 1 mg/L).

Fig. 5 – Variationwith time (24 h) of the MWCNT concentration in thewater columnwhen larvae and food are both (A–C; MNT)

present or (C; NLNF) absent. Comparison between raw MWCNTs and CMC- or GA-stabilized MWCNTs. The initial MWCNT

concentrations are (A) 1 mg/L, (B) 10 mg/L and (C) 50 mg/L. Raw MWCNTs, multi-walled carbon nanotubes; MWCNTs + CMC,

CMC-stabilized MWCNTs; MWCNTs + GA, GA-stabilized-MWCNTs; MNT, micronucleus test; NLNF, neither larvae nor food.



3.3. Acute and chronic toxicities

The results (Table 1) showed no toxicity in control conditions

(NC, CMCC and GAC), but mortality was observed from 1 mg/L

of CMC-stabilized MWCNTswhile acute toxicity was observed

only at the maximum concentration (50 mg/L) of raw

MWCNTs or GA-stabilized MWCNTs. Furthermore, whatever

the initial dispersion state of MWCNTs, their presence at high

concentration (50 mg/L) in the test media led to a significant

negative effect (P < 0.05; Fig. 7, I.A, II.A, III.A) on the larvae

growth rate. A significant growth inhibition was also observed

at 10 mg/L of both CMC-stabilized and GA-stabilized

Table 1 – Results of acute toxicity (mortality rate, %) in Xenopus larvae exposed during 12 days to raw or CMC-stabilized or GA-
stabilized MWCNTs. NC, negative control; CMCC, carboxymethylcellulose control (50 mg/L); GAC, gum arabic control (50 mg/
L); MWCNTs, multi-walled carbon nanotubes; MWCNTs + CMC, CMC-stabilized MWCNTs; MWCNTs + GA, GA-stabilized
MWCNTs.

Fig. 6 – Variation with time (24 h) of the CMC-stabilized MWCNT concentrations in the water column. Comparison between

exposure media corresponding to the MNT (presence of larvae and food) and media free from larvae (presence of food) or free

from food (presence of larvae) or free from both larvae and food. The initial MWCNT concentrations are (A) 0.1 mg/L (no data

for ‘‘Larvae’’), (B) 1 mg/L, (C) 10 mg/L and (D) 50 mg/L. NLNF, neither larvae nor food, exposure medium containing only

MWCNTs and CMC; Food, exposure medium containing MWCNTs, CMC and food; Larvae, exposure medium containing

MWCNTs (no data for ‘‘0.1 mg/L’’), CMC and larvae; MNT, micronucleus test exposure medium containing MWCNTs, CMC,

larvae and food.



MWCNTs. On the contrary, larvae exposed to low GA-stabi-

lized MWCNT concentrations (i.e. 0.1 and 1 mg/L) significantly

gained weight (P < 0.05; Fig. 6, III.A).

3.4. Genotoxicity

Concerning the MNT where larvae were exposed to raw

MWCNTs and CMC-stabilized MWCNTs, the median value

of MNE& for the NC and the PC were respectively

0.5 ± 0.35 and 15 ± 0.70 (Fig. 7, I.B and II.B). Concerning

the MNT where larvae were exposed to MWCNTs dispersed

with GA, the median value of MNE& for the NC and the

PC were respectively 1 ± 0.7 and 11 ± 1.4. Thus, whatever

the experiment, the PC group showed significantly higher

MNE& as compared to NC group. Furthermore, the absence

of genotoxicity was observed for both the CMCC and the

GAC groups. No genotoxicity via micronucleus induction

in erythrocytes of Xenopus larvae was observed whatever

the concentration of MWCNTs, their state of dispersion

(raw vs. dispersed) and the nature of the dispersing agent,

except at 1 and 10 mg/L of CMC-stabilized MWCNTs

(Fig. 7, II.B).

3.5. Macro and optical observations of larvae and selected

organs

During the MNT, larvae exposed to the highest concentrations

of raw MWCNTs and stabilized MWCNTs were respectively

partially covered by CNTs and more grey-colored than those

of control groups. From the second day of exposure to the

end of the MNT, the presence of black-colored excrements

was noticed at the bottom of dishes in treated media. The

presence of MWCNTs in these excrements that induced their

black-coloration is discussed further below. At the end of the

MNT, while the digestive tract of larvae reared in the control

media was normally brown-colored, those of larvae exposed

to low MWCNT concentrations contained black masses and

those of larvae exposed to higher concentrations was entirely

black, and even seemed to be bloated in some larvae which

died before the end of the assay.

