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Abstract 

 

Non-alcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome in 

the liver. It is the most common chronic liver disease with fast-growing prevalence 

worldwide that parallels the obesity epidemic and type 2 diabetes (T2D). NAFLD 

ranges from simple hepatosteatosis to non-alcoholic steatohepatitis (NASH) and may 

finally leads to liver cirrhosis and failure. NASH is the critical stage in the progression 

from reversible and asymptomatic hepatosteatosis towards irreversible liver disease 

with significantly worsen prognosis. However, there is no effective drug for treatment 

of NASH.  

 

Matrine (Mtr) is a small molecule (MW: 248) originally isolated from plants and it has 

been used as a hepatoprotective drug in humans with few reported adverse effects. 

Several lines of evidence suggest that Mtr may be repurposed for the treatment of 

NASH, including a previous study of this laboratory showing its ability to reduce 

hepatosteatosis in high fat diet (HFD)-fed mice. However, a single HFD rodent model 

only replicates simple hepatosteatosis due to increased exogenous lipid overload. 

Therefore, the overall aim of this thesis was to characterise the therapeutic properties of 

Mtr for NASH treatment and investigate the underlying mechanism/s. The hypothesis 

addressed in this study was that Mtr has therapeutic properties for the treatment of 

NASH by ameliorating hepatic steatosis and inflammation as well as associated 

metabolic risk factors. These therapeutic effects were examined in three mouse models 

mimicking different characteristics of NASH.  
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The first aim was to examine the therapeutic effects of Mtr on hepatosteatosis and 

glucose intolerance induced by an over consumption of carbohydrates. This was 

assessed in high fructose (HFru) fed mice, a well-characterised model of 

hepatosteatosis causing an increased in hepatic de novo lipogenesis (DNL) pathway. 

This study (Chapter 3) showed that treatment with Mtr markedly ameliorates 

hepatosteatosis (reduced triglyceride content) and glucose intolerance in HFru-fed 

mice. Further studies revealed that the reduced hepatosteatosis by Mtr is due to its 

inhibition of hepatic DNL involving the blocking of the endoplasmic reticulum (ER) 

stress pathway. These effects are associated with an upregulation of heat shock protein 

72 (HSP72), the chaperone protein which is known to be protective against metabolic 

diseases and inflammation.  A separate aim was to evaluate the potential efficacy of 

Mtr in the treatment for hyperglycaemia as hepatosteatosis is an important contributor 

to hepatic insulin resