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Abstract 

Metarhizium anisopliae var. acridum, a hyphomycetous fungus registered 

worldwide for grasshopper and locust control, is currently under consideration as a 

potential alternative to chemical insecticides for grasshopper control in Canada. 

Research in this thesis has contributed data required for the registration of biological 

control agents in Canada. 

A diagnostic PCR assay was developed for the specific detection of M. anisopliae 

var. acridum DNA. The assay was highly sensitive and effective for the detection of 

fungal DNA in infected grasshoppers. 

A survey of southern Alberta soils conducted in the spring of 2004 revealed the 

presence of Metarhizium spp. at low natural incidence. Two indigenous isolates 

demonstrated pathogenicity when bioassayed against laboratory-reared and field-

collected grasshoppers. One of the isolates demonstrated virulence comparable to a 

commercial isolate. 

An analysis of historical weather data revealed that summer weather in the Prairie 

provinces should not preclude the efficacy of M. anisopliae var. acridum under local 

conditions. 
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Preface 

The following thesis is presented partially in manuscript format. The introduction 

and literature review are combined in a single chapter (Chapter 1) in traditional format. 

Chapters 2, 3, and 4 are presented as manuscripts. References for Chapters 2 to 4 are 

combined in a general references section as outlined in the table of contents. Chapter 5 

outlines a retrospective prediction of Metarhizium efficacy under local conditions and is 

also written in traditional format. A general summary and conclusions are incorporated 

into Chapter 6. 
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Chapter 1. Introduction, Review of Literature, and Objectives 

1.0 Introduction 

Environmental and health concerns about the application of chemical insecticides 

to reduce large-scale insect pest infestations have led to renewed interest in the 

development of microbial agents for incorporation into integrated pest management 

strategies for the control of acridids. Grasshoppers and locusts are responsible for 

significant economic damage to the agriculture industry in grassland biomes of the world 

(Lomer et al, 2001); over eighty-five species of grasshoppers exist in Alberta, and of 

these, four are considered to be serious agricultural pests (Calpas & Johnson, 2003). 

Microbial agents considered so far for the control of acridids include all major types 

including fungi, bacteria, viruses, nematodes, and protozoans. 

Metarhizium anisopliae is a hyphomycetous fungus that is pathogenic to a wide 

range of insect orders. M. anisopliae var. anisopliae is cosmopolitan in nature; strains 

occur naturally in soil. Isolates with varying degrees of virulence have also been 

obtained from locusts and grasshoppers in Africa (Shah et al, 1997), Australia (Prior, 

1997), Madagascar (Delgado et al, 1997a), and Spain (Hernandez-Crespo & Santiago-

Alvarez, 1997). The rarer, albeit more virulent, isolates of M. anisopliae var. acridum 

from acridoid hosts possess a pantropical distribution and have been recorded in Africa 

(Bateman et al, 1996; Shah et al, 1997), Australia (Milner & Hunter, 2001), Madagascar 

(Delgado etal, 1997a), Brazil (Magalhaes etal, 1997), Mexico (Hernandez-Velazquez 

et al, 1997), and the Galapagos Islands (Prior, 1997). 

Isolates of M. anisopliae var. acridum have been investigated and developed as 

biocontrol agents in Africa under the name of Green Muscle® (Douthwaite et al, 2000) 
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and as Green Guard in Australia (Milner & Hunter, 2001) for control of acridids. 

Registration has also been secured in Madagascar (Lomer et al, 2001), and field trials 

have been conducted in Brazil (Magalh&es et al., 2000b). Currently, there are no 

Metarhizium-based products approved for grasshopper control in North America; 

however, M. anisopliae var. acridum is under consideration as a potential alternative to 

chemical insecticides for grasshopper control in Canada. 

Prior to the introduction of a pathogen into a new environment, risks to non-target 

organisms must be demonstrated as acceptable and the environmental fate of the 

pathogen determined (Bidochka, 2001). Extensive studies have focused on the effects of 

exposure on non-target organisms. Smits et al. (1999) found no significant pathological 

or behavioural effects in ring-necked pheasant chicks (Phasianus colchicus) exposed to 

M. anisopliae var. acridum in contaminated food sources. Field application of the 

pathogen at recommended rates is not expected to pose any risks to fringe-toed lizards 

(Acanthodactylus dumerili) based on pathological and behavioural examination of treated 

lizards exposed to high challenge concentrations (Peveling & Demba, 2003). M. 

anisopliae var. acridum was found non-pathogenic to non-target arthropods in the 

families Coccinellidae, Tenebrionidae, Carabidae, Formicidae, and Ephydridae (Peveling 

& Demba, 1997; Peveling et al, 1999; Danfa & van der Valk, 1999) in addition to non-

target scavengers and locust predators (Arthurs et al, 2003; Peveling & Demba, 1997). 

Conversely, laboratory studies demonstrated susceptibility of parasitoids of acridids to 

standard dose rates under simulated field conditions, although it was concluded that M. 

anisopliae var. acridum posed a low risk due to a lack or low levels of infection (Stoltz et 

al, 2002; Danfa & van der Valk, 1999). A simulated field dose formulated in oil resulted 
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in 11% mortality of exposed bees (Apis mellifera) under laboratory conditions; however, 

application of a chemical pesticide at a dose that was just sub-lethal to locusts caused 

100% mortality (Ball et al, 1994). No adverse effects from exposure to doses almost one 

hundred times greater than would be expected in field applications were recorded on 

rainbow fish fry (Melanotaenia duboulayi Castelnau) or mayfly nymphs (Ulmerophlebia 

sp.) housed in artificial water containers whereas significant mortality was observed in 

cladocerans (Ceriodaphnia dubia) treated with high doses of M. anisopliae var. acridum. 

When doses were lowered to rates comparable to realistic field operational conditions, 

however, cladoceran mortality decreased to less than significant levels (Milner et al, 

2002). Further, additional samples of actual water sources in spray areas revealed low 

levels of the entomopathogen; thus it was concluded that the level of conidia likely to be 

present in affected aquatic ecosystems would be unlikely to pose any hazard to the 

indigenous fauna. 

In an analysis of published reports of the best-documented form of biological 

control (of arthropods by arthropods), it has been estimated that only around ten percent 

of attempts have been successful by definition of complete control of the target pest by 

the established biocontrol agent where no other control methods were required or used 

(Gurr & Wratten, 2000; Greathead & Greathead, 1992). The use of M. anisopliae var. 

acridum as a biocontrol agent for acridids in Africa has been considered a qualified 

success in terms of technical efficacy and public benefit (Gelernter & Lomer, 2000). In 

addition to the studies on non-target organisms, a wealth of information generated by 

global research (Lomer et al, 2001) has been attained about the taxonomy, biology, and 

3 



effect of environmental abiotic factors on the entomopathogen. A summary of results 

and knowledge available in the scientific literature follows later in this chapter. 

Current methods of diagnosis of M. anisopliae var. acridum in infected insects 

depend upon development of fungal growth and sporulation in cadavers. Confirmatory 

tests include observation of morphological features on culture media, microscopic 

examination of spores and associated structures, and bioassay of target hosts. Difficulties 

in identification may be encountered due to observed variation of spore morphology 

within the same culture and between isolates (Milner et al., 2003; Glare et al., 1996). 

Further, Lomer et al. (2001) noted that M. anisopliae var. acridum cannot be 

distinguished from other M. anisopliae on the basis of spore size and shape. 

Molecular probes have been developed for the specific detection of M. anisopliae 

var. acridum. Bidochka et al. (1994) used a random amplified polymorphic DNA 

(RAPD) fragment as a probe to differentiate acridid isolates of M. flavoviride (later 

renamed as M. anisopliae var. acridum) from acridid isolates of M. anisopliae. Inglis et 

al. (1999) applied telomeric fingerprinting to differentiate between M. flavoviride strains. 

Distinct telomeric fingerprints of acridoid M. flavoviride isolates were produced when 

genomic fungal DNA was hybridized with radiolabeled probe DNA prepared from a 

digest fragment of a plasmid carrying a repeated hexanucleotide telomere sequence. 

Application of both studies was limited due to a requirement for DNA extracted from 

axenic cultures. 

Numerous studies on mycopathogens of insects and plants have targeted the 

internal transcribed spacer (ITS) region for development of assays for specific detection 

(Tymon et al, 2004; Salazar et al, 2000; Martinez-Culebras et al, 2000; Mishra et al, 
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2000). The DNA coding for the ribosomal RNA gene complex (rDNA) consists of genes 

encoding the 16S, 5.8S, and 28S fungal rRNA subunits that are separated by ITS 

sequences (Freifelder, 1983). The region that separates the 16S from the 5.8S subunit is 

referred to as ITS1; ITS2 separates the 5.8S from the 28S subunit. The section of DNA 

that encompasses the 16S-ITS1-5.8S-ITS2-28S complex is defined as a repeat unit. 

Multiple copies (up to 220), separated by nontranscribed spacer sequences, of the repeat 

unit occur in the fungal ribosomal genome (Pipe et al, 1995), a characteristic that makes 

this region of DNA ideal as a target for molecular characterization. Other suitable 

characteristics include high stability of rDNA as well as the combination of conserved 

sequences in the 16S, 5.8S, and 28S subunits and divergence of sequences coding for the 

ITS regions (White et al, 1990). One of the objectives of this thesis was to analyze 

sequence divergence within the ITS regions of the Metarhizium genome for the potential 

for development of a molecular assay to differentiate an introduced strain of M. 

anisopliae var. acridum from native populations of M. anisopliae and M. flavoviride in 

environmental samples. Additional objectives are introduced in section 1.4. 
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1.1 Metarhizium taxonomy 

1.1.1 Taxonomy based on morphological characterization 

The genus Metarhizium consists of a number of species complexes that are found 

worldwide and have been documented in more than two hundred species of seven orders 

of insects (Veen, 1968), but there has been limited success in correlation of association 

with either insect host or geographic origin. Early approaches to taxonomy relied upon 

morphological characterization at the macro- and microscopic level. Metschnikoff 

(1879) was the first to describe spores of Entomophthora anisopliae. In 1883, Sorokin 

renamed the fungus Metarhizium anisopliae. Metarhizium is the current name for the 

genus, although from 1880 to 1969 at least eight other names were proposed for the 

genus alone (Tulloch, 1976). The nomenclature was further confounded with the 

introduction of an incorrect spelling of Metarrhizium into numerous publications. Lack 

of museum specimens of sufficient quality has lead to the removal, and later 

reinstatement, of a second species M. album (Petch, 1931; Rombach et al, 1987). M. 

brunneum, first described by Petch (1935), was later determined to be M. anisopliae by 

Roberts (1967) when irradiation of green spores of M. anisopliae produced brown 

coloured mutants resembling M. brunneum. Insofar as no microscopic differences could 

be found between M. brunneum and M. anisopliae, it was concluded that M. brunneum 

was a naturally occurring mutant of M. anisopliae. In 1915, Johnston proposed the 

classification of M. anisopliae into long- and short-spored forms. Gams and Rozsypal 

(1973) described a third species Metarrhizium flavoviride isolated from insects and soil. 

A short-spored form, M. flavoviride var. minus, was described by Rombach et al. (1986). 

Other species have been proposed in China and Japan, but lack of material deposited in 
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culture collections has led to difficulties for additional morphological and phylogenetic 

analyses (Tzean et al, 1993; Liang et al, 1991; Shimazu, 1989; Guo et al. 1986). 

1.1.2 Taxonomy based on molecular characterization 

1.1.2.1 Random amplification of polymorphic DNA (RAPD) 

Based on the numerous difficulties described previously, the taxonomic 

classification of fungi has profited enormously from the possibilities offered by 

molecular characterization, and this has been particularly true for Metarhizium. The 

genetic diversity of isolates has been examined by RAPD analysis. RAPD uses a single 

primer of arbitrary nucleotide sequence to amplify genomic sequences wherever the 

primer finds regions of sufficient homology by polymerase chain reaction (PCR), thus no 

prior knowledge of the genome to be analyzed is required. Fegan et al. (1993) found 

considerable genetic diversity in Australian isolates that correlated weakly with 

geographical location. The existence of high genetic diversity in Brazilian strains was 

confirmed, but less variability was found in insect isolates in comparison with strains 

from soil, suggesting that the fungus had developed a certain degree of host specificity 

(Fungaro et al, 1996; Tigano-Milani et al, 1995). Bidochka et al. (1994) were unable to 

demonstrate association with host or geographic origin in acridid isolates of M. 

flavoviride, but did find evidence of high variability in acridid isolates of M. anisopliae. 

In addition to confirmation of high DNA variability within isolates sampled throughout 

the world, Cobb and Clarkson (1993) were able to differentiate M. anisopliae from M. 

flavoviride, as well as establish a loose correlation of M. anisopliae with geographic 

origin (Australia, the Caribbean and Asia) although there was no association with insect 

host. Differentiation between isolates from different geographical locations and also 
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between isolates from the same country was possible, but whereas isolates from 

Australia, Brazil and the Philippines (Oryctes rhinoceros) were distinct, those from 

Finland and Nilaparvata lugens in the Philippines showed similar profiles (Leal et al, 

1994). 

1.1.2.2 Random fragment length polymorphism (RFLP) 

Intraspecific variation in Metarhizium from various geographical locations and 

insect hosts was also analyzed by RFLP. RFLP is a method that generates restriction 

endonuclease digestion patterns of total or specific (e.g. mitochondrial) DNA. Analysis 

of the derived patterns can assist with differentiation between species. Once again, 

considerable DNA heterogeneity was demonstrated with this method. Pipe et al. (1995) 

were able to group some Metarhizium anisopliae isolates with geographical origin, but 

obtained poor differentiation of isolates from the same geographical region. Insufficient 

numbers of isolates from the same geographic region but different insect hosts did not 

allow investigation of any correlation with insect host. Mavridou and Typas (1998) 

found that differences in intraspecific and interspecific variation were inadequate to allow 

for any correlation with either insect host or geographic origin. 

1.1.2.3 Amplified fragment length polymorphism (AFLP) 

Using an alternative molecular analysis, Leal et al. (1997) performed 

amplification and restriction endonuclease digestion of the major protease Prl gene to 

characterize Metarhizium strains. AFLP is similar to RAPD, except that the PCR primers 

in AFLP are complementary to specific adaptor sequences that have been ligated to the 

ends of the digestion fragments. With this technique, the digest patterns of forty global 

Metarhizium strains were clustered into four groups, with some of the groups correlated 
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to geographic origin. Strains from the same country displayed more similarities than 

those from different countries. There appeared to be no correlation with host, except for 

some strains which had been isolated from orthopteran hosts. 

1.1.2.4 Isoenzyme polymorphism analysis 

Rakotonirainy et al. (1994) used electrophoretic banding patterns of seven 

enzymes to demonstrate the distinctiveness of M. anisopliae strains from New Zealand, 

suggesting a different genetic evolution of. Metarhizium for these isolates, either through 

selective pressure by host or by environment. Banding patterns also permitted 

differentiation of isolates o f M anisopliae var. majus from additional strains of M. 

anisopliae var. anisopliae; however, there was no association with geographic region. 

Bridge et al. (1997) applied a combination of isoenzyme analysis, RAPD PCR, 

and protease production to examine the relationships of thirty strains of Metarhizium 

from twenty-three countries. Isoenzyme analyses of catalase and propionyl-esterases 

gave distinct banding patterns with isolates from acridid or pyrgomorphid hosts. 

Principal Coordinate analysis of RAPD PCR results also showed isolates from acridid or 

pyrgomorphid hosts to be clearly separated as a distinct group. Further, in the same 

study, the strongest protease (elastase and chymoelastase) activity was demonstrated by 

acridid and pyrgomorphid isolates compared to those from other hosts, with one cercopid 

exception. They used their data to support the differentiation of M. flavoviride into 3 

groups: 1) original isolates of M. flavoviride var. flavoviride from coleopteran hosts and 

soil in northern Europe, 2) isolates of M. flavoviride var. minus from homopteran hosts in 

Southeast Asia and 3) those isolates from acridoids in Africa (including Madagascar), 
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Australia and the Galapagos. However, it should be noted that some other isolates of 

Metarhizium, not classified with the group 3 isolates, are pathogenic to acridoids. 

1.1.2.5 Ribosomal RNA (rRNA) and DNA (rDNA) sequence analysis 

In conjunction with their study on isoenzyme comparison, Rakotonirainy et al. 

(1994) used phylogenetic analyis of partial 28S rRNA sequences to confirm separation of 

M. flavoviride f romM anisopliae. The sequences clustered isolates into three groups: 1) 

M. flavoviride, 2) New Zealand strains of M. anisopliae, and 3) M. anisopliae. In the 

third cluster, there was a distinct division between strains of M. anisopliae var. majus and 

M. anisopliae var. anisopliae. 

More recently, Driver et al. (2000) used rDNA sequences to assign representative 

isolates to ten separate clades. Acridoid isolates, most previously identified as M. 

flavoviride on the basis of conidial and phialide morphology, clustered as a distinct 

taxonomic group proposed as M. anisopliae var. acridum. Further, one of the proposed 

clades (M. flavoviride var. novazealandicum) incorporated a particular genotype of 

isolates from insects and soils in Australia and New Zealand. Table 1 outlines a 

simplified chronological history of the taxonomy of Metarhizium. 

Although not all proposed clades have been universally accepted, it is generally 

agreed that there are three areas of consensus with regards to the taxonomy of 

Metarhizium: \)M. anisopliae has a monophyletic evolution based on ITS and 28S 

rDNA sequence data, 2) M. anisopliae and M. flavoviride are related but can be 

distinguished with the use of molecular markers, and 3) genetically distinguishable 

subgroups exist within M. anisopliae and M. flavoviride (Bidochka & Small, 2005). 
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Table 1-1. Chronological history of Metarhizium taxonomy 

M. album M. anisopliae M. flavoviride Reference 

Initially identified as Entomophthora 
anisopliae 

Metschnikoff, 1879 

Renamed as Metarhizium anisopliae Sorokin, 1883 

Recognition of long- and short-spored 
forms (forma major and forma minor) 

Johnston, 1915 

Recognition as authentic 
species 

Petch, 1931 
Rombach et al, 1987 

M. brunneum identified as new species 
by Petch, later renamed M. anisopliae 
based on morphological comparison and 
exposure to gamma irradiation 

Petch, 1935 
Latch, 1965 
Roberts, 1967 

Recognition of new species Gams & Rozsypal, 1973 

Recognition of M. anisopliae (Metsch.) 
Sorok. var. anisopliae and M. anisopliae 
(Metsch.) Sorok. var. majus (Johnston) comb, 
nov. 

Tulloch, 1976 

Recognition of genetic variability in 
this species but acknowledgement of 
homogeneity of M. anisopliae var. majus 
based on isozyme analysis 

Recognition of new variety, 
M. flavoviride var. minus 

Rombach et al, 1986 

Riba etal, 1986 
St. Leger etal, 1992 

The hatched line represents the determination of taxonomy by morphological observation (above) and molecular characterization (below). 
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Table 1-1 con't. 

M. album M. anisopliae M. flavoviride Reference 

Confirmation of high genetic variability 
by RAPD analysis 

Fegan etal, 1993 
Bidochkaef al, 1994 
Fungaro etal, 1996 

Recognition of subgroups, loosely 
correlated with geographical origin, by 
RAPD analysis and restriction 
endonuclease digestion of a protease gene 

Cobb & Clarkson, 1993 
Leal etal, 1994 
Leal etal, 1997 

Low intraspecific variability in 
isolates virulent to acridids 

Cobb & Clarkson, 1993 
Bidochkaef al, 1994 

API ZYM, isoenzyme, and RFLP 
banding patterns permit differentiation 
of M. flavoviride from M. anisopliae 

Bridget al, 1993 

Recognition of two subgroups with no 
correlation to geographic origin or insect 
host 

Currant al, 1994 

Differentiation ofM album, M. anisopliae var. anisopliae, M. anisopliae var. majus, and M. flavoviride by analysis 
of rDNA sequences, rRNA sequences and isozyme profiles, and RFLPs 

Currant al, 1994 
Rakotonirainy et al, 1994 
Pipe etal, 1995 
Mavridou & Typas, 1998 

Recognition of acridid isolates as a 
single, distinctive genotype with a 
pantropical distribution 

Bridge et al, 1997 

Recognition as a single 
distinct clade 

Recognition of four distinct clades: M. 
anisopliae var. anisopliae, M. anisopliae 
var. majus, M. anisopliae var. lepidiotum 
var. nov., M. anisopliae var. acridum var. 
nov. 

Recognition of five distinct clades: 
M. flavoviride var. flavoviride, M. 
flavoviride Type E, M. flavoviride 
var. minus, M. flavoviride var. 
novazealandicum var. nov. 

Driver et al, 2000 
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Table 1-1 con't. 

