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Abstract

Cell and small biological organism tracking research is of fundamental importance

for the analysis of dynamic behaviour for assisting the development of many biomed-

ical image related applications. With the rapid development of digitised imaging sys-

tems, the immense collections of experimental (microscopic) videos make it nearly

impossible to manually analyse the obtained data. Therefore, recent research has

drawn attention to building automatic tracking systems to track the movement of

cells and small biological organism models using videos taken by microscopes.

Although general object tracking (such as traffic cars and pedestrians) has been stud-

ied for decades, existing general object tracking systems cannot directly be applied

to cell and small biological organism tracking, due to the differences in the imaging

devices and conditions of the targets. This research therefore investigates the novel

application of computer vision techniques to reliably, accurately and effectively track

the movement of cells and small biological organisms automatically.

Due to difficulties in generating video segmentation ground-truth, there is a general

lack of segmentation datasets with annotated ground-truth (particularly for biomed-

ical images). This work proposes an efficient and scalable crowdsourced approach

to generate video segmentation ground-truth and develops a tracking ground-truth

generation system. To illustrate the proposed approach, an annotated zebrafish lar-

vae video segmentation dataset and three tracking datasets have been generated and

made freely available online.

Automatic cell tracking techniques require accurate cell image segmentation; how-

ever, current general object segmentation techniques are susceptible to errors due to
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the poor microscopic imaging conditions, which include low contrast typical of cell

microscopic images. This work proposes a novel image pre-processing technique to

enhance low greyscale image contrast for improved cell image segmentation accu-

racy. An adaptive, shifted bi-Gaussian mixture model is matched to the original cell

image intensity histogram for greater differentiation between the cell foreground and

image background, while maintaining the original intensity histogram shape.

Small biological organism videos taken by microscope imaging devices under realis-

tic experimental conditions have more complex video backgrounds than cell videos.

This work first investigates single zebrafish larvae tracking using dense SIFT flow

and downsampling techniques. Many existing multiple small organism tracking sys-

tems require very strict video imaging conditions, which typically result in unreli-

able tracking results for realistic experimental conditions. Thus, this research further

investigates the adaptation of advanced segmentation techniques to improve the per-

formance of small organism segmentation under complex imaging conditions.

Finally, this work improves the multiple object association method based on the

segmentation module for the proposed system, to address object misdetection and

overlapping problems. This system is then evaluated on zebrafish videos, Artemia

franciscana videos and Daphnia magna videos, under a wide variety of (complex)

video conditions, including shadowing, labels, and background artefacts (such as

water bubbles of different sizes). The tracking accuracy of the proposed system out-

performs three existing tracking systems.

Thus, the work in this thesis has contributions in automatic cell and biological organ-

ism tracking, where the investigation studied the region-based segmentation dataset

construction generalised for biological organisms, intensity contrast enhancement

for micrographs, segmentation improvement by removing imaging constraints and

the final tracking accuracy enhancement.
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Chapter 1

Introduction

Cell and small biological organism tracking research is of significant importance

in the analysis of dynamic cell and organism behaviour for assisting the develop-

ment of cell studies, biomedical research and immune biology [1–4]. The automatic

tracking of cells and small organisms, such as zebrafish larvae, Artemia franciscana

and Daphnia magna, will provide efficient, reliable and well-validated approaches

for quantitatively and statistically analysing their behavioural responses to different

stimuli. However, with the rapid development of storage devices and imaging sys-

tems, the immense number of cell and small biological living organism microscopic

time-lapse videos makes it nearly impossible to analyse these cell and organism video

databases manually. Recent research has thus focused intensive attention on build-

ing effective and automatic cell and small biological organism tracking systems to

segment and track cells and organisms in time-lapse microscopic video sequences.

There are difficulties specific to cell tracking, for example, mitosis and apoptotic

events, especially when there are a large number of cells present in a culture. Thus,

many challenges remain for accurate and automatic tracking of cells compared with

general computer vision-based object tracking.

Zebrafish (Danio rerio) larvae are rapidly gaining popularity as a vertebrate and

mammal model for many biomedical applications including screening for biochem-

ical abnormalities [5] and behavioural science investigations [6–8]. Consequently,
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tracking of these larvae, as example small biological organisms, has emerged as a

challenge.

Manual quantification of cell and zebrafish larvae videos taken by microscope is

labour intensive and frequently not feasible [9]. Recent research attention has there-

fore focused on the development of automatic multiple cell and zebrafish larvae

tracking systems due to the increased availability of digital microscopy and video

storage systems.

Computer-aided techniques are therefore necessary for cell and small biological or-

ganism tracking, and these techniques usually involve target detection and inter-

frame association [9]. However, these automatic techniques face many challenges

for both the biomedical and computer vision fields. First, the video frames taken by

microscopes generally exhibit a poor Signal-to-Noise Ratio (SNR) due to the low

intensity contrast and low imaging light intensities needed to limit fluorescent pho-

tobleaching (especially for videos taken by fluorescent microscopes) [9] or the high

imaging light intensities required for optical imaging techniques [10]. Second, the

video frame intensity profiles may vary over the course of imaging due to changes

in biological structure and/or deviations in the intensities of the fluorophore labelling

materials [9]. Third, biological organism models may have uneven movement [11],

and their dynamic behaviour becomes unpredictable after biochemical testing chem-

icals or medicines are applied [12–14]. Furthermore, the well-known Brownian mo-

tion (the jittery, chaotic motion of microscopic particles suspended in water caused

by the random collisions with water molecules) results in unpredictable moving tra-

jectories due to the discrete nature of random collisions [15]. The Brownian motion

affects the detection of microscopic objects in fluid media.

Considering these challenges in combination with the specific peculiarities of micro-

scopic video and the dynamic movement characteristics of the tracked objects can

therefore potentially provide significantly better tracking performance than general

purpose tracking [9].
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This work proposes techniques that build and extend upon existing cell tracking

techniques and general computer vision-based object tracking algorithms applied

to automatically track the movement of cells and small biological organisms such

as zebrafish larvae (and potentially other organisms). The ultimate aim is to anal-

yse experimental time-lapse microscopic video sequences (already and continuously

obtained by applied science researchers) to investigate segmentation, individual tra-

jectory tracking, and dynamic behavioural parameter estimation.

1.1 Problem Statement

Tracking techniques are vital for understanding the biology and ecology of moving

organisms. Although tracking techniques have assisted the development of behaviour

and interaction analyses of large organisms [16–18], such as mammals, birds and

adult fish, the tracking of small organisms (at millimetre scale; most are considerably

smaller than 1 mm [19]) is hampered by the constraints of existing tracking methods

[20, 21] as further discussed below.

1.1.1 Lack of datasets annotated with ground-truth

Video segmentation research has emerged over the last decade for biomedical image

and video processing, especially for biological organism tracking. However, due to

the difficulties of generating the video segmentation ground-truth, there is a general

lack of segmentation datasets with annotated ground-truth, which poses a challenge

for improving biomedical image segmentation approaches and severely limits the

evaluation of segmentation algorithms.

There are a number of standard benchmark datasets for still image segmentation eval-

uation in general computer vision, such as the Berkeley segmentation dataset (includ-

ing BSDS300 and BSDS500) [22], which is widely used for used contour/boundary
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evaluation. However, standard datasets for benchmarking moving objects in video

sequences are still emerging in the field of computer vision [23–26].

Although there is a cell segmentation dataset annotated with ground-truth presented

in Section 3.2, there is currently no video segmentation dataset publicly available for

zebrafish larvae movement. The lack of such a dataset is a common bottleneck that

constrains the development and evaluation of biomedical image research.

1.1.2 Severe intensity contrast of cell microscopic images

The tracking of moving biological cells in time-lapse video sequences is fundamen-

tal to further understand biological processes. Automatic cell tracking techniques

require accurate cell image segmentation; however, current segmentation techniques

are susceptible to errors due to non-ideal but realistic cell image conditions, includ-

ing the low contrast typical of cell microscopic images. The whole-cell micrograph

shown in Figure 1.1 is very dark, which hinders the separation of the cell boundaries

from the image background, and the intensity values of cells vary (some cell regions

are hardly observable, whereas other cell regions are clear).

Effective and accurate cell segmentation poses many unique challenges to general

object segmentation techniques in computer vision [27] (such as the segmentation

of pedestrians or traffic from natural scenes), due to the low intensity or greyscale

contrast, illumination changes, cell cluster events (ambiguous segmentation bound-

aries), severe image noise and cell shape diversity in typical time-lapse cell videos.

The direct application or adaptation of general object segmentation methods [28–30]

to cell segmentation generally does not take into account the characteristics of time-

lapse videos taken by microscopic imaging systems under laboratory experimental

conditions.

Cell detection and segmentation are conducted on each frame independently with-

out taking into account any high-level information, such as the underlying biological
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Figure 1.1: A typical cell micrograph example with low intensity con-
trast between the cells and the background.

structures. The segmentation result for one frame may be near perfect (when all cell

regions in a micrograph are clear and have clear boundary outlines against the image

background), but segmentation errors over the span of multiple video frames would

result in severe tracking errors due to loss of the tracking trajectories of the studied

targets [9].

1.1.3 Microscopic video imaging constraints

Many available zebrafish tracking systems are based on the assumption of high seg-

mentation accuracy [31, 32] or require strict video imaging conditions for a clear

video input background [5, 31, 33, 34].

The modifications of experimental conditions required to obtain the necessary imag-

ing conditions in existing tracking systems can affect the reliability of the experi-

mental results. For example, the observed swimming behaviour and kinematics may
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be affected by observational bias potentially introduced by modifying environmen-

tal conditions, such as the high light intensities that are usually required for optical

imaging techniques [10]. The influence of high-intensity light on light-sensitive or-

ganisms (e.g., phototaxis) may not be negligible [10]. However, an adequate light

source is a central requirement for obtaining sufficient contrast between objects and

the background [10].

More importantly, zebrafish larvae will disappear from the tracking system [5, 35] if

the larvae stop moving. Detection loss of zebrafish larvae is not uncommon for the

pixel displacement thresholding method because of the ‘bursty’ movement charac-

teristics of larval zebrafish, as explained in Section 2.3.1.

1.1.4 Individual identity ambiguity

Individual identity ambiguity following crossing, cluster and overlapping events be-

tween connected microscopic video frames is a challenge for multiple biological

object tracking.

Figure 1.2: Solutions for organism individual identity ambiguity.

Multiple biological organism tracking systems [36–41] cannot maintain the identi-

ties of individuals following crossing, cluster and overlapping events. New tracking

trajectory fragments are created after organisms cross or overlap with each other, as

shown in Figure 1.2a.

Although some systems [42–48] attempt to maintain individual identities using prob-

abilistic models to predict the position of individuals in the following frame after
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crossing, cluster and overlapping, these techniques are not reliable for biological or-

ganism tracking (such as zebrafish larvae) because of their complex, unpredictable

movement patterns under exposure to different chemicals, new medicine samples and

toxicants. Identity swapping might occur (as shown in Figure 1.2b) when the moving

trajectories of multiple organisms overlap.

The recently developed idTracker [31] is a multiple biological organism tracking

system that is reported to maintain individual identities (as shown in Figure 1.2c) over

a long period of time without identity error propagation by extracting “fingerprint”

information for each individual. However, the core function is to extract intensity and

contrast maps based on pixel intensity values, which are not robust to illumination

changes through frames and are limited by the number of targets that can be detected

at one time and the specific ratio between the organism size and the container size

[6, 49].

1.2 Aim and Objectives

The aim of this thesis is applying advanced computer vision techniques to improve

the accuracy, reliability and efficiency of automatic multiple biological object track-

ing by addressing the challenges discussed in Section 1.1.

• This work will study a segmentation and tracking dataset construction ap-

proach for efficiently and economically generating the segmentation and track-

ing ground-truth for general small biological organisms, to facilitate the nu-

merical evaluation of segmentation and tracking algorithms and to address the

challenge presented in Section 1.1.1.

• A zebrafish larvae segmentation and tracking dataset annotated with ground-

truth is built using this approach.
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• Since segmentation-based automatic cell tracking methods [28] require cell

segmentation results for each frame, improving cell segmentation accuracy

can enhance the overall performance of a tracking system. Thus, this work

proposes to develop methods to increase the contrast differentiation between

the target cells and the microscopic video background/noise to, in turn, achieve

improved segmentation accuracy and address the challenge discussed in Sec-

tion 1.1.2.

• Finally, this work aims to develop an automatic, accurate, and efficient ze-

brafish larvae tracking system under unconstrained microscopic video imaging

conditions to systematically assess the behavioural parameters of small living

aquatic organisms (according to the challenges in Section 1.1). The system

can be used to test the behavioural responses of zebrafish larvae under lab-

oratory conditions and different chemical exposures and allows experimental

replication for statistical analysis, and address the challenges discussed in Sec-

tion 1.1.3 and Section 1.1.4, e.g., input video constraints and multiple object

tracking trajectories, respectively.

1.3 Contributions

The main technical contributions of this work and the associated publications are

listed below:

• Proposing an efficient and scalable crowdsourced approach using interactive

segmentation methods to generate video segmentation datasets annotated with

ground-truth to facilitate database generation and supervised numerical evalua-

tion of segmentation algorithms, particularly for general biological organisms.

In addition, this work presents an annotated zebrafish larvae video segmenta-

tion dataset generated by the proposed approach and three tracking datasets

annotated with centroid positions of different small organisms. The datasets
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and ground-truth generation, verification, and numerical measurement soft-

ware have been made freely available online. Furthermore, this work pro-

poses a two-pass verification process to verify the segmentation results manu-

ally generated by the crowdsourced workers, and a set of metrics to enable the

numerical evaluation of segmentation algorithms using such annotated datasets

(Chapter 3, [50]).

• Presenting a novel image pre-processing technique to enhance the typical low

greyscale microscopic image contrast for improved cell image segmentation

accuracy. An adaptive, shifted bi-Gaussian mixture model is proposed to match

the original cell image intensity histogram for greater differentiation between

the cell foreground and microscopic image background, while maintaining the

original intensity histogram shape. Rather than using a model with fixed pa-

rameters across an entire video sequence as in existing approaches, this work

proposes the derivation of parameters of the mixture model from the charac-

teristics of the microscopic images to match the intensity histogram for each

video frame to adaptively address changes in the video background (Chapter

4, [51, 52]).

• Developing a segmentation method combining background subtraction, a Gaus-

sian mixture model with adaptation of the number of Gaussian components and

component parameters to changes in video background, and morphological op-

eration to address the unresolved zebrafish larvae detection and segmentation

problem and remove the strict constraints on microscopic video imaging con-

ditions of existing small organism tracking systems. (Section 5.3.1 in Chapter

5, [53].)

• Developing an accurate, reliable and efficient automatic single and multiple

zebrafish larvae tracking system based on the developed segmentation method.

This system can deal with non-ideal detection and segmentation situations and

can be applied to other small organisms, such as Artemia franciscana, and
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Daphnia magna. (Section 5.3.3 in Chapter 5, [54, 55].)

1.4 Thesis Outline

Chapter 1 
Introduction 

Chapter 2 
Literature review 

Chapter 3 
Datasets 

Chapter 4 
Improved cell 
segmentation 

Chapter 5 
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complexity 

Low 

High 

Figure 1.3: Thesis outline

To document the details of this research, the outline of the thesis (as shown in Figure

1.3) is organised as follows:

Chapter 1 introduces the background of this work including cell tracking and small

biological organism tracking (i.e., zebrafish larvae, Artemia franciscana, and Daph-

nia magna tracking). It also presents the problems and challenges facing existing

cell and small organism tracking (especially zebrafish larvae tracking due to the dif-

ficulties introduced by their ‘bursty’ movement characteristics), followed by the in-

troduction of the aim and objectives of this work. Finally, Chapter 1 summarises

the main technical contributions of this work associated with the related publication

outcomes.

Chapter 2 reviews the literature on cell tracking, zebrafish larvae tracking, and se-

lected, advanced computer vision techniques that can be applied to cell and small

organism tracking research.
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Chapter 3 presents the investigation of segmentation and tracking dataset generation.

Due to the general lack of datasets for small organism segmentation and tracking in

general image and video segmentation and tracking research, especially in biomed-

ical image processing research, Chapter 3 proposes an efficient and scalable crowd-

sourced approach to generate video segmentation ground-truth to facilitate database

generation for general biological organism segmentation and tracking algorithm eval-

uation. In addition, Chapter 3 presents a tracking ground-truth generation software

with a user-friendly interface for selecting the centroid position of each organism

in video frames. To illustrate the proposed crowdsourced approach, an annotated

zebrafish larvae video segmentation dataset is generated. In addition, Chapter 3 pro-

vides a set of segmentation evaluation metrics to enable the evaluation of segmenta-

tion algorithms against the manually generated ground-truth. Finally, Chapter 3 uses

metrics to evaluate the segmentation performance of five leading segmentation al-

gorithms on the generated zebrafish video segmentation dataset. To further facilitate

the quantitative and objective measurement of the overall tracking performance of the

single and multiple organism tracking systems, another three datasets annotated with

tracking ground-truth based on organism centroid positions are built and presented in

this Chapter. The evaluation and comparison of the proposed MSBOTS (presented

in Chapter 5) with existing automatic organism tracking systems are based on these

datasets. The datasets and related software are publicly accessible.

Chapter 4 presents the pre-processing investigation of stem cell tracking using mi-

croscopic time-lapse videos. The accurate detection and segmentation of cells from

time-lapse microscopic video sequences provide a critical foundation for understand-

ing dynamic cell behaviours and cell characteristics. However, general object seg-

mentation methods in computer vision are susceptible to errors due to the severe

microscopic imaging conditions in time-lapse microscopic cell videos. To address

the low image intensity contrast typical in microscopic cell images, Chapter 4 of this

work investigates the novel use of an adaptive, shifted bi-Gaussian mixture model
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to enhance the intensity contrast prior to cell segmentation. Rather than using a

model with fixed model parameters across an entire video sequence as in existing

approaches, it proposes the adaptive derivation of the mixture model parameters to

match the intensity histogram for each video frame to address changes in the video

background. To maintain the dominant characteristics of the original intensity his-

togram of microscopic cell video frame, the mixture model parameters are calculated

from the two dominant features in each intensity histogram. The experimental results

for the cell database show improved segmentation accuracy compared with existing

image contrast enhancement methods. The pre-processed cell image exhibits greater

differentiation between the cell foreground and video background while maintaining

the original intensity of the histogram features.

Chapter 5 presents the development of two zebrafish larvae tracking systems: a sin-

gle zebrafish larva tracking system under a clear video background and the more

advanced multiple zebrafish larvae tracking system for challenging video imaging

conditions and complex organism movement characteristics. The microscopic video

conditions of zebrafish larvae are more complex than those of cell microscopic videos.

Thus, Chapter 5 first presents the investigation of the dense SIFT flow technique for

single zebrafish larva tracking. Single zebrafish larva tracking is simpler than mul-

tiple zebrafish tracking because there is no individual identity ambiguity problem

for single zebrafish tracking. Chapter 5 subsequently develops an accurate, efficient

and reliable multiple zebrafish larvae tracking system by exploring the adaptation

of background subtraction and object segmentation techniques and multiple object

tracking algorithms. Section 5.3.1 presents zebrafish larvae detection/segmentation

from the microscopic video background without constraints on the microscopic video

imaging background. Furthermore, Section 5.3.2 presents the association process in

the detected zebrafish larvae of the multiple zebrafish larvae tracking system based

on the improved segmentation result.

Chapter 6 presents the extension of the application of the proposed multiple zebrafish
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larvae tracking system to Artemia franciscana and Daphnia magna using micro-

scopic videos. The testing results for the 10 videos under typical experiment imaging

conditions confirm the generalisable automatic tracking ability of the proposed sys-

tem (presented in Section 5.3), and thus the system is denoted the Multiple Small

Biological Organism Tracking System (MSBOTS).

Chapter 7 finally concludes the thesis with suggested future work to further the im-

pact of the research conducted in this thesis.
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Chapter 2

Literature Review

Typical manual tracking approaches are tedious and commonly require significant

periods of manual observation and labelling of the image features to represent the

activity for a single experimental task [56, 57]. Furthermore, as a subjective manual

task, the results are difficult to reliably repeat and reproduce.

However, recent advances in (microscopic) medical imaging and the ubiquitous avail-

ability of multimedia storage capacity have led to increasingly large collections of

time-lapse cell video sequences, and thus the traditional approach of manual cell

analysis by visual inspection is time-consuming, tedious and subjective (often unre-

peatable), requiring skilled analysis and inspection of cell images.

Effective and accurate cell analysis poses challenges for existing techniques in cell

tracking, and in some cases, it is even impossible to manually track cell image se-

quences to obtain robust results, especially when there are a large number of cells in

long image sequences. Manual cell tracking is commonly employed and is a tedious

and unrepeatable task that often requires more than 24 hours of manual analysis due

to the skilled inspection required to obtain dynamic and structural cell information.

The shape deformability of cells, image contrast changes, cell clutter and severe im-

age noise further add to the difficulty of manually tracking cells [39].

Recent research attention has therefore focused on the development of automatic

biological object detection and tracking systems due to the increased availability of
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digital microscopy and video storage systems.

Specifically, three main challenges differentiate optical microscopy tracking from

computer vision object tracking. First, it is not uncommon for a cell culture to con-

tain thousands of cells. It is difficult to accurately track a certain target in a large

population to obtain the movement features (such as the movement velocity and di-

rection), dynamic behaviour and structural characteristics; such movement features

are analysed and explored in Sections 5.3.4, 5.3.5 and 6.2.1. Furthermore, the edges

of closely connected targets will inevitably overlap with each other, resulting in the

formation of clusters in the culture, especially when a large number of targets exist

under experimental conditions. It is a challenge for computer vision algorithms to

automatically segment such ambiguous target object boundaries instead of a large

target region cloud. This is a key research challenge for cell and organism tracking

algorithms, addressed in Section 5.3.3. Finally, cell tracking algorithms must be ro-

bust against cell mitosis, in which one mother cell splits into two daughter cells with

the same number of chromosomes of stem cells. To solve this problem, a detection-

based cell tracking approach is investigated in this work and is presented in Chapter

4.

This Chapter reviews the literature on cell tracking (with an emphasis on the low

intensity contrast problem of segmentation-based cell tracking methods), zebrafish

larvae and other small organism tracking and the related computer vision techniques

that can be applied to this research.

2.1 Background

Digital images or photographs taken by microscope imaging devices are called mi-

crographs or photomicrographs. In contrast to macrographs of items that are visible

to the naked human eye taken by normal cameras, micrographs are used to magnify

an item to display its microstructure in extensive detail [58–60]. Figure 2.1 shows
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two micrographs of stem cells (Figure 2.1a) and zebrafish larvae (Figure 2.1b) taken

by optical microscopes. A time-lapse microscopic video is a series of such micro-

graphs taken at a fixed frame rate.

Figure 2.1: Micrograph examples of stem cell and zebrafish larvae.

(a) Scale 63× [61]; (b) scale information was not provided in the video, which was
provided by a science application lab.

To illustrate the process of segmentation-based cell (or other small biological organ-

ism) tracking, Figure 2.2 shows an example of the tracking of detected/segmented

cells among three successive microscopic video frames. Di,j indicates the label of

the detected cell j in the frame at time i (i = 1, 2, 3). The aim of automatic cell track-

ing is to accurately link the corresponding cell Di+1,j for every cell Di,j, as visually

illustrated by the solid yellow and dashed red lines linking, for example, cells 1 and

3, respectively. And thus, the tracking/linking step is based on the object segmenta-

tion (detecting/segmenting objects from original video frames as example shown in

Figure 2.1).

2.1.1 Purpose and importance of cell segmentation and tracking

Cell tracking can provide critical information on dynamic cell behaviours and aver-

age cell characteristics for many biomedical research and commercial applications
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Figure 2.2: A visual example of cell tracking between successive mi-
croscopic video frames.

[1]. Automatic tracking of biological cells has attracted significant research attention

in recent years.

In the last decade, the use of optical micrographs in cell biology has received dra-

matic attention in biomedicine, drug-cell interactions and drug discovery[58, 59, 62]

because cells are an important object for toxicology studies, studies of patient-drug

interactions and new drug development in pharmaceutical research [59]. Current

cell tracking techniques are applied to a wide range of cells, including not only em-

bryonic stem cells and tumour cells but also epithelial and endothelial cells [29].

Furthermore, strategies for microscopic analysis have been expanded by the automa-

tion of sample preparation, with the ability to constantly provide a large collection of

digitised microscopic images [59, 63].

