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ABSTRACT 

Harnessing wind energy in built-up areas to generate power by a wind turbine for domestic 

application still remains a challenge despite considerable research has been undertaken in this 

area. The complex wind conditions in built-up areas, manufacturing complexity and the cost 

make most wind turbines unattractive for domestic application. For the use in built-up areas, 

vertical axis wind turbines are preferable due to their omni-directional characteristics, 

aesthetics, low noise and safety.  

Despite having these advantages, most vertical axis wind turbines available in the market are 

not producing appreciable power. An innovative and low cost vertical axis wind turbine with 

appreciable power generation capacity can provide a competitive edge to its peer. The 

primary objective of this study is to develop a micro vertical axis wind turbine suitable for 

built-up areas.  

To achieve this objective, a series of vertical axis wind turbines with multiple blades have 

been designed, manufactured and studied experimentally. A total of thirteen single stage 

multi-blade drag-based vertical axis wind turbines (6 with 300 mm diameter, four with 200 

diameter and three with 600 mm diameter) with various blade configurations were 

investigated using RMIT Industrial Wind Tunnel. The blade shape of each turbine is semi-

circular with zero twisting. Each turbine’s rotational speed (RPM), torque (T) and power (P) 

were determined under the wind speed ranging from 4.5 m/s (16 km/h) to 8.5 m/s (31 km/h). 

Smoke and wool tuff flow visualisations techniques were used to understand airflow 

characteristics in and around each prototype turbine. For each prototype wind turbine, a 

graphical relation between power and rotational speed, power coefficient and tip speed ratio, 

and maximum torque and number of blades were constructed. The effect of wind turbulence 

on power output has also been studied. 

At all speed range studied, the 300 mm diameter turbine with 32 blades produced highest 

torque and power amongst all 300 mm diameter configurations. Similarly, the 200 mm 

diameter turbine with 19 blades generated highest torque and power amongst 200 mm 

diameter turbines. An empirical relationship has been established to determine the optimal 

blade number for a constant diameter multi-blade single stage drag-base vertical axis wind 
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turbine. The experimental data obtained for two different diameter prototype turbines have 

confirmed the validity of the developed empirical relationship.   

Power is highly dependent on blade number and blade spacing. With the increase of blade 

number, the power increases till it reaches an optimal blade number thereafter it starts to 

decrease. The optimal blade spacing was determined to be in between 5.5 mm and 6.5 mm 

for all turbines studied.  

A flow enhancing device (cowling) was designed and employed to explore its effectiveness 

on turbine rotational speed (RPM) and torque. The flow enhancing device had shown a 

positive impact on the turbine RPM however, the overall torque and power was found to be 

lower compared to turbines without its employment.  

Wind turbulence intensity has significant impact on power output. The power decreases with 

an increase of turbulence. However, the airflow rate or volume flow rate has much higher 

impact on the power output.  

The power can be increased by approximately two times when the blade diameter is scaled 

up. Doubling the blade diameter increases the amount of wind energy the turbine blades are 

able to extract. However, it is found that the power output does not increase proportionally as 

the optimal power output depends on a) blade number, b) blade spacing, c) blade angle, d) 

turbulence intensity, and e) airflow rate. 

In an open environment, small scale vertical axis wind turbine blades can experience wind 

with varied gustiness due to variety of structures. This can have effect on aerodynamic 

parameters optimised in controlled wind conditions in the wind tunnel. Therefore, it would be 

useful to undertake a field study to determine the wind gustiness effect on power output.  
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  CHAPTER 1
Background and Literature Review  

In this chapter an overview of global power generation scenario with focus on renewable 

wind power generation by turbines is presented with particular references to drag based 

vertical axis wind turbine. Relevant wind turbine theory and background literature are also 

presented and the Chapter concludes with major objectives and layout of the work. 

 

1.1  Current Global Power Generation  

 

As global economic growths increases, developing countries led by China and India are 

increasingly looking at various energy sources to fuel their growth. The need for power to 

fuel the economic growths has put tremendous pressure on concerned bodies’ responsibility 

to protect the environment at the same time ensuring low energy cost.  

The cheapest source of power is from nuclear generation at 2 cents per kilowatt hour (IER, 

2012). However, higher construction cost and safety fears due to radiation have made nuclear 

energy unattractive to common masses. Power generation by coal remains the dominant 

method in most countries due to its low generation and construction cost. The coal power 

generation cost is around 2.5 cents per kilowatt hour. The construction cost is about 2 times 

lower per kilowatt equivalent compared to nuclear power plant (EIA, 2016), (WNA, 2018). 

Among the renewable sources, hydro power is the cheapest to generate at 4 cents per kilowatt 

hour. Wind energy is nearly 2 times cheaper to generate compared to solar per kilowatt hour 

(based on 24% capacity) as shown in Table 1.1. Cost of generating from solar photovoltaic 

on residential house rooftops is 20 cents per kilowatt hour making it the most expensive 

power source (IRENA, 2018). 
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Table 1.1: Per Unit Cost of Power in 2016 

  
Construction cost✝ 

(AUD/kWhe) 
Generation Cost 

(AUD¢/kWh) 

 

Life with rated efficiency  

(years) 

Coal 1000 2.5 50 

Gas 400 4.0 25 

Nuclear 3000 2.0 80 

Micro -Hydro 1000 4.0 20 

Wind 6000 6.0 20 

 

Solar                                                

-based on 24% capacity - 15 20 

-based on 9% capacity 
- 20 - 

 ✝kilowatt hour equivalent 

 

The coal consumption for power generation has increased by 64%, led by economic growths 

in China and India since 2000. The global power generation by coal is around 41% of the 

total global power generation of 23,816 TWh in 2015, as shown in Figure 1.1 (REN21, 

2017). The power generated by natural gas is around 22% followed by liquid fuel at 4%. In 

2016, nearly 79% of the world power is generated by fossil fuel (REN21, 2017), (EIA, 2016) 

and (IEA, 2016). Till to date, coal remains a major primary source of energy in the world due 

to its low cost. Among the non-fossil energy source, hydro power is 16% of total global 

power followed by nuclear energy at 11%, wind power at 3%, biomass at 2% and solar power 

at around 1% (EIA, 2016) and (IEA, 2016). 
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Figure 1.1: Global power production in 2016 (adapted from REN21, 2017) 

 

The power sector is responsible for around 25% of global greenhouse emissions. The global 

average per capita power consumption in 2016 is around 2,674 kWh as shown in Figure 1.2. 

The per capita power consumption varies significantly based on household income, weather 

condition, house size, appliance standards and environmental consciousness. For example, 

the average Norwegian household used in 2016 about 25 times more power than a typical 

developing country’s household which uses around 1000 kWh per year and approximately 

4.5 times more power than a typical European home (WEC, 2017). This is because Norway 

remains one of the few countries where electricity is the main heating source. The main 

heating source for about 73% of the households is based on electricity, either by electric 

space heaters (48%), electric floor heating (7%), air heat pumps (21%) or central heating with 

electricity (Statistics Norway, 2016). With the rapid increase of economic prosperity and 

household income in developing countries, the demand for power is also increasing. This 

results in more greenhouse gas emission as most power currently generated is from fossil 

fuels (coal, gas and liquid fuel). At present, the residential sector consumes over one-third of 

the total power consumption (WEC, 2017).   
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Figure 1.2: Per capita power consumption for selected countries in 2016 (adapted from WEC, 2017) 

 

The world’s total power generation in 2016 was 23,816 TWh (IEA, 2016) and (Enerdata, 

2016) out of which 4% by liquid fuel, 22% by natural gas and 41% by coal. The remaining 

33% are generated by nuclear and renewable energy sources (16% by hydro, 11% by nuclear, 

3% by wind, 1% by solar and 2% by biomass) (IEA, 2016) and (EIA, 2017). It is estimated 

based in reserve to production ratio, liquid fuel, natural gas and coal will be depleted by 2068, 

2070 and 2170 (BP, 2016), (EIA, 2017) and Abas et al. (2015). 

 

1.2 World’s Liquid Fuel Production 

 

The current world reserve of crude oil is 1,726,685 million of barrels (MMbbl) and the 

production is around 80,622,000 (bbl/day) (EIA, 2017). The major reserves are located in 

Saudi Arabia, Venezuela, Canada, Iran, Iraq and Kuwait. The oil exporting countries have 

created an organisation “Organisation of the Petroleum Exporting Countries (OPEC)” to have 

an edge in global oil market dominance. The OPEC members are Algeria, Angola, Ecuador, 

Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, United Arab Emirates and Venezuela 

which accounted for the highest global crude oil export at nearly 49% in 2016. The top ten oil 
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exporting countries are shown in Figure 1.3 (REN21, 2017). These countries account for two-

thirds of global oil exports. Saudi Arabia is the largest crude oil exporter accounting for 

nearly 20.1% of global exports and is nearly double the second largest exporter Russia which 

account for nearly 11% of global exports. Saudi Arabia exported nearly 7,165 000
1
 bbl/day in 

2015. The third largest exporter is Iraq which contributes 6.8% of global exports. Canada, 

UAE, Kuwait, Iran, Nigeria, Angola and Norway each accounted for 5.8%, 4.5%, 4.3%, 

4.0%, 3.7% and 3.3% of global oil exports (REN21, 2017). Russia, Canada and Norway are 

non - OPEC member oil exporting countries. 

 

 

Figure 1.3: Crude oil exports market share by country in 2016 (adapted from REN21, 2017) 

 

According to International Energy Agency (2017), the worldwide demand for crude oil for 

power generation is projected to decline due to high cost of liquid fuel and the falling cost of 

renewable source of energy and the world-wide push to tackle climate change and improve air 

quality and the rise of US shale gas output. Crude oil is being replaced by natural gas, 

renewables (hydro, wind solar and solar) and nuclear energy in power generation.  

                                                 
1
 Barrel per day (bbl/day) 

2
Current OECD member States: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, 

Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, 
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1.3 Global Coal Scenario 

 

The world’s current coal deposits are estimated to be around 816 billion metric tons (WEC, 

2016). The major coal deposits are in US, Russia, China, India and Australia. Coal currently 

supplies 41% of global electricity and is expected to grow in coming decades (WEC, 2016).  

The leading coal exporters accounted for nearly 95% of all coal exports in 2016. The top ten 

coal exporting countries are shown in Figure 1.4 (REN21, 2017). The largest coal exporter 

was Australia, which exported nearly 463 million tonnes (Mt) in 2016 or nearly 38.3% of 

total global coal exports which is nearly double the second highest coal exporting country 

Indonesia. Indonesia exported nearly 17.4% followed by Russia at 12%. United States, 

Colombia, South Africa, Canada, Netherlands, North Korea and Mongolia accounted for 6%, 

5.9%, 5.2%, 4.5%, 3.2%, 1.6% and 1.3% of total coal exports respectively (REN21, 2017), 

(IEA, 2016) and (EIA, 2017). 

 

 

Figure 1.4: Coal exports market share by country in 2016 (adapted from REN21, 2017)  
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According to US. Energy Information Administration (2017), the global coal use is projected 

to remain flat. The total coal demand in Organisation for Economic Co-operation and 

Development (OECD)
2
 regions and China is predicted to decline offsetting the growth in 

India and other non-OECD Asian nations.   

In order to reduce the dependency on coal and environment pollution, the use of natural gas 

for power generation is increasing rapidly. Currently, generation by natural gas is around 

(21.6%) (IEA, 2016) and (EIA, 2017). Most peaking power generation in developed countries 

(Australia, USA, and UK) is undertaken by natural gas. However, due to limitation of access 

to other fuels, some countries fully or over 80% of their power generation are achieved by 

using gas (Qatar, United Arab Emirates, Bangladesh, and Nigeria) (IEA, 2016). The fast 

developing nations and some developed nations in Asia use natural gas for power generation. 

These countries do not have enough gas from their domestic source. Hence they import gas 

from foreign countries as Liquefied Natural Gas (LNG) to make easier transportation. 

 

1.4 Power Generation by Natural Gas  

 

The countries that do not have access to their own natural gas are importing natural gas by 

pipeline (if geographically possible) and natural gas as liquid form (e.g. Liquefied Natural 

Gas - LNG). Natural gas accounts for around 23% of the world’s power generation around 

5579 TWh (EIA, 2017). Gas in the form of LNG is the easiest means to import as these 

regions are not easily served by pipelines. Japan remains the world’s largest importer of LNG 

around 30% of the world’s LNG import followed by South Korea (15%), Taiwan (5%), 

China (4%) and India (3%). 

LNG accounted nearly three-quarters of capacity growth between 2000 and 2017 in 

developed economies. The shift towards gas power generations is due to lower capital cost 

and shorter project lead times compared to coal and nuclear power plants. Furthermore, 

                                                 
2
Current OECD member States: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, 

Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, 

Switzerland, Turkey, UK, and US. 
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flexibility in providing either peak or base load power or supplement to intermittent 

renewable source makes it an attractive energy source.  

The use of Liquefied Natural Gas (LNG) for power generation has been rapidly increasing as 

an alternative to coal. The leading top ten exporters accounted for nearly 59% of total global 

exports in 2016. The order of top five exporters by share is Qatar (29.9%), Australia (17.2%), 

Malaysia (9.7%), Nigeria (7.2%), Indonesia (6.4%), Algeria (4.5%), Russia (4.2%), Trinidad 

(4.1%), Oman (3.2%) and Papua New Guinea (2.9%) (IGU, 2017). The total exports in 

Million Ton Per Annum (MTPA) are shown in Figure 1.5. Australia export is a nearly half of 

Qatar’s export but is expected to surpass Qatar by 2021. 

 

Figure 1.5: Renewable energy share of global power production in 2016 (adapted from IGU, 2016) 

 

LNG is Natural Gas cooled down to condensate at around -161 °C. Natural gas consists 

primarily of methane. Impurities and heavy hydrocarbons from the gas fuel are removed 

before the cooling process. The volume of the liquid gas is approximately 1/600
th

 of the 

gaseous volume at atmospheric conditions. It is odourless, colourless, non-toxic and non-

corrosive. LNG is cost efficient to transport over long distances where pipelines do not exist. 

A typical LNG shipment infrastructure (ship terminal, storage and liquefaction trains) is 

shown in Figure 1.6.  
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Figure 1.6: A LNG transportation network at Gladstone in Queensland, Australia by ship (adapted 

from ABC, 2016) 

 

LNG consumption is predicted to increase by over 40% from 2015 to 2040 (IGU, 2017) out 

of which power generation is responsible for nearly 75% of the increase. LNG fired power 

plants are attractive due to low capital cost, favourable heat rates and relatively low fuel cost. 

However, the energy usage for gas liquefaction plant and high risk factors include 

flammability after vaporization into a gaseous state, freezing and asphyxia are still a major 

concern, World Energy Outlook- IEA (2016) and (EIA, 2017). Another important issue is that 

the price of LNG is tagged with the international price of crude oil. Hence, there is an 

unpredictability of the price. 
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1.5 Future Primary Energy Source  

 

By 2060, the global power generation will increase to 44,914 TWh, an increase of around 

89% when compared to 2015 (WEC, 2017). The non-fossil energy source is predicted to 

provide around 54% of the total global power generation as shown in Figure 1.7. Nuclear and 

hydro power sector is expected to lead the way with 15% each followed by wind, solar and 

biomass at 13%, 7% and 4% respectively. Gas and coal are projected to be major contributor 

from fossil fuel sources at 27% and 18% respectively (IEA, 2016) and (EIA, 2017). 

 

 

Figure 1.7: Future global power production in December 2060 (adapted from WEC, 2016) 

 

The demand for oil is projected to experience reduction in coming years due to Paris 

Agreement
3
 which aims to stabilize the global average temperature and limit greenhouse gas 

emissions. Unless new oil reserves are discovered, fossil fuel is projected to deplete by 2060 

at current world energy consumption rate.  

                                                 
3
 The Paris Agreement entered into force on 4 November 2016, thirty days after the date on which at least 55 

Parties to the Convention accounting in total for at least an estimated 55 % of the total global greenhouse gas 

emissions have deposited their instruments of ratification, acceptance, approval or accession with the 

Depositary. 
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Figure 1.8: World oil production forecast (adapted from L-B-Systemtechnik, 2008) 

 

The peak and decline of oil production countries are shown in Figure 1.8. The USA’s oil 

production peaked in the 1970s followed by steady decline in oil production. Russia’s crude 

oil production peaked in 2000s while OPEC regions crude oil production peaked in 2010s. 