M. album M. anisopliae M. flavoviride Reference 

Recognition of three subgroups of M. 
anisopliae var. anisopliae by IGS 
sequence analysis 

Pantou et al, 2003 

Proposal that all three currently recognized species be reduced to a single species M. anisopliae, further defined as 
varieties, genetic groups, cryptic species as additional phylogenetic and phylogeographic data are obtained. 

Milnere/a/., 1994 
Bidochka & Small, 2005 
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Further consensus and correlation of molecular, morphological and ecological 

data will require examination of additional isolates. 

1.2 The fungal infection process 

The infectious propagule of Metarhizium is the uninuclear conidium, a fungal 

mitospore formed externally on a conidiogenous cell (Humber, 1997). Pathogenesis 

involves the following stages: recognition and spore attachment to host, germination and 

penetration of integument, growth and proliferation within host, and re-emergence from 

host followed by conidial production (Zacharuk, 1973). 

1.2.1 Recognition and spore attachment to host 

The process by which a spore recognizes an appropriate host has not yet been 

fully elucidated. Butt et al. (unpublished results in Butt, 2002) have observed a complex 

signalling apparatus (G-proteins, receptors, kinases, and secondary messengers) in some 

entomogenous fungi. Wang and St. Leger (2005) identified fungal transcriptional 

patterns induced by recognition of host-specific topography and chemical components 

displayed or released by the host. Attachment of the conidium to host cuticle is mediated 

through non-specific hydrophobic interaction between conidial rodlets and the waxy 

surface of the insect cuticle (St. Leger, 1993; Boucias et al, 1988). 

1.2.2 Germination and penetration of integument 

Before production of a germ tube can be initiated, the spore must overcome 

fungistatic or toxic compounds present in the insect cuticle (Samuels & Reynolds, 2000; 

Sosa-Gomez et al, 1997; St. Leger, 1991). Successful germination is also dependent 

upon appropriate humidity, available nutrients and surface topography (Dillon & 

Charnley, 1990; St. Leger et al, 1994,1991). Ibrahim et al. (1999) determined that 
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M. anisopliae conidia require water activity > 0.98 (=98% RH) for germination, 

irrespective of aqueous or oil-based formulations. Conversely, Bateman et al. (1993) 

demonstrated infectivity of desert locusts (Schistocerca gregaria) by an oil formulation 

of M. flavoviride at 35% RH, suggesting that the microclimate humidity of the insect 

cuticle was more of a determinant than ambient relative humidity for germination. Wang 

and St. Leger (2005) observed that M. anisopliae var. acridum conidia germinated on S. 

gregaria, however, germination on beetles or hemipteran bugs was either repressed or 

occurred with low levels of differentiation. 

Penetration through the cuticle is accomplished by production of an appressorium, 

a specialized structure at the apex of the germ tube (St. Leger et al., 1989; Zacharuk, 

1970a). Formation of the appressorium is influenced by surface topography, with 

preference for hard, smooth surfaces (St. Leger et al., 1991; St. Leger et al., 1989). 

Penetration pegs produced by the appressorium enter the cuticle, usually at 

intersegmental folds, with the aid of mechanical pressure and cuticle-degrading enzymes 

including proteases, chitinases, lipases, esterases and phosphatases (Freimoser et al., 

2003; Gillespie et al., 1998; St. Leger et al. 1996; Bidochka & Khachatourians, 1994; 

Zacharuk, 1970b). 

1.2.3 Growth and proliferation within host 

Once the fungus has entered the haemocoel, colonization is dependent upon the 

ability of the fungus to overcome a combination of cellular and humoral responses that 

comprise the host immune system (Gillespie et al., 2000). Fungal cytotoxic compounds 

are produced by blastospores, free-floating yeast-like cells produced as hyphae bud 

within the haemocoel (Zacharuk, 1971). The production of secondary fungal metabolites, 
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primarily destruxins A, B and E, by isolates of M. flavoviride has been demonstrated in 

vitro (Amiri-Besheli et al, 2000). In contrast, Kershaw et al. (1999) could only detect 

destruxins in early adults of S. gregaria that were infected in a bioassay with an 

Australian isolate of M. anisopliae var. acridum; destruxins were not detected with 

isolates from Africa or the Galapagos Islands. Destruxins have been shown to possess 

immunomodulatory ability (Vilcinskas et al, 1997; Vey et al, 1995; Huxham et al, 

1989) as well as disrupt normal cell metabolism (James et al, 1993). Expression of 

genes involved in stress response, detoxification and transmembrane transport in M. 

anisopliae var. acridum (Freimoser et al, 2003) is likely induced by the host humoral 

response. 

Subsequent to successful suppression of the host immune response, colonization 

of the haemocoel is completed and the insect succumbs. The reasons for host mortality 

are not yet fully understood, but may be due to a combination of mechanical damage to 

internal organs, nutrient depletion and/or toxicosis (Gillespie & Claydon, 1989). 

1.2.4 Re-emergence from the host and conidiation 

Under favourable environmental conditions, mycelial growth resumes and hyphae 

emerge soon after host death to colonize the cadaver surface. Hyphal differentiation into 

conidiogenous cells occurs and concomitant sporulation completes the infection process. 

At this point, abiotic factors are the main determinants in persistence of the infectious 

propagule in the environment. 

1.3 Abiotic factors affecting persistence of M. anisopliae var. acridum 

The growth and survival of fungi are determined primarily by abiotic factors 

including temperature, solar radiation and humidity. Other meteorological factors such 
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as rainfall and wind contribute to the efficacy and dispersal of the entomopathogen in the 

field, but the impact of weather on the effectiveness of M. anisopliae var. acridum has 

not yet been widely studied. It should be noted that most data on abiotic factors have 

been acquired from laboratory results, thus, generalization of pathogen survival observed 

under controlled conditions must be verified or refuted by field experimentation (Ignoffo, 

1992). Further, environmental parameters interact in their impact on entomopathogens 

(Inglis et al, 2001). 

1.3.1 Temperature 

Temperature acts not only on the germination of fungal spores and hyphal 

development, but also on the speed and quantity of sporulation (Benz, 1987). Ambient 

temperatures in most agroecosystems range from about 10 to 40 °C during the growing 

season (Ignoffo, 1992). Many studies have determined that M. anisopliae var. acridum 

would not be adversely affected by most temperatures within this range. The optimum 

temperature for growth for M. anisopliae var. acridum has been shown to be around 28 to 

30 °C, with some degree of growth noted over a range from 15 to 35 °C, although an 

isolate from Madagascar has demonstrated the ability to grow at 38 °C (Welling et al, 

1994). Thomas and Jenkins (1997) observed optimal temperatures of ca. 30 °C for Green 

Muscle® and another isolate of M. anisopliae var. acridum. However, the optimal 

temperatures for hyphal extension and conidial yield on Sabouraud-dextrose agar (SDA) 

were 27 °C and 25 °C, respectively, for Green Muscle® and 25.5 °C and 24 °C, 

respectively, for isolate 191-609. It was noted that conidial production rose steeply with 

increasing temperatures towards the optimum followed by a more gradual decline as 

temperatures increased above the optimum. They also determined that the optimal 
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temperature for infection ofZonocerus variegatus under controlled environmental 

conditions was ca. 30 °C for both isolates. In a study of vegetative growth on a semi

synthetic medium, Ouedraogo et al. (1997) demonstrated growth of several M. 

flavoviride isolates over a range of 8 to 35 °C. No isolates grew at 37 °C. Most isolates 

had optimal growth at 28 to 30 °C, but a few fell in the range of 25 to 28 °C. An optimal 

temperature of 30 °C for conidial germination was shown by Fargues et al. (1997); 

however, while Green Guard® still exhibited 98 % germination after 48 hours at 37 °C, 

Green Muscle® displayed only 11 % germination for the same temperature and duration. 

No germination was observed at 40 °C. In a comparison of isolates from Australia and 

Mexico, Milner et al. (2003) showed that all had optimal growth at 28 °C on SDA but 

found significant differences in growth rates, with the most rapid rate displayed by one of 

the Mexican isolates. All isolates showed little or no growth at 36 °C and slow growth at 

16 °C. High mortality in wingless grasshopper, Phaulacridium vittatum, from varying 

doses was demonstrated in a laboratory bioassay over a range of temperatures from 20 to 

35 °C, but sporulation occurred only at high doses at 20 °C, as well as at all doses at 25 

°C and 30 °C. At 35 °C, one of the Mexican isolates was the only one to produce 

substantial sporulation. Arthurs and Thomas (2001a) found similar results with 

maximum conidiogenesis in cadavers in contact with a damp surface at 25 °C. Little 

sporulation occurred at 15 °C or 40 °C. 

Studies have also focused on the thermal tolerance of M. anisopliae var. acridum 

conidia in oil formulations. McClatchie et al. (1994) observed a slight decrease in 

germination in oil-formulated conidia exposed to 60 °C for five hours. Even after five 

hours at 80 °C, 10 % of the exposed conidia were still capable of germination. A longer 
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storage time at a lower temperature (six weeks at 55 °C) resulted in 20 % survival of 

dried conidia. Morley-Davies et al. (1995) demonstrated germination rates greater than 

75 % after ninety days storage at temperatures ranging from -10 to 40 °C for Green 

Muscle® for both oil and dry powder formulations. Dry formulations generally 

outperformed oil formulations at all temperatures tested. Rangel et al. (2005) determined 

the conidial thermotolerance for Green Guard®. Germination of a conidial suspension in 

an aqueous solution was 90 % after twelve hours exposure to 45 °C. The median lethal 

dose (LD50) was calculated as 49.4 °C for two hours. 

Additional studies have investigated the effects of fluctuating temperature 

regimes on virulence in bioassays of acridids. Inglis et al. (1999) found a mean lethal 

time of 4.8 days for grasshopper nymphs infected with a Brazilian isolate of M. 

flavoviride under a regime of 20/30 °C (12 h:12 h) compared to 5.4 days for those 

incubated at a constant 25 °C. Both regimes produced ca. 80 % external colonization of 

cadavers compared to 24 % external colonization for infected nymphs that had been 

incubated under a regime of 10/40 °C (12 h: 12 h). Welling et al. (1994) determined a 

median lethal time of 8.55 days for locust nymphs inoculated with an isolate of M. 

flavoviride from Madagascar and incubated at 30/25 °C (8 h:16 h) versus 6.83 days for 

nymphs exposed to 36/25 °C (8 h:16 h). 

1.3.2 Solar radiation 

Ignoffo (1992) declared natural sunlight to be the most destructive environmental 

factor affecting the persistence of entomopathogens. It has been determined that 

wavelengths in the 285 to 315 nm range (UV-B) are the most damaging to fungi. 

Morley-Davies et al. (1995) exposed oil formulations of M. flavoviride conidia to 

19 



simulated sunlight for up to twenty-four hours at 40 °C to approximate conditions that 

would exist at the equator. The impact on conidial germination after 24 hours exposure 

was severe, with germination reduced to 28.6 % from 82.2 % for unexposed Green 

Muscle® conidia and a decline from 69.4 % to 31 % for Green Guard®. After only eight 

hours exposure, germination for Green Muscle® declined to 39.4 %. Fargues et al. 

(1996) found isolates of M. flavoviride to be the most resistant, followed by Beauveria 

bassiana, M. anisopliae and Isaria (formerly Paecilomyces) fumosorosea, to irradiation 

by artificial sunlight. Green Muscle® was reduced to 5.2 % surviving colony forming 

units (CFU) relative to a non-irradiated control, whereas Green Guard® declined to 11.1 

% surviving CFU following eight hours of irradiation. As with the study by Morley-

Davies et al. (1995), Fargues et al. (1996) observed that Green Guard® conidia were 

more resistant to simulated radiation than Green Muscle®, thus demonstrating 

intravarietal differences. Braga et al. (2001a) compared the effects of full-spectrum 

sunlight and UV-A radiation (320-400 nm) exposure on Green Guard® conidia. The 

exposures were performed in Utah under naturally occurring sunlight and different filter 

combinations. Radiation was recorded as irradiance measurements. Relative to full-

spectrum sunlight, conidia showed less decline in mean relative percent culturability (ca. 

90 %) from four hours exposure to UV-A radiation compared to 70-80 %. Measurements 

of mean relative percent germination over a period of 48 hours after four hours exposure 

to either full-spectrum sunlight or UV-A radiation revealed no significant difference from 

unexposed controls; however, there was a significant delay in germination when 

measured over 24 hours for both spectra. Moore et al. (1996) found that temperature 

influenced germination decay curves for oil formulations of Green Muscle® conidia 
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exposed to natural solar irradiation in Niger. Minimal loss of germination was 

experienced at 5 °C and 10 °C during the first two hours of exposure, followed by a 

decline in the subsequent two hours. Conversely, germination was reduced by half at 

temperatures of 40 °C and above, with less than one hour exposure. 

Some studies have looked at formulation composition as a source of stability 

enhancement in a natural setting. Moore et al. (1993) discovered that oil formulations of 

M. flavoviride showed 36.5 % germination over a 24-hour period after one hour exposure 

to UV from a solar simulator compared with 4.7 % germination of conidia in water. 

Addition of a sunscreen (oxybenzone) to an oil-based formulation resulted in 81.9 % 

conidial germination after three hours exposure compared with 28.1 % in a formulation 

without sunscreen. In contrast, Shah et al. (1998a) found no significant differences 

between field treatments of oil formulations of M. flavoviride conidia that contained 

oxybenzone and those without. Hunt et al. (1994) could not corroborate the findings of 

Moore et al. (1993) in an analysis of the protective effects offered by several sunscreens. 

None of the sunscreens tested, including oxybenzone, offered significant protection for 

oil-formulated conidia after five hours exposure to UV from a solar simulator. 

1.3.3 Humidity 

Free water is a critical element required for fungal spore germination and 

sporulation on mycosed cadavers. Whereas water availability in the microclimate of the 

host cuticle is more of a determinant for conidial germination than ambient relative 

humidity, conidiogenesis on cadavers is dependent on high moisture in the surrounding 

environment. Ibrahim et al. (1999) determined that conidia of M. anisopliae required 

water activity > 0.98 (= 98 % RH) for germination. The type of formulation (oil or 
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aqueous) did not influence this requirement. They also demonstrated ability of water to 

diffuse from the haemocoel through a locust cuticle through to the surface, presumably 

via pore channels. Magalhaes et al. (2000a) observed that M. anisopliae var. acridum 

sporulated internally within the grasshopper Rhammatocerus schistocercoides under 

ambient humidities of 53 % and 75 %; however, there was no external sporulation for 

either condition. Arthurs and Thomas (2001a) found conidial yield to be closely related 

to the water content of locust cadavers. In a simulation of overcast/wet weather 

conditions at field sites in the Sahel and South Africa, S. gregaria cadavers were exposed 

to a fluctuating regime of 25 °C/100 % RH and 40 °CV 80 % RH (12 h: 12 h). Sporulation 

under this regime was less than that yielded by cadavers held at 25 °C/100 % RH and 40 

°C/100 % RH, evidence that conidial yield was reduced by periodic exposure to low 

humidity. Fargues et al. (1997) found that a range of 13 to 100 % ambient humidity had 

no effect on cumulative mortality, cumulative mycosis or median lethal time in locusts 

treated with M. flavoviride. An estimated LT50 of five days was established by Bateman 

et al. (1993) for locusts inoculated with an oil formulation of M. flavoviride and 

incubated at 35 % RH. Death due to mycosis was confirmed by incubation of cadavers 

under high humidity to permit fungal outgrowth. 

1.4 Objectives 

As part of the initial studies necessary for the implementation of a biological 

control plan, the research in this thesis involved (i) the development of a molecular assay 

for the specific detection of M. anisopliae var. acridum and analysis of the efficacy of the 

assay for detection of the fungus in infected grasshoppers and spiked soil samples 

(Chapter 2), (ii) a survey of southern Alberta soils to determine natural incidence of 
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Metarhizium (Chapter 3), (iii) bioassay of grasshoppers with native isolates of 

Metarhizium to determine potential virulence (Chapter 4), and (iv) evaluation of 

historical weather and climate data in the Prairie provinces to estimate M. anisopliae var. 

acridum efficacy in a temperate regime (Chapter 5). The research described within will 

provide information for the determination of an integrated pest management strategy 

applicable to current local conditions, and under a range of weather scenarios. 
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Chapter 2. Development and Validation of a PCR Assay for the Specific 
Detection of M. anisopliae var. acridum* 

2.0 Introduction 

Comparative studies of nucleotide sequences of rRNA genes have provided 

significant data for analysis of phylogenetics and taxonomy (White et al, 1990). 

Ribosomal DNA is present in multiple copies in the fungal genome and is thereby a 

preferred choice over single-copy genes for PCR amplification. White et al. (1990) 

introduced the use of PCR methods for amplification of the ITS region in nuclear rDNA 

of the fungal genome. The ITS sequences of the rDNA region are an ideal target for the 

development of species-specific primers because they evolve relatively rapidly and are 

highly variable in length and nucleotide content between closely related species and 

sometimes within a species as has been demonstrated for the genus Metarhizium. Driver 

et al. (2000) showed 14 to 18 % nucleotide divergence for the ITS region between the 

morphologically defined species of M. album, M. anisopliae and M. flavoviride, and up to 

5 % divergence between recognized varieties within a species. 

Sequence data from the distinct ITS rDNA regions for M. anisopliae var. acridum 

were analyzed for primer development for a PCR assay capable of specific detection of 

this entomopathogen. The objective was to develop a pair of primers that could 

differentiate M. anisopliae var. acridum from native isolates of M. anisopliae var. 

anisopliae and M. flavoviride. The assay was also required to detect specific 

Metarhizium DNA from a soil matrix and from infected grasshoppers. 

T h i s manuscript has been published in Mycological Research. 
Authors: S.C. Entz, D. L. Johnson and L.M. Kawchuk 

24 



2.1 Materials and Methods 

2.1.1 Fungal isolates and cultivation 

The fungal isolates used in this study are listed in Table 2-1. All were propagated 

and maintained on potato dextrose agar (PDA). M. anisopliae var. acridum (Evil 330189; 

commercialized as Green Muscle® by the Lutte Biologique Contre les Locustes et 

Sauteriaux [LUBILOSA] programme) was obtained from the International Institute of 

Tropical Agriculture (IITA, Benin). M. anisopliae var. anisopliae isolates 421 and 4450 

and other fungi coded as UAMH were obtained from the University of Alberta 

Microfungus Collection and Herbarium, Edmonton, Canada. Metarhizium isolates coded 

as ARSEF were obtained from the USDA-ARS Collection of Entomopathogenic Fungal 

Cultures, Ithaca, NY, USA. Those coded as LRC and Isaria (formerly Paecilomyces) 

fumosorosea (PFR-97) were obtained from the Lethbridge Research Centre (LRC), 

Canada. Metarhizium anisopliae var. acridum SP9 and Beauveria bassiana (GHA 726) 

were previously obtained from Mycotech Corporation, Butte, MT, USA. M. anisopliae 

var. acridum FI-985 (commercialized as Green Guard®) was procured from Bio-Care 

Technology Pty Ltd., Somersby, Australia. 

2.1.2 Fungal DNA isolation 

The procedure of Cenis (1992) was used for fungal DNA extraction. Briefly, 

hyphae were used to inoculate 500 ul of potato dextrose broth in a 1.5 ml Eppendorf 

tube. Following 3-5 days incubation at 25 °C, the mycelial mat was pelleted by 

centrifugation for 5 min at 16 000 X g, washed with 500 ul 10 mM Tris-HCl, 1 mM 

EDTA, pH 8 (TE), and pelleted again. The TE was decanted and 300 ul of 200 mM Tris-
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Table 2-1. List of isolates studied 

Isolate code 4 Name 0 Host Country of origin 

Metarhizium spp.: 

IMI 330189 Metarhizium anisopliae var. acridum 

SP9 

FI 985 

ARSEF 437 

ARSEF 727 

M. anisopliae var. acridum 

M. anisopliae var. acridum 

ARSEF 3391 M. anisopliae var. acridum 

ARSEF 6421 M. anisopliae var. acridum 

M. anisopliae var. anisopliae 

M. anisopliae var. anisopliae 

Ornithacris cavroisi Niger 
(Orthoptera: Acrididae) 

Locusta migratoria capito Madagascar 
(Orthoptera: Acrididae) 

Austracris guttulosa Australia 
(Orthoptera: Acrididae) 

Zoonocerus elegans Tanzania 
(Orthoptera: Pyrgomorphidae) 

Kraussaria angulifera Senegal 
(Orthoptera: Acrididae) 

Teleogryllus commodus Australia 
(Orthoptera: Gryllidae) 

Unidentified tettigonid Brazil 
(Orthoptera: Tettigoniidae) 
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Table 2-1 con't. 