The study of cell tracking provides information on dynamic cell behaviours and av-

erage cell characteristics [1]. Almost all cells in the human body undergo significant

motion, and the characteristics of the cell motion typically convey critical patholog-

ical information [2]. For example, the migration mechanisms of tumours and how

they kill the host organism remain to be elucidated [64]. However, the migration

mechanisms of tumours within tissues are similar; thus, such investigations of cel-

lular and molecular migration can further current knowledge on the spreading and

invasion of tumour cells, with a view towards developing new treatment strategies
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[65]. The importance of studying cell tracking is also illustrated by studies of the

clinical application of immune cell migration tracking, which aids the identification

of infection points to facilitate the removal of the invading pathogen.

2.1.2 Purpose and importance of zebrafish larvae tracking

Zebrafish are an ideal vertebrate model system to study the genetics and biological

mechanism of many human diseases [3, 66]. In recent years, zebrafish have become

one of the most prominent vertebrate model organisms [67, 68] successfully used to

study developmental genetics [69–72], neural systems [7, 73], and the genetics of

behaviour and brain function [3, 74–76]. Such wide use of zebrafish is due to the

optical transparency of the zebrafish body (which enables detailed anatomical char-

acterisation, direct investigation of tissue movement, cell migration and interaction

during neurogenesis [3, 73]), ease of genetic manipulations, physiological similar-

ity to mammals, robust behaviour, low cost to incubate and raise, and potential for

high-throughput screening [7].

Zebrafish are an especially suitable model for testing drug addiction, e.g., alcoholism.

The effect of alcohol on behaviour and brain function can be studied by mixing alco-

hol with the water in the fish tank because of the simple alcohol delivery mechanism

in zebrafish [3, 74, 77]. The alcohol in the water is absorbed through the gills and

skin of the fish, and thus the alcohol level in zebrafish vessels quickly reaches equi-

librium with the external alcohol concentration [3]. The results obtained in [3] imply

that zebrafish are a potentially successful model system for studying the effects of

drug addiction on behavioural characteristics. Thus, behavioural tests with zebrafish

offer a useful tool for facilitating the identification of genes involved in addiction

mechanisms.

The amenability of zebrafish to genetic change by gene knock-down or overexpres-

sion has resulted in the isolation of a variety of mutants for studying developmental
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mechanisms [66, 73, 78]. Zebrafish genes and mutations have syntenic correspon-

dence relationships with the human genome [66, 78]. Since the introduction of ze-

brafish in biological and medical laboratories, many milestones have been achieved,

positioning zebrafish as a prominent genetic model organism [79].

Accurate movement characteristic analysis from the automatic tracking of zebrafish

larvae is crucial for many biomedical image-related research and applications. Lo-

comotive behaviour analysis of zebrafish larvae can be divided into three main cate-

gories based on their basic applications as vertebrate models.

First, the movement pattern of zebrafish larvae can be determined by simple pixel

quantification based on the number of pixels whose values change beyond a thresh-

old value within consecutive video frames [80]. By classifying the activity pattern as

burst (very large movement) and freeze (no movement) classes, the sleep and awake

states of zebrafish larvae can be analysed and correlated with inactive states and de-

tectable movement states. This sleep/awake pattern research based on classification

of zebrafish larvae movement has been widely used as a model for the study of the

genetic mechanisms that regulate human sleep [80, 81]. For example, more than 10%

of the human population suffer from chronic sleeping disturbances, and the identifi-

cation of defective hypocretin/orexin (Hcrt) signalling as a cause of mammalian sleep

disorders highlighted the potential of genetic approaches to sleep research [80]. One

hypocretin/orexin gene has been identified in zebrafish [80, 82], and its gene structure

and expression pattern and the axonal projections of larval zebrafish Hcrt neurons are

strikingly similar to those in mammals [80, 81]. Thus, zebrafish larvae have been in-

troduced as a model system to study the sleep/awake regulator Hcrt and to determine

the effect of long-term expression of this signal [80, 81].

Second, the zebrafish tracking algorithm detects the coordinate information of the

zebrafish larvae and then calculates the kinetic parameters of the subject, such as

positional preference, velocity and displacement, based on changes in the centroid

coordinates of the zebrafish larvae in successive video frames [83]. There is little
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quantitative information on how spontaneous propulsive movement develops, and

little is known on how genetic and environmental factors affect the environmental

behaviour of zebrafish larvae. This information is essential for understanding the

source of variability of movement behaviours of zebrafish and investigating novel

treatments of neurological diseases associated with movement disorders of zebrafish

larvae as a model of human systems.

The final category of movement analysis of zebrafish larvae is kinematic measure-

ment, which identifies anatomic landmarks of zebrafish and detects how their spa-

tial relationships change during consecutive frames. This can be used to determine

the detailed movements of individual zebrafish larvae, such as trunk curvature and

tail beating frequency. This information is also used for differentiating the turning

and spontaneous propulsive movement of zebrafish. The neural basis of behavioural

choice for vertebrates is largely unknown, and zebrafish are an attractive model for

vertebrates. The kinematics of motor events are studied for the measurement of tail

beating frequency for different manoeuvres; this information is further used to anal-

yse the response of zebrafish larvae to different stimuli [84].

2.1.3 Purpose and importance of other small organism tracking

Small (often microscopic) organisms such as Daphnia magna and Artemia francis-

cana are commonly used for ecotoxicity studies, group behaviour studies, and eco-

system research [4, 85, 86].

Groups of animals exhibiting collective behaviour have been studied intensively,

particularly their self-organisation and leadership capabilities [86]. Analysing and

modelling this group behaviour constantly inspires the development of engineer-

ing systems, such as the design of distributed control systems [86, 87]. Leadership

and decision-making processes are crucial in animal groups because there is limited
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knowledge for processing information such as choosing the directions of food or mi-

gration paths, and these processes allow a small proportion of individuals to lead the

group [86]. Thus, the dynamic behaviour characteristics of Artemia are studied and

analysed as a model for developing external leadership by robot agents to interact

with or induce a collective response of the group [86].

Observations of the activity and viability of Artemia in water samples by micro-

scopes are used to obtain information on state and environmental conditions under

aquatic conditions [4]. In addition, the presence and variability of Artemia as bi-

ological indicators provide information on the ecosystem effects of pollutants for

water analysis [4]. Further, Artemia franciscana can provide orders of magnitude

higher (10 - 1000 times higher [88]) sensitivity than conventional lethal biomonitor

organisms (which are predominantly applied based on the mortality of these species)

to evaluate the toxic effects of environmental contaminants and stressors [57, 88,

89]. Thus, Artemia franciscana have emerged as a sensitive biomonitor organism

model to rapidly detect adverse ecosystem changes such as toxins [57]. For example,

changes in the swimming patterns (such as average velocity) of Artemia are widely

used as behavioural toxicity end-points to monitor aquatic pollution and statistically

assess swimming activity [57].

Daphnia, freshwater relatives of Artemia franciscana [90], are also frequently used

as model organisms to assess the hazards and risks of chemicals released in the

aquatic environment (e.g., freshwater rivers) due to their high sensitivity to many

chemicals and their representation of freshwater organisms [91]. Behavioural tests

can provide earlier responses than traditional standard acute and chronic tests be-

cause toxic stress will induce rapid movement pattern changes among Daphnia under

toxic levels lower than acute toxic levels [85, 91].
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2.2 Cell Tracking Methods

The traditional technique (still used currently in some laboratories) for observing

biomolecules or live cells or small organisms is tagging the target by fluorescent la-

belling or injection [73, 92] or so-called quantum dots [93], which produce dynamic

and structural information on the targets via fluorophore tracking [73, 92].

Various fluorescent and bioluminescent contrast agents have been used for cell la-

beling and tracking (such as green fluorescent protein (GFP) [94–96], red, orange

and yellow FP [97, 98], and bioluminescent proteins [99–101]), in combination with

optical imaging (OI) techniques. OI employs a light source (often a monochromatic

laser) that excites a fluorophore to emit in the near infrared (NIR) spectrum, and a

detector (often a highly sensitive CCD device) captures the fluorophore’s emission

[100, 102]. Fluorescent imaging techniques are widely used for biological cells and

tissues due to their various advantages, including high detection sensitivity and high

light penetration depth in biological tissues [102].

However, these methods are not reliable for tracking living cells over a long period of

time due to the severe photobleaching of fluorophore materials and their broad over-

lapping spectra [103]. In addition, different fluorescence labelling techniques may

lead to diverse appearances, even for different samples of the same biological subject

[9]. In addition, fluorescence microscopy is subject to practical physical limitations

caused by the low image contrast and light diffraction within the optical system,

resulting in the fundamental problem of image resolution [104]. Furthermore, fluo-

rescence microscopes are much more expensive than light microscopes. The entire

data collection process is also more complex for fluorescence microscopy than for

optical microscopy [73].

Thus, the automatic tracking of biological cell movement provides an efficient ap-

proach for investigating their dynamic behaviour characteristics in biomedical re-

search and applications [1, 105] compared with traditional manual visual inspection
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approaches.

Existing work [11, 28, 39] has explored the application of general object tracking

to cell tracking, but cell tracking differs from general object tracking in computer

vision (e.g., of people, cars, faces etc.). General object tracking does not need to

consider issues such as the large number of cells in cell image frames, cluster events

among connected cells, severe noise in cell image sequences, shape diversity between

different types of cells, inevitable mitosis events with stem cells, and contrast change

in cell image sequences [61, 106].

Table 2.1: Literature categorised according to cell tracking methods

Model-based evolution methods Detection-based methods
Model Update Segmentation Association
Level set [29, 107] Kalman filter [108] Intensity thresholding

[109, 110]
Viterbi-based search

Active contour [111, 112] Particle filter [44] Gradient detection [113,
114]

Feature matching [115]

Mean-shift [11, 29] Bayesian method [116] Morphological operations
[117, 118]

Nuclei merging [119]

Watershed [120, 121] Chan-Vese segmentation
[30]

Nearest-neighbor linking
[122]

Table 2.1 briefly summarises the literature on existing cell tracking methods. As

shown, there have been two main categories of cell tracking methods in the last

decade: model-based evolution methods and detection-based methods [11, 28]. The

basic approach of model-based algorithms is the creation of a model for each cell in

the first frame of a video sequence. The information for these models is updated in

the following two or more consecutive frames over time [11]. Representative mod-

els include the level-set [29, 107], active contour [111, 112] and mean-shift models

[11, 29]. Chan-Vese segmentation [30] further combines the level sets and Gaussian

Mixture Model (GMM) by iterative Expectation Maximisation (EM) estimation, at-

tempting to implicitly represent cell boundaries. The model-based approach is robust

against topological changes during cell mitosis and can easily be extended to higher

dimensional processing for multiple cell tracking problems [28, 29]. However, the

disadvantage of these approaches is the inability to deal with cells entering\leaving

the observation area and cells without regions of overlap in two successive frames.
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The reinitialisation required in these cases significantly adds to the computational

complexity.

A common strategy for detection-based cell tracking algorithms is the segmentation

of all cells in each frame. The detected cells in consecutive frames are then associated

based on certain criteria over time [123]. The advantage of this method is the com-

putational efficiency at the segmentation stage. However, it also places more tasks in

the next association stage because no information from previous frames is used in the

segmentation step. The other shortcoming of this method is the uncertainty in estab-

lishing a one-to-many or many-to-one correspondence due to high cell intensity, cell

mitosis events and cells entering/leaving the observation area. To solve this problem,

a large number of features are trained to obtain the criteria to determine the splitting

and merging of some trajectory fragments in the association process [29].

Many advanced object segmentation techniques in computer vision have been ap-

plied to enhance cell segmentation accuracy. Mathematical morphological opera-

tions [117, 118], gradient (edge) detection [113, 114], intensity thresholding [109,

110] and watershed algorithms [120, 121] have also been employed as additional

strategies to help improve cell segmentation accuracy. However, the efficiency and

applicability of these techniques are limited by the image artefacts generated and

over- or under-segmentation, especially for cells whose boundaries have intensity

values similar to the background.

Histogram Equalisation (HE) [124] is one of the most commonly used basic con-

trast enhancement techniques due to its simple implementation [125, 126]. However,

HE inherently flattens the intensity Probability Distribution Function (PDF), which

can lead to over- or under-enhancement of image regions [124, 127, 128]. Washed-

out images, patchiness and visual artefacts are drawbacks that can affect traditional

HE methods and their variants [126]. Salihah [129] reviews another three contrast

enhancement methods: partial contrast [130], bright stretching and dark stretching
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[131]. Partial contrast [130] uses a linear mapping function to stretch narrow in-

tensity levels to a wider range such that the whole intensity range [0, 255] is oc-

cupied. Thus, the contrast and brightness of the original image will be enhanced.

Bright stretching and dark stretching [131] are all based on autoscaling, while bright

stretching is to increase the brightness level of images and dark stretching is the re-

verse procedure of bright stretching. Intensity transformation, such as logarithmic

transformation [132], power-law transformation and bit-plane slicing [133], and spa-

tial filtering including smoothing spatial filters [134] and sharpening spatial filters

[132, 135] have also been applied in contrast enhancement for cell microscopic im-

ages. Intensity transformation and spatial filtering directly manipulate pixels on cell

image plane. More detailed technical discussion on cell segmentation and contrast

enhancement will be presented in Chapter 4.

2.3 Zebrafish Larvae Tracking Methods

As zebrafish (Danio rerio) larvae have increasingly been used as a vertebrate and

mammal model for many biomedical applications including screening for biochem-

ical abnormalities [5] and behavioural science investigations [3, 6], larvae tracking

has emerged as a challenge [136]. Recent research attention has therefore focused

on the development of automatic multiple zebrafish larvae tracking systems.

Similar research challenges to cell tracking are also found in small organism tracking,

such as the time-consuming, unrepeatable results of manual tracking and the increas-

ing amounts of acquired data requiring analysis. Recent research has found that the

nervous system of zebrafish provides an opportunity to study the fundamental basis

of neural pathways in mammals; in particular, zebrafish larvae are attractive verte-

brate experimental models because of the limited complexity of their neural circuits,

which are similar in structural function to those of mammals [5, 80]. In addition,
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zebrafish larvae have gained popularity in recent years as a vertebrate model to un-

derstand the development of human tissue and organs [137] and as a model of human

disease in new medicine discovery and molecular pathology [80, 83]. Conventional

movement analysis of zebrafish requires labour-intensive and time-consuming man-

ual analysis; however, few techniques are available that enable automatic immobil-

isation and analysis of movement behaviour of a large number of zebrafish larvae

in real time [138]. Automatic and reliable methods for analysing the movement of

zebrafish larvae are therefore fundamental for facilitating biomedical applications in

the fields of neural research, genetics and drug research [5].

Automatic zebrafish larvae tracking is usually conducted by recording the zebrafish

larvae using microscope imaging devices for a period of time. Computers are then

used to automatically detect and quantify the movement of the objects in the resultant

time-lapse videos. The movement of zebrafish larvae can be analysed individually

or in a group by observing a single zebrafish or multiple zebrafish swimming in

the wells (called a petri dish in applied science) used to house the zebrafish larvae

subjects.

Compared with cell tracking and general object tracking, the detailed difficulties of

zebrafish tracking can generally be classified as segmentation and tracking problems.

With respect to detection difficulties, the similar size and non-rigid shape of zebrafish

are difficult to represent by one or a set of topological templates [6, 33, 49, 139];

texture information for zebrafish larvae is not sufficient for detecting fish location

because of the transparent zebrafish body [140–142]. The tracking difficulties can

be divided into three classes. The movement pattern complexity (especially upon

exposure to test chemicals or medicines) [33, 75, 143, 144] of zebrafish makes it

difficult for existing probabilistic-based prediction models [42, 43, 145, 146] to fully

simulate all moving activities. In addition, similarities in size and shape complicate

the differentiation of individuals in a long video sequence. Finally, occlusion and

crossing events trigger detection errors, leading to fragments in tracking trajectory
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and swapping of individual identities, which can also be propagated to the following

sequences [6, 36, 49].

2.3.1 Adult zebrafish tracking vs. larval zebrafish tracking

Many automatic single and multiple tracking systems have been recently developed

for adult zebrafish [5, 31–34, 147, 148], such as state-of-the-art methods based on

deep learning [32], particle filtering [148], and the well-known idTracker [31], and

outstanding tracking performance has been reported for adult zebrafish.

However, the locomotive characteristics of zebrafish larvae are dramatically different

from those of adult zebrafish. Adult fish swim continuously, whereas zebrafish larvae

may display little or no movement over time [149], and thus their dynamic responses

can be imbalanced. Zebrafish larvae exhibit a mean proportion of activity of less

than 0.075 over time, according to statistics reported in [149]. This inactivity is

the primary cause of tracking failure in these systems and traditional statistical tests

based on movement features for tracking and analysing larval behaviour. In addition,

the intensity contrast between adult fish and the water background is also greater than

that for zebrafish larvae due to the transparent nature of the larval peripheral body.

Moreover, the adult zebrafish tracking systems reported in [31, 32] are both based on

the assumption of high-intensity contrast, a commonly required imaging condition

constraint for existing zebrafish tracking systems.

The factor of small size poses many challenges, particularly for aquatic organisms

[57]. Radiofrequency identification chips, also called u-chips or transponders, are

widely used in individual organism identification application, but the smallest avail-

able chip size is currently approximately 0.4 mm [150]. Devices of this size will

dramatically affect the natural dynamic behaviour of organisms at the millimetre

scale [20, 93]. In addition, general object tracking is already a complicated problem

due to object occlusion, overlapping, non-rigid object structures (object rotation and
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changes in scale), or changes in motion patterns, among other factors [57, 151], and

the difficulty level increases when the tracking targets are small in size because small

organisms provide less information on the imaging noise.

3D systems with multiple cameras [20] or super-resolution images built from mul-

tiple low-resolution images [20] have been proposed to obtain more information for

accurate tracking of small organisms. These systems increase computational com-

plexity, change the detection and association tracking system structure and require

further object location registration and association among cameras or images.

2.3.2 Existing zebrafish larvae tracking systems

Single zebrafish larva tracking

Single zebrafish larva tracking is comparatively simpler than multiple zebrafish track-

ing due to the absence of identity ambiguity or scenarios of occlusion of multiple

objects. However, single zebrafish larva tracking is still very important in many

behavioural studies and neurological research [35, 152]. Automatic tracking of sin-

gle zebrafish larva has been used as a model system in many behavioural studies

[35, 152]. For example, studies of the Visual-Motor Response (VMR) use single

zebrafish larva placed in each well to determine their locomotor response to light

increments and decrements [153] and study eye relaxation in vertebrates. Single ze-

brafish larva tracking has also been applied to discover and characterise the complex

behaviour of psychoactive drugs [35]. Another application of single zebrafish larva

is the identification of the genetic basis of seizure resistance [152].

To enable high-throughput studies using single zebrafish larva, petri dish plates with

multiple wells containing a single larval zebrafish in each well are widely used in

single larva tracking systems to record and compare a group of tests simultaneously

[5, 33, 147]. Permitting only a single zebrafish larva in each petri dish also avoids

the overlapping and swapping of trajectories that can result from housing multiple
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zebrafish larvae in one container. However, experiments with one zebrafish per

dish strictly constrain research applications in studies of interaction and grouping

behaviour.

The View Point tracking system has been used extensively for single zebrafish larva

tracking [35]. To achieve accurate zebrafish larvae detection performance by the

View Point video-tracking system, care must be taken during recording to avoid glare

from light illumination on the water surface, which may interfere with the imaging

devices and manual control of the system, while aligning the software grid with the

zebrafish larva container (misaligning the video-tracking system grid could lead to

loss of detection of fish movement) [153]. The pixel displacement threshold between

successive frames for distinguishing the zebrafish larvae from the background is em-

pirically determined in the setup based on the specific imaging cameras and light

setup [153].

The LSRtrack system [5] is another popular technique for single zebrafish larva

tracking and has gained wide usage for single zebrafish tracking research. However,

the authors reported tracking failure as a result of unreliable selection of the track-

ing contrast threshold (as illustrated in Figure 2.3) [81]. LSRtrack uses a similar

object detection mechanism as the View Point tracking system [35]. The pixel dis-

placement is compared with a pre-selected threshold value within consecutive video

frames. However, image pixel values are unreliable as a determining factor due to

changes in lighting, perspective and noise [154].

Filter banks, mutual information, gradient and phase features are therefore applied to

the detection of zebrafish larvae to improve reliability over simple pixel values. How-

ever, these methods fail if significant changes occur (a common event in zebrafish

movement) [154]. Reference [140] proposed the application of affine correlation for

serial zebrafish registration and texture tracking, emphasising image texture content

and generating stable and smooth motion estimation. However, this strategy is only

suitable for specific textural imagery, e.g., in differential interference contrast (DIC)
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Figure 2.3: Typical tracking errors by the LSRtrack system [5].

(a) The zebrafish is hidden by the Petri dish wall; (b) mistracking caused by a
high-intensity threshold value; (c) typical error caused by a low-intensity threshold
value.
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microscopy images. Furthermore, the measurements may also be biased if no initial

deformation exists [140].

Multiple zebrafish larvae tracking

Recent research attention has focused on the development of automatic multiple ze-

brafish larvae tracking systems, which is much more complex than single zebrafish

larva tracking research due to the existence of identity ambiguity and scenarios of

multiple zebrafish occlusion [6].

Figure 2.4: Object detection based on pixel threshold using experi-
mental data presented in Section 3.3.

The LoliTrack system [34] is a widely used commercial system for multiple small

organism tracking, including zebrafish larvae tracking [57, 155]. Figure 2.4 shows

the object selection results of LoliTrack based on the manual adjustment of a thresh-

old pixel intensity value. Regions labelled with a number ’1’ in the red box are the

object target. Due to their similar intensity values, water particles or impurities (as
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highlighted by the red boxes labelled by the number ‘2’) are also selected by Loli-

Track as target objects. Further manual adjustments are therefore needed to remove

these typical water impurities.

Although many systems have been developed to explore multiple zebrafish larvae

tracking [20, 33, 148], the video input must be obtained under strict imaging condi-

tion constraints. As reported in [5] and [32], even small impurities in the water (as

shown in Figure 2.5a) and lighting reflections (as shown in Figure 2.5b) will affect

the tracking result. In addition, the small size difference between the zebrafish larvae

and the petri dish (as shown in Figure 2.5c) and between the adult zebrafish and the

fish tank (as shown in Figure 2.5d) can result in the detection of water impurities such

as water bubbles (as shown by the red circles in Figure 2.5e), excretions, and small

particles (as shown by the red triangles in Figure 2.5f) that are not usually detectable

in adult fish experiments but inevitably affect the detection of zebrafish larvae.

Strict input imaging conditions can be impossible to maintain in practice. For ex-

ample, even if a clean environment is originally used to house the organism, excre-

tions produced by the organisms during the experiment can render it impossible to

maintain a completely clean and transparent container background during long-term

organism observation. IdTracker [31] even explicitly defines the smallest acceptable

size ratio between the zebrafish and the tank for creating the clear background envi-

ronment required for video data. In addition, these larvae tracking systems [5, 33,

147] use a petri dish plate to separate individual zebrafish larvae. Only one zebrafish

larva is allowed in each petri dish to avoid overlapping and swapping of trajecto-

ries due to housing of multiple zebrafish larvae in one container (as shown in Figure

2.5c). However, limiting experiments to one zebrafish per dish strictly constrains the

research application because interaction and grouping behaviour cannot be studied.
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Video frame examples for a variety of imaging conditions.

(a, b) Small water impurities as indicated by the red circle in (a) and water
reflections or ripples in (b) can affect the head detection. (c) Frame example with
larvae occlusion, which is not observed when the larvae are separated in petri dish
plates. (d) frame input with clear tank edges and a large size ratio between the adult
fish and the container. (e) Frame example with labelling as indicated by the red
arrows, water bubbles as highlighted by the red circles, and larvae with low
intensity contrast between the well edge shadow as shown by the red rectangle. (f)
Frame example with small water particles as shown by the red triangles.
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2.4 Summary

Cell and small organism tracking is different from general object tracking in com-

puter vision due to their specific challenges. This Chapter reviewed the literature on

cell and small organism tracking. Section 2.2 discussed the background of cell track-

ing, especially the low intensity contrast problem hampering the enhancement of cell

segmentation accuracy. Section 2.3 then presented the state-of-the-art in single and

multiple zebrafish larvae tracking. The microscopic video conditions of zebrafish

larvae are more complex than those of cell microscopic videos due to 1) the agita-

tion of water impurities and water bubbles due to beating of the larval tail, 2) the

ambiguous region between the zebrafish larvae and the video background due to the

transparency of the zebrafish larvae peripheral body, and 3) the water surface shadow

and ripples projected by illumination on the petri dish. This Section then reviewed

the existing automatic single and multiple zebrafish larvae tracking systems.

