
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2008

A computational study of sparse matrix

storage schemes

Haque, Sardar Anisul

Lethbridge, Alta. : University of Lethbridge, Deptartment of Mathematics and Computer Science, 2008

http://hdl.handle.net/10133/777

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185287461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A COMPUTATIONAL STUDY OF SPARSE MATRIX STORAGE SCHEMES

SARDAR ANISUL HAQUE
Bachelor of Science, Islamic University of Technology, 2002

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Sardar Anisul Haque, 2008

I dedicate this thesis to my parents.

iii

Abstract

The efficiency of linear algebra operations for sparse matrices on modern high performance

computing system is often constrained by the available memory bandwidth. We are inter-

ested in sparse matrices whose sparsity pattern is unknown. In this thesis, we study the

efficiency of major storage schemes of sparse matrices during multiplication with dense

vector. A proper reordering of columns or rows usually results in reduced memory traf-

fic due to the improved data reuse. This thesis also proposes an efficient column ordering

algorithm based on binary reflected gray code. Computational experiments show that this

ordering results in increased performance in computing the product of a sparse matrix with

a dense vector.

iv

Acknowledgments

I express my deep acknowledgment and profound sense of gratitude to my supervisor Dr.

Shahadat Hossain, Associate Professor, University of Lethbridge for his inspiring guidance,

helpful suggestions and persistent encouragement as well as close and constant supervision

throughout the period of my Masters Degree.

I would also like to thank my M.Sc. co-supervisor Dr. Daya Gaur, Associate Professor,

University of Lethbridge for his guidance and suggestion.

I would also like to thank my M.Sc. supervisory committee member Dr. Saurya Das,

Associate Professor, University of Lethbridge for his guidance and suggestion.

I am grateful to Dr. Shahadat Hossain, Dr. Daya Gaur and the School of Graduate

Studies for the financial assistantships. I thank all the staff, and my colleagues at the

University of Lethbridge for their helpful nature and co-operation.

I am very much thankful to my family and fellow graduate students Shafiq Joty, Salimur

Choudhury, Mohammad Islam, Mahmudul Hasan and Minhaz Zibran for the continuous

encouragement that helped me to complete this thesis.

I would also like to thank my wife, Tanzia Rouf Tuie for her support.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Conjugate Gradient Method . 2
1.2 Contributions . 3
1.3 Thesis Outline . 5

2 Background 7
2.1 Hierarchical Memory Systems . 7

2.1.1 Principle of Locality . 8
2.1.2 Cache Miss . 9
2.1.3 Mapping Function and Replacement Policy 10

2.2 Computational Complexity . 11

3 Storage Scheme for Sparse Matrices 13
3.1 Different Storage Schemes . 13

3.1.1 Compressed Row Storage (CRS) 14
3.1.2 Compressed Column Storage (CCS) 16
3.1.3 Fixed-size Block Storage Scheme (FSB) 17
3.1.4 Block Compressed Row Storage (BCRS) 21
3.1.5 Compressed Column Block Storage (CCBS) 22
3.1.6 Compressed Column Block Storage With Compreesed Row Stor-

age (CCBSWCRS) . 25

vi

3.1.7 Modified Compressed Column Block Storage (MCCBS) 27
3.2 Summary of Storage Requirements for Sparse Storage Schemes 28

4 Column Ordering Algorithms 30
4.1 Column Intersection Ordering . 32
4.2 Local Improvement Ordering . 32
4.3 Similarity Ordering . 35
4.4 Binary Reflected Gray Code Ordering . 36

4.4.1 Correctness of BRGC Ordering Algorithm 38
4.4.2 Complexity Analysis of BRGC Ordering Algorithm 41
4.4.3 On the Implementation of BRGC Ordering Algorithm 41
4.4.4 Number of Nonzero Blocks and BRGC Ordering 44
4.4.5 BRGC Ordering of a Random Column Permuted Sparse Matrix . . 44
4.4.6 Cache Misses in Computing Ax After BRGC Ordering 46

5 Experiments 49
5.1 Platform Specifications . 49
5.2 Input Matrices . 50
5.3 Chosen Storage Scheme for Experiment 50
5.4 Notations for Column Ordering Algorithms 52
5.5 Evaluation Method . 53
5.6 Experiments on Compaq Platform . 55

5.6.1 SpMxV s on Compaq Platform with CRS Scheme 55
5.6.2 SpMxV s on Compaq Platform with BCRS Scheme 56
5.6.3 SpMxV s on Compaq Platform with FSB2 Scheme 57
5.6.4 SpMxV s on Compaq Platform with FSB3 Scheme 58
5.6.5 Optimal SpMxV on compaq Platform 59

5.7 Experiments on IBM Platform . 60
5.7.1 SpMxV s on IBM Platform with CRS Scheme 60
5.7.2 SpMxV s on IBM Platform with BCRS Scheme 60
5.7.3 SpMxV s on IBM Platform with FSB2 Scheme 61
5.7.4 SpMxV s on IBM Platform with FSB3 Scheme 62
5.7.5 Optimal SpMxV on IBM Platform 63

5.8 Experiments on Sun Platform . 65
5.8.1 SpMxV s on Sun Platform with CRS Scheme 65
5.8.2 SpMxV s on Sun Platform with BCRS Scheme 65
5.8.3 SpMxV s on Sun Platform with FSB2 Scheme 66
5.8.4 SpMxV s on Sun Platform with FSB3 Scheme 67
5.8.5 Optimal SpMxV on Sun Platform 68

5.9 Summary . 70

vii

6 Conclusion and Future Work 71
6.1 Conclusion . 71
6.2 Future Direction . 73

Bibliography 74

viii

List of Tables

3.1 CRS data structure for sparse matrix A. 15
3.2 CCS data structure for sparse matrix A. 16
3.3 FSB2 data structure for sparse matrix A1. 19
3.4 FSB2 data structure for sparse matrix A2. 19
3.5 BCRS data structure of A. 21
3.6 CCBS data structure of A considering orthogonal row groups: {{0, 1} {2,

3} {4}}. 23
3.7 MCCBS data structure of A. 28
3.8 Storage Requirements for Sparse Storage Schemes. 29

5.1 Input matrices from [5]. 51
5.2 Optimal SpMxV on compaq platform. 59
5.3 Optimal SpMxV on ibm platform. 64
5.4 Optimal SpMxV on sun platform. 68

ix

List of Figures

2.1 A typical block diagram of hierarchical memory systems with two levels
of cache. The arrow signs represent data flow among different memory
components and microprocessor. 9

3.1 Sparse matrix A. 14
3.2 Sparse matrix A1 for FSB2. 18
3.3 Sparse matrix A2 for FSB2. 18
3.4 Sparse matrix A1 for CCBSWCRS. 26
3.5 Sparse matrix A2 for CCBSWCRS. 26

4.1 Sparse matrix A. 30
4.2 Given sparse matrix A after column intersection ordering is performed. . . . 32
4.3 Given sparse matrix A after local improvement ordering is performed. . . . 34
4.4 After similarity ordering of sparse matrix A. 36
4.5 Sparse matrix B. 37
4.6 Sparse matrix B where all nonzeros are viewed as 1s. 38
4.7 After BRGC ordering of matrix B. 38
4.8 After BRGC ordering of matrix A. 38
4.9 Recursive tree produced by BRGC ordering algorithm. 41
4.10 View of a sparse matrix after BRGC ordering, where the nonzeros partici-

pating in all columns having rank of (1, i) are shown in colored rectangles. . 42
4.11 Expected view of columns having rank of (1, i). 43
4.12 (a) spy() view of matrix bcsstk35 [5], (b) spy() view of matrix bcsstk35

after BRGC ordering. 45
4.13 (a) spy() view of matrix cavity26 [5], (b) spy() view of matrix cavity26

after BRGC ordering. 45
4.14 Free rectangles in A after BRGC ordering is performed. 48

5.1 Performance of SpMxV s on compaq platform with CRS scheme. 56
5.2 Performance of SpMxV s on compaq platform with BCRS scheme. 57
5.3 Performance of SpMxV s on compaq platform with FSB2 scheme. 58
5.4 Performance of SpMxV s on compaq platform with FSB3 scheme. 59
5.5 Performance of SpMxV s on ibm platform with CRS scheme. 61
5.6 Performance of SpMxV s on ibm platform with BCRS scheme. 62
5.7 Performance of SpMxV s on ibm platform with FSB2 scheme. 63

x

5.8 Performance of SpMxV s on ibm platform with FSB3 scheme. 64
5.9 Performance of SpMxV s on sun platform with CRS scheme. 66
5.10 Performance of SpMxV s on sun platform with BCRS scheme. 67
5.11 Performance of SpMxV s on sun platform with FSB2 scheme. 68
5.12 Performance of SpMxV s on sun platform with FSB3 scheme. 69

xi

Chapter 1

Introduction

Sparse matrix-vector multiplication (y = Ax) is an important kernel in scientific computing.

For example, in the conjugate gradient method (iterative solver for system of linear equa-

tions) the main computational step in each iteration is to calculate the product Ax, where

A is a large and sparse matrix and x is a dense vector. The performance of such a solver

depends on the efficient implementation of sparse matrix-vector multiplication. Though

the total number of arithmetic operations (involving nonzero entries only) to compute Ax

is fixed, reducing the probability of cache misses per operation is still a challenging area of

research in modern superscalar architecture. Typically, it involves reordering of columns

or rows so that we can access the elements of both x and y in a regular way to improve

temporal and spatial locality. This preprocessing is done once and its cost is amortized

by repeated multiplications (as in, for example, conjugate gradient type algorithms). The

efficiency of sparse matrix-vector multiplication on modern high performance computing

system is often constrained by the available memory bandwidth [12]. Large volume of

load operations from memory compared to the floating point operations, indirect access

to the data, and loop overhead are perceived as main computational challenges in efficient

implementation of sparse matrix operations [34].

Data structures used for storing sparse matrices have an array for storing its elements

along with some other auxiliary arrays. The purpose of these auxiliary arrays is to keep the

1

information of row and column indices for each nonzero element. Different data structures

use different methods for keeping row and column index information. So, the code for

sparse matrix-vector multiplication needs to be modified accordingly.

Irregular access of the elements in vector x may cause a large number of cache misses.

Each of the nonzeros in A is used only once during multiplication. So, we want to reorder

A in such a way that the nonzeros of each row are consecutive. By this, we can improve

spatial locality in accessing x. Furthermore, reusing the elements of x improves temporal

locality. We can achieve this if the nonzeros along all the columns are consecutive.

Below, we describe conjugate gradient method as an example, where efficient imple-

mentation of sparse matrix-vector multiplication is crucial for the overall performance of

the method. We then describe the contributions of this thesis, followed by the thesis outline.

1.1 Conjugate Gradient Method

Hyperlink matrix P is a sparse matrix generated by the hyperlink structure of the world

wide web. Here P is a square matrix and its dimension is equal to np, the number of pages

in a web. P is defined as follows

Pi j = 1/|Oi|, if there exists a hyperlink from page i to page j, and 0 otherwise. The

scalar |Oi| is the number of outlinks from page i.

The sparse linear system formulation of the Google PageRank problem [22] is

xT A = bT , where A = (I−αP) and 0 < α < 1.

Here bT is the personalization or teleportation vector and xT is the unknown PageRank

vector. An efficient way to solve this exteremely large and sparse linear system is to apply

a conjugate gradient type method such as GMRES [31].

The conjugate gradient method is an iterative method to obtain numerical solution of

system of linear equations Ax = b. Here, A is a symmetric and positive definite matrix

2

and it is usually a large sparse matrix. This method iteratively produces an approximate

solution x(i) for the system. The equation for updating x(i) is: x(i) = x(i−1) + αi p(i), where

αi is a scalar, and p(i) is the search direction vector, respectively. The conjugate gradient

algorithm is given in Algorithm 1.

Algorithm 1 Conjugate gradient algorithm [31].

1: Compute r(0) = b−Ax(0) for some initial guess x(0);
2: for i← 1,2, . . . do
3: ρi−1 = r(i−1)T

r(i−1);
4: if i = 1 then
5: p(1) = r(0);
6: else
7: βi−1 = ρi−1/ρi−2;
8: p(i) = r(i−1) +βi−1 p(i−1);
9: end if

10: q(i) = Ap(i);
11: αi = ρi−1/p(i)T

q(i);
12: x(i) = x(i−1) +αi p(i);
13: r(i) = r(i−1)−αiq(i);
14: check convergence; continue if necessary
15: end for

In this iterative process, A remains unchanged and we need to multiply it with the

search direction vector p(i). This sparse matrix-vector multiplication (Ap(i)) is the most

computationally expensive step in each iteration. Also the method may require a good

number of iterations before convergence. The running time of this method is proportional

to the computing time of sparse matrix-vector multiplication (Ap(i)). One good way of

making this method efficient is to preprocess the sparse matrix A in such a way that it can

be multiplied with a vector efficiently. Though the computational cost of preprocessing A

can be high, this cost can be amortized by a huge number of repeated multiplications.

1.2 Contributions

The main scientific contributions of this thesis are as follows:

3

We propose one new column ordering algorithm for improving the performance of

sparse matrix-vector multiplication. We propose column ordering algorithm based on bi-

nary reflected gray code for sparse matrices, which exhibits good data locality during sparse

matrix-vector multiplication. To the best of our knowledge our proposal is the first to con-

sider gray codes for column ordering in sparse matrix-vector multiplication. We call it

binary reflected gray code ordering or BRGC ordering algorithm.

We implement three other column ordering algorithms from literature: column inter-

section ordering, local improvement ordering and similarity ordering. column intersection

ordering and local improvement ordering are implemented based on the constructive and

improvement heuristics for TSP problem described in [29] respectively. Similarity ordering

is implemented based on a distance measure function described in [16].

The common objective of column intersection ordering, local improvement ordering,

and similarity ordering algorithms is to permute the columns of a sparse matrix A in such

a way that the nonzeros of each row are placed consecutively as much as possible. Thus

the spatial locality in accessing x is improved resulting performance improvement in sparse

matrix-vector multiplication (Ax). But these column ordering algorithms do not try to im-

prove the temporal locality in accessing x. Binary reflected gray code ordering improves

both temporal and spatial locality of x.

For our experiment, we implement three storage schemes for sparse matrices from liter-

ature: compressed row storage, fixed-size block storage, and block compressed row storage.

We carry on our experiments on three different computing platforms. We take test

matrices from [5] for our experiment. Each of our test matrices is preprocessed by column

intersection ordering, similarity ordering, local improvement ordering, and binary reflected

gray code ordering algorithms separately.