Isolate code 3 Name b Host Country of origin 

Metarhizium spp.: 

UAMH 421 M. anisopliae var. anisopliae Unidentified insect larvae USA 

UAMH 4450 M. anisopliae var. anisopliae Soil Canada 

S54 M. anisopliae var. anisopliae Soil Canada 

6W-2 M. anisopliae var. anisopliae Soil Canada 

11S-1 M. anisopliae var. anisopliae 

ARSEF 1184 M. flavoviride Gams & Rozsypal 

ARSEF 2023 M. flavoviride var. minus 

Galleria mellonella 
(Lepidoptera: Pyralidae) 

Otiorhynchus sulcatus 
(Coleoptera: Curculionidae) 

Unidentified acridid 
(Orthoptera: Acrididae) 

Canada 

France 

Galapagos 
Islands 
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Table 2-1. con't. 

Isolate code a Name b Host Country of origin 

Other isolates: 

GHA726 

UAMH 4756 

UAMH 1656 

LRC 2111 

LRC 2087 

UAMH 772 

UAMH 2876 

PFR97 

Beauveria bassiana 

Colletotrichum gloeosporioides 
(telomorph Glomerella cingulata) 

Emericella nidulans 

Fusarium oxysporum 

Clonostachys rosea f. catenulata 

Hydropisphaera peziza 

Isaria farinosa 

I. fumosorosea 

Melanoplus sanguinipes USA 
(Orthoptera: Acrididae) 

Laeliocattleya sp. Canada 

Feed Canada 

Soil Canada 

Soil Canada 

Soil Canada 

Soil Canada 

Phenacoccus solani USA 
(Homoptera: Pseudococcidae) 

LRC 2176 Penicillium bilaii Soil Canada 
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Table 2-1. con't. 

Isolate code 3 Name" Host Country of origin 

Other isolates: 

LRC 2391 

LRC 2524 

LRC race 1 

Rhizopus sp. 

Trichoderma reesei 

Verticillium albo-atrum 

Soil 

Soil 

Solanum tuberosum 

Canada 

Canada 

Canada 

aIMI = International Mycological Institute, Egham, UK 
ARSEF = Agriculture Research Service Entomopathogenic Fungus Collection, 

US Department of Agriculture 
UAMH = University of Alberta Microfungus Collection and Herbarium, Edmonton, 

Canada 
LRC = Lethbridge Research Centre, Lethbridge, Alberta, Canada 

bname as received 
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HC1 pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS extraction buffer added. The 

mycelial mat was hand-ground for 1-2 minutes with a conical microtube pestle. 

Following homogenization, 150 ul of 3 M sodium acetate, pH 5.2, was added. The 

suspension was briefly vortexed and placed at -20 °C for 10 min. The microtube was 

then centrifuged as previously described, and the supernatant transferred to a new tube. 

An equal volume of isopropanol was added and after incubation at room temperature for 

approximately 10 min, the precipitated DNA was pelleted by centrifugation. The 

supernatant was removed, and the pellet washed with 70% ethanol. After another 

centrifugation and removal of the supernatant, the pellet was dried before being 

resuspended in 50 ul of TE and stored at -20 °C. Estimates of DNA quantities were 

obtained by electrophoresis in 0.9% TAE (40 mM Tris acetate, pH approx. 8.3, 

containing 1 mM EDTA) agarose gels containing 10 ug ml' 1 ethidium bromide 

(Sambrook et al, 1989). PCR amplifications with general fungal primers TW81 and 

AB28 (Curran et al, 1994) and M. anisopliae var. acridum-specific Mac-ITS-spF and 

Mac-ITS-spR primers were performed on 50 ng DNA. 

2.1.3 Production of a positive DNA control for M. anisopliae var. acridum 

A positive control was generated by cloning the PCR product resulting from 

amplification of M. anisopliae var. acridum IMI330189 DNA with primers TW81 and 

AB28 in vector pGEM®-T Easy using the pGEM® and pGEM®-T Easy Vector Systems 

cloning kit (Promega, Madison, WI). Standard protocols were used for plasmid DNA 

isolation, buffers, and electrophoresis techniques (Sambrook et al, 1989). Correct 

nucleotide sequence of the cloned product was confirmed by sequencing (University 

30 



Core DNA and Protein Services, University of Calgary) and comparison to the published 

sequence for M. anisopliae var. acridum (AF137062; Driver et al, 2000). 

2.1.4 Construction of a simulated soil DNA pool spiked with M. anisopliae var. 
acridum DNA 

A simulated soil DNA pool was prepared with fungal DNA (section 2.1.2), with 

the exception of that from M. anisopliae var. acridum and M. flavoviride var. minus, at a 

final concentration of 100 ng/ul. The pool consisted of equal proportions of Metarhizium 

spp. DNA versus non-Metarhizium spp. DNA. The pool was spiked by addition of 100 

ng M. anisopliae var. acridum DNA (concentration of 100 ng/ul) to 900 ng soil DNA 

pool. Four 10-fold dilutions were made of the spiked DNA pool using the simulated soil 

DNA pool as diluent, representing final concentrations of 1 ng, 100 pg, 10 pg, and 1 pg 

per ul M. anisopliae var. acridum DNA. PCR amplifications using the Mac-ITS-spF and 

Mac-ITS-spR primers were performed with 1 ul of each spiked sample. 

2.1.5 Inoculation of soil with M. anisopliae var. acridum conidia 

Spores of Metarhizium anisopliae var. acridum were applied at various 

concentrations to a local southern Alberta soil (clay-loam). Prior to inoculation, the soil 

was examined for Metarhizium spp. as per the method of Rath et al. (1992). Moist soil 

equivalent to 20 g oven-dried weight of the soil sample was added to 200 ml of sterile 

Ringer's solution (Oxoid, Ogdensburg, NY), the suspension shaken on an orbital shaker 

at 150 rpm for 30 min at room temperature, and then spread-plated as 0.1 ml of neat or 

10"1 dilutions in Ringer's solution onto a 100 x 15 mm Petri dish containing selective 

media consisting of 3.5% mycological agar (Difco, Franklin Lakes, NJ) with 10 ug/ml 

dodine (Cyprex 65-W, American Cyanamid, Wayne, NJ), 50 ug/ml chloramphenicol 

(Sigma-Aldrich, St. Louis, MO), and 200 ug/ml cycloheximide (Sigma-Aldrich) (Liu et 
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al, 1993). Each dilution was plated as 5 replicates. Plates were incubated at 25 °C for 15 

days before examination for colonies of Metarhizium spp. Also prior to inoculation, 

DNA was extracted from 0.25 g of the soil using the Ultra Clean Soil DNA kit (MoBio, 

Carlsbad, CA). Following extraction, the DNA was then subjected to PCR amplification 

with the general fungal TW81 and AB28 primers to confirm successful DNA extraction, 

and amplification with a set of primers (Mac-ITS-spF and Mac-ITS-spR) designed for the 

specific detection of M. anisopliae var. acridum DNA. 

Spores of M. anisopliae var. acridum (IMI 330189) were scraped from a PDA 

plate and resuspended in 0.05% Tween 20. Spore concentration was estimated with a 

hemocytometer and concentrations adjusted to 10 2, 10 3, 10 4, and 10 5 spores, each in 200 

ul of 0.05% Tween 20. The spore suspensions were each added to 0.25 g of soil, 

followed immediately by soil DNA extraction using the MoBio Ultra Clean Soil DNA 

kit. Extracted DNA (1 ul) was subsequently subjected to PCR amplification with the 

Mac-ITS-spF and Mac-ITS-spR primers. 

2.1.6 Inoculation of grasshoppers 

Nymphs (third and fourth instar) of a non-diapausing strain of Melanoplus 

sanguinipes (Pickford & Randell, 1969) were collected at random from a laboratory 

colony at the LRC and placed individually in sterile 20 ml glass vials stoppered with a 

sterile polyurethane foam plug. The experiment involved a total of 152 insects (26 in the 

control group, 126 in the treatment group) with approximately equal proportions of males 

and females in each group. On the day of inoculation, conidia of M. anisopliae var. 

acridum were harvested from PDA cultures (15-20 days of growth) and resuspended in 

sunflower oil (Safflo, Concord, ON). Formulation of the inoculum has been previously 
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described by Johnson et al. (2002). Briefly, the concentration of conidia was estimated 

with a hemocytometer and adjusted to 5 X 10 7 conidia/ml. Subsequently, 2-ul aliquots 

were pipetted onto lettuce-leaf wafers (0.7 cm diameter), resulting in a dose of 

approximately 10 5 spores per insect (via handling and feeding). Each grasshopper was 

confined with one wafer for 24 h. Control grasshoppers were confined with wafers 

containing only sunflower oil. After 24 h confinement, all grasshoppers were removed 

and individually housed in 240-ml transparent plastic containers. Nymphs that did not 

survive the 24 h confinement were discarded (mortality was attributed to handling). 

Throughout the experiment, insects were exposed to a temperature regime of 24 °C/16 °C 

day/night with a corresponding 16/8 h light/dark photoperiod under ambient relative 

humidity (40-55%). Nymphs were observed and fed daily with fresh wheat leaves. 

Cadavers were removed daily with sterile forceps and stored in sterile 1.5 ml Eppendorf 

vials at -20 °C prior to DNA extraction. All treated grasshoppers were dead by day 8; all 

remaining control grasshoppers were then killed at -20 °C. Viability of conidia was 

determined by microscopic examination of germination following 48 h incubation at 25 

°C of 2 X 10-ul replicate aliquots of the inoculum onto PDA blocks on a microscope 

slide. 

2.1.7 Grasshopper DNA isolation 

The method of Hegedus and Khachatourians (1993) was modified for the 

extraction of DNA from infected and noninfected grasshoppers. Individual nymphs were 

homogenized in 500 ul of TE with a sterile microtube pestle for 2-3 minutes 

accompanied by vigorous vortexing. A 25-ul aliquot of the homogenate was removed 

and spread on a 60 X 15 mm Petri dish containing selective media fox Metarhizium spp. 
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as described above. Inoculated agar plates were incubated at 25 °C for confirmation of 

presence/absence of M. anisopliae var. acridum colonies (maximum of 20 days). The 

remaining solution was extracted with an equal volume of phenol:chloroform (1:1, v/v) 

followed by a 10 min centrifugation at 16 000 x g. The upper aqueous phase was 

removed and extracted once more with chloroform:isoamyl alcohol (24:1, v/v), followed 

by addition of 0.1 volume of 3 M sodium acetate, pH 5.2, and one volume of isopropanol 

to the aqueous phase. Following incubation at room temperature (ca. 20 °C) for 10 min, 

the mixture was centrifuged, and the supernatant removed. The pellet was washed with 1 

ml of ice-cold 70% ethanol, centrifuged, and was dried briefly. The DNA was then 

resuspended in 500 ul of TE containing 2 ul RNase A (Sigma-Aldrich) and stored at -20 

°C. Quantitation of DNA was determined with use of a spectrophotometer (Pharmacia 

Biotech, Piscataway, NJ) and 100 ng was later subjected to PCR amplification. 

2.1.8 PCR amplification 

General fungal primers TW81 (5'-GTTTCCGTAGGTGAACCTGC-3') and AB28 

(5'-ATATGCTTAAGTTCAGCGGGT-3*) (Curran et al, 1994) were used to amplify the 

region of the ribosomal repeat from the 3' end of the 16S rDNA to the 5' end of the 28S 

rDNA flanking the ITS 1, the 5.8S rDNA, and ITS2 sequences, from total fungal DNA. 

PCR amplifications were performed in a total volume of 50 ul containing 10 mM Tris, 

pH 8.4, 50 mM KC1,1.5 mM MgCl 2, 0.05% Tween 20, 0.05% NP40, 0.4 uM of each 

primer, 25 uM of each dNTP (Invitrogen, Carlsbad, CA), 2.5 units Tag DNA polymerase 

(MBI Fermentas, Hanover, MD) and template DNA. Negative controls contained sterile 

water in place of DNA. DNA amplification was performed in a GeneAmp® PCR System 

9700 (Applied Biosystems, Foster City, CA) programmed as follows: initial denaturation 
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5 min at 94 °C; 30 cycles of: denaturation 1 min at 94 °C, annealing 1 min 30 sec at 55 

°C, extension 2 min at 72 °C; with a final extension 5 min at 72 °C. PCR products were 

analyzed on a 1.5% TAE agarose gel in with a 100 bp DNA ladder (MBI Fermentas) 

included as a size marker. 

Primers Mac-ITS-spF (5'-CTGTCACTGTTGCTTCGGCGGTAC-3') and Mac-

ITS-spR (5'-CCCGTTGCGAGTGAGTTACTACTGC-3') were designed based on the 

ITS1 and ITS2 regions of the rDNA sequence data for M. anisopliae var. acridum (clade 

7, Driver et al, 2000). Total fungal and soil DNA and grasshopper DNA from infected 

and noninfected insects were used in PCR assays with this primer combination. 

Amplifications were performed in a total volume of 50 ul containing 20 mM Tris, pH 

8.3, 50 mM KC1, 1.5 mM MgCl 2, 0.1% Triton X-100, 0.4 uM of each primer, 25 uM of 

each dNTP, 2.5 units Taq DNA polymerase and template DNA. As previously noted, 

negative controls contained sterile water in place of DNA. DNA amplification was also 

performed in a GeneAmp® PCR System 9700 programmed as follows: initial 

denaturation 5 min at 94 °C; 30 cycles of: denaturation 1 min at 94 °C, combined 

annealing and extension 3 min at 72 °C; with a final extension 5 min at 72 °C. PCR 

products were analyzed as previously mentioned. 

Nested PCR amplifications were carried out on grasshopper DNA from infected 

insects that initially produced weak products in a single amplification with the Mac-ITS-

spF and Mac-ITS-spR primers. DNA from infected grasshoppers was amplified in an 

initial reaction with the TW81 and AB28 primers using conditions previously described. 

A second amplification was then performed with a 1-ul aliquot from the initial reaction 
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and the Mac-ITS-spF/Mac-ITS-spR primer combination using conditions described 

above. 

2.2 Results 

As expected, use of the Mac-ITS-spF and Mac-ITS-spR primers in a PCR assay 

successfully amplified a 420 bp DNA sequence from the total genomic DNA extracted 

fromM anisopliae var. acridum (Figure 2-1). M. anisopliae var. minus also produced a 

420 bp amplification product. Isolates of M. anisopliae var. anisopliae and M. 

flavoviride Gams & Rozsypal produced no amplified product, nor did isolates of B. 

bassiana, I. fumosorosea, I. farinosa, V. albo-atrum, C. gloeosporioides, E. nidulans, T. 

reesei, F. oxysporum, C. rosea f. catenulata, P. bilaii, H. peziza, or an isolate of Rhizopus 

sp. (data not shown). In contrast, the TW81 and AB28 primers produced a varying range 

(most around 500-600 bp) of amplified products in all isolates tested, thus confirming 

successful extraction of PCR-quality DNA from all fungal species (data not shown). 

The sensitivity of the M. anisopliae var. acridum-specific PCR assay was 

determined for genomic fungal DNA extracted from an axenic culture of M. anisopliae 

var. acridum. The assay was sensitive enough to detect approximately 1 pg of genomic 

DNA (Fig. 2-2). 

The M. anisopliae var. acridium-specific PCR assay successfully detected M. 

anisopliae var. acridum DNA in the presence of a simulated soil DNA pool. A detection 

limit of 10 pg was observed, representing 0.001% of total DNA in the sample. 

M. anisopliae var. acridum spores were detected at a concentration of 10 4 spores 

per 0.25 g of soil. Use of general fungal TW81 and AB28 primers in conjunction with 

specific Mac-ITS-spF and Mac-ITS-spR primers in a nested PCR assay increased the 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Fig. 2-1. Specificity determination of the PCR assay using the Mac-ITS-spF and 
Mac-ITS-spR primers and genomic DNA from various fungal isolates 

Lane 1: 100 bp ladder 
Lane 2: Positive control (cloned M. anisopliae var. acridum) 
Lane 3: M. anisopliae var. anisopliae UAMH 421 
Lane 4: M. anisopliae var. anisopliae UAMH 4450 
Lane 5: M. anisopliae var. anisopliae S54 
Lane 6: M. anisopliae var. anisopliae 6W-2 
Lane 7: M. anisopliae var. anisopliae 11S-1 
Lane 8: M. anisopliae var. anisopliae ARSEF 437 
Lane 9: M. anisopliae var. anisopliae ARSEF 727 
Lane 10: M. flavoviride Gams & Rozsypal ARSEF 1184 
Lane 11: M. flavoviride var. minus ARSEF 2023 
Lane 12: M. anisopliae var. acridum IMI 330189 
Lane 13: M. anisopliae var. acridum SP9 
Lane 14: M. anisopliae var. acridum FI 985 
Lane 15: M. anisopliae var. acridum ARSEF 3391 
Lane 16: M. anisopliae var. acridum ARSEF 6421 
Lane 17: Water 
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1 2 3 4 5 6 7 

400 bp 

Fig. 2-2. Sensitivity determination of the PCR assay using the Mac-ITS-spF and 
Mac-ITS-spR primers and genomic DNA from M. anisopliae var. acridum 

Lane 1: 100 bp ladder 
Lane 2: 1 ng 
Lane 3: 100 pg 
Lane 4: 10 pg 
Lane 5: 1 pg 
Lane 6: 100 fg 
Lane 7: Water 
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detection limits to 10 2 spores per 0.25 g of soil. M. anisopliae var. acridum DNA was 

not detected and no Metarhizium spp. were isolated from the soil prior to inoculation. 

The specific assay also successfully detected M. anisopliae var. acridum DNA in 

each of the 126 infected grasshoppers. Counts of viable conidia in the inoculum revealed 

a germination rate of >90% at 48 h after incubation at 25 °C. Ecdysis was either 

completed or initiated by 65 of the treated nymphs prior to death; however, this did not 

inhibit detection of fungal DNA. Only 28 of the treated cadavers displayed the reddish 

discolouration of the cuticle associated with infection by M. anisopliae var. acridum. 

Fungal colonies with M. anisopliae var. acridum morphological features, namely dark 

green conidia, were observed on 116 agar plates for the treated group. No growth was 

observed on nine plates, and for another plate, overgrowth by Rhizopus sp. interfered 

with examination for colonies of M. anisopliae var. acridum. 

No amplified products were observed with PCR assay of the control group, and 

no colonies of M. anisopliae var. acridum were isolated from any of the agar plates for 

the control nymphs. Figure 2-3 shows the var. acra/wm-specific PCR amplification 

results for a representative group of infected and noninfected nymphs. 

2.3 Discussion 

Primers designed from the ITS nucleotide sequences for M. anisopliae var. 

acridum were used successfully in a PCR-based assay for amplification of a 420 bp 

sequence with genomic DNA extracted from M. anisopliae var. acridum. A 420 bp 

product observed after amplification of M. flavoviride var. minus DNA was also expected 

as this species has been recognized as M. anisopliae var. acridum by Driver et al. (2000). 

The ability to produce an amplified product specific to M. anisopliae var. acridum 
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1 2 3 4 5 6 7 8 

Fig. 2-3. Detection of M. anisopliae var. acridum DNA in infected grasshoppers using 
PCR primers Mac-ITS-spF and Mac-ITS-spR 

Lane 1: 100 bp ladder 
Lane 2: M. anisopliae var. acridum (positive control) 
Lane 3: DNA from uninfected grasshopper 
Lane 4: DNA from uninfected grasshopper 
Lane 5: DNA from grasshopper infected withM. anisopliae var. acridum (4 dpi c) 
Lane 6: DNA from grasshopper infected with M. anisopliae var. acridum (5 dpi) 
Lane 7: DNA from grasshopper infected with M. anisopliae var. acridum (6 dpi) 
Lane 8: Water 

Mays post-infection 
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supports the concept of divergence between taxa and also corroborates the hypothesis of 

divergent evolutionary lines within the genus Metarhizium (Driver et al, 2000). 

Although representatives from only two other clades of Metarhizium were evaluated, the 

high sequence variability of M. anisopliae var. acridum in comparison with other clades 

combined with the highly stringent composition of the synthesized sequences support the 

specificity of the Mac-ITS-spF and Mac-ITS-spR primers. 

The fungal genera other than Metarhizium analyzed in this study encompassed a 

range of entomopathogenic, phytopathogenic, mycopathogenic, and soil saprophytic 

organisms. Several of the genera have previously been isolated from southern Alberta 

soils (Inglis et al, 1998). V. albo-atrum and C. gloeosporioides are phytopathogens 

(Domsch et al, 1980; Evans et al, 2001). Others, such as Isaria (syn. Paecilomyces p.p) 

are entomopathogenic (Inglis et al, 2001). One of these other entomopathogens, B. 

bassiana, was selected because it is an acridid pathogen (Johnson & Goettel, 1993). 