The segmentation and tracking datasets will be discussed in Chapter 3, followed

by the presentation, application and evaluation of the proposed methods to address

the problems mentioned in Section 2.2 and Section 2.3, respectively in Chapter 4

and Chapter 5. Therein, the proposed multiple zebrafish larvae tracking system is

developed and evaluated in Chapter 5, while the extended application, dealing with

small biological organisms in general, is presented in Chapter 6.
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Chapter 3

Datasets

3.1 Introduction

The Chapter 3 introduces the datasets upon which this work presents, applies and

evaluates the proposed crowd-sourced segmentation ground-truth generation approach

for general small biological organism segmentation evaluation.

Accurate target object segmentation from the time-lapse microscopic videos is of

fundamental importance to the overall performance of whole tracking systems. How-

ever, whilst image segmentation has attracted intensive research attention, the evalu-

ation of video segmentation algorithms aimed specifically at biomedical image pro-

cessing is not as mature, and it remains difficult to compare and benchmark the dif-

ferent segmentation approaches [26, 156]. Reference [26] summarises the main dif-

ficulties for segmentation evaluation, including limited datasets for comparison (es-

pecially in biomedical image processing), lack of evaluation metrics or performance

statistics, and difficulties in establishing manual ground-truth segmentation. The lat-

ter is due to poor reproducibility and the time, resources and labour required to train

‘experts’ and for them to generate the ground-truth segmentation [157].

Due to these challenging difficulties, subjective evaluation remains a common seg-

mentation evaluation method in biomedical image segmentation. However, human
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visual comparison of segmentation results is susceptible to both human error and sub-

jective opinion variations. A common and less labour-intensive approach (for users)

is supervised evaluation compared with unsupervised approaches [156], where the

segmentation results are compared against an annotated ground-truth. References

[158] and [159] proposed supervised evaluation approaches, whilst an interactive

segmentation tool has been proposed in [160] and included in other imaging software

(such as ImageJ or Fiji) to generate segmentation ground-truth. However, building a

dataset with annotated ground-truth using these approaches is very time and resource

consuming, where after the ‘ground-truth’ generation, manual visual assessment is

typically conducted to validate the results [156] and the quantitative reliability of the

manually generated ‘ground-truth’ is under-explored.

Section 3.4 proposes a general crowdsourced approach to generate segmentation

ground-truth for time-lapsed videos for any biological organism. The proposed ap-

proach uses an online crowdsourcing platform, where workers are screened and

trained to generate the ground-truth using the Interactive Segmentation Tool (IST)

[160]. The reliability and consistency of the ‘ground-truth’ generated by workers are

examined in a two-pass verification process proposed and applied in this Chapter:

following a fast initial manual visual assessment, comparing the segmentation result

to the original frame, a joint mask is automatically generated to objectively quantify

under or over-segmentation errors. The proposed approach is applied to generate a

dataset annotated with segmentation ground-truth using a series of zebrafish larvae

videos.

To facilitate the evaluation of segmentation algorithms on the segmentation ground

truth annotated database, Section 3.5.2 presents a novel metric, Similarity Index (SI),

based on three standard metrics (Recall, Precision and Fmeasure) to quantify the seg-

mentation accuracy. The zebrafish dataset generated in Section 3.4 is evaluated using

these metrics, with the segmentation accuracy of five leading segmentation tech-

niques compared. This dataset and code for validation and calculating evaluation
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metrics are freely available online1 for repeatable research usage.

To extend upon this segmentation dataset and evaluation, Section 3.6.2 presents the

tracking datasets annotated with centroid ground-truth generated by the proposed

centroid position selection method for single and multiple objects. The tracking ac-

curacy evaluation in Chapters 5 and 6 is based on these tracking datasets.

3.2 Existing Segmentation and Tracking Datasets

General computer vision techniques have catalyzed the development of biomedical

image processing research [157], and general segmentation datasets may be used to

provide the indicative performance of biomedical image segmentation approaches.

Whilst there are a few standard benchmark datasets for evaluating single still-image

segmentation in computer vision (e.g., Berkeley segmentation dataset [22]), standard

datasets for benchmarking moving objects for video segmentation are still emerg-

ing. Video segmentation datasets in general computer vision have only been pre-

sented in recent years, such as the Video Segmentation Benchmark (VSB100) [23],

and Berkeley Motion Segmentation Dataset (BMS-26), which was extended into the

Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59) [24, 161].

Currently available datasets for region segmentation evaluation are limited. Ref-

erence [25] presents an influential dataset for occlusion boundary detection using

natural scenes, but only one frame annotated with boundary ground-truth provided

per video. However, the evaluation based on one frame per video may not provide

reliable segmentation evaluation results. Further, the boundary segmentation result

cannot support object temporal information, such as the object centroid location, as

the segmented boundary may not guarantee the successful generation of a closed

object region.

1https://github.com/Xiao-ying/-moving-zebrafish-larvae-segmentation-dataset-/tree/master/Data
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In contrast, the most recent video segmentation dataset [23] divided frames into dif-

ferent regions with numbered annotation for each region in the ground-truth images;

however, no discrimination between the object and background was specified, with

ground-truth only generated approximately once per 20 frames. Thus, the segmenta-

tion performance evaluations based on this dataset required manual intervention for

specifying the detection target and the background.

3.2.1 Cell datasets

Due to the lack of publicly available datasets, a small number of private segmentation

datasets of real cells have been generated to validate biomedical image processing ap-

proaches [61]: Feng et al. [157] proposed image repositories for cell segmentation

evaluation with three groups of cell squences with 60, 30, and 10 images, respec-

tively. Yeast Protein Localization databases (YPL.db) were presented in [162, 163]

to help determine location of certain protein in yeast cells, and the Dynamic Pro-

teomics database has provided the levels and location information of proteins from

living human lung cells for anti-cancer drug studies [164, 165]. However, all of

these databases used fluorescent materials to tag or label cells for clearer observa-

tion [157, 162, 164]. Two reference time-lapse video datasets without fluorescent

labelling were used in [166]. The raw videos are provided for public usage, whilst

the manually generated binary object region masks are not included in the repository.

The N2DH-GOWT1 group cell sequences in the cell segmentation dataset [106] were

not labeled by fluorescent materials presented in [61]. The group consists of two cell

video sequences of 182 images, which are 2D images of GOWT1 mouse embryonic

stem cells, taken by a Leica TCS SP5 laser scanning confocal microscope. The

proposed cell image contrast enhancement approach presented in Chapter 4 is applied

to this group N2DH-GOWT1 stem cell videos (of the training dataset, which has

segmentation ground-truth annotated) for evaluation.
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3.2.2 Biological organism databases

Due to the difficulties in generating the biological organism video segmentation

ground-truth, the general lack of segmentation datasets with annotated ground-truth

severely limits the evaluation of segmentation algorithms for biological and biomed-

ical image processing. Standard datasets for benchmarking moving objects in video

sequences are still emerging. Furthermore, the evaluation of segmentation approaches

for a given biological organism is difficult if there is no suitable dataset for the spe-

cific organism under study.

Zebrafish larvae have emerged as a common vertebrate model for biomedical re-

search; however, no publicly available zebrafish larvae video segmentation dataset

has yet been discovered, largely due to the time and manual labour required to gen-

erate ground-truth segmentation and tracking. Thus, in this work zebrafish larvae

videos are used as an example to illustrate the proposed crowdsourced segmentation

dataset generation approach introduced in Sections 3.3 and 3.4.

3.3 Video Data Acquisition for Dataset Annotation

This Section proposes an efficient and scalable crowdsourced approach to generate

video segmentation ground-truth to facilitate database generation for general bio-

logical organism segmentation evaluation. To illustrate the proposed approach, an

annotated zebrafish larvae video segmentation dataset has been generated.

To further facilitate the evaluation of the overall tracking performance of tracking

systems and to investigate the effect of enhanced segmentation accuracy on the fol-

lowing tracking performance, this work also explores the object location selection

(indicated by object coordinate centroid position as tracking ground-truth). Since the

tracking ground-truth generation is less time-consuming than that of segmentation

ground-truth, except for videos of zebrafish larvae, an extra 10 videos of another
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two types of small biological organisms: marine Artemia franciscana and fresh-

water Daphnia magna, are also applied to generate the tracking ground-truth. All

the segmentation and tracking datasets annotated with ground-truth are made freely

available online 1.

3.3.1 Zebrafish larvae video acquisition

Wild zebrafish embryos (Danio rerio) were incubated at 28◦C in a Petri dish filled

with an E3 medium. Any debris and unfertilized embryos were manually removed

three hours post-fertilization (hpf). Five days post-fertilization, the larvae were ob-

tained from hatched zebrafish embryos, which normally hatch around 48 hpf, and

larvae were not fed before the video data acquisition. For data acquisition, zebrafish

larvae were transferred to poly (methyl methacrylate) (PMMA) housing wells.

Low frame rate videos were recorded with a Dino-Lite AD7013MT microscope at

frame rates of 14 or 15 fps. An 8-LED light provided cold white illumination to

capture videos at a resolution of up to 2592× 1944 pixels and magnification power

up to 240×. The microscope is equipped with a CMOS sensor for imaging in full

detail according to the DirectShow imaging standards [167]. The microscope is con-

nected via USB to a PC running Windows 7 to acquire videos using the DionCapture

2.0 imaging software working together with the other microscope’s package (such

as Carry Pouch, Standard Calibration Target, and Open Cap etc.) and providing a

user-friendly interface to directly manipulate time-lapsed video capture.

High frame-rate videos were captured by an Imaging Development Systems (IDS,

GmbH, Germany) UI-3360CP-C-HQ microscope camera, with a high-resolution 12.5mm

focal lens GMHR412514MCN (F1.4 – 16 iris range, Goyo optical Inc., Japan).

Videos can be recorded at up to 152 fps at a full resolution of 2048× 1088 pixels, us-

ing an illumination sensitive CMV2000 CMOS sensor. High frame-rate videos were

1https://github.com/Xiao-ying/
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recorded at 117 fps due to the experimental requirements of the research collabora-

tors bioMEMS Research Group 1, who collected and provided all of the zebrafish,

Artemia franciscana and Daphnia magna microscopic videos. The microscope is

connected via USB interface to the PC to acquire videos using the IDS Software

Suite, enabling 420 MByte/s high data rate responding to the storage of the acquired

high frame rate videos.

Table 3.1: Imaging conditions of the presented zebrafish segmentation
dataset

Seq. No. Frame rate/ fps Imaging condition
1 15 Clear square well, adult seq.
2 14 Clear round well, well edge shadowing
3 15 Round clear well, labels, water particles
4 15 Round clear well, water particle
5 15 Round well, labels
6 117 Round clear well, well edge shadowing
7 15 Round well, labels, water bubbles and particles
8 15 Round well, labels, water particles
9 15 Square well, labels, water particles

10 117 Round well, water particles, edge shadowing

The dataset contains 3056 video frames across a total of 10 videos, with various

frame rates and imaging conditions as listed in Table 3.1, presented in the order that

the first sequence has the clearest background and the 10th (last) sequence has the

most complex background.

Sequences no. 6 and 10 are high frame-rate microscopic videos, with the rest of

the video sequences in the dataset at low frame rates; thus, the frame rates of se-

quences no. 6 and 10 are higher than the other videos. High frame-rate videos pro-

vide clear object posture information, such as the tail beating shape of the zebrafish,

which make the future analysis of movement kinematics possible. However, high

frame-rate videos have many more frames with little movement difference between

successive frames. Thus, the large amount of frames can also dramatically increase

the computational complexity.

1https://www.rmit.edu.au/news/all-news/2016/may/labonachip-technologies-pioneered-at-rmit



44 Chapter 3. Datasets

3.3.2 Artemia and Daphnia video acquisition

Cysts of the marine crustacean Artemia franciscana and freshwater Daphnia magna

were hatched and cultured according to the Artoxkit-M [168] and Daphtoxkit-F

[169](MicroBioTests Inc., Belgium) standard operating protocols. Artemia francis-

cana were hatched in a petri dish filled with sea water (pH 8.0± 0.5) at 24± 0.5◦C

under exposure to 3000-4000 lux light source for 30 hours. Artemia were put in a

group of 10 in a miniaturised Lab-on-a-Chip (LOC) chamber [170] when shooting

videos with microfluidic infused at a flow rate of 5.25 mL/h. Five Daphnia magna

neonates were randomly selected and transferred into a petri dish monitored tem-

perature at 20.0± 0.5◦C. Both the microscopic time-lapse videos of marine Artemia

franciscana and freshwater Daphnia magna were captured at low frame-rate of 15

fps with the same illumination conditions and imaging software as that of the low-

frame rate zebrafish larvae videos.

3.4 Crowd-sourced Segmentation Ground-truth for Dataset

Generation

Crowdsourced generation as a general approach to dataset annotations has been pre-

viously investigated, but was mainly used for simple annotation such as text clas-

sification or point location [171, 172], rather than applied to region based image

segmentation, which is usually performed by trained experts. This work proposes to

combine the interactive segmentation tool IST [160] with the crowdsourced platform

Mechanical Turk1 to generate segmentation ground-truth for videos of biological or-

ganisms. To illustrate the proposed crowdsourced segmentation dataset generation

approach, segmentation ground-truth of 10 zebrafish larvae videos were annotated.

1https://www.mturk.com/mturk
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Figure 3.2: Overview of workflow for workers to generate segmenta-
tion ground-truth.

Figure 3.1 and Figure 3.2 show the management workflow and the mechanism used

to select crowdsourced workers to generate segmentation ground-truth for a dataset,

respectively. To ensure that an appropriate crowdsourced workforce is employed, the

proposed approach prefers workers who have a similar experience or are in a similar

research area as identified on the crowdsourcing platform. Workers with demon-

strated ability are then assigned to manually generate the ground-truth segmentation

for video sequences, which are then annotated for the segmentation dataset.
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Figure 3.3: Example of selecting target object against the background.

In the following discussion, the crowdsourcing platform utilised is Mechanical Turk;

however, the proposed methodology has been designed to be generalisable across

various crowdsourcing platforms and image/video content e.g., any object for com-

puter vision applications or any biological organisms.

3.4.1 Interactive segmentation tool

To perform manual ground-truth segmentation, the IST [160] is used. The tool sup-

ports four segmentation algorithms: seeded region growing [173, 174], graph cut

[175, 176], object extraction [177], and binary partition tree [178].

For the zebrafish larvae segmentation dataset generated in this Chapter, the seeded

region growing segmentation algorithm [173, 174] was selected, due to the smooth

outline generated by the algorithm for the small zebrafish larvae body and low inten-

sity contrast between the zebrafish body periphery and the microscopic video back-

ground. To perform the segmentation, the worker drags a frame into the IST, and the

foreground mask is automatically computed after the worker manually indicates on

the image the background region/s (indicated by the blue line drawn by clicking and
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holding the right key of mouse as shown by Figure 3.3) and foreground object/s of

interest (shown by the red line on the fish drawn by the left mouse key as per Figure

3.3).

(a) (b)

Figure 3.4: Adjustment example after object and background differ-
entiation.

(a) Direct adjustment based on the resultant segmentation; (b) Further detailed
adjustment by zooming into the frame.

To improve the segmentation accuracy, the generated foreground mask usually re-

quires further (iterative) manual adjustment by the worker. Especially when the ob-

ject is near the edge of a well, more differentiation lines need to be carefully selected,

as shown in Figure 3.4 (highlighted by the yellow lines). Figures 3.4a and 3.4b

display examples of further manual segmentation adjustment based on the obtained

foreground mask with and without zooming in the video frame.

3.4.2 Crowd-sourced worker training and selection

To generate the zebrafish larvae dataset, an instructional document1 and samples1

of segmentation results from a short zebrafish larvae video sequence segmented by

the authors using the IST were supplied to candidate workers for training, and a

demonstration video provided by [160] was also included to illustrate how the IST is

used with a few image examples.

1https://github.com/Xiao-ying/-moving-zebrafish-larvae-segmentation-dataset-/tree/master/Data
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For the candidate screening test, three zebrafish larvae test images (extracted from

a zebrafish video sequence) were sent to the candidate workers. The segmentation

results were manually visually inspected and then quantified using the proposed two-

pass verification process described in Section 3.4.3 for segmentation accuracy, which

determines whether the candidate workers were required to re-generate the segmen-

tation or not further selected to work on the dataset. The final dataset only consists

of segmentation results from workers whose segmentation accuracy exceeded 95%.

Workers were selected using the criteria:

1. Having similar image segmentation experience or can complete the training

activity according to the provided instructions;

2. Binary segmentation results with the same image size as the original frame;

3. Each ‘ground-truth’ image having less than 5% error as determined by the

proposed two-pass validation process;

4. High consistency with generated results, determined by the 95% confidence

interval of the calculated error scores as described in Section 3.4.3.

Criteria 2, 3, 4 were also used to verify the workers’ segmentation results prior

to inclusion in the final dataset build.

3.4.3 Accuracy verification of obtained segmentation ground-truth

Workers are assigned one video sequence at a time to segment. When more than

95% of the frames in a video sequence were considered to be accurately segmented,

another unique video sequence was sent to the worker for segmentation. To ver-

ify the accuracy of workers’ segmentation results, a two-pass verification process is

proposed: an initial quick manual visual assessment, followed by an objective quan-

titative assessment.
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(a) (b)

(c) (d)
Figure 3.5: Visual examples of segmentation

(a) Visual assessment example; (b) example zebrafish larvae video frame 66 of seq.
4; (c) the crowdsourced segmentation ground-truth of (b); (d) the mask image of
comparing (b) and (c) for quantitative assessment.

First-pass: Visual assessment

The received segmentation results are firstly visually assessed by the author to check

for visually perceptible errors, such as whether the frame size has been changed by

the worker, missing object/s or position deviation. To perform this visual assessment,

a joint image (shown in Figure 3.5a) is created for each frame by overlaying each

segmentation result from the worker over the corresponding original frame, where

object pixels are highlighted in high contrast green-magenta colours for easy visual

inspection for errors. Magenta denotes the segmented result for objects in the same

position as the original frame, light pink (as highlighted with the red rectangle in

Figure 3.5a) is a region for an object segmented in the wrong position, and black
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(a) (b)

Figure 3.6: Typical visual perceptible errors.

(a) Error type I: resized frame ; (b) Error type II: position deviation.

highlighted with a blue rectangle is a missed object. If the segmentation deviation

(as shown by the red and blue rectangles) of a frame is visually perceptible, then the

‘ground-truth’ for that frame is discarded and re-generated.

Figure 3.6 shows the two typical errors seen during the worker selection process from

the crowdsourced platform, and to be detected by the fast initial visual assessment

procedure. The frame was resized (with the segmentation ’ground-truth’ generated

by the worker not corresponding to its original frame), as shown in Figure 3.6a. The

other typical error is shown by Figure 3.6b that the manually generated ’ground-

truth’ (shown by magenta colour) did not include the whole region of a target object

(e.g. the head region of a zebrafish was missed and highlighted in black (within the

red rectangle in Figure 3.6b) by the visual assessment software).

The retrieval of a segmentation result and its corresponding original frame from files,

and the generation of their joint image in high contrast colours annotation is imple-

mented automatically frame-by-frame using the visual assessment code programmed

in Matlab, which is freely available online. No restart is needed for a whole video

sequence. Since the initial verification is a fast inspection of visually perceptible

errors, automatically looping a whole video with the number of frames generally

included in segmentation datasets [23, 106, 157] is not overly large (no more than
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10,000 frames with segmentation ground-truth annotated), this initial manual visual

verification process will not limit the scalability of the proposed crowdsourced seg-

mentation dataset generation approach. For example, the 10 zebrafish videos in the

segmentation dataset generated required only 10 minutes to perform this initial man-

ual visual assessment for 3056 frames.

Second-pass: Quantitative assessment

If no visually perceptible errors are detected, further under or over-segmentation er-

rors from the workers’ results are quantified for objective validation, and the perfor-

mance consistency is calculated by 95% confidence error intervals. A mask image

J(x, y) = j(x, y)|x ∈ [1, N], y ∈ [1, M] (as shown in Figure 3.5d) of the same size

N × M as the original frame F(x, y) is created based on comparing the intensity

values of the video frame (as shown in Figure 3.5b) with the binary ‘ground-truth’

G(x, y) (as shown in Figure 3.5c) generated by the worker. Pixel values are initial-

ized to 0 and updated by Equation 3.1.

A =


1, g(x, y) = 0 & f (x, y) ∈ (pthr, 255)

2, g(x, y) = 1 & f (x, y) ∈ (pthr, 255)

3, g(x, y) = 0 & f (x, y) ∈ [0, pthr)

(3.1)

Where pthr is the intensity threshold value calculated using the Otsu algorithm [179]

(with two classes per original frame). Then, the left pixels j(x, y) = 0 denotes an

object in both the generated segmentation and the video frame. The over and under-

segmentation error is estimated from the mask image J(x, y):

Dover =
|J(x, y|j(x, y) = 2)|

|J(x, y|j(x, y) = 0 or 3)| (3.2)
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Dunder =
|J(x, y|j(x, y) = 3)|

|J(x, y|j(x, y) = 0 or 3)| (3.3)

3.5 Segmentation Results and Discussion

3.5.1 The generated zebrafish larvae segmentation dataset

Six workers were employed to generate the dataset, where the manual visual first-

pass verification as described in Section 3.4.3 was conducted on the segmentation

results generated. Figure 3.7 shows four pairs of video frames with their correspon-

dence segmentation ground-truth annotated in the presented dataset. These example

video frames are selected from different sequences with varying numbers of zebrafish

(1, 3, 4 and 5 objects, respectively), round (as shown in Figure 3.7a, b, d) or square

(as shown in Figure 3.7c, which is also the only adult zebrafish video) containers, and

containers with (as shown in Figure 3.7b) or without human drawn labels. The anno-

tated zebrafish larvae video segmentation dataset is freely available online, licensed

under the Creative Commons Attribution-ShareAlike license [180].

Table 3.2: Verification of the generated ground-truth for the zebrafish
segmentation dataset

Seq. No. No. of objects Length [frames] Dunder [%] CI [%]
1 5 201 0.28 [0.27 0.29]
2 4 280 4.43 [4.40 4.47]
3 1 406 0.31 [0.30 0.32]
4 1 151 0.27 [0.26 0.28]
5 3 166 1.57 [1.55 1.59]
6 4 461 4.06 [4.04 4.08]
7 3 759 1.53 [1.52 1.53]
8 3 221 1.41 [1.40 1.43]
9 4 301 2.54 [2.52 2.57]

10 4 110 3.89 [3.74 4.04]

The second-pass quantified objective validation (as described in Section 3.4.3) on

the generated ground-truth by the crowdsourced workers is summarised in Table 3.2.
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(b)

(c)

(d)

(e)

(f)

(g)

(h)

(a)

Figure 3.7: Visual example of the obtained segmentation ground-truth
selected from the zebrafish segmentation dataset.

(a) Frame 76 of seq. 1; (b) Frame 36 of seq. 2; (c) Frame 49 of seq. 3; (d) Frame 43
of seq. 6; (e)-(h) Segmentation results for (a)-(d), respectively.
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Because the transparent body peripheral of the zebrafish larvae causes low intensity

contrast, no over-segmentation exists in the generated ’ground-truth’ by workers.

The overall error score of each sequence by the mean under-segmentation value and

the 95% confidence interval (CI) is shown in Table 3.2. It can be seen that the overall

under-segmentation error is within 5% for each sequence and indicates a high level

of work segmentation consistency with the 95% confidence intervals for the under-

segmentation error within 0.02%-0.3%.

3.5.2 Segmentation accuracy evaluation metrics

To enable the practical usage of the proposed dataset generation approach to test

and evaluate segmentation algorithms, three standard metrics are presented and a

novel metric is proposed to quantitatively evaluate the segmentation performance

from videos by calculating the dissimilarity with the generated ground-truth.

Let S and S̄ denote the segmentation ground-truth and the result of a segmentation

algorithm for image I = i(x, y) of size N ×M pixels. Then, denote a pixel i(x, y)

in detected object region C(S, i(x, y)) and C(S̄, i(x, y)), in the ground-truth and

segmentation algorithm result, respectively. The segmentation accuracy of an image

is thus defined by the three standard metrics [181] as Equations 3.4 - 3.6:

Recall =
|C(S, i(x, y))

⋂
C(S̄, i(x, y))|

C(S, i(x, y))
(3.4)

Precision =
|C(S, i(x, y))

⋂
C(S̄, i(x, y))|

C(S̄, i(x, y))
(3.5)

Fmeasure =
2 ∗ Recall ∗ Precision

Recall + Precision
(3.6)
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The recall and precision metrics estimate under-segmentation and over-segmentation,

respectively. The Fmeasure is a weighted calculation of the precision and recall. Low

recall with a very high precision value indicates under-segmentation, whilst low pre-

cision with a high recall suggests over-segmentation performance. Therefore, only

comparing precision or recall independently does not meaningfully quantify segmen-

tation evaluation, and the Fmeasure is a weighted calculation of the precision and recall

(with a perfect score at one).