The performances of sparse matrix-vector multiplication on three different computing

platforms by compressed row storage, fixed-size block storage, and block compressed row

4

storage schemes are reported. We also show the performance comparison among these four

column ordering algorithms for all three storage schemes on each platform separately. We

also provide an analysis of the performance comparison for each platform.

Based on our experimental results, we find FSB storage scheme performs the best

among the storage schemes on the three computing platforms. We also find that BRGC

ordering improves both the spatial and the temporal locality in accessing the elements of x

during sparse matrix-vector multiplication. This ordering performs the best on two of our

computing platforms.

1.3 Thesis Outline

This thesis contains six chapters including this introductory chapter. Below we provide a

short description of the remaining chapters:

In Chapter 2, we present background materials relevant to our thesis. Our discussion

includes a brief description of computer system memory hierarchy, and computational com-

plexity theory.

Chapter 3 contains description of storage schemes for sparse matrices from literature.

We also present two new storage schemes for sparse matrices. The discussion on the imple-

mentation of these storage schemes is illustrated by the sparse matrix-vector multiplication

code.

In Chapter 4, we first present some of the well-known column ordering algorithms

for sparse matrices from literature followed by the description of our proposed column

ordering algorithms. We provide complexity analysis of these ordering algorithms.

Chapter 5 presents experimental results that demonstrate the performance of column

ordering algorithms described in Chapter 4 on different storage schemes of sparse matrices.

All of the experiments are carried on three different computing platforms. We feature the

5

architectural specifications of these computing platforms. We also describe the method of

performance analysis.

Finally, in Chapter 6, we provide concluding remarks and direction for future research

in this area.

6

Chapter 2

Background

This chapter contains background material on memory organization of modern computer

systems, and an introduction to computational complexity theory.

2.1 Hierarchical Memory Systems

The description of memory organization of modern computer systems of this section is

from [14] [26] [15]. Main memory and cache memory are two important memory com-

ponents in a computer system. A cache is a small and fast memory component located

close to the microprocessor. Latency of a memory component and memory bandwidth

are two related issues for understanding the importance of cache. Latency of a memory

component is the elapsed time between initiating a request for a data until it is retrieved.

Memory bandwidth refers to the number of bytes that can be read or transferred from a

memory component by processor in one unit of time. As a computer system has memory

components with different speeds, latency and bandwidth differ for different components

accordingly. Main memory is slower than the microprocessor speed. If a microprocessor

has to rely on main memory alone for its execution then it is idle while transfer of data

from main memory takes place. Cache plays a vital role in this scenario. Microprocessors

can access cache much faster than main memory. Cache keeps a copy of most frequently

used data and supply it to microprocessor whenever necessary.

7

Cache memory can be classified into two groups:

1. Data Cache.

2. Instruction Cache

We limit our discussion to data cache only. Whenever microprocessor requires any data

from memory, it looks into cache for a copy of that data. A hit in cache happens if the

microprocessor gets the requested data from the cache. Otherwise it is called a miss. The

effectiveness of a cache system is called hit rate which is measured by the ratio of total

number of hits and the total number of access in cache.

In a hierarchical memory organization, cache and main memory are treated as higher

level and lower level memory, respectively. A memory component in higher level is faster,

smaller and more expensive than those of a lower level. In modern computer system there

can be more than one level of caches called Level 1 (L1), Level 2 (L2) and so on. In a multi

level cache system, Level(i) cache is treated as a higher level memory component than any

cache at level(i+1). There can be more than one cache in one level. For example, one for

data and the other for instruction. Sometimes level(1) cache exists on the microprocessor

chip. A typical block diagram of hierarchical memory system consisting of two levels of

cache is shown in Figure 2.1.

2.1.1 Principle of Locality

The principle of locality states that most programs do not access their code and data uni-

formly. There are mainly two types of locality:

1. Spatial locality: It refers to the observation that most programs tend to access data

sequentially.

8

Figure 2.1: A typical block diagram of hierarchical memory systems with two levels of
cache. The arrow signs represent data flow among different memory components and mi-
croprocessor.

2. Temporal locality: It refers to the observation that most programs tend to access data

that was accessed previously.

When a miss occurs, a data block of consecutive memory locations consisting the re-

quired data from main memory or another cache is copied into the cache. This technique

of copying a data block of consecutive memory locations follows the principle of spatial

locality. The size of this block of consecutive memory is called a cache line. When there

is no place for a new data block in cache, it has to replace any existing data block from the

cache. This is called replacement policy. When a block of memory is copied into cache, it

remains there until any replacement occurs in its place.

2.1.2 Cache Miss

We can categorize all cache misses into the following three types:

1. Compulsory misses: It happens when a data block is accessed for the first time.

9

2. Capacity misses: This type of miss happens because of the small size of cache. For

example, a cache may not contain all the data blocks that a program needs during

execution.

3. Conflict misses: This type of miss occurs when microprocessor is looking for a data

block in cache which was replaced earlier from the cache (according to some replace-

ment policy).

2.1.3 Mapping Function and Replacement Policy

Let, CacheSize, CacheLine, MemorySize be the size of the cache, cache line (data block)

and memory respectively in bytes. Then the number of data blocks, CacheBlock, in the

cache is equal to CacheSize/CacheLine. Each data block in main memory has an address

BlockAddressInMemory. Again, a data block will get an address BlockAddressInCache,

whenever it is copied into cache. A mapping function defines where a data block from

main memory is copied in cache. Least recently used (LRU) and random replacement(RR)

are two broadly used replacement policies.

Cache can be classified into three main categories based on the mapping function used:

direct mapped cache, fully associative cache and set associative cache. The description of

these three categories along with their corresponding replacement policies are given below.

1. Direct mapped cache: If each data block from main memory has one fixed place in

cache then the cache is called direct mapped. As the cache size is smaller than that

of main memory, many data blocks have same place in the cache. As a result the

replacement policy is very simple. It simply discard the data block from the cache

(if it contains any data). Direct mapped, the mapping function of this type of cache

is usually expressed as:

BlockAddressInCache = BlockAddressInMemory mod CacheBlock.

10

2. Fully associative cache: If a data block from main memory can be placed anywhere in

the cache then the cache is called fully assosiative. In this type of cache, replacement

any data block from cache is required only when the cache is full. Both LRU and RR

can be used as the replacement policy for this type of cache.

3. N-way set associative cache: An N-way set associative cache is divided into a number

of sets. The size of each set is equal to N ·cacheLineSize, where cacheLineSize is the

size of the cache line. The total number of sets TotalSets is equal to CacheBlock/N.

A data block from main memory can be placed in any of the N places of a fixed set

SelectedSet.

SelectedSet = BlockAddressInMemory mod TotalSets.

So replacement is required when all the cache lines in that set is full. Both LRU and

RR can be used as the replacement policy for this type of cache.

If any data is modified by the execution of microprocessor and if that data is in cache

then it must be modified accordingly in cache. In some architectures, this update is done in

cache only while in the others updates are performed in both cache and main memory.

2.2 Computational Complexity

A polynomial-time algorithm can be defined to be one whose time complexity function

is O(p(k)) for some polynomial function p of k, where k is denoted the input length [4].

Problems that are solvable by polynomial-time algorithm are considered as being tractable.

A decision problem is one whose answer is either “yes” or “no”. We call an instance of

a decision problem as positive instance (negative instance) if it has “yes” (“no”) answer.

A decision problem Π is in class P if it can be solved on a deterministic Turing ma-

chine in polynomial time. A decision problem Π is in class NP if it can be solved on a

nondeterministic Turing machine in polynomial time [9].

11

If we can transform the instances of a decision problem to the instances of another

decision problem such that positive (negative) instances of the first decision problem are

mapped to positive (negative) instances of the other decision problem in polynomial time

then we call this a polynomial time reduction. Suppose a problem Π is polynomial time

reducible to another problem Π′ then we denote it as Π≤p Π′.

A decision problem Π is in class NP− complete if

1. Π ∈ NP, and

2. Π′ ≤p Π for every Π′ ∈ NP [4].

A combinatorial optimization problem is either a “minimization problem” or a “max-

imization problem”. For each instance I of a combinatorial optimization problem, there

exists a finite set S(I) of candidate solutions for I. A function f is called a “solution value”

for each candidate solution if it assigns to each instance and each candidate solution a

rational number. In a minimization (maximization) problem, an optimal solution for an

instance I is a candidate solution σ∗ such that for all possible candidate solution, σ∗ has the

minimum (maximum) solution value.

The optimization version of the decision problems in the class NP-Complete belong

to the class NP-hard i.e. a problem is considered as hard as NP-Complete. The class of

NP-Complete and NP-Hard are regarded as intractable because problems in these classes

have no known polynomial time algorithms.

12

Chapter 3

Storage Scheme for Sparse Matrices

There is no definite relationship between sparse matrix dimensions and the number of

nonzeros. J. H. Wilkinson gave an informal working definition of a sparse matrix as “any

matrix with enough zeros that it pays to take advantage of them” [11].

In the following section, we will describe some storage schemes for sparse matrices.

We use the sparse matrix A given in Figure 3.1 for describing different storage schemes.

In this thesis m, n, and nnz represent the row dimension, the column dimension, and the

number of nonzeros of sparse matrix A, respectively.

For simplicity we consider nonzeros of sparse matrix A are stored as double data types

and elements of all other auxiliary data structures are stored as integer data types. We also

assume that eight bytes and four bytes are required to store a double and an integer data

respectively.

3.1 Different Storage Schemes

A banded matrix is a matrix that has all its nonzeros near the diagonal. If A is a banded ma-

trix and ai j is a nonzero of A then i−ml ≤ j≤ i+mu, where ml and mu are two nonnegative

integers. The number ml + mu + 1 is called the bandwidth of A [31]. Sparse matrix with

regular sparsity pattern can be represented by minimum storage. For example, a banded

sparse matrix (with small bandwidth) can be stored by a number of arrays. Each of the

13

A =


0 0 a02 a03 0

a10 0 0 0 a14
0 a21 0 a23 0

a30 0 a32 0 a34
0 0 a42 a43 0


Figure 3.1: Sparse matrix A.

arrays represents a diagonal. On the other hand, a matrix with irregular sparsity pattern

needs auxiliary storage. We assume no specific a priori knowledge of sparsity pattern for

this thesis.

Compressed row storage (CRS), compressed column storage (CCS), fixed-size block

storage (FSB), block compressed row storage (BCRS), and jagged diagonal storage (JDS)

are some of the well-known data structures for sparse matrices with no particular sparsity

pattern assumed [1]. Among these data structures JDS is suitable for vector processors

[8]. Hossain proposed compressed column block storage (CCBS) [18] and bi-directional

jagged diagonal storage (Bi-JDS) [17] data structures for superscalar architecture and vec-

tor processors respectively. Compressed diagonal storage (CDS) [13] is another sparse data

structure, which is suitable for banded matrices.

3.1.1 Compressed Row Storage (CRS)

This is the most common storage scheme for sparse matrices [1]. Three arrays are used in

this storage scheme to store sparse matrix A:

1. value: for storing the nonzeros of A row-by-row.

2. colind: for storing the column index of each nonzero.

3. rowptr: for storing the index of the first nonzero of each row in value array.

14

Table 3.1: CRS data structure for sparse matrix A.
value a02 a03 a10 a14 a21 a23 a30 a32 a34 a42 a43
colind 2 3 0 4 1 3 0 2 4 2 3
rowptr 0 2 4 6 9 11

The data structures to store the example matrix A under this scheme is shown in table

3.1. Sample code for computing y = Ax under this storage scheme is given in Algorithm 2.

The memory requirement of this scheme is 8nnz+4(nnz+m+1) bytes.

Algorithm 2 Sparse matrix vector multiplication for CRS scheme [1].
1: for i← 0 to m−1 do
2: for k← rowptr[i] to rowptr[i+1]−1 do
3: j← colind[k];
4: y[i]+ = value[k]∗ x[j];
5: end for
6: end for

According to the sparse matrix-vector multiplication code under this storage scheme

(in Algorithm 2), it requires a load operation (for loading column indices) and an indirect

memory access (for accessing elements in x) for each scalar multiply-add operation. So,

it is expected that the performance of the sparse matrix-vector multiplication is restricted

by these operations. If the nonzeros in each row of A have very sparse column indices, the

access to the elements in x is highly irregular which results in poor spatial locality. If the

nonzeros along all the columns are consecutive then sparse matrix-vector multiplication

code can reuse elements of x, thus improving temporal locality of x.

Loop unroll and jam are two code optimization techniques to reduce loop overhead,

memory load operations and increase register exploitation. In loop unroll the computations

in more than one iterations of a loop are merged in one iteration. And in loop jam two or

more loops are merged in a single loop. Row length of a row i is defined as the number

of nonzeros in row i. Mellor-Crummey and Garvin in [24] proposed Length-grouped CSR

(L-CSR) scheme for sparse matrices. In this storage scheme the nonzeros of rows having

15

Table 3.2: CCS data structure for sparse matrix A.
value a10 a30 a21 a02 a32 a42 a03 a23 a43 a14 a34
rowind 1 3 2 0 3 4 0 2 4 1 3
colptr 0 2 3 6 9 11

equal row length are kept together in an array. Like CRS, it also has another array to store

the column indices of corresponding nonzeros. It also keep the row lengths and row indices

in two other arrays. The multiplication code for this storage scheme is same as CRS except

we can use loop unroll and jam. L-CSR scheme is best suited for sparse matrices that have

small and predictable row lengths.

3.1.2 Compressed Column Storage (CCS)

This scheme is same as CRS except that the nonzeros are stored column-by-column [1].

Like CRS, three arrays are used in this storage scheme to store sparse matrix A:

1. value: for storing the nonzeros of A column-by-column.

2. rowind: for storing the row index of each nonzero.

3. col ptr: for storing the index of the first nonzero of each column in value array.

The data structures to store the example matrix A under this storage scheme is shown

in table 3.2. Sample code for computing y = Ax under this storage scheme is given in

Algorithm 3. The memory requirement of this scheme is 8nnz+4(nnz+n+1) bytes.

Algorithm 3 Sparse matrix vector multiplication for CCS scheme [1].
1: for i← 0 to n−1 do
2: for k← col ptr[i] to col ptr[i+1]−1 do
3: j← rowind[k];
4: y[j]+ = value[k]∗ x[i];
5: end for
6: end for

16

The sparse matrix-vector multiplication code under this storage scheme (Algorithm 3),

it requires a load operation (for loading row indices) and an indirect memory access (for

accessing elements in y) for each scalar multiply-add operation. So, it is expected that the

performance of the sparse matrix-vector multiplication is restricted by these operations. If

the nonzeros in each column of A have very sparse row indices, the access of y is highly

irregular which results in poor spatial locality. If the nonzeros along all the rows are consec-

utive then sparse matrix-vector multiplication code can reuse elements of y, thus improving

temporal locality of y.