Gliocladium spp., Trichoderma spp., and Fusarium spp. have been identified as 

pathogens of fungi (Vey et al, 2001). A pending survey of southern Alberta soils and 

insects necessitated analysis of these genera with the M. anisopliae var. acridum-specific 

primers to determine specificity of the PCR assay. Further, demonstration of successful 

amplification of M. anisopliae var. acridum DNA in the presence of other DNA, 

particularly from soil, was essential and has been demonstrated in this work. 

Extraction of PCR-amplifiable DNA from insects is often difficult due to the 

number of PCR inhibitors in the form of tannic acids, quinones, polyphenols and 

chelators coisolated from the insect cuticle (Hackman, 1974). Some weak amplification 

products were experienced with the var. acridum-specific primers in a single 
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amplification from infected grasshopper DNA but these products were subsequently more 

strongly amplified with a nested PCR assay that employed the TW81/AB28 primers for 

the first amplification and the Mac-ITS-spF/Mac-ITS-spR primers for the second 

amplification. Inhibitory compounds were diluted to a negligible amount when 1 (al of 

the first amplification reaction was used as template for the second amplification. 

Molting did not interfere with the ability of the assay to detect M. anisopliae var. acridum 

DNA in infected grasshoppers that underwent ecdysis. This supports a previous 

observation by Milner and Prior (1994) that ecdysis did not interfere in the infection of 

the Australian plague locust (C. terminifera) with M. anisopliae var. acridum. 

Studies have demonstrated that, depending on the dose, the majority of laboratory 

bioassay mortality in acridids infected with M. anisopliae var. acridum occurs between 4-

6 d post-infection (Delgado et al, 1997b; Lomer et al, 1997b; Magalhaes et al, 1997; 

Milner, 1997). In this study, the M. anisopliae var. acndwm-specific PCR assay 

amplified sequences from DNA extracted from treated nymphs that died 1-3 d post-

inoculation. Presumably, the majority of nymphs at this stage died from complications 

due to contact with the sunflower oil component of the inoculum rather than from active 

fungal infection. The M. anisopliae var. acridum-specific diagnostic PCR assay is 

qualitative and not designed to determine activity levels of the target organism. 

However, confirmation of M. anisopliae var. acridum colony growth for 92.1% of the 

treated grasshoppers indicates that the presence of viable spores can be detected early 

post-infection. Moreover, the intensity of amplification products increased with DNA 

from cadavers from the later days of the experiment, thus suggesting a progressive 

increase in fungal mass in the infected host. 
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Surveys for natural incidence of M. anisopliae var. acridum have indicated that 

these levels are generally very low. In northern Benin, Shah et al. (1998b) found levels 

of 0.3-1.7% and 1.2-3.2% at different sites, respectively. Also in Benin, Douro-Kpindou 

et al. (1995) detected fungal incidence at 15% in field trial plots before application of a 

formulation of M. anisopliae var. acridum for biocontrol of Zonocerus variegatus. The 

ability of our assay to detect levels of M. anisopliae var. acridum DNA as low as 0.001% 

of total DNA present demonstrates its suitability for detection of this fungus at low 

incidence. 

Laboratory and field tests indicate differential impacts of weather affect the 

operation and efficacy of entomopathogenic fungi (Inglis et al., 1997). Further, spring 

temperature, overwintering conditions, and moisture strongly affect the target insect. 

Insect body temperature can be calculated (Lactin & Johnson, 1998) and is largely a 

result of immediate weather factors; however, the probable impact of weather on the 

effectiveness of M. anisopliae var. acridum is largely unknown. Improved knowledge of 

the biology and ecology of this fungus in a natural setting is a prerequisite for the 

development of an effective long-lasting pest management strategy for the biological 

control of acridids. This study offers a reliable, specific, and sensitive diagnostic PCR 

assay that can be performed on a number of templates including those with non-target 

DNA. This molecular method can be used to investigate the geographical extent of 

Metarhizium spp. in soils and native insects, to compare this distribution to possible 

future distributions under changing weather and climate, and to assess the opportunities 

for including Metarhizium spp. in integrated grasshopper management plans. 
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Chapter 3. Determination of Natural Incidence of Metarhizium in Southern 
Alberta Soils 

3.0 Introduction 

Documentation of the natural incidence of entomopathogenic fungi in the 

environment is crucial to the successful application of biocontrol agents. Surveys yield 

valuable knowledge on the distribution and quantification of naturally occurring 

genotypes, as well as the suitability of the target area for persistence of the fungus. 

Further, the best source for potentially effective biocontrol agents is the site of natural 

interaction between a pathogen and its host (Hofstein & Chappie, 1999). 

Detection of entomopathogens may be direct through observation of endemic 

levels of disease in target insect populations or indirect by culture on selective media, use 

of insect larvae in bait assays, or application of molecular techniques such as PCR. 

Direct isolation of a pathogen from a diseased target insect is more likely to yield a 

virulent pathotype than indirect isolation from soil; however, the incidence of M. 

anisopliae var. acridum infection in Orthoptera is very rare. In the last twenty years, only 

two isolates have been found on acridid hosts in Australia (Milner et al. 2003) and one 

hundred and twenty one isolates of M. flavoviride were collected from a survey of West 

Africa and Madagascar that involved tens of thousands of grasshoppers and locusts 

maintained in cages (Shah et al, 1997). Various degrees of virulence were determined in 

the African isolates (Bateman et al, 1996), possibly a consequence of increased levels in 

susceptibility that resulted from stressed insects in high population densities under 

controlled conditions at the time of isolation. 

Dodine has successfully been used as a selective agent for the isolation of 

Metarhizium spp. from soil (Liu et al, 1993). Milner and Lutton (1976) determined that 
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mycological agar with 1% chloramphenicol and 0.5% cycloheximide permitted detection 

levels down to 10 conidia of M. anisopliae per gram of soil. Metarhizium anisopliae has 

also been successfully isolated from Canadian soils by investigation of laboratory 

cultures of dead elaterids (Zacharuk & Tinline, 1968) and by bait assays of waxworm 

larvae (Bidochka et al., 1998). Recently, DNA-based PCR has been used to target the 

highly variable ITS region for identification of various fungal pathogens from soils 

(Lochman et al.; Ippilito et al., 2002; Cumagun et al., 2000; Bell et al., 1999). 

The objective of this study was to determine the natural incidence of Metarhizium 

spp. in southern Alberta soils by indirect isolation on selective media and bait assay with 

waxworm larvae, and by identification with nested PCR for three varieties of 

Metarhizium. 

3.1 Materials and Methods 

3.1.1 Collection of soil samples 

Soil samples were collected in May 2004 from twenty geographical locations in 

southern Alberta (Fig. 3-1). Sites were chosen on the basis of highest grasshopper 

densities as determined from the previous year's data collected by agricultural field 

surveyors. All sites included fields that had been under cultivation of various types of 

cereal crops and the adjoining uncultivated ditches. At each site, five replicates were 

taken from the cultivated field and five taken from the adjacent ditch. Soil samples were 

taken with a cylindrical soil corer with an internal diameter of 12 cm and from a soil 

depth of 10 to 15 cm. Samples were double-bagged and stored at 4 °C until they were 

used for fungal isolation. 
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Fig. 3-1. Geographic locations in southern Alberta for soil survey of Metarhizium spp. 
Map courtesy of Southern Alberta Sustainable Strategy (SASS). 
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3.1.2 Determination of soil moisture 

The mean soil moisture content of each sample was calculated after drying three 

separate 20 to 25 g quantities of the soil in an oven at 105 °C for 16 to 20 h. The 

sampling spoon was immersed in 70 % ethanol, rinsed in running distilled water, and 

dried between samples to eliminated sample-to-sample contamination. 

3.1.3 Isolation of soil fungi on selective medium 

Inoculation of soil extracts onto selective medium was performed according to the 

method outlined by Rath et al. (1992). A soil corer (2.5 cm diameter, 20 cm length), 

decontaminated as per section 3.1.2, was used to remove a subsample of each soil 

sample. The subsample was thoroughly mixed in a new clean plastic bag, and then moist 

soil equivalent to 20 g oven-dried weight was added to 200 ml sterile Ringer's solution 

(Oxoid) in a 500 ml Erlenmyer flask. The suspension was shaken at 150 rpm for 30 min 

on an orbital shaker, then 0.1 ml of neat and 1:10 dilutions in sterile distilled water were 

spread-plated on mycological agar (Difco) containing 50 ug/ml chloramphenicol and 200 

ug/ml cycloheximide (Veen & Ferron, 1968), and modified with 10 u.g/ml dodine. Five 

replicate plates were inoculated for each dilution. Plates were sealed with Parafilm® and 

incubated in the dark at room temperature (ca. 20 °C) for 20 days before examination. M. 

anisopliae var. anisopliae isolate UAMH 421 was inoculated as a positive control onto 

one plate from each batch of medium produced. 

3.1.4 Isolation of soil fungi with waxworm larvae 

The Galleria bait method described by Zimmermann (1986) was used for 

isolation of soil fungi. Soil samples were aseptically transferred individually to sterile 

115-ml containers with perforated screw-capped lids. Each sample was moistened with 5 
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ml of sterile distilled water, after which four waxworm (Galleria mellonella) larvae were 

added with sterile forceps to each container. The assay was conducted at room 

temperature (ca. 20 °C) for twenty-one days. Dead larvae were removed every seven 

days; larvae not showing any signs of fungal outgrowth were disinfected by immersion 

for one minute in 70 % ethanol followed by one minute in sterile distilled water. 

Cadavers were then placed individually on moistened sterile filter paper in a 60 mm x 10 

mm Petri dish, the dish sealed with Parafilm®, and incubated at ca. 20 °C for a maximum 

of twenty-one days. Conidia from fungal outgrowth on dead larvae were transferred with 

a sterile loop to selective medium described in section 3.1.3. Uninoculated waxworm 

larvae were maintained on a wheat germ/oatmeal/honey mash shipped by the supplier 

(Massasauga Imports, Acton, ON). Two sets of control larvae (ten larvae per isolate) 

were inoculated with Metarhizium anisopliae isolates UAMH 421 and S54 by rolling 

individual larva onto actively growing cultures. 

3.1.5 Identification of Metarhizium spp. in soil by PCR 

3.1.5.1 Extraction of soil DNA 

Soil DNA was extracted from 0.25 g quantities for four replicates of each soil 

sample as per the manufacturer's instructions for the Ultra Clean Soil DNA kit (MoBio). 

PCR primers TW81 and AB28 (Curran et al, 1984) were used to confirm successful 

DNA extraction as previously described (section 2.1.8). Extracted DNA (1 ul) was 

subsequently subjected to PCR amplification. 

3.1.5.2 Production of a positive DNA control for M. flavoviride var. flavoviride 

A positive control for M. flavoviride Gams & Rozsypal ARSEF 1184 was 

constructed as previously described (section 2.1.3). Correct nucleotide sequence of the 
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cloned product was confirmed by sequencing and comparison to the published sequence 

for M. flavoviride var. flavoviride (AF138267, clade 4, Driver et al., 2000). 

3.1.5.3 Design of PCR primers for the specific detection of M. flavoviride var. 
flavoviride 

Primers Mf-ITS-spF and Mf-ITS-spR were designed based on the ITS1 and ITS2 

regions of the rDNA sequence data for M. flavoviride wax. flavoviride (clade 4, Driver et 

al, 2000). 

3.1.5.4 PCR amplification of soil DNA 

Each soil DNA extract was subjected to three different nested PCR. Assays for 

specific detection of M. anisopliae var. acridum and M. flavoviride were conducted in 

conjunction with a primary assay with general fungal primers TW81 and AB28. PCR 

amplifications were described previously in section 2.1.8. Conditions for the M. 

flavoviride-specific assay were identical to those used for the M. anisopliae var. acridum 

assay. 

Nested PCR assays that targeted the variable intergenic spacer (IGS) region 

between the 16S and 28S rRNA subunits for the specific detection of M. anisopliae var. 

anisopliae were conducted with an initial reaction with primers Ma-28S4 and Ma-IGSl 

(Pantou et al, 2003). Amplifications were performed in a total volume of 50 ul 

containing 20 mM Tris, pH 8.3, 50 mM KC1, 1.5 mM MgCl 2, 0.1% Triton X-100, 0.4 uM 

of each primer, 25 uM of each dNTP, 2.5 units Taq DNA polymerase and template DNA. 

DNA amplification was performed in a GeneAmp® PCR System 9700 programmed as 

follows: initial denaturation 5 min at 94 °C; 30 cycles of: denaturation 1 min at 94 °C, 

annealing 1 min at 54 °C, extension 2 min at 72 °C; with a final extension 5 min at 72 °C. 

PCR products were analyzed on 1 % TAE agarose gels with a 100 bp DNA ladder 
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included as a size marker. A second reaction was performed with a 1-ul aliquot from the 

initial amplification and primers Ma-IGSspF and Ma-IGSspR (Pantou et al, 2003). 

Reaction mixtures were as described above. DNA amplification was performed in a 

GeneAmp® PCR System 9700 programmed as follows: initial denaturation 5 min at 94 

°C; 30 cycles of: denaturation 1 min at 94 °C, annealing 1 min at 58 °C, extension 2 min 

at 72 °C; with a final extension 5 min at 72 °C. PCR products were analyzed as 

previously mentioned (section 2.1.8). Negative controls for all amplifications consisted 

of sterile water in place of DNA. Genomic DNA (50 ng) from M. anisopliae var. 

anisopliae isolate UAMH 421 was used as a positive control for the M. anisopliae var. 

anisopliae specific assays. In a preliminary study on specificity, nested PCR assays with 

the Ma-28S4/Ma-IGS1 and Ma-IGSspF/Ma-IGSspR primer combinations were 

conducted on genomic DNA from the fungal isolates listed in section 2.1.1. Table 3-1 

contains a list of all primers used in this study and their sequences. 

3.2 Results 

3.2.1 Isolation on selective medium 

M. anisopliae var. anisopliae was isolated from three of the twenty (15 %) 

geographical locations sampled in southern Alberta. Two sites had a single colony 

forming unit (CFU) and the third site had one replicate sample with one CFU on one 

plate and another replicate with two colonies on another plate. PCR testing confirmed 

the identification of all isolates as M. anisopliae var. anisopliae. PCR products produced 

by amplification of the partial 3' end of the large subunit ribosomal RNA and IGS region 

with the Ma-28S4/Ma-IGS1 primers were cloned and sequenced for all isolates. One 

isolate from a wheat field, 6W-2, was identified as a group-B 
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Table 3-1. List of primers used for PCR amplification in this study 

Primer Sequence (5'-3') Source 

TW81 
AB28 
Mac-ITS-spF 
Mac-ITS-spR 
Mf-ITS-spF 
Mf-ITS-spR 
Ma-28S4 
Ma-IGSl 
Ma-IGSspF 
Ma-IGSspR 

GTTTCCGTAGGTGAACCTGC 
ATATGCTTAAGTTCAGCGGGT 
CTGTCACTGTTGCTTCGGCGGTAC 
CCCGTTGCGAGTGAGTTACTACTGC 
TGTCTACCGTTGCTTCGGCGGGTTC 
TACGGCAGCAGCAGGGCACCAGTT 
CCTTGTTGTTACGATCTGCTGAGGG 
CGTCACTTGTATTGGCAC 
CTACCYGGGAGCCCAGGCAAG 
AAGCAGCCTACCCTAAAGC 

Oman etal. (1994) 
Curranetal. (1994) 
Entz et al. (2005) 
Entz et al. (2005) 
This study 
This study 
Pantou et al. (2003) 
Pantou et al. (2003) 
Pantou et al. (2003) 
Pantou et al. (2003) 
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M. anisopliae var. anisopliae based on the presence of a 20 bp GT-rich insertion 

sequence found to be present in group-B strains (Pantou et al, 2003). The other two sites 

(a wheat field and the adjoining brome ditch) yielded a strain (S54) that was identified as 

a group-B variant lacking the priming site for the Ma-IGSspF primer. The Ma-IGSspF 

primer false-primed upstream of the missing site, resulting in a PCR product 300 bp 

larger than expected (Fig. 3-2). Colony morphologies (dark green conidia) for the group-

B and variant group-B isolates were similar. Nucleotide sequences for the cloned PCR 

fragments amplified by the Ma-28S4/Ma-IGS1 primers for these isolates can be found in 

Appendices 1 and 2. Mean soil moisture content for the soil samples taken was quite 

variable, ranging from 4.39 to 22.70 %. No isolates of M. anisopliae var. acridum or M. 

flavoviride grew on the selective medium. Each batch of medium produced supported the 

growth of M. anisopliae var. anisopliae UAMH 421. 

3.2.2 Isolation on Galleria bait assay 

Two Metarhizium isolates were recovered from only two infected Galleria larvae. 

Both isolates came from two sites that differed from the sites positive for M. anisopliae 

var. anisopliae isolation on selective medium. One isolate (11S-1) recovered from a 

brome ditch next to a wheat field resembled the selective medium isolates in colony 

morphology (Fig. 3-3a) and was confirmed as a non-variant (in terms of expected band 

size) M. anisopliae var. anisopliae by PCR. The other isolate (20W-5), despite 

exhibition of similar morphology on Galleria to the first isolate, showed a distinct 

morphology characterized by white mycelial growth with very sparse green conidiation 

(Fig. 3-3b) after six weeks incubation at ca. 20 °C on various media, including PDA, 

SDA + 1 % yeast extract, Czapek-Dox agar, and the selective medium previously 
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H M D * * 

4UU Dp 

Fig. 3-2. Detection of M. anisopliae var. anisopliae DNA in nested PCR assays using 
Ma-28S4/Ma-IGS1 and Ma-IGSspF/Ma-IGSspR primers and genomic DNA from 

various M. anisopliae var. anisopliae isolates 

Lane 1: 100 bp ladder 
Lane 2: M. anisopliae var. 
Lane 3: M. anisopliae var. 
Lane 4: M. anisopliae var. 
Lane 5: M. anisopliae var. 
Lane 6: M. anisopliae var. 
Lane 7: M. anisopliae var. 
Lane 8: M. anisopliae var. 
Lane 9: Water 

anisopliae UAMH 421 
anisopliae UAMH 4450 
anisopliae ARSEF 437 
anisopliae ARSEF 727 
anisopliae 6W-2 
anisopliae 11S-1 
anisopliae S54 
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(a) isolate 11S-1 (b) isolate 20W-5 

Fig. 3-2. Two types of colony morphologies of Metarhizium isolated by Galleria bait 
method from southern Alberta soils. Additional isolates obtained from direct plating onto 

selective media had morphologies similar to (a). 
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mentioned. Further, amplification of genomic DNA from isolate 20W-5 produced a band 

approximately 250 bp in size in a PCR assay with general fungal primers TW81 and 

AB28 (Fig. 3-4), but no product was produced in assays with M. anisopliae var. 

anisopliae-specific primers Ma-IGSspF and Ma-IGSspR. The isolate was tentatively 

identified as M. anisopliae on the basis of microscopic examination of spores and 

resemblance in colony morphology to M. anisopliae var. anisopliae ARSEF 727, an 

isolate from a tettigonid host in Brazil. Further DNA and morphological characterization 

for this isolate is pending. 

No mortality in uninoculated control larvae was attributed to fungal infection. All 

larvae infected w i t h M anisopliae var. anisopliae UAMH 421 showed fungal outgrowth 

typical of Metarhizium (green conidiation). All larvae inoculated with M. anisopliae var. 

anisopliae S54 died but no fungal mycosis attributable to Metarhizium was observed on 

any of the cadavers. No Metarhizium sp. were isolated from S54-inoculated cadavers. 

3.2.3 PCR assays of soil samples with general fungal primers TW81 and AB28 

All soil DNA extracts produced amplification products of varying sizes with 

primers TW81 and AB28 (data not shown), thus indicating the presence of PCR-quality 

DNA in the soil extracts produced by the MoBio Ultra Clean Soil DNA kit. 

3.2.4 M. flavoviride var. flavoviride PCR assays 

3.2.4.1 Specificity 

A PCR assay with Mf-ITS-spF and Mf-ITS-spR primers successfully amplified a 

340 bp DNA sequence from genomic DNA extracted from M. flavoviride war. flavoviride 

(data not shown). No amplified product was produced by isolates of M. anisopliae var. 

anisopliae, M. anisopliae var. acridum, M. flavoviride var. minus, B. bassiana, 
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Fig. 3-4. Amplification products from genomic DNA of M. anisopliae isolate 20W-5 and 
other various M. anisopliae var. anisopliae in a PCR assay using general fungal primers 

TW81 andAB28 

Lane 1: 100 bp ladder 
Lane 2: M. anisopliae 
Lane 3: M. anisopliae 
Lane 4: M. anisopliae 
Lane 5: M. anisopliae 
Lane 6: M. anisopliae 
Lane 7: M. anisopliae 
Lane 8: M. anisopliae 
Lane 9: M anisopliae 
Lane 10: Water 

20W-5 
var. anisopliae UAMH 421 
var. anisopliae UAMH 4450 
var. anisopliae ARSEF 437 
var. anisopliae ARSEF 727 
var. anisopliae 6W-2 
var. anisopliae 11S-1 
var. anisopliae S54 
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I. fwnosorosea, I. farinosa, V. albo-atrum, C. gloeosporioides, E. nidulans, T. reesei, F. 

oxysporum, C. rosea f. catenulata, P. bilaii, H. peziza, and an isolate of Rhizopus sp. 