Global crude oil production is expected to follow similar pattern. Coal is forecast to fuel 18% 

of the total global power production by 2060. Since 2000, coal consumption for power has 

increased by 64%. As mentioned previously, coal remains a major primary source of energy 

in Asia due to low cost which is around (2.5 ¢ per kWh) and is expected to be the main power 

source in the foreseeable future (WEC, 2016). 

The use of Nuclear Power is on the rise globally. In 2015, 65 nuclear reactors for power 

generation were under construction with a total capacity of 64,000 MW. Forty of such units 

under construction were located in four countries: China, India, Russia and South Korea. 

Liquefied Natural Gas (LNG) is expected to play a role in power generation. However the 

price tag of LNG with Liquefied fuel (e.g. Crude oil) has made LNG a cost vulnerable for 

power generation. 
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1.6 Power Generation by Renewable Energy 

 

Although hydro resources currently dominate in renewable power generation, it is expected 

by 2060, non-hydro renewable energies will represent between 21% to 42% of future power 

generation mix (REN21, 2017). Nearly 24.5% of global power production in 2016 came from 

renewable energy, with 16% coming from hydropower, 3% from wind power, 2% from bio 

fuel (ethanol, methanol, biodiesel from algae especially from (3
rd

 generation biogas) and 1% 

from solar panels as shown in Figure 1.9. Other renewable (ocean, concentrated solar power 

(CSP) and geothermal power) accounted for another 0.4% (REN21, 2017). 

  

 

Figure 1.9: Renewable energy share in 2016 (adapted from REN21, 2017) 

 

1.6.1 Power Generation by Hydro Energy 

 

The utilisation of hydro energy has been a popular for many decades. Hydropower produced 

nearly 1,096,000 MW or 16.6% of total global power production in 2016. China is the largest 

hydropower generating country. It accounts for 28% of the global hydropower capacity, 
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followed by Brazil, USA and Canada at 9%, and India and Russia at 4% which together 

accounted for about 62% of installed capacity at the end of 2016. Global hydropower 

generation was estimated to be 4102 TWh in 2016, up about 3.2% over 2015.  The ‘Three 

Gorges Dam’ that spans the Yangtze River in China is shown in Figure 1.10. It is the world’s 

largest hydro power plant in terms of installed capacity. The ‘Three Gorges Dam’ installed 

capacity is 22,500 MW (Thomson Reuters Corporation, 2017). 

 

Figure 1.10: The Three Gorges Dam, China (adapted from Business Insider, 2015) 

 

Hydropower is relatively clean and can be used as cheap flood control (primary reason for 

dams). Dam is constructed for storing water to generate hydraulic head. The main parameter 

of hydro resources viability for power generation is hydraulic Head (h). Hydraulic head is 

defined as the difference between the headwater level in the reservoir upstream of the dam 

and the tail water level below the hydroelectric dam. It represents the amount of energy that 

can be transformed into electricity by the turbines and generators. A typical hydro power 

plant layout and its basic components are shown in Figure 1.11. The higher the water level, 

the more potential energy that the water has. 
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Figure 1.11: A typical hydro power plant layout (adapted from US Geological Survey, 2015) 

 

The control gate allows water to flow through the penstock to the turbine. The control gate 

controls the volume of water to the turbine. The turbines are coupled to an electrical 

generator. Kinetic energy from the water drives the turbine coupled to the electrical generator 

producing electrical power. 

However potential power output is limited globally to about 5 to 10% of energy needs. Its 

dependability is an issue due to prolonged droughts and seasonal variability that can cut 

power production severely. Furthermore dams have drawbacks, including loss of nutrient 

flow down river, loss of sediment flow down river, flooding of scenic, farming areas and 

ecosystem downstream and upstream, Cresswell et al (2009). Hence, power generation by 

wind currently remains a viable true renewable energy source for power generation. 
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1.6.2 Power Generation by Solar Photovoltaic (PV) Cells 

 

Solar installed capacity globally has reached approximately 227,000 MW in 2016, equivalent 

to producing 1% of the power used globally. China is the global leader accounting for 27% of 

global Solar PV followed by Japan accounting for 15% and Germany, 11.5%. The top three 

countries account for nearly half the global power generation by solar PV. China alone added 

nearly 80% in total solar PV capacity in 2016 compared to previous year. Solar PV 

installation is expected to increase every year, REN21 Renewables Global Status Report 

(2017). 

 

 

Figure 1.12: Solar PV on a residential house rooftop in Australia 

 

Energy from the sun has some advantages. The surface of the earth receives 120,000 

terawatts of solar radiation (sunlight) – 20,000 times more power than the planet needs. As 

the solar panel does not have any moving parts, its applications are desirable in built-up 

areas.  A typical residential rooftop solar PV layout is shown in Figure 1.13. 
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Figure 1.13: A typical residential rooftop Solar PV layout  

 

The photovoltaic (PV) panels convert sun’s rays into power by exciting electrons in silicon 

cells. The power produced is direct current (DC). The inverter is used to convert the DC 

power to alternating current (AC) as most home appliances use AC power.  The power from 

the inverter is then passed through the bi-directional meter. Bi- directional meters measures 

electricity flow in two directions. It’s used to measure how much power is consumed and also 

how much power is fed back into the power grid. 

Although the cost of solar power generation has been decreasing, it is still the most expensive 

renewable energy source for generating power. The cost of power is 15 cents per kilowatt 

hour (kWh) based on 24% capacity. Whereas, the cost of wind power is 6 cents. It is nearly 

two and a half times more expensive than wind power. Moreover, the need for large areas to 

set up solar panels and the recyclability of solar panels after the end of use has an enormous 

impact on the environment. Furthermore, solar energy is an intermittent energy source. 

Access to sunlight is limited at certain times (e.g. night). This requires a large backup 

generating capacity and poses challenges to grid reliability. These unpredictability are the 

reason why solar power is not first choice when it comes to meeting the base load power 

demand. 
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1.6.3  Wind Energy 

 

Wind energy is the second largest renewable energy source (4%), behind hydro energy 

(~17%) for power generation. The global wind power capacity in 2016 is nearly 487,000 MW 

as shown in Figure 1.14. China is the largest wind power producing country with 168,732 

MW which equates to around 34.7% of the total world wind power generation capacity. USA 

is the second largest wind power producing country with 82,184 MW, followed by Germany, 

India, Spain, United Kingdom, France, Canada, Brazil and Italy which combined produce 

84% of the total world wind generated power (REN21, 2017) and (IEA, 2016). 

 

Figure 1.14: Global wind power installed capacity in 2016 (adapted from REN21, 2017) 

 

The total global wind power capacity from 2008 to 2016 is shown in Figure 1.15 (REN21, 

2017). Almost 55,000 MW of wind power (12%) capacity was added since 2015. China alone 

added 23,400 MW followed by US with 8,200 MW and Germany with 5,000 MW of wind 

power. UK, France, Canada, Brazil and Italy added 0.7, 1.6, 0.7, 2 and 0.3 MW respectively. 

The global estimated wind power capacity from small scale wind turbines is about 948 MW 

in 2015 (Pitteloud and Gsänger, 2017). The World Energy Association (WEA) (2016) 

estimates that China, US and UK represent around 84% of global small wind power 
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generation capacity. The small wind energy market is forecasted to achieve a cumulative 

installed capacity of about 1,900 MW by 2020 (Pitteloud and Gsänger , 2017).  

 

Figure 1.15: Global wind power growth from 2008 to 2016 (adapted from REN21, 2017) 

 

At present, the residential sector consumes over one-third of the total global generated power 

(WEC, 2016) and (REN21, 2017). Hence, the use of renewable wind energy available in the 

built-up areas for power generation can reduce the dependency on fossil-fuel generated power 

for household application and the greenhouse gas emission. 

For example, over 90% population of Australia live along the coastal belt which has proven 

vast wind resources as shown in Figure 1.16. The average wind speeds in urban areas is 

around 3-4 m/s. This provides unique opportunities for domestic scale wind turbines 

utilisation to harness the wind energy for power generation in residential areas. The average 

wind speed in Australian Costal areas varies from 4 m/s to 8 m/s. The average wind speed in 

Australian Southern Coastal areas is around 6-8 m/s which are ideal for commercially power 

generation. 
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Figure 1.16: Australian wind map (adapted from Wind Resource Assessment in Australia-A planners 

guide, 2003) 

 

Majority of current installed wind farms in Australia are situated along the 26,000 km costal 

belts as shown in Figure 1.17. The red doted circle in Figure 1.17 indicates the location of 

commercial wind farms with turbines. In 2016, nearly 79 wind farms was established in 

Australia contributing nearly 4,327 (MW) of installed power, which accounts for 5.3% of 

Australia’s total power demand (12,903 GWh) (CEC, 2016). Most commercial wind power 

farms in Australia use Horizontal Axis Wind Turbines (HAWTs) between 1.5 to 3 MW 

generation capacities (CEC, 2016). Wind power is the second highest renewable source 

accounting for about 30% of the total percentage of renewable generation. Power is 

dispatched to consumers through transmissions. The transmission over long distances creates 

power losses. The overall losses between the power plant and consumers are around 10%.  

Each wind farms generally possesses around 15-140 wind turbines capable of producing 21 

MW to 420 MW of power. 
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Figure 1.17: Australian wind farms (adapted from Coppin, 2003) 

 

Power generation from urban resources using solar panels and wind turbines is a promising 

alternative renewable power source to minimize losses through power lines and minimising 

air pollutions. Solar panels have the advantage of being silent as there are no moving parts 

compared to wind turbines. However, solar panels only generate power during day time. 

Furthermore, silicone used in the panels is expensive. Alternatively, wind turbines generate 

power throughout the day. They are cheaper compared to solar power generation. Hence, 

power generation from urban wind resources using horizontal axis wind turbines (HAWTs) 

and vertical axis wind turbines (VAWTs) is a viable alternative renewable power generation.  

 

1.7 Process of Wind Power Generation 

 

Wind turbines extract kinetic energy from wind and convert it to power. The kinetic energy in 

the wind is used to rotate blades around a rotating shaft (rotor). It is not possible to harness all 

of the available kinetic energy as the wind needs to move from the turbine and it can never 

slow down to zero velocity. The maximum power that can be harnessed is governed by Betz 

law. Detailed explanation about Betz law is given in Section 1.10.  Therefore, at 4 m/s wind 

speed, the maximum power that a turbine can extract from the wind is 59.3% of 38W per 

square metre of swept blade area, or 22.8W for a 1m
2
 turbine as shown in Figure 1.18. The 
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maximum power in comparison with larger diameter typically used in commercial wind 

turbines are shown in Figure 1.19. It can be observed that at 5 m/s wind speed (typically 

encounters in built-up arrears), a 20 m diameter turbine can produce 400 times more power 

compared to a 1 m diameter turbine. 

 

Figure 1.18: Maximum power from small scale turbines with Betz Limit 

 

 

Figure 1.19: Maximum power from commercial turbines with Betz Limit 
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1.8 Commercial Horizontal Axis Wind Turbine 

(HAWT) 

 

Horizontal axis wind turbines are the most common type of wind turbine employed 

commercially. The turbines axis of rotation is parallel to the direction of free stream air flow. 

Horizontal axis wind turbines work on the fundamental principle of lift. A commercial 

HAWT turbine is shown in Figure 1.20. The turbines axis of rotation is parallel to the 

direction of free stream air flow hence it is called a HAWT. It has an efficiency of nearly 

48%, compared to latest photo voltaic (PV) cells which have efficiency around 24% (Hau, 

2005). 

 

Figure 1.20: Commercial horizontal axis wind turbine (HAWT) (adapted from Open Source Ecology, 

2016) 
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Figure 1.21: Horizontal axis wind turbine (HAWT) (adapted from Open Source Ecology, 2016) 

 

Wind turbine aerofoil blades utilises lift to produce torque which then induces a rotational 

motion. The geometric shape and cross section of wind turbine blades are defined by the 

distribution of aerofoils radially. At each blade segment, an aerofoil is stationed with the 

respect to its chord length. This defines the cross sectional shape of the blades. The 

aerodynamic forces and moments generated are primarily due to pressure distribution and 

shear stress distribution. The pressure distribution acts normal or perpendicular to the surface 

and the shear stress distribution acts tangential to the surface. The pressure variation is 

mainly due to the changes experienced in air velocity. This can be explained using 

Bernoulli’s principle, which states that the sum of static and dynamic pressure is total 

pressure. This is expressed as: 

                                                              
 

 
                                                            (1.1) 

Where    is total pressure,    is the static pressure, ρ is the density of the air and   is the 

local velocity along the aerofoil surface. 

The pressure force exerted above and below the surface varies with changing angle of attack. 

The pressure differential produces a net force and moment on the aerofoil as shown in Figure 

1.21. The net force generated is comprised of two components, lift and drag. Lift is the force 

component of the net force exerted on the aerofoil which acts perpendicular or normal to the 

flow direction. Drag, however is the force that resists the motion of an object and that is 

parallel to the direction of the flow.  The magnitude of this force largely depends on the 

projected area of an object moving through a fluid and velocity. The lift and drag forces are 

expressed as: 
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                                                                (1.2) 

                                                   AVCF DD

2

2

1
                                                               (1.3) 

Where ρ is the density of the fluid,   is the projected area and   is the free stream velocity. 

The variables of    and    are a non-dimensional terms that both relate to the characteristics 

of lift and drag. Both of these terms are dependent on speed and angle of attack. As the angle 

of attack increases, the lift force increase and consequently drag also increases.  The drag 

force is made up of pressure difference of a body immersed in a fluid and frictional drag, 

which is a function of viscosity, which has a significant contribution to the overall drag acting 

on a solid body. The power output from turbine can be calculated using the equation 1.4. 

                          3

2

1
AVCP pTurbine                                                          (1.4) 
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1.9 Commercial Vertical Axis Wind Turbine (VAWT) 

 

One notable difference of the vertical axis wind turbine (VAWT) from horizontal axis wind 

turbine (HAWT) is that the axis of rotation is perpendicular to the direction of the free stream 

air flow. There are two major types of VAWT: Darrieus and Savonius type. Darrieus turbines 

operate primarily on the principle of lift and are used in large commercial wind farms as 

shown in Figure 1.22. The other advantages of Darrius turbines are that the generator and 

gear box are located at ground level allowing for ease of service and maintenance.  

However, it is not as efficient as a horizontal axis wind turbine as shown in Figure 1.20. 

Furthermore, it needs starting torque to spin. The schematic of the turbine is shown in Section 

1.11.2. 

 

Figure 1.22: Darrieus turbine near Heroldstatt in Germany (adapted from Wacker, 2010) 
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1.10 Betz’s Momentum Theory 

 

The Betz limit states that it is only theoretically possible to convert a maximum of 59.3% of 

the kinetic energy in the wind to mechanical energy using a wind turbine, and that this 

maximum power output occurs when the downstream wind has 1/3 the speed of the upstream 

wind. 

The kinetic energy (E) of an air mass (m) moving at a velocity (V) can be expressed as: 

 
  

2

1
2mV  

(1.5) 

 

Air moving through a cross sectional area, (A) (swept by the blades) as shown in Figure 1.20, 

the volume flow rate of the flow is: 

        (1.6) 

 

and the mass flow rate with the air density   is: 

 
AVQm  

.