3.1.3 Fixed-size Block Storage Scheme (FSB)

Toledo in [34] proposed this storage scheme for sparse matrices. We define a nonzero

block as a sequence of l ≥ 1 contiguous nonzero elements in a row. For the purpose of

demonstration, we will describe block storage scheme of fixed size l = 2. According to

this scheme, the given sparse matrix A is expressed as a sum of two matrices A1 and A2; A1

stores all the nonzero blocks of size 2 and A2 stores the rest (in CRS scheme). If a sparse

matrix is stored by this storage scheme then we can use loop unrolling during multiplication

of the nonzeros in A1 with x. By this we can reduce the number of load instruction during

computing Ax [34]. We will denote this storage scheme by FSBl, where the last character l

represents the length of the nonzero block. For example, FSB2 represents fixed-size block

storage scheme of length 2.

The data structure for A1 is similar to CRS with one difference: the column index of the

first element of each nonzero block is stored. Like CRS three arrays are used to store A2:

1. value: for storing the nonzeros of A2 row-by-row.

2. colind: for storing the column index of each nonzero of A2.

3. rowptr: for storing the index of the first nonzero of each row in value array.

17

A1 =


0 0 a02 a03 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 a42 a43 0


Figure 3.2: Sparse matrix A1 for FSB2.

A2 =


0 0 0 0 0

a10 0 0 0 a14
0 a21 0 a23 0

a30 0 a32 0 a34
0 0 0 0 0


Figure 3.3: Sparse matrix A2 for FSB2.

We need three more arrays to store A1:

1. valueBl: for storing the nonzeros of A1 row-by-row.

2. colindBl: for storing the column index of the first nonzero of each nonzero block in

A1.

3. rowptrBl: for storing the index of the first nonzero of each row of A1 in valueBl

array.

The A1 and A2 matrices of the example sparse matrix A are given in Figure 3.2 and

Figure 3.3 respectively. Tables 3.3 and 3.4 display the data structures under this scheme.

Sample code for computing of y = Ax under this scheme is given in Algorithm 4.

Denote by βp the number of nonzero blocks of size p. Let maxNonzeroBlock be the size

of the largest nonzero block in matrix A in a given column order. The memory requirement

of this scheme is 8nnz+4(2m+2+∑
maxNonzeroBlock
r=1 ((br/lc+ r mod l)βr)) bytes.

To improve data locality in accessing x and reduce loop overhead, we multiply A1 and

A2 with x in one loop as shown in Algorithm 4. The sparse matrix-vector multiplication

code under this storage scheme (Algorithm 4) requires a load operation (for loading column

18

Table 3.3: FSB2 data structure for sparse matrix A1.
valueBl a02 a03 a42 a43
cloindBl 2 2
rowptrBl 0 1 1 1 1 2

Table 3.4: FSB2 data structure for sparse matrix A2.
value a10 a14 a21 a23 a30 a32 a34
colind 0 4 1 3 0 2 4
rowptr 0 0 2 4 7 7

Algorithm 4 Sparse matrix vector multiplication for FSB2 scheme.
1: for i← 0 to m−1 do
2: for k← rowptrBl[i] to rowptrBl[i+1]−1 do
3: j← colindBl[k];
4: l← 2∗ k;
5: y[i]+ = valueBl[l]∗ x[j];
6: y[i]+ = valueBl[l +1]∗ x[j +1] ;
7: end for
8: for k← rowptr[i] to rowptr[i+1]−1 do
9: j← colind[k];

10: y[i]+ = value[k]∗ x[j];
11: end for
12: end for

19

indices) and an indirect memory access (for accessing elements in x) for l scalar multiply-

add operations for computing A1x. Furthermore, it requires a load operation (for loading

column indices) and an indirect memory access (for accessing elements in x) for a scalar

multiply-add operation in computing A2x. Again if the nonzeros along all the columns of A

are consecutive then sparse matrix-vector multiplication code can reuse elements of x, thus

improving temporal locality of x.

A (k× l) block of a sparse matrix A is a submatrix of A of dimension (k× l), where all

the elements in the submatrix are nonzeros. A block of (1×2) is same as a nonzero block

of length 2. In [34], sparse matrix A is stored as a sum of differently blocked matrices. For

example, one stores all blocks of (2×2), one stores all blocks of (1×2), and the third one

with the remaining elements.

A (k× l) tile block starting at position (i, j) of a sparse matrix A is a submatrix of

A of dimension (k× l), where at least one element in the submatrix is nonzero, where

0≤ i < m and 0≤ j < n. Vuduc in [35] and Im, Yelick and Vuduc in [20] proposed to store

A by a number of tile blocks of (k× l), where i mod k = j mod l = 0 for all tile blocks.

Buttari, Eijkhout, Langou and Filippone in [2] proposed to store A by a number of tile

blocks of (k× l), where i mod k = 0 for all tile blocks. Vuduc and Moon in [36] proposed

to store A into a sum, A = A1 +A2 + . . .+As, where each Ai stores tile blocks of a particular

dimension. The choice of the dimensions of tile blocks in any of these techniques depend

on both the computing platform and the type of sparse matrices. In [2], a computational

method for finding appropriate k and l for a computing platform is suggested. Im in [19]

and Vuduc in [35] proposed to apply register blocking and cache blocking in sparse matrix-

vector multiplication if the sparse matrix is stored in a fixed dimension blocks or tile blocks.

The applicability of cache blocking in computing Ax is described in [25].

20

Table 3.5: BCRS data structure of A.
value a02 a03 a10 a14 a21 a23 a30 a32 a34 a42 a43
colind 2 0 4 1 3 0 2 4 2
nzptr 0 2 3 4 5 6 7 8 9 11
rowptr 0 1 3 5 8 9

3.1.4 Block Compressed Row Storage (BCRS)

Pinar and Heath in [29] proposed this storage scheme. In this storage scheme, the multi-

plications of the nonzeros of each nonzero block are done in the inner loop. We need one

load instruction to load the column index of the first nonzero of each nonzero block. So the

total number of load instructions is reduced. As a sparse matrix can have nonzero blocks

of different sizes, we can not use loop unrolling in the code for computing Ax under this

storage scheme. Four arrays are required to represent a sparse matrix in BCRS scheme:

1. value: for storing the nonzeros of A row by row.

2. colind: the column index of first element of each nonzero block.

3. nzptr: the index of the first nonzero of each nonzero block in value array.

4. rowptr: the index of first nonzero block in each row in nzptr [29].

The data structure in BCRS scheme is illustrated in Table 3.5 and sample code for

computing y = Ax under this scheme is given in Algorithm 5. Let β be the total number

of nonzero blocks in A then memory requirement of this scheme is 8nnz + 4(2β + m + 2)

bytes.

The sparse matrix-vector multiplication code under this storage scheme (Algorithm 5)

requires a load operation (for loading the column indices of the first nonzeros of all nonzero

blocks) and an indirect memory access (for accessing elements in x) for l multiply-add

operations, where l represents the length of a nonzero block. Fewer number of nonzero

21

Algorithm 5 Sparse matrix vector multiplication for BCRS scheme [29].
1: for i← 0 to m−1 do
2: for j← rowPtr[i] to rowPtr[i+1]−1 do
3: startcol← colind[j];
4: t← 0;
5: for k← nzPtr[j] to nzPtr[j +1]−1 do
6: y[i]+ = value[k]∗ x[startcol + t];
7: t← t +1;
8: end for
9: end for

10: end for

blocks means less loop overhead per multiplication. However, the problem of ordering

columns of A to get minimum number of nonzero blocks is in NP-Hard [29]. Again if the

nonzeros along all the columns are consecutive then sparse matrix-vector multiplication

code can reuse elements of x, thus improving temporal locality of x.

3.1.5 Compressed Column Block Storage (CCBS)

Hossain [18] proposed this storage scheme. Three arrays (value, brind, and brptr) and one

integer (ncol) are used in this storage scheme to store sparse marix A.

Two rows of a matrix are said to be orthogonal if they do not both have nonzero el-

ements in the same column position. In this scheme, first the rows of A are partitioned

into a number (ncol) of row groups such that the rows in each group are orthogonal. Then

the nonzeros of each orthogonal row group are “packed” in an array of size n such that a

nonzero ai j of A is placed at jth index of that array. All entries of that array may not be

occupied by nonzeros. So we will fill the empty places by zeros. Then these arrays are

merged one after another and stored in value array. So the size of value is (n ·ncol).

Let value[i] and value[j] be two nonzeros of array value from row r and s respectively

such that j > i and all elements in {value[i + 1], . . . ,value[j− 1]} are zeros. We treat

these zeros as elements of either row r or s. If value[i] and value[j] are elements from

22

Table 3.6: CCBS data structure of A considering orthogonal row groups: {{0, 1} {2, 3}
{4}}.

value a10 0 a02 a03 a14 a30 a21 a32 a23 a34 0 0 a42 a43 0
brind 1 0 1 3 2 3 2 3 4
brptr 0 2 4 5 6 7 8 9 10 15

the same row r then we treat these zeros as elements of row r. An elementary block of

length k in value array is defined as a set of contiguous elements (both zeros and nonzeros)

{value[i], . . . ,value[i+k−1]} such that all elements of {value[i], . . . ,value[i+k−1]} come

from the same row r of A and both value[i−1] and value[i+ k] are from other rows.

The row indices of all elementary blocks are stored in brind array. The indices of

the first elements of all elementary blocks in value array are stored in brptr array [18].

Sometimes, total number of elementary blocks in value can be less than total number of

nonzero blocks in A. Because two or more nonzero blocks separated by some zeros of a

row in A can be merged as an elementary block in value.

Algorithm 6 Sparse matrix vector multiplication for CCBS scheme [18].
1: blk← 0;
2: for l← 0 to ncol−1 do
3: j← 0;
4: while j ≤ n−1 do
5: i← brind[blk];
6: for k← brptr[blk] to brptr[blk +1]−1 do
7: y[i]+ = value[k]∗ x[j];
8: j← j +1;
9: end for

10: blk← blk +1;
11: end while
12: end for

Partitioning the rows to a minimum number of orthogonal row groups is NP-hard prob-

lem [3]. Ideally, we would prefer ncol ≈ dnnz/ne, though ncol can not be less than

MAX(ρ0, . . . ,ρn−1), where ρi is the number of nonzeros in column i. In practice, ncol

is often so big that it is impractical to store A in value array under this storage scheme in

23

computer memory.

Algorithm 7 Orthogonal row partitioning of A for CCBS scheme.
1: B is a row permuted matrix of A;
2: {r0,r1, . . .rm−1} are the rows of B such that size[i]≥ size[i+1];
3: . size[i] is the number of nonzeros in ri

4: f lag is an array of size m. Initially all elements of f lag are zero;
5: mask is an array of size n. Initially all elements of mask are zero;
6: rowGroups is a two dimensional array;
7: . rowGroups[i] stores the row indices of one orthogonal row group i
8: processRow = 0;
9: ncol = 0;

10: l = 0;
11: while processRow < m do
12: j =−1;
13: for i← 0 to m−1 do
14: if f lag[i] = 0 and ri is orthogonal with mask then
15: j = i;
16: break;
17: end if
18: end for
19: if j >−1 then
20: copy the nonzeros of r j in mask such that a nonzero b jk of ri is copied in mask[k];
21: . b jk is a nonzero of B
22: rowGroups[ncol][l] = j;
23: processRow = processRow+1;
24: l = l +1;
25: f lag[j] = 1;
26: else
27: ncol = ncol +1;
28: l = 0;
29: update all entries of mask as zero;
30: end if
31: end while

Let {r0,r1, . . .rm−1} be the rows of A and {r j
0, . . .r

j
k} be the rows of a orthogonal row

group j. We choose to append this orthogonal row group by inserting row ri in it if

1. ri is orthogonal to all rows in the current orthogonal row group {r j
0, . . .r

j
k}.

2. ri is not in any other orthogonal row group.

24

3. there is no rows rp (which is not in any orthogonal row group) such that the number

of nonzeros in rp is greater than that of ri.

This procedure is shown in Algorithm 7. On termination of this algorithm rowGroups[i]

stores the row indices of an orthogonal row group i. After orthogonal row partitioning of

A, we permute rows of A in such a way that the rows in a orthogonal row group are placed

together.

The data structure of A in CCBS scheme is illustrated in Table 3.6 and sample code

for computing y = Ax under this storage scheme is given in Algorithm 6. The memory

requirement of this scheme is 8n ·ncol + 4(2β′+ 2) bytes (where β′ is the total number of

elementary blocks in value).

Under this storage scheme (Algorithm 6) access to both x and value are regular; while

the accesses to y are not regular. But the temporal locality of y is improved because the

rows of each orthogonal row group of A are together.

3.1.6 Compressed Column Block Storage With Compreesed Row Storage (CCB-

SWCRS)

This storage scheme is composed of CCBS and CRS. As mentioned in the description of

CCBS scheme that the number of orthogonal row groups in CCBS is often so big that it

is impractical to store A in value array in computer memory. So we combine CCBS and

CRS schemes to store sparse matrix A in this storage scheme. In this storage scheme A is

expressed as a sum of two matrices A1 and A2.

Let ORG = {org0,org1, . . .orgncol−1} be the orthogonal row groups of A found by the

heuristic in Algorithm 7 and let θi be the number of nonzeros in the orthogonal row group

orgi. Let threshold be a real number between 0 and 1. We can partition these orthogonal

row groups into two categories ORG1 and ORG2:

25

A1 =


0 a21 0 a23 0

a30 0 a32 0 a34
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Figure 3.4: Sparse matrix A1 for CCBSWCRS.

A2 =


0 0 0 0 0
0 0 0 0 0
0 0 a02 a03 0

a10 0 0 0 a14
0 0 a42 a43 0


Figure 3.5: Sparse matrix A2 for CCBSWCRS.

1. ORG1 = {org j : θ j/n > threshold}.

2. ORG2 = {orgk : θk/n≤ threshold}.

We fix 0.90 as the value of threshold. We permute the rows of A in such a way that the

rows in ORG1 are placed first. And the rows in a orthogonal row group of ORG1 are placed

consecutively. A1 stores all the rows in ORG1 and A2 stores the rest rows.

For example, the given sparse matrix A in figure3.1 has three orthogonal row groups

found by the heuristic in Algorithm 7: ORG = {org0,org1,org2}, where org0 = {0,1},

org1 = {2,3} and org2 = {4}. And ORG1 = {org1} if threshhold = 0.9. So matrix A1 has

row 2 and 3. Figure 3.4 and 3.5 show A1 and A2 respectively.