The proposed Similarity Index (SI) metric in Equation 3.7 accounts for the number

of correctly segmented objects, by penalizing missing objects or object occlusion,

which has not been considered in the above standard metrics.

SI = Fmeasure −
Nummiss

2 ∗ NumGT
(3.7)

where Nummiss and NumGT are the number of objects missed, and objects detected

in the ground-truth, respectively.

3.5.3 Evaluation of the segmentation dataset

To illustrate the utility of the generated zebrafish segmentation dataset and the seg-

mentation evaluation metrics of this work as presented in Section 3.5.2, five leading

segmentation algorithms were applied to this dataset with results measured using

the proposed evaluation metrics. The segmentation algorithms applied to the ze-

brafish larvae dataset include motion feature based optical flow (denoted OptFlow

in Figures) [182] and dense SIFT flow (denoted DenseSIFT in Figures)[154] meth-

ods, intensity feature based Discrete Region Competition (denoted DiscreteRegion

in Figures) [183] and Squassh [184], and the well-known zebrafish tracking system,

idTracker [31]. Figures 3.8 - 3.11 show the average precision, recall, Fmeasure, and

similarity index scores presented with the 95% confidence intervals for each of the

10 video sequences in the dataset.
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Figure 3.8: Average segmentation evaluation recall scores for each
video sequence.

Recall. Figure 3.8 shows that the Discrete Region and Squassh methods obtained

very low recall scores over the sequences, because many zebrafish pixels are classi-

fied as background. The Discrete Region method requires objects to have homoge-

nous intensities, as demonstrated by only sequence 1 exhibiting a high recall due to

adult zebrafish being in the sequence (where zebrafish larvae have inhomogeneous

intensities). Comparing with the optical flow method, the dense SIFT flow method

detects fewer irrelevant segments, which results in a higher recall performance. In

contrast, the recall score of idTracker is consistently high. This is caused by the

universal over-segmentation of idTracker: as the background pixels with similar in-

tensity values with the zebrafish larvae are classified as objects.

Precision. In Figure 3.9, low precision scores for Dense SIFT, Discrete Region and

Squassh illustrate the over-segmentation for zebrafish larvae of these methods. The

precision score of idTracker is not consistently high under complex imaging condi-

tions, as the zebrafish larvae body peripheral is transparent, the intensity contrast is

therefore too low against the background to be separated. In contrast, the precision
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Figure 3.9: Average segmentation evaluation precision scores for each
video sequence.

performance of the optical flow method steadily outperforms the other methods when

using the high frame rate sequences 6 and 10 amongst the dataset, due to the short

movement distance at high frame rates. In comparison, due to dense SIFT flow be-

ing very sensitive to movement, small moving water impurities and the projection of

water surface ripples on the container edges are incorrectly detected as objects. This

diminishes the portion of true zebrafish regions segmented to, therefore, result in a

consistently low precision score, as seen from Figure 3.9.

Fmeasure and similarity index. The Fmeasure and similarity index in Figures 3.10 and

3.11 show the overall weighted segmentation accuracy combining Recall and Preci-

sion. The overall segmentation accuracy of idTracker has an average of 15.18%, and

48.57% higher Fmeasure than optical flow and SIFT flow, respectively. The pure inten-

sity contrast based Discrete Region and Squassh techniques have the poorest over-

all performance. The idTracker system also exhibits a 12.55% and 70.57% higher

similarity index compared to optical flow and SIFT flow, respectively, indicating im-

proved performance in relation to missing or occluded objects. In particular, the
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Figure 3.10: Average segmentation evaluation Fmeasure scores for each
video sequence.
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Figure 3.11: Average segmentation evaluation SI scores for each
video sequence.
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optical flow method is more robust against challenging background environments,

such as unclear zebrafish well containers with labels (as illustrated by sequence 5)

and high frame rate videos (as illustrated by sequences 6 and 10), demonstrated by

the 1.82% and 1.14% smaller Fmeasure and similarity index variance, respectively.

3.6 Tracking Ground-truth Generation

To extend upon the generation of segmentation ground-truth annotations and mea-

sure the subsequent object tracking performance, for the datasets used in this work

the centroid positions of all objects in each frame are manually selected as the track-

ing ground-truth. The proposed approach and software for this tracking ground-truth

generation is presented in Section 3.6.1, with the annotated tracking datasets gener-

ated presented in Section 3.6.2.

3.6.1 Tracking ground-truth generation software

To improve the efficiency of the tracking ground-truth generation, the centroid po-

sitions are generated frame-by-frame for one object using the GUI shown in Figure

3.12. Figure 3.13 shows the flow chart of the tracking ground-truth generation soft-

ware proposed. The software first loads the video, then allows the user to select one

object centroid, advances to the next frame automatically, and stores the annotated

object centroid per frame in a matrix and writes file every 10 frames as shown in

Figure 3.13. After selecting all the positions of one object from the whole sequence,

the position ground-truth of another object from the first video frame is generated

without having to restart the software.

For videos of multiple objects, especially for long duration microscopic videos, it

is not uncommon that the ground-truth selection process cannot be finished at once,
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Figure 3.12: Interface of the proposed tracking ground-truth genera-
tion software to select the centroid positions of target objects in mi-

croscopic videos

where the track of the target object may be lost due to multiple instances of run-

ning the software. To avoid requiring re-generation of the tracking ground-truth, the

generated ground-truth results for a target are stored every 10 frames. Then, prior

to setting up a new matrix for storing the tracking ground-truth of a video, the soft-

ware will search whether a ground-truth file already exists, and re-loads the existing

ground-truth file to add new ground-truth data based on the existing file if a time-

lapse sequence has already been partially generated (as indicated by the existence

of a ground-truth file for the video sequence). Further, the positions of targets with

tracking ground-truth generated are displayed on the current video frame using blue

asterisks as shown in Figure 3.12, so that the track of the current target (to be selected

by the centre of the cross in Figure 3.12) is visually obvious to the annotator. This vi-

sual feedback for generated ground-truth assists to distinguish the target object from

its neighbour objects, especially in instances where two or more objects overlap and
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Figure 3.13: Flow chart of tracking ground-truth selection for whole
video sequences.

separate again.

3.6.2 Generated tracking datasets

Since the tracking ground-truth generation requires less time and resources, three

tracking datasets annotated with manually generated position ground-truth were gen-

erated in this work and provided for public usage. These annotated tracking datasets

also enable the evaluation of small biological tracking systems, proposed and pre-

sented in Chapter 5 tested on zebrafish larvae and other small organisms.
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Dataset 1: Zebrafish larvae tracking

To accompany the generated segmentation ground-truth as presented in Section 3.5.1,

the centroid coordinate positions of all zebrafish larvae in each frame across the 10

video sequences were also manually selected using the GUI software for tracking

ground-truth of this work, presented in Section 3.6.1.

Dataset 2: Artemia tracking

The Artemia franciscana dataset consists of 5 video sequences with 4802 frames in

total. Artemia franciscana microscopic videos containing 5 organisms and artifacts

(e.g., bubbles of different sizes) are provided in the dataset1.

Dataset 3: Daphnia tracking

The Daphnia magna dataset2 consists of 5 video sequences with 4804 frames in

total. Daphnia magna microscopic videos contained 10 organisms and artefacts (e.g.,

bubbles and impurities of different sizes).

3.7 Summary

This Chapter proposed a crowdsourced approach with interactive segmentation meth-

ods to generate video segmentation datasets annotated with ground-truth to facilitate

the evaluation of image and video segmentation algorithms, particularly for biologi-

cal organisms due to the distinct lack of annotated evaluation datasets currently avail-

able. To verify the crowdsourced segmentation results, a two-pass verification pro-

cess was proposed: firstly, the generated ‘ground-truth’ was visually assessed man-

ually by creating a joint image with the original frame, using high contrast colors

1https://github.com/Xiao-ying/Artemia-tracking-dataset
2https://github.com/Xiao-ying/Daphnia-Video-Tracking-Dataset
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to differentiate the dissimilarity; secondly, numerical quantification of the segmen-

tation accuracy and reliability were obtained by comparing the result with frames

thresholded with Otsu’s algorithm. In addition, a set of segmentation evaluation met-

rics were presented to enable the evaluation of segmentation algorithms using such

annotated datasets.

To illustrate the proposed crowdsourced segmentation dataset generation approach, a

zebrafish larvae segmentation dataset composed of 10 sequences in various imaging

conditions was generated for zebrafish segmentation applications. The segmentation

performance of five leading segmentation approaches was evaluated based on the

generated segmentation dataset and then quantified applying the proposed evaluation

metrics.

For evaluation of the subsequent object tracking process after segmentation, manual

tracking ground-truth annotation software for whole video sequences is also pre-

sented, with annotated tracking datasets for three types of small organisms generated

as part of this work.

All software and annotated datasets presented in this Chapter are freely available

online for repeatable research usage.
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Chapter 4

Improved Cell Segmentation

4.1 Introduction

The automatic tracking of biological cell movement provides an efficient approach to

investigate their dynamic behaviour characteristics in biomedical research and appli-

cations [105], compared with traditional manual visual inspection approaches. Be-

cause automatic cell tracking techniques require accurate cell segmentation from the

video background, and the detection-based automatic tracking methods require cell

segmentation results in each frame [28], improving cell segmentation accuracy has

attracted significant research attention in recent years. However, current segmenta-

tion techniques are susceptible to errors due to non-ideal but realistic microscopic cell

video conditions, including low contrast typical of cell microscopic images. Thus,

this Chapter proposes a novel image pre-processing technique to enhance the low

greyscale image contrast for improved cell segmentation accuracy.

Gaussian, uniform and exponential models are generally used histogram specifica-

tion models for intensity contrast enhancement [185]. Using uniform models, grey

levels of the output images are equally spread out over the entire greyscale range,

such that the grey levels are not concentrated around certain regions of intensity val-

ues [124]. The method is predictable and simple to implement. However, an uniform

Probability Distribution Function (PDF) model would not be a suitable option when
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Figure 4.1: Flow chart of the proposed pre-processing method.

an image is dominated by large, dark intensity pixels with numerous pixels at higher

grey levels (which is the case for cell microscopic images), because the transform

model will rapidly increase the concentration of pixels from low grey levels to high

grey level intensity [124]. The exponential model was comparatively less studied

and proposed by Gyorgy in [186] to restore over- and under-exposure images, but

this model was only tested on artificially distorted images. On the basis of the fact

that each homogeneous area in natural images has a Gaussian-shaped intensity his-

togram [187], an adaptive bi-Gaussian mixture model is investigated. This model

stretches the narrow histogram of low-contrast cell microscopic images to a larger

greyscale range, with the highest similarity to the original intensity histogram whilst

adapting to background changes. Moreover, the mean values of Gaussian compo-

nents represent the average intensity values of major regions [187], so the contrast

between the major regions can be precisely enhanced by spreading these calculated

dominant intensity values.

This Chapter investigates the intensity PDF characteristics of time-lapse cell videos

taken by microscopes. Figure 4.1 shows the flow chart of the proposed pre-processing

method, subsequent processing (as per existing approaches [188, 189]) and the seg-

mentation result evaluation. A primary dominant characteristic feature of the in-

tensity PDF is found to be low intensity bins capturing the most intensity pixels in

the intensity histogram (i.e., the first dominant feature of the cell image intensity
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histogram, with further details as presented in Section 4.2). Accordingly, a shifted

bi-Gaussian mixture model is proposed to match the image intensity histogram to in-

crease the contrast differentiation between the target cells and the video background.

A bi-Gaussian mixture model is selected based on Gonzalez et al [190] and details as

presented in Section 4.2. The model is shifted because of the first dominant feature

of the cell image intensity histogram, as detailed in Section 4.2.2. The model param-

eters of the first Gaussian component are estimated based on this dominant feature,

presented in Section 4.2.2.

After further investigation of the intensity PDF, an additional dominant feature in

the intensity histogram of cell video frames was found. This new dominant feature

is used to determine the location and deviation parameters of the second Gaussian

component to form a bi-Gaussian model, presented in Section 4.2.4.

Rather than using a model with fixed parameters across an entire video sequence,

this Chapter presents an adaptive derivation of the mixture model parameters for

each video frame to address changes in the video background. Changes in the video

background are due to cell activities such as mitosis and apoptotic events, and have

been documented as part of the dataset [106]. By deriving the model parameters

for both bi-Gaussian components directly from the original intensity histograms, this

work removes the need for human intervention in mathematical model construction

to represent the video background. Also, direct derivation of the model parame-

ters from the micrograph intensity histogram enables automatic intensity contrast

enhancement, and optimally maintains the dominant features of the original inten-

sity histogram.

For evaluation, the proposed cell micrograph segmentation pre-processing approach

is applied to an existing Viterbi-based cell search algorithm [191], and compared

with existing contrast enhancement methods, using a stem cell dataset (presented

in Section 3.2.1 in Chapter 3) without using any (fluorescent) labels on the target

cells. This stem cell dataset was used as an example cell database presenting various
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challenges for cell segmentation as discussed in Section 2.2.

In the remainder of this Chapter, Section 4.2 presents the technical methodology of

the proposed micrograph intensity contrast enhancement. Section 4.2.2 and Section

4.2.4 explain the model parameter estimation for the first and second Gaussian com-

ponents from the primary and secondary dominant features of the cell micrograph

studied, respectively. Section 4.3 details the experimental evaluation conducted and

discusses the results obtained, while Section 4.4 concludes the Chapter.

4.2 Proposed Cell Micrograph Pre-processing

Based on the fact that each homogeneous area in natural images has a Gaussian-

shaped histogram [187], a Gaussian-shaped model was initially chosen as a candi-

date model. In addition, there are few impurities or other particles in the nourishing

environment, thus the cell images can mainly be categorised into cell foreground

and image background regions. Thus, a bi-Gaussian distribution model was studied

and applied in this work to match the cell microscopic image intensity histogram.

Moreover, the intensity contrast between the individual major regions of the cell

microscopic images is increased by spreading out the dominant grey levels, which

further improves the global contrast of the images.

This Section presents the proposed image pre-processing approach for cell micro-

scopic image contrast enhancement. Figure 4.2a shows an example but representative

cell image from a microscopic time-lapse video sequence, with Figure 4.2b illustrat-

ing the corresponding (grey level) intensity histogram for the cell frame example.

The cell image has 256 grey levels [0 255], with 0 denoting black and 255 indicating

white colours (also pixels representing stem cell regions in the image). The low cell

image contrast can be clearly seen from Figure 4.2a that the main area of the image

is very dark in colour. It is also very hard to clearly distinguish the peripheral and

boundary of cell bodies from the background. This low image contrast can be seen
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from the (grey level) intensity histogram of the cell image as shown in Figure 4.2b.

That is, the majority of the image intensity is populated within low intensity grey lev-

els [0, 10] (shown in Figure 4.2b). This is the visually perceptible primary dominant

feature of the original intensity histogram.

Gonzalez et al showed that images with intensity histograms that exhibit two distinct

summits separated by a valley can be segmented well using a threshold-based seg-

mentation method [190]. A mathematical function that exhibits these characteristics

is a bi-Gaussian distribution, represented by Equation 4.1 [190].

h(x) = C1
1√

2πσ1
exp

(
− (x− u1)

2

σ1
2

)
+C2

1√
2πσ2

exp
(
− (x− u2)

2

σ22

) (4.1)

where C1 and C2 denote the weight of each Gaussian component, u1 and u2 are the

distribution means, and σ1 and σ2 denote the standard deviations.

A bi-Gaussian mixture model example of this mathematical distribution represented

by Equation 4.1 is presented in Figure 4.3 as a visual example.

4.2.1 First Gaussian component intensity histogram matching

This Chapter proposes an image pre-processing technique that matches the original

cell image intensity histogram to a bi-Gaussian model, to introduce separated dis-

tribution summits based on the original intensity histogram to improve subsequent

segmentation accuracy. To perform histogram matching for the greyscale cell im-

ages, let pr(rk) and pz(zk) denote the probability density distribution of the grey

level intensity values in the original and desired post-processed images. The origi-

nal probability density distribution pr(rk) is estimated from the original image, and
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Figure 4.2: Microscopic stem cell video frame example and its origi-
nal intensity histogram
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Figure 4.3: Bi-Gaussian mixture model example.

pz(zk) is the probability density distribution desired (that is, the bi-Gaussian model

[128]) for the output image (post-processed).

Let sk be the random variable with the property [128]:

Sk = T(rk) =
k

∑
j=0

pr(rj) =
k

∑
j=0

nj

n
k = 0, 1, 2, · · · , L− 1 (4.2)

where n is the total number of pixels in the original image of (L − 1) grey levels

and nj is the number of pixels with the grey level rj. Equation 4.2 presents the

transformation function T(rk), obtained from the original image intensity histogram

to obtain the required histogram.

Then, define zk as a random variable with the property [128]:

vk = G(zk) =
k

∑
i=0

pr(ri) = Sk (4.3)

where vk is the grey level value in the output image that has the specified bi-Gaussian

probability density distribution pz(zk); Equation 4.3 thus obtains the transformation
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function G(zk) from the specified bi-Gaussian distribution.

Thus, by combining Equations 4.2 and 4.3 [128]:

G(zk) = T(rk) = Sk (4.4)

Finally, zk satisfies the following equation to calculate the grey levels for the shifted

bi-Gaussian histogram [128]:

zk = G−1[T(rk)] (4.5)

4.2.2 Parameter estimation for the first Gaussian component

Applying this approach, a bi-Gaussian mixture model is derived and applied to match

the original cell image intensity histogram. To maintain the primary and dominant

feature of the intensity histogram as shown in Figure 4.2b, the applied bi-Gaussian

model is proposed to shift towards the desired probability density distribution of bi-

Gaussian shape, as shown in Figure 4.3.

To maintain the dominant feature of a small fraction of the histogram saturating be-

tween grey level range [0, 10] as shown in Figure 4.2b (where Figure 4.2b is the

representative of a typical cell image intensity histogram in the database studied):

• mean value u1 of the first Gaussian mode is shifted to zero to ensure that the

centroid location of the first mode is at the ’Y’ coordinate axis; mean value u2

of the second mode is initially shifted to grey level 200 to position the second

summit at the original small convex location just below the grey level of 200,

which corresponds to the small histogram fluctuations observed around this

grey level across the database studied and ensures a valley between the two

Gaussian modes.
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• standard deviations σ1 and σ2 are initially fixed at 0.05 to obtain the same

fluctuation width of the first Gaussian mode such that the first mode occupies

grey level range [0, 50], consistent with the original histogram grey levels to

maintain the shape of the original intensity histogram in the processed resultant

image. Since the interval u ± 2σ covers 95% of the variation [192], σ1 is

obtained and updated by Equation 4.6.

• the weight of components C1 and C2 are derived according to the original

image intensity histogram shape in Figure 4.2b: as the highest fraction of pixels

cluster at the low grey levels, C1 in the bi-Gaussian model is always greater

than C2.

To enable adaptive parameter derivation for u2, σ1 and σ2, the secondary dominant

characteristic of the intensity histogram of cell micrographs is discussed and pre-

sented in Section 4.2.4.

σ1 =
1
2
argj

{
j

∑
i=0

Ni = 0.95

}
(4.6)
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Figure 4.4: Shifted bi-Gaussian model.
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Figure 4.4 illustrates an example resultant shifted bi-Gaussian histogram obtained

from Equations 4.2 - 4.5, using the example cell image and intensity histogram shown

in Figures 4.2a and 4.2b. Figure 4.4 shows that the two distribution summits are

clearly exhibited with a valley separating the summits, but still exhibiting the original

intensity histogram shape.

4.2.3 Second Gaussian component intensity histogram matching

The first bi-Gaussian component represents the primary dominant feature of original

grey level intensity histogram exhibiting a majority (approx. 90% - 95%) of pixel

intensities saturating at low grey levels. However, whilst the characteristics of the

first bi-Gaussian component can be derived from the primary dominant histogram

feature, the location and variation of the second Gaussian component (the parame-

ters u2 and σ2) cannot be derived from the first dominant feature of the cell image

intensity histogram as shown in Figure 4.2b.

Figure 4.5: Location of the (hidden) secondary Gaussian shape.

(a) Intensity histogram of in Figure 4.2a; (b) Intensity histogram fragment of (a)
within the range labelled by the yellow rectangle.

By further investigating the intensity histogram and inspecting the pixel number

range [0, 100] (as labelled by the yellow rectangle in Figure 4.5a, and magnified

for visibility in Figure 4.5b), the secondary dominant histogram feature can be seen.
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That is, another Gaussian shape is exhibited in the intensity histogram, as shown be-

tween grey levels [60, 210] in Figure 4.5b. Figure 4.5 also displays the location of

the second Gaussian shape, hidden in the low bins (the value of the bins are within

[0, 100] against the dominant bin values on the order of 105 in scale as shown in

Figure 4.2a) in the original intensity histogram. The second Gaussian shape only

appears to be visually perceptible after considering the low bin range [0, 100], as per

the example shown in Figure 4.5b. It should be clarified that the maximum num-

ber of pixels (i.e. the y axis value) in Figure 4.5b is 100, because Figure 4.5b is

the zoomed-in region highlighted by the yellow box in Figure 4.5a. The difference

between the number of pixels within the bin range [100, 200] is still very small as

shown in Figure 4.5a.

By closer examination of the second Gaussian shape, as shown in Figure 4.6 (a

magnified intensity histogram fragment), the grey level density within this pseudo-

Gaussian shape is much greater than the remaining grey level distributions, to de-

scribe subtle intensity variation within cell regions.
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Figure 4.6: Close examination of the second Gaussian shape.
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4.2.4 Parameter estimation for the second Gaussian component

The parameter estimation for the second Gaussian component presented in this Sec-

tion extends the work in Section 4.2.2 [52], where the parameters of the second

Gaussian component (indicating the cell pixels in the shifted bi-Gaussian mixture

model) are empirically selected and fixed across the entire cell image sequence.

Here, the mean value u2 and standard deviation σ2 of the second component in the bi-

Gaussian mixture model are derived from the secondary dominant histogram feature.

To estimate and update the model parameters for the second Gaussian component,

the number of pixels ni of each grey level i in the intensity histogram are normalised

using Equation 4.7. The number of pixels are normalised to ensure that all of the

number of pixels are within the range of [0, 1].

Ni =
ni

∑255
i=0 ni

(4.7)

where ∑255
i=0 Ni = 1. Ni is the normalised number of pixels for grey level i with the

range of Ni within [0, 1).
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Figure 4.7: Fitted Gaussian model for the second Gaussian shape.
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Firstly, the bin values within this secondary Gaussian shape G are extracted by elim-

inating zero and background bins from the original histogram (whose bin values are

larger than the median bin value due to the first dominant feature in the intensity

histograms). The median bin value is calculated from the overall normalised num-

ber of pixels i.e., median(Ni). As a visual example, the resultant histogram bins

after eliminating zero and background bins from the original intensity histogram are

shown by the blue bars in Figure 4.7.

x =
x−mean(X)

std(X)
(4.8)

where X stores grey levels within G.

y = coe f (1) ∗ exp(−(x− u2

σ2
)2)) (4.9)

Then, the intensity values of G are updated using Equation 4.8. To numerically

localise the resultant Gaussian shape and measure the deviation, the Gaussian model

represented by Equation 4.9 is fitted with data interpolation using the Levenberg-

Marquardt nonlinear squares fitting algorithm [193]. Therefore, the fitted curve is

shown by the red line in Figure 4.7.

Following this proposed pre-processing, a morphological (opening) operation [15,

188, 194, 195] is then conducted to remove small fragmented cell fragments and

separate connected cells as in [189] in the processed cell images prior to segmenta-

tion. Figure 4.8a shows the example resultant cell image after intensity histogram

specification by the adaptively computed bi-Gaussian mixture model (as shown in

Figure 4.4), and Figure 4.8b displays the intensity histogram of the example resul-

tant cell image (shown in Figure 4.8a).

Figure 4.8b shows that two summits are exhibited in the processed cell image in-

tensity histogram, with a valley separating the two summits (as described in [190])
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Figure 4.8: Resultant cell video frame example and its intensity his-
togram after processing by the proposed method.
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whilst still maintaining the original intensity histogram shape.