The visual inspection under binocular revealed the pres-

ence of black masses around the gills of larvae only exposed

to stabilized MWCNTs from 1 mg/L (Fig. 8). Finally, observing

halfthin sections of digestive track, liver and gills, we did

not notice any histological difference between treated and

Fig. 7 – Results of (A) chronic toxicity in terms of growth inhibition and (B) micronucleus assay in erythrocytes of Xenopus

larvae exposed during 12 days to (I) raw MWCNTs or (II) CMC-stabilized MWCNTs or (III) GA-stabilized MWCNTs.
*Corresponds to a significantly different size of larvae at the end of the test compared with the NC group (mean value,

P < 0.05). Genotoxicity is expressed as the values of the medians (number of micronucleated erythrocytes per thousand,

MNE&) and their 95% confidence limits. White bars, absence of genotoxicity; Grey bars, significant response compared to the

NC group; NC, negative control; PC, positive control; CMCC, carboxymethylcellulose control (50 mg/L); GAC, gum arabic control

(50 mg/L); Raw MWCNTs, multi-walled carbon nanotubes in reconstituted water (RW); MWCNTs + CMC, CMC-stabilized

MWCNTs; MWCNTs + GA, GA-stabilized MWCNTs.



control larvae, corresponding to tissue damage or

malformation.

3.6. TEM observations of ultrathin sections of intestine

tract, liver and gills

The presence of agglomerated or isolated MWCNTs in the lu-

men of the intestine confirmed the previous macro and pho-

tonic observations. TEM observations did not allow us to

undoubtedly evidence that they passed through the intestinal

epithelial barrier. The presence of isolated MWCNTs in

enterocytes is discussed further below. Finally, the observa-

tions of gills and liver ultrathin sections showed neither

detectable surface cell-MWCNT interactions nor MWCNT

internalization/translocation.

4. Discussion

Whatever the initial dispersion state of MWCNTs to which

were exposed X. laevis larvae, the suspensions were prepared

using a mechanical dispersion including the use of a sonica-

tion probe. Several studies highlighted the role of ultrasonica-

tion in the expansion and the peeling or fractionation of

MWCNT layers, leading to their shortening (length reduction)

and/or their thinning (diameter reduction) [28], and thus to

the removal of catalyst residues. On the contrary, Chowdhury

et al. [29], who compared the size reduction of MWCNTs using

the combination of scanning electron microscopy (SEM) and

dynamic light scattering (DLS), concluded that the conjunc-

tion of wet milling and high energy sonication was ineffective

and led to dispersion rather than CNT fragmentation and size

reduction. Concerning the present study, the comparison be-

tween the TEM images of non-sonicated and mechanically

dispersed MWCNT suspensions over a moderate or an ex-

tended time allows us to draw a parallel between the sonica-

tion-time and the mechanical dispersion efficiency (i.e. size

reduction of agglomerates and increase in the number of indi-

vidualized CNTs), but the MWCNTs in non-sonicated suspen-

sions were so tangled that it was impossible to estimate their

length and to discuss their possible fragmentation induced by

tip sonication. Besides, the Raman spectra did not show any

evidence of structural defects related to the sonication of

MWCNTs. However, as the ID/G ratio was already rather high

in the starting material (ca. 1.7), it is possible that the creation

of additional structural defects or fragmentation by sonica-

tion could not have been detectable (i.e. no measurable in-

crease in ID/G ratio). Thus we could not exclude that the

mechanical dispersion treatment applied to prepare the test

media could have damaged and/or cut MWCNTs, but we as-

sume that their potential alteration is not significant enough

to modulate the biological responses. The dispersion protocol

was defined in a such way that mechanical dispersion applied

to prepare stabilized-MWNCT media was similar to the one

applied to prepare raw MWCNT media, and thus could not

be a parameter affecting the comparison between the biolog-

ical responses related to each test.