Matrix A1 is stored in CCBS scheme. Let β1′ and ncol1 be the number of elementary

blocks and the number of orthogonal row groups in A1. Matrix A2 is stored in CRS scheme.

Let nnz2 be the total number of nonzeros in A2. So the memory requirement of this scheme

is 8(n ·ncol1 +nnz2)+4(2β1′+m+nnz2 +3) bytes.

Sparse matrix-vector multiplication A1x and A2x are done separately using Algorithm

6 and 2 respectively.

26

3.1.7 Modified Compressed Column Block Storage (MCCBS)

This storage scheme is same as CCBS scheme except the rows are not partitioned into a

number of orthogonal row groups. Three arrays (value, brind, and brptr) and one integer

(ncol′) are used in this storage scheme to store sparse marix A.

Let CR0,CR1, . . . ,CRncol′−1 be arrays of length n each. We will call these arrays as

compressed rows. Each of these compressed rows is filled by nonzeros of the sparse matrix

such that,

1. a nonzero ai j is in one compressed row.

2. if a nonzero ai j is in compressed row CRk then it must be in CRk[j].

3. if {ai j,ai j+1, . . .ai j+l−1,} is a nonzero block of length l in A then all nonzeros of this

nonzero block are in the same compressed row.

4. all nonzeros in A are placed in the compressed rows.

All entries of compressed rows may not be occupied by nonzeros. So we fill the empty

places by zeros. These compressed rows are merged one after another and stored in value.

So the size of the value is (n ·ncol′).

The row indices of all elementary blocks are stored in brind array. The indices of the

first elements of all elementary blocks in value array are stored in brptr array. Sometimes,

total number of elementary blocks in value can be less than total number of nonzero blocks

in A. Because two or more nonzero blocks of a row separated by some zeros in A can be

merged as an elementary block in value.

Let R j be the set of rows such that all rows in R j contribute at least one nonzero block

in compressed row CRi. We insert a new nonzero block in CRi according to the following

rules:

27

Table 3.7: MCCBS data structure of A.
value a10 a21 a02 a03 a14 a30 0 a32 a23 a34 0 0 a42 a43 0
brind 1 2 0 1 3 2 3 4
brptr 0 1 2 4 5 8 9 10 15

1. choose the largest nonzero block bs (which is not in any compressed row) from any

row of R j.

2. if no such bs found, choose the largest nonzero block bq (which is not in any com-

pressed row) from any other row of A.

The first rule of choosing nonzero block for a compressed row is preferred to improve

the temporal locality of y during sparse matrix-vector multiplication under this scheme.

The expected advantage of this scheme over CCBS is to have fewer zeros in value array.

But in practice, ncol′ is often so big that it is impractical to store A in value array under this

storage scheme in computer memory.

The multiplication algorithm of this scheme is same as CCBS. The memory requirement

of this scheme is 8n · ncol′+ 4(2β′+ 2) bytes (where β′ is the total number of elementary

blocks in value). The data structure in MCCBS scheme is illustrated in Table 3.7.

3.2 Summary of Storage Requirements for Sparse Storage Schemes

CCBSWCRS and MCCBS schemes are new data structures for sparse matrix. The storage

requirement of each storage scheme described in this chapter is given in Table 3.8. The

desciption of symbols used in this table is given below.

• βr is the number of nonzero blocks of size r.

• maxNonzeroBlock is the size of the largest nonzero block in A.

• β is the total number of nonzero blocks in A.

28

Table 3.8: Storage Requirements for Sparse Storage Schemes.
Storage Scheme Name Storage Requirement (bytes)

CRS 8nnz+4(nnz+m+1)
CCS 8nnz+4(nnz+n+1)
FSBl 8nnz+4(2m+2+∑

maxNonzeroBlock
r=1 ((br/lc+ r mod l)βr))

BCRS 8nnz+4(2β+m+2)
CCBS 8n ·ncol +4(2β′+2)

CCBSWCRS 8(n ·ncol1 +nnz2)+4(2β1′+m+nnz2 +3)
MCCBS 8n ·ncol′+4(2β′+2)

• β′ is the total number of elementary blocks in A.

• ncol is the number of orthogonal row groups.

• ncol1 is the number of orthogonal row groups in A1 of CCBSWCRS.

• nnz2 is the number of nonzeros in A2 of CCBSWCRS.

• β1′ is the total number of elementary blocks in A1 of CCBSWCRS.

• ncol′ is the number of compressed rows of A.

The input matrices from [5] are given in coordinate format. We convert all these ma-

trices into different storage schemes. The storage requirements for CRS and CCS schemes

are same for square matrices. If a sparse matrix has fewer nonzero blocks then BCRS

scheme requires fewer number of bytes than that of CRS. The memory requirement for

FSBl schemes depends on both l and βr.

29

Chapter 4

Column Ordering Algorithms

In this chapter we describe four column ordering algorithms: column intersection ordering,

local improvement ordering, similarity ordering, and binary reflected gray code ordering.

Column intersection ordering, local improvement ordering and similarity ordering algo-

rithms are taken from literature. We propose binary reflected gray code ordering. We use

the sparse matrix A shown in Figure 4.1 for describing column ordering algorithms.

Columns j and l of matrix A are said to intersect if there is a row i such that ai j 6= 0

and ail 6= 0. The weight of intersection of any two columns j and l, denoted by w jl , is the

number of rows in which they intersect. We define the column ordering problem as follows.

Given an m×n sparse matrix A, find a permutation of columns that minimizes β, where

β is the total number of nonzero blocks in A.

The following result (Proposition 1) is observed in [29].

A =



0 0 0 a03 0
a10 0 0 0 a14
0 a21 a22 a23 0

a30 0 0 0 a34
0 0 0 a43 0

a50 0 0 0 0
0 0 0 a63 a64


Figure 4.1: Sparse matrix A.

30

Proposition 1. For any column permutation π of an m×n matrix A, ∑
n−2
j=0 w j, j+1 +β = nnz,

where β is the total number of nonzero blocks in the matrix A resulting from applying π on

the columns of A.

Proof. A nonzero block of size l contributes l−1 to the total weight of intersection

(∑n−2
j=0 w j, j+1). Now if we sum the contributions of all nonzero blocks to the total weight of

intersection and β it will be equal to nnz.

As ∑
n−2
j=0 w j, j+1 +β = nnz and nnz is a constant for a sparse matrix, we can rewrite the

column ordering problem as follows.

Given an m×n sparse matrix A, find a permutation of columns that maximizes the sum

∑
n−2
j=0 w j, j+1.

In [29] it is shown that the above problem is NP-Hard. By Proposition 1 we can say that

nonzero block minimization problem is also in NP-Hard. Column intersection ordering, lo-

cal improvement ordering, and similarity ordering are three heuristic algorithms to solve

column ordering problem. Column intersection ordering and local improvement ordering

algorithms are given in [29]. Similarity ordering is implemented based on a distance mea-

sure function described in [16]. We develop binary reflected gray code ordering algorithm

for solving the column ordering problem.

The common objective of column intersection ordering, local improvement ordering,

and similarity ordering algorithms is to permute the columns of a sparse matrix A in such

a way that the number of nonzero blocks is minimized. Thus the spatial locality of x

is expected to be improved if we access A row wise in computing Ax. To improve the

temporal locality of x in this case we need to permute the rows of A in such a way that the

nonzeros of each column are consecutive [28]. We show that binary reflected gray code

ordering improves both temporal and spatial locality of x.

31

A =



0 0 a03 0 0
a10 a14 0 0 0
0 0 a23 a21 a22

a30 a34 0 0 0
0 0 a43 0 0

a50 0 0 0 0
0 a64 a63 0 0


Figure 4.2: Given sparse matrix A after column intersection ordering is performed.

4.1 Column Intersection Ordering

Algorithm 8 describes the column intersection ordering algorithm.

Algorithm 8 Column intersection ordering algorithm [29].
1: integer array P of size n. Initially all elements of P are zero;
2: i← 0;
3: set C = {c0,c1, . . . ,cn−1}, represents column indices of A
4: . wi j is the number of intersection between column i and j
5: P[i]← c0;
6: while i < n−1 do
7: find a column c j /∈ P such that wp[i]c j is largest;
8: i← i+1;
9: P[i]← c j;

10: end while

Upon termination the array P holds the order of the columns found by Algorithm 8. In

Figure 4.2, the sparse matrix A is shown after column intersection ordering is computed.

Let π be the column permutation found by Algorithm 8 for a given sparse matrix A.

In the worst case, we need to access n− 1 times the nonzeros of each column π[i] in this

algorithm. So, the running time of this algorithm is O(nnz · (n−1)).

4.2 Local Improvement Ordering

We call the given ordering of A as natural ordering. Local improvement ordering improves

the sum of weight of intersections in natural ordering iteratively. In this algorithm we first

32

partition the columns of A into a number of lists C0, . . . ,Cp such that,

• Each column of A belongs to one and only one list.

• Let c j
i and c j+1

i be two consecutive columns in Ci. Then these two columns are also

consecutive in natural ordering.

• Let cζ

i be the last column of Ci and c0
i+1 be the first column of Ci+1. Then these

two columns are consecutive in natural ordering. So c0
0 is the 0th column in natural

ordering and (n−1)th column in natural ordering is the last column of Cp.

• c j
i and c j+1

i are two consecutive columns in Ci of wc j
i c j+1

i
≥ ρc j

i
· δ, where ρc j

i
is the

number of nonzeros in column c j
i and δ is a real number between 0 and 1. We fix

0.90 as the value of δ.

• cζ

i and c0
i+1 be the last and first columns of Ci and Ci+1 respectively then w

cζ

i c0
i+1

<

ρ
cζ

i
·δ.

For example, the columns of the given sparse matrix A in Figure 4.1 can be partitioned

into four lists: C0 = [0], C1 = [1,2], C2 = [3], and C3 = [4] according to the method described

above.

We can compute C0, . . . ,Cp in O(2nnz) time by calculating the weight of intersection

between consecutive columns of A. The inputs to the local improvement ordering algorithm

are the lists C0, . . . ,Cp. On termination the algorithm gives a column order π of A such that,

• If c j
i and c j+1

i are two consecutive columns in Ci then these two columns are also

consecutive in π.

• Let π[i] be the last column of C j. Then π[i+1] is the first column of any Ck such that

wπ[i]π[i+1] is maximum.

33

Algorithm 9 Local improvement ordering algorithm [29].
1: P is an integer array of size n. Initially all elements of P are zero;
2: C is a two dimensional vector
3: . C[i] stores the column indices of list Ci
4: . length(C[i]) is the number of column indices in C[i]
5: f lag is an array of size p+1. Initially all elements of f lag are zero;
6:
7: for i← 1 to length(C[0]) do
8: P[i−1]←C[0][i−1];
9: end for

10: f lag[0]← 1;
11: j← length(C[0]);
12: b← 1;
13: while b < p do
14: find a C[l] such that f lag[l] = 0 and wP[j−1]C[l][0] is largest;
15: for i← 1 to length(C[l]) do
16: P[j]←C[l][i−1];
17: j← j +1;
18: end for
19: f lag[l]← 1;
20: b← b+1;
21: end while

A =



0 0 a03 0 0
a10 a14 0 0 0
0 0 a23 a21 a22

a30 a34 0 0 0
0 0 a43 0 0

a50 0 0 0 0
0 a64 a63 0 0


Figure 4.3: Given sparse matrix A after local improvement ordering is performed.

34

Algorithm 9 describes local improvement ordering. On termination the array P holds

the order of the columns found by the algorithm. Figure 4.3 shows the given sparse matrix

A after local improvement ordering is performed.

We can order the lists C0, . . . ,Cp as C′0, . . . ,C
′
p such that the column indices in C′i come

before the column indices of C′i+1 in π. In Algorithm 9, we need to access i and p− 1− i

times the nonzeros of c0′
i (the first column of C′i) and the nonzeros of cζ′

i (the last column of

C′i) respectively. So the running time of this algorithm is O(2nnz+∑
p−1
j=1 j ·ρc0′

j
+∑

p−1
j=0 (p−

1− j) ·ρ
cζ′

j
). The running time of this algorithm depends on natural ordering. As column

ordering algorithm is used as a preprocessing step, we are interested in computationally

efficient heuristics.

4.3 Similarity Ordering

The algorithm for similarity ordering is similar to the algorithm for column intersection or-

dering except that we take into account both zeros and nonzeros in determining the weight

of intersection between two columns. In this column ordering algorithm, the weight of in-

tersection between two columns i and j is the number of rows in which both of them have

either zero or nonzero. The running time is also the same as that of column intersection

ordering. Similarity ordering algorithm tries to keep similar type of columns consecutively.

In [16], the total weight of intersection (considering both zeros and nonzeros) of a sparse

matrix is used to measure the data locality of A.

To improve the running time of this algorithm in practice we sort the columns of A

in ascending order of ρi (where ρi is the number of nonzeros in column i) before applying

similarity ordering algorithm. As ρi�m for all i, we can sort the columns of A in ascending

order of ρi in O(n) time by counting sort algorithm. The reason for sorting the columns of

A is as follows.

35

A =



0 0 a03 0 0
0 0 0 a14 a10

a21 a22 a23 0 0
0 0 0 a34 a30
0 0 a43 0 0
0 0 0 0 a50
0 0 a63 a64 0


Figure 4.4: After similarity ordering of sparse matrix A.

Let π be the column permutation found by this ordering algorithm for a given sparse

matrix A. The upper and lower bound of the weight of intersection between two columns i

and j according to the method for determining weight of intersection used in this ordering

algorithm are (m−|(ρi−ρ j)|) and (m−ρi−ρ j) respectively. So, in searching the candidate

column π[i+1], it is sufficient to search columns sequentially until we get a column b such

that ρb = 3ρπ[i] provided that the columns of input matrix A is sorted as stated and there is

at least one column c such that ρc = ρπ[i] and c /∈ {π[0], . . . ,π[i]}.

In Figure 4.4, the given sparse matrix A is shown after similarity ordering is performed.

4.4 Binary Reflected Gray Code Ordering

Let π be the column permutation found by column intersection ordering or local improve-

ment ordering or similarity ordering algorithm. Then column π[i+1] in the above ordering

algorithms is found by looking at the nonzeros of column π[i]. But the data locality of A

should be evaluated over more than pairs of columns [16]. We develop a new column or-

dering algorithm based on binary reflected gray code for sparse matrices. We will call this

column ordering algorithm as binary reflected gray code or BRGC ordering. To the best of

our knowledge, this algorithm is new for the column ordering problem of sparse matrices.