Discovering the two Gaussian component features within the cell image intensity

PDF addresses the model specification uncertainty problem to enable automation

of previously semi-automatic pre-processing approaches that require human inter-

vention to manually adjust the parameters of the second Gaussian component [52].

Thus, in the proposed work the parameters for both Gaussian components in the bi-

Gaussian mixture model can be adaptively determined on a frame-by-frame basis

in a fully automatic approach that does not require any human intervention. The

proposed approach is also less computationally demanding compared with widely

used mixture model parameter estimation approaches such as the Expectation and

Maximisation (EM) algorithm [196–198] and Minimum Message Length (MML)

algorithms [199–201], which iteratively search for parameters to minimise a log-

likelihood function.

The parameters of the two Gaussian components are automatically derived from the

first and second prominent features of the cell image intensity histogram. The only

empirical parameter in identifying the bi-Gaussian distribution in the proposed work

is the relative weight ratio between the two Gaussian components. The empirical

selection of the relative weight ratio, as presented in Section 4.2.5, is the limitation

of the proposed work.

4.2.5 Relative weight ratio between the two Gaussian components

The relative weight ratio λ = C2/C1 of the two Gaussian components is constrained

to the range [0, 1) to maintain the primary dominant grey level intensity histogram

feature. Thus, the summit of the first bi-Gaussian component is always greater than

the summit of the second Gaussian component. However, the second Gaussian shape

can be emphasised by increasing the value of the relative weight ratio, λ = C2/C1,
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and then increase cell micrograph intensity contrast. The effect of the relative weight

ratio between the Gaussian components is explored in Section 4.3.4.

4.3 Results and Discussion

A well-known iterative cell tracking method based on bandpass filtering and Viterbi

search [191] is applied to evaluate the proposed cell segmentation pre-processing

approach. The segmentation performance is compared to the original Viterbi search

based system [191], the proposed approach and the commonly utilised HE applied

to [191], and the Chan-Vese segmentation method [30]. Using the unsupervised

segmentation accuracy evaluation method [202] based on Intra-Region Uniformity

(IRU) theory [203] applied across a cell image database, a higher IRU indicates more

accurate segmentation.

In Section 4.3.2, example segmentation results from cell images representative of

the two image sequences of the N2DH-GOWT1 stem cell database are presented for

a visual comparison. In particular, cells detected by the proposed approach (par-

tial or complete) that manual ground-truth and Viterbi-based segmentation (with and

without pre-processing) identify poorly or fail to identify are highlighted by a red

rectangle and numerically labelled in Figures 4.9 - 4.16, corresponding to analyses

in Section 4.3.2. Section 4.3.3 then presents the overall segmentation performance

accuracy obtained using the full N2DH-GOWT1 stem cell image database [106].

4.3.1 Cell database

The proposed cell image contrast enhancement approach was applied to the group

N2DH-GOWT1 of the training dataset [106], which is described in Section 3.2 in

Chapter 3. The group consists of two cell video sequences of 182 images, which are
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2D images of GOWT1 mouse embryonic stem cells, taken by a Leica TCS SP5 laser

scanning confocal microscope.

4.3.2 Visual experimental results

Segmentation results from the first cell image sequence show that the proposed ap-

proach is able to segment cells that fail to be detected by existing approaches [191].

Example segmentation results are described below to illustrate this improvement.

Visual result example 1: 5th frame of the first cell image sequence

Figure 4.9: Visual example 1 of a segmentation result.

Example segmentation results from the 5th frame of the first cell image sequence:
(a) Original frame example; (b) Manual segmentation; (c) Segmentation result using
[191]; (d) HE applied to [191].
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Figure 4.10: Segmentation result of the 5th frame from the first cell
video sequence using the proposed approach.

Figures 4.9 and 4.10 show the cell segmentation results obtained from the 5th frame

of the first cell image sequence. The ground truth as shown in Figure 4.9b and the

generated segmentation results as shown in Figure 4.9c and Figure 4.9d are pre-

sented using multi-grey level scaling as visual examples. The pixel values in the

original ground truth and the generated segmentation results are integers within [0,

N], where N is the number of labeled cell objects. The cells, for example, as shown

in the top left of Figure 4.9b have pixel values that are close to 0, which denotes the

background, so these objects were very dark visually but not missing. Clearer images

can be seen by a large or high resolution display screen and original segmentation

ground truth can also be seen in the dataset [106].

In this example frame, two cell regions were poorly detected by the Viterbi-based

segmentation [191] with and without HE (Figures 4.9c and 4.9d, respectively), but

improved with the proposed image pre-processing (Figure 4.10): (1) partial cell in the

top right-hand corner was very clearly (partially) detected by the proposed approach

(faintly detected by the manually segmentation, which is also called segmentation
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ground-truth shown in Figure 4.9b, and [191] shown in Figure 4.9c); (2) two pairs

of complete cells in the bottom right-hand corner were detected by the ground-truth

and proposed approach but only partially detected by [191] (Figures 4.9c and 4.9d).

Visual result example 2: 14th frame of the first cell image sequence

Figure 4.11: Visual example 2 of a segmentation result.

(a) Original frame example; (b) Manual segmentation; (c) Segmentation result using
[191]; (d) HE applied to [191].

As another visual inspection example, segmentation results of the 14th frame of the

first cell time-lapse video sequence are shown in Figures 4.11 and 4.12, illustrating

the comparison of results between the proposed approach with existing approaches.

In the example cell image of Figure 4.11a, two cell regions (labeled as ‘1’ in Figure

4.12b) were segmented by the Viterbi search approach [191] either with or without
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Figure 4.12: Segmentation result examples of the 14th frame from the
first cell video sequence.

(a) Chan-Vese Segmentation result [30]; (b) Segmentation result using proposed
approach.

histogram equalization (Figure 4.11c and 4.11d, respectively), while all regions were

detected in the ground-truth and by the proposed approach (4.12b). Cell regions la-

belled as ‘2.1-2.3’ in Figure 4.12b are detected by the proposed approach but missed

in the manually generated segmentation ground-truth due to the very low intensity

contrast in the original cell image frame. Two pairs of complete cells in the bottom

right-hand corner were detected by the ground-truth and proposed approach, but only

partially detected by [191] (Figures 4.11c and 4.11d). The Chan-Vese segmentation

approach (as shown in Figure 4.12a) can detect cells with clear intensity contrast

against the background, but fails to detect cells with low intensity contrast. In com-

parison, the number of missed segmented objects using [30] depends on the intensity

contrast of the microscopic video frames.

Visual result example 3: 14th frame of the second cell image sequence

The segmentation results from the second cell image sequence further illustrated

the ability of the proposed approach to detect cells that fail to be detected by the

existing approach [191] and even the manually segmented result; examples are shown

in Figures 4.13 - 4.16.
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Figure 4.13: Visual example 3 of a segmentation result.

Example segmentation results from the 14th frame of the second cell image
sequence: (a) Original frame example; (b) Manual segmentation; (c) Segmentation
result using [191]; (d) HE applied to [191].
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Figure 4.14: Segmentation result of the 14th frame from the second
cell video sequence using the proposed approach.

Figures 4.13 and 4.14 show the cell segmentation results obtained from the 14th

frame of the second cell image sequence. Three cell regions poorly detected by [191]

(Figures 4.13c and 4.13d) were improved upon with the proposed pre-processing

(Figure 4.14): (1) three cells on the far right-hand side were detected by the ground-

truth and proposed approach, but only faintly detected by [191]. Even where the

proposed approach partially detected a cell in the top right, this partial segmentation

indicates a cell presence identified by the proposed approach; (2) towards the image

centre, a cell is partially segmented by the proposed approach and [191], but missed

by the ground-truth and HE applied to [191]; (3) the proposed approach segmented

the left-most cell cut-off in the frame, but was missed by both the ground-truth and

[191] (Figures 4.13b-d).

Visual result example 4: 84th frame of the second cell image sequence

Figures 4.15 and 4.16 show the cell segmentation obtained from the 84th frame of

the second cell image sequence.
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Figure 4.15: Visual example 4 of a segmentation result.

Example segmentation results from the 84th frame of the second cell image
sequence:(a)Original frame example; (b)Manual segmentation; (c)Segmentation
result using [191]; (d) HE applied to [191].
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Figure 4.16: Segmentation result of the 84th frame from the second
cell video sequence using the proposed approach.

In the same right-hand side region as Figure 4.14, the three right-most cells are de-

tected by the ground-truth (Figure 4.15b) and proposed approach (labeled as (1)

in Figure 4.16), but only faintly detected by [191], though improved by HE pre-

processing (Figures 4.15c and 4.15d).

4.3.3 Overall cell segmentation accuracy

Table 4.1 summarises the quantitative segmentation accuracy across the two image

sequences in the database tested. Since the segmentation results by Chan-Vese seg-

mentation algorithm [30] show the inability to detect cells with low intensity values

in microscopic images, as illustrated by Figure 4.12a, the Chan-Vese algorithm is not

included in the quantitative overall segmentation evaluation. As shown in Table 4.1,

the proposed approach exhibits the highest IRU for both cell image sequences of the

N2DH-GOWT1 database, improving the segmentation accuracy by up to 37% and

33%, respectively, compared to the existing Viterbi-based approach of [191] (with

and without HE). The proposed method exhibits the recorded highest IRU values
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and improves the segmentation accuracy of the work in [52] by increased mean IRU

values of 3.3% and 6.7% over the two sequences, respectively.

Table 4.1: Mean cell segmentation accuracy across the cell image
database based on IRU

Seq. 1 (91 frames) Seq. 2 (91 frames)
Viterbi method [191] 0.46 0.12

HE applied to Viterbi method [191] 0.58 0.13
Previous work [52] applied to [191] 0.61 0.15
Proposed method applied to [191] 0.63 0.16

4.3.4 Effect of relative weight on segmentation accuracy

The effect of the relative weight ratio λ is explored by a series of experiments to vary

the λ value.
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Figure 4.17: Relative modal amplitude effect on segmentation accu-
racy.

(a) IRU vs relative amplitude in the first cell image sequence; (b) IRU vs relative
amplitude in the second cell image sequence.
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Figure 4.17 shows the effect of varying the relative weight λ in the bi-Gaussian model

on the overall segmentation accuracy across the studied cell image database. A sim-

ilar consistency across the two cell image sequences is exhibited in Figure 4.17:

the segmentation accuracy is maximal with a relative weight λ within the range

[0.03, 0.04]. That is, the relative amplitude of the bi-Gaussian model can be fixed

within [0.03, 0.04] for the cell image database studied, which indicates that the first

Gaussian component weight C1 cannot overly suppress the second Gaussian com-

ponent weight C2 to maintain the original intensity histogram featuring saturation

between low grey level range. In addition, the resultant small λ value range indi-

cates that the relative distribution amplitude of cell regions is less than 5% of the

background distribution amplitude. This demonstrates the necessity to maintain the

shape characteristics of the original intensity histogram: consistently increasing the

relative weight does not result in corresponding increases in segmentation accuracy,

which can be attributed to why the histogram equalisation technique does not work

well for the dataset studied.

4.4 Summary

The accurate detection and segmentation of cells from time-lapse microscopic video

sequences provides a critical foundation for understanding dynamic cell behaviours

and cell characteristics when using automatic cell tracking systems. However, cell

tracking approaches typically assume accurate segmentation results.

To address the segmentation challenge of low image intensity contrast characteristic

to cell images, this Chapter introduced a novel image pre-processing technique to

enhance cell microscopic image intensity contrast prior to segmentation (and sub-

sequent tracking). The novelty of the image pre-processing method is the proposed

adaptive, shifted bi-Gaussian mixture model that is used to match the original cell

image intensity histogram for greater differentiation between the cell foreground and
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microscopic image background, while maintaining the original intensity histogram

shape. The proposed pre-processing matched the intensity histogram of the original

cell microscopic image to a shifted bi-Gaussian distribution. Image contrast is en-

hanced with two summits in the new intensity histogram for target cell segmentation,

whilst the shape of the original histogram is maintained. The model parameters of

the shifted bi-Gaussian mixture are automatically derived frame-by-frame from cell

video sequences to adapt to background changes in the video sequence. Evaluation

experiments on a cell image database showed more accurate cell image segmentation

by up to 37% and 33% for the two image sequences tested, compared to Viterbi-based

segmentation. The proposed approach obtained as well as or better than the (man-

ual) ground-truth and Viterbi search approaches, with and without existing contrast

enhancement techniques applied.

However, there is a limitation in the proposed pre-processing method in the empiri-

cal selection of the relative weight ratio between the two Gaussian components. This

parameter was selected by trial-and-error and comparing a range of possible values.

The relative weight ratio between the two Gaussian components may vary when ap-

plying to other microscopic cell video datasets. Thus, extra testing on a range of

values is recommended.
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Chapter 5

Single and Multiple Zebrafish Larvae

Tracking

5.1 Introduction

The accurate tracking of zebrafish larvae movement is fundamental to research in

many biomedical, pharmaceutical, and behavioural science applications [3, 7, 66,

73]. However, the microscopic video conditions of zebrafish larvae are more com-

plex than those of cell microscopic videos, such as the existence of impurities, small

particles, turned up water bubbles, surface projections etc. Thus, the pre-processing

technique presented in Chapter 4 using two Gaussian components cannot fully rep-

resent the zebrafish larvae microscopic video conditions. Further, the locomotive

characteristics of zebrafish larvae are significantly different from adult zebrafish,

where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae

[149]. The detection of zebrafish larvae is often lost during tracking systems [5, 31,

34] based on movement features (i.e., pixel displacement thresholding method [35])

when the larvae stop moving. This erroneous detection of zebrafish larvae is not

uncommon due to their ’bursty’ movement characteristics, as explained in Section

2.3.1. Further, the far smaller size differentiation between larvae and the container

render the detection of water impurities inevitable, which further affects the tracking



94 Chapter 5. Single and Multiple Zebrafish Larvae Tracking

of multiple zebrafish larvae or require very strict video imaging conditions that typ-

ically result in unreliable tracking results for realistic experimental conditions. As a

result, zebrafish larvae misdetection and overlapped movement trajectories especially

restrict current automatic multiple zebrafish larvae tracking techniques.

In addition, constraints on the input imaging conditions are commonly required by

existing automatic zebrafish tracking systems [5, 31, 33–35], which are largely due

to poor zebrafish detection and segmentation results from the input videos. Thus, im-

proving the segmentation method will remove the need for input imaging constraints,

where it has been assumed that improving the segmentation accuracy can result in

more reliable tracking performance [139]. However, this assumption of improving

segmentation accuracy to enhance tracking performance has not yet been examined.

Thus, instead of using the developed pre-processing technique presented in Chapter

4, this Chapter investigates advanced background subtraction and segmentation tech-

niques, including dense SIFT flow, SURF features, and Gaussian mixture models, to

improve the segmentation accuracy. Dense SIFT flow has been shown to be robust

for image registration with large appearance changes. Any arbitrary natural images

can be assumed to consist of individual near-homogenous areas, which inherently

have a Gaussian-shaped histogram [187]. The mean values and the variances of the

Gaussian components indicate the average intensity values and the texture details of

the individual areas, respectively. The Dirichlet prior and the Minimum Message

Length criteria automatically select the number of Gaussian components and their

parameters to optimally enhance the image contrast. This Chapter also investigates

removing the input microscopic video imaging conditions when developing the au-

tomatic zebrafish larvae tracking system in Section 5.3.1. Section 5.2.2 also presents

the investigation on other feature detectors (SURF, HOG, BRISK and SIFT). For

comparison, the single (LSRtrack tracker and original SIFT flow tracker) and mul-

tiple (SimpleTracker, IdTracker and LoliTracker) organism trackers are presented in

Section 5.2 and Section 5.3, respectively.
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5.1.1 Single zebrafish larva tracking

This Chapter first investigates single zebrafish larva detection and tracking in Section

5.2, using the dense Scale-Invariant Feature Transform (SIFT) flow method [154],

which has been shown to be robust for image registration with large appearance

changes. The dense SIFT flow is proposed to detect sudden tail beating movements

of zebrafish larva [147], where the approaches and experiments proposed are the first

application of dense SIFT flow directly on microscopic videos to study the dynamic

behaviour of zebrafish larvae.

Further, the proposed approach considers the specific movement characteristic of

zebrafish larvae, with sudden swimming locomotion interspersed with substantially

stationary periods of little movement [204]. Specifically, to address the lost detec-

tion of zebrafish larva when there is no movement, the Speeded Up Robust Features

(SURF) approach [205] is applied to detect non-moving zebrafish larva. This com-

bination of dense SIFT and SURF features is therefore proposed and used for the

accurate and reliable detection and segmentation of zebrafish larvae.

In experimental validations of the proposed single zebrafish larva tracking system,

the determined positions of larval zebrafish are evaluated by the Average Centroid

Location Error (ACLE), and the obtained results in the proposed approach are com-

pared to that of the widely used single zebrafish larva tracking system, LSRtrack

system [5].

5.1.2 Multiple zebrafish larvae tracking

Section 5.3 extends upon the single zebrafish larva tracking system to track multiple

zebrafish larvae, consisting of segmentation and association modules. To achieve

this purpose, this work proposes the adaptation of Gaussian Mixture Model (GMM)

based video background subtraction and object segmentation techniques to detect and
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segment zebrafish larvae from the microscopic videos under realistic experimental

conditions, without imaging constraints.

Segmentation errors caused by zebrafish misdetection and overlapping (which further

result in overlapped trajectories) are additional common issues for zebrafish larvae

tracking that currently restrict its application. Thus, Section 5.3.3 investigates multi-

ple object association method, robust against non-ideal zebrafish detection and seg-

mentation, based on the Kuhn-Munkres association algorithm [206]. In the proposed

multiple object association approach, the positions of mis-detected and overlapped

zebrafish larvae are calculated using inter-frame knowledge.

The proposed automatic multiple zebrafish larvae tracking system is evaluated on a

set of single and multiple adult and larvae zebrafish videos across a wide variety of

(complex) video conditions, including shadowing, labels, water bubbles and back-

ground artefacts. To facilitate this evaluation on multiple zebrafish segmentation and

tracking research, the datasets with annotated ground-truth, presented in Sections

3.5.1 and 3.6.2 in Chapter 3, are used in this Chapter. The datasets and software are

made publicly accessible1.

5.2 Single Zebrafish Larva Tracking

Due to the reliable detection of moving zebrafish larvae using the Scale-Invariant

Feature Transform (SIFT) flow algorithm [154], this work proposes the application

of SIFT flow to extract the zebrafish larva from the image background in each micro-

scopic video frame, followed by position detection indicated by the centroid location

of the detected object (same as for the LSRtrack approach [5]). Figure 5.1 shows the

workflow of the proposed single zebrafish larva tracking system.

SIFT flow has not previously been applied to zebrafish larvae tracking due to com-

putational complexity requirements. With an entire moving object extracted, the
1https://github.com/Xiao-ying/moving-zebrafish-larvae-segmentation-and-tracking-dataset-
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Figure 5.1: Flow chart of the proposed method.

subsequent object tracking process is, therefore, simpler and more reliable. How-

ever, SIFT flow fails once no movement exists in the successive frames; thus, SURF

feature [205] detection is proposed to apply to detect the zebrafish without movement

between two connective frames prior to the SIFT flow calculation. If no movement

exists, the position of the zebrafish in the secondary frame is equal to the previous

location and the SIFT flow in the current frame does not need to be calculated, thus

the computational time is furthermore decreased.

5.2.1 SURF features

Speeded Up Robust Features (SURF) is a widely used state-of-the-art scale and ro-

tation invariant sparse image feature representation. The SURF descriptor is a 64

dimensional blob detector, where blob response maps are calculated to convolve an

image with the Hessian matrix [205]. The SURF algorithm utilises a fast interest

point detection and description scheme, which outperforms existing state-of-the-art



98 Chapter 5. Single and Multiple Zebrafish Larvae Tracking

feature descriptions, such as the Difference of Gaussian (DoG) detector [207], the

Harris corner descriptor [208] and Hessian-Laplace descriptor [209], both in speed

and accuracy [205].

(a) (b)

(c) (d)

Figure 5.2: Sparse feature points from various feature descriptors:

(a) SURF, (b) HOG, (c) BRISK (d) SIFT.

The strongest SURF feature points, which are generally located at the head of the

zebrafish, are calculated for all frames across the studied single zebrafish video se-

quences. Then, the distances of the SURF points are computed between successive

frames to determine the object displacement.
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5.2.2 Dense SIFT flow

In the proposed approach, the differentiation of the zebrafish larvae from the image

background is excluded through the dense SIFT flow algorithm [154]. Figure 5.3

illustrates each step in the proposed system (as shown in Figure 5.1) as applied to

an example frame pair from a zebrafish larva input video. To reduce the compu-

tational complexity required for calculating the dense SIFT image and SIFT flow

(without loss of tracking accuracy), the input video frame is downsampled to reduce

the number of SIFT features calculated, and various downsampling scale factors are

investigated as part of the experimental results in Section 5.2.6. The application of

frame downsampling was also used in the original SIFT feature literature to reduce

the number of selected SIFT feature points [210].

The dense SIFT flow algorithm [154] is designed to match similar images from dif-

ferent scenes. Unlike the extraction of sparse feature points employed in previous

methods [128, 210], SIFT flow [154] uses dense SIFT, extracting a SIFT histogram

at a scale for all pixels with overlapping patches [211]. Sparse image feature rep-

resentations, such as SIFT [212, 213], SURF [205], Binary Robust Invariant Scale

Key-points (BRISK) [214], and Histogram of Oriented Gradients (HOG) [215] con-

sist of feature extraction and detection.

Here, this work only uses the feature extraction component of dense SIFT [154].

Dense SIFT vectors more accurately preserve the intrinsic uncertainty of the pro-

cessed image compared to sparse feature approaches [205, 213–215], so that more

robust decisions can be made in proceeding tracking stages [211]. Dense SIFT flow

can, therefore, extract an entire moving object from the video background if there

is movement displacement between two successive frames [154]. In contrast, the

state-of-art feature point detection methods [205, 213–215] only detect feature points

based on the difference between pixels and their neighbours such that feature points

located in the background as well as on the object are selected (as shown in Figure
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Figure 5.3: Visual demonstration of results of each step by the pro-
posed single zebrafish larva tracking system.

(a) Original frame I(t); (b) The following frame of (a), I(t + 1); (c) Visual
illustration of the SIFT image of (a); (d) Visual illustration of the SIFT image of (b);
(e) SIFT flow I(t, t + 1)SIFT− f low from (c) to (d); (f) Warped image I(t)Warp.
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5.2 applied to zebrafish larvae).

In SIFT flow, the dense SIFT algorithm [154] creates a SIFT image, I(t)SIFT, from

each original frame I(t) in zebrafish videos. Each pixel in the SIFT image, I(t)SIFT,

is replaced by the SIFT descriptor describing its neighbour region of size PS× PS,

which is the window size of the normalised Gaussian kernel required to produce the

SIFT descriptor [154]. The generated SIFT images, I(t)SIFT and I(t + 1)SIFT(as

shown by Figures 5.3c and 5.3d), are then used to estimate the moving region be-

tween the two successive frames. This moving region is determined by SIFT flow,

I(t, t + 1)SIFT− f low (as shown in Figure 5.3e) by estimating the dense correspon-

dences between these two SIFT images in a 2D flow field.

5.2.3 Image warping

Finally, the detection of the moving object (i.e., the zebrafish larva) is conducted

based on the flows in each pixel using the pixel warping function in Equation 5.1.

The original frame I(t) is seen as the query, applying a pixel warping function to

align the SIFT flow, I(i, i + 1)SIFT− f low to the query, and displaying the warped

image, I(t)Warp (as shown by Figure 5.3f) with respect to the dense correspondence.

Image warping is the act of distorting a source image to a destination image based

on the correspondence between source and destination spaces [216]. Image warping

is primarily used for correcting image geometric distortions introduced by imperfect

imaging systems [216], and primarily in experimental conditions though [217] pro-

vides a mathematical expression for optical flow application; segmentation based on

optical flow was further compared and presented in Section 3.5, denoted as OptFlow,

and Section 5.3. This work uses image warping to determine the zebrafish larva dis-

placement between two connected video frames, where Equation 5.1 represents how

SIFT flow is combined with image warping [217].
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I(t)Warp = I(t)(x + dx, y + dy) (5.1)

where (dx, dy) is the SIFT flow vector estimated by the dense SIFT flow algorithm

[154]. Every pixel of image I(t) is warped separately according to horizontal and

vertical displacements (dx, dy) [154].