 
(1.7) 

 

The equations expressing the kinetic energy of the moving air and the mass flow yield the 

amount of energy passing through cross-section A per unit time or power P in (W): 

 3

2

1
AVPWind   

(1.8) 

 

As mechanical energy is extracted from the kinetic energy contained in the wind stream, with 

an unchanged mass flow (conservation of mass flow rate), the flow velocity behind the wind 

turbine blades must decrease. Here,    is the undelayed free-stream velocity, the wind 

velocity before it reaches the turbine blades, whereas    is the flow velocity behind the 

turbine blades as shown in Figure 1.23. Neglecting any losses, the mechanical energy, which 
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the disk-shaped turbine blades extracts from the air flow, corresponds to the power difference 

of the air stream before and after the turbine: 
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     (1.9) 

Maintaining conservation of mass flow (continuity equation) requires that: 

                                                           2211 AVAV                                                 (1.10)            

Substituting these values in Equation 1.9, we get: 
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              (1.11) 

 

 

Figure 1.23: Flow conditions due to the extraction of mechanical energy from a free-stream air flow 

 

From this equation, power would have to be at its maximum when    is zero, when the air is 

brought to a complete standstill by the turbine blades. However, this is scientifically 
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impossible. If the out flow velocity    behind the turbine is zero, then the inflow velocity 

before the turbine must also become zero, implying that there would be no more flow through 

the turbine at all. A physically meaningful result consists in a certain numerical ratio of       

where the extractable power reaches its maximum. This requires another equation expressing 

the mechanical power of the turbine. Using the law of conservation of momentum, the force 

which the air exerts on the turbine can be expressed as: 

 
 21 VVmF 



 

 

(1.12) 

This force, the thrust, must be counteracted by an equal force exerted by the turbine blades on 

the air flow. The thrust pushes the air mass at air velocity   , present in the plane of flow of 

the turbine blades. The power required for this is: 

        ̇        
  (1.13) 

 

Thus, the mechanical power extracted from the air flow can be derived from the energy or 

power difference before and after the turbine blades. Equating these two expressions yields 

the relationship for the flow velocity   : 
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Thus, the flow velocity in the turbine blades plane is equal to the arithmetic mean of   and 
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The mass flow thus becomes: 
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The mechanical power output of the wind turbine can be expressed as: 
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(1.17) 

In order to provide a reference for this power output, it is compared with the power of the 

free-air stream which flows through the same cross-sectional area (A), without mechanical 

power being extracted from it. This power was: 

 
      

     
  

 
     

(1.18) 

The ratio between the mechanical power extracted by the turbine blades and that of the 

undisturbed air stream is called the "power coefficient" Cp: 

 

     
        

     
 

     
    

         
 

     
  

 

 

(1.19) 

The power coefficient can be expressed as a function of the velocity ratio     : 

 
     

        

     
 

 

 
[  (

  

  
)
 

] [  (
  

  
)] 

(1.20) 

   

The power coefficient, i.e., the ratio of the extractable mechanical power to the power 

contained in the air stream, therefore, now only depends on the ratio of the air velocities 

before and after the turbine blades. If this interrelationship is differentiated to get the 

maximum value of the power coefficient it can be obtained that the power coefficient reaches 

a maximum at a certain velocity ratio with       1/3. The maximum power coefficient 

(Cpmax) becomes   

 
         

  

  
       

(1.21) 

   

It is known a Betz Limit as German Scientist Betz is the first to introduce this concept. 

Knowing that the maximum, ideal power coefficient is reached at       1/3, the flow 

velocity    in the rotor plane thus becomes: 
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At Betz’s limit,                                      

                                                              1

1

3

2
VV 

                                                            
(1.22) 

 

Hence, the effective wind velocity that is used by the turbine blades is the maximum of 2/3 

distance of the incoming free stream velocity. 

The power coefficient Cp, ratio of the aerodynamic power of the turbine as a function of the 

speed ratio   is given in Figure 1.24. The power coefficient is linked to the efficiency of a 

wind machine. The curves in Figure 1.24 show that the fast running horizontal axis wind 

machines (two- or three-bladed airscrew) have the best efficiencies. The Savonius turbine, 

which is a slow-running vertical axis wind machine,       has a rather poor efficiency: 

               at best. Nevertheless, it can present some advantages for specific 

applications, in particular due its simplicity, robustness and low cost.  

 

Figure 1.24: Power coefficient of different wind turbine design configuration (from Hau, 2005) 
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1.10.1 Betz Theorem Relevant To VAWT 

 

The aerodynamics behaviour of a simple drag based vertical axis wind turbine is shown in 

Figure 1.25. 

 

Figure 1.25: Flow conditions and drag force for vertical axis turbines  

 

For a drag based turbine, the power P captured by the drag surface is 

                                               UFP DTurbine                                                            (1.23) 

The relative speed V = V – U, which impacts the drag area: 
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Knowing that the maximum power coefficient CP is theoretically reached at U/V = 1/3 as 

described in Section 1.10, the maximum value then amounts to  

Cp max = DC
27

4

     (1.27)
 

The maximum net aerodynamic drag coefficient of a concave and convex surface is about 

1.2. Thus the maximum power coefficient of pure drag turbine becomes, 0.2. max  Cp    

It should be noted that the maximum power coefficient of a pure drag wind turbine is only 

one third of the Cp value of 0.593 (Betz limit).  

 

1.11 Domestic Scale or Micro Wind Turbines 

 

In this section, examples of domestic scale wind turbines currently available in the market are 

shown. Domestic scale or small wind turbine is defined as a size that would suit the needs of 

a domestic residential dwelling of small business.  Micro wind turbine is classified as turbine 

that produces power less than 1 kW. A small turbine is classified as turbine that produces 

power in-between 1-10 kW (Enhar, 2010).  

 

1.11.1 Micro Horizontal Axis Wind Turbine 

 

A domestic scale micro horizontal axis wind turbine installed on the rooftop in build-up areas 

of Melbourne metropolitan is shown in Figure 1.26. It is a lift based turbine. 
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Figure 1.26: Domestic scale horizontal axis wind turbine 

 

Horizontal axis wind turbines possess relatively higher efficiency (30%) however it needs 

to be installed on a tower. Furthermore, HAWTs are inefficient in urban and built-up arrears 

due to complex urban wind conditions. Detailed explanations on urban wind conditions are 

given in Section 1.12. HAWTs are also aesthetically unpleasing and undesirable in built-up 

areas.  

 

1.11.2 Micro Vertical Axis Wind Turbine 

 

A domestic micro vertical axis wind turbine shown in Figure 1.27 is a Maglev type VAWT. It 

uses drag and lift to produce power. 
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Figure 1.27: Domestic maglev vertical axis wind turbine 

 

One of the major advantages of vertical axis wind turbines is that they do not need yawing 

mechanism. Furthermore, VAWTs are capable of operating during minimal wind speed 

(typically encountered in urban areas) less than 5 m/s. Another advantage is that it does not 

require a tower to install. They are also more aesthetically pleasing. A schematic of a lift 

based VAWT is shown in Figure 1.28. 

A H-type vertical axis wind turbine typically has two or three aerofoil shape blades. The 

blades are connected to the turbine shaft at the mid segment. This type of turbine works on 

lift force. The schematic is shown in Figure 1.28 (a). Here, C is the chord length, L is the 

blade length, R is the effective radius of the turbine and   is the angular velocity. Three lift 

forces acting on the three blades generate a torque about the turbine shaft that rotates the 

turbine. The schematic of forces acting on the blade are shown in Figure 1.28 (b) where V  

is the free stream wind velocity, VR is relative velocity of blade, R is the effective radius of 

the turbine. 
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Figure 1.28: (a) Parameters of h-turbine type vertical axis wind turbine; (b) Free body diagram of 

blade section (adapted from Ahmed, 2013) 

 

A simple drag-based multi-blades vertical axis wind turbine installed on residential rooftop is 

shown in Figure 1.29. 

 

Figure 1.29: A typical domestic drag based vertical axis wind turbine 

 

A simple drag-based two blades (consists of two half cylinders -concave and convex) vertical 

axis wind turbine is shown in Figure 1.30. Torque is generated by the difference in net drag 
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force between the concave ( A
V

CD D 
2

2

22


) and convex ( A

V
CD D 

2

2

11


 ) surface 

of the two blades times the distance (d). The aerodynamic drag coefficient (CD) for the 

concave surface is two times higher than the convex surface, Hoerner (1965). Taking moment 

at point A, )( 12 dDdDM   the difference in drag force on the concave and convex 

surfaces of the turbine produces a net torque which rotates the turbine. The schematics of a 

simple drag-based turbine are shown in Figure 1.30 (a), where V  is free stream wind 

velocity. 

 

 
Figure 1.30: (a) A Simple drag-based vertical axis wind turbine; (b) Free body diagram of blade 

section 

 

Although VAWTs are not as efficient as HAWT, they are increasingly popular in urban 

residential areas. This is largely due to the fact that a VAWT possesses fewer moving parts 

and operates at a low tip speed ratio which makes it significantly quieter and thus well suited 

for urban residential areas, Eriksson et al. (2008).  HAWTs require a yaw mechanism to 

redirect itself in the direction of the wind, whereas VAWTs are less sensitive to the changing 

wind direction and turbulence. Another advantage associated with VAWTs is the simplicity 

in design. Unlike HAWTs, the gearbox and generator is located at ground level which 

significantly reduces the complexity of the design and is also relatively easy to maintain and 

thus lowering the maintenance cost.   
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1.12 Wind Power Generation in Urban Environment 

 

Urban wind conditions are complex and difficult to predict accurately. Most studies reported 

in the literature are based on either computational fluid dynamics modelling or low 

turbulence wind tunnel experimentation, Danao et al. (2014) and Lovett et al. (2016). The 

average turbulence intensity close to ground proximity (1.7 m above the ground) is over 2%, 

Blocken and Persoon (2009) and Mendis et al. (2007). However, this intensity is much higher 

in built-up areas. Therefore the efficiency obtained for a particular drag-based vertical axis 

wind turbine is based on computational modelling or low turbulence wind tunnel 

environment which does not correlate well with the in-situ efficiency, Loganathan et al. 

(2015) 

A typical atmospheric boundary layers and wind conditions in rural and urban areas are 

shown in Figure 1.31.  The wind conditions close the ground proximity (in urban boundary 

layer) in built-up areas vary notably with the structures’ height, shape and location, Ikegaya 

et al. (2016) and Lubitz (2014). Due to complex nature of wind conditions in built-up areas, it 

is challenging to use HAWT and lift-based VAWT to harness the wind energy to generate 

power, Alam and Golde (2013) and Webb (2007). Among all available technologies, drag-

based vertical axis wind turbine offers better suitability for harnessing wind energy for power 

generation in built-up areas, Ahmed (2013).  
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Figure 1.31: Urban and rural atmospheric boundary layer (adapted from Oke, 1976) 

 

Furthermore, wind condition in built-up area remains largely unknown creating hurdles to 

develop an effective wind power extraction strategy. Currently available wind data using 

various modelling tools including the CSIRO and US National Renewable Energy Laboratory 

(NREL) wind mapping tools provides limited insight into the urban micro wind 

environments. For example, the CSIRO mapping tool incorporates wind characteristics at 65 

m above ground level to a resolution of 3 km, Webb (2007). The micro wind environment 

(due to large resolution, e.g. 3 km) and effects of local landscape features (small hills, ridges, 

buildings, trees, structures, etc.) cannot be modelled with sufficient accuracy. Data obtained 

by other modelling tools are also impractical as they incorporate partial micro wind 

environment over the height of 10 m in urban areas where most roof heights are below 10 m.  

 

1.13 Power Generation by Small Scale Drag Based 

VAWT 
 

Small scale wind turbines in Australia are defined as turbines that are able to generate 1–10 

kW of power. However, some small-scale systems may include turbines of up to 100 kW 

(Webb, 2007). Micro-wind generators are turbines that generate less than 1kW and are 

typically used for small battery charging. 
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1.13.1 Effect of Internal Overlaps  

 

Overlap ratio is defined as ( 
d

ee
OR




'
) where e’ is the shaft diameter, e is the gap between 

the two subsequent blades and d is the blade diameter as shown in Figure 1.32. This 

parameter is important in improving the performance of a Savonius turbine and thus 

numerous studies have been conducted to optimise this parameter. Overlap ratios found in 

literature reviews can be classified as Internal and External Overlap ratios. 

 

Figure 1.32: Vertical axis wind turbine with zero, internal and overlap ratios 

 

1.13.2 Effect of Aspect Ratio  

 

Aspect ratio, AR = H/D, is defined as the ratio of the height, H of the turbine and diameter, D 

of the turbine as shown in Figure 1.33. 

Alexander and Holownia (1978) carried out experimental wind tunnel studies on the effect of 

aspect ratio on a Savonius turbine. Two turbines with 0.19 m and 0.38 m chord with aspect 
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ratios of 1.2, 2.4, 3.6 and 4.8 were tested. They kept the overlap ratio at zero. Their 

investigations were aimed at finding the effect of variables blade aspect ratio in increasing the 

efficiency of a single stage Savonius turbine in wind speeds of 6 m/s to 9 m/s. Their study 

indicated a possibility of increasing the efficiency from 6.5% to 24.3% by manufacturing a 

turbine with an aspect ratio (height divided by the radius) of 4.8. However, their study did not 

attempt to find an optimum blade configuration. Furthermore, the results are inconclusive and 

have not been independently verified by other authors. 

 

Figure 1.33: Vertical axis wind turbine with different aspect ratios (adapted from Kamoji et al. 2009) 

 

Kamoji et al. (2009) investigated relationship between the aspect ratio and efficiency of a 

VAWT. They tested different configurations for aspect ratios of 0.6, 0.7, 0.77, and 1 by 

keeping other parameters constant. Their study found the maximum Cp for a turbine was at 

aspect ratio of 0.7. However, Kamoji and his colleagues did not investigate the effect of 

overlap ratio. Their investigation was limited to two blades and overlap ratio of 0.2. 

 

1.13.3 Effect of Blade Number  

 

Blackwell et al. (1977) carried out experimental investigation on the effect of blade number 

on a vertical axis wind turbine (VAWT) with zero overlap ratios. Their investigation was 

aimed at examining the effect of blade number on the efficiency of the VAWT. The study 
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showed that the number of blades has a significant influence on the efficiency (Cp).  The 

maximum Cp of a two-bladed turbine increased by approximately 50% compared with that of 

a three-bladed turbine. The three-bladed turbine did not exhibit negative torque at any angular 

position, and the static torque variation was less than that in the two-blade turbine. However, 

Blackwell and his colleagues did not consider the effect of higher blade number without 

overlap typically found on multi-blade VAWT. 

Mahmoud et al. (2012) investigated and tested two, three and four-bladed turbines with 

aspect ratios and varying number of stages but with the same overlap ratio of zero. The two-

bladed turbine in single and double stages, with different aspect ratios, performed better than 

the three- and four-bladed turbines. Similar to Blackwell and his colleagues, this study did 

not to consider the effect of higher blade number without overlap typically found on multi-

blade VAWT. 

Saha et al. (2008) carried out wind tunnel tests to assess the aerodynamic performance of 

single, two and three-stage Savonius turbine systems. Experiments were carried out to 

optimize the different parameters like the number of stages, blade number (two and three) 

and geometry of the blade (semicircular and twisted). Their investigation revealed that most 

efficient configuration is the two bladed Savonius turbine with twisted geometry blade and 

overlap ratio of 0.2. However, this study failed to consider the effect of higher blade number 

without overlap typically found on multi-blade VAWT. Furthermore, adding twist increases 

complexity. 

Ali (2013) conducted an experimental comparative study of two and three blades Savonius 

turbines. His investigation was aimed at examining the effect of blade number on the 

efficiency of a Savonius turbine. The two-bladed turbine improved Cp by approximately 

25.5% when compared to the three-bladed turbine. The torque coefficient of the two-bladed 

turbine was also superior to that of the three-bladed turbine because the latter experienced 

more drag effect than the former. However, this study did not incorporate the effect of higher 

blade number without overlap, typically found on multi-blade VAWT. 
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1.13.4 Effect of Overlap Ratio  

 

Fujisawa and Gotoh (1992) carried out experimental wind tunnel studies on the effect of gap 

between two cylindrical halves of a Savonius turbine.  Their investigations were aimed at 

identifying the optimum overlap ratio. They reported that the flow rate increases with the 

increase in overlap ratio and the wake region produced by blockage decreases with the 

increase in flow rate. The effect increases the pressure force on the concave side of the 

returning blade. The optimum overlap was determined to be 0.15. However, the study did not 

reveal detailed correlation between the blade number, the turbine blade diameter and the 

turbine diameter. 

Jian et al. (2012) investigated the influence of overlap ratio, phase-shift and stage on a 

Savonius turbine. They found that the single-stage, double-bladed turbine exhibited an 

optimum overlap ratio of 0.166. By contrast, the double-stage turbine with a phase shift angle 

of 0° exhibited maximum Cp at an overlap ratio of 0.333. The results show that appropriate 

choice of the phase-shift angle according to the overlap ratio can not only increase the power 

coefficient of the Savonius turbines but also eliminate the negative static torque and smooth 

the variation of the static torque coefficient. Moreover, the performance of the two-stage 

turbines indicates that the two stage turbine is a better candidate for this type of wind 

turbines.  