BRGC ordering algorithm tries to keep columns having same pattern consecutive in order

to improve both spatial and temporal locality of x during computing Ax.

36

B =

b00 b01 0 0 b04 b05
b10 0 0 b13 b14 0
0 b21 b22 0 b24 0


Figure 4.5: Sparse matrix B.

A gray code is an ordering of the 2p binary strings of length p such that any two con-

secutive binary strings in the ordering differ only in exactly one bit. A binary reflected gray

code [21] is a gray code denoted by Gp as follows: Gp = [0Gp−1
0 , . . . ,0Gp−1

2p−1−1,

1Gp−1
2p−1−1, . . . ,1Gp−1

0], where Gp
i is the ith binary string of Gp. For example G3 = [000,001,

011,010,110,111,101,100]. Rank of a binary string Gp
q in a binary reflected gray code Gp

is the position of Gp
q in Gp. For example the rank of 011 and 010 in G3 is 2 and 3 respec-

tively.

An ordering of q binary strings of length p {Gp
i1,G

p
i2, . . . ,G

p
iq} in descending order ac-

cording to binary reflected gray code ranking means that Gp
i j

comes before Gp
ik if the rank of

Gp
i j

is greater than that of Gp
ik . For example the order of {001,010,111,100} in descending

order according to binary reflected gray code ranking is (100,111,010,001).

In BRGC ordering of columns each column of a sparse matrix A is treated as a binary

string of length m considering each nonzero in A as 1. The most significant bits of such

columns are the bits from row 0 of A. For example, corresponding to the matrix of Figure

4.5, there are 6 binary strings of length 3: {110,101,001,010,111,100}. The correspond-

ing 0−1 matrix is shown in Figure 4.6. Now the sorted binary strings in descending order

according to binary reflected gray code ranking is: {100,101,111,110,010,001}. BRGC

ordering of A sorts the columns in descending order according to binary reflected gray code

ranking. Instead of reducing the number of blocks, it places the similar type of columns

contiguously. Thus, we can expect to have good data locality in the column reordered ma-

trix. A procedure for computing gray code order for the columns is depicted in Algorithm

10. On output the array P holds the binary reflected gray code ordering of the columns.

37

B =

1 1 0 0 1 1
1 0 0 1 1 0
0 1 1 0 1 0


Figure 4.6: Sparse matrix B where all nonzeros are viewed as 1s.

B =

b05 b01 b04 b00 0 0
0 0 b14 b10 b13 0
0 b21 b24 0 0 b22


Figure 4.7: After BRGC ordering of matrix B.

In Figure 4.7 and 4.8 matrices B and A are shown after BRGC ordering.

4.4.1 Correctness of BRGC Ordering Algorithm

Given an m×n matrix A, we consider each nonzero of A as 1. So each column of A can be

treated as a binary string of length m. The most significant bit of such a binary string is the

bit from row 0.

Proposition 2. Algorithm 10 order the columns of A in descending order according to their

binary reflected gray code rankings.

Proof. The sparsity pattern of a column c j of A can be represented by a binary vector

b j = [b j
m−1 . . .b j

0], where b j
i = a(m−1−i) j. Let b j represents the ordered set T j ⊆ {1, . . . ,m}

such that the elements in T j are in ascending order and if b j
i = 1 then m− i ∈ T j and

A =



a03 0 0 0 0
0 a10 a14 0 0

a23 0 0 a21 a22
0 a30 a34 0 0

a43 0 0 0 0
0 a50 0 0 0

a63 0 a64 0 0


Figure 4.8: After BRGC ordering of matrix A.

38

Algorithm 10 BRGC ordering algorithm.
1: global integer array P;
2: global integer i← 0;
3: C = {c0,c1, . . . ,cn−1}; . ci denotes column i of A
4: rowIndex = 0;
5: sign = +1;
6: procedure BRGC(C, rowIndex, sign)
7: if C has only one element OR rowIndex = m then
8: for j← 0 to |C|−1 do
9: P[i]←C[j];

10: i← i+1;
11: end for
12: return
13: end if
14: partition C into two disjoint sets C1 and C2 such that C1 contains all column indices that

have nonzeros in rowIndex and C2 contains the other indices;
15: if sign = +1 then
16: BRGC(C1, rowIndex+1, −1);
17: BRGC(C2, rowIndex+1, +1);
18: else
19: BRGC(C2, rowIndex+1, −1);
20: BRGC(C1, rowIndex+1, +1);
21: end if
22: end procedure

39

m− i /∈ T j otherwise. Algorithm 11 (Algorithm 2.4 of page 41 in [21]) computes the rank

of a binary string in binary reflected gray code ordering.

Let bl and bk be two binary vectors corresponding to columns cl and ck of A respec-

tively. The corresponding ordered sets of bl and bk are T l and T k respectively. Let T l
i = T k

i

for i = 0, . . . ,s− 1 and T l
s < T k

s . According to the Algorithm 11, the rank of bl is greater

than that of bk if s is even. Otherwise the rank of bk is greater than bl .

Consider ail = aik for i = 0, . . . ,h−1 and ahl 6= ahk. As T l
s < T k

s , ahl is a nonzero. Both

cl and ck have even (odd) number of nonzeros in their i = 0, . . . ,h−1 row positions if we

consider s is even (odd). Algorithm 10 does not change the value of sign for C2 set. The

sign change occurs in only for C1. Both cl and ck are in the same set of columns when

rowIndex = h−1 with sign = +1 if s is even and sign =−1 otherwise. As ahl is a nonzero

and the algorithm partitions the columns in depth first search manner, cl (ck) enters into P

array before ck (cl) if s is even (odd).

Thus we prove that the Algorithm 10 orders the columns of a matrix in descending

order according to their binary reflected gray code rankings.

Algorithm 11 The ranking algorithm for binary reflected gray code [21].
1: procedure RANKINGBINREFGRAYCODE(m, T j)
2: r = 0;
3: d = 0;
4: for i← m−1 downto 0 do
5: if m− i ∈ T j then
6: d = 1−d;
7: end if
8: if d = 1 then
9: r = r +2i;

10: end if
11: end for
12: return(r);
13: end procedure

40

Figure 4.9: Recursive tree produced by BRGC ordering algorithm.

4.4.2 Complexity Analysis of BRGC Ordering Algorithm

At any leaf of the recursive tree produced by Algorithm 10, either rowIndex = m or |C| ≤ 1.

In each recursive call, rowIndex is increased by 1. Its running time is given by the following

recurrence relation:

T (n) = T (n1)+T (n2)+O(n), where n1 +n2 ≤ n.

So, the complexity of this algorithm is the same as quicksort. Its running time is O(n2)

and O(nlogn) in worst case and in average case respectively [4].

4.4.3 On the Implementation of BRGC Ordering Algorithm

Consider the recursion tree in Figure 4.9 generated by Algorithm 10. Here C is the set of

columns. f (C, i) ⊂ C such that all the columns c ∈ f (C, i) have a nonzero in row i. And

g(C, i)⊂C such that all the columns c ∈ g(C, i) have a zero in row i.

A column has rank of (i, j) if its ith nonzero from top (row 0) is in row j. For example,

sparse matrix B in Figure 4.6, the first column has ranks of (1,0) and (2,1). The nodes

in the recursion tree are visited in depth first order and columns having rank (1,0) are

partitioned first at the root of the recursive tree. The same partitioning is done in the right

subtree, the right subtree of the right subtree and so on. So, it is clear that all columns

41

Figure 4.10: View of a sparse matrix after BRGC ordering, where the nonzeros participating
in all columns having rank of (1, i) are shown in colored rectangles.

having rank of (1, i) are occured before columns having rank (1, j) in P, where j > i.

Expected view of a sparse matrix after this high level partition is given in Figure 4.10.

Among the set of columns having rank of (1, i), columns having rank of (2, j) are placed

after columns having rank of (2,k) in P, where k > j. Because, if the input column set C of

the algorithm has rank of (1, i) then it calls with sign = −1 and g(C, i + 1) first. Expected

view of columns having rank of (1, i) is given in Figure 4.11.

Column ordering is a preprocessing task of sparse matrix-vector multiplication. So, we

should emphasis on its efficient implementation. We can improve the running time of the

Algorithm 10 in the following ways:

1. If a recursive node has column set C where |C| is small then we can compute the

order of the columns in C explicitly according to the basic rule without any further

recursive calls.

2. Instead of calling the recursive call with C2 and rowIndex+1, it can call with C2 and

rowIndex + i, if none of the column c ∈ C2 have any nonzero in its rowIndex + 1,

42

Figure 4.11: Expected view of columns having rank of (1, i).

rowIndex+2, .. and rowIndex+ i−1 positions.

We can also apply the following heuristics to speed up more for very big sparse matri-

ces:

1. If |C| is very small then we can push the columns indices of C in P without making

any recursive calls from that node.

2. Let nnzCU denotes the total number of nonzeros in the columns of C at their {0,1, . . . ,

rowIndex} row indices. And let nnzCL denotes the total number of nonzeros in the

columns of C at their {rowIndex + 1,rowIndex + 2, . . .m− 1} row indices. We can

push the columns indices of C in P without making any recursive calls from that node

if (nnzCU/(nnzCU + nnzCL)) ≥ f raction, where f raction is a real value. We choose

the value of f raction as 0.8.

43

If we apply any of the heuristics described above, we can not expect to get a real binary

reflected gray code sorting of the columns. The resultant column order is an approximate

binary reflected gray code ordering. We apply these heuristics to reduce the computational

time for our test matrices significantly.

4.4.4 Number of Nonzero Blocks and BRGC Ordering

In BRGC ordering, we have n binary strings of length m. The total number of binary string

of length m is 2m. As 2m� n, we can not expect to get two columns (binary strings) having

difference in one row position (bit) placed consecutively after this ordering. As a result, this

ordering does not guarantee optimal number of nonzero blocks for a sparse matrix. Though

we found this ordering competitive with column intersection ordering, local improvement

ordering and similarity ordering considering the number of nonzero blocks.

In Figure 4.12 and 4.13, the sparsity pattern of sparse matrices bcsstk35 and cavity26

(from [5]) are shown. We also show the sparsity pattern of these matrices after BRGC

ordering. We use spy() function of matlab [23] to generate the figures showing sparsity

pattern of these matrices after BGRC ordering.

4.4.5 BRGC Ordering of a Random Column Permuted Sparse Matrix

One important characteristic of BRGC ordering is that even if the columns of the input

matrix is randomly permuted, it will produce the same output. If ci and c j are two columns

of A and i > j (in the given order) such that ρci = ρc j = wcic j then column c j will come

before ci after BRGC ordering of A. Furthermore, BRGC ordering does not change the

sparsity structure of a banded matrix much. If A is a column permuted banded matrix, then

A will be a banded matrix again after BRGC ordering. Because in banded matrix there is

only one column having rank of (1, i) (where i > 0) and column having rank of (1, i) comes

before column having rank of (1, j), where j > i. BRGC ordering algorithm also order the

44

Figure 4.12: (a) spy() view of matrix bcsstk35 [5], (b) spy() view of matrix bcsstk35 after
BRGC ordering.

Figure 4.13: (a) spy() view of matrix cavity26 [5], (b) spy() view of matrix cavity26 after
BRGC ordering.

45

columns of a banded matrix in the same manner except columns having rank of (1,0).

4.4.6 Cache Misses in Computing Ax After BRGC Ordering

In this section, we discuss cache misses for the sparse matrix-vector multiplication code

(where the sparse matrix is ordered by BRGC ordering) on N-way set associative cache.

Note that, a direct mapped cache can be viewed as a 1-way set associative cache. And now

a days, the vast majority of processor caches are direct mapped or N-way set associative

[15].

For simplicity, we describe cache misses of sparse matrix-vector multiplication (y = Ax)

codes for CRS, BCRS and FSBl storage schemes. The sparse matrix-vector multiplication

codes for these three storage schemes share the following common properties:

1. There is no conflict cache miss in accessing the nonzeros of sparse matrix A.

2. There is no conflict cache miss in accessing y.

3. All three types of cache misses can be observed in accessing x.

We can classify conflict cache misses in accessing x during computing y = Ax under

(CRS, BCRS and FSBl) into three categories:

1. Conflict cache misses due to the replacement of a data block of x by any data block

not consisting x or y or nonzeros of A.

2. Conflict cache misses due to the replacement of a data block of x by any data block

of y or nonzeros of A.

3. Conflict cache misses due to the replacement of a data block of x by any other data

block of x. We will call it self conflict cache miss of x.

46

Temam and Jalby [33] analyzed the number of cache misses of sparse matrix-vector

multiplication considering only self conflict cache misses of x. They consider an uniform

distribution of nonzeros in sparse matrix. We also discuss only the self conflict cache

misses of x in computing Ax. We consider sparse matrix A stored in CRS or BCRS or FSB

scheme and A is preprocessed by BRGC ordering algorithm.

The nonzeros in a submatrix (r× c) of A participate with ({x[p],x[p+1], . . . ,x[p+ c−

1]}) elements of x in computing Ax for some r, c, and p. We will call such a submatrix a

free rectangle if any two elements in ({x[p],x[p+1], . . . ,x[p+c−1]}) do not generate any

self conflict cache miss of x for each other during sparse matrix-vector multiplication (Ax).

The value of r (width of a free rectangle) and c (length of a free rectangle) are proportional

to the size of the cache. Width of a free rectangle also depends on the distribution of

nonzeros in that free rectangle. We expect the length of a free rectangle is proportional

to the N of N-way set associative cache. In Figure 4.14 such possible free rectangles of a

sparse matrix (if the sparse matrix is preprocessed by BRGC ordering algorithm) are shown

by black rectangles. Free rectangles are aligned with the first nonzeros from above of all

columns having rank of (1, i), where 0≤ i≤m. There is no nonzero in the region above the

free rectangles denoted by Blank. The nonzeros below the free rectangles are denoted by

cross signs. Self conflict cache misses of x occur only when the elements of x associated

with the nonzeros in a free rectangle replace any data block of x from cache that is required

again in computing Ax.

If A is preprocessed by BRGC ordering then we can find a number of free rectangles

where there is no self conflict cache misses during computing y = Ax if A is stored in CRS

or BCRS or FSB scheme.

47

Figure 4.14: Free rectangles in A after BRGC ordering is performed.

48

Chapter 5

Experiments

In this chapter we present our experimental results with analyses. We first describe the

computing platform specifications on which experiments are carried. We then mention the

names of input matrices, chosen storage schemes, and chosen column ordering algorithms

followed by a description of evaluation method used. Finally we analyze our experimental

results.