(data not shown). 

3.2.4.2 PCR assays of soil samples with M. flavoviride var./?avov/r/</e-specific 

primers 

With one exception, no products were produced in nested PCR assays with TW81 

and AB28 primers in intial reactions and M. flavoviride var.flavoviride-specific primers 

in secondary amplifications (data not shown). One site produced a weak 340 bp band in 

a nested PCR with primer combinations TW81/AB28 and Mf-ITS-spF/Mf-ITS-spR (data 

not shown), but could not be more strongly amplified in a tertiary amplification of the 

nested reaction with the M. flavoviride-specific primers. 

3.2.5 PCR assays of soil samples with M. anisopliae var. acnWw/n-specific primers 

No products were produced in nested PCR assays with TW81 and AB28 primers 

in intial reactions and M. anisopliae var. acridum-specific primers in secondary 

amplifications (data not shown). 

3.2.6 M. anisopliae var. anisopliae PCR assays 

3.2.6.1 Specificity 

Most isolates of M. anisopliae var. anisopliae produced a 380 bp product in a 

nested PCR assay with primer combinations Ma-28S4/Ma-IGS1 and Ma-IGSspF/Ma-

IGSspR (Fig. 3-2). Most other isolates from section 2.1.1 produced either no product or 

weak amplification products of varying sizes, some of which were around 400 bp in size 

(data not shown). Trichoderma reesei produced a strongly amplified product of 

approximately 500 bp (data not shown). 
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3.2.6.2 PCR assays of soil samples with M. anisopliae var. anisopliae-speciftc primers 

Eleven of the twenty sites produced PCR products in a nested assay with the Ma-

28S4/Ma-IGS1 (outer) and Ma-IGSspF/MalGSspR (inner) primer combinations (data not 

shown). Ten of these sites produced a 380 bp product comparable to the expected size 

for M. anisopliae var. anisopliae. Two of the ten sites corresponded to those from which 

M. anisopliae var. anisopliae isolates 6W-2 and S54 were recovered on selective medium 

(section 3.2.1). Another site was the same as the one from which the non-variant M. 

anisopliae var. anisopliae (11S-1) was isolated from a Galleria cadaver (section 3.2.2). 

One site produced a strongly amplified product approximately 500 bp in size. No sites 

produced a product corresponding to the size (approximately 700 bp) yielded by the 

variant group-B isolate from above (section 3.2.1). 

3.3 Discussion 

Results from the isolation of M. anisopliae var. anisopliae on selective medium 

and by Galleria bait assay indicate that this species is present at very low densities (< 10 2 

CFU per g of soil) and occurrence (25%) in southern Alberta. The global abundance and 

distribution of M. anisopliae is wide ranging. Six of 163 soil (3 %) samples yielded 

isolates of M. anisopliae in subantarctic Macquarie Island (Roddam & Rath, 1997), while 

96 % of investigated fields in Switzerland were positive for M. anisopliae isolation with 

either selective medium and/or Galleria bait method (Keller et al, 2003), albeit at 

densities < 10 4 CFU per g of soil. Klingen (2000) detected M. anisopliae in 10 % of 

locations sampled in Norway, but Kleespies et al. (1989) recorded the presence of M. 

anisopliae in 42 % of samples tested in Germany. Hokkanen and Zimmermann (1986) 

isolated the entomopathogen in 16.7 % of Finnish agroforestry soil with Galleria larvae; 
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ten years later, Vanninen (1996) recorded 15.6 % incidence in natural and agricultural 

soils in Finland that resulted from bait assays of Tenebrio molitor, Tribolium castaneum, 

Acanthocinus aedilis, and G. mellonella. In Tasmania, Rath et al. (1992) found M. 

anisopliae in 28 % of pasture soil samples but at low abundances (< 5 x 10 4 CFU per g of 

soil), and Milner et al. (1998) isolated M. anisopliae on selective medium from 14 % of 

Australian termite nests and feeding sites at levels close to 10 3 conidia per g of material. 

In contrast, in the Near East, Shah et al. (1997) obtained no isolates from 243 soils 

screened on dodine oatmeal agar in Oman; however, since numerous variables, including 

incubation temperature, humidity, composition of medium, and inoculum, influence the 

degree of successful isolation on synthetic medium, it is difficult to form any conclusions 

about the lack of success. Moreover, the cosmopolitan distribution of M. anisopliae was 

confirmed when Bidochka et al. (1998) found the fungus in 66.7 % of sites in Ontario 

baited by Galleria. They also recognized an association with agricultural, cultivated 

habitats. 

In general, the choice of method of isolation of fungi from soils has inherent 

limitations. Successful isolation and characterization are dependent upon the ability of 

the fungus to grow and sporulate on the medium of choice. It has been assumed that 

Metarhizium spp., although usually associated with a specific host, are readily capable of 

saprophytic growth as demonstrated by nonfastidious growth on various culture media. 

However, based on their experience, Milner et al. (1998) noted that M. anisopliae rarely, 

if ever, grows saprotrophically in soil. Further, isolation directly from soil fails to 

indicate if the recovered propagule was in the form of conidia, resting spores, mycelia 

surviving on fragments of host tissue or mycelia living on non-insect substrates (Prior, 
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1992). The selection of insect host for larval bait method will influence the degree of 

success in isolation of a host-specific entomopathogen. Assays that employ Galleria as 

the target require that the fungal genotype possesses the capability to recognize 

Lepidoptera receptors in a suitable host. This capability was not evident in the variant 

genotype of M. anisopliae var. anisopliae isolated in this study that grew well on 

selective medium but failed to grow or sporulate on Galleria larvae. Coleoptera larvae 

(T. molitor, T. castaneum and A. aedilis) have also been chosen for bait assays since 

beetles have been documented as the most common host for Metarhizium (Zimmermann, 

1993). 

Climate conditions have also been correlated to distribution of M. anisopliae. 

Rath et al. (1992) observed an increase in the proportion of soils that yielded M. 

anisopliae as average annual rainfall increased from 450 to 1250 mm. In undisturbed 

pastures, Milner (1992) found densities exceeding 10 6 spores per g of soil in wet climatic 

zones. In contrast, densities were less than 2 x 10 3 in frequently cultivated fields in hot 

dry climates. Further, Milner et al. (1998) collected most of their M. anisopliae isolates 

from termite material located in the cooler wetter parts of southeast Australia. Low 

densities of M. anisopliae in southern Alberta may be attributable to precipitation 

amounts approximately two-thirds of average levels and an annual mean temperature 

more than half a degree higher than the normal mean during the twelve months prior to 

sampling. 

The fact that M. anisopliae var. acridum and M. flavoviride were not detected is 

in accord with the absence of documented reports of these varieties in North America. 

There have been no documented records of M. anisopliae var. acridum isolated in 
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temperate regions and, as previously mentioned; the occurrence in tropical regions is rare. 

Only seven isolates of M. anisopliae var. acridum are listed in a collection of more than 

seven hundred cultures of Metarhizium (Humber, 2004); all originate from tropical 

regimes. Although M. flavoviride has been obtained from both tropical and temperate 

regions, no naturally occurring isolates from North America have been entered into the 

USDA-ARS Collection of Entomopathogenic Fungal Cultures (ARSEF) based in New 

York. Moreover, the geographical distribution for M. flavoviride var. minus has thus far 

been mostly restricted to the Philippines and the Solomon Islands, with a few isolates 

recorded from Brazil, Australia and Benin (Humber, 2004). 

The successful isolation of M. anisopliae var. anisopliae isolates from southern 

Albertan soils confirms their cosmopolitan distribution. Further, the isolation of distinct 

genetic (isolate S54) and morphological (isolate 20W-5) variants supports the high 

genetic diversity within this clade (Driver et al, 2000). 

Soil samples from one-half of the sites produced PCR products comparable to the 

expected size with DNA primers for the specific detection of M. anisopliae var. 

anisopliae. Isolates of M. anisopliae var. anisopliae were recovered by direct isolation 

on selective medium or by waxworm bait assay from three of these 10 sites in support of 

the PCR results. All isolates were recovered at low incidence, a factor that may explain 

the lack of isolates recovered from additional PCR-positive sites. Further, the 

contributions of low levels of soil moisture in the samples (4.39 to 22.70 %), as well as a 

history of severe drought in southern Alberta over the summers of 2001 - 2003, to low 

recovery of fungal isolates are unknown. 
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The Ma-IGSspF/Ma-IGSspR primers used in this study for the detection of M. 

anisopliae var. anisopliae DNA were reported as species-specific in the amplification of 

a 380 bp product for this entomopathogen (Pantou et al, 2003). Contrary to the findings 

of that study, isolate ARSEF 437, obtained from an orthopteran host in Australia, was 

observed to produce a slightly smaller product of approximately 350 bp (Fig. 3-2). More 

importantly, an isolate of M. anisopliae var. anisopliae found in southern Alberta 

produced a 670 bp product when amplified in nested PCR with the Ma-28S4/Ma-IGS1 

and Ma-IGSspF/MalGSspR primer combinations. Further, it is not known if the 500 bp 

product obtained from one soil sample is the result of a Trichoderma sequence or another 

M. anisopliae genetic polymorphism. Sequence analysis of amplification products could 

be used for verification, but is not practical for screening purposes. No M. anisopliae 

var. acridum were detected by nested PCR in this study, but whether this is a result of 

lack of this species in a temperate region or inability to detect low levels of target due to 

inherent low densities or purification losses is unknown. It was also not possible to 

verify detection of M. flavoviride by PCR in one sample due to inability to further 

amplify the product for additional analysis. The inability to more strongly amplify the 

weak 340 bp band in a tertiary amplification of the nested PCR reaction with the M. 

flavoviride-specific primers could be attributed to insufficient template DNA that could 

not be further increased without an accompanying increase in inhibitory products present 

in the nested reaction mixture, or the weak amplification product may have been an 

artefact inherent in performance of PCR assays. 

Another southern Albertan M. anisopliae isolate (20W-5) failed to produce any 

product in nested PCR assays with the Ma-28S4/Ma-IGS1 and Ma-IGSspF/MalGSspR 
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primer combinations. This isolate also produced a much smaller than expected band size 

of approximately 250 bp in a PCR with the general fungal primers TW81 and AB28 (Fig. 

3-4). Driver and Milner (1998) found products that ranged in size from 506 to 573 bp 

when they sequenced the ITS1-5.8S-ITS2 region for a number of species/varieties of 

Metarhizium. However, Jackson (unpublished data in Glare et al, 1998) identified aM. 

anisopliae isolate from Papua New Guinea that had an ITS1-5.8S-ITS2 region of 

approximately 300 bp and which displayed only 40-50% homology to other Metarhizium 

isolates. It is therefore apparent that use of sequence information from the rDNA region 

for separation of Metarhizium isolates into various clades may be confounded by some 

inconsistencies. 

Soil samples are problematic for PCR assays due to the presence of inhibitory 

compounds such as humic and fulvic acids that inhibit Taq DNA polymerase through 

chelation of M g 2 + ions (Tebbe & Vahjen, 1993; Tsai & Olson, 1991). The most crucial 

limitation to PCR is nucleic acid quality. Extensive purification is required, but each 

purification step can result in 50 to 90 % loss of DNA. The loss of starting material, 

however, is offset by the sensitivity of PCR assays in the ability to detect very minute 

amounts of target. However, copy fidelity, formation of chimeric products (artifacts), 

sequencing errors, and variable hybridization efficiencies from a mixed pool of templates 

all contribute to PCR bias (von Wintzingerode et al, 1997). Although PCR has been 

successfully used to detect soil-based fungal pathogens (Lochman et al, 2004; Ippilito et 

al, 2002; Cumagun et al, 2000; Bell et al, 1999), in this study inconsistencies were 

observed with the results of the PCR assays. In this case, the primers would be more 
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suitable in confirmation of identification of Metarhizium isolates, rather than direct 

identification within an environmental matrix. 

Nonetheless, successful isolation of isolates of M. anisopliae var. anisopliae from 

soils in southern Alberta indicates that this species can survive and even possibly persist 

in agroecosystems under semi-arid conditions and thereby offers promise as recourse for 

grasshopper management. Moreover, employment of molecular methodology will permit 

differentiation of an applied strain of M. anisopliae var. acridum from native southern 

Albertan strains of M. anisopliae var. anisopliae during the phase of environmental 

monitoring. 
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Chapter 4. Evaluation of Indigenous Isolates of Metarhizium anisopliae for 
Pathogenicity towards Grasshoppers in Southern Alberta 

4.0 Introduction 

By definition, classical biological control has been defined as the intentional 

introduction of an exotic, sometimes co-evolved, biological control agent for permanent 

establishment and long-term pest control (Eilenberg et al, 2001). Steps for this process 

include determination of a target, acquisition of natural enemies, selection of an 

environmentally safer natural enemy for release, establishment of the natural enemy in a 

suitable habitat, management of the project through education and integration of 

cooperative parties, and assessment of the final outcome (Van Driesche & Hoddle, 2000). 

Although the general consensus is that the pest's area of origin is the best location for 

finding natural controls, in the case of North American grasshopper species, there is 

much disagreement on determination of a pest's original home range. Carruthers and 

Onsager (1993) have argued that grasshoppers have not evolved in North America and 

therefore should not be considered native, thus supporting their claim that use of exotic 

agents for control of nonindigenous pests is merely a reunion of current pests with former 

natural enemies. Conversely, Lockwood (1993a,b) contended that orthoptera have 

indeed speciated over 300 million years on the North American land mass known as 

Laurasia (Rehn, 1954) and, therefore, should be considered native. This argument was 

used to emphasize the significant differences that potentially exist for undesirable 

ecological consequences expected from introduction of an exotic species for control of a 

native target versus use of a native species to control a native pest. 

In North America, indigenous and exotic introductions of fungal biocontrol agents 

have been attempted for the control of grasshoppers, albeit with qualified success. In 
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Canada, 70 % mortality due to mycosis was obtained in grasshoppers confined in 

laboratory cages following treatment with a US isolate of Beauveria bassiana and 

collection within two days of application (Johnson & Goettel, 1993). However, 

significant and declining levels of infection were observed in insects collected after this 

time up to 19 days post-application. In the United States, an introduced Australian 

pathotype of Entomophaga grylli was identified in up to 23 % of E. gry//z'-infected 

grasshoppers one year after fungal introduction (Bidochka et al, 1996). This figure 

declined to less than 2 % two years following introduction and no infection attributable to 

the exotic pathotype could be confirmed three years post-introduction. Currently, there 

has been no documentation in the literature on any introductions of Metarhizium (exotic 

or indigenous) for control of North American orthoptera. 

This study shows the results of pathogenicity screening of two southern Albertan 

isolates of Metarhizium anisopliae var. anisopliae in comparison to a standard strain (Evil 

330189) of M. anisopliae var. acridum in nymphs of a laboratory colony ofMelanoplus 

sanguinipes and field-collected grasshoppers following application of spores in 

bioassays. 

4.1 Materials and Methods 

4.1.1 Fungal isolates and cultivation 

Metarhizium anisopliae var. anisopliae fungal isolates S54 (genetic group-B 

variant) and 20W-5 (distinctive colony morphology from other native isolates), isolated 

from southern Alberta soils, were propagated and maintained on PDA. M. anisopliae 

var. acridum IMI 330189 was obtained and propagated as previously mentioned (section 

2.1.1). 
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4.1.2 Inoculation of grasshoppers 

Third and fourth instar nymphs of a laboratory colony of Melanoplus sanguinipes 

were randomly collected, inoculated, and housed as previously described (section 2.1.6). 

Third and fourth instar field-collected nymphs of M. sanguinipes, M. bivittatus, M. 

packardii, and Camnula pellucida were also randomly collected, inoculated, and housed 

as previously described (section 2.1.6). 

All three Metarhizium isolates listed in section 4.1.1 were used to treat nymphs of 

a laboratory colony of M. sanguinipes, but only isolates S54 and IMI330189 were 

evaluated in assays with field-collected nymphs. Due to sparse sporulation on solid 

culture media, isolate 20W-5 was not tested on field-collected nymphs. 

4.1.3 Confirmation of Metarhizium infection in grasshoppers 

M. anisopliae var. acridum infection in grasshopper nymphs treated with IMI 

330189 spores was confirmed by PCR assay with specific primers Mac-ITS-Fl and Mac-

ITS-R1 (section 2.1.8). Cadavers were frozen as previously described (section 2.1.6) 

prior to DNA extraction as per section 2.1.7. In order to minimize environmental 

contamination with an exotic isolate of Metarhizium, external sporulation was not 

allowed on IMI 330189-infected cadavers. 

Mortality attributed to native isolates 20W-5 and S54 was recorded as incidence 

of mycosis with evidence of external sporulation characteristic of Metarhizium. Dead 

insects were removed daily and disinfected by immersion for one minute in 70 % ethanol 

followed by one minute in sterile distilled water. Cadavers were then placed individually 

on moistened sterile filter paper in a 60 mm x 10 mm Petri dish, the dish sealed with 

Parafilm®, and incubated at ca. 20 °C for a maximum of twenty-one days. In the case of 
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S54, M. anisopliae var. anisopliae infection in infected cadavers was also confirmed by 

PCR. Conidia from the surface of infected cadavers were transferred with a sterile loop 

to 500 ul of potato dextrose broth (PDB) and incubated in the dark at room temperature 

(ca. 20 °C) for 3 to 4 days; 1 ul of culture was then used directly as template in nested 

PCR assays with outer primers Ma-28S4 and Ma-IGSl followed by a second reaction 

with inner primers Ma-IGSspF and Ma-IGSspR as per section 3.1.5.3. Insects that did 

not display signs of external sporulation after 21 days were then frozen at -20 °C until 

DNA extraction as per section 2.1.7. 

4.1.4 Data analysis 

For all treated grasshopper experiments, mortality data from control insect groups 

were used in Abbott's (1925) formula to correct total insect mortality. Corrected daily 

mortality data were then fitted to a Weibull distribution and the LIFEREG procedure 

(SAS Institute, 2005) used to estimate lethal times for mortality of 50 % of treated insects 

(LT50) with upper and lower 95 % confidence limits (CL). 

4.2 Results 

4.2.1 Infection of laboratory-reared and field-collected grasshopper nymphs with 

M. anisopliae var. acridum isolate IMI 330189 

Complete mortality was observed by 8 days for laboratory colony nymphs versus 

9 days for field-collected grasshoppers for treated insects exposed to M. anisopliae var. 

acridum isolate IMI 330189. The LT 5 0 value for the Evil 330189-treated laboratory 

colony assay was 4.1 days versus 4.7 days for the Evil 330189-treated field-collected 

assay (Table 4-1). Daily corrected cumulative mortalities for laboratory-reared and field-

collected grasshopper nymphs challenged with IMI 330189 are shown in Figs. 4-1 and 
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Table 4-1. Lethal time for 50 % population mortality (LT5o) with confidence limits 
(1 - a = 95 %) of laboratory and field-collected grasshopper nymphs treated with conidia 

of three Metarhizium isolates. 
Numbers followed by the same letter in column are not significant 

at a = 0.05. 

Insect Source/ 
Fungal Isolate 

Number of 
insects (N) 

LT 5 0 

(days) 
Confidence 

limit 
Lower Upper 

Mycosis 
attributed to 

Metarhizium (%) 

Specific 
PCR 

positive (%) 
Laboratory 
colony 
nymphs: 

IMI 330189 
20W-5 
S54 

126 
77 
71 

4.1 
6.3 
6.7 

3 .87 -4 .37 a 

5 .92 -6 .68 b 

6.20 - 7.29 b 

N/A 
79.2 
91.5 

100 
N/A 
97.2 

Field-collected 
nymphs: 

IMI 330189 
S54 

112 
125 

4.7 
4.4 

4.43 - 4.93 c 

4.28 - 4.60 a , c 

N/A 
83.2 

100 
97.6 
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120.0 

1 2 3 4 5 6 7 8 9 10 11 12 
Days 

Fig. 4-1. Cumulative mortality of laboratory grasshopper nymphs treated with three 
isolates of Metarhizium under laboratory conditions of 24 °C/16 °C day/night with a 

corresponding 16/8 h light/dark photoperiod under ambient relative humidity (40-55 %). 
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4-2, respectively. 