 

1.13.5 Effect of Blade Shape  

 

Roy and Saha (2015) studied the performances and compared the torques of the conventional 

Savonius turbine, a semi-elliptical turbine, the Benesh turbine, the Bach turbine, and a newly 

developed two-bladed Savonius turbine. The designs are shown in Figure 1.34. The result of 

the dynamic performance study with blockage correction showed that the newly developed 

turbine Figure 1.34 (e) has a maximum Cp of 0.27 at the tip speed ratio of 0.77 when tested at 

the Reynolds number (Re) of 6.0 × 10
4
. The newly developed turbine was also found to 

demonstrate higher performance of approximately 28.6%, 17.4%, and 3.8% compared with 



45 

 

the conventional Savonius. However, Roy and Saha’s did not study the effect of higher blade 

number. Modifying the blade shapes added to complexity and cost.  

 

Figure 1.34: Top view of the s-turbines with dimensions: (a) Simple savonius turbine, (b) Semi-

elliptical turbine, (c) Benesh turbine, (d) Modified Bach turbine, (e) Newly developed turbine (from 

Roy and Saha, 2015) 

 

1.13.6 Effect of Twisting  

 

The use of twist in Savonius turbine blades seems to improve efficiency as well as the 

starting ability. However limited studies have been reported in the literature,  Saha and 

Rajkumar (2006). The performance of the Savonius turbine was found to increase with an 

increase of the twist angle. It is interesting to note that a larger twist angle was preferred at a 

lower wind speed to produce higher power and better starting characteristics. A twist angle of 

15° gives an optimum performance at low wind speeds of V = 6.5 m/s. Such blades show a 

power coefficient (CP) of 13.99% at a tip speed ratio (TSR) of 0.65 (i.e. at V = 8.23 m/s), 

whereas the semicircular blade with zero twist angle shows a power coefficient (CP) of 

11.04% at a tip speed ratio (TSR) of 1.0. Saha and Rajkumar (2006) also substantiated these 

findings in their studies with two and three-bladed turbine systems and observed a higher 

(a) (b) (c)

(d) (e)
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power coefficient of 0.216 with twist angle of 30° for a two-bladed turbine. However, the 

study did not attempt to find an optimum blade configuration. Furthermore, twisting increases 

the cost and manufacturing complexity. 

Irabu and Roy (2007) used guide-box tunnel to improve the power output as well as reducing 

the negative torque of the Savonius turbine. It is a rectangular box with a wind passage for 

testing the turbine. The maximum turbine rotational speed is obtained for a guide-box area 

ratio between 0.3 and 0.7. The power coefficient of the turbine with guide-box tunnel using 

an area ratio of 0.43 increases considerably (by a factor 1.5 using three blades and by a factor 

1.23 using two blades) compared to the conventional design without guide-box. The optimum 

spacing ratio between the turbine tip and the side walls of the guide-box tunnel is around 1.4. 

However, Irabu and Roy did not consider the effect of yaw angle of the guide box. In urban 

areas, the wind is highly turbulent and intermittent. Furthermore, the guide-box considerably 

increases the system complexity. 

Altan et al. (2008) introduced a deflector known as a curtain to improve the performance of a 

Savonius turbine. The curtain arrangement was also optimized. At optimum curtain 

arrangement, the Cp of a simple Savonius turbine increased to 38% compared with that of a 

Savonius turbine without a curtain. The curtain arrangement is shown in Figure 1.35. 

However, the study did not attempt to find an optimum blade configuration.  

 

Figure 1.35: Arrangement of savonius turbine with curtain (from Altan, 2008) 
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Shaughnessy and Probert (1992) and Golecha et al. (2011) carried out experimental wind 

tunnel studies on the use of deflector plates. The deflecting plates have been used as a power 

augmenter in two ways, (a) local acceleration of airflow on the turbine surface moving with 

wind and (b) reduction of wind resistance on the turbine surface moving against the wind. 

Their investigations were aimed at finding the effect of enhancement in the power output for 

a single stage turbine. The study indicated a possibility to increase the power output by up to 

50%. They also reported the enhancement in the power output was possible by 42%, 31% and 

17%, respectively for a two-stage with 0° phase shift, for a two-stage with 90° phase shift and 

for a three-stage with 60° phase shift. However, the study did not attempt to find an optimum 

blade configuration. 

 

1.13.7 Effect of Stage Numbers  

 

Hayashi et al. (2005) investigated the effect of stage numbers on the efficiency of VAWT. 

The study revealed that the Cp of a three-stage turbine with a bucket phase shift of 120° 

decreased by approximately 25% compared with a single-stage turbine. The peak torque 

values of the three-stage turbine were also lower than those of the single-stage turbine. 

Despite this condition, the three-stage turbine exhibited better dynamic characteristics. 

Similar study by Jian et al. (2012) reported that a multistage turbine exhibited approximately 

20% less power than a single-stage turbine. However, increasing the number of stages 

increases manufacturing complexity. 

 

Figure 1.36: Single and multi- stage vertical axis wind turbines (adapted from Hayashi et al. 2005) 

D

H

Single Stage Two Stages Three Stages
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1.13.8 Effect of External Overlaps  

 

Yoon et al. (2013) conducted a parametric study on a multi-blade (straight) vertical axis wind 

turbine as shown in Figure 1.37. They described the experimental results of a vertical axis 

wind turbine (VAWT) of 205 mm diameter with multiple blades, Yoon et al. installed the 

turbine  in an open-type small-scale wind tunnel with the aim to study the variation of several 

wind design parameters (i.e., length and angle) on the system performance. The findings 

showed that the efficiency of this system increases with increasing wind velocities up to 

approximately 25 m/s, after which the efficiency dropped rapidly. They concluded that 

performance depends on the blade angle and it has a maximum value at 45°. The study 

however did not provide the performance curve for the system. Details about the torque, 

power and power coefficient were also not revealed. Parametric surveys of the wind blade 

design are still being conducted. 

 
Figure 1.37: Specification of wind turbine with multiple blades (adapted from Yoon, 2013) 

 

Driss et al. (2015) conducted an experimental investigation to study the effect of external 

overlap ratios on the performance of a two blades vertical axis wind turbine (VAWT). They 

studied four VAWT prototypes with overlaps of zero, 0.1, 0.2 and 0.3 mm. The overall 

performance evaluation of the turbine was based on the power and dynamic torque 

coefficient. The prototype with external overlaps is shown in Figure 1.38. 

V

a) Top view b) Side view
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Figure 1.38: Geometrical arrangement with external overlap prototype (from Driss et al. 2015) 

 

The results showed the most efficient configuration is the prototype with zero overlap ratios. 

They concluded that the performance decreased as the external overlap ratios increased. 

However, the study did not attempt to find an optimum blade configuration. Furthermore, 

their results are inconclusive and have not been independently verified by other researchers. 

 

1.14 Vertical Axis Wind Turbine (VAWT) Power: 

Methods of Evaluation  

 

There are mainly two different approaches used to assess the aerodynamics characteristics of 

VAWTs: 

(a) Experimental techniques using wind tunnel experiment or field testing 

(b) Computational methods 

1.14.1 Experimental Methods 

 

Experimental techniques consist of wind tunnel testing either with a full-size or a scale 

model. The wind tunnel provides that approximate flow over an experimental model within a 
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controlled environment. The accuracy of such controlled environment depends on the extent 

to which the environment is replicated in the wind tunnel, the geometric accuracy of the 

model, and the wind speed. In wind tunnel testing, the speed and direction of the flow can be 

held constant. Hence, the measurements made in a wind tunnel are generally very repeatable.  

In a wind tunnel study, air flow is generally visualised using smoke and wool tufts. Fujisawa 

and Gotoh (1992) used such flow visualisation using wool tufts to understand the flow around 

a Savonius turbine in the wind tunnel.  

Regardless of wind tunnel type, the most important consideration is the level of turbulence 

and blockage ratio. These two parameters of the wind tunnel must be low enough to provide 

an acceptable flow pattern with minimum interference. In this study, a close return circuit 

wind tunnel is used. The wind tunnel has low turbulence level as measured by about 1.8% 

and the maximum blockage ratio for the full-scale test was less than 10%.  

 

1.14.2 Computational Methods 

 

Computational Fluid Dynamics (CFD) deals with the numerical analysis of fluid flows. CFD 

utilises the Navier-Stokes equations, which govern the motion of a Newtonian viscous fluid 

to solve fluid dynamics problems. Numerical solution for the three-dimensional, time-

dependent motion of turbulent flow is expensive and requires super computers. CFD is 

mostly used in research studies in simple configurations at low Reynolds numbers.  

CFD can be useful for flow visualisation and in understanding general flow behaviour. 

Although simplified numerical solutions exist for specific problems related to aerodynamic 

evaluation, few aerodynamic unsteady wind conditions can be solved analytically or 

computationally with sufficient accuracy due to strong unsteadiness of motions created by 

separated, separated and re-attached, and attached flows. 

 

1.15 Conclusion from Prior Work  
 

The studies reviewed here show that vertical axis wind turbines (VAWT) effective use in 

built-up areas is significantly constrained due to its less than expected in-situ performance. 

Current understanding of VAWT aerodynamics is limited to steady wind performance. Very 
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few attempts have been made to establish how a VAWT operates in unsteady wind conditions 

and why.  

Currently, most VAWT development is being carried out experimentally as few aerodynamic 

unsteady wind condition can be solved analytically or computationally with sufficient 

accuracy due to strong unsteadiness of motions created by separated, separated and re-

attached, and attached flows. 

Despite some studies have been undertaken to enhance the power output of vertical axis wind 

turbines by varying  the overlap ratios and by using semi-circular and straight blades, no 

work has been reported in the public domain on a single stage multi-blade drag-based vertical 

axis wind turbine with semi-circular shaped blades. The literature review clearly indicates 

that various studies have been conducted to understand the effects of wind on the frontal and 

rear blades. It is assumed no effect of wind passing through blades (section A-A). However 

there is a significant knowledge gap and deficiency in the comprehensive understanding of 

effects of gaps between subsequent blades (c) as shown in Figure 1.39 under a range of wind 

conditions. 

 

Figure 1.39: Schematic of multi-blade vertical axis wind turbine 

 

Moreover, no information is available about the optimal clearance between two subsequent 

blades of a multi-blade drag-based vertical axis wind turbines and the effect of blade number 

and diameter. A summary of current body of knowledge on micro VAWTs is shown in Table 

1.2. 

c

Wind
ω

A

A
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Table 1.2: Summary of related published research work 

  Methodology 
Blade 

number 

Type of 

blade 

External/ 

Internal 

overlaps 

Shield Twist Solidity Cp 

Alexander 

and 

Holownia 

(1978)  

Wind tunnel 
2,3 and 

4 

Semi-

circle 
Internal No Yes No 0.24 

Kamoji et al 

(2009) 
Wind tunnel  2 

Semi-

circle 
Internal No Yes No 0.21 

Saha and 

rajkumar 

(2006) 

Wind tunnel 2 and 3 
Semi-

circle 
Internal Yes Yes No 0.14 

Irabu and 

Roy (2007) 
Wind tunnel  2 and 3 

Semi-

circle 
Internal Yes No No 0.24 

Cheng et al 

(2012) 
CFD 2 

Semi-

circle 
Internal No No No 0.19 

Yoon et al 

(2013) 
Wind tunnel 15 Straight External No No No No 

Driss et al 

(2015) 
Wind tunnel  2 

Semi-

circle 
External No No Yes 0.11 

 

1.16 Objective and Scope of this Work  

 

From examination of the prior work undertaken in this area, one may conclude that there are 

significant gaps in understanding the performance of a multi-blade vertical axis wind turbine. 

Therefore the primary objectives are: 

 Understand the effect of geometric configuration of turbines, turbine diameter 

and  blade number on VAWT performance 

 Understand the effect of blade orientation on VAWT performance 

 Investigate the effect of turbulent wind on VAWT performance 

 Investigate effect of cowling on VAWT performance 

Therefore, the research questions to be answered by this research project are as follows: 

 How do the change of number of blades and blade gap affect the torque and power? 

 What is the effect of scales (e.g., model scale up) on the torque and power? 
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 What is the effect of turbulence on a drag-based VAWT on power and torque? 

 

The innovation of this research is to develop a single stage multi-blade drag based-vertical 

axis wind turbine that can be scaled for various power needs in built-up areas. 

 

1.17 Thesis Layout 

 

The structure of this thesis is as follows: 

Chapter 1 (current chapter) outlines the background, reviews the relevant literature, the 

fundamental theories of aerodynamics related to drag and lift of Horizontal Axis Wind 

Turbines and Vertical Axis Wind Turbines and describes the aims and scope of this work 

Chapter 2 describes the instrumentation and experimental facilities used in this research. A 

detailed description of RMIT research wind tunnel including the data acquisition system used 

for aerodynamic force measurements is given together with calibrations details. 

Chapter 3 presents the design of wind turbines from an aerodynamic perspective. It describes 

the aerodynamic design parameters used and outlines the process involved in designing the 

wind turbine. It also presents the methodology used to design as well as the material of 

choice for the manufacturing of the turbine blades. It also presents a detailed description of 

the instrumentation, test equipment, data processing and experimental test setup. 

Chapter 4 outlines the results for aerodynamic effects of a multi-blade single stage drag-

based vertical axis wind turbine includes following geometric features: turbine radius (R), 

blade number (N), blade radius (r), and clearance between two subsequent blades (c). Power 

curves for the optimal blade configurations are also presented in this chapter. 

Chapter 5 presents the development of an optimal blade-number prediction model for a single 

stage multi-blade drag-based vertical axis wind turbine. The industrial implications of the 

results from this work are also described in this chapter. 

Chapter 6 outlines the major conclusion from this work and the suggestions for further 

studies. 

Chapter 7 outlines the suggestions for further studies.   
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  CHAPTER 2
Experimental Facilities and Instrumentation 

This section details the experimental procedure and equipment that were utilised to acquire 

the data in the wind turbine as well as data processing.  For reliable results to be obtained, it 

is important that the experiment is conducted professionally and in an efficient manner with 

the correct procedures and safety precautions taken into account.  

 

2.1 RMIT Industrial Wind Tunnel 

 

The experimental investigation was carried out in RMIT Wind Tunnel. The tunnel is a closed 

return circuit with a turntable to yaw a suitable model to the wind direction. It has a 

rectangular test section with 3 m wide, 2 m high and 9 m long. The cross sectional area of the 

rectangular test section is 6 m
2
. The maximum speed of the tunnel in the test section is 

approximately 145 km/h. Its turbulence intensity is around 1.8%. The tunnel was calibrated 

prior conducting the experiment investigation and the mean air speeds at the entry and at the 

test position in the tunnel were measured with a modified National Physical Laboratory 

(NPL) ellipsoidal head Pitot-static tube connected through flexible tubing with a Baratron
®

 

pressure sensor made by MKS Instruments, USA.  

The wind tunnel tests were conducted at a range of wind speeds (4.5 m/s to 8.5 m/s with an 

increment of 1 m/s) for all prototype models. At each speed, the turbine rotational speed (rpm) 

and torque ( ) were measured. Measurements were taken three times for each configuration 

at all wind speeds tested. The acquired data was averaged to minimise the error. The minimum 

wind speed (4.5 m/s) was constrained by the ability of the turbine to overcome the bearing 

frictional and inertial resistance. The upper limit of wind speed (8.5 m/s) was limited by the 

structural rigidity and vibration. More details about the wind tunnel can be found in Alam 

(2000). A schematic plan view of the tunnel is shown in Figure 2.1.  
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Figure 2.1: A schematic of RMIT industrial wind tunnel (from Alam, 2000) 

 

2.2 Measurements of Dynamic Pressure, Velocity and 

Temperature 
 

The air speeds inside the wind tunnel were measured with a modified National Physical 

Laboratory (NPL) ellipsoidal head Pitot-static tube (located at the entry of the test section) 

which was connected through flexible tubing with the Baratron pressure sensor (MKS 

Instruments, USA) as shown in Figure 2.2.  The pressure readings from the pressure sensor is 

fed through to the wind tunnel computers which then computes flow properties such as the 

local flow speed, dynamic pressure and temperature.  

Equation 2.1 represents the total pressure, (  ) components: static pressure (  ) and Dynamic 

pressure 







 2

2

1
VPD  measured by the Pitot-static tube. The wind speed (V) was calculated 

using equation 2.2. 