5.1 Platform Specifications

We performed all our experiments on three different computing platforms. The technical

specifications of these platforms are given below:

1. Compaq: It has AMD Athlon(tm) 64 processor 3500+ (2.2 GHz). It has RAM of

size 512 MB. The L2 cache size is 512KB. The cache line size is 64 bytes. The

mapping function used for L2 cache is 16-way set associative. The size of both L1

data cache and L1 instruction cache is 64 KB. Both of them have 64 bytes cache line

size and use 2-way set associative mapping function [27]. The operating system is

linux. The code is written in C++ and compiled by g++ (version number: 4.2.3)

with -O option.

2. IBM: It has Intel pentium4 processor (2.8 GHz). It has RAM of size 1GB. The

49

L2 cache size is 512KB. The cache line size is 64 bytes. The mapping function

used for L2 cache is 8-way set associative. The size of L1 data cache is 8 KB. It

has 64 bytes cache line size and use 4-way set associative mapping function. The

operating system is linux[30]. The code is written in C++ and compiled by g++

(version number: 4.1.2) with -O option.

3. Sun: It has Ultra sparc-IIe processor (550 MHz). It has RAM of size 384 MB. The

L2 cache size is 256 KB. The cache line size is 64 bytes. The mapping function used

for L2 cache is 4-way set associative and direct mapped. The size of both L1 data

cache and L1 instruction cache is 16 KB. Both of them have 64 bytes cache line size

and use 2-way set associative mapping function [6]. The operating system is sun

solaris 10. The code is written in C++ and compiled by g++ (version number: 3.4.3)

with -O option.

5.2 Input Matrices

We choose 26 matrices from [5]. The description of the matrices are given in the Table 5.1.

The memory requirement for any of these matrices in any storage scheme of our interest

is larger than L2 cache size of all of our computing platforms on which experiments are

carried on. In [29] bcsstk35, bcsstk32, bcsstk30, psmigr 1, cavity26, bcsstk29, memplus,

and bcsstk28 are used to compare among different column ordering algorithms on differ-

ent storage schemes of sparse matrices. In [34] bcsstk35, and bcsstk32 are used for the

same purpose. In [10], lp ken 18, lp cre d, lp maros r7, lp pds 10, lp ken 13, lp fit2d and

lp stocfor3 are used in sparse derivative matrix computation.

5.3 Chosen Storage Scheme for Experiment

We use the following storage schemes for our experiments:

50

Table 5.1: Input matrices from [5].
MatrixName m n nnz Application Area

matrix 9 103430 103430 2121550 semiconductor device problem
landmark 71952 2704 1151232 least squares problem
rajat20 86916 86916 605045 circuit simulation problem

bcsstk35 30237 30237 740200 structural problem
bcsstk32 44609 44609 1029655 structural problem

nsct 23003 37563 697738 linear programming
problem sequence

bcsstk30 28924 28924 1036208 structural problem
forme21 67748 216350 465294 linear programming problem
psmigr 1 3140 3140 543162 economic problem
lp ken 18 105127 154699 358171 linear programming problem
blockqp1 60012 60012 340022 optimization problem
Ill Stokes 20896 20896 191368 computational fluid

dynamics problem
cavity26 4562 4562 138187 subsequent computational

fluid dynamics problem
bcsstk29 13992 13992 316740 structural problem
memplus 17758 17758 126150 circuit simulation problem
lp cre d 8926 73948 246614 linear programming problem
psse0 26722 11028 102432 power network problem

bcsstk28 4410 4410 111717 structural problem
lp maros r7 3136 9408 144848 linear programming problem

e18 24617 38602 156466 linear programming problem
baxter 27441 30733 111576 linear programming problem

lp pds 10 16558 49932 107605 linear programming problem
lp ken 13 28632 42659 97246 linear programming problem
lp fit2d 25 10524 129042 linear programming problem

lp stocfor3 16675 23541 76473 linear programming problem
dictionary28 52652 52652 89038 undirected graph

51

1. CRS

2. BCRS

3. FSB2.

4. FSB3.

In CCBS and MCCBS, the total number zeros in compressed row groups is very large

for most of the input matrices that we decide not to carry on our experiments on these

schemes. We do not do any experiments on JDS, TJDS or Bi-JDS, as these schemes are

suitable for vector processors. We also do not do any experiment on CDS as it is suitable

for banded matrix. As CCS is similar to CRS and CRS is commonly used, we also do not

do any experiments on CCS.

In CCBSWCRS scheme a number of rows of a sparse matrix are stored in CCBS

scheme. We can not find any set of rows to store in CCBS scheme according to the criteria

described in Chapter 3 for most of our chosen input matrices. Furthermore natural row

ordering of input matrices are changed in this storage scheme. So in the CRS part of this

scheme, the temporal locality of x worsens during sparse matrix-vector multiplication for a

number of matrices.

5.4 Notations for Column Ordering Algorithms

The names of the column ordering algorithms along with their notations are given below.

1. Natural Ordering: This is the column ordering given in [5]. We denote this ordering

by Onatural .

2. Column Intersection Ordering: We denote this ordering by Ointersection.

3. Local Improvement Ordering: We denote this ordering by Oimprovement .

52

4. Similarity Ordering: We denote this ordering by Osimilarity.

5. Binary Reflected Gray Code Ordering: We denote this ordering by Obrgc.

5.5 Evaluation Method

Dolan and Moré [7] proposed performance profiles as a tool for comparing optimization

software. We applied their technique for comparing different storage schemes of sparse

matrices and column ordering algorithms of sparse matrix-vector multiplication (SpMxV).

We use CPU time as the performance measure. We do not use average or cumulative total

CPU time of SpMxV s for performance comparison. Because the CPU time for multiplying

a small number of input sparse matrices with vector can dominate the comparison results if

this CPU time is considerably big or small. We use getrusage() [32] function for measuring

the CPU time for sparse matrix-vector multiplication. CPU time reported here is the time

for single sparse matrix-vector multiplication (y = Ax) by averaging 1000 sparse matrix-

vector multiplications.

First we define three parameters:

1. Computing Platform (PL): PL = {sun,compaq, ibm}.

2. Storage Scheme (SS) : SS = {CRS,BCRS,FSB2,FSB3}.

3. Ordering Algorithm (RA): RA = {Onatural,Ointersection,Oimprovement ,Osimilarity,Obrgc}.

So, we have 60 (Cartesian product of three sets: PL, SS, RA) different types of SpMxV

experiments. We will denote a particular SpMxV by ordered list of three parameters

:(pl,ss,ra), where pl ∈ PL, ss∈ SS and ra∈ RA. For example, SpMxV (compaq,crs,Obrgc)

means sparse matrix-vector multiplication on compaq platform, where the input matrix is

preprocessed by binary reflected gray code ordering algorithm and the storage is CRS. We

53

can denote a set of SpMxV s by specifying a set in any of these three parameters by ANY .

For example, SpMxV (sun,ANY,ANY) denotes all the SpMxV s on sun platform.

For each sparse matrix A and SpMxV (pl,ss,ra), we define tA,SpMxV (pl,ss,ra) as the CPU

time to multiply A with a dense vector on computing platform pl, where A is preprocessed

using ordering algorithm ra and it is stored in ss scheme.

We define min{tA,SpMxV (pl,ss,ANY)} as the minimum CPU time to multiply A with a

dense vector on computing platform pl where A is stored in ss scheme and A is pre-

processed by any column ordering algorithm. For example, min{tA,SpMxV (pl,ss,ANY)} be

tA,SpMxV (pl,ss,Onatural). In this case we will call SpMxV (pl,ss,Onatural) as the best SpMxV

among the set of SpMxV s defined by SpMxV (pl,ss,ANY) on sparse matrix A.

We define performance ratio as rA,SpMxV (pl,ss,ra) =
tA,SpMxV (pl,ss,ra)

min{tA,SpMxV (pl,ss,ANY)}
to compare the

performance on input matrix A of SpMxV (pl,ss,ra) with the best performing (in terms

of CPU time) SpMxV on computing platform pl and A, where A is preprocessed by any

ordering algorithms and it is stored in ss. We can modify the equation for computing

performance ratio of a SpMxV according to our objective. For example, if we need to

compare with all SpMxV s on computing platform pl then we need to change the set of

SpMxV in denominator of right hand side of this equation to SpMxV (pl,ANY,ANY).

Finally, the performance of a SpMxV (pl,ss,ra) can be measured by the following cu-

mulative distribution function [7]:

ρSpMxV (pl,ss,ra)(τ) = 1
|Γ|size{A ∈ Γ : rA,SpMxV (pl,ss,ra) ≤ τ}, where, Γ is the set of input

matrices of our interest. And rA,SpMxV (pl,ss,ra) =
tA,SpMxV (pl,ss,ra)

min{tA,SpMxV (pl,ss,ANY)}
, if we want to compare

SpMxV (pl,ss,ra) with all SpMxV s on computing platform pl where input matrices are

stored in ss scheme.

If |Γ| is suitably large and representative of input matrices that are likely to occur in

applications then we can say that ρSpMxV (pl,ss,ra)(τ) is the probability that SpMxV (pl,ss,ra)

can multiply any sparse matrix with a dense vector within a factor τ of the best performing

54

SpMxV among a set of SpMxV under consideration. So we prefer SpMxV with large

probability ρSpMxV (pl,ss,ra)(τ).

Consider τ′ is the minimum value of τ such that all ρSpMxV (pl,ss,ra)(τ′) values of a set

of SpMxV s become 1. Then we are interested in the values of ρSpMxV (pl,ss,ra)(τ) where

1 ≤ τ ≤ τ′. We call SpMxV (pl,ss,ra) as the best SpMxV among a set of SpMxV s if its

ρSpMxV (pl,ss,ra)(τ) value dominates those of the other SpMxV s for most of the values of τ

in the range (1,τ′).

In our experiment we do not compare SpMxV s among different computing platforms.

For each computing platform we first find out the best SpMxV for each storage scheme.

Then we compare among the best SpMxV s of each storage scheme to find out the optimal

SpV xM for a computing platform.

We show the performance comparison among different column ordering algorithms

on a computing platform pl where the sparse matrices are in storage scheme ss. In the

comparison figures each line represents a particular column ordering denoted by the legend.

The value of τ is in X − axis and the corresponding ρSpMxV (pl,ss,ra)(τ) value is given in

Y −axis.

5.6 Experiments on Compaq Platform

5.6.1 SpMxV s on Compaq Platform with CRS Scheme

A graph showing the performance of SpMxV (compaq,crs,Onatural), SpMxV (compaq,crs,

Ointersection), SpMxV (compaq,crs,Osimilarity), SpMxV (compaq,crs,Obrgc) and SpMxV (

compaq,crs,Oimprovement) is shown in Figure 5.1. The value of τ′ is 3.0. From the figure we

can see that ρSpMxV (compaq,crs,Obrgc)(τ) dominates ρSpMxV (compaq,crs,Onatural)(τ), ρSpMxV (compaq,

crs,Ointersection)(τ), ρSpMxV (compaq,crs,Oimprovement)(τ), and ρSpMxV (compaq,crs,Osimilarity)(τ) for all val-

ues of τ. And ρSpMxV (compaq,crs,Obrgc)(1.2)= 0.96, which means SpMxV (compaq,crs,Obrgc)

55

Figure 5.1: Performance of SpMxV s on compaq platform with CRS scheme.

can multiply 96% of test matrices with a dense vector within a factor 1.2 of best performing

SpMxV on compaq platform with CRS scheme. So, we can say that SpMxV (compaq,crs,

Obrgc) performs best among these five SpMxV s.

5.6.2 SpMxV s on Compaq Platform with BCRS Scheme

A graph showing the performance of SpMxV (compaq,bcrs,Onatural), SpMxV (compaq,

bcrs,Ointersection), SpMxV (compaq,bcrs,Osimilarity), SpMxV (compaq,bcrs,Obrgc) and

SpMxV (compaq,bcrs,Oimprovement) is shown in Figure 5.2. The value of τ′ is 3.0. From the

figure we can see that ρSpMxV (compaq,bcrs,Onatural)(τ) dominates ρSpMxV (compaq,bcrs,Obrgc)(τ)

when 1≤ τ≤ 1.08. And ρSpMxV (compaq,bcrs,Obrgc)(τ) dominates ρSpMxV (compaq,bcrs,Onatural)(τ)

when τ > 1.08. Furthermore ρSpMxV (compaq,bcrs,Obrgc)(τ) dominates ρSpMxV (compaq,bcrs,

Ointersection)(τ), ρSpMxV (compaq,bcrs,Oimprovement)(τ), and ρSpMxV (compaq,bcrs,Osimilarity)(τ) for all val-

ues of τ. And ρSpMxV (compaq,bcrs,Obrgc)(1.16) = 0.96, which means SpMxV (compaq,bcrs,

Obrgc) can multiply 96% of test matrices with a dense vector within a factor 1.16 of

56

Figure 5.2: Performance of SpMxV s on compaq platform with BCRS scheme.

best performing SpMxV on compaq platform with BCRS scheme. So, we can say that

SpMxV (compaq,bcrs,Obrgc) performs best among these five SpMxV s.

5.6.3 SpMxV s on Compaq Platform with FSB2 Scheme

A graph showing the performance of SpMxV (compaq, f sb2,Onatural), SpMxV (compaq,

f sb2,Ointersection), SpMxV (compaq, f sb2,Osimilarity), SpMxV (compaq, f sb2,Obrgc) and

SpMxV (compaq, f sb2,Oimprovement) is shown in Figure 5.3. The value of τ′ is 2.5. From

the figure we can see that ρSpMxV (compaq, f sb2,Onatural)(τ) dominates ρSpMxV (compaq, f sb2,Obrgc)

(τ) when 1≤ τ≤ 1.12. ρSpMxV (compaq, f sb2,Obrgc)(τ) dominates ρSpMxV (compaq, f sb2,Onatural)(τ)

when τ > 1.12. ρSpMxV (compaq, f sb2,Osimilarity)(τ) dominates ρSpMxV (compaq, f sb2,Obrgc)(τ) when

1.05≤ τ≤ 1.06. ρSpMxV (compaq, f sb2,Obrgc)(τ) dominates ρSpMxV (compaq, f sb2,Onatural)(τ) for all

other values of τ. ρSpMxV (compaq, f sb2,Obrgc)(τ) dominates ρSpMxV (compaq, f sb2,Ointersection)(τ),

and ρSpMxV (compaq, f sb2,Oimprovement)(τ) for all values of τ. And ρSpMxV (compaq, f sb2,Obrgc)(1.225)

= 0.96, which means SpMxV (compaq, f sb2,Obrgc) can multiply 96% of test matrices with

57

Figure 5.3: Performance of SpMxV s on compaq platform with FSB2 scheme.

a dense vector within a factor 1.225 of best performing SpMxV on compaq platform with

FSB2 scheme. So, we can say that SpMxV (compaq, f sb2,Obrgc) performs best among

these five SpMxV s.