The presence of M. anisopliae var. acridum DNA in Evil 330189-

challenged insects was confirmed by successful amplification of a 420 bp DNA sequence 

from the total DNA extracted from 100 % of treated laboratory colony and field-collected 

grasshopper nymphs in a PCR assay with the Mac-ITS-Fl and Mac-ITS-Rl primers (data 

not shown) and supported by isolation of M. anisopliae var. acridum from 92.1 % and 

92.0 % of treated laboratory colony and field-collected insects, respectively. No 

Metarhizium spp. were isolated from the control group for either laboratory colony or 

field-collected nymphs. No amplified products were produced with the M. anisopliae 

var. acridum-specific primers in PCR assays of the control groups (data not shown). 

As observed earlier, molting (51.6 % in the treated colony, 16.1 % in the treated 

field-collected group) did not inhibit detection of fungal DNA. Frequency of ecdysis was 

lower at 34.6 % eight days post-treatment in untreated laboratory colony nymphs; the 

converse was true for field-collected insects where molts were observed in 52.2 % of 

untreated grasshoppers 9 days post-treatment. 

4.2.2 Infection of laboratory-reared grasshopper nymphs with M. anisopliae 

isolate 20W-5 

Cumulative mortality in laboratory colony nymphs treated with spores of M. 

anisopliae isolate 20W-5 was 98.7 % twelve days post-inoculation. Sporulation was 

observed in 79.2 % of treated insects and occurred within 2 weeks after death (Fig. 4-3a). 

Molting occurred in 9.1 % of infected nymphs and LT50 was 6.3 days for insects exposed 

to isolate 20W-5 (Table 4-1). Daily corrected cumulative mortality for treated nymphs is 

shown in Fig. 4-1. 
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Fig. 4-2. Cumulative mortality of field-collected grasshopper nymphs treated with two 
isolates of Metarhizium under laboratory conditions of 24 °C/16 °C day/night with a 

corresponding 16/8 h light/dark photoperiod under ambient relative humidity (40-55 %). 
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(a) (b) 
Fig. 4-3. Sporulation of southern Albertan soil isolates of Metarhizium on 

Melanoplus sanguinipes nymphs from a laboratory colony, 
(a) isolate 20W-5 (b) isolate S54 
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4.2.3 Infection of laboratory-reared and field-collected grasshopper nymphs with 

M. anisopliae var. anisopliae isolate S54 

Similar final mortality was observed in laboratory colony nymphs treated with M. 

anisopliae var. anisopliae isolate S54. At 12 days post-inoculation, cumulative mortality 

was 98.6 % (Fig. 4-1). Conidial appearance on infected cadavers (Fig. 4-3b) was very 

similar to published photos of M. anisopliae var. acridum sporulation on infected locusts 

(Fig. 4-4). Sporulation occurred in 91.5 % of S54-treated insects and LT50 was 6.7 days 

(Table 4-1). Rate of sporulation on S54 cadavers was more rapid compared to insects 

challenged with isolate 20W-5, with 100 % conidiation completed within one week 

following death. Slightly less than 10 % of S54-infected insects molted in this bioassay. 

Nested PCR assays with primer combinations Ma-28S4/Ma-IGS1 and Ma-

IGSspF/Ma-IGSspR produced amplified products 670 bp in size, corresponding to that 

expected for S54 DNA, in 97.2 % of S54-treated laboratory colony nymphs, including all 

insects that exhibited sporulation. No band sizes corresponding to those expected for M. 

anisopliae var. anisopliae with these primers were detected in untreated insects. The sole 

surviving insect 12 days post-inoculation of the treated group also tested negative with 

the nested PCR assay. 

Complete mortality was obtained 7 days post-inoculation in field-collected 

nymphs treated with isolate S54 (Fig. 4-2). The LT50 value for this bioassay was lower at 

4.4 days compared to 6.7 days for infected laboratory colony nymphs (Table 4-1). 

Nested PCR assays with M. anisopliae var. anisopliae-spccific primers produced positive 

results for 97.6 % of infected nymphs. Metarhizium-indaccd mycosis was confirmed by 
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Fig. 4-4. Plague locusts infected with Green Guard (M. anisopliae var. acridum) 
Photo courtesy of the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO), Australia 
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sporulation in 83.2 % of infected insects one week after death. As with S54-infected 

laboratory colony grasshoppers, the incidence of ecdysis was low at 12.8 %. 

In tandem with an observation of increased lethargy, there was also a noticeable 

reduction in food consumption by all insects in all Metarhizium-treated groups, with the 

sole exception of the surviving S54-treated laboratory colony nymph, versus their 

untreated counterparts although these observations were not quantified. As previously 

demonstrated, ecdysis did not interfere with development of mycosis. No mortality in 

control groups was attributable to Metarhizium-induced mycosis. Final cumulative 

mortalities in control groups were 46.2 % and 34.5 % for laboratory colony and 17.4 % 

for field-collected grasshopper nymphs. 

The cumulative mortality curves for treated laboratory colony grasshoppers (Fig. 

4-1) and treated field-collected nymphs (Fig. 4-2) approach the sigmoidal shape expected 

for populations of target insects treated with entomopathogenic fungi (Bateman et al, 

1996). 

4.3 Discussion 

Prior to application of a biological control agent, a method is required that allows 

discrimination of the introduced organism from indigenous populations. The two native 

isolates of M. anisopliae evaluated in bioassays against M. sanguinipes in this study were 

selected on the basis of their distinctive genetic characteristics. One isolate, S54, was 

chosen because it could be distinguished from other native isolates of Metarhizium in a 

PCR assay. The other isolate (20W-5) possessed unique morphological characteristics 

that would permit visual differentiation of this fungal isolate from others. The four 

grasshopper species (M. sanguinipes, M. bivittatus, M. packardii, and C. pellucida) used 
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in assays of field-collected grasshoppers were selected as they represent the main cereal 

pest species in Alberta. 

The discovery of two soil isolates of Metarhizium that demonstrated comparable 

virulence with a commercialized isolate towards orthopteran species in southern Alberta 

is contrary to earlier studies that showed direct isolation from a target host was the most 

appropriate method for isolation of target-specific pathotypes. Kooyman and Shah 

(1992) collected one hundred and twenty-eight isolates of Metarhizium directly from 

orthopteran hosts, but failed to find isolates in two hundred and forty-three soils screened 

with dodine oatmeal agar (Shah, 1994) in a survey conducted in Africa and the Near East. 

Further, documentation of isolates of M. anisopliae var. anisopliae from orthopteran 

hosts is not common. In Spain, M. anisopliae (Metschnikoff) was isolated from four 

individuals out of three hundred and seventeen Moroccan locusts but degree of virulence 

was not determined (Hernandez-Crespo & Santiago-Alvarez, 1997). Of the one hundred 

and twenty-eight isolates of Metarhizium identified by Kooyman and Shah (1992), only 

seven were classified as M. anisopliae. The remainder were M. flavoviride, some to be 

later renamed as M. anisopliae var. acridum. Prior (1992) noted that as of 1992, no 

examples had been found of non-orthopteran isolates of Metarhizium spp. with high 

virulence to the desert locust S. gregaria. 

However, other studies have demonstrated the value of Metarhizium isolates that 

have non-orthopteran origins for pathogenicity to acridids. Bateman et al. (1996) 

recorded nine non-orthopteran isolates of Metarhizium spp., one of which originated from 

a coleopteran host in the US, which showed virulence to S. gregaria that was comparable 

to a highly virulent standard isolate originally isolated from an acridid in Niger. Further, 
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four of the nine isolates originated from tropical soils. As well, in Madagascar Welling et 

al. (1994) found a native virulent strain of M. anisopliae isolated from soil caused faster 

and higher mortality than an indigenous orthopteran isolate of M. flavoviride in bioassays 

of a laboratory strain of desert locusts. Their conclusion was that soil-derived isolates 

may also be effective against certain target species and therefore should be included in 

routine bioassays. 

In this study, the LT50 value of 4.1 days for laboratory-reared grasshoppers 

exposed to M. anisopliae var. acridum Evil 330189 fell within the range of reported 

values between 4 and 6 days in bioassays of laboratory stocks of acridids infected with 

M. anisopliae var. acridum in previous studies (Smits et al., 1999; Inglis et al., 1999; 

Bateman et al., 1996; David Hunter, pers. comm.). The LT50 value of 4.7 days for field-

collected nymphs treated with the same isolate also was comparable to results from 

previous works (Shah et al., 1998a; D. Hunter, pers. comm.). 

In contrast with previous results from bioassays of field-collected grasshoppers, in 

this study southern Albertan isolates of M. anisopliae induced a significantly slower 

mortality compared to an exotic isolate of M. anisopliae var. acridum in treated nymphs 

from a laboratory stock of M. sanguinipes. This may be a reflection of the genetic 

homogeneity of a laboratory culture of insects that has resulted from inbreeding within a 

closed genetic pool for over forty years. Over the initial twelve-year period during which 

the laboratory insect stock was established, Pickford and Randell (1969) noted no 

evidence of deleterious mutants, although admitted that the population had been reduced 

to very small numbers on several occasions due to disease. The plot of cumulative 

mortality for laboratory-reared insects exposed to the exotic isolate Evil 330189 showed 
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almost no initial lag in mortality contrary to what would be expected of a sigmoidal curve 

for a heterogeneous population treated with a pathogen, suggesting a narrow range of 

physiological response from the laboratory-reared insects. Similarly, since both native 

isolates of M. anisopliae demonstrated a longer lag phase initially, this may be an 

indication that the individual laboratory stock nymphs possessed similar levels of 

resistance to the two indigenous strains; however, this resistance was insufficient to 

prevent almost 100 % mortality twelve days post-treatment. The degree of variability in 

susceptibility of the target population could be confirmed by treatment with a varying 

range of spore concentrations and use of probit transformation to convert the sigmoidal 

curve resulting from a plot of mortality versus dose into a straight line. A slope with a 

value of less than one indicates a greater variation in host susceptibility in terms of 

concentration lethal to 50 % of the population. However, it should be noted that slope is 

also a function of variability in actual dose administered (Meynell, 1957) in that 

application of a particular dose is not necessarily an indication of the number of spores 

that actually result in infection. Nonetheless, it has been well documented that there can 

be large differences among host genotypes in insect populations in response to microbial 

pathogens (Watanabe, 1987). In this case, the results suggest that bioassays of native 

field-collected insects may better reflect the target response to indigenous fungal 

entomopathogens. 

Regardless of the type and duration of physiological response shown by treated 

insects in assays of laboratory stock and field-collected nymphs, reduction in feeding was 

observed in all treated groups. These results are supported by a previous study that 
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quantified reduced feeding in variegated grasshoppers infected with M. flavoviride 

(Thomas etal, 1997). 

Concerns over the safety and efficacy of exotic agents used to control native pests 

have led to the promotion of strategies for augmentation of native agents for biological 

control (Lockwood, 1993a,b). Hokkanen and Pimentel (1984) calculated a 75 % higher 

rate of success for biological control programs that employed new parasite-host 

associations over those that were based on long-evolved associations applied in classical 

biological control. Further, Lockwood (1993a,b) has pointed out that native biological 

agents can and do play a major role in the control of grasshopper population dynamics 

and that indigenous evolutionary and ecological processes would provide constraints on 

augmented native organisms, thus any potential effects would more likely be predictable, 

localized, and temporary. This study has identified an indigenous southern Albertan 

isolate of M. anisopliae var. anisopliae that shows high virulence to native grasshoppers, 

is readily propagated on culture media, and can be differentiated from other native 

isolates of Metarhizium with a simple molecular assay. Much more work is required to 

determine host specificity of this fungus, since there is no indication of the 

entomopathogen's host range because it was isolated from soil, but failure to sporulate on 

Galleria larvae suggests that the host range may not include lepidopterans. Specific non-

target and efficacy trials should be done as the scale on control is expanded to 

commercial levels because implementation of a native pathogen in a biological control 

program would help alleviate regulatory concerns about ecological consequences. 
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Chapter 5. Prediction of Metarhizium anisopliae var. acridum Efficacy for 
Grasshopper Biocontrol in a Temperate Region Based on Historical Weather and 
Climate Data 

5.0 Introduction 

Biocontrol of grasshoppers and locusts with an entomopathogenic fungal agent is 

typically constrained primarily by environmental temperature (Blanford & Thomas, 

2000; Carruthers et al, 1992). A key factor mediating pathogen development is the 

ability of target acridids to regulate their body temperature to a preferred set point 

(thermoregulation) independent of daytime ambient temperatures through interaction of 

environmental, physical, and behavioural factors (Lactin & Johnson, 1998; Chappell & 

Whitman, 1990; Kemp, 1986). Further, these insects have the capacity to increase the 

preferred set point in response to infection by M. anisopliae var. acridum (Ouedraogo et 

al, 2003; Elliot et al, 2002; Gardner & Thomas, 2002; Blanford & Thomas, 1999a,b; 

Blanford et al, 1998). 

In conjunction with temperature, humidity has been shown to play a more pivotal 

role in horizontal transmission of the entomopathogen through sporulation on infected 

cadavers and persistence in the environment (Arthurs & Thomas, 2001a, 1999; Arthurs et 

al, 2001; Thomas et al, 1997) than in germination on the insect cuticle (Bateman et al, 

1993). The impact of solar radiation on pathogen persistence in the environment has 

been acknowledged (Braga et al, 2001a; Shah et al, 1998a; Moore et al, 1996), but 

confounded by conflicting results and difficulties in quantification of conditions in a 

natural setting. Intravarietal differences between isolates in tolerances to temperature, 

humidity and solar radiation also contribute to the uncertainty but also confer persistence 

in the environment to entomopathogens. 
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In a few instances, weather conditions have been recorded and efficacy of 

Metarhizium anisopliae var. acridum estimated in tropical climates. These observations 

will be used to estimate M. anisopliae var. acridum efficacy in the temperate Prairie 

provinces of Canada based on historical weather and climate data as well as observations 

of native grasshopper thermoregulatory behaviour. 

5.1 Thermoregulation 

Several studies have shown that, given conditions optimal for thermoregulation, 

grasshoppers and locusts aspire to reach a preferred body temperature of 38-42 °C under 

laboratory (Blanford & Thomas, 1999a,b; Lactin & Johnson, 1995, 1996a) and field 

(Blanford & Thomas, 2000; Blanford et al, 1998; Carruthers et al, 1992; Kemp, 1986) 

conditions. The adaptive advantages for this behaviour include optimum temperatures 

for rates of feeding and development (Lactin & Johnson, 1995,1996a). Depending on 

ambient temperature and availability of solar radiation, body temperatures will increase 

rapidly from a few degrees below ambient up to preferred body temperatures, followed 

by a decline as ambient temperatures decrease (Fig. 5-1). Equilibrium at preferred body 

temperatures is maintained by adoption of heat aversion strategies through microhabitat 

selection and postural adjustment (Blanford et al, 1998), as well as behaviour such as 

hyperventilation to promote reduction of body temperature by evaporative cooling 

(Carruthers et al, 1992; Chappel & Whitman, 1990). Figure 5-2 demonstrates the 

nonlinear relationship between body and ambient temperatures. 

In contrast, Lactin and Johnson (1998) noted a linear relationship between 

ambient air temperature at 1 meter and mean body temperature of rangeland grasshoppers 

distributed and oriented randomly within the vegetation canopy in southern Alberta. 

82 



Fig. 5-1. Examples of an hourly pattern of thermoregulation for Australian plague locusts 
(data courtesy of D. Hunter) 
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p 

Ambient temperature 

Fig. 5-2. Distribution of body temperature against ambient temperature. The curve 
estimates best fit nonlinear regression describing the pattern of active thermoregulation 

(modified from Blanford & Thomas, 2000). 

84 



They observed that within a range of ambient temperatures between 15-28 °C, body 

temperatures were usually three to four degrees higher than ambient. Grasshopper data 

from Australia are consistent with the Lactin and Johnson observations and suggest that 

grasshoppers do not increase their body temperatures as much as locusts (D. Hunter, pers. 

comm.). 

Optimal in vivo development rates for M. anisopliae var. acridum occur at 28-30 

°C (Arthurs & Thomas, 2001b; Fargues et al, 1997; Thomas & Jenkins, 1997). Pathogen 

growth and mortality still occur over a range of 15-35 °C, but the period of latent 

infection can be significantly longer (Arthurs & Thomas, 2001b, 1999; Fargues et al, 

1997; Thomas & Jenkins, 1997). Maintenance of a set body temperature of 38-42 °C has 

been shown to not alter the final outcome of infection but does influence the rate of 

mortality since duration at temperatures sub-optimal for pathogen growth is constrained 

by environmental factors such as ambient temperature and solar radiation (Arthurs & 

Thomas, 1999). Blanford et al (1998) noted that in tropical regimes, in vivo fungal 

development can be checked for a maximum of 7-8 hours per day and most growth will 

occur during cooler periods in the evening. 

5.1.1 Behavioural fever 

Some acridids have shown the ability to raise the preferred body temperature set 

point a few degrees approaching 44 °C, resulting in possible suppression of infection 

(Ouedraogo et al, 2003; Elliot et al, 2002; Gardner & Thomas, 2002; Blanford & 

Thomas, 1999a,b; Blanford et al, 1998). This response, known as behavioural fever, is 

believed to assist the host immune system in suppression of pathogen development and 

although therapeutic benefits have been recognized, the underlying mechanisms for this 
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host-mediated adaption are unclear (Gardner & Thomas, 2002). Further, the costs 

associated with this behaviour include impacts on feeding efficiency, host development, 

and susceptibility to predation (Gardner & Thomas, 2002). Negative consequences on 

the pathogen are temporary and, as with regular thermoregulation, outcome of infection 

will probably not be affected (Ouedraogo et al, 2002; Blanford & Thomas, 1999a,b; 

Blanford et al, 1998). However, it has been speculated that low numbers of pathogen 

may be eliminated (Elliot et al, 2002) and that variability in behavioural fever effects 

among host species may contribute to the variation in efficacy experienced with 

application of biocontrol agents (Blanford et al, 1998). 

5.2 Efficacy of M. anisopliae var. acridum under tropical regimes 

As previously mentioned, a common observation of efficacy of an applied 

pathogen is variable performance and is likely due to spatial and temporal variations in 

biotic and abiotic factors (Blanford et al, 1998). In Brazil, Magalhaes et al (2000b) 

estimated 88 % mortality of grasshopper nymphal bands 14 days post application (dpa) (2 

x 10 1 3 conidia per hectare [ha]) with a native isolate of M. anisopliae var. acridum in 

field trials at the beginning of the rainy season with maximum temperatures ranging from 

28-31 °C and minimum temperatures from 18-22 °C. Approximately 250 mm of 

precipitation accumulated during this time from nine events of rainfall. In Mauritania, 

Langewald et al. (1997) achieved mortality rates of 99 % in caged samples of treated 

desert locusts (5 x 10 1 2 conidia per ha) in 15 days and estimated 70 % reduction in 

population numbers between 2 and 8 days post application of a treated hopper band in a 

semi-desert area where air temperature varied between 40 °C around 2 p.m. and 16 °C 

around 5 a.m. (local time) with Green Muscle®. Similarly with isolate 191-690, Douro-
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Kpindou et al. (1995) observed 96 % reduction in counts of treated Zoncerus variegatus 

populations 15 dpa with 2 x 10 1 2 conidia per ha applied to 1 ha plots under conditions of 

31.5 to 35 °C at time of treatment in southern Benin. However, Kooyman and Abdalla 

(1998) calculated an average control efficiency of 68 % of tree locusts in Sudanese plots 

ranging from 10-25 ha treated with ca. 5 x 10 1 2 Green Muscle® conidia per ha with 

maximum temperatures ranging from well below 30 °C on heavily clouded days to close 

to 40 °C on sunny days and temperatures in the low 20s recorded in the early morning 

during the trial. 

Milner (1997) also noted considerable variation in field trials in Australia with 

Green Guard®. Treatment of 50 ha for the wingless grasshopper P. vittatum with 4 x 101' 

conidia per ha required 7 days for high levels of mortality where daily maximum 

temperatures were hot (approaching 40 °C) compared to 21 days for sites (5 ha) where 

temperatures did not exceed 20 °C. Hunter et al. (1999) estimated less than 10 % 

survival of treated migratory locust bands in open grassland and crops in Australia 15-18 

dpa of 3-4 x 10 1 2 conidia per ha of the same isolate. Air temperatures during these trials 

ranged from mild (28-32 °C) to hot (> 35 °C). 