                                                                                                                        (2.1) 

                                                          √
                 

 
              (m/s)                             (2.2) 
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Figure 2.2: A schematic of a pitot-static tube 

 

2.3 Wind Tunnel Calibration 
 

Dynamic pressures (q) in the wind tunnel were measured vertically from 200 to 1800 mm in 

an increment of 200 mm from the tunnel floor at the location where the experimental 

arrangements were mounted. The nominal tunnel air speeds were 20, 40, 80 and 120 km/h 

with less than ±1% accuracy. The local pressure was normalised by dividing by the wind 

tunnel reference pressure (qref) and plotted against the height for the air speeds as shown in 

Figure 2.3. This indicated that the local pressure did not vary significantly when referenced to 

the tunnel wall-mounted reference pressure for the given speed. However, a small variation 

of normalised velocity can be seen near the tunnel floor (Figure 2.3). No correction of 

velocity was deemed necessary as local pressure (q) did not vary significantly with wall 

mounted reference pressure (qref) with height. The accuracy of the pressure measured with 

various speeds across the plane was calculated to be less than ±1%. Hence the tunnel 

reference pressure was used in the calculation of drag and lift coefficients. 

V

StaticP

TotalP

StaticP
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Figure 2.3: Normalised local pressure variation with height in relation to reference pressure (from 

Chowdhury, 2013) 

 
 

2.4 Development of Methodology and Device for 

Measuring the Toque and Power of a Vertical Axis 

Wind Turbine 

 

2.4.1 Data Collection 

 

Power curves are used by engineers and manufacturers to characterize the performance of a 

wind turbine as shown in Figure 2.4. Power curves are generated using raw data: torque and 

rotational speed of the turbine at a given wind speed obtained during testing. Hence, it is 

essential to develop a scientific testing methodology to test the wind turbines.  
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Figure 2.4: Typical wind power output with constant wind speed 

 

As there are no Standard Test Methodology for wind tunnel data acquisition for wind turbine 

reported in the public domain, it was required to develop data acquisition system for this 

study.  

A data acquisition system should be able to capture the following; 

1) Instantaneous mechanical torque generated by the wind turbine 

2) Instantaneous rotational speed of the turbine 

3) Instantaneous wind speed  

As there was no such data acquisition system readily available at RMIT or elsewhere, a data 

acquisition apparatus was designed and manufactured for this study as shown in Figure 2.5 

and Figure 2.6. Details are shown in the Appendix. 

Power 
Rated output speed Cut-out speed

Rated output 

Cut-in 

speed

Steady wind speed m/s
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Figure 2.5: HBM torque transducer and disc brake 

 

 

Figure 2.6: MX440A amplifier and HBM data acquisition software 

 

2.4.2 Bearing and Housing 

 

Two self-aligning ball bearings with bore diameter of 17 mm and outer diameter of 47 mm 

were used together with the housing. The bearings dynamic load ratings were 12543 N. 

MX440A Amplifier
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2.4.3 Flexible Coupling 

 

A flexible beam coupling with bore diameter of 16 mm and length of 57.2 mm was used for 

the experiment of the wind turbine due to its robustness and light weight.  

 

2.4.4 Torque Transducer 

 

The HBM T20WN is primarily designed for measuring the static, dynamic torque and the 

rotational speed. It consists of an electronic sensor as well as an MX440A amplifier module. 

The HBM torque transducer has a nominal rotation speed of 10,000 revolutions per minute 

(RPM) and is capable of measuring both the torque and rotational speed simultaneously and 

has a maximum torque range of 5 N.m. 

 

2.4.5 Overloading of Bicycle Shoe Brake 

 

In the initial design, a bicycle shoe brake was used to provide Resistive torque. The bicycle 

shoe brake managed to provide resistive torque and bring the turbine to a stop. However, as 

the wind speeds increased at speeds above 20 km/h the bicycle shoe brake was unable to slow 

the turbine.  

 

2.4.6 Changes to Test Set-up (Disk Brake) 

 

A disk brake coupled with the turbine shaft and torque transducer was used to increase the 

resistive torque and to slow the turbine to a complete stop. The torque transducer was 

calibrated using pulleys and weights and the correlation between output voltage and applied 

load was found and validated. 
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2.4.7 Experimental Data Collection 

 

Data was collected for the following three variables: torque generated, turbine rotational 

speed and controlled wind speed. Data was collected using a custom Catman® AP data 

acquisition software written by HBM. This application was run on aRMIT laptop. 

 

2.4.7.1 Torque 

 

A bicycle disk brake was used to provide resistance torque loads. All readings were taken 

dynamically as the turbine was slowly brought to a stall from its free spinning speed. The 

instantaneous torque readings was obtained from the Catman® AP data acquisition software. 

 

2.4.7.2 Turbine Rotational Speed 

 

The rotational speed of the turbine was measured instantaneously using the torque transducer. 

The Catman® AP data acquisition software was written to record instantaneous turbine 

rotational speeds.  

 

2.4.7.3 Wind Speed 

 

The wind speed was recorded using a modified National Physical Laboratory (NPL) 

ellipsoidal head Pitot-static tube as shown in Section 2.2. The wind speed was validated using 

a battery power Testo 410-1/2 digital anemometer. 

 

2.4.8 Data Acquisition  

 

A laptop running a custom Catman® AP data acquisition program was used to record the 

readings from the torque transducer. The torque sensor is connected to a cable that feeds 

information to the MX440A amplifier which computes the applied torque and rotational 

velocity of the wind. Calibration of the sensor was carried out before and in between the tests. 
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2.5 Torque Measurements 
 

The mechanical power generated by the turbine is directly proportional to the torque and 

angular velocity.  A torque transducer is used to determine both the torque and angular 

velocity of the turbine. The HBM T20WN was utilised, which is primarily designed for 

measuring the static, dynamic torque and the rotational speed, consists of an electronic sensor 

as well as an MX440A amplifier module was used. The torque sensor is connected to a cable 

that feeds all the information to the MX440A amplifier which computes the torque and 

rotational velocity of the wind turbine as shown in Figure 2.6. HBM torque transducer has a 

nominal rotation speed of 10,000 revolutions per minute (RPM) which is well above the 

expected maximum rotational speed the wind turbine can reach during testing. Calibration of 

the sensor was carried out before and in between the tests. The HBM T20WN is capable of 

measuring both the torque and rotational speed simultaneously and has a maximum torque 

range of 5 N.m.  

2.6 Measurements of Turbulence by a Cobra Probe 

 

The cobra probe is a four-hole pressure probe used to measure the three orthogonal mean and 

turbulent velocity components in the wind tunnel. A schematic of the probe is shown in 

Figure 2.7. The probe has a relative frequency response of 0 Hz to 2000Hz. The Cobra 

Probes are fully calibrated by Turbulent Flow Instrumentation and ready to use. Dedicated 

software was used to get the real-time velocity components u, v and w from the pressure files. 

Local yaw and pitch angles, Reynolds stresses and frequency spectra can be calculated. The 

probe was traversed via a computer control interface on the data acquisition Personal 

Computer  
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Figure 2.7: A schematic of a multi-hole pressure probe (from Hooper, 1997) 

 

2.7 Calibration and Accuracy 
 

It is essential to determine the degree of influence of errors associated with the experiment 

that may have upon the overall results acquired. The acquisition such as dynamic pressure, 

velocity, forces and moments in the wind tunnel are influenced by many factors such as air 

fluctuations. Therefore it is necessary to address these errors and apply correct measures to 

minimize the consequences of these errors. 

 

2.7.1 Repeatability of Results 
 

In order to verify the repeatability of the experimental data and increase the confidence level 

in the data, every single test conducted in the wind tunnel was performed three times.  The 

data had a maximum variation of less than 1%.  This was a good indication of the accuracy 

possessed by the measuring equipment. 
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2.7.2 Temperature and Pressure Errors 
 

Running the wind tunnel for a period of time can significantly affect both the temperature and 

pressure in the tunnel due to temperature rise in the tunnel caused by the hub of the tunnel fan 

due to friction. Close observation of these two properties indicated that there was a slight 

fluctuation in the readings. The fluctuation in both the temperature and pressure were 

accounted for in the acquisition of the data and correct measures were taken to rectify the 

problem. 

 

2.7.3 Wind Tunnel Speed Errors 
 

The air speed in the wind tunnel was measured using an ellipsoidal head Pitot-static tube 

which is connected to a MKS Baratron reference pressure transducer. The air speed has a 

cubic effect on wind turbine power output. In order to verify the readings obtained from the 

MKS Baratron pressure transducer, the air speed was also measured with a hand held 

Anemometer. The variation of the wind tunnel air speed was found to be less than 1%. 
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  CHAPTER 3
Wind Turbine Model and Prototype Design and 

Development 

 

3.1 Turbine Prototypes Characterisation  

 

The blade shape of each turbine is semi-circular with zero twisting. It is single stage turbine. 

The schematic of 16-blade turbine (top view) is shown in Figure 3.1. Physical dimensions of 

the blade are shown in Figure 3.2. The blade height, H = 160 mm, blade diameter, d = 36 mm 

and the blade thickness, t = 2 mm. A 3-D model of the same configuration along with the 

physical dimensions is illustrated in Figure 3.3. The blades are installed around the 

circumference of the turbine by providing equal space with a clearance ‘c’ between two 

subsequent blades.  
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Figure 3.1: Schematic of the 16 blades turbine 

  

 

(a) Top view                          (b) Isometric view 

Figure 3.2: Semi-circular shaped turbine blade 

 

r

RrotorR rotor

t = 2 mm

r = 18 mm

H = 160 mm

d = 36 mm

(a) Top view (a) Isometric view

H = 160 mm

r = 18 mm

t = 2 mm

t = 2 mmd = 36 mm
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Figure 3.3: A 3D CAD model of a 16 blades turbine  

 

3.1.1 Turbine Prototypes  

 

Six single stage multi-blade drag-based vertical axis wind turbines of 300 mm diameter with 

various blade configurations have been designed. The prototype turbines’ blade numbers are: 

8, 16, 24, 32, 40 and 48. The blades are installed around the circumference of the turbine by 

providing equal space with a clearance ‘c’ between two subsequent blades. The blades are 

secured by two circular discs, made of Suntuf™ clear acrylic rigid plastics (top & bottom). 

The height of the turbine is 160 mm. The blades are made of PVC to provide structural 

rigidity.  All six prototype turbines are shown in Figures 3.4 and Figure 3.5.  
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Figure 3.4: Prototype turbines top and side views (8, 16 and 24 blades) 

  

 

 

Figure 3.5: Prototype turbines top and side views (32, 40 and 48 blades) 

 

8 blades :  Side view 16 blades :  Side view 24 blades :  Side view

8 blades : Top view 16 blades: Top view 24 blades: Top view

32 blades :  Side view 40 blades :  Side view 48 blades :  Side view

32 blades:  Top view 40 blades: Top view 48 blades: Top view
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3.1.2 Measurement of Clearance between Two Subsequent 

Blades for 300 mm Diameter Turbine 

 

The clearance ‘c’ between two subsequent blades for 16, 32 and 48-blades turbine is shown 

in Figure 3.6. As expected, the clearance between the two subsequent blades decreases with 

the increase of blade number. The clearance for each set of turbine was measured and shown 

in Table 3.1. The clearance becomes negative (overlapped) beyond 40-blade configuration.   

 

Figure 3.6: Top view of 16, 32 and 48 blades wind turbine 

 

Table 3.1: Blade number and clearance between two subsequent blades for a 300 mm diameter 

turbine 

Blade 

No. (N) 

Predicted Clearance (c) by 

Equation (mm) 

Measured Clearance (c) 

from Prototype (mm) 

Clearance Error (%) 

8 82.00 81.00 1.23 

16 31.00 30.50 1.64 

24 14.00 13.70 2.19 

32  5.50  5.40 1.85 

40   0.50   0.49 2.04 

48  -3.00 - 2.95 1.69 

c
c c
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3.2 Cowling 

 

Cowling is used to eliminate the negative torques which prevents the turbine from 

accelerating to higher torque producing speeds. A cowling was designed in such a way that it 

can enclose the turbine with a small clearance and can guide the incoming wind through a 

defined inlet and push the turbine and finally channel out the wind through the confined outlet 

to the environment. The cowling was constructed with two hollow PVC cylinders. The outer 

cylindrical shell is 360 mm in diameter and half of its frontal area is kept closed to prevent the 

incoming wind hitting the convex side of the returning blade. The inner shell with 160 mm 

diameter has an opening to allow the swept wind to exit the turbine through the top instead of 

at the rear to eliminate the second negative torque. Figure 3.7 (a) shows the 3D model of the 

cowling and Figure 3.7 (b) represents the turbine fitted with the cowling. 

 

 

Figure 3.7: Cowling 

  

 

 

Outlet

Inlet

Cowling

Rotor

(a) 3-D model of cowling (b) Wind turbine with cowling

Air Outlet

Cowling

Turbine

Air Inlet

(a) 3-D model of cowling (b) Wind turbine with cowling
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3.3 Torque and RPM Measurement Methodology 

 

Tests were undertaken at RMIT Industrial Wind Tunnel. It is a closed return circuit wind 

tunnel with a rectangular test section (3 m width, 2 m height and 9 m length).  The maximum 

wind speed of the tunnel is approximately 145 km/h. 

Two experimental setups were used: (a) a vertical support mounted on the tunnel floor to 

measure the torque and rpm of different prototypes and (b) a moveable test rig table to place 

the turbines at different position in the wind tunnel. 

 

3.3.1 Development of a Wind Turbine Support Mounting 

 

A vertical support and torque transducer setup was developed as shown in Figure 3.8. Detailed 

information about the torque sensor can be found in Section 2.4. A vertical support was 

developed to position the turbine in the test section of the wind tunnel. The setup was 

positioned 200 mm above the tunnel floor to avoid the tunnel boundary layer effect.  

A braking device was developed to measure the correct torque generated by the wind turbine. 

Detailed information about the brake mechanism can be found in Section 2.4. The braking 

device is utilised to dampen the rotational energy of the rotating wind turbine. Initially, a 

bicycle brake shoe was used in the experiment. However, it did not provide sufficient grip 

and was deemed inefficient. Alternatively, a simple bicycle disc braking device was used to 

apply a resistive force which enables us to slowly dampen the rotational energy. The resistive 

force would be applied until the wind turbine came to a complete stop and the torque would 

be recorded. The mechanical power generated by the wind turbine is proportional to: 

 TPTurbine                                                                 (3.1) 

Where:  

T= Torque (N.m) 

 = Rotational speed (rad/s) 
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Figure 3.8: Experimental setup in RMIT wind tunnel 

  

3.3.1 Development of a Moveable Test Rig  
 

In order to measure the torque generated by the wind turbine at different turbulence 

intensities, a moveable test rig table was used. The setup was positioned and fixed properly 

on top of the movable test rig table. The test rig table was placed at different position in the 

wind tunnel. The experimental setup of a Moveable Test Rig is shown in Figure 3.9. 

 

Figure 3.9: Moveable test rig experimental setup 

(a) Schematic of  support and data acquisition system (b) Wind tunnel setup
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(b) Wind tunnel setup
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(a) Schematic of support and torque transducer setup
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3.3.2 Effect of Blade Number 
 

To measure various parameters (i.e., torque, turbine speed) at different wind speeds, the 

experimental setup was positioned and fixed at the middle of the wind tunnel test section as 

shown in Figure 3.10. Six different turbines with different blade number (i.e., 8, 16, 24, 32, 

40 and 48 blades) without any cowling device were tested.  

 

 

Figure 3.10: Experimental setup inside industrial wind tunnel 

  

3.3.3 Effect of Yaw Angle Orientation (Blade Angle) 

 

In order to investigate the effect of blade angle on the wind turbine performance, the wind 

turbine blade was tested in the wind tunnel at different yaw angles ranging between 0° to 30° 

at an increment of 10°. Figure 3.11 shows the schematic of blade angle. Positioning the blade 

at different yaw angles enables for the evaluation of the aerodynamic forces exerted on the 

blade and also on the flow separation from the blade.  
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Figure 3.11: Schematic of blade angle 

  

3.3.4 Effect of Cowling 
 

The study on effect of cowling device on the performance of the wind turbine was 

undertaken. The cowling devise used in the wind tunnel testing is shown in Figure 3.12 (a).. 

The experimental setup with the turbine is shown in Figure 3.12 (b). The experimental setup 

of the turbine with the cowling in the wind tunnel test section is shown in Figure 3.12 (c). 