Figure 5.4: Visual demonstration of results of each step by the pro-
posed single zebrafish larva tracking system.

(a) Image I(i)Warp−bw; (b) Zoomed-in image of a zebrafish region after image
binarisation on (a); (c) Close operation on (b); (d) Calculated zebrafish centroid
position.

Since dense SIFT flow extracts the moving object from the background, the resultant

grey level image I(t)Warp as illustrated in Figure 5.3f is primarily white space. Thus,

binarisation (with the threshold selected according to the Otsu thresholding method
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[179]) is applied to the warped image I(t)Warp, obtaining a binary image as shown

in Figure 5.4a.

To enhance the tracking accuracy of the zebrafish larva movement, the binarised im-

age exhibits ‘noise’ (sparse, small image artefacts and holes, where an example de-

tected object region is shown in Figure 5.4b), which results in disconnected zebrafish

larva objects (as illustrated in Figure 5.4b). Thus, a morphological ‘close’ operation

is applied to the binary image before calculating the zebrafish larva centroid position,

in order to join narrow breaks, and fill in long thin gulfs and holes [218].

5.2.4 Estimation of zebrafish object centroid

Comparing the centroid of a moving object for two successive frames is a compu-

tationally simple and efficient method for estimating the distance that the object has

moved. Generally, an image can be seen as a matrix I of intensities of both an object

and a background. Equations 5.2 and 5.3 represent the calculation of the centroid for

both axes [219]:

Cx =
n

∑
i=1

m

∑
j=1

(xi · Iij)

/
n

∑
i=1

m

∑
j=1

Iij (5.2)

Cy =
n

∑
i=1

m

∑
j=1

(yi · Iij)

/
n

∑
i=1

m

∑
j=1

Iij (5.3)

where xi and yi are the horizontal and vertical coordinates of a pixel, respectively, Iij

is the correspondence intensity value of this pixel, and n and m are the dimensions of

image I. The distance that an object moves is therefore measured by the Euclidean

distance between the calculated centroid point (Cx, Cy) of a frame with that of the

subsequent frame.



104 Chapter 5. Single and Multiple Zebrafish Larvae Tracking

The correct computation of the centroid using Equations 5.2 and 5.3 assumes that the

object intensity differs compared to the background. Vital to the centroid calculation

is the exclusion of as much of the image background as possible, lest it strongly bias

the centroid calculation to the centre of the image [219].

Though the existing LSRtrack system also uses the zebrafish centroid for tracking,

the background in the LSRtrack system [5] is removed by setting an intensity thresh-

old. Thus, pixel values must exceed this threshold to be classified as an object region.

However, this background subtraction method of LSRtrack is susceptible to impuri-

ties inside water, glares on water surface [153] etc. due to the use of a fixed and em-

pirically selected threshold value. Consequently, zebrafish larva can be mis-detected

in LSRtrack due to incorrect threshold selection.

5.2.5 Improving the tracking accuracy

In the proposed approach, two main measures are taken to enhance the accuracy of

tracking the zebrafish larva movement:

1. Morphological Operation. A morphological close operation is applied to

the binary images I(i)Warp−bw before tracking to remove ‘noise’. An example

result of applying this morphological close operation to Figure 5.4b is shown in

Figure 5.4c. Figure 5.4d shows the final calculated centroid position, labelled

by the red square with green infill.

2. Object position correction by SURF. The dense SIFT flow algorithm detects

the movement of zebrafish larva; however, the method fails to track the posi-

tion of the object if there is no movement between successive frames. In this

situation, the position of the zebrafish in the previous frame will be assigned as

the updated position in the current frame. An example tracking result is illus-

trated in Figure 5.5, which shows that 91% of the frames can detect a zebrafish

larva position using the SIFT flow algorithm (i.e. 9 out of the 100 example
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Figure 5.5: Zebrafish position correction when no movement is de-
tected.

frames evaluated fail because of no displacement of the zebrafish between suc-

cessive frames). Thus, the frames without displacement indicated by the zero

values of X and Y coordinates (black and aqua lines in Figure 5.5) are assigned

the zebrafish position of the previous frame (green and magenta lines in Figure

5.5). It can be seen from Figure 5.5 that the position detection failures (high-

lighted by the red circles) in the original system are corrected in the position

detection results by the proposed method (green and magenta lines in Figure

5.5).

5.2.6 Results and discussion

The proposed single zebrafish larva tracking system based on SIFT flow and image

warping is evaluated on a microscopic video of 100 video frames. The video of a ze-

brafish larva (housed in a flat round well, as shown in Figure 5.3a and 5.3b) was taken
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at a frame rate of 15 fps by a Dino-Lite premier AD7013MT digital microscope, as

presented in Section 3.3.

To illustrate the tracking accuracy of the proposed system, a comparison is performed

with the LSRtrack method [5], original SIFT flow [154], and the proposed image

processing approach using SIFT flow with frame downsampling and morphological

operations applied to LSRtrack. To evaluate the tracking accuracy, the estimated

zebrafish centroid obtained by each approach is compared to the manual ground-

truth to estimate the Average Centroid Location Error (ACLE).

Tracking accuracy evaluation

Table 5.1: Tracking accuracy performance comparison.

ACLE (pixels) NDFP (pixels)
LSRtrack [5] 29.09 3.51 ∗ 103

LSRtrack [5] (30% downsampling) 28.62 1.38 ∗ 102

Original SIFT Flow [154] 12.50 1.23 ∗ 106

Proposed (50% downsampling) 7.72 3.07 ∗ 105

Proposed (30% downsampling) 7.39 1.11 ∗ 105

Proposed (10% downsampling) 27.17 1.23 ∗ 104

*ACLE = average centroid location error
*NDFP = Number of Detected Feature Points

As shown in Table 5.1, the LSRtrack system [5] exhibits poor tracking accuracy,

with the highest ACLE value exhibited. Whilst LSRtrack is widely utilised in sin-

gle zebrafish tracking due to the low computational complexity, it can be seen from

Table 5.1 that the intensity thresholding-based LSRtrack system [5] is not robust for

tracking zebrafish larva movement with or without image downsampling and mor-

phological operation processing. In contrast, dense SIFT flow [154] with intensity

thresholding exhibits a general 16.59 pixels smaller ACLE error than LSRtrack [5].

However, the proposed approach has the highest tracking accuracy, demonstrated by

the decreased ACLE value by 21.7 pixels and by 5.11 pixels than LSRtrack [5] and

dense SIFT flow with intensity thresholding [154], respectively.
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Effect of varying downsampling rate on tracking accuracy

In the proposed method, to reduce the calculation of SIFT vectors in each video

frame, the original zebrafish video frame is downsampled. To investigate the effect of

the frame downsampling rate on tracking accuracy, the frame resolution is reduced at

different scale factors: 50%, 30%, and 10% of the original video frame resolution. As

shown in Table 5.1, the proposed method with frame downsampling scale factors at

30% and 50% improved the tracking accuracy by 40.88% and 38.24%, respectively,

compared to the original SIFT flow [154], respectively. This improvement is due

to decreasing the effect of background noise and water impurities on the moving

zebrafish larvae detection. However, further downsampling the video frame results

in decreased tracking accuracy for the 10% scale factor with a higher ACLE value

of 19.78 pixels compared with that from the 30% downsampling scale factor. This

increased error is due to the position displacement of the zebrafish in successive

frames not being fully detected by the SIFT flow method due to too few feature

points being detected.

Conversely, the downsampled resolution at a 50% scale factor does not further in-

crease tracking accuracy for the proposed approach compared with a 30% scale fac-

tor, as the higher resolution images result in a larger-sized object (in terms of the

number of pixels); thus, larger deviations can result when compared with the ground-

truth centroid position.

The effect of frame downsampling on tracking accuracy is also tested for the LSR-

track system [5]. Table 5.1 shows that the tracking accuracy at 30% frame resolution

reduction is comparable to the original LSRtrack (with 1.62% improvement in the

ACLE tracking accuracy). Frame resolution downsampling therefore does not sig-

nificantly influence LSRtrack tracking accuracy.

Thus, the results shown in Table 5.1 show that the proposed method applied with

downsampling at a 30% scale factor returns the highest tracking accuracy (i.e., the
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lowest ACLE value), improving the tracking accuracy by average 21.7 pixels com-

pared to the original LSRtrack system [5].

5.3 Multiple Zebrafish Larvae Tracking

Extending upon the single zebrafish tracking system proposed in this work as pre-

sented in Section 5.2, this Section presents an accurate and reliable multiple zebrafish

larvae tracking system. The proposed system consists of three stages: background

subtraction, zebrafish larvae segmentation, and association or matching of the larvae

between successive frames. Based on the novel adaptation of advanced computer

vision techniques (as explained below) using the Kuhn-Munkres multiple object as-

sociation algorithm and the proposed theoretical object position calculation using

inter-frame knowledge, the proposed system is robust against non-ideal zebrafish

larvae detection and segmentation.

In this Section, the proposed background subtraction and segmentation approach for

multiple zebrafish larvae is firstly presented in Section 5.3.1, and evaluated in Sec-

tion 5.3.2. Then, an improved association approach is proposed in Section 5.3.3 to

enable the estimation of individual zebrafish larvae movement trajectories. Individ-

ual zebrafish movement parameters can therefore be estimated from these individual

trajectories as presented in Section 5.3.4, and the overall proposed multiple zebrafish

larvae tracking system is evaluated and motion parameters analysed in Section 5.3.5.

5.3.1 Zebrafish segmentation in unconstrained microscopic video

conditions

Figure 5.6 outlines the proposed automatic multiple zebrafish larvae tracking system,

which consists of three stages: background subtraction, zebrafish larvae segmen-

tation, and association or matching of the larvae between successive frames. The
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robustness of the proposed segmentation method is achieved by the efficient estima-

tion and removal of the video frame background, further median filter processing and

morphological greyscale erosion. The detection and segmentation of zebrafish larvae

then are not affected by the input video imaging conditions. The performance of the

proposed segmentation method is evaluated and compared with three state-of-the-art

segmentation algorithms, as detailed in Section 5.3.2. To examine and verify the as-

sumption of improving segmentation accuracy to enhance tracking performance, the

existing association algorithm, the Munkres’ implementation of the Hungarian algo-

rithm [206] is applied after the segmentation stage. Then, this association procedure

is extended to form the novel tracking system, proposed in this work, as detailed in

Section 5.3.3.
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Figure 5.6: Overview of the proposed zebrafish larvae segmentation
method with an existing tracking algorithm for further evaluation.
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Background subtraction

The efficient estimation and removal of the video frame background is essential for

zebrafish larvae tracking, to address water impurities and ‘bursty’ movement char-

acteristics. The water particles, ripples and bubbles (as shown in Figure 2.5) when

stirred up by the larvae tail beating produce motion data, which means that larvae

detection methods based on motion (such as optical flow [182] and SIFT flow [154])

and frame-to-frame differences (such as segmentation methods used in idTracker

[211] and LoliTrack [34]) cannot be applied [220]. As the movement of water impu-

rities is relatively temporary compared to the larvae movement, the proposed system

applies an improved adaptive Gaussian Mixture Model (GMM) [221], as detailed in

the following.

Building GMM training samples. The time interval of training samples, T, is the

length of samples and is determined as per the work in [199], where the first 500

frames of videos are used to estimate the GMM model parameters so as to obtain a

consistent background model. In practice, however, there are many short microscopic

zebrafish larvae videos where the number of frames is less than the required time

interval, T. In this work, it is proposed that duplicate video frames are added at the

beginning of short videos to allow GMM model background estimation.

For a short video where the length is less than the training sample required, duplicate

video frames are added to the beginning of the video sequence to estimate the back-

ground model. Figure 5.7 illustrates the process of constructing the GMM training

samples from a short video.

start 2nd … i-th … endend … i-th … 3rd 2ndstart … i-th … end-2end-1…… i-th … endclipstartclip

Training sample Short video

SrevSobvSfrg

N videosM frames

Figure 5.7: Building GMM training samples for a short video.
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The green frame series in Figure 5.7 indicate the original time-lapse zebrafish larvae

microscopic short video V. The frames in front of this video are its training sample

S, used to estimate the background model parameters of V. The set of training

samples S consists of: Sobv, frames from the original short video V in obverse order

from [start, end − 1] frames, shown by the pink frame series; Srev, frames from

the original short video V in reverse order from [end, 2nd] frames, shown as the

light blue; and, S f rg, the video fragment shown in orange. The obverse order frame

series Sobv and reverse order frame series Srev are alternately linked to each other to

construct the training sample, and the last frame to connect to the original video is

the reverse order frame to ensure a smooth background transition between the last

frame in the reverse order frame series to the first frame of the original microscopic

short video.

To construct a training set with length of Lsample images, a video fragment, S f rg,

taken from the short video studied will be added to the training set for the set length

requirement when the Sobv and Srev series do not have exact Lsample images.

The required number of videos, N, and number of frames, M, are calculated using

Equation 5.4 and Equation 5.5.

N = Lsample/N f rames (5.4)

where the division is integer division with fractional quotients being rounded toward

negative infinity to the nearest integer.

M = Lsample − Lsample/N f rames (5.5)

Based on the required number of videos N (in obverse order and reverse order), the

video fragment S f rg is constructed according to Equation 5.6.
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S f rg =

 {Srev(i) | i = M + 1 , . . . , 3, 2}, N
2 is even

{Sobv(i) | i = 2 , . . . , 3, M + 1}, N
2 is odd

(5.6)

Background GMM model estimation. The distribution probability density model

parameters for the GMM are calculated according to the mixing weight and Min-

imum Message Length (MML) criterion [221], and the improved adaptive GMM

[221] introduces an exponential decay envelope shaped by the constant factor α to

adapt to background changes. The decay envelope factor α strongly weights the pixel

samples representing the temporary movement of these water impurities and illumi-

nation changes, to minimise the influence of this temporary movement and enable

fast adaptation to background changes. Therefore, the zebrafish larvae regions in the

video frames are distinguished as moving objects and segmented by subtracting the

calculated background model from the original video frames. That is, in the proposed

system there are no requirements on the input video images as per existing zebrafish

tracking approaches to have a clear background, use transparent containers without

edge shadows, or have high intensity contrast between the zebrafish larvae and the

background.

To address the ‘bursty’ movement specific to zebrafish larvae, with sudden swim-

ming locomotion interspersed with substantially stationary periods of little move-

ment [204], the applied GMM model [221] in the proposed system adds flexibility to

the description of the background by adaptively and recursively selecting the num-

ber of Gaussian components used to represent each pixel compared with traditional

GMM models with one or a fixed number of components to model each pixel. To

determine the number of Gaussian components, the Dirichlet prior [116] and the

MML criteria [221] are used to select the number of components on the basis of the

final value of the component mixing weights. The same approach and initialization

settings used in [222] are applied to recursively update the mixing weights for each
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new sample. Whilst the initialisation stage is based on existing work [222], a novel

contribution to the background subtraction is the proposed GMM training sample

building method.

For the initialisation stage, the approach and number of randomly generated com-

ponents are taken from [222], and the Dirichlet prior is applied. After each update,

components holding a negative weight will be discarded by the MML criteria, with

the components remaining taken as the number used in the model. The background

model enables the removal of stationary background regions such as the zebrafish

container and labels drawn on the petri dish; hence, unlike existing techniques, the

proposed system is able to process larvae videos under practical experimental condi-

tions.

However, if a larva in the video becomes static for some time, its body pixels will

start to generate an additional stable cluster of pixels. But with the previously cal-

culated background being occluded, the starting weight of the new stable cluster is

very small. The cluster will only be classified to the background model when its

weight is larger than a threshold (referred to as c f in [221]) when the larvae remains

static for long enough, which will consistently increase the weight of the newly gen-

erated cluster. Thus, the detection period of larvae with no movement is extended for

approximately log(1− c f )/ log(1− α) frames as calculated in [221].

Zebrafish larvae segmentation

After background subtraction, the resultant image generally still contains distortion

due to a scattering of small noise fragments that are detected by the GMM model as

moving objects. Thus, to remove these noise fragments the proposed system applies

a median filter with a 3× 3 square moving window (the smallest available window

size for removing small fragments) [15] and morphological greyscale erosion [189].
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Water ripples evoked by zebrafish larvae movement are also often detected by the

GMM model. Further, the ripples cannot be completely removed by the median

filter and mathematical morphological operation because their relative region size is

typically larger than the noise. For these distortions, a binary image is firstly obtained

from the greyscale image based on the global normalized threshold calculated using

Otsu’s method [179]. Then, the system calculates the number of pixels from each

connected component in the binary image, and estimates the average size across the

regions in the image. Regions which are less than 20% of the average larvae size

(based on the typical relative size of ripples evoked by the larvae) are then removed

from the segmentation image. This 20% threshold is taken from the experiments in

[31], and empirical tests were conducted to verify this threshold as appropriate to the

proposed system.

5.3.2 Multiple zebrafish segmentation performance evaluation

The proposed multiple zebrafish larvae tracking system consists of three stages:

background subtraction, segmentation and association. As the assumption of im-

proving segmentation accuracy to enhance the overall tracking performance has not

yet been examined for multiple zebrafish larvae, this Section evaluates the segmen-

tation approach in the proposed multiple zebrafish tracking system, compared with

the segmentation method within idTracker [31], and the well-known motion feature

based optical flow [182] and SIFT flow [154] methods.

To evaluate the tracking performance due to the proposed improved segmentation

approach, the existing tracking approach utilised in SimpleTracker [223] is applied

based on the segmentation results of the proposed segmentation approach. Simple-

Tracker [223] uses the Kuhn-Munkres tracking algorithm for the initial association

and the nearest neighbour to directly connect trajectory fragments, without consider-

ing missed objects. The overall tracking accuracy of the proposed system (as shown

in Figure 5.6) is then compared with idTracker [31], and the widely used commercial
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LoliTrack system [34]. All evaluation experiments are performed using the zebrafish

larvae segmentation and tracking dataset presented in Sections 3.5.1 and 3.6.2 in

Chapter 3, annotated with manually generated segmentation and tracking ground-

truth.

Zebrafish larvae association between frames

To enable evaluation of tracking accuracy due to proposed improved segmentation,

the Munkres’ implementation of the Hungarian association algorithm is applied to

the proposed segmentation result to form a tracking system (and an improved as-

sociation algorithm is presented in Section 5.3.3). That is, after zebrafish larvae

segmentation the moving larvae objects are associated or matched between succes-

sive frames to obtain individual larvae tracking trajectories. An n× m matrix D is

created to annotate the cost of associating source objects O = O1, O2, · · · , On in the

frame t to the target objects T = T1, T2, · · · , Tm in the frame t + 1:

D(O, T) =



dO1,T1 dO1,T2 · · · dO1,Tm

dO2,T1 dO2,T2 · · · dO2,Tm

...
... . . . ...

dOn,T1 dOn,T2 · · · dOn,Tm


(5.7)

where n is the detected number of zebrafish larvae in the frame t, and m is the number

of zebrafish larvae segmented in the successive frame t + 1. The element dOi,Tj in

the matrix denotes the cost to connect the i-th object in the frame t, to the j-th object

in the frame t + 1. The value of dOi,Tj is calculated as the Euclidean distance from

the source object to the target object based on the centroids of the segmented regions

in Cartesian coordinates Oi(xi, yi) and Tj(xj, yj), as given by:

dOi,Tj = (xj − xi)
2 + (yj − yi)

2 (5.8)
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The frame-to-frame zebrafish larvae assignment based on the cost matrix is per-

formed using the Muncres’ implementation of the Hungarian algorithm [206], which

searches for unique assignments i.e., assigns source object i to only one target object

j in the secondary frame. The assignment is based on the global minimum of the

smallest sum of squares distance amongst all of the possible associations, and allows

n 6= m in case of zebrafish larvae detection failure or larvae occlusion. Water impu-

rities and well edge shadows may still remain in the binary bitmap, and to avoid these

remaining noise fragments the maximum value max(distGT) of organism displace-

ment extracted from the tracking ground-truth is defined as the distance threshold

[206]. In the cases where dOi,Tj is greater than the distance threshold, the value of

dOi,Tj in the cost matrix D is set to ∞ before mapping association.

In the cases where zebrafish larvae fail to be detected or segmented in one frame

but reappear in subsequent video frames, a ‘gap’ in the moving trajectory of this

object will appear at the frame where the zebrafish larvae detection initially failed,

with a resulting new trajectory created from the frame where the zebrafish reappears.

Scenarios of multiple object occlusion [32] and misdetection of long-term stationary

larvae objects can generate such trajectory ‘gaps’. Thus, in the proposed tracking

system a ‘gap bridging’ stage is performed using the nearest neighbour algorithm

[224] to connect trajectory fragments and improve the inter-frame larvae object as-

sociation. However, the trajectory gap will not be connected if the squared distance

calculated between the two frames of trajectory fragments is greater than the distance

condition calculated as 1.2 ∗ (max(distGT))
2. The ratio of 1.2 is extended by 20%

beyond unity to set a margin for rebound, similar to the threshold ξ in the gap filling

stage of [32], with the trajectory at that frame recorded as an error.

Results and discussion

Segmentation evaluation metrics. This work uses three standard metrics and a

proposed metric as Equations 3.4 - 3.7 (presented in Section 3.5.2) to numerically
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quantify the segmentation performance. The metric Similarity Index (SI) accounts

for the number of correctly segmented objects by penalizing missing objects or object

occlusion. The recall and precision metrics estimate under-segmentation and over-

segmentation, respectively. The Fmeasure is a weighted calculation of the precision

and recall. More detailed information about Fmeasure and SI are presented in Section

3.5.2.

Tracking evaluation metrics. To enable the objective evaluation of tracking per-

formance on the database presented in 3.6.2, this work employs the widely utilized

standard Multiple Object Tracking (MOT) metric: Classification of Events, Activi-

ties and Relationships (CLEAR MOT) [225].

CLEAR MOT consists of two metrics: Multiple Object Tracking Precision (MOTP),

which estimates the location precision of all detected objects compared to that of the

manually labelled zebrafish larvae positions in each frame (known as ground-truth);

and, Multiple Object Tracking Accuracy (MOTA), which measures the accuracy in

tracking object trajectories (producing exactly one trajectory per object), and the

ability to consistently label objects over time. Mathematically, the MOTP and MOTA

metrics [225] are represented as:

MOTP =
∑i,t |Di,t − GTi,t|

∑t Nt
(5.9)

MOTA = 1− ∑t(mt + f pt + mmet)

∑t gt
(5.10)

where |Di,t −GTi,t| indicates the Euclidean distance between the pair-wise matched

position of the i-th segmented object in the t-th frame Di,t and the position of this

object in the ground-truth (GTi,t), averaged by the total number of matches in the

entire video sequence.
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In the MOTA metric, mt, f pt, and mmet for each frame t indicate the number of

missed zebrafish detections, false positive segmentation (e.g., image noise fragment

detected as zebrafish), and the swapping of identities for individual zebrafish larvae,

respectively. gt represents the total number of objects in frame t.

Segmentation performance

Figure 5.8 shows the average Fmeasure and SI scores presented with the 95% confi-

dence intervals for each of the 10 zebrafish video sequences in the dataset, presented

in the order that the first sequence has the clearest background and the 10th (last)

sequence has the most complex background. Details of the tested dataset, such as the

number of frames for each sequence, are presented in Table 3.2 in Section 3.5.1.

1 2 3 4 5 6 7 8 9 10

Sequence

0

0.2

0.4

0.6

0.8

F
-m

ea
su

re

1 2 3 4 5 6 7 8 9 10

Sequence

0

0.5

1

S
im

ila
rit

y 
In

de
x

IdTracker
Proposed
OptFlow
DenseSIFT

Figure 5.8: Segmentation accuracy over the 10 zebrafish video se-
quences.

The results as seen in Figure 5.8 show that the overall segmentation accuracy of the

proposed method has an average 7.54%, 22.72% and 56.12% higher Fmeasure than

idTracker, optical flow and SIFT flow, respectively. The proposed approach also
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exhibits an 8.74% and 21.30% higher similarity index compared to idTracker, and

optical flow, respectively, indicating an improved performance in relation to missing

or occluded objects. In particular, the proposed method is more robust against chal-

lenging background environments, such as unclear zebrafish well containers with

labels (as illustrated by sequences 8 and 9). The robust segmentation accuracy as

seen in Figure 5.8 across the 10 videos under variant background conditions evalu-

ated with the proposed system further shows that the segmentation performance does

not depend on video input tested.