Apart from OD measurements, Raman spectrometry

analysis and TEM imaging, scanning electron microscopy

(SEM) [30], dynamic light scattering (DLS) [31] are techniques

usually used to characterize CNT suspensions in water, but

none of them can provide a reliable particle size distribution

of awhole sample [6]. An alternative could be the combination

between a field-flow fractionation technique (FFF), which

allows to separate CNTs according to their size, and the

Fig. 8 – Evidence of the presence under superficial tissues of black masses located around the gills of larvae exposed to 1 mg/L

of CMC-stabilized MWCNTs. Gills of a NC larvae (A) were compared to those of a treated larvae (B). The gills are outlined by the

dotted lines. (B.2) Note that the black masses were not removed by getting rid of superficial tissues.



multi-angle light scattering (MALS) using a shape model to

determine CNT length [32]. Finally, cryo-SEM does not require

drying of the sample but preserves the nanostructure of CNT

suspensions, and thus could be a promising technique [33].

Nevertheless to our knowledge, none of them have been

pointed out to characterize CNT suspensions or to measure

their concentration in such complex media as natural waters.

After 12 days of exposure to a large range of raw MWCNT

concentrations (from 0.1 to 50 mg/L), no genotoxicity was evi-

denced in erythrocytes of X. laevis, but only mortality and a

significant growth inhibition at 50 mg/L. Mouchet et al. [34]

previously observed similar biological responses, using the

same organism.

In our study, the stock suspensions and the test tubes of

raw MWCNTs, as well as the test media were prepared using

only mechanical dispersion. On the one hand, the dispersion

with an UT and a tip sonicator of the stock suspensions par-

tially promoted the de-agglomeration of CNTs, which led to

a size reduction of agglomerates and the partial individualisa-

tion of MWCNTs (Figs. 2 and 3). On the other hand, the bath

sonication of test tubes and the volume adjustment of the

exposure medium helped to re-disperse them and to homog-

enize the final exposure suspensions. The mechanical disper-

sion alone was obviously not enough to stabilize the

suspensions during 24 h. After only a few hours of exposure,

the CNT concentration in the water column drastically

dropped to zero, so that during the amphibian exposures,

due to their grazing behaviour, the larvae were probably

mostly exposed to MWCNTs deposited on the bottom of crys-

tallising dishes. Macro observations of larvae revealed that

they absorbed MWCNTs. As previously shown by Mouchet

et al. [34], the higher the MWCNT concentration, the darker

the digestive tract. TEM observations of ultrathin sections of

the digestive tracts confirmed the presence of agglomerated

and isolated MWCNTs in the lumen of larvae. Black-colored

excrements which looked similar to those found in the trea-

ted media that we are discussing here, were collected in the

media of larvae exposed to another nature of raw MWNCTs

(i.e. synthesized by ethanol-CCVD). The presence of MWCNTs

which are responsible for their darkening was clearly evi-

denced during TEM observations of the collected excrements

(not shown). Thus macro and TEM observations showed that

MWCNTs were absorbed, and moved within the digestive

track (i.e. in the lumen) before being at least partially (if not

totally) excreted in the exposure medium.

As revealed by the visual inspection and the measurement

of the MWCNT concentrations with time, the concentration

of the stabilized MWCNTs remained stable in the water col-

umn exempt of larvae and food for at least 24 h. Neverthe-

less, the interaction with living organisms destabilized the

suspension, leading to the sedimentation of agglomerates

with time (i.e. before the renewal of the media, 24 h). The

destabilization could be induced by the replacement of the

dispersing agent by organic exudates (e.g. proteins [35], poly-

saccharides excreted by larvae), but also by the non-ingested

food. The implication of the last one is still questionable be-

cause it darkens the exposure medium and may induce an

overestimation of the MWCNT concentration when quanti-

fied by absorbance spectroscopy. The lower the concentra-

tion, the higher the overestimation. The intestine of larvae

exposed to CMC- and GA-stabilized MWCNTs showed similar

aspect compared to the one of organisms exposed to raw

MWCNTs. The presence of MWCNTs was also revealed in

the lumen by TEM observations, and black-colored excre-

ments were also found at the bottom of the dishes. Thus,

even if the agglomerates in stabilized-MWCNT media were

less abundant than those in raw MWCNT ones, they were

obviously ingested by larvae. Besides, a significant growth

inhibition of larvae was observed when they were exposed

to stabilized MWCNTs at 10 and 50 mg/L, but also to raw

MWCNTs at 50 mg/L, as mentioned before. The link between

these biological responses and the absorption of MWCNTs is

discussed below.

CNTs have also been detected as compact masses in the

guts of Daphnia magna exposed to mechanically suspended

MWCNTs [36] or to MWCNTs dispersed with NOM [6,33].