 

 

(a) Cowling  
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(b) Experimental setup of turbine without cowling 

 

(c) Experimental setup of turbine with cowling in the wind tunnel test section 

Figure 3.12: Experimental setup in the wind tunnel test section for cowling 
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3.3.5 Effect of Scaling 

 

The single stage multi-blade drag-based VAWT used for this study is a semicircle shaped 

blade made from PVC material. Two sets of 8, 16 and 24-bladed turbines were manufactured. 

One set of 8, 16 and 24-bladed turbine  with turbine diameter of 300 mm and blade length of 

160 mm and diameter of 40 mm (base modal) was initially designed. A second set of 8, 16 

and 24-bladed turbine with turbine diameter of 600 mm and blade height and diameter of 320 

mm and 80 mm respectively was manufactured. Detailed dimensions of the blade are shown 

in Figure 3.13. 

 

Figure 3.13: Dimensions (mm) of the semicircle shaped wind turbine blade 

       

The prototype comparison between the 8 blade turbines is shown in Figure 3.14 (a). 

Similarly, prototype comparison between the 16 blade turbines and 24 blade turbines is 

shown in Figure 3.14 (b) and (c) respectively. 
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(a) Prototype 8-blade turbine  

 

 

(b) Prototype 16-blade turbine  
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(c) Prototype 24-blade turbine  

Figure 3.14: Prototypes of the 8, 16 and 24-blades Base Models and Double Size Turbine 

 

3.3.6 Effect of Blade Radius 

 

The effect of blade radius on the power output was studied by conducting experimental 

investigation. Three sets of 8 blades turbine was constructed by keeping the turbine diameter 

(300 mm) and blade length (160 mm) constant but varying the blade diameter (20 mm, 40 

mm and 80 mm) respectively. Figure 3.15 (a) shows the detailed dimensions of three sets of 8 

blades. The prototype comparison between the 8 blade turbines is shown in Figure 3.15 (b). 
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(a) Dimensions of modified blades 

 

(b) Prototype of 8-bladed turbine 

Figure 3.15: Prototypes of 8-bladed turbine with modified blades 

 

3.3.7 Effect of Turbulence 

 

Turbulence was generated in the RMIT Industrial Wind Tunnel using 3 different passive 

grids. In order to generate turbulence inside the wind tunnel, wooden grids were placed at the 

inlet of the tunnel with a cross section of 6 m
2
. A 50% blockage ratio was maintained using 3 

different grids (small, medium and large) as shown in Figure 3.16, Figure 3.17 and Figure 

3.18. The three grids had the same total blockage area: 3m
2
. Experimental setup inside the 
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wind tunnel from the downstream is shown in Figure 3.16 (b), Figure 3.17 (b) and Figure 

3.18 (b). The turbulence intensity was measured by keeping the inlet velocity constant at 8.5 

m/s. The turbulence reading at each position was obtained using the Cobra Probe. The effect 

of turbulence was measured by keeping the input velocity constant and varying the distance 

of the turbine from the grid position from 0 to 7.5 m as shown in Figure 3.19 and Figure 3.20.  

Turbulence Intensity was calculated using the equation below: 

 

(3.2)   

 

Where,  

uuI = Turbulence intensity component 

V=Instantaneous, time-averaged and time varying local velocity vector 

u =Time varying (non-mean) velocity component  
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Figure 3.16: Turbulence generation using small grid 

  

35 

70 

70 

(a) Schematic of small grid (b) Small grid in wind tunnel test section 

(c) Blown - up view of small grid 



82 

 

 

Figure 3.17: Turbulence generation using medium grids 
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Figure 3.18: Turbulence generation using large grids 
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Table 3.2: Turbulence Intensity for 50% Blockage Ratio 

  Turbulence % 

Distance (mm) Small grid Medium grid Large grid 

1500 15.5  - - 

2250 11.5  - - 

3000 9 17 31 

4500 7 12 28 

6000 6 10 22 

7500 4.5 8 17 

 

Each position of the turbine from the grid which was placed in the contraction section of the 

wind tunnel is shown in Figure 3.19 and 3.20. The turbine is placed at the specific positions 

to study the effect of turbulence. The turbulence intensity decreases as the turbine distance 

increases as shown in Table 3.2   Position one is 1500 mm away from the grid, position two 

is 3000 mm, position three is 4500 mm, position 4 is 6000 mm and position five is 7500 mm 

from the grid. The plan view of setup positions in the wind tunnel is shown in Figure 3.21. 

 

Figure 3.19: Setup positions in the wind tunnel (Position 1 & 2) 

(a) Position 1 (b) Position 2
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Figure 3.20: Setup positions in the wind tunnel (Positions 3, 4 & 5) 

 

(c) Position 3 (d) Position 4

(e) Position 5
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Figure 3.21: A plan view of setup positions in the wind tunnel 

 

3.4 Development of Blade-Number Prediction Methodology 

 

Four single stage drag-based vertical axis wind turbine prototypes with various blade 

configurations (18, 19, 20 and 21) have been designed and manufactured. The shape of the 

blade is semi-circular with zero twisting. The schematic of a 19-blade turbine (top view) is 

shown in Figure 3.22. The blades are installed around the circumference of the turbine by 

providing equal space with a clearance ‘c’ between two subsequent blades. Physical 

geometric dimensions of blade are shown in Figure 3.23. The blades are secured by two 

circular discs, made of Suntuf™ clear acrylic rigid plastics (top & bottom). A 3-D model of a 

19 blades prototype turbine along with the physical dimensions is illustrated in Figure 3.24. 

The blade is made of PVC material to minimise the cost. The PVC material provided good 

structural rigidity.  
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Figure 3.22: Schematic of the 19 blades turbine 

 

 

Figure 3.23: Semi-circular shaped turbine blade 
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Figure 3.24: A 3D model of 19 blades turbine 

 

All four configurations of the prototype turbine are shown in Figure 3.25 and Figure 3.26. 

The clearance ‘c’ between two subsequent blades for 18, 19 and 20-blades turbine is shown 

in Figure 3.27. As expected, the clearance between the two subsequent blades decreases with 

the increase of blade number. The clearance for each set of turbine was measured and shown 

in Table 3.3.   
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Figure 3.25: 18 and 19 blade-prototype turbines 

 

 

18 blades: Top view 19 blades: Top view 20 blades: Top view 21 blades: Top view

18 blades: Side view 19 blades: Side view 20 blades: Side view 21 blades: Side view
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Figure 3.26: (b) 20 and 21 blade-prototype turbines 

 

 

18 blades: Top view 19 blades: Top view 20 blades: Top view 21 blades: Top view

18 blades: Side view 19 blades: Side view 20 blades: Side view 21 blades: Side view
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Figure 3.27: Top view of 18, 19 and 20-blades wind turbine with clearance ‘c’ between two 

subsequent blades 

 

The predicted data is shown in the second column of Table 3.3. The measured clearance from 

the prototype is shown in the third column. The average variation of clearance between 

predicted and measured is less than 2%. The variation increases with the decrease of gap due 

to measurement inaccuracy. 

 

Table 3.3: Blade clearance between 2 subsequent blades (measured and calculated) 

Blade number   

(N) 

Predicted Clearance (c) by 

Equation (mm) 

Measured Clearance (c) 

from Prototype (mm) 

Clearance Error 

(%) 

18 7.93 7.80 1.7 

19 6.46 6.34 1.9 

20 5.13 5.00 2.6 

21 3.94 3.87 1.8 

 

 

 

 

cc c c
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3.5 Flow Visualization  

 

Flow visualization was conducted in the RMIT Industrial Wind Tunnel using wool tuff and 

smoke flow visualisation. Six single stage drag-based vertical axis wind turbine prototypes 

with various blade configurations (8, 16, 24, 32, 40 and 48) were placed at the distance of 2 

meters from the inlet of the tunnel. The wool tuff test on sixteen blades and thirty two blades 

turbine is shown in Figures 3.28 and 3.30. The flow visualization was conducted by keeping 

the inlet velocity constant at 4.5 m/s and using two experimental configurations. The first test 

was conducted by keeping the blades stationary as shown in Figures 3.28 and 3.30. Wool tuff 

was places at different locations around the turbine. The second test was conducted by 

allowing the turbine to rotate as shown in Figures 3.29 and 3.31 

 

Figure 3.28: Flow visualisation around a 16 blades turbine in stationary 
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Figure 3.29: Flow visualisation around a 16 blades turbine in rotation 

 

Figure 3.30: Flow visualisation around a 32 blades turbine in stationary 
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Figure 3.31: Flow visualisation around a 32 blades turbine in rotation 
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  CHAPTER 4
Aerodynamic Behaviour of a Single Stage 

Multi-Blade Drag-Based VAWT 

 

4.1 Multi-blade Vertical Axis Wind Turbine 

Aerodynamics 
 

As mention in Chapter 2, vertical support mounted on the tunnel floor coupled with the 

torque sensor was used to evaluate the aerodynamic properties of multi-blades vertical axis 

wind turbine to develop an empirical relation for estimating the maximum torque output. 

Detailed information about the blade number and dimensions are given in Section 3.1.  The 

principal aerodynamic parameters used in this study were torque and rpm, while the physical 

parameters of the turbines were turbine radius (R), blade number (N), blade radius (r), and 

clearance between two subsequent blades (c). 

 

4.1.1 Effect of Blade Number on Turbine Efficiency 

 

To study the effect of blade number on the power output of a simple multi-blade drag based 

vertical axis wind turbine for the application in built-up areas, six single stage multi-blade 

drag-based vertical axis wind turbine of 300 mm diameter with various blade configurations 

has been designed and tested in the wind tunnel environment using vertical support mounted 

on the tunnel floor methodology. Detailed information about the blade number and 

dimensions are given in Section 3.1.1.  
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4.1.1.1 Turbine Power and Rotational Speed (RPM) 

 

The mechanical power (W) as a function of turbine rotational speed (RPM) for all wind 

speeds has been determined. The plot for 5.5 m/s wind speed for all prototype turbines are 

shown in Figure 4.1. The maximum power outputs for 8, 16, 24, 32, 40 and 48 blades turbine 

are 0.0261, 0.0864, 0.490, 0.6120, 0.3900 and 0.1776 watt, (W) respectively.  The 32 blades 

turbine produces maximum power (over 23 times more) compared to 8 blades turbine. The 

maximum power for 8 blades turbine occurs at 30 rpm while 32 blades turbine at 120 rpm. 

At other speed range, the 32 blades turbine produces higher power consistently. The 

aerodynamic study using flow visualisation (wool tuff) in section 4.1.5.5, describes in detail 

the effect of blade number and power. 

 

Figure 4.1: Power as a function of rotational speed at 5.5 m/s for all configurations 

 

As shown in Section 4.1.5.5, the interaction between the captured wind flowing through the 

gap between the blades and the rotating flow at the rear blades affect the performance of the 

turbines. The interaction of these flows requires huge power for the turbine to maintain its 
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rotational speed. The thirty two blades turbine has the least flow interaction between the 

captured flow and the rotating flow at the rear blades thus whatever power extracted by the 

oncoming flow at the blade inlet is used to maintain its rotational speed whereas for the other 

blade configurations, the power extracted by oncoming flow at the blade inlet is spent by the 

rear blades to overcome the two flow interactions resulting in lower rotational speed. 

 

4.1.1.2 Turbine Power and Tip Speed Ratio 

 

The power coefficients and tip speed ratios for all turbine configurations have been 

determined at all wind speeds. The power coefficient versus tip speed ratio for all prototype 

turbines at 5.5 m/s is shown in Figure 4.2. The power coefficient increases with the increase 

of tip speed ratio (λ) until the peak level is obtained and then it decreases; and finally 

becomes zero as the turbine attains its constant maximum rotational speed. The maximum 

power coefficient of 0.13 is obtained by the 32 blades turbine at λ=0.34 as shown in Figure 

4.4. Hau (2005) reported that a drag based single stage vertical axis wind turbine can have the 

maximum theoretical power coefficient of around 0.20.  

 

Figure 4.2: Power coefficient as a function of tip speed ratio and blade number at 5.5m/s 
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4.1.1.3 Turbine Torque Coefficient and Tip Speed Ratio 

 

The torque coefficient variation with tip speed ratio for all configurations is shown in Figure 4.3. 

The torque coefficients achieved at 5.5 m/s wind speed are 0.100 at λ=0.029, 0.132 at λ=0.086, 

0.385 at λ=0.143, 0.447 at λ=0.143, 0.58 at λ=0.143, and 0.265 at λ=0.114 for 8 blades, 16 

blades, 24 blades, 32 blades, 40 blades and 48 blades configurations respectively. It is interesting 

to note that variable torque coefficients were obtained at approximately the same tip ratio for 24, 

32 and 40 blades wind turbines. The highest torque coefficient is obtained for the 32 blades 

turbine. The lowest torque coefficient is obtained from the 8 blades configuration. In short, based 

on torque coefficient values, the ranking is: highest 32 blades turbine followed by the 24, 40, 48, 

16 and 8 blades turbine. The 32 blades turbine is expected to perform well at lower wind speeds 

(<4.5 m/s).  

 

Figure 4.3: Torque coefficient versus tip speed ratio of turbines 
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4.1.1.4 Turbine Maximum Torque and Blade Number 

 

The maximum torque variation as a function of blade number at 4.5 to 8.5 m/s wind speeds 

is shown in Figure 4.4. The maximum torque achieved at 8.5 m/s wind speed are 0.023 Nm, 

0.044 Nm, 0.079 Nm, 0.096 Nm, 0.072 Nm and 0.055 Nm for 8 blades, 16 blades, 24 blades, 

32 blades, 40 blades and 48 blades configurations respectively. The maximum torque for the 

32 blades turbine increases by about 4 times compared to the 8 blades turbine (the least 

torque producing turbine) at 8.5 m/s. The 16 and 24-blade turbines increase by nearly 2 times 

and 3.5 times respectively when compared with the 8-blade turbine. However, the maximum 

torque for the 40-blade and 48-blade turbines decreases by about 1.5 times and 2 times 

compared to the 32-blade turbine. The aerodynamic study using flow visualisation (wool 

tuff) in section 4.1.5.5, describes in detail the effect of blade number and rotational speed. 

 

Figure 4.4: Maximum torque versus blade number 
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4.1.1.5 Turbine Maximum Torque and Wind Speeds 

 

The variation of maximum torque with the respect to the wind speeds is illustrated in Figure 

4.5. It is noted that the maximum torque increases with the increase of wind speeds for all 

configurations. The maximum torque increases linearly for all blades configurations from 4.5 

m/s to 8.5 m/s. The 32 blades (most efficient) turbine maximum torque at 4.5 m/s and 8.5 m/s 

is 0.051 N.m and 0.096 N.m respectively. That is an increase of 90%. It should be noted that 

similar trend was observed for the 8, 16, 24, 40 and 48 blades turbine. The maximum torque 

increases by 91.3%, 92.2%, 88.2%, 90.1% and 90.5% respectively for the 8, 16, 24, 40 and 

48 blades respectively. It is interesting to note that the average maximum torque for all 

turbine configurations at 8.5 m/s is 0.062 N.m. However, the average maximum torque for all 

turbine configurations at 4.5 m/s is 0.033 N.m. It is a decrease of 89%. It can be concluded 

that increasing the blade number, increases the maximum torque output by 90 %. The most 

efficient turbine is the 32 blades turbine. Increasing the blade number beyond 32 blades does 

not have a positive effect on the maximum torque output.     

 

Figure 4.5: Maximum torque versus wind speeds 
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4.1.2 Effect of Scale on Torque 
 

The single stage multi-blade drag-based VAWT used for this study is a semicircle shaped 

blade made from PVC material. Detailed dimensions of the blade are shown in Section 3.3.5.  

 

4.1.2.1 Power and Wind Speeds 
 

The mechanical power (W) as a function of wind speeds has been determined by experiment. 

The variation of power between the base size and the double sized turbines with 8, 16 and 24 

blades at 4.5 to 8.5 m/s wind speeds is shown in Figure 4.6. The maximum power outputs for 

8, 16, and 24 blades base turbine are 0.1959, 0.4518 and 1.3458 watt (W) respectively. The 

maximum power outputs for the corresponding double sized models are 1.1216, 2.3092 and 

4.3418 watt (W) respectively. It can be observed that the average power increased by around 

5.5 times when comparing the base model with scaled up models (double sized). The data 

also shows that the power increases with the increase of blade number for both the base and 

the double sized models. It can be said that the models are scalable. As the dimensions of the 

blade and the turbine are doubled, the area of the blades and the turbine also increased by 

double the size, however, the power output does not increase proportionally.  