5.3 Historical weather data in the Prairie provinces of Canada and potential for 

M. anisopliae var. acridum application 

Weather data, where available, were obtained for the years 1975 to 2005 from 

nine agriculture research weather stations located in Alberta, Saskatchewan, and 

Manitoba. The meteorological variables included daily values of maximum air 

temperature, minimum air temperature, sunshine hours, and precipitation. Means for the 

months of June, July, and August over the thirty years were calculated for each variable 
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at each station with the MEANS procedure of SAS (SAS Institute, 2005) (Appendices 3-

6). 

5.3.1 Air temperature 

For each location, July was the warmest month and was significantly warmer than 

the other two months (Appendix 3). The means for all three months ranged from a low of 

18.6 °C for June at Stavely, AB to 26.9 °C for July at the Onefour, AB station. These 

temperatures fall within the 15-35 °C range for growth of M. anisopliae var. acridum, 

indicating that high temperatures will probably not be a factor that precludes pathogen 

efficacy in a temperate environment. The minimum daily high temperature was recorded 

at Lethbridge, AB (2.7 °C) and the maximum was 40 °C at Morden, MB. Although 

outside the range for pathogen development, these temperatures would have a transient 

impact on the fungus. 

June proved to be significantly cooler than July and August, with mean minimum 

air temperatures ranging from 5.7 °C at Stavely, AB to 14.5 °C at Morden, MB 

(Appendix 4). These temperatures would certainly inhibit fungal growth but, as with 

maximum temperatures, probably only temporarily. Of greater concern is the 

observation of several recordings of temperatures below 0 °C. Eight stations recorded at 

least one instance of a below freezing temperature in June; all nine stations experienced 

subzero temperatures in August (range of-0.5 to -7.0 °C). The minimum requirements 

for duration or magnitude of subzero temperatures necessary for M. anisopliae var. 

acridum or grasshopper mortality are unknown. 

Under the assumption that native grasshoppers increase their body temperatures 

three to four degrees above ambient (Lactin & Johnson, 1998) if conditions allow for 
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thermoregulation, an adjusted range of ambient temperatures for development of M. 

anisopliae var. acridum would be 15 °C (no thermoregulation) to 31 °C 

(thermoregulation would increase host body temperature to 34-35 °C). The FREQ 

procedure of SAS (SAS Institute, 2005) was used to calculate frequencies for ambient 

temperatures that would preclude growth of M. anisopliae var. acridum (i.e. maximum 

temperatures > 31 °C, maximum temperatures < 15 °C, and mean temperatures < 15 °C). 

Results are presented in Table 5-1. For the month of June, all stations have a very small 

percentage of days for which the ambient temperature would have been too warm for part 

of the day for pathogen growth (> 31 °C). For example, 6.45 % of days in June over 30 

years would have had some temperatures too warm in Morden, the location with the 

highest mean maximum air temperature (Appendix 3). The number of days in July and 

August with too warm temperatures for part of the day increased slightly, but still 

remained less than 25 %, suggesting that hot weather will not be a concern for application 

of Metarhizium for biocontrol. Cool weather will probably be more of a determining 

factor in pathogen efficacy as more than half the locations recorded mean temperatures < 

15 °C at frequencies greater than 50 % over at least one of the summer months, thus 

indicating a delay in fungal development for part of the day. However, there is no 

location for which there would be a permanent cessation of M. anisopliae var. acridum 

growth due to cool temperatures during the summer. The data indicate that summer 

temperatures in the Prairie provinces of Canada would not be a deterrent to M. anisopliae 

var. acridum efficacy. 

89 



Table 5-1. Thirty year summary of frequencies of ambient air temperatures that would 
preclude the growth of M. anisopliae var. acridum during June, July, and August in 

Canada's Prairie provinces 

Location Month(s) Max > 31 °C M a x < 1 5 ° C M e a n < 1 5 ° C 
Lethbridge, AB June 23 (2.48) e 78 (8.40) 446 (48.01) 

July 125(13.13) 21 (2.21) 145 (15.31) 
August 128 (13.36) 46 (4.80) 242 (25.29) 
summer" 276 (9.72) 145 (5.11) 833 (29.28) 

Onefour, AB June 56 (6.02) 67 (7.20) 414 (44.52) 
July 214 (22.27) 16(1.66) 108(11.24) 
August 214 (22.27) 28 (2.91) 195 (20.29) 
summer 484 (16.97) 111 (3.89) 717(25.14) 

Vauxhall, AB June 47 (5.52) 47 (5.52) 358 (42.07) 
July 148 (16.48) 7 (0.78) 122(13.59) 
August 171 (19.04) 30 (3.34) 207 (23.05) 
summer 366(13.82) 84 (3.17) 687 (25.95) 

Stavely, AB June 1 (0.13) 192 (24.68) 615 (79.05) 
July 36 (4.44) 62 (7.65) 375 (46.35) 
August 22 (2.72) 92(11.36) 407 (50.31) 
summer 59 (2.46) 346 (14.43) 1397 (58.31) 

Lacombe, AB June 5 (0.54) 125 (13.44) 641 (68.92) 
July 19(1.98) 38 (3.95) 395 (41.10) 
August 20 (2.11) 108 (11.38) 497 (52.48) 
summer 44(1.55) 271 (9.54) 1533 (54.02) 

Beaver lodge, AB June 2 (0.22) 135 (14.64) 642 (70.32) 
July 9 (0.94) 62 (6.45) 453 (47.29) 
August 19(1.98) 125 (13.02) 552 (57.56) 
summer 30(1.66) 322(11.33) 1647 (58.20) 

Ft. Vermilion, AB June 4 (0.83) 41 (8.54) 223 (46.46) 
July 17 (3.43) 15 (3.02) 105 (21.17) 
August 10(2.02) 71 (14.31) 254 (51.21) 
summer 31 (2.11) 127 (8.63) 582 (39.54) 

Scott, SK June 23 (2.47) 100(10.75) 498 (53.55) 
July 58 (6.04) 22 (2.29) 239 (24.87) 
August 82 (8.53) 71 (7.39) 371 (38.61) 
summer 163 (5.72) 193 (6.77) 1108 (38.85) 

Morden, MB June 60 (6.45) 57 (6.13) 267 (28.71) 
July 112(11.65) 8 (0.83) 57 (5.93) 
August 112(11.67) 13 (1.35) 157(16.37) 
summer 284 (9.96) 78 (2.74) 481 (16.88) 

dmonths of June, July, and August combined 
enumbers in parentheses represent percentages for the respective month(s) over 30 years 

90 



5.3.2 Sunshine hours 

At the time of the summer solstice (June 21) in Canada, the stations at Lethbridge, 

Onefour, Stavely, and Vauxhall could expect a 16-hour daylight period with a maximum 

approaching 18 hours for the most northerly station at Fort Vermilion (Atlas of Canada, 

Natural Resources Canada). Solar radiation has been identified as a key factor in 

thermoregulation of grasshoppers (Lactin & Johnson, 1998,1996b). Stations such as 

Lethbridge, Onefour, Stavely, and Vauxhall observed the highest mean values of 

sunshine hours, representing more than 50 % of available daylight hours in most months 

(Appendix 5). Thermoregulation, therefore, will play a significant, albeit infrequent and 

short-termed, role in the determination of pathogen development at higher temperatures 

due to low frequencies of maximum air temperatures in excess of 31 °C (Table 5-1). 

However, at ambient temperatures suboptimal for fungal growth, solar radiation may 

contribute to an increase in host body temperatures to a more optimal range for the 

pathogen. 

5.3.3 Precipitation 

It has previously been shown that initiation (germination) of M. anisopliae var. 

acridum infection is not dependent upon ambient humidity (Bateman et al., 1993); 

however, sporulation and horizontal transmission of the pathogen only occur under high 

levels of relative humidity (Arthurs & Thomas, 2001a, 1999; Arthurs et al, 2001; 

Thomas et al, 1997). The observed means for precipitation for the months of June, July, 

and August over a thirty-year period (Appendix 6) indicate that sporulation is highly 

unlikely in the semi-arid Prairies and is supported by observations of a lack of sporulating 

cadavers in arid regions of Australia following aerial application of M. anisopliae var. 
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acridum (D. Hunter, pers. comm.). On the other hand, the impact of observed levels of 

precipitation should they approach climate normals on sporulation and horizontal 

transmission is as yet unknown (Table 5-2). 

5.4 Lethbridge summer 2003 - a possible scenario for efficacy of M. anisopliae 

var. acridum for control of grasshoppers 

The most recent significant outbreak of grasshoppers in southern Alberta occurred 

during the summer of 2003. Agriculture and AgriFood Canada, in conjunction with 

Alberta Agriculture, Food and Rural Development, established a joint federal/provincial 

program to compensate producers for costs of grasshopper control. Funding levels were 

set at $10.5 million and were estimated to cover only one-third of total incurred costs. 

Economic damage if no control was implemented was estimated at $80 to $100 million in 

crop losses. At the time, biological methods of control were not available. 

June and July are usually considered the target months for control of pest 

grasshopper species, as early instar nymphs are the preferred target for chemical or 

biological control. Analysis of daily observed weather in Lethbridge, AB for June and 

July suggest that environmental conditions may have been highly suitable for control by 

M, anisopliae var. acridum (Appendices 7 and 8, also Table 5-3). One-half of the days in 

June and almost 85 % of those in July had at least 12 hours of the day during which air 

temperatures were in a range suitable for fungal growth (15-31 °C). June had two days 

where maximum air temperatures were <15 °C (likely no fungal growth at all on those 

days) and one day where the maximum was >31 °C (no fungal growth for at least part of 

the day). There were no days in July where temperatures were too cool for pathogen 

development for the entire day and nine days where part of the day was too warm for 
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Table 5-2. Comparison of observed quantities of precipitation to climate normals over a 
thirty-year period (1975-2005) for June, July, and August in Canada's Prairie provinces 

Location Month Observed mean (mm) Normal 1 (1971-2000) (mm) 
Lethbridge, AB June 2.6 63.0 

July 1.3 47.5 
Aug 1.6 45.8 

Onefour, AB June 2.2 48.3 g 

July 1.2 34.2 g 

Aug 1.2 38.6 s 

Lacombe, AB June 2.5 75.7 
July 2.9 89.4 
Aug 2.3 70.8 

Beaverlodge, AB June 2.4 74.5 
July 2.4 70.6 
Aug 2.0 62.9 

Scott, SK June 2.1 62.5 
July 2.1 70.9 
Aug 1.4 43.1 

Morden, MB June 2.9 84.4 
July 2.3 71.2 
Aug 2.3 69.9 

data obtained from Environment Canada 
gdata obtained from nearby community of Manyberries, AB 
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Table 5-3. Summary statistics of days in June and July 2003 at Lethbridge, AB suitable 
for in vivo development of M. anisopliae var. acridum 

June July 
No. of days where max. temp. < 15 °C 2 0 
No. of days where max. temp. > 31 °C 1 9 
No. of days suitable for pathogen growth for at least part of day 28 31 
No. of days where 15 °C < ambient temp. < 31 °C for > 12 hrs 15 26 
Mean daily hours where 15 °C < ambient temp. < 31 °C 11.4 15.3 
No. of days with at least part of day suitable for optimum growth 10 27 
Mean daily hours where 24 °C < ambient temp. < 27 °C (optimal) 2.7 3.8 
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development. Of the days in June where temperatures existed at least partially in the 15-

31 °C range, the mean daily time frame for this range was 11.4 hours, compared to 15.3 

hours in July. Ten days in June had at least part of the day suitable for optimum growth 

at ambient temperatures of 24-27 °C (range of 8.3-41.1 % of total hours available for 

fungal development, Fig. 5-3a), with four of these ten days in possession of an additional 

1-9 hours at temperatures above 27 °C but not exceeding 31 °C which may or may not 

have been suitable for pathogen growth depending on influences of cloud cover and solar 

radiation on host body temperature at the time. Conversely, July had twenty-seven days 

with temperatures in the optimum growth range (6.7-45.5 % of suitable total hours, Fig. 

5-3b) and an additional 1-8 hours at higher temperatures that had the potential to 

contribute to optimal growth on nineteen days. Sporulation and horizontal transmission 

were not likely due to low and sporadic episodes of precipitation, except for the 

occurrence of 21.8 mm of rain over a seven-day period in June (Appendix 7). 

Table 5-3 shows that temperature conditions in Lethbridge, AB during June and 

July 2003 were permissive for M. anisopliae var. acridum development in vivo (range of 

15-31 °C) more than 50 % of every 24-hour period. Rapid mortality during an Australian 

summer is in the order of 8-11 days in the field (D. Hunter, pers. comm.). A model based 

on the interaction between locust body temperature and air temperature has suggested 

that daily Metarhizium development over a 14-18 hour period is required to achieve 

mortality that quickly (D. Hunter, pers. comm.). The model has also predicted that 

mortality due to M. anisopliae var. acridum application in southern Canada would take 

two weeks or so, increasing to three weeks or more in the northern Prairies. Analysis of 
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(b) July 

Fig. 5-3. Frequency distribution of proportion of total daily hours suitable for 
M. anisopliae var. acridum growth in vivo at ambient temperatures of 24-27 °C (optimal 

development) 
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2003 temperature data for Lethbridge, AB during part of the summer suggests that local 

mortality rates may be more rapid than predicted due to increased daily hours available 

for pathogen development as a result of the difference in magnitude of elevation of native 

grasshopper body temperatures (3-4 °C above ambient) versus the 12-15 °C increase in 

locust body temperature above ambient predicted by the model. However, mortality rate 

is a result of the interaction of numerous biotic and abiotic variables and it has been 

demonstrated that theoretical predictions usually do not extrapolate well to field results. 

It may be inferred from these key abiotic factors that summer weather in the Canadian 

Prairies supports the hypothesis of efficacy of M. anisopliae as part of a biological 

control program for grasshoppers and therefore can be considered as a viable alternative 

to the chemical control of this significant agricultural pest. As scale-up experiments will 

be conducted and documented as part of the registration, the extent of the 

entomopathogen's role in terms of efficacy, costs, and health improvement will be 

determined. 
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Chapter 6. General Discussion and Conclusions 

The main objectives of the research in this thesis were to develop and validate a 

molecular assay for the specific detection of the entomopathogenic fungus Metarhizium 

anisopliae var. acridum, conduct a soil survey to determine the natural occurrence of 

Metarhizium spp. in southern Alberta soils, screen native isolates for virulence towards 

grasshoppers, and analyze historical weather conditions in the Canadian Prairies for 

suitability for implementation of M. anisopliae var. acridum as a biocontrol agent for 

indigenous grasshopper pest species. 

6.1 Summary of results 

A diagnostic PCR assay was developed using DNA primers that targeted the ITS 

rDNA regions for the specific detection of M. anisopliae var. acridum. A 420 bp DNA 

sequence was successfully amplified from M. anisopliae var. acridum but not from other 

Metarhizum spp. or other soil fungal biota. The highly sensitive assay was also 

successful in the amplification of specific fungal DNA from infected grasshoppers and 

soil matrices. 

Metarhizium anisopliae isolates were recovered at low incidence (5 out of 20 

sites) from southern Alberta soils by direct isolation on semi-selective media and 

waxworm larvae bait assay. Evidence of M. anisopliae presence in soils was further 

supported by amplification of a 380 bp sequence in nested PCR assays with DNA primers 

for the specific detection of M. anisopliae var. anisopliae. Most isolates were identified 

through DNA sequencing as Group-B strains (Pantou et al, 2003) and were 

morphologically similar in appearance. One isolate (S54) was identified as a Group-B 

variant that produced a 670 bp sequence in nested PCR assays with M. anisopliae var. 
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anisopliae-specific primers. Another isolate (20W-5) had a distinct morphological 

appearance (Fig. 3-2b) as well as a smaller than expected amplification product of 

approximately 250 bp in a PCR assay with general fungal primers TW81 and AB28 (Fig. 

3-3). Isolate 20W-5 also failed to produce an amplification product in nested PCR assays 

with primers specific for the detection of M. anisopliae var. anisopliae. No isolates of M. 

anisopliae var. acridum or M. flavoviride were recovered from southern Alberta soils and 

all soils tested negative for M. anisopliae var. acridum and M. flavoviride DNA by 

specific PCR. 

The genetic Group-B variant M. anisopliae var. anisopliae isolate S54 and the 

morphologically distinct M. anisopliae isolate 20W-5 were screened for virulence 

towards grasshoppers in bioassays of laboratory and field-collected insects. Both isolates 

induced mycosis in grasshoppers. Isolate 20W-5 produced mortality in 98.7 % of 

laboratory-reared treated insects 12 days post-inoculation (LT50 = 6.3 days) compared to 

100 % mortality 8 dpi (LT50 = 4.1 days) for a commercial isolate of M. anisopliae var. 

acridum. M. anisopliae var. anisopliae isolate S54 caused 98.6 % mortality 12 dpi (LT50 

= 6.7 days) in treated laboratory-reared insects. In bioassays of field-collected 

grasshoppers, exposure to isolate S54 resulted in 100 % mortality 7 dpi (LT50 = 4.4 days) 

compared to 100 % mortality 9 dpi (LT50 = 4.7 days) from treatment with the commercial 

isolate. Isolate 20W-5 was not evaluated in bioassays of field-collected insects due to 

poor sporulation on culture media. 

Maximum air temperatures, minimum air temperatures, sunshine hours, and 

precipitation data from nine weather stations were analyzed over a thirty-year period 

(1975-2005) for occurrences that would preclude use of M. anisopliae var. acridum as a 
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biocontrol agent in the Prairie provinces. The analysis indicated that Canadian temperate 

weather conditions were suitable for M. anisopliae var. acridum development and 

initiation of infection. Low levels of ambient humidity were projected to be key factors 

in sporulation and horizontal transmission of the fungus. It was hypothesized that 

mortality rates induced by fungal infection in temperate zones might equal or exceed 

those observed in field trials in tropical regimes. 

6.2 Conclusions 

In Canada, the Pest Management Regulatory Agency (PMRA) has issued a 

comprehensive set of guidelines for the registration of microbial pest control agents and 

products (PMRA, 2001). These guidelines outline the data required in terms of 

characterization of the microbial control product (origin, derivation, and taxonomic 

identification as well as biological properties such as level of natural occurrence, 

distribution, habitat, and host range) in addition to human health and safety testing 

(various routes of exposure and levels of infectivity), food and feed residue studies, 

environmental fate (effects on indicator non-target species and persistence in the 

environment), and value assessment (identification of potential benefits to and efficacy in 

sustainable crop and pest management systems). The guidelines were established after 

consultation with interested parties in the biotechnology, agri-food, and forestry sectors, 

and have been harmonized with the US directive mandated by the Environmental 

Protection Agency (EPA). 

Research described in this thesis has contributed important data necessary to 

fulfill some of the requirements for registration of a microbial pesticide in Canada. A 

molecular assay for the specific detection of M. anisopliae var. acridum will permit 
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differentiation of the introduced exotic organism from native inhabitants, provide 

knowledge about the course of infection in target and nontarget organisms, and provide 

information on the fate of the biocontrol agent in the environment. 

Ecological concerns over the release of exotic organisms are a driving force in a 

search for indigenous biocontrol agents. Further, uncertainty regarding issues behind 

regulatory decisions will frequently preclude the use of nonindigenous agents. The 

identification of native strains of Metarhizium, especially one with a unique built-in 

genetic fingerprint, that demonstrate high virulence towards native grasshopper pest 

species will ease some of the impediments to registration by providing precision tools for 

monitoring and tracking the fate of the pest control product in the target population and in 

the environment. Moreover, there is a higher probability of better ecological fitness with 

native isolates and, thereby, a higher probability of successful application. 