The authors reported that according to TEM images there

was no evidence that MWCNTs were absorbed into cellular

tissues and that the microvilli seemed to prevent MWCNT

absorption by D. magna from crossing the gut lumen. They

concluded that the toxicity of MWCNTs is a mechanical effect

of MWCNTs attributable to the clogging of the daphnids’ gut

tract, leading to a feeding inhibition and a deficit of nutrients

intake [37].

By working from intestinal ultrathin sections contrasted

thanks to a treatment with both uranyl acetate and lead cit-

rate, MWCNTs could barely be distinguished among the bio-

logical matrix, contrarily to those located in the lumen

(Fig. 9B). Slightly defocusing the microscope (Fig. 9A) allowed

to observe isolated MWCNTs into or onto the microvilli of lar-

vae exposed to raw or stabilized-MWNT suspensions, but

none could be observed in deeper layers. Staining these ultra-

thin sections only with uranyl acetate resulted in a sufficient

contrast between carbon-based background biological matrix

and the CNTs, and allowed us to detect isolated MWCNTs into

enterocytes and in the basal membrane region (Fig. 10A). Nev-

ertheless, on the one hand the isolated MWCNTs looked ran-

domly distributed, parallel to each other and oriented and

along the direction of the cutting, and on the other hand

accumulations of MWCNTs were found on both opposite

sides of the preparation (Fig. 10B) by moving along the cutting

direction. We would point out the fact that the studied organs

were fixed and then included in an epoxy-resin before slicing

70 nm-thin sections with a diamond knife. Ajayan et al. [38]

investigated the cutting with an ultramicrotome equipped

with a diamond knife of 50 nm to 1 lm-thin sections from a

polymer resin-CNT composite blocks made from CNTs ran-

domly arranged in an epoxy-resin. TEM analysis showed that

even if embedded CNTs were longer than the thickness of the

slices, the cutting did not produce transverse sections of

CNTs, but that the stress and the shear forces applied during

the cutting lead to their pulling out or their deformation from

the matrix and finally to their unidirectional orientation on

the section. Thus these researchers developed a simple tech-

nique to produce slices of this composite where CNTs were

aligned. We hypothesized that the isolated MWCNTs detected

in the apical region (i.e. microvilli), into enterocytes and in the

basal region were actually probably dragged along the surface

during the sample cuttings. The internalization of MWCNTs

could not be discussed from TEM observations of ultrathin



sections prepared by cutting the embedded organs that pro-

duced artifacts concerning CNT localization.

The overall results suggest that, after the agglomeration of

MWCNTs followed by their sedimentation, and their ingestion

by larvae, they could disturb the absorption and the assimila-

tion of nutrients leading to a significant growth inhibition of

larvae exposed to MWCNT concentrations higher that those

expected in the aquatic compartment [39]. However, the ques-

tion of the efficiency of the intestinal barrier of X. laevis larvae

to prevent systemic distribution of MWCNTs is still unclear.

According to the mechanism proposed by Strano et al. [40],

the mechanical dispersion may help the formation of gaps or

spaces at the bundle ends by providing high local shear, while

the wrapping of the surface of the CNTs with a dispersing

agent (p–p stacking and van der Waals interactions) initiates

the elimination of the hydrophobic interface between the

tubes and the aqueous medium [41]. Then, under mechanical

dispersion, the adsorption and the diffusion of the dispersing

agent propagate in this space along the CNTs, thereby sepa-

rating them from the agglomerates.

Unlike most of the in vitro or in vivo (eco)toxicological stud-

ies, where organisms or cells were exposed to mostly individ-

ual CNTs [42], we have chosen not to centrifuge neither the

stock suspensions nor the test tubes and separate the super-

natant from the agglomerated CNTs. It allowed us to keep

exposure concentrations at the target values, and to be closer

to real exposure conditions where part of the CNTs is agglom-

erated. Moreover, in comparison with mechanical dispersion

alone the combination with non-covalent functionalization

of an anionic polymer allowed to significantly increase the

dispersion of MWCNTs in water [43], and thus their residence

time in the water column. In spite of the negative influence of

the presence of organisms and food, leading to the exposure

to bulky agglomerates which have settled down, larvae were

also exposed to smaller agglomerates and individualized

MWCNTs which remained in suspension in the water column

during all the exposure.