 

Figure 4.6: Power as a function of wind speeds 
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4.1.2.2 Power and RPM 

 

The mechanical power (W) as a function of rotational speed ( ) for 5.5 m/s wind speed have 

been plotted. The variation of RPM between the base size and the double sized turbines with 

8, 16 and 24 blades at 5.5 m/s wind speeds is shown in Figure 4.7. The maximum RPM for 8, 

16, and 24 blades base turbine were obtained at 50, 60 and 120 RPM respectively. The 

maximum RPM for the corresponding blade number double sized models are 35, 40 and 60 

RPM respectively. It is interesting to note that while the power increases with the increase of 

blade number for both for the base and the double sized models, the average RPM decreased 

by around 40% when comparing the base model with the scaled up models (double sized). As 

the dimensions of the blade and the turbine are doubled, the area of the blades also increased 

by double the size, however, the RPM does not increase proportionally. 

 

 

Figure 4.7: Power as a function of RPM 
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4.1.3 Effect of Blade Radii on Turbine Power Output 

 

To determine the effect of blade radius on the power output, three sets of 8 blades turbine was 

constructed by keeping the turbine diameter (300 mm) and blade length (160 mm) constant 

but varying the blade diameter (20 mm, 40 mm and 80 mm) respectively. Section 3.3.6 shows 

the detailed dimensions of three sets of 8 blades.   

 

4.1.3.1 Power and Wind Speeds 

 
 

The variation of power with turbine speeds for 3 different blade diameters (20, 40 and 80 

mm) is shown in Figure 4.8. The maximum power outputs for the 20, 40 and 80 mm blades at 

8.5 m/s wind speeds are 0.3888, 0.8691 and 1.4652 watt (W) respectively. It is found that the 

power increased by around 2 times when the blade diameter was scaled up. It can be said that 

the models are scalable. Doubling the blade diameter increased the amount of wind energy 

that the blades were able to capture. However, it was observed that the power output does not 

increase proportionally. It is interesting to note that the turbine at 8.5 m/s wind speed 

produces an average of three times more power compared to turbine at 4.5 m/s wind speed 

for all three prototypes. This is expected as wind speeds have a cubic effect on the turbine 

power output. The power (Watt) available from the moving air is equal to half times the 

product of density of air, (kgm
-3

), the turbines cross section area A (m
2
) and the cube of wind 

speed, V (ms
-1

): 
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Figure 4.8: Power as a function of wind speed 

 

4.1.3.2 Power and RPM 

 

The variation of power as a function of RPM for 3 different blade diameters (20, 40 and 80 

mm) from 4.5 to 8.5 m/s wind speeds is shown in Figure 4.9. The maximum power output for 

20, 40 and 80 mm blade diameter turbines are 0.400, 0.792 and 1.763 watt (W) respectively. 

The 80 mm diameter blade turbine produces the highest power compared to the other two 

blade diameters. The power generated by the 80 mm blade diameter turbine has increased by 

340% compared to the 20 mm blade diameter turbine (the minimum power producing 

turbine). The RPM at 5.5 m/s wind speed for the 20 mm, 40 mm and 80 mm are 30 rpm, 60 

rpm and 135 rpm respectively. It is noted that the average RPM increases by an average of 

110% when the models were scaled up.  The data shows a linier relationship between the 

power and RPM for the three sets of configuration.  
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Figure 4.9: Power as a function of turbine rotational speed, RPM 

 

4.1.3.3 Tip Speed Ratio ( ) and Coefficient of Performance (Cp) 

 

Average Tip Speed Ratio ( ) as a function of average Coefficient of Performance (Cp) for 

the 20, 40 and 80 mm blade diameter is shown in Figure 4.10.  The average power coefficient 

(Cp) are 0.031 at  = 0.081, 0.071 at  = 0.201 and 0.129 at  = 0.374 for 20 mm, 40 mm 

and 80 mm blade diameter turbines respectively. The 80 mm blade diameter turbine 

possesses the highest power coefficient (0.129). The lowest power coefficient (0.031) is 

obtained for the 20 mm blade diameter turbine. It is noted that a positive linear correlation is 

found between TSR and Cp. 
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Figure 4.10: Average tip speed ratio, TSR as a function of coefficient of performance, Cp 

 

The power coefficient, Cp is a quantity that expresses what fraction of the power in the wind 

is being extracted by the wind turbine. Tip speed ratio, (TSR) is the ratio between the 

tangential speed of the tip of the blade and the actual speed of the wind, V. The tip-speed 

ratio is related to the efficiency. The tip speed of the blade can be calculated by rotational 

speed, ω (rads
-1)

 times turbine radius, R (m):  

 

4.2 

 

4.3 

 

It is generally assumed to be a function of both tip speed ratio and pitch angle. Ideally, most 

efficient turbines operate at maximum value of Cp at all wind speeds. The 80 mm blade 

diameter clearly is the most efficient turbine compared to the 20 mm and 40 mm blade 

diameters as shown in Figure 4.10. 
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4.1.4 Effect of Turbulence on Turbine Power Output 

 

Three different grids were used in the wind tunnel to generate turbulence (detailed grid 

dimensions are given in section 3.3.7). Turbulence intensity as a function of distance from the 

grid position for the small, medium and large grids is shown in Figure 4.11. The generated 

turbulence for each grid has been measured at constant wind speed of 8.5 m/s. The 

percentage drop of intensity at 4500 mm from the grid (turbine position) for the small, 

medium and large grid was found to be 64%, 46% and 27% respectively. The turbulence 

intensity generated by the small grid experienced a large drop about 75% at 6000 mm from 

the grid position before it starts to become steady. The small and medium grids turbulence 

intensity becomes steady at around 7500 mm from the grid. However the large grid 

turbulence intensity remains turbulent. It was observed that the turbulence intensity increases 

with the increase of grid size. It was noted that the large grid had a higher impact on the 

turbulence intensity compared to the small and medium grids. 

 

Figure 4.11: Turbulence intensity as a function of distance from the grid at a constant speed (8.5 m/s) 
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4.1.4.1 Effect of Grid Size on Turbulence Intensity and Power 
 

The variation of power with intensity for 24, 32 and 48 blades turbines using small, medium 

and large grids is shown in Figures 4.12, 4.13 and 4.14. The velocity at the turbine inlet 

(4500mm in front of grid) was measured at 8.5 m/s for all 3 grids. The maximum power 

output for the 24, 32 and 48 blades turbines without grid (1.8% intensity) are 1.5, 1.96 and 

1.4 watt (W) respectively. The power output drastically decreases as the turbulence intensity 

increases from 1.8% to 4.5% due to unsteady vortices interacting with each other causing 

decreases in the drag force.  

The maximum power drop for all three turbines is observed at 7% turbulence intensity after 

which the turbulence intensity had no effect on the power output. The power generated at 7% 

turbulence intensity is 0.74, 0.81 and 0.68 watt (W) respectively. The average power 

decreased around 51%, 59% and 51% respectively after which the power loss was less 

drastic. It should be noted that the turbulence intensity had a larger impact on 32 blades 

turbine compared to the 24 and 40 blades turbines. The 32 blades turbine which is the most 

efficient turbine experienced a 40% drop in power at 4.5% turbulence intensity compared to 

around 33% and 34% for the 24 and 40 blades turbines respectively. However, the 32-bladed 

turbine still outperformed the other configurations consistently. It can be clearly seen that, 

turbulence has a negative impact on the turbines. 

 

Figure 4.12: Power as a function of turbulence intensity small grid 
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The maximum power output as a function of turbulence intensity at 8.5 m/s wind speed for 

the medium grid is shown in Figure 4.13. The power output drastically decreases as the 

turbulence intensity increases from 1.8% to 8% due to unsteady vortices interacting with each 

other causing decreases in the drag force. The maximum decrease in power output for the 24, 

32 and 40 blades turbine was at 12% turbulence intensity. The maximum power output is 

1.28, 1.38 and 1.20 watts (W) respectively. It is a decrease of 15%, 30% and 14% 

respectively compared to the power output at 1.8% turbulence intensity (without grid).  

It can be observed that the turbulence has a significant impact on the power output of the 32 

blades turbine compared to the 24 and 48 blades turbine similar to the small grid. The 

medium grid had a lesser impact on the power output compared to the smaller grid.  

 

Figure 4.13: Power as a function of turbulence intensity medium grid 

 

The maximum power output as a function of turbulence intensity at 8.5 m/s wind speed for 

the large grid is shown in Figure 4.14. The power at 17% turbulence intensity was found to 

be 1.35, 1.5 and 1.26 watt (W) respectively. The power decreased by only 15%, 23% and 

10% respectively when comparing the power at 1.8% turbulence intensity (no grid). It can be 

noted that large grid has less impact on the power output compared to the small grid and 

medium grids.  
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Figure 4.14: Power as a function of turbulence intensity large grid 

 

It is evident that turbulence has a negative impact on the power output of a single stage multi-

blade drag-based VAWT. The power and turbulence intensity analysis have revealed that 

turbulence decreases the power output by around 25% to 60%. It is also interesting to note 

that when comparing the small grid and the large grid, the power drop experienced by the 

turbine placed in front of the small grid was higher at 17% compared to the large grid at 30% 

turbulence intensity. It was also observed that the turbine placed (4500 mm) from the small 

grid experienced the largest drop in power compared to the medium and large grids at similar 

(17%) turbulence intensity. As illustrated in Section 3.3.7, the air passing through the grids 

becomes more constricted as the cross sectional area decreases. The pressure drop is higher 

when using the smaller grid; hence the air that is available for the turbine has less energy, 

resulting in lower power outputs. It can be concluded that the volume flow rate has a higher 

impact than turbulence intensity on the power output of a single stage multi-blade drag-based 

vertical axis wind turbine. High wind locations and low wake losses are critical for efficient 

power generation.  
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4.1.5 Effect of Cowling on Turbine Power Output 
 

The main function of the cowling is to eliminate the negative torques which prevents the 

turbine from accelerating to higher torque producing speeds. To ditermine the effect of 

cowling device on the performance of the wind turbine, a cowling was designed in such a 

way that it can enclose the turbine turbine with a small clearance and can guide the incoming 

wind through a defined inlet and push the turbine and finally channel out the wind through 

the confined outlet to the environment (detailed dimensions of cowling are given in section 

3.3.4).  

 

4.1.5.1 Power and RPM 

 

The mechanical power (W) as a function of rotational speed ( ) for all wind speeds have been 

plotted as shown in Figure 4.15. The maximum power outputs for 8, 16, 24 and 32 blades turbine 

are 0.176, 0.187, 0.36 and 0.30 watt, (W) respectively.  The 24 blades turbine produces 

maximum power (around 100% more) compared to 8 blades turbine. The maximum power for 8 

blades turbine occurs at 80 rpm while 24 blades turbine at 100 rpm. At other speed range, the 24 

blades turbine produces higher power consistently. 
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Figure 4.15: Power as a function of RPM at 5.5m/s 

 

4.1.5.2 Power and Tip Speed Ratio 

 

The power coefficients and tip speed ratios for all turbine configurations have been 

determined at all wind speeds. The power coefficient versus tip speed ratio for all prototype 

turbines at 5.5 m/s is shown in Figure 4.16. The power coefficient increases with the increase 

of tip speed ratio (λ) until the peak level is obtained and then it decreases; and finally 

becomes zero as the turbine attains its constant maximum rotational speed. The maximum 

power coefficient of 0.15 is obtained by the 24 blades turbine at λ=0.3 as shown in Figure 

4.16. Hau (2005) reported that a drag based single stage vertical axis wind turbine can have 

the maximum theoretical power coefficient of around 0.20.  
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Figure 4.16: Power coefficient versus tip speed ratio for various blade numbers at 5.5m/s wind speed 

 

4.1.5.3 Torque and Blade Number 
 

The maximum torque variation as a function of blade number at 4.5 to 8.5 m/s wind speeds 

is shown in Figure 4.17. The maximum torque achieved at 8.5 m/s wind speed are 0.054 Nm, 

0.060 Nm, 0.080 Nm and 0.074 Nm for 8 blades, 16 blades, 24 blades, and 32 blades 

configurations respectively. The maximum torque for the 24 blades turbine increases by 

about 1.5 times compared to the 8 blades turbine (the least torque producing turbine) at 8.5 

m/s. The 16 and 24-blade turbines increase by nearly 1.1 times and 1.3 times respectively 

when compared with the 8-blades turbine.   
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Figure 4.17: Torque as a function of blade number 

 

4.1.5.4 Coefficient of Torque and Tip Speed Ratio 

 

The torque coefficient variation with tip speed ratio for all configurations is shown in Figure 

4.18. The torque coefficients achieved at 5.5 m/s wind speed are 0.45 at λ=0.2, 0.47 at λ=0.2, 

0.585 at λ=0.2, and 0.60 at λ=0.2 for 8 blades, 16 blades, 24 blades and 32 blades configurations 

respectively. It is interesting to note that variable torque coefficients were obtained at 

approximately the same tip ratio for 8, 16, 24 and 32 blades wind turbines. The 24 and 32-bladed 

turbines have quiet similar torque coefficients. The lowest torque coefficient is obtained from the 

8 blades configuration. Both the 24 and 32-bladed turbines are expected to perform well at lower 

wind speeds (<4.5 m/s).   
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Figure 4.18: Torque coefficient versus tip speed ratio for various blade number at 5.5m/s wind speed 

 

It is evident that the flow enhancing device (cowling) had shown a positive impact on the 

turbine RPM however, the overall torque and power was found to be lower compared to 

turbines without its employment. A comprehensive flow visualisation study in Section 4.1.5.5 

using smoke was conducted to explain the interaction between the wind and blades and 

power produced. 

 

4.1.5.5 Aerodynamic Study Using Flow Visualisation 
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produced by single stage multi-blade drag-based vertical axis wind turbines. As the number 
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starts decreasing. The results showed that the 300 mm turbine with 32 blades configuration 

produces the highest power at all wind speeds (5.5 - 8.5 m/s) compared to the 8, 16, 24, 40 

and 48 blades turbine. A schematic flow pattern around a 16 blades turbine and a 32 blades 

turbine in rotation is shown in Figure 4.19 and Figure 4.20. 
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Figure 4.19: A schematic flow pattern around a 16 blades turbine in rotation 

 

Figure 4.20: A schematic flow pattern around a 32 blades turbine in rotation 

 

Torque is generated by the difference in net drag force between the concave and convex 

surface of the blades. When the free stream wind impacts the turbine effective area, the 

concave surface, captures the wind while the convex surface, moves against the wind. The 

coefficient of drag for the concave surface is two times higher than the convex surface. The 

difference in drag force on the concave and convex surfaces of the turbine produces a net 

torque which rotates the turbine clockwise. It should be noted that as the turbine is rotating in 

a clockwise direction, it is creating a counter-clockwise rotating boundary layer as shown in 

Figure 4.19 and 4.20. While observing the flow in the midpoint of the 16 blades turbine as 

shown in Figure 4.19, it can be seen that the flow is not stationary. This flow then interacts 
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with the turbine rotating boundary layer at the rear blades, creating aerodynamic resistance 

and subsequently slowing down the turbine rotational speed.  

In contrast, while observing the 32 blades turbine as shown in Figure 4.19, it can be seen that 

flow is at stagnation in the middle of the turbine indicating only small amount of wind is 

allowed to pass through the turbine. This subsequently creates lesser flow interaction at the 

rear blades resulting in lower aerodynamic resistance. 

It is interesting to note that the 16-bladed turbine front blades extract higher wind power 

compared to the 32-bladed turbine. Unfortunately, the power is spent by the rear blades to 

overcome the aerodynamic resistance resulting in lesser power left for torque. The 32-bladed 

turbine front blades on the other hand extracted lower wind energy compared to the 16-

bladed turbine but lesser power is required to overcome the aerodynamic resistance at rear 

blades hence higher net power output compared to 16 blades.  

It can be concluded that the optimal gap between the two subsequent blades allows for 

efficient interaction between the two flows (exiting wind and rotating boundary layer) 

allowing for efficient power generation. 
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  CHAPTER 5
Validation of the Optimal Blade-Number 

Prediction Model  

 

Significant challenge is associated with the determination of optimal blade number of a 

constant diameter single stage drag-based vertical axis wind turbine. Therefore, in this study, 

an empirical relation for determining the blade number of a constant diameter turbine which 

can generate maximum torque and power has been proposed. The predicted outcomes 

obtained through the developed relationship have been validated by undertaking experimental 

study in the wind tunnel environment. The experimental study has shown a good agreement 

with the predicted results. 