The sensitivity of the segmentation accuracy due to the tuning factor α was exam-

ined in [220], where the range of α values evaluated showed a consistent and reliable

segmentation performance. In turn, the robust segmentation accuracy seen in Figure

5.8, which illustrates the 10 videos under variant background conditions evaluated

with the proposed system shows that the segmentation performance does not depend

on the video input tested. Further, optical flow, SIFT flow and idTracker respectively

exhibit 1.95%, 2.45% and 0.47% more variance in all of the evaluation metrics stud-

ied, which suggests that the segmentation results are less reliable across the complex

video sequences evaluated.

Effect of improved segmentation on tracking accuracy

Figure 5.9 summarises the tracking accuracy using the MOTP and MOTA metrics

[225] evaluated over the 10 video sequences. Seq. 1 has the clearest background,

seq. 2-6 each have one type obstruction (well edge shadows, particles, particles,

labels on well, and well edge shadows, respectively), and seq.7-8 each have two types

of obstruction, and seq. 10 has the most complex container background conditions.

Both the proposed tracking system and existing tracking approaches perform reliably

when the videos have restricted background conditions, as shown by the MOTP and

MOTA values for seqs. 1- 4 in Figure 5.9. However, when the video conditions

increasingly degrade from seqs. 5-10, the proposed system is more reliable than the

existing systems as illustrated by the consistent performance of the proposed system
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Figure 5.9: Tracking accuracy over the 10 zebrafish video sequences.

compared with the existing systems as measured by both metrics from seqs. 5-10

in Figure 5.9. Further, the proposed system exhibits the smallest position detection

error, with a decreased overall error of 25.61 and 44.49 pixels using MOTP compared

to idTracker and LoliTrack, respectively, and an increased accuracy of 31.57% and

27.2% using MOTA compared to idTracker and LoliTrack, respectively.

The proposed segmentation approach is also applied as pre-processing to the id-

Tracker system to determine the effect of the proposed segmentation approach on

the overall tracking accuracy. The result of both the MOTP and MOTA values im-

proved by 32.00% and 22.91%, respectively, compared with the original idTracker

system. The proposed background subtraction and segmentation processing also re-

moves the need to constrain the input zebrafish larvae video imaging conditions, and

enables the testing of videos under realistic experimental conditions using idTracker.

That is, researchers who already use idTracker can apply the proposed segmenta-

tion method as pre-processing to obtain tracking results of higher accuracy using the
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Table 5.2: Total number of swapped individual identities

No. idTracker Segment +
idTracker

LoliTrack Proposed

1 6 NaN* 2 0
2 2 3 4 3
3 0 0 0 0
4 4 0 0 0
5 3 2 6 0
6 1 1 1 2
7 2 1 3 1
8 11 41 24 14
9 4 17 3 0
10 4 8 0 8
Average 3.7 8.1 4.3 2.8
*Note: No valid data generated due to the running error when testing Seq. 1.

existing idTracker system, with video data in unconstrained imaging conditions.

Table 5.2 summarises the total number of individual identities swapped across each

tested video in the dataset. The proposed system exhibits the smallest identity swap-

ping rate, with 24.32% less identity swap than the idTracker system. In addition

to the proposed segmentation method exhibiting a consistently higher accuracy seg-

mentation than idTracker as shown in Figure 5.8, applying the proposed segmenta-

tion method to idTracker reduces the zebrafish larvae misdetection and false positive

rates, as shown in Figure 5.9. However, the identity swapping rate is doubled as

shown by Table 5.2, due to the generated binary foreground images providing lim-

ited intensity information for idTracker to generate the required fingerprint.

Summary of the proposed segmentation approach

Compared to the tracking of adult zebrafish in microscopic videos, the dynamic

‘bursty’ locomotive characteristics and complex video imaging conditions of ze-

brafish larvae due to their small size relative to background imaging artefacts poses

many different challenges for the tracking of multiple zebrafish larvae. This Sec-

tion proposed a zebrafish larvae segmentation approach for both single and multiple
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zebrafish larvae under complex video conditions, applying an adaptive GMM prob-

ability density model, median filter and morphological operations to segment larvae

objects from the background. Comparisons with the segmentation performance of

existing state-of-the-art biological small organism tracking systems illustrated the

accuracy of the proposed method, where the proposed segmentation approach also

removes the strict limitations on input video imaging conditions to enable the testing

of unconstrained experimental videos.

Enhanced overall tracking performance due to the improved segmentation accuracy

was also illustrated by augmenting the proposed segmentation approach with the

Hungarian assignment algorithm as a tracking system. Further, the proposed back-

ground subtraction and segmentation approaches applied alone as pre-processing to

existing tracking systems (such as idTracker) improved the multiple zebrafish track-

ing accuracy by up to 32%. This is due to decreased zebrafish larvae misdetection

and false positive rates; however, the identity swapping rate may increase if the iden-

tity is generated using intensity variance information, such as the approach used in

idTracker. The proposed segmentation will also work for adult zebrafish as illus-

trated by the adult zebrafish sequence (seq. 1). Together with the increased size

and intensity contrast, the continuous swimming movements of adult zebrafish thus

provide consistent motion features that can be easily captured by the adaptive GMM

model and subsequent object tracking.

5.3.3 Improved zebrafish larvae association across video frames

This Section presents the proposed tracking system, which improves upon the as-

sociation stage in the system as shown in Figure 5.6, to improve robustness against

non-ideal zebrafish larvae detection and segmentation results obtained using micro-

scopic time-lapse videos taken under practical laboratory experimental conditions.
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Figure 5.10 outlines the overall workflow of the proposed multiple zebrafish larvae

tracking system. The improved assignment algorithm within the proposed system

takes advantage of inter-frame information to construct the individual tracking tra-

jectories by linking the detected zebrafish in each video frame to correspondences

in the next successive frame. Then, the positions of misdetections or occlusions are

calculated, and the calculated organisms are re-assigned to their correct trajectories

by adjusting initial assignment results.
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Figure 5.10: Overall multiple zebrafish larvae tracking system.

The proposed system applies background subtraction-based computer vision seg-

mentation to detect and segment the zebrafish larvae from each video frame as pre-

sented in Section 5.3.1. The Kuhn-Munkres algorithm [223], which guarantees one

to one association, is then used for target association or mapping between successive

video frames to generate individual tracking trajectories based on the (non-ideal)

segmentation results. The positions of misdetected and overlapped zebrafish larvae

are calculated through knowledge of their neighbours’ locations within the individ-

ual tracking trajectories. This step plays an essential role in maintaining consistent

identities for detected individual zebrafish larvae over time. The individual tracking
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trajectories then enable further movement analysis, where this work estimates the

velocity, acceleration and movement direction, presented in Section 5.3.4.

Representing detected zebrafish larvae

To represent the positions of the detected zebrafish larvae in each video frame, the

centroid locations of segmented foreground regions in Cartesian coordinates are used

and stored in a vertical cell array matrix, as shown by the parallelogram series (in-

dicating video frames) and Points{t} matrix in Figure 5.11. In the Points{t} cell

array, the first column stores the temporary identity, numbered from 1 to the number

of detected zebrafish larvae in each frame, where nobj(t) indicates the number of

detected zebrafish in frame t. The second and third column stores the horizontal and

vertical positions of each detected organism in X and Y coordinates, respectively.

This cell array and matrix representation allow for varying element length to indicate

the number of detected foreground zebrafish, which can change frame-to-frame due

to detection and segmentation errors.

Points{2}

Points{1}
1 xt(1) yt(1)

2 xt(2) yt(2)

i xt(i) xt(i)

nobj(t) xnobj(t) ynobj(t)

Points{t}:

Points{t}

Points{Nframes}

Figure 5.11: Storage structure of detected zebrafish larvae in a video
sequence.

The centroid positions of detected zebrafish larvae are obtained in the segmentation

process and represented frame-by-frame using a cell array for a video sequence as

described in this Section; however, the individual identities in each frame are still
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unknown. That is, which zebrafish larvae in the current frame correspond to which

target in the following frame has not been mapped. In addition, there are still some

remaining misdetected zebrafish larvae that have been classified into background

clusters or overlapped with other detected zebrafish larvae.

Cost matrix and initial assignment

The initial assignment of detected points in each video frame is a partial assignment

using an extension of the Kuhn-Munkres algorithm to frame-by-frame processing

for rectangular arrays [223]. Extending the original Hungarian algorithm [226] from

solving the assignment problem with an equal number of workers and tasks repre-

sented in an n × n matrix, the number of workers and tasks can be unequal and

represented in a rectangular matrix. This approach can then be applied to zebrafish

larvae tracking, where the number of detected zebrafish can change due to non-ideal

segmentation resulting from zebrafish misdetection and occlusion.

In the initial assignment process in this extended Kuhn-Munkres approach [223],

all the detected zebrafish Points{t} in frame t are taken as source points, and the

segmented zebrafish Points{t+ 1} in the following frame t+ 1 are seen as the target

points between connected frames. The target points in Points{t + 1} are mapped to

the source points in Points{t} frame-by-frame across a video sequence.

The construction of the cost matrix D (details as presented under "Zebrafish larvae

association between frames" in Section 5.3.2) of size n× m for associating source

zebrafish larvae O = {O1, O2, · · · , On} in the frame t to the target zebrafish larvae

T = {T1, T2, · · · , Tm} in the frame t + 1 is given by Equation 5.7. The element

dOi,Tj in the cost matrix D denotes the cost to connect the i-th point in the frame t, to

the j-th point in the frame t + 1, and is calculated by the Euclidean distance between

the source point to the target point using Equation 5.8.
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The frame-to-frame target initial assignment searches for unique mappings to assign

source point i to only one target point j in the successive frame. The final sum

of the resultant complete assignment between Points{t + 1} and Points{t} is a

global optimal cost, which is the lowest summed distance amongst all of the possible

assignments within two successive frames. The matched target points propagate the

identities of their matched source points; thus, after obtaining the final assignment

map for the whole video, connecting the points with the same identities over all

frames of a video results in the individual organism tracking trajectories.

To eliminate false positive points from the segmentation results when building the

individual trajectories, a distance constraint is set as a threshold in the source-target

cost matrix when applying the initial frame-to-frame assignment. The threshold is

calculated by δ ∗median(disi,j) [32]. When the minimum value of the i-th row in

the source-target cost matrix is larger than the threshold value of this video sequence,

which indicates that the distance between the source point i to all of the points in the

successive frame exceeds the threshold value, the source point i with its correspond-

ing position information will be removed from the point matrix and considered as a

segmentation noise fragment to not be further assigned to a target point.

When a zebrafish larva disappears in a frame t due to misdetection or occlusion

(which further results in overlapped trajectories as presented in Section 5.1.2), a

source point in frame t − 1 therefore cannot be assigned to a target. A gap will

then occur in the tracking trajectory where the target fails to be detected, and a new

tracking trajectory will start from the frame when the zebrafish larvae is correctly

detected again. This source point in frame t− 1 without a mapped target is saved in

an unmatched source matrix.

When the zebrafish larvae is re-detected in the frame t + n after being missed for n

frames, there is one more point in Points{t + n} compared to Points{t + n− 1}.

To map the points Points{t + n− 1} to Points{t + n}, a point in the frame t + n

cannot be assigned to a source point in the previous frame; this point in frame t + n



5.3. Multiple Zebrafish Larvae Tracking 127

is saved in the unmatched target matrix.

The methods to calculate the theoretical positions between the unmatched source

points and unmatched target points and adding these points to their correct tracking

trajectories are explained in the following two sections, respectively.

Position estimation for misdetected and occluded zebrafish larvae

Oi(t+2)

Oi(t)

Oj(t)

Oj(t+2)Oj(t+1)

Oi(t+1)

Figure 5.12: Point calculation for occluded organisms

Figure 5.12 illustrates the location computation of an overlapped zebrafish larva. The

two points Oi (shown by the blue dot) and Oj (shown by the orange dot) overlap with

each other in the frame t + 1, and this overlapped point at time t + 1 is assigned to

the object Oj by the initial tracking process. Since the point Oi in the frame t cannot

find a target in the frame t + 1, and the point in the frame at time t + 2 cannot be

assigned to a source point in frame t + 1, the point Oi is classified as an unmatched

source point in the frame t, and unmatched target point in frame t + 2 by the initial

assignment approach described in the previous section, respectively.

The position of the missed point due to occlusion (as shown by the blue dot partially

covered by the orange dot in Figure 5.12) or misdetection (for example, when the

blue dot is totally covered by the orange dot in Figure 5.12) is calculated by the

unmatched source point Oi(t) and unmatched target point Oi(t+ 2). For example, as

shown in Figure 5.12, the location of the missed point Oi at frame t + 1 is calculated

by the median point between Oi(t) and Oi(t + 2).
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When there are multiple unmatched pairs, the mapping from unmatched target points

to the unmatched source points is also based on the extended Hungarian assignment

algorithm [223]. In searching for target points, the unmatched source points firstly

search for possible correspondences in the following frame. If no assignment can

be mapped, the search extends to the unmatched targets in the following 3rd frame.

It was shown in [10] that a trajectory fragment can be connected to its subsequent

fragment track so long as the frame separation is less than 6 video frames. Thus,

the default search range for the proposed multiple zebrafish larvae tracking system

is from the second to the sixth frames following the frame when the misdetections

and occlusions originally occur. The positions of missed organisms (xc, yc) are cal-

culated by Equations 5.11 and 5.12 using the matched point pair from an unmatched

source point (xs, ys) and an unmatched target point (xt, yt).

xc = xs +
1
j
∗ (xt − xs) (5.11)

yc = ys +
1
j
∗ (yt − ys) (5.12)

where j indicates the following j-th frame from the unmatched source point.

Bridging trajectory gaps for misdetected and occluded zebrafish larvae

Individual tracking trajectories for each zebrafish larvae are obtained through con-

necting the matched points with the same identities after the initial assignment pro-

cess frame-by-frame over a video sequence. However, the tracking trajectories ob-

tained from the initial assignment process are usually trajectory fragments, separated

when zebrafish larvae are misdetected or overlapped to result in segmentation er-

rors. In the proposed system, these trajectory gaps are bridged by adding the location
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points of these misdetected or overlapped zebrafish larvae as estimated and described

in the previous section.

To connect trajectory fragments, the points stored in the unmatched source matrix

are mapped to the points in the unmatched target matrix, and the positions of the

missed points between the newly unmatched source to an unmatched target are also

calculated during this search process. For example, as shown in Figure 5.12, the

unmatched source Oi(t) as the end point of its trajectory fragment is connected to the

unmatched target point Oi(t + 2), which is the start point of its trajectory fragment,

and their middle point shown by the red dot is added between points Oi(t) and Oi(t+

2) as the theoretical position of the overlapped point Oi(t + 1).

5.3.4 Locomotion characteristic analysis

After obtaining the individual tracking trajectories for each zebrafish larvae in video

sequences, the movement characteristics of individual zebrafish can thus be analysed

based on the individual tracking trajectories. This work presents the calculation of

basic locomotive parameters to analyse the zebrafish movement characteristics after

obtaining individual tracking trajectories.

The calculation of three movement parameters are presented: movement velocity,

acceleration and direction as represented by Equations 5.13 - 5.15, respectively.

These calculated locomotive parameters provide an unbiased approach to dynamic

behaviour analysis [8].

velocity =

√
(xt+1(i)− xt(i))2 + (yt+1(i)− yt(i))2

dt
(5.13)

where dt = 1/ f s, f s is the video frame rate, and xt(i) and yt(i) are the Cartesian

coordinates of organism i (i is the zebrafish larva identity as assigned by the associa-

tion algorithm) in the frame t. The velocity described by Equation 5.13 is calculated
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based on the Cartesian position changes of individual zebrafish larvae between the

successive frames [227]. The resultant velocity by this method enables the analysis

of zebrafish larvae movement speed and direction over time, which provides quanti-

tative measurement on the dynamic behaviour of the studied organisms.

acceleration =
d(velocity)

dt
(5.14)

The acceleration parameter is calculated by quantifying the velocity changes over

time on microscopic image pixels based on using the same Cartesian coordinates

as movement velocity. The algebraic sign of the acceleration value indicates the

velocity change of the zebrafish larvae: a positive acceleration value denotes that

the studied individual larva is increasing in velocity, whilst a negative acceleration

value indicates a decreasing velocity movement pattern. By examining the algebraic

sign of the acceleration parameter over a period of time, the resultant acceleration

parameter can provide insight into the status of the zebrafish larvae nervous system

e.g., being nervous or relaxed [8, 228, 229]. Further, the larvae accelerations and

decelerations can be used as an equivalent way to analyse momentum in fluid aquatic

locomotion [227, 230].

direction = atan2
yt+1(i)− yt(i)
xt+1(i)− xt(i)

(5.15)

The arc tangent in Equation 5.15 expressed in radians is used to compute the move-

ment direction of individual zebrafish larvae from the positions in two successive

frames. The resultant direction value is confined within (−π, π]. The signs of the

calculated arc tangent are used to determine the quadrant of the calculated movement

direction in Cartesian coordinates.
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5.3.5 Results and discussion

To evaluate the proposed system, zebrafish larvae microscopic videos presented in

Section 3.6.2 are used. No chemical stimuli are tested on the studied zebrafish larvae

models, so their behaviour response does not correspond to any specific chemical

stimuli. In addition to the tracking accuracy evaluation, the natural locomotive char-

acteristics for individual zebrafish larva trajectories described by movement velocity,

acceleration and direction as presented in Section 5.3.4 are also analysed on the video

dataset to test the dynamic behaviour analysis capabilities of the proposed tracking

system.

Tracking accuracy evaluation
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Figure 5.13: Tracking results evaluation among the methods com-
pared using zebrafish larvae videos.
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To evaluate the proposed tracking system, the overall tracking accuracy over a ze-

brafish video sequence is compared with well-known multiple object tracking ap-

proach idTracker [31], SimpleTracker [223] (as applied to examine the effect of

improved segmentation on the overall tracking performance in Section 5.3.2), and

the widely used commercial LoliTrack system [34]. Figure 5.13 shows the track-

ing accuracy results measured by the MOTP and MOTA tracking evaluation metrics

(described in Section 5.3.2). The number of miss-detections was accounted for calcu-

lating the SI (Similarity Index, which penalises missing objects or object occlusion).

The resultant SI was presented in Figure 5.8 in Section 5.3.2. Details of the tested

dataset, such as the number of zebrafish tracked for each sequence, are presented in

Table 3.2 in Section 3.5.1.

It can be seen from Figure 5.13 that the positions of detected organisms of the pro-

posed system consistently exhibit the smallest distance differences with the manually

labelled ground-truth positions amongst all the methods tested. The proposed system

resulted in overall smaller MOTP values of 0.92, 25.59, and 44.48 pixels compared

to SimpleTracker, idTracker, and LoliTrack, respectively. The generally improved

zebrafish larvae position detection results demonstrated the effectiveness of the the-

oretical position estimation based on the zebrafish larvae detection and segmentation

results using the proposed tracking system.

All of the methods performed well for position accuracy of the detected zebrafish

when the videos had a clear background as shown by sequences 1-6. However, the

location errors of the proposed system measured by MOTP for the detected organ-

isms in the zebrafish videos compared to the ground-truth did not decrease as dra-

matically as LoliTrack or idTracker with increasingly complex video backgrounds,

as shown by the MOTP values in sequences 7-10 in Figure 5.13. Accordingly, the

proposed system still out-performed the existing approaches when taking into ac-

count misdetection, false positive segmentation and identity swapping, with 31.20%,
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63.01%, and 24.61% higher MOTA values than SimpleTracker, idTracker, and Loli-

Track, respectively. This was mainly achieved by the ability to estimate the positions

of the misdetected or overlapped targets using knowledge of neighbour positioning

from the segmentation results in the proposed system.

In addition, the approach to bridge trajectory fragments in the proposed system using

the extended Hungarian assignment algorithm [223] decreased the possibility of indi-

vidual identity swaps. This is especially the case when there are multiple unmatched

trajectory fragment pairs based on unmatched source-target points. In contrast, Sim-

pleTracker only uses a distance metric based on the nearest neighbour algorithm, and

can additionally cause identity swapping during the gap bridging process.

Tracking trajectory example

Figure 5.14 is a visual example of the tracking trajectory obtained for video sequence

4 by LoliTrack, idTracker and the proposed tracking system. Detailed quantitative

evaluation on segmentation and tracking results for the zebrafish dataset compared

with the ground truth can be referred to in previous sections of this Chapter. For

example, miss-detection for each zebrafish microscopic video was accounted when

calculating the SI. The resultant SI for each video was presented in Figure 5.8 in

Section 5.3.2, and the quantitative tracking trajectory accuracy against ground truth

over the tested dataset was presented in Figure 5.13 in Section 5.3.5. It can be seen

that the proposed tracking system exhibits the most complete tracking trajectories es-

timated from realistic experimental video conditions. In contrast, LoliTrack (Figure

5.14a) detects the well edge shadow as zebrafish due to their similar intensity val-

ues, whilst idTracker system (Figure 5.14b) produces many trajectory gaps primarily

caused by the false detection (as shown by the light blue line) of larvae objects due

to their ‘bursty’ locomotive characteristics and small size differentiation with impu-

rities inside the water. The resulting identity estimated from idTracker is therefore
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Figure 5.14: Visual example comparing tracking trajectories.
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also not reliable, with an estimated identity reliability of 63%, calculated according

to the trajectory analysis of idTracker as shown in Figure 5.14b.

Analysis of zebrafish larvae movement characteristics

To explore the capability of the proposed multiple zebrafish larvae tracking system

applied to target movement characteristic analysis due to the improved tracking tra-

jectory accuracy, the movement parameters velocity, acceleration and movement di-

rection were calculated for the zebrafish dataset as shown in Figures 5.15 - 5.17.
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Figure 5.15: Zebrafish larvae movement acceleration.

Calculated acceleration for zebrafish individuals (denoted by different colours in
sub-figures, which represent seqs.) using the 10 tested zebrafish videos presented in
Section 3.3. Objects in seqs. 5 and 6 (one zebrafish each) are presented in the
central sub-figure.

Figure 5.15 shows the movement acceleration analysis for each zebrafish video us-

ing the resultant tracking trajectories generated by the proposed tracking system (as

presented in Figure 5.10). It was found in [231] that the interaction and movement of
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zebrafish larvae were very close to zero by 7 dpf (days post fertilization). As shown

in Figure 5.15, in general the variation in the zebrafish acceleration that is obviously

visually perceptible to the human eye occurred only before approximately 10 seconds

in the 10 adult and larvae zebrafish videos tested, due to the anxius response from

the zebrafish when the imaging camera is introduced [232]). The zebrafish speed sta-

bilises from this time onwards, which is consistent with known zebrafish movement

characteristics [232] [231].
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Figure 5.16: Zebrafish larvae movement velocity.

Calculated velocity for zebrafish individuals (denoted by boxes in sub-figures for
each seq.) using the 10 tested zebrafish videos presented in Section 3.3. Objects in
seqs. 5 and 6 (one zebrafish each) are presented in the central sub-figure.

As zebrafish organism movement speed and changes in movement direction provide

insight into the individual dynamic behaviour and interaction rules [231], Figures

5.16 and 5.17 show examples of the movement speed and direction analysis results

for each zebrafish in the tested videos, respectively. The number of boxes for each

microscopic video show that every zebrafish larvae was successfully assigned with
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one identity (which also illustrates the one-to-one zebrafish larvae mapping in the

association method of the proposed system as presented in Section 5.3). The me-

dian velocity (labelled by the red line inside each box) of each larva indicates the

consistent movement characteristic within the same housing well. If required, the

mean, minimum and maximum velocity values and quartiles can be easily obtained

and analysed through the visual box plot representations shown in Figures 5.16 and

5.17.

O1 O2 O3 O4
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 1

O1 O2 O3
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 2

O1O2O3O4O5
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 3

O1 O2 O3 O4
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 4

video 5 video 6
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 5&6

O1 O2 O3 O4
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 7

O1 O2 O3
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 8

O1 O2 O3
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 9

O1 O2 O3 O4
objects

-2
0
2

di
re

ct
io

n 
(d

eg
re

e) video 10

Figure 5.17: Zebrafish larvae movement direction analysis.

Calculated movement direction for zebrafish individuals, presented the same way as
in Figure 5.16.

5.4 Summary

Single and multiple zebrafish larvae, whilst fundamental to many biological, ecotox-

icity and medical applications, are typically manually tracked, which is both subjec-

tive and time-consuming. This Chapter presented and proposed single and multiple



138 Chapter 5. Single and Multiple Zebrafish Larvae Tracking

zebrafish larvae tracking systems designed to automatically segment and track the

‘bursty’ movement characteristics specific to zebrafish larvae.