5.6.4 SpMxV s on Compaq Platform with FSB3 Scheme

A graph showing the performance of SpMxV (compaq, f sb3,Onatural), SpMxV (compaq,

f sb3,Ointersection), SpMxV (compaq, f sb3,Osimilarity), SpMxV (compaq, f sb3,Obrgc) and

SpMxV (compaq, f sb3,Oimprovement) is shown in Figure 5.4. The value of τ′ is 3.0. From

the figure we can see that ρSpMxV (compaq, f sb3,Obrgc)(τ) dominates ρSpMxV (compaq, f sb3,Onatural)

(τ), ρSpMxV (compaq, f sb3,Ointersection)(τ), ρSpMxV (compaq, f sb3,Oimprovement)(τ), and ρSpMxV (compaq,

f sb3,Osimilarity)(τ) for all values of τ. And ρSpMxV (compaq, f sb3,Obrgc)(1.12) = 0.92, which means

SpMxV (compaq, f sb3,Obrgc) can multiply 92% of test matrices with a dense vector within

a factor 1.12 of best performing SpMxV on compaq platform with FSB3 scheme. So, we

can say that SpMxV (compaq, f sb3,Obrgc) performs best among these five SpMxV s.

58

Figure 5.4: Performance of SpMxV s on compaq platform with FSB3 scheme.

5.6.5 Optimal SpMxV on compaq Platform

BRGC ordering performs the best in each of the storage scheme on compaq platform. Now,

we will compare the performance of SpMxV (compaq,crs,Obrgc), SpMxV (compaq,bcrs,

Obrgc), SpMxV (compaq, f sb2,Obrgc), and SpMxV (compaq, f sb3,Obrgc). We present the

comparison data among these four SpMxV s in Table 5.2.

Table 5.2: Optimal SpMxV on compaq platform.
τ ρSpMxV (compaq,crs, ρSpMxV (compaq,bcrs, ρSpMxV (compaq, f sb2, ρSpMxV (compaq, f sb3,

Obrgc)(τ) Obrgc)(τ) Obrgc)(τ) Obrgc)(τ)
1.0 0.423076923 0 0.230769231 0.615384615

1.05 0.423076923 0 0.5 0.730769231
1.10 0.576923077 0.076923077 0.807692308 0.884615385
1.20 0.692307692 0.346153846 0.961538462 0.923076923
1.3 0.923076923 0.692307692 0.961538462 1
1.4 0.923076923 0.884615385 1 1
1.5 1 0.961538462 1 1
2 1 1 1 1

59

ρSpMxV (compaq, f sb3,Obrgc)(τ) dominates ρSpMxV (compaq,crs,Obrgc)(τ) and ρSpMxV (compaq,bcrs,

Obrgc)(τ). ρSpMxV (compaq, f sb2,Obrgc)(τ) dominates ρSpMxV (compaq, f sb3,Obrgc)(τ) only for a small

interval of τ. So, we can infer that SpMxV (compaq, f sb3,Obrgc) is the best SpMxV on

compaq platform.

The total CPU time of SpMxV (compaq, f sb3,Obrgc) improves 11% than that of both

SpMxV (compaq,crs,Obrgc) and SpMxV (compaq, f sb3,Onatural) separately. Again we ob-

serve 22% improvement of total CPU time in SpMxV (compaq, f sb3,Obrgc) over SpMxV (

compaq,crs,Onatural).

5.7 Experiments on IBM Platform

5.7.1 SpMxV s on IBM Platform with CRS Scheme

A graph showing the performance of SpMxV (ibm,crs,Onatural), SpMxV (ibm,crs,

Ointersection), SpMxV (ibm,crs,Osimilarity), SpMxV (ibm,crs,Obrgc) and SpMxV (ibm,crs,

Oimprovement) is shown in Figure 5.5. The value of τ′ is 3.0. From the figure we can see

that ρSpMxV (ibm,crs,Obrgc)(τ) dominates ρSpMxV (ibm,crs,Onatural)(τ), ρSpMxV (ibm,crs,Ointersection)(τ),

ρSpMxV (ibm,crs,Oimprovement)(τ), and ρSpMxV (ibm,crs,Osimilarity)(τ) for all values of τ.

And ρSpMxV (ibm,crs,Obrgc)(1.2) = 0.92, which means SpMxV (ibm,crs,Obrgc) can multi-

ply 92% of test matrices with a dense vector within a factor 1.2 of best performing SpMxV

on ibm platform with CRS scheme. So, we can say that SpMxV (ibm,crs,Obrgc) performs

best among these five SpMxV s.

5.7.2 SpMxV s on IBM Platform with BCRS Scheme

A graph showing the performance of SpMxV (ibm,bcrs,Onatural), SpMxV (ibm,bcrs,

Ointersection), SpMxV (ibm,bcrs,Osimilarity), SpMxV (ibm,bcrs,Obrgc) and SpMxV (ibm,bcrs,

Oimprovement) is shown in Figure 5.6. The value of τ′ is 3.0. From the figure we can see that

60

Figure 5.5: Performance of SpMxV s on ibm platform with CRS scheme.

ρSpMxV (ibm,bcrs,Obrgc)(τ) dominates ρSpMxV (ibm,bcrs,Onatural)(τ), ρSpMxV (ibm,bcrs,Ointersection)(τ),

ρSpMxV (ibm,bcrs,Oimprovement)(τ), and ρSpMxV (ibm,bcrs,Osimilarity)(τ) for all values of τ.

And ρSpMxV (ibm,bcrs,Obrgc)(1.06)= 0.92, which means SpMxV (ibm,bcrs,Obrgc) can mul-

tiply 92% of test matrices with a dense vector within a factor 1.06 of best performing

SpMxV on ibm platform with BCRS scheme. So, we can say that SpMxV (ibm,bcrs,Obrgc)

performs best among these five SpMxV s.

5.7.3 SpMxV s on IBM Platform with FSB2 Scheme

A graph showing the performance of SpMxV (ibm, f sb2,Onatural), SpMxV (ibm, f sb2,

Ointersection), SpMxV (ibm, f sb2,Osimilarity), SpMxV (ibm, f sb2,Obrgc) and SpMxV (ibm,

f sb2,Oimprovement) is shown in Figure 5.7. The value of τ′ is 3.0. Both ρSpMxV (ibm, f sb2,

Oimprovement)(τ) and ρSpMxV (ibm, f sb2,Osimilarity)(τ) dominate ρSpMxV (ibm, f sb2,Obrgc)(τ) for a very

small interval of τ (1.4,1.5). ρSpMxV (ibm, f sb2,Obrgc)(τ) dominates both ρSpMxV (ibm, f sb2,

Oimprovement)(τ) and ρSpMxV (ibm, f sb2,Osimilarity)(τ) for all other values of τ. And ρSpMxV (ibm, f sb2,

61

Figure 5.6: Performance of SpMxV s on ibm platform with BCRS scheme.

Obrgc)(τ) dominates ρSpMxV (ibm, f sb2,Onatural)(τ) and ρSpMxV (ibm, f sb2,Ointersection)(τ) for all values

of τ.

Furthermore ρSpMxV (ibm, f sb2,Obrgc)(1.14)= 0.92, which means SpMxV (ibm, f sb2,Obrgc)

can multiply 92% of test matrices with a dense vector within a factor 1.14 of best perform-

ing SpMxV on ibm platform with FSB2 scheme. So, we can say that SpMxV (ibm, f sb2,

Obrgc) performs best among these five SpMxV s.

5.7.4 SpMxV s on IBM Platform with FSB3 Scheme

A graph showing the performance of SpMxV (ibm, f sb3,Onatural), SpMxV (ibm, f sb3,

Ointersection), SpMxV (ibm, f sb3,Osimilarity), SpMxV (ibm, f sb3,Obrgc) and SpMxV (ibm,

f sb3,Oimprovement) is shown in Figure 5.8. The value of τ′ is 3.0. Both ρSpMxV (ibm, f sb3,

Oimprovement)(τ) and ρSpMxV (ibm, f sb3,Osimilarity)(τ) dominate ρSpMxV (ibm, f sb3,Obrgc)(τ) for a very

small interval of τ (1.4,1.5). ρSpMxV (ibm, f sb3,Obrgc)(τ) dominates both ρSpMxV (ibm, f sb3,

Oimprovement)(τ) and ρSpMxV (ibm, f sb3,Osimilarity)(τ) for all other values of τ. And ρSpMxV (ibm, f sb3,

62

Figure 5.7: Performance of SpMxV s on ibm platform with FSB2 scheme.

Obrgc)(τ) dominates ρSpMxV (ibm, f sb3,Onatural)(τ) and ρSpMxV (ibm, f sb3,Ointersection)(τ) for all values

of τ.

Furthermore ρSpMxV (ibm, f sb3,Obrgc)(1.2) = 0.96, which means SpMxV (ibm, f sb3,Obrgc)

can multiply 96% of test matrices with a dense vector within a factor 1.2 of best performing

SpMxV on ibm platform with FSB3 scheme. So, we can say that SpMxV (ibm, f sb3,Obrgc)

performs best among these five SpMxV s.

5.7.5 Optimal SpMxV on IBM Platform

BRGC ordering performs the best in each of the storage scheme on ibm platform. Now,

we will compare the performance of SpMxV (ibm,crs,Obrgc), SpMxV (ibm,bcrs,Obrgc),

SpMxV (ibm, f sb2,Obrgc), and SpMxV (ibm, f sb3,Obrgc). We present the comparison data

among these four SpMxV s in Table 5.3.

ρSpMxV (ibm, f sb3,Obrgc)(τ) dominates ρSpMxV (ibm,crs,Obrgc)(τ), ρSpMxV (ibm,bcrs,Obrgc)(τ), and

ρSpMxV (ibm, f sb2,Obrgc)(τ) for all values of τ. So we can infer that SpMxV (ibm, f sb3,Obrgc)

63

Figure 5.8: Performance of SpMxV s on ibm platform with FSB3 scheme.

Table 5.3: Optimal SpMxV on ibm platform.
τ ρSpMxV (ibm,crs,Obrgc) ρSpMxV (ibm,bcrs,Obrgc) ρSpMxV (ibm, f sb2,Obrgc) ρSpMxV (ibm, f sb3,Obrgc)

(τ) (τ) (τ) (τ)
1.0 0.423076923 0 0.346153846 0.576923077
1.08 0.461538462 0.038461538 0.538461538 0.692307692
1.13 0.5 0.038461538 0.807692308 0.884615385
1.16 0.538461538 0.038461538 0.884615385 0.923076923
1.28 0.615384615 0.076923077 0.923076923 0.923076923
1.34 0.653846154 0.153846154 0.961538462 1
1.35 0.653846154 0.153846154 0.961538462 1
1.36 0.653846154 0.153846154 1 1

64

is the best SpMxV on ibm platform.

The total CPU time of SpMxV (ibm, f sb3,Obrgc) improves 26% and 12% than that of

SpMxV (ibm,crs,Obrgc) and SpMxV (ibm, f sb3,Onatural) respectively. Again we observe

27% improvement of total CPU time in SpMxV (ibm, f sb3,Obrgc) over SpMxV (ibm,crs,

Onatural).

5.8 Experiments on Sun Platform

5.8.1 SpMxV s on Sun Platform with CRS Scheme

A graph showing the performance of SpMxV (sun,crs,Onatural), SpMxV (sun,crs,

Ointersection), SpMxV (sun,crs,Osimilarity), SpMxV (sun,crs,Obrgc) and SpMxV (sun,crs,

Oimprovement) is shown in Figure 5.9. The value of τ′ is 1.7. From the figure we can see that

ρSpMxV (sun,crs,Obrgc)(τ) dominates ρSpMxV (sun,crs,Osimilarity)(τ) when 1≤ τ≤ 1.04.

ρSpMxV (sun,crs,Osimilarity)(τ) dominates ρSpMxV (sun,crs,Obrgc)(τ) for all other values of τ.

ρSpMxV (sun,crs,Osimilarity)(τ) dominates ρSpMxV (sun,crs,Ointersection)(τ), ρSpMxV (sun,crs,Oimprovement)(τ),

and ρSpMxV (sun,crs,Onatural)(τ) for all values of τ. Furthermore ρSpMxV (sun,crs,Osimilarity)(1.06) =

0.96, which means SpMxV (sun,crs,Osimilarity) can multiply 96% of test matrices with a

dense vector within a factor 1.06 of best performing SpMxV on sun platform with CRS

scheme. So, we can say that SpMxV (sun,crs,Osimilarity) performs best among these five

SpMxV s.

5.8.2 SpMxV s on Sun Platform with BCRS Scheme

A graph showing the performance of SpMxV (sun,bcrs,Onatural), SpMxV (sun,bcrs,

Ointersection), SpMxV (sun,bcrs,Osimilarity), SpMxV (sun,bcrs,Obrgc) and SpMxV (sun,

bcrs,Oimprovement) is shown in Figure 5.10. The value of τ′ is 1.7. From the figure we can

see that ρSpMxV (sun,bcrs,Osimilarity)(τ) dominates ρSpMxV (sun,bcrs,Oimprovement)(τ) when 1 ≤ τ ≤

65

Figure 5.9: Performance of SpMxV s on sun platform with CRS scheme.

1.04. ρSpMxV (sun,bcrs,Oimprovement)(τ) dominates ρSpMxV (sun,bcrs,Osimilarity)(τ) for all other values

of τ. ρSpMxV (sun,bcrs,Oimprovement)(τ) dominates ρSpMxV (sun,bcrs,Ointersection)(τ), ρSpMxV (sun,bcrs,

Obrgc)(τ), and ρSpMxV (sun,bcrs,Onatural)(τ) for all values of τ.

Furthermore ρSpMxV (sun,bcrs,Oimprovement)(1.05) = 1.0, which means SpMxV (sun,bcrs,

Oimprovement) can multiply all test matrices with a dense vector within a factor 1.05 of best

performing SpMxV on sun platform with BCRS scheme. So, we can say that SpMxV (sun,

bcrs,Oimprovement) performs best among these five SpMxV s.

5.8.3 SpMxV s on Sun Platform with FSB2 Scheme

A graph showing the performance of SpMxV (sun, f sb2,Onatural), SpMxV (sun, f sb2,

Ointersection), SpMxV (sun, f sb2,Osimilarity), SpMxV (sun, f sb2,Obrgc) and SpMxV (sun,

f sb2,Oimprovement) is shown in Figure 5.11. The value of τ′ is 1.7. ρSpMxV (sun, f sb2,Osimilarity)

(τ) dominates ρSpMxV (sun, f sb2,Ointersection)(τ), ρSpMxV (sun, f sb2,Oimprovement)(τ), ρSpMxV (sun, f sb2,

Obrgc)(τ), and ρSpMxV (sun, f sb2,Onatural)(τ) for all values of τ.