These studies are an important advancement towards investigation of a suitable 

pathogen for biocontrol. More work is required to identify impacts on non-targets, since 

it has been demonstrated that individual isolates can differ significantly in host 

specificity. Compatibility of the pathogen with agroecosystems management practices 

also need to be determined as part of the multidisciplinary approach in integrated pest 

management strategies. Scientists, governments, industry, and interested stakeholders 

need to interact in a positive cooperative program to ensure delivery of a biological 

alternative for efficacious and environmentally sustainable control of an agroecosystem 

pest of economic significance. 
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Appendix 1. Partial nucleotide sequence for large subunit ribosomal RNA gene and 
ribosomal intergenic spacer region for Metarhizium anisopliae var. anisopliae isolate 
6W-2 

1 ccttgttgtt acgatctgct gagggttagc cgttcttcgc ctcgatttcc 
51 ccaatatcag cgcatcccgt ttcgcggggc gggtgttggg gttagagcca 

101 ccgagtagtg gccgcaggct tgaggagagc cgccgagtgg tggttcggga 
151 gggaaaatct gccaagctca aaggtcaggc aagcgagagg tttaccgggt 
201 cggaaagtcg ggcgagtaaa aagatatacc aagtccaaaa tactgccggc 
251 aacatacccg ggaccccgag taagtcgggg aagaagttgg cggatgtttt 
301 tccagccaac tcaactttga ccaatttacc tgcccgagct cacgggtagg 
351 ctgcggttaa tttttggact ttgcggattc actcgaatca attcacagga 
401 agttacctgc caaattgcct gggctcccgg gtaggctata gttgactttt 
451 ggacttggcg gattttttta aacttacttc ccccactata acctgggatt 
501 ttcccaacca tagctcacgg gtaggttagt tgtgattttt ggacttggtg 
551 aaatttctac tttcctgcca agtctagcct acctgggagc ccaggcaagt 
601 cgggcaggta aattccgcca acccggcagg gaactgattg caaattaatt 
651 caaccaaatc tgccaagtcc acaaagaaat gacagcctac ccggtaggcc 
7 01 tgtagatttc ccgcgcgatt tcctgcgaag accaaaaagc taggtgtttt 
7 51 agtacttaat ttatataaag atgagttgat ttttttgttt ttttatataa 
8 01 ataaattttg cggaaaataa aaaataaacc acgagagcct agtagcggag 
851 gcgggccctc gaggtggtcg gtaggtatat aagagagagg gctggacacg 
901 cgtcgcgtcg cgtatttcca ccgcacctaa tacttttggc tttagggtag 
951 gctgcttgtt tagaggcgcg ctgaattaga tggtctctta agtgagggga 

1001 tttctctgct ggcagttgcc tgtaatccgg gagtccgtgg tggtaaagtc 
1051 agctataagg cttgtgtgtg tgtgggtgcg cgggtgtgtg tgccggggcc 
1101 ctgtaagtcc cgaccaggaa ccctacaggt cacgtgccga cacagtaaga 
1151 cagataagat atacggcacg tgttagtaca cgtgccaata caagtgacg 



Appendix 2. Partial nucleotide sequence for large subunit ribosomal RNA gene and 
ribosomal intergenic spacer region for group-B variant Metarhizium anisopliae var. 
anisopliae isolate S54 

1 ccttgttgtt 
51 ccaatatcag 

101 ccgagtagtg 
151 gggaaaatct 
201 cggaaagtcg 
251 aacatacccg 
301 tccagccaac 
351 ctgcggttaa 
4 01 agttacctgc 
4 51 ggacttggcg 
501 ttcccgacca 
551 attacagcct 
601 agaccaaaaa 
651 atttttttgt 
7 01 accacgagag 
7 51 tataagagag 
801 taatactttg 
851 gatggtctct 
901 gggagtccgt 
951 cgcgggtgtg 

1001 gtcacgtgcc 
1051 cacgtgccaa 

acgatctgct 
cgcatcccgt 
gccgcaggct 
gccaagctca 
ggcgagtaaa 
ggaccccgag 
tcaactttga 
tttttggact 
caaattgcct 
gattttttta 
tagctcacgg 
acccggtagg 
gttaggtgtt 
tttttttata 
cccggtagcg 
agggctggac 
gctttagggt 
taagtgaggg 
ggtggtaaag 
tgtgccgggg 
gacacagtaa 
tacaagtgac 

gagggttagc 
ttcgcggggc 
tgaggagagc 
aaggtcaggc 
aagatatacc 
taagtcgggg 
ccaatttacc 
ttgcggattc 
gggctcccgg 
aacttacttc 
gtaggttagt 
cctgtatatt 
ttagtactta 
tatataaatt 
gaggcgagcc 
acgcgtcgcg 
aggctgcttg 
gatttctctg 
tcagctataa 
ccctgtaagt 
gacagataag 
g 

cgttcttcgc 
gggtgttggg 
cgccgagtgg 
aagcgagagg 
aagtccaaaa 
aagaagttgg 
tgcccgagct 
actcgaatca 
gtaggctata 
ccccactata 
tgtgataagt 
tcccgcgcga 
atttatatag 
ttgcgggaaa 
cttaaggtag 
tcgcgtattt 
tttagatgcg 
ctggcagttg 
ggcttgtgtg 
cccgaccagg 
atatacggca 

ctcgatttcc 
gttagagcca 
tggttcggga 
tttaccgggt 
tactgccggc 
cggatgtttt 
cacgggtagg 
attcacagga 
gttgactttt 
acctgggatt 
ccacaaataa 
tttcctgtga 
gtataagttg 
taaaaaataa 
tcggtaagta 
ccaccgcacc 
cgctgaatta 
cctgtaatcc 
tgtgtgggtg 
aaccctacag 
cgtgttagta 

Positions 1-49 large subunit ribosomal RNA, partial sequence 
Positions 50-1071 ribosomal intergenic spacer region, partial sequence 
Positions 941-960 location of 20 bp GT-rich insertion sequence definitive of group-B 

strains (Pantou et al, 2003) 

Letters in bold indicate nucleotide sequence amplified by M. anisopliae var. anisopliae-
specific Ma-IGSspF/Ma-IGS-spR primers. 
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Appendix 3. Mean summary statistics for maximum air temperature for weather 
stations in Alberta, Saskatchewan, and Manitoba during June, July, and August 
over a thirty-year period (1975-2005) 

Analysis Variable : tempjmaxair 
location month N 

Obs 
Mean N Std 

Error 
Lower 95% 

CLh for 
Mean 

Upper 95% 
CLfor 
Mean 

Minimum Maxim 

Beaverlodge 6 930 19.525 922 0.138 19.254 19.796 7.000 31.000 
7 961 21.648 961 0.134 21.385 21.911 6.300 32.000 
8 961 20.729 960 0.162 20.411 21.047 6.500 34.500 

FortVermilion 6 930 21.845 480 0.202 21.447 22.243 6.300 31.500 
7 961 23.636 496 0.185 23.273 24.000 12.500 34.200 
8 961 21.041 496 0.227 20.594 21.487 5.000 35.000 

Lacombe 6 930 20.128 930 0.147 19.840 20.417 7.800 34.300 
7 961 22.443 961 0.135 22.178 22.709 8.100 34.400 
8 961 21.765 949 0.166 21.440 22.090 5.000 34.500 

Lethbridge 6 930 21.776 929 0.161 21.460 22.091 7.400 34.000 
7 961 25.378 952 0.153 25.079 25.677 8.700 37.200 
8 961 24.971 958 0.174 24.629 25.313 2.700 38.100 

Morden 6 930 23.143 930 0.167 22.816 23.470 8.000 37.000 
7 961 25.941 961 0.134 25.678 26.204 12.500 38.300 
8 961 25.088 960 0.157 24.780 25.396 11.000 40.000 

Onefour 6 930 22.550 930 0.170 22.218 22.883 5.900 38.000 
7 961 26.883 961 0.158 26.573 27.192 8.200 37.900 
8 961 26.303 961 0.177 25.956 26.651 4.700 39.000 

Scott 6 930 21.324 930 0.160 21.009 21.638 7.500 37.600 
7 961 23.858 961 0.140 23.583 24.133 8.900 37.600 
8 961 23.351 961 0.174 23.009 23.692 9.000 39.400 

Stavely 6 930 18.638 778 0.177 18.290 18.985 3.800 33.300 
7 961 22.590 810 0.169 22.258 22.923 5.400 36.100 
8 961 21.861 810 0.183 21.501 22.220 5.600 34.400 

Vauxhall 6 870 23.013 852 0.166 22.687 23.339 8.800 36.000 
7 899 26.371 898 0.148 26.080 26.662 9.900 37.400 
8 899 26.060 898 0.179 25.709 26.411 8.800 38.500 

Confidence level 

122 

Data generated by the MEANS procedure of SAS (SAS Institute, 2005). 



Appendix 4. Mean summary statistics for minimum air temperature for weather 
stations in Alberta, Saskatchewan, and Manitoba during June, July, and August 
over a thirty-year period (1975-2005) 

Analysis Variable : temp_min_air 
location month N 

Obs 
Mean N Std 

Error 
Lower 95% 

CL! for 
Mean 

Upper 95% 
CLfor 
Mean 

Minimum Maxim 

Beaverlodge 6 930 7.432 913 0.095 7.245 7.620 -1.000 15.600 
7 961 9.230 958 0.088 9.057 9.403 0.000 17.800 
8 961 8.106 960 0.104 7.902 8.310 -3.000 17.500 

FortVermilion 6 930 8.705 480 0.152 8.407 9.004 -0.500 18.000 
7 961 11.197 496 0.128 10.946 11.448 1.500 19.000 
8 961 8.805 496 0.170 8.471 9.140 -3.000 19.500 

Lacombe 6 930 7.206 930 0.105 7.000 7.411 -2.500 17.800 
7 961 9.077 961 0.094 8.891 9.262 0.800 18.000 
8 961 7.738 948 0.109 7.525 7.951 -7.000 16.100 

Lethbridge 6 930 8.934 930 0.108 8.722 9.146 -2.000 19.800 
7 961 11.060 948 0.097 10.871 11.250 0.000 22.000 
8 961 10.155 958 0.103 9.953 10.357 -2.500 21.500 

Morden 6 930 11.766 930 0.130 11.511 12.021 0.500 25.000 
7 961 14.493 961 0.102 14.293 14.693 3.000 25.000 
8 961 13.006 959 0.122 12.766 13.246 -0.500 25.000 

Onefour 6 930 9.103 930 0.110 8.887 9.319 -0.600 20.500 
7 961 11.857 961 0.099 11.662 12.051 4.000 21.700 
8 961 11.095 961 0.114 10.872 11.319 -1.000 22.600 

Scott 6 930 8.465 930 0.113 8.243 8.688 -1.600 20.500 
7 961 10.577 961 0.100 10.382 10.773 1.500 20.000 
8 961 9.217 961 0.117 8.988 9.446 -2.000 18.800 

Stavely 6 930 5.691 778 0.127 5.442 5.939 -5.600 18.300 
7 961 8.257 811 0.135 7.992 8.523 -0.600 20.800 
8 961 7.863 815 0.143 7.582 8.144 -4.000 19.700 

Vauxhall 6 870 8.946 856 0.118 8.715 9.177 -0.500 20.400 
7 899 10.731 898 0.103 10.528 10.934 -0.300 20.800 
8 899 9.742 899 0.114 9.518 9.965 -0.500 19.800 

'confidence level 

123 

Data generated by the MEANS procedure of SAS (SAS Institute, 2005). 



Appendix 5. Mean summary statistics for sunshine hours for weather stations in 
Alberta, Saskatchewan, and Manitoba during June, July, and August over a thirty-
year period (1975-2005) 

Analysis Variable: sunshine 
location month N 

Obs 
Mean N Std 

Error 
Lower 95% 

CLj for 
Mean 

Upper 95% 
CLfor 
Mean 

Minimum Maxim 

Beaverlodge 6 930 7.187 122 0.403 6.390 7.984 0.000 14.800 
7 961 7.101 134 0.343 6.422 7.779 0.000 14.100 
8 961 6.509 155 0.304 5.908 7.110 0.000 12.700 

FortVermilion 6 930 7.455 120 0.341 6.779 8.131 0.000 13.300 
7 961 6.395 124 0.318 5.765 7.025 0.000 13.100 
8 961 5.040 124 0.268 4.510 5.571 0.000 12.200 

Lacombe 6 930 4.771 120 0.482 3.817 5.725 0.000 14.800 
7 961 6.375 124 0.460 5.464 7.286 0.000 14.200 
8 961 5.081 124 0.407 4.274 5.887 0.000 13.400 

Lethbridge 6 930 9.181 513 0.208 8.772 9.591 0.000 15.500 
7 961 10.512 558 0.168 10.181 10.842 0.000 15.700 
8 961 9.142 558 0.165 8.818 9.467 0.000 14.400 

Morden 6 
7 
8 

930 
961 
961 

0 
0 
0 

Onefour 6 930 8.381 210 0.313 7.764 8.998 0.000 15.700 
7 961 10.082 217 0.236 9.617 10.547 0.000 15.500 
8 961 8.655 217 0.262 8.140 9.171 0.000 14.500 

Scott 6 930 3.370 120 0.370 2.637 4.103 0.000 11.500 
7 961 5.067 124 0.368 4.338 5.796 0.000 11.300 
8 961 4.218 124 0.336 3.552 4.884 0.000 10.000 

Stavely 6 930 7.367 120 0.438 6.499 8.235 0.000 14.700 
7 961 9.848 124 0.323 9.210 10.487 0.000 14.500 
8 961 7.456 124 0.390 6.684 8.229 0.000 13.200 

Vauxhall 6 870 8.943 389 0.235 8.482 9.404 0.000 15.500 
7 899 10.404 403 0.181 10.049 10.760 0.000 15.300 
8 899 8.599 403 0.188 8.230 8.968 0.000 14.300 

Confidence level 

124 

Data generated by the MEANS procedure of SAS (SAS Institute, 2005). 



Appendix 6. Mean summary statistics for precipitation for weather stations in 
Alberta, Saskatchewan, and Manitoba during June, July, and August over a thirty-
year period (1975-2005) 

Analysis Variable : precip 
location month N 

Obs 
Mean N Std 

Error 
Lower 95% 

CL k for 
Mean 

Upper 95% 
CLfor 
Mean 

Minimum Maximu 

Beaverlodge 6 930 2.368 924 0.201 1.973 2.762 0.000 110.000 
7 961 2.400 961 0.189 2.029 2.772 0.000 93.200 
8 961 2.046 961 0.156 1.740 2.353 0.000 45.300 

FortVermilion 6 930 1.698 480 0.205 1.296 2.100 0.000 41.000 
7 961 1.666 496 0.206 1.262 2.071 0.000 54.200 
8 961 1.988 496 0.239 1.518 2.458 0.000 43.200 

Lacombe 6 930 2.515 930 0.182 2.158 2.872 0.000 50.600 
7 961 2.874 961 0.205 2.473 3.275 0.000 63.600 
8 961 2.324 952 0.216 1.901 2.748 0.000 78.200 

Lethbridge 6 930 2.579 930 0.241 2.106 3.052 0.000 77.800 
7 961 1.305 961 0.133 1.045 1.565 0.000 43.400 
8 961 1.575 961 0.191 1.201 1.949 0.000 91.600 

Morden 6 930 2.926 930 0.221 2.493 3.359 0.000 56.000 
7 961 2.285 961 0.198 1.897 2.674 0.000 82.100 
8 961 2.284 961 0.278 1.739 2.829 0.000 150.000 

Onefour 6 930 2.171 930 0.181 1.815 2.527 0.000 45.600 
7 961 1.221 961 0.119 0.988 1.454 0.000 45.000 
8 961 1.201 961 0.123 0.960 1.443 0.000 39.400 

Scott 6 930 2.075 930 0.162 1.757 2.392 0.000 54.600 
7 961 2.121 961 0.173 1.781 2.462 0.000 59.000 
8 961 1.414 961 0.128 1.163 1.665 0.000 38.200 

Stavely 6 930 3.439 788 0.331 2.789 4.088 0.000 94.600 
7 961 1.991 819 0.201 1.597 2.385 0.000 52.100 
8 961 2.280 820 0.235 1.819 2.741 0.000 62.700 

Vauxhall 6 870 2.410 870 0.220 1.977 2.842 0.000 63.400 
7 899 1.129 899 0.107 0.918 1.340 0.000 27.200 
8 899 1.242 899 0.129 0.988 1.496 0.000 62.000 

Confidence level 
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Data generated by the MEANS procedure of SAS (SAS Institute, 2005). 



Appendix 7. June 2003 observed daily weather data for Lethbridge, AB 

Date Max 
temp 
CO 

Min 
temp 
CO 

Ppt 
(mm) 

Sun 
(hrs) 

Temp range 
15-31 °C 

(hrs) 

Temp range 
24-27 °C 

(hrs) 

Temp range 
27-31 °C 

(hrs) 
June 1 22.4 13.9 5.0 7.2 14 0 0 

2 16.7 10.7 11.0 1.8 2 0 0 
3 18.6 8.3 0.2 6.5 4 0 0 
4 20.1 9.7 0.0 5.4 10 0 0 
5 19.1 7.2 0.6 0.6 6 0 0 
6 14.2 6.3 0.2 3.9 0 0 0 
7 23.4 2.4 0.0 12.2 14 0 0 
8 20.7 8.3 2.8 3.5 8 0 0 
9 16.3 10.9 0.0 3.5 3 0 0 

10 20.4 10.8 3.8 4.0 6 0 0 
11 21.0 10.4 0.0 7.1 9 0 0 
12 24.0 5.2 0.0 11.3 12 1 (8.3)' 0 
13 26.1 9.6 0.0 9.7 15 2(13.3) 0 
14 23.1 10.7 0.0 8.5 12 0 0 
15 24.2 9.9 0.0 13.6 12 1 (8.3) 0 
16 26.5 6.7 0.0 13.9 14 5 (35.7) 0 
17 27.9 11.8 0.0 13.2 17 7(41.1) 1 (5.9) 
18 32.7 14.6 0.4 11.8 20 2 (10.0) 4 (20.0) 
19 20.9 16.1 0.6 3.3 22 0 0 
20 21.1 12.8 4.2 7.2 11 0 0 
21 19.3 9.5 6.8 7.3 7 0 0 
22 16.9 7.4 4.8 4.8 2 0 0 
23 14.1 6.1 4.8 1.7 0 0 0 
24 16.9 6.1 0.2 5.8 4 0 0 
25 23.3 4.8 0.0 11.9 11 0 0 
26 25.3 8.6 0.0 11.1 17 3 (17.6) 0 
27 23.4 11.4 0.0 10.6 16 0 0 
28 24.8 10.2 0.0 13.9 12 2 (16.7) 0 
29 30.3 11.0 0.0 13.1 17 2(11.8) 8(47.1) 
30 31.0 15.8 0.0 12.4 21 2 (9.5) 9 (42.8) 

numbers in parentheses represent percentage of total hours available suitable for growth 
of M. anisopliae var. acridum 
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Appendix 8. July 2003 observed daily weather data for Lethbridge, AB 

Date Max 
temp 
(°C) 

Min 
temp 
(°C) 

Ppt 
(mm) 

Sun 
(hrs) 

Temp range 
15-31 °C 

(hrs) 

Temp range 
24-27 °C 

(hrs) 

Temp range 
27-31 °C 

(hrs) 
July 1 27.6 9.5 0.0 13.7 19 7 (36.8)m 1 (5.3) 

2 23.2 12.0 0.0 12.7 18 0 0 
3 24.9 11.7 0.0 12.1 15 4 (26.7) 0 
4 27.5 7.8 0.0 12.6 17 5 (29.4) 4(23.5) 
5 21.4 11.0 3.2 3.3 6 0 0 
6 19.6 4.6 0.0 12.5 9 0 0 
7 25.9 7.9 0.0 12.2 11 5 (45.5) 0 
8 25.4 12.1 0.0 5.1 13 2 (15.4) 0 
9 25.6 11.4 0.0 11.8 14 5 (35.7) 0 

10 24.6 12.3 0.0 13.4 15 3 (20.0) 0 
11 31.6 9.8 0.0 12.9 16 2(12.5) 8 (50.0) 
12 34.5 14.2 0.0 13.2 13 2(15.4) 2(15.4) 
13 28.5 14.4 0.0 8.5 22 5 (22.7) 4(18.2) 
14 26.6 12.1 0.0 12.9 20 9 (45.0) 0 
15 29.8 12.4 0.0 13.0 15 4 (26.7) 6 (40.0) 
16 32.9 14.0 0.0 9.8 16 2(12.5) 5(31.2) 
17 32.9 12.4 0.0 14.1 13 3 (23.1) 4 (30.8) 
18 31.0 10.5 0.0 14.0 15 1 (6.7) 4 (26.7) 
19 28.5 11.7 0.0 12.8 15 3 (20.0) 5 (33.3) 
20 34.8 12.8 0.0 10.6 10 2 (20.0) 2 (20.0) 
21 29.0 13.2 0.0 12.5 16 4 (25.0) 6 (37.5) 
22 35.3 12.3 0.0 13.0 10 1 (10.0) 2 (20.0) 
23 36.9 18.2 0.0 10.9 15 5 (33.3) 0 
24 27.0 16.5 0.0 11.1 24 6 (25.0) 0 
25 22.1 12.1 0.0 6.0 16 0 0 
26 29.4 13.7 0.0 7.6 19 5 (26.3) 4(21.1) 
27 31.8 11.2 0.0 10.4 12 1 (8.3) 5(41.7) 
28 29.6 14.0 1.9 11.7 23 3 (13.0) 6(26.1) 
29 27.2 13.3 0.0 12.0 17 5 (29.4) 3 (17.6) 
30 31.3 11.9 0.0 7.8 12 4(33.3) 3 (25.0) 
31 28.5 12.3 0.0 4.3 19 4(21.1) 4(21.1) 

"numbers in parentheses represent percentage of total hours available suitable for growth 
of M. anisopliae var. acridum 
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