This work first proposed an automatic single zebrafish larva tracking method based

on dense SIFT descriptors in a flow field combined with image warping to determine

the moving zebrafish region in microscopic video frames. The proposed approach

exploits the intrinsic advantage of dense SIFT flow to accurately represent the ze-

brafish larvae displacement, combined with image downsampling to reduce the com-

putational complexity without affecting the zebrafish larvae detection accuracy, and

a morphological operation to improve the single zebrafish tracking accuracy due to

the’bursty’ movement characteristics. The experimental results presented in Section

5.2.6, demonstrated the improved tracking performance of the proposed single ze-

brafish larva tracking method compared to the LSRtrack and the original SIFT flow

method applied to pixel intensity thresholding. Further, experiments showed that

downsampling of the frame resolution reduced the SIFT flow computational com-

plexity without influencing tracking accuracy.

The computational complexity increases when applying dense SIFT flow to multi-

ple zebrafish larvae tracking due to the increased number of feature descriptors re-

quired to represent the multiple targets. Thus, this work further investigated the novel

adaptation of advanced computer vision techniques and multiple object tracking al-

gorithms to develop an automatic and accurate multiple zebrafish larvae tracking

system, that does not require any constraints on the input microscopic video imaging

conditions as per existing tracking approaches.

However, zebrafish larvae misdetection and occlusions are inevitable problems when

detecting and segmenting these small zebrafish larvae from time-lapse microscopic

videos, which in turn affects the subsequent zebrafish larvae tracking processes. To

improve the multiple zebrafish tracking accuracy based on non-ideal zebrafish larvae

detection and segmentation results, this work combined an extended Kuhn-Munkres
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algorithm for multiple object association to link detected zebrafish larvae frame-by-

frame. To address segmentation errors due to misdetected or occluded zebrafish

larvae, the proposed approach estimated the positions of organisms in interim frames

using corresponding points in neighbouring frames. Finally, the calculated points

are applied to connect and adjust the tracking trajectory fragments from the initial

object associations. For the multiple zebrafish tracking system, the resultant tracking

trajectories generated by the proposed system can then be used for further study,

including the analysis of larvae movement characteristics.

The performance of the proposed multiple zebrafish larvae tracking system is eval-

uated based on segmentation and tracking accuracy of the zebrafish larvae dataset

presented in Section 5.3, and outperforms three existing and well-known multiple

zebrafish tracking systems. Moreover, the proposed system also provides the capa-

bility for locomotive characteristic analysis, using the individual tracking trajectories

generated by the tracking to facilitate zebrafish larvae behaviour analysis research.

Behavioural rules and new medicine or chemical effects on the dynamic behaviour

of zebrafish larvae can therefore be further analysed in unbiased ways using the pro-

vided movement analysis approaches to facilitate dynamic behaviour related experi-

ments.
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Chapter 6

Generalised Multiple Small Biological

Organism Tracking System

(MSBOTS)

6.1 Introduction

In recent years, small biological organisms such as zebrafish larvae, Artemia francis-

cana, and Daphnia magna have become the most prominent vertebrate models used

to facilitate genetic studies [67], studies of neural activity [233] and behavioural

measurements [68]. Tracking techniques are vital for understanding the biology and

ecology underlying the movements of these organisms [6, 20, 136, 234, 235]. The

proposed automatic multiple zebrafish larvae tracking system presented in Section

5.3 of Chapter 5 was developed based on the specific ‘bursty’ movement character-

istics of zebrafish larvae.

Due to the applied GMM model-based background subtraction and moving target

segmentation techniques in the proposed tracking system, the automatic multiple

zebrafish larvae tracking system has the potential to be generalised to detect and seg-

ment general moving small organisms from microscopic videos without any imaging
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conditions. In addition, the tracking approach in the proposed system searches corre-

spondences between successive video frames for each detected moving targets based

on object centroid points. That is, the tracking algorithm does not ’know’ which or-

ganism it is working on to create linking mappings after calculating organism region

centroids from the segmentation results; the moving organisms are simply repre-

sented as points or nodes in the subsequent tracking procedure. Thus, after obtaining

the centroid positions for each organism in video frames from the segmentation pro-

cess, the type of organism in the microscopic videos does not affect the tracking

results in the proposed system.

To evaluate and verify whether the proposed automatic multiple zebrafish larvae

tracking system presented in Section 5.3 can be generalised to biological small or-

ganisms, this Chapter tests the system presented in Section 5.3 with two other types

of small living organisms: Artemia franciscana, and Daphnia magna. And thus the

system is denoted as the Multiple Small Biological Organism Tracking System (MS-

BOTS) in this Chapter. Five typical microscopic videos for each organism obtained

under realistic experimental conditions (as described in Section 3.6.2) are tested us-

ing MSBOTS.

6.2 Applying MSBOTS to other small organisms

The overall procedure of the proposed MSBOTS mainly consists of organism differ-

entiation from the video background (i.e. organism segmentation) and source-target

assignment among the detected organisms (i.e. detected organism tracking). The

accurate differentiation of organisms from the video background and image artefacts

(e.g., water impurities) in each video frame is the critical foundation for multiple

organism tracking systems. In the proposed MSBOTS, the video background is esti-

mated by an adaptive GMM model [221]] as presented in Section 5.3.1. Organisms

in every video frame are segmented after background subtraction; this segmentation
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approach based on background subtraction is summarised and reported in Section

5.3.1. The following source-target assignment procedure is based on the computed

centroid point locations of the segmented regions. This step plays an essential role in

maintaining consistent identities of individual detected organisms over time. To find

the corresponding organisms between frames, the Kuhn-Munkres algorithm [223] is

applied in the association stage, as presented in Section 5.3.3.

This Section evaluates the proposed MSBOTS with Artemia franciscana and Daph-

nia magna to investigate the extended application of the tracking system to other

small organisms with movement characteristics different to zebrafish larvae. The

Artemia franciscana and Daphnia magna datasets are presented in Section 3.6.2 con-

sisting of 10 video sequences. Again, no chemical stimuli were tested on the studied

small organism models, and thus their behavioural responses do not correspond to

any specific chemical stimuli.

6.2.1 Movement characteristics of tested organisms

The morphologies and locomotory systems of active Artemia larvae are different than

those of adults [227]. The Reynolds numbers in their fluid regimes increases from 2

to nearly 40 during the whole larval stage, and the drag scale differs at low and high

Reynolds numbers during development. These differences render Artemia an ideal

model for locomotion comparison studies that include successive ontogenetic stages

with a broad range of size or shape changes [227]. The locomotive pattern of Artemia

changes gradually and average swimming speed increases as they grow, where the

jerky swimming of Artemia larvae becomes smooth and continuous gliding through

the water as seen with adult Artemia. In addition, the movement of Artemia larvae is

influenced by changes in the surrounding fluid [227].

The dynamic behaviour parameters of the freshwater crustacean Daphnia magna are
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affected upon exposure to sublethal concentrations of toxins such as dimethyl sulfox-

ide (DMSO)(a universally used aprotic solvent in ecotoxicology tests [155, 236]).

The induction of significant behavioural abnormalities of Daphnia magna by toxi-

cants is currently emerging in behavioural biotests in ecotoxicology [91, 155].

6.2.2 Evaluated microscopic videos

Figure 6.1 shows an example of a microscopic video frame of Artemia franciscana.

In the amplified microscope view, the sizes of the water particles and labels on the

container (as shown by the black circles in Figure 6.1) are comparable with the size

of Artemia, and thus accurate differentiation of the Artemia franciscana from the

microfluidic impurities is essential for the overall tracking performance.

Figure 6.1: Microscopic video frame examples of Artemia francis-
cana.

Figure 6.2 shows an example microscopic video frame of Daphnia magna. Only the

area containing Daphnia is of interest in the video frame, and thus the surrounding



6.3. Results and Discussion 145

area of the container was protected from illumination (as shown by the black regions

on the micrograph margin in Figure 6.2).

Figure 6.2: Microscopic video frame examples of Daphnia magna.

6.3 Results and Discussion

To enable the objective and quantitative evaluation of the tracking performance of the

proposed MSBOTS approach, this Section employs the same Multiple Object Track-

ing (MOT) metrics used for the zebrafish larvae tracking performance evaluation

as described in Section 5.3.2: MOTP and MOTA. The MOTP and MOTA tracking

performance measurement metrics estimate the location precision of organism detec-

tion compared to manual labelling of organism positions in each frame, the accuracy

in tracking object trajectories (producing exactly one trajectory per object), and the

ability to consistently label organisms over time.



146
Chapter 6. Generalised Multiple Small Biological Organism Tracking System

(MSBOTS)

To evaluate the overall tracking performance of the proposed MSBOTS, the overall

tracking accuracy over video sequences is also compared with those of three exist-

ing multiple organism tracking platforms: the well-known multiple object tracking

approach idTracker [31], which has the ability to distinguish visually indistinguish-

able organism individual identities; SimpleTracker [223] (which combines the Kuhn-

Munkres tracking algorithm for initial association and the nearest neighbourhood to

connect trajectory fragments, without considering missed organisms from non-ideal

segmentation results); and the widely used commercial LoliTrack system [34]. Five

videos are tested for each organism type and the results are presented in Figure 6.3

and Figure 6.4, respectively.
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Figure 6.3: Tracking results evaluation among the tracking methods
compared using Artemia franciscana microscopic videos.

Figure 6.3 and Figure 6.4 show the tracking accuracy evaluation using Artemia fran-

ciscana and freshwater Daphnia magna microscopic videos, respectively, to test the

application of the proposed MSBOTS on small organisms with movement charac-

teristics different to those of zebrafish larvae. In addition, Artemia exhibits flexible
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movements that vary depending on the surrounding fluidics [227, 237], and Daph-

nia exhibit short, jerky hopping movements in water [238]. The proposed MSBOTS

exhibits consistent overall tracking accuracy performance with the tested videos for

these two organism types, whereas the tracking accuracy measured by the MOTP and

MOTA values varies among these videos.

6.3.1 Overall tracking performance for Artemia videos

As evidenced by the MOTP values for the Artemia videos in Figure 6.3, the pro-

posed method exhibits a 47.68 pixel smaller standard deviation than the idTracker

system, which illustrates the reliability of the proposed system for Artemia micro-

scopic videos and improved tracking accuracy. Although idTracker produces smaller

organism position estimation errors (MOTP), as shown by sequences 3-5 in Figure

6.3, the mean MOTA value is 7.07% and 6.44% lower than the values for the pro-

posed method and LoliTrack, respectively. These values indicate a potential organ-

ism detection problem similar to that for zebrafish larvae detection (e.g., detection

of the organism as background and of impurities as the organism due to their small

size differences and similar movement characteristics, especially when the organism

stops moving or water impurities are stirred up by organism movement, which causes

further identity confusion due to detection errors).

6.3.2 Overall tracking performance for Daphnia videos

Figure 6.4 shows the tracking accuracy results measured by MOTP and MOTA for

the tested Daphnia magna microscopic videos. The overall tracking accuracy shows

that the proposed MSBOTS and idTracker consistently outperform the other track-

ing systems compared. The mean MOTA value for the proposed MSBOTS is 5.48%

higher than that of idTracker. Similar to the proposed MSBOTS, SimpleTracker em-

ploys the Kuhn-Munkres tracking algorithm for the initial association, whereas the
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Figure 6.4: Tracking results evaluation among the comparison meth-
ods using Daphnia magna microscopic videos.

association method differs in the following tracking trajectory fragments bridging

step. SimpleTracker uses the nearest neighbourhood algorithm, and the proposed

MSBOTS combines the position calculation for misdetected and overlapping Daph-

nia with the unmapped points from the initial assignment for trajectory bridging.

The 40.4% higher MOTA value for the proposed MSBOTS compared with Sim-

pleTracker illustrates the improved individual identity maintenance due to the gap

bridging method after the initial association by the proposed MSBOTS. This track-

ing reliability and accuracy of the proposed MSBOTS thus illustrates its applicability

to Daphnia, which feature short, jerky hopping movements, compared with existing

tracking systems.
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6.4 Summary

Accurate automatic tracking of multiple small biological organisms provides an ef-

ficient approach for many biomedical and ecotoxicity applications. Thus, this Chap-

ter presents evaluations of the proposed multiple zebrafish larvae tracking system

presented in Section 5.3 to generalise and track other small organisms. Two types

of small organisms are evaluated, Artemia franciscana and Daphnia magna, with

movement characteristics different to zebrafish.

The MSBOTS background subtraction approach enables the removal of stationary

backgrounds, such as the organism container and labels drawn on the containers;

hence, in contrast to existing techniques, the MSBOTS system can process videos un-

der practical experimental imaging conditions. The Kuhn-Munkres algorithm, which

guarantees one-to-one association, is then used for object association or mapping be-

tween successive video frames to generate individual tracking trajectories based on

the (non-ideal) segmentation results. The positions of misdetected and overlapped

objects are calculated based on knowledge of their neighbours’ locations within the

individual tracking trajectories. The proposed system was evaluated based on track-

ing accuracy and outperformed existing multiple organism tracking systems.

With a total of 10 microscopic videos of five videos for each organism tested, results

show that the tracking accuracy of the proposed system outperforms those of three

existing tracking systems. Thus, the proposed system, denoted as MSBOTS in this

Chapter, can be applied to track different organisms and is robust against non-ideal

object detection results obtained using existing video segmentation techniques ap-

plied to microscopic time-lapse videos taken under practical laboratory experimental

conditions.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The analysis of dynamic behaviour of cells and small biological organisms provides

essential information for cell studies, neurobiology, pharmacology and behavioural

sciences and further understanding biological processes. The traditional manual ob-

servation of the locomotive movement of these biological objects using microscopic

videos are time-consuming, tedious and subjective to human errors. In addition, the

visual inspection in current days is nearly impossible due to the rapidly increasing

experimental data obtained. Accurate automatic tracking presented in this work pro-

vided an efficient approach for analysing the dynamic behaviour of multiple cells

and small biological organisms, followed by quantitative estimation of the kinematic

living behaviour characteristics. However, there is a limitation of the proposed work

and that is the empirical selection of the relative weight ratio between the two Gaus-

sian components (as detailed in Section 4.2.5).

The list below summarises the main technical contributions of this work within the

associated Chapters:

• Chapter 3
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– Proposed a scalable crowdsourced approach to generate video segmen-

tation datasets annotated with ground-truth (published in the conference

paper [50]).

– Presented an annotated zebrafish larvae video segmentation dataset.

– Proposed a two-pass verification process to evaluate the manually gener-

ated segmentation ground-truth.

• Chapter 4

– Proposed a shifted bi-Gaussian mixture model to enhance the low inten-

sity contrast of cell micrographs (published in the conference papers [51,

52]).

• Chapter 5

– Exploited the intrinsic advantages of dense SIFT flow for single zebrafish

larvae tracking.

– Developed an accurate, reliable and efficient automatic multiple small

biological organism tracking system (published in the conference paper

[55] and presented in the submitted manuscript [54]).

– Developed a segmentation method to address the unresolved misdetection

and occlusion problem (published in the journal paper [53]).

– Improved association method robust against non-ideal detection and seg-

mentation (published in the conference paper [55]).

The lack of a dataset with ground-truth segmentation and suitable evaluation metrics

is a common obstacle, particularly for biomedical image processing research. This

thesis developed and proposed an efficient and scalable crowdsourced approach to

generate video segmentation ground-truth to facilitate database generation for gen-

eral biological organism segmentation and tracking algorithm evaluation. To illus-

trate the proposed approach, the methodology was applied to generate an annotated
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zebrafish larvae video segmentation dataset comprised of 10 video sequences. To

further facilitate the evaluation of segmentation algorithms using such an annotated

dataset, a set of segmentation evaluation metrics was also presented. Finally, track-

ing datasets for three types of organisms annotated with centroid positions for each

organism in 20 microscopic videos were presented for the evaluation of overall track-

ing performance in this work. Both the datasets generated and Matlab code for the

evaluation metrics have been made freely available online to the research community.

As an example biological organism and given cell time-lapse microscopic videos,

this work investigated a novel image pre-processing technique to enhance the low

greyscale image intensity contrast for improved cell image segmentation accuracy.

A novel image pre-processing technique for salient region object detection was pro-

posed to match an adaptive, shifted bi-Gaussian mixture model to the intensity his-

togram of the original (stem) cell image frame to obtain greater contrast differen-

tiation between the target cell and microscopic video background and noise (while

maintaining the original intensity histogram shape) and further improve segmentation

accuracy. Rather than using a model with fixed parameters across an entire video

sequence, this research proposed the adaptive derivation of the mixture model pa-

rameters to match the intensity histogram for each video frame to adaptively address

changes in the video background. Experiments conducted on a stem cell time-lapse

video dataset indicated up to 37% improved segmentation accuracy, and in some

frames (partially or completely), cells that the manual ground-truth and/or existing

segmentation approaches failed to identify were detected.

The thesis then extended to segment and track more complex organisms: single

and multiple zebrafish larvae. Zebrafish larvae misdetection and occlusion are in-

evitable problems when detecting and segmenting these small biological organisms

from time-lapse microscopic videos. The level of difficulty of detection and seg-

mentation increases compared with general objects when tracking small biological

aquatic organisms, and these problems affect the subsequent zebrafish larvae tracking
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processes.

This work first exploited the intrinsic advantages of dense SIFT flow (due to its po-

tential for detailed kinematic analysis of individual zebrafish larval movements such

as trunk curvature and tail-beating frequency, etc.) combined with position updates

to the previous frame and a morphological operation to develop a single zebrafish

larva tracking system. The experimental results demonstrated the improved tracking

accuracy of the proposed method compared to the intensity thresholding-based sin-

gle zebrafish larva tracking system LSRtrack. Furthermore, experiments showed that

downsampling of the frame resolution reduced the dense SIFT flow computational

complexity without influencing tracking accuracy.

Due to the increased calculation complexity of the dense SIFT flow feature points,

this work further explored more efficient multiple zebrafish larvae tracking methods.

The development of multiple zebrafish larvae tracking systems can be divided into

two parts: zebrafish larvae segmentation from the microscopic video background and

the association of the detected zebrafish larvae between successive video frames over

time.

In this work, a GMM model based on background subtraction was investigated for

improving the segmentation accuracy; both the number of Gaussian components and

component parameters adapted to changes in the video background. After GMM

background subtraction, however, the resultant image is typically distorted by a scat-

tering of small noise fragments. In addition, the imaging environment is usually

non-ideal; e.g., for zebrafish larvae, small particles or impurities in the water are

stirred up by the strong tail beating movements of the swimming larvae. Thus, a

segmentation approach addressing these image degradations was proposed using a

median filter and morphological erosion techniques to remove noise fragments and

distortion in the resultant segmentation image.

To further improve the tracking accuracy for non-ideal zebrafish larvae detection
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and segmentation results, this thesis presented the proposed multiple zebrafish lar-

vae tracking system, which denoted as Multiple Small Biological Organism Track-

ing System (MSBOTS) after being generalised. MSBOTS combined the multiple

object association algorithm for linking detected objects frame-by-frame and track-

ing trajectory adjustment techniques. To address segmentation errors due to misde-

tected or occluded zebrafish larvae, the proposed MSBOTS estimated the positions

of zebrafish larvae in interim frames using corresponding points in neighbouring

frames. Finally, the calculated points were applied to connect and adjust the track-

ing trajectory fragments from the initial association by an extended Kuhn-Munkres

algorithm. Although the state-of-the-art idTracker system can reasonably maintain

object identity, the identity maintenance is highly reliant on the object tracking ac-

curacy. In the proposed MSBOTS tracking approach, to differentiate the individual

trajectory/tracks of independent objects when detecting and analysing the movement

behaviour of overlapping biological organisms, the tracking trajectory created by the

extended Kuhn-Munkres algorithm (which obtains a global optimal assignment by

minimising the sum of the Euclidean distance between frame pairs) and the following

trajectory adjustment process generated less identity-swapping events than idTracker.

The proposed MSBOTS was evaluated on three different types of small organisms

with different movement characteristics using a total of 20 videos (10 zebrafish larvae

microscopic videos and 10 microscopic videos of Artemia and Daphnia for gener-

alised application of the proposed MSBOTS).

The proposed system exhibits a decrease in the overall Multiple Object Tracking

Precision (MOTP) error of up to 44.48 pixels compared to the commercial LoliTrack

system, and an increase in Multiple Object Tracking Accuracy (MOTA) of up to

63.01% compared with the state-of-the-art idTracker system. In addition, the pro-

posed system decreases the standard deviation by up to 47.68 pixels compared with

idTracker. The individual tracking trajectory results offer an additional advantage

for locomotive characteristic analysis and calculations of velocity, acceleration and
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movement direction. Moreover, MSBOTS provided locomotive characteristic anal-

ysis capability using the generated individual tracking trajectories to facilitate small

organism behavioural analysis research. Example movement parameters of velocity,

acceleration and direction were calculated using the proposed approach for the three

organisms tested. Behavioural rules and the effects of new medicine or chemicals on

the dynamic behaviour of organisms can be studied in future using the provided or

extending the movement analysis to facilitate specific experiments.

7.2 Future Work

7.2.1 Applying the proposed MSBOTS in behavioural ecotoxicol-

ogy

Reports of behavioural responses as highly sensitive, ‘early warning’ indicators of

toxicant stress on aquatic ecosystems have increased rapidly in the literature [91].

Small living organisms such as zebrafish larvae (Danio rerio), Artemia franciscana,

and Daphnia magna are widely used in behavioural ecotoxicology research [91,

155]. However, some dynamic behaviour parameters are still obtained manually,

such as counting the number of dead organisms based on the absence of a physical

response in some behavioural bioassays [155]. In addition, the systematic study of

behavioural effects and comparisons among different effect modes is hampered by

the limited number of chemicals examined, the exposure conditions, or locomotive

parameters [91].

Applying the proposed MSBOTS in behavioural biotests can increase efficiency and

reduce the required manual labour and time by automatically and accurately detect-

ing and tracking the locomotive movement of small living organisms using micro-

scopic video recordings. Commonly used behaviour parameters such as movement
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speed (velocity), acceleration, deceleration and movement directions are generated

after obtaining the individual tracking trajectories using the proposed MSBOTS.

Thus, researchers in ecotoxicology can focus on designing biotest procedures and

comparing behavioural responses to different chemicals, toxicants and exposure con-

ditions. The previous entirely manual and labour-intensive process of movement

tracking and behavioural parameter calculation can now be conducted automatically

by using the proposed MSBOTS.

7.2.2 Examination of detailed organism body movement

The centre of a biological organism is usually utilised as the centroid of the body

mass in existing zebrafish tracking systems [5, 31, 75]. This work also estimated

organism centroid positions to indicate the studied organisms’ locations. However,

the centroid point alone cannot provide information on detailed postures, such as

wing positions (for Drosophila), body curvature (for zebrafish), and tail beating fre-

quency. Detailed kinematic posture information can provide biologists and ecolo-

gists with highly quantitative estimated behaviour data enabling the exploration of

general mechanisms and principles of individual behaviour and between individual

organisms as correlated from the acquired microscopic video data [36, 37, 239].

This research investigated the application of dense SIFT flow to single zebrafish larva

tracking in Section 5.2 due to the algorithm’s potential to permit the estimation of de-

tailed zebrafish postures by extracting an entire moving object from the background

when there is displacement of the object in successive video frames. However, the

SIFT flow algorithm does not apply to multiple zebrafish larvae tracking due to com-

putational complexity requirements. Future work could investigate the estimation

and analysis after obtaining the locomotive parameters from automatically tracking

the small biological organisms using the proposed MSBOTS.
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The gradient magnitude technique [135] could be an option to calculate the organism

body outline based on the segmentation results using the proposed MSBOTS. The

calculated body outlines can be used as the basis of detailed kinematic evaluation in

an organism video frame from the proposed datasets.

7.2.3 Applying machine learning techniques to organism track-

ing

Studies of machine learning (and deep learning, which requires a larger dataset

than machine learning) in artificial intelligence have expanded greatly in the last

decade, driving advances in many different fields. Machine learning has enabled

breakthrough outcomes in computer vision tasks such as automatic object detection

in images (an important component of driver-assisted and self-driving cars), object

recognition using images, and knowledge discovery in biomedical image research

(to improve the understanding of complex diseases) [240, 241].

Future work could investigate the application of machine learning techniques [242],

such as TensorFlow [241], Support Vector Machine (SVM) [243], neural networks

[32] and decision trees [244, 245], to the detection and tracking of small biological

organisms (e.g., zebrafish larvae, Artemia franciscana, and Daphnia magna) from

microscopic videos. Machine learning has been reported to achieve better and more

reliable outcomes than computer vision in object recognition and classification [240,

246].
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