As mentioned before, raw MWCNTs induced acute and

chronic toxicities only at 50 mg/L and no genotoxicity. Repair

mechanisms are activated in response to environmental tox-

icants-induced oxidative stress, but the MNT only evidences

non-repairable DNA damages in erythrocytes. Thus, raw

MWCNTs-induced oxidative stress should not be excluded.

Concerning the exposure to CMC-stabilized MWCNTs,

mortality and a significant growth inhibition were evidenced

at lower concentrations (i.e. from respectively 1 mg/L and

from 10 mg/L), and a genotoxic response was measured at 1

and 10 mg/L. The mitotic index of larvae exposed to 50 mg/L

of CMC-stabilized MWCNTs was significantly lower than

those of the negative control (Dunn’s method, P < 0.05). Thus

the fact that any significant induction of MNE was not

emphasized at 50 mg/L could be explained by a potential dis-

ruption of the erythrocytes mitosis, and 1 mg/L of CMC-stabi-

lized MWNCTs could be considered as the threshold level

above which genotoxic response was induced after 12 days

of exposure.

According to observations of gill and liver sections, we

were not able to detect neither tissue damages nor the pres-

ence of MWCNTs, but the presence of black masses in the

gills of larvae exposed to both CMC- and GA-stabilized

MWCNTs from 1mg/L was observed under the binocular.

Similarly, the presence of precipitated CNTs as black granular

masses were also noticed in the gills of rainbow trouts ex-

posed to lower concentrations (from 0.1 to 0.5 mg/L) of SDS-

dispersed SWNTs [44]. According to the overall results, the

authors concluded that SWNTs were respiratory toxicants

Fig. 9 – Transmission electronmicrographs of an ultrathin section of digestive tract of Xenopus laevis larvae exposed to 10 mg/

L of CMC-stabilized MWCNTs. Observation of MWCNTs (white arrows) above the villosities. Stained with both uranyl acetate

and lead citrate. (A) MWCNTs walls revealed thanks to white fringes by slightly defocusing the microscope. (B) MWCNTs are

barely visible when the focus is well adjusted. Mv, microvilli.



acting at the surface of trout gills, leading to oxidative stress

and moderated hypoxia, but also that they mediated systemic

pathologies, linked to genotoxicity or cell cycles, in other or-

gans where SWNTs were not histologically evidenced. In the

present study, neither ventilation rate nor oxidative stress

in the gills ofX. laevis larvae was assessed. However, the inter-

action of these potential biological effects should not be ex-

cluded in our experiments, and may have influenced our

biological responses, especially in the case of CMC-stabilized

MWCNTs exposure conditions.

Nevertheless, when MWCNTs were stabilized with GA,

acute and chronic toxicities were not induced at low concen-

trations and no genotoxic response was evidenced (i.e. results

similar to raw MWCNTs). The determination of the MWCNT

concentration during the MNT revealed that their residence

time in the water column was lower when they were stabi-

lized with GA, particularly at high concentration, than with

CMC. Thus the difference between CMC and GA in terms of

dispersion efficiency in the presence of larvae and food could

partially modulate the biological responses. Furthermore a

significant trend to growth stimulation was observed with

GA at low concentrations (0.1 and 1 mg/L). Youn et al. [45] re-

ported similar observations about the toxicity of SWNTs

coated with GA towards a freshwater green algae, when they

increased the polymer concentration without changing the

SWNT concentration (0.5 or 1 mg/L). Their results suggest

that CNTs stimulated the algal defence mechanisms leading

to oxidative stress and the release of reactive oxygen species

(ROS), but the negative effects on the organisms could be mit-

igated by the antioxidant potential of GA [46], through the sig-

nificant enhancement of GSH synthesis.

Several physicochemical parameters of CNTs [21,22] are

incriminated in the direct or indirect production of ROS and

associated with oxidative stress [47]. ROS are known to easily

disperse away from the original production site, and could be

produced by many pathways in living organisms, leading to

significant macromolecule damages, such as DNA. Regarding

the different biological responses, the hypothesis of MWCNT-

induced ROS in the gills of larvae (or other tissues and or-

gans), following the interaction between gills, and individual-

ized MWCNTs and/or small agglomerates in suspension in

the water column, is possible. In our experiments, this poten-

tial indirect DNA damaging system may have contributed to

the MN induction in larvae exposed to 1 and 10 mg/L of

CMC-stabilized MWCNTs, while the use of GA as dispersing

agent could have mitigated their genotoxicity leading to a

non-significant induction of MN at the same concentrations.