 

5.1 Development of an Empirical Model for Optimal 

Blade Number  

 

A prototype turbine with 300 mm diameter was initially designed and manufactured as 

shown in Section 3.1.1. A comprehensive aerodynamic study of behaviour of a single stage 

multi-blade drag-based VAWT was conducted and the results are shown in Chapter 4. A 

schematic of a multi-blade single stage drag-based vertical axis wind turbine includes 

following geometric features: turbine radius (R), blade number (N), blade radius (r), and 

clearance between two subsequent blades (c) is shown in Figure 5.1.  
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Figure 5.1: Top view of a multi-blade (19 blades) turbine 

 

The 300 mm diameter turbine clearance ‘c’ between two subsequent blades for 8, 16, 24, 32, 

40 and 48-blades turbine was initially measured as is shown in Table 5.1, third column. The 

experimental results showed that the 32-bladed turbine produced the maximum power at all 

wind speeds which corresponds to an optimal clearance (gap) of 5.4 mm  

 

Table 5.1: Blade number and clearance between two subsequent blades for a 300 mm diameter 

turbine 

Blade 

No. (N) 

Predicted Clearance (c) by 

Equation (mm) 

Measured Clearance (c) 

from Prototype (mm) 

Clearance Error 

(%) 

8 82.00 81.00 1.23 

16 31.00 30.50 1.64 

24 14.00 13.70 2.19 

32  5.50  5.40 1.85 

40   0.50   0.49 2.04 

48  -3.00 - 2.95 1.69 

 

meanRD  2 c

ω

Wind
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Based on the experimental study on the geometric features of the 300 mm diameter turbine: 

turbine radius (R), blade number (N), blade radius (r), and clearance between two subsequent 

blades and its effect on the torque, RPM and power, an empirical relationship has been 

proposed as shown in Equation 5.1. 

 

cr

R
N




2
      (5.1) 

 

Where:   N     = Optimal blade number 

    = Turbine mean (effective) radius 

  r = Blade radius 

  c = Clearance between 2 subsequent blades 

 

The proposed equation can be utilised to determine the blade number of a constant diameter 

turbine which can generate maximum torque and power.  

 

To verify this equation, a 200 mm diameter prototype turbine with 18, 19, 20 and 21 blades 

has been manufactured as shown in Section 3.4. The height, radius and thickness of the blade 

are kept the same as the 300 diameter prototype turbine. The top views of 18, 19 and 20 

blades are shown in Figure 5.2. The top views of the 200 and 300 diameter prototype turbines 

are shown in Figures 5.3 (a) and 5.3 (b) respectively.  
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Figure 5.2: Top view of 18, 19 and 20 blades wind turbine with clearance between two subsequent 

blades ‘c’ 

 

 

        (a) 200 mm diameter                                      (b) 300 mm diameter  

Figure 5.3: Top View of a 200 mm and 300 mm diameter turbine prototype 

 

The minimal clearance between two subsequent blades was obtained for 18, 19, 20 and 21 

blades configurations using the proposed relationship (Equation 5.1). The data is shown in 

the second column of Table 5.2. The measured clearance from the prototype is shown in the 

third column. The average variation of clearance between predicted and measured is less than 

2%. The variation increases with the decrease of gap due to measurement inaccuracy. 

cc c c

R = 150 mmR = 100 mm

(a) 200 mm diameter prototype (a) 300 mm diameter prototype
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Table 5.2: Blade number and clearance between two subsequent blades for a 200 mm diameter 

turbine 

Blade Number  

(N) 

Predicted Clearance (c) by 

Equation (mm) 

Measured Clearance (c) 

from Prototype (mm) 

Clearance Error 

(%) 

18 7.93 7.80 1.7 

19 6.46 6.34 1.9 

20 5.13 5.00 2.6 

21 3.94 3.87 1.8 

 

Using the developed empirical relationship (Equation 5.1), it was predicted that a 19 blades 

turbine configuration will provide the maximum power and torque at a given wind speed. To 

verify this prediction, as mentioned earlier, four prototype configurations (18, 19, 20 & 21 

blades) were manufactured and investigated in the wind tunnel environment.  The power as a 

function of rotational speed for 5.5 m/s wind speed (typically encounters in built-up areas) is 

shown in Figure 5.4. The maximum power outputs for 18, 19, 20 and 21 blades turbines are 

0.296, 0.363, 0.265 and 0.231 watt (W) respectively.  

The 19 blades turbine produces the highest power compared to other three turbines. The 

power generated by 19 blades turbine has increased by 57% when compared with the 21 

blades turbine (the minimum power producing turbine). The results also show that the 

maximum power by 21 blades turbine occurs at 70 rpm while the rotational speed 

corresponding to maximum power output increases from 70 rpm to 90 rpm for the 19-blade 

turbine. The rotational speed increases by around 29%.  At other wind speeds, the 19 blades 

turbine produces the highest power consistently.  
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Figure 5.4: Power as a function of rotational speed for all prototype turbines 

 

The power coefficients (CP) and tip speed ratios ( ) for all turbine configurations have been 

determined at all wind speeds tested. The power coefficient versus tip speed ratio at 5.5m/s is 

shown in Figure 5.5. The power coefficients (CP) achieved at 5.5 m/s wind speed are 0.091 at 

λ=0.152, 0.111 at λ=0.171, 0.081 at λ=0.133 and 0.071 at λ=0.133 for 18 blades, 19 blades, 

20 blades and 21 blades turbines respectively. It is noted that the power coefficient increases 

with the increase of tip speed ratio (λ) until the peak level is obtained and then it decreases 

and finally becomes zero as the turbine attains its constant maximum rotational speed. Again, 

the 19 blades prototype turbine possesses the highest power coefficient (0.111). The lowest 

power coefficient (0.071) is obtained for 21 blades configuration.  
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Figure 5.5: Power coefficient as a function of tip speed ratio at 5.5m/s wind speed 

 

The torque coefficient (CT) variation with tip speed ratio ( ) is illustrated in Figure 5.6. The 

torque coefficients achieved at 5.5 m/s wind speed are 0.784 at λ=0.076, 0.856 at λ=0.076, 

0.752 at λ=0.076 and 0.728 at λ=0.076 for 18 blades, 19 blades, 20 blades and 21 blades 

configurations respectively. It is interesting to note that variable torque coefficients were 

obtained at approximately the same tip ratio for all wind turbine configurations. The highest 

torque coefficient is obtained for the 19 blades turbine. The lowest torque coefficient is 

obtained from the 21 blades configuration. The torque coefficient value indicates that the top 

ranking is 19 blades turbine followed by 18, 20 and 21 blades turbines.  The 19 blades turbine 

performs well at other speeds tested. 
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Figure 5.6: Torque coefficient versus tip speed ratio for 18, 19, 20 and 21 blade turbines 

 

It can be concluded that an empirical relationship has been established to predict an optimal 

number of blades for a constant diameter multi-blade single stage drag-base vertical axis 

wind turbine. It should be noted that the optimal clearance was determined to be in between 

of 5.5 mm to 6.5 mm. The experimental data obtained for two different diameter prototype 

turbines have confirmed the validity of the developed empirical relationship.  

 

5.2 Implication of Empirical Model 

 

The power coefficient (CP) variation with tip speed ratio ( ) for 200 mm diameter turbine 

with 19 blades and 300 mm diameter with 32 blades is shown in Figure 5.7. The power 

coefficient (CP) achieved at 5.5 m/s wind speed are 0.111 at λ=0.171 and 0.125 at λ=0.343 for 

the  200 mm diameter turbine with 19 blades and 300 mm diameter turbine with 32 blades 
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configuration respectively. The tip speed ratio ( ) of the 300 mm diameter turbine is 2 times 

higher than the 200 mm diameter turbine. This indicates that the 300 mm diameter turbine 

with 32 blades can rotate faster at low wind speeds. In terms of power coefficient, the larger 

diameter turbine’s CP is 0.125 compared to 0.111 for the 200 mm diameter turbine.  

A comparative analysis indicates that the power output increases with the increase of turbine 

diameter. The 300 diameter turbine with 32 blades generates around 13% more power 

compared to 200 mm diameter 19 blades turbine. 

 

 

Figure 5.7: Power Coefficient versus tip speed ratio of 19 blades and 32 blades turbine 

 

A comparative production cost analysis of 200 mm and 300 mm diameter prototype turbines 

has been undertaken to determine unit cost. Only four units of 200 mm and six units of 300 

mm diameter turbines were produced. The various components and their retail costs are 

shown in Tables 5.3 and 5.4. The average cost for a 200 mm diameter turbine is 

approximately AUD 170 and the unit cost for a 300 mm diameter turbine is around AUD178. 

The cost of generator and inverter has not been included here. The average mass production 

cost per unit will significantly be lower than the cost estimated in this study. 
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Table 5.3: Production cost AUD for a 200 mm diameter turbine 

 

 

 

 

 

 

Table 5.4: Production Cost AUD for a 300 mm Diameter Turbine 

 Cost for 6 turbines 6 units Single Unit 

P.V.C pipes 30 m@$2.50 75.00 12.50 

Acrylic sheets 2 sheets@$55 each 110.00 18.33 

Glue 3 Tubes@$3.50 each 10.50 1.75 

Flange 6 units@$10 60.00 10.00 

Shaft 20 mm shaft, 6m@$5 30.00 5.00 

Bearings 12 units@$15 180.00 30.00 

Labour 12 hrs@$50 600.00 100.00 

Total   1065.50 177.58 

 

Cost for 4 turbines 4 units Single Unit   

P.V.C pipes 15 m@$2.50 37.50 9.38 

Acrylic sheets 1 sheet@$55 each 55.00 13.75 

Glue 2 Tubes@$3.50 each 7.00 1.75 

Flange 4 units@$10 40.00 10.00 

Shaft 20 mm shaft, 4m@$5 20.00 5.00 

Bearings 8 units@$15 120.00 30.00 

Labour 8 hrs@$50 400.00 100.00 

Total   679.50 169.88 
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  CHAPTER 6
Conclusions  

 

The main objectives of this work were to understand the effects of blade number, clearance 

(gap) between subsequent blades and turbulent wind condition on Vertical Axis Wind 

Turbine (VAWT)’s rotational speed, torque and power. The following conclusions apply 

within the assumptions made in the analysis and experiments, the sensitivity of the 

measurements and the limits of scientific and engineering inference. In particular, it is 

emphasised that these conclusions apply to the range of VAWT model shapes tested to within 

the range of test conditions investigated. It is possible that some of the conclusions have 

much wider applications. The following conclusions are therefore drawn:  

 

6.1 Major Conclusions 

 

An empirical relationship has been established to predict an optimal blade number for a 

constant diameter multi-blade single stage drag-base vertical axis wind turbine. The 

experimental data obtained for two different diameter prototype turbines have confirmed the 

validity of the developed empirical relationship.   

 

Power is highly dependent on blade number and blade spacing. With the increase of blade 

number, the power increases till it reaches an optimal blade number thereafter it starts to 

decrease.  

 

The optimal blade spacing was found to be between 5.5 mm and 6.5 mm for the prototype 

turbines.  
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A flow enhancing device (cowling) was designed and employed to explore its effectiveness 

on turbine rotational speed (RPM) and torque. The flow enhancing device had shown a 

positive impact on the turbine RPM however, the overall torque and power was found to be 

lower compared to turbines without its employment. 

 

6.2 Minor Conclusions 

 

Wind turbulence intensity has significant impact on power output. The power decreases with 

an increase of turbulence. However, the airflow rate or volume flow rate has much higher 

impact on the power output.  

 

The power can be increased by approximately two times when the blade diameter is scaled 

up. Doubling the blade diameter increases the amount of wind energy the turbine blades are 

able extract. 

 

Optimal power output depends on a) blade number, b) blade spacing, c) blade angle, d) 

turbulence intensity, and e) airflow rate. 
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  CHAPTER 7
Suggestion for Further Work  

 

After conducting the work presented here and reviewing the literature available in the public 

domain, the following conclusions are made for further study: 

 

   1. In this study, a disk brake was used to apply a mechanical braking torque. However, 

an eddy motor is required to provide a known resistance torque loads. The torque 

generated by and eddy motor is directly proportional to the current applied to control 

the current of the motor. 

 2. The scalability of small scale vertical axis wind turbine was not studied at local radii 

between 80 mm and 160 mm in the current work. It would be useful to study the 

effect of scalability at different radii to obtain a comprehensive understanding of the 

effect of scalability.   

 3. In an open environment, small scale vertical axis wind turbine blades can experience 

wind from any directions with varied gustiness which can have effect on aerodynamic 

parameters optimised in no crosswind conditions. Therefore, it would be useful to 

undertake further study on crosswinds and wind gustiness effects. 

 4. A correlation between small scale vertical axis wind turbine and full-scale tests in 

wind tunnel as well as field test will be useful. 
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  APPENDIX A:

Technical Drawings of Wind Turbine 

 Full Scale Vertical Axis Wind Turbine Assembly A.1:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 1: Wind turbine assembly (a) side view (b) top view 

 

 

(a) (b) 
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Figure A.2: Side section view B-B 

 

Table A. 1: Wind turbine components 

Component  Description 

1 Shaft  

2 Bearing housing unit  

3 Flexible coupling 

4 HBM torque transducer 

5 Wedge plate  

6 Top plate Stand 
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Figure A.3: Shaft dimensions 
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Figure A.4: Wind turbine main shaft dimension 
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(a) (b) 

Figure A.5: Top plate dimensions  
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 Flexible Coupling A.2:

 

A flexible beam coupling is used for the experiment of the wind turbine due to its robustness 

and light weight. Detailed specification of the coupling is given Table A.7. 

 

Figure A. 1: Aluminium flexible beam coupling 

 

 

Table A. 2: Specification of flexible beam coupling 

Product Number FCMR38-16-16-A 

Product Type Beam Coupling 

Style Clamp 

Material 7075 Aluminium 

Finish Bright 

Dimensions  

Bore B1 16mm 

Bore B2 16 mm 

Outer Diameter OD 38.1 mm 

Length L 57.2 mm 

Shaft Penetration 26.47 mm 

Clearance Diameter C MAX 41.71 mm 

Fastening Hardware  

Cap Screw M5 

Screw Material Alloy Steel with Nypatch 
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Screw Finish Black Oxide 

Seating Torque 9.5 Nm 

Hex Wrench 4.0 mm 

Torque Specifications  

Static Torque 10.73 Nm 

Dynamic Torque Non-Reversing  5.37 Nm 

Dynamic Torque Reversing 2.68 Nm 

Misalignment   

Angular Misalignment 3° 

Partial Misalignment 0.76 mm 

Axial Motion 0.38 mm 

Additional Information  

Torsional Stiffness 0.39 Deg/Nm 

Moment of Inertia 30.032 x10
-6

 kg-m
2
 

Maximum Speed 6000RPM 

Bore Tolerance  +.025mm / -.000mm 

Temperature Range -40°F to 225°F 

-40°C to 107°C 
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  Self-Aligning Ball Bearing A.3:

 

 

 

 

Figure A. 2: Self-aligning ball bearing 

 

 

Table A. 3: Self-aligning ball bearing specification 

Bore d 17 mm 

Outer Diameter O.D 47 mm 

Width B 14 mm 

Fillet Radius r  1.5 mm 

 

Load Ratings 

3180N (Static) 

12543N (Dynamic) 

Weight 130 grams 
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  APPENDIX B:

Flow Visualisation Supplementary Results 

 

 Flow Visualisation around Stationary Turbine B.1:

 

 

 

 

Figure B.1:  Side view, eight blade stationary model, 4 m/s 
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Figure B.2:  Side view, sixteen blade stationary model, 4 m/s 

 

Figure B.3:  Side view, thirty two blade stationary model, 4 m/s 
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Figure B.4:  Side view, forty eight blade stationary model, 4 m/s 
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 Flow Visualisation around Rotating Turbine B.2:

 

 

 

Figure B.5:  Side view, eight blade rotating model, 4 m/s 
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Figure B.6:  Side view, sixteen blade rotating model, 4 m/s 

 

Figure B.7:  Side view, thirty two blade rotating model, 4 m/s 
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Figure B.8:  Side view, forty eight blade rotating model, 4 m/s 

 

 

 

 

 