66

Figure 5.10: Performance of SpMxV s on sun platform with BCRS scheme.

Furthermore ρSpMxV (sun, f sb2,Osimilarity)(1.1) = 1.0, which means SpMxV (sun, f sb2,

Osimilarity) can multiply all test matrices with a dense vector within a factor 1.1 of best per-

forming SpMxV on sun platform with FSB2 scheme. So, we can say that SpMxV (sun, f sb2,

Osimilarity) performs best among these five SpMxV s.

5.8.4 SpMxV s on Sun Platform with FSB3 Scheme

A graph showing the performance of SpMxV (sun, f sb3,Onatural), SpMxV (sun, f sb3,

Ointersection), SpMxV (sun, f sb3,Osimilarity), SpMxV (sun, f sb3,Obrgc) and SpMxV (sun,

f sb3,Oimprovement) is shown in Figure 5.12. The value of τ′ is 1.7. ρSpMxV (sun, f sb3,Osimilarity)

(τ) dominates ρSpMxV (sun, f sb3,Ointersection)(τ), ρSpMxV (sun, f sb3,Oimprovement)(τ), ρSpMxV (sun, f sb3,

Obrgc)(τ), and ρSpMxV (sun, f sb3,Onatural)(τ) for all values of τ.

Furthermore ρSpMxV (sun, f sb3,Osimilarity)(1.1) = 1.0, which means SpMxV (sun, f sb3,

Osimilarity) can multiply all test matrices with a dense vector within a factor 1.1 of best per-

forming SpMxV on sun platform with FSB3 scheme. So, we can say that SpMxV (sun, f sb3,

67

Figure 5.11: Performance of SpMxV s on sun platform with FSB2 scheme.

Table 5.4: Optimal SpMxV on sun platform.
τ ρSpMxV (sun,crs, ρSpMxV (sun,bcrs, ρSpMxV (sun, f sb2, ρSpMxV (sun, f sb3,

Osimilarity)(τ) Oimprovement)(τ) Osimilarity)(τ) Osimilarity)(τ)
1 0.384615385 0.346153846 0.576923077 0.384615385
1.05 0.384615385 0.423076923 0.653846154 0.576923077
1.1 0.538461538 0.615384615 0.807692308 0.884615385
1.15 0.692307692 0.846153846 0.961538462 0.923076923
1.2 0.730769231 0.923076923 1 1
1.5 1 1 1 1

Osimilarity) performs best among these five SpMxV s.

5.8.5 Optimal SpMxV on Sun Platform

Now we will compare of four SpMxV s (SpMxV (sun,crs,Osimilarity), SpMxV (sun,bcrs,

Oimprovement), SpMxV (sun, f sb2,Osimilarity), and SpMxV (sun, f sb3,Osimilarity)) to find out

the optimal SpMxV on sun platform. We present the comparison data among these four

SpMxV s in Table 5.4.

68

Figure 5.12: Performance of SpMxV s on sun platform with FSB3 scheme.

ρSpMxV (sun, f sb3,Osimilarity)(τ) dominates ρSpMxV (sun, f sb2,Osimilarity)(τ) for a small interval of

τ (1.10,1.12). ρSpMxV (sun, f sb2,Osimilarity)(τ) dominates ρSpMxV (sun, f sb3,Osimilarity)(τ) for all other

values of τ. ρSpMxV (sun, f sb2,Osimilarity)(τ) also dominates ρSpMxV (sun,crs,Osimilarity)(τ), and

ρSpMxV (sun,bcrs,Oimprovement)(τ) for all values of τ. So we can infer that SpMxV (sun, f sb2,

Osimilarity) is the best SpMxV for sun platform.

If we consider the sum of total CPU time as the performance metric then BRGC or-

dering performs the best in CRS scheme. SpMxV (sun,crs,Obrgc) improves 4% CPU time

over SpMxV (sun,crs,Onatural). In the other storage schemes, the performance of BRGC

and similarity ordering are almost same. For example, both SpMxV (sun, f sb2,Osimilarity)

and SpMxV (sun, f sb3,Osimilarity) improves less than 1% CPU time improvement over

SpMxV (sun, f sb2,Obrgc) and SpMxV (sun, f sb3,Obrgc) respectively.

69

5.9 Summary

SpMxV (compaq, f sb3,Obrgc), SpMxV (ibm, f sb3,Obrgc), andSpMxV (sun, f sb2,Osimilarity)

are the best SpMxV on compaq, ibm, and sun platform respectively. So we can say that FSB

is the best storage scheme for sparse matrices. The choice of l depends on the computing

platform.

BRGC ordering algorithm performs very well on compaq platform. It also perform very

well on ibm platform for both CRS and BCRS storage schemes. But in FSB2 and FSB3

schemes on ibm platform, its performance is close to that of similar ordering and local

improvement ordering. Finally, on sun platform it performs poorly. Both compaq and ibm

have same size of L2 cache. But compaq has larger L1 cache. In case of mapping function,

compaq has 16-way set associative L2 cache . Whereas, ibm has 8-way set associative L2

cache. As mentioned in Chapter 4, the widths of free rectangles of sparse matrix A (where A

is preprocessed by BRGC ordering algorithm) is expected to be proportional with the N of

N-way set associative cache of the computing platform. So the probability of self conflict

cache miss is inversely proportional with the number of N of N-way set associative.

The L2 cache of sun platform can be 4-way set associative or direct mapped. We

are unable to figure out the exact mapping function used in this cache. If it uses direct

mapped function then sparse matrix-vector multiplication code may not reuse the elements

of x effectively which increases memory traffic. Or in case of using 4-way set associative

mapping function, 4 cache lines per set may not be enough to reduce self conflict cache

misses during sparse matrix-vector multiplication when the sparse matrix is preprocessed

using BRGC ordering. Furthermore, both compaq and ibm have L2 cache of size two times

larger than the L2 cache in sun. These can be the reasons for not performing as expected

of BRGC ordering.

70

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Sparse matrix-vector multiplication (y = Ax) is one of the most performance-critical oper-

ation of many scientific applications. It often performs poorly on superscalar architecture.

This poor performance is due to

• A random distribution of nonzeros of A produces poor data locality in accessing

either x or y during computing Ax.

• The memory system is slower than the processor speed.

• The row and column indices of the nonzeros of A are stored explicitly and these co-

ordinates consumes memory bandwidth during sparse matrix-vector multiplication.

Many researchers have worked on the efficient implementation of sparse matrix-vector

multiplication. Permuting the rows or columns of A is one way to improve the data locality

of x or y during sparse matrix-vector multiplication. One common approach is to store

A in a number of fixed size blocks or tile blocks or nonzero blocks. If the sparse matrix

is stored in a number of fixed size blocks or tile blocks or nonzero blocks then the code

for computing sparse matrix-vector multiplication can use loop unroll and jam [34] [20]

[2]. Recently, cache blocking and register blocking have used to improve data locality

71

in both x and y during sparse matrix-vector multiplication [19] [35]. If a combination of

these techniques are used then the performance of sparse matrix-vector multiplications is

expected to improve.

If the nonzeros of a sparse matrix are very sparse or the number of nonzero blocks

is very high then permuting the rows or columns of that sparse matrix is necessary. Be-

cause by permuting columns or rows of a sparse matrices we can expect to improve the

performance of all techniques mentioned above.

The main contribution of this thesis is the proposal for a new column ordering algo-

rithm based on binary reflected gray code namely BRGC ordering. The features of BRGC

ordering are given below.

• Given this column ordering, both the temporal and the spatial locality of x improves

during sparse matrix-vector multiplication, if we access the sparse matrix row wise.

In contrast, other column ordering algorithms consider only the temporal locality of

x.

• This column ordering algorithm reveals a certain sparsity structure (describe in Sec-

tion 4.4.5) of a sparse matrix. So we can expect to store a sparse matrix after BRGC

ordering by a number of blocks or tile blocks or nonzero blocks efficiently. Other

column ordering algorithms try to minimize the number of nonzero blocks but do not

necessarily form any sparsity pattern of the sparse matrices.

• We found this ordering competitive with other column ordering algorithms consider-

ing the number of nonzero blocks.

• BRGC ordering produces the same column ordering if the columns are randomly per-

muted. Furthermore this ordering does not change the sparsity structure of a banded

matrix much.

72

Based on our experimental results on a number of sparse matrices we can conclude

that fixed-size block storage scheme performs better than CRS and BCRS schemes on

all computing platforms. We also found that BRGC ordering performs better than other

column ordering algorithms during sparse matrix-vector multiplication on both compaq

and ibm platforms.

6.2 Future Direction

For future research on this work we would like to consider:

• The application of BRGC ordering to improve data locality during sparse matrix-

vector multiplication (y = Ax) is a new approach. The applicability of this approach

to other sparse matrix problems requires further investigation. We would like to

find out the relationship among the number of cache misses, cache size, cache line

size and mapping function, when the input sparse matrix is preprocessed by BRGC

ordering algorithm.

• We would like to use register blocking and cache blocking method in sparse matrix-

vector multiplication where the columns of sparse matrix is ordered by BRGC order-

ing algorithm [19] [35].

• We would like to measure the performance of BRGC ordering on storage schemes of

sparse matrices where sparse matrices are stored by a number of fixed size blocks or

tile blocks.

73

Bibliography

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. V. Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. SIAM, 1994.

[2] Alfredo Buttari, Victor Eijkhout, Julien Langou, and Salvatore Filippone. Perfor-
mance optimization and modeling of blocked sparse kernels. Int. J. High Perform.
Comput. Appl., 21(4):467–484, 2007.

[3] Thomas F. Coleman and Jorge J. Moré. Estimation of sparse jacobian matrices and
graph coloring problems. SIAM Journal on Numerical Analysis, 20(1):187–209,
1983.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Second Edition. McGraw-Hill, 2001.

[5] Tim Davis. University of Florida Sparse Matrix Collection, url: http://
www.cise.ufl.edu/ research/ sparse/. Access Date: April 10, 2008.

[6] UltraSPARC Processor Documentation. http:// www.sun.com/ processors/ documen-
tation.html. Access Date: April 10, 2008.

[7] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201–213, 2002.

[8] Anand Ekambaram and Eurpides Montagne. An Alternative Compressed Storage
Format for Sparse Matrices. In Computer and Information Science, volume 2869 of
Lecture Notes in Computer Science, pages 196–203, 2003.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[10] Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen. What Color Is Your
Jacobian? Graph Coloring for Computing Derivatives. SIAM Review, 47(4):629–705,
2005.

[11] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB:
Design and implementation. SIAM J. Matrix Anal. Appl, 13:333–356, 1992.

74

[12] W. D. Gropp, D. K. Kasushik, D. E. Keyes, and B. F. Smith. Towards realistic bounds
for implicit CFD codes. Proceedings of Parallel Computational Fluid Dynamics,
pages 241–248, 1999.

[13] Geir Gundersen and Trond Steihaug. Data structures in Java for matrix computations.
Concurrency-Practice and Experience., 16(8):799–815, 2004.

[14] V. Carl Hamacher, Zvonko G. Vranesic, and Safwat G. Zaky. Computer Organization,
4th Edition. McGraw-Hill, 1996.

[15] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach, Third Edition. Morgan Kaufmann Publishers, 2003.

[16] D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Modeling data locality for the
sparse matrix-vector product using distance measures. Journal of Parallel Computing,
27:897–912, 2001.

[17] Shahadat Hossain. On Efficient Storage of Sparse Matrices. In the Proceedings of
ICCSE, pages 1–7. Hasan Dag, Yuefan Deng (Eds.), 2006.

[18] Shahadat Hossain. A New Data Structure for Multiplying a Sparse Matrix with a
Dense Vector. In Proceedings of the International Conference on Computational and
Mathematical Methods in Science and Engineering, pages 197–204. CMMSE, 2007.

[19] Eun-Jin Im. Optimizing the performance of sparse matrix-vector multiplication. PhD
Thesis, University of California Berkeley, 2000.

[20] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. International Journal of High Performance Computing
Applications, 18:135–158, 2004.

[21] Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms :Generation,
Enumeration, and Search. CRC Press, 1999.

[22] Amy N. Langville and Carl D. Meyer. A reordering for the PageRank problem. SIAM
J. Sci. Comput., 27(6):2112–2120, 2006.

[23] The Mathworks. http:// www.mathworks.com/. Access Date: April 10, 2008.

[24] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector product compu-
tations using unroll-and-jam. International Journal of High Performance Computing
Applications, 18:225–236, 2004.

[25] Rajesh Nishtala, Richard Vuduc, James W. Demmel, and Katherine A. Yelick. When
cache blocking sparse matrix vector multiply works and why. In In Proceedings of
the PARA04 Workshop on the State-of-the-art in Scientific Computing, 2004.

75

[26] Linda Null and Julia Lobur. The Essentials of Computer Organization and Architec-
ture, 4th Edition. Jones and Bartlett, 2003.

[27] Advanced Micro Devices AMD-Global Provider of Innovative Microprocessor. http://
www.amd.com/ us-en/ Processors/ TechnicalResources/. Access Date: April 10,
2008.

[28] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F. Rivera. Performance optimization
of irregular codes based on the combination of reordering and blocking techniques.
Parallel Comput., 31(8+9):858–876, 2005.

[29] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector mul-
tiplication. In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference
on Supercomputing (CDROM), New York, NY, USA, 1999. ACM.

[30] Intel Processors. http:// www.intel.com/ products/ processor/. Access Date: April 10,
2008.

[31] Yousef Saad. Iterative methods for sparse linear systems, 2nd Edition. SIAM, 2003.

[32] W. Richard Stevens. Advanced Programming in the Unix Environment. Addison-
Wesley, 1999.

[33] O. Temam and W. Jalby. Characterizing the behaviour of sparse algorithms on caches.
Proceedings of Supercomputing 92, pages 578–587, 1992.

[34] S. Toledo. Improving Memory-System Performance of Sparse Matrix-Vector Mul-
tiplication. In Proceedings of the 8th SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

[35] Richard Vuduc. Automatic performance tuning of sparse matrix kernels. PhD Thesis,
University of California Berkeley, 2003.

[36] Richard Vuduc and Hyun-Jin Moon. Fast sparse matrix-vector multiplication by ex-
ploiting variable block structure. In High Performance Computing and Communica-
tions, volume 3726 of Lecture Notes in Computer Science, pages 807–816, 2005.

76