5. Conclusion

The mechanical dispersion (including in particular the use of

a sonication probe) of MWCNT suspension induced the de-

agglomeration and the partial individualization of CNTs, but

the addition of a stabilizing agent was needed to keep the dis-

persions stable for at least 24 h. Thus a new CNT dispersion

protocol, which combined mechanical dispersion and the

non-covalent functionalization of MWCNTs by an anionic

polymer (i.e. CMC or GA) was established to prepare stabilized

MWCNT suspensions under (supposed) mimicked environ-

mental conditions (i.e. presence in the water column of both

reduced-size agglomerates and individualized MWCNTs).

This protocol facilitates the progress of the ecotoxicity assay

and ensures a proper dispersion of the CNTs along 12 days

of exposure under semi-static conditions. Compared to the

fast agglomeration and sedimentation of raw MWCNTs, it

turned out to be efficient in test media exempt of larvae

and food, at least over 24 h. Even if the interaction with living

organisms and food destabilized the suspensions, the

agglomeration and the sedimentation of stabilized MWCNTs

was significantly delayed, thus allowing a longer period of

exposure in the water column. UV–vis spectroscopy appeared

to be a fast and convenient method to quantify and character-

ize the agglomeration and the sedimentation of MWCNTs in

the exposure media, even if its relevance if limited when

the initial concentration close to 1 mg/L and below, or in the

case of turbid water (e.g. presence of food particles or other

colloids in suspension). Considering this level of concentra-

tion as the environmentally realistic one, efforts are neces-

sary to find a better way to quantify and characterize CNTs

in real complex aquatic media.

During the biological assays (MNT), in the case of exposure

to raw MWCNT, X. laevis larvae were exposed to bulky

agglomerates, while in the case of stabilized MWCN, they

Fig. 10 – Transmission electronmicrographs of an ultrathin

sectionof digestive tract fromXenopus laevis larvae exposed to

GA-stabilized MWCNTs. Presence of (A) isolated MWCNTs

beyond the intestinal brush border but also of (B) accumulated

MWCNTs on the section border. Stained only with uranyl

acetate. Cutting: directionandoppositedirectionof the cutting

during sample preparation. BM, basal membrane; E,

enterocytes; Lu, intestinal lumen; Mv, microvilli.



were exposed to agglomerates, which have eventually settled

down, as well as to individualized CNTs and to significantly

size-reduced agglomerates remaining in suspension in the

water column. Thus, the exposure of larvae to stabilized

MWCNTs and the comparison of the biological responses

with those obtained from exposure to raw MWCNT aimed to

study the influence of the partitioning of these CNTs between

the water column and the bottom of the dishes, according to

the larvae grazing behavior and their moving in the water col-

umn. The agglomeration and the sedimentation of CNTs over

time, followed by the ingestion of significant amounts of

MWCNTs when larvae were grazing at the bottom of the

dishes, were suspected to induce a toxicity resulting, through

intestinal transit mechanical disruption, in significant acute

and chronic toxicities at high MWCNT concentrations. The

overall results suggest that, on the one hand the presence

of individualized MWCNTs and/or size-reduced agglomerates

in suspension in the water column tends to increase both the

growth inhibition and the mortality of larvae, and could be

responsible for irreversible DNA damages. On the other hand

the biological responses could be modulated by the nature of

the dispersing agent itself. The partitioning of CNTs influ-

enced by the presence of dispersants/stabilizers in natural

water, but also the nature of the latter (i.e. mixtures of amino

acids, fulvic and humic substances, proteins, lipids, etc.)

make extremely difficult the accurate prediction of the

ecotoxicological effects of CNTs on the aquatic organisms.

We evidenced that MWCNTs absorbed by the larvae passed

through the digestive systembefore being excreted. In this study,

we demonstrated that the presence of CNTs observed across the

microvilli was possibly only an artifact of the ultra-thin sections

preparation (at least, we could not demonstrate that they

reached this locationduring the experiment itself). TEMobserva-

tion of organ sections should thus be analyzed with caution

regarding their commonuse as evidences of CNTinternalization.

According to our histological observations, no potential entry

point was actually evidenced, but the MWCNT toxicity is sus-

pected tobea consequenceofCNTeffects on theexternal epithe-

lial surfaces. For instance, cellular events and mechanisms

linked to the interaction betweenMWCNTs and gillsmembrane,

in absence/presence of GA, are worth further investigations.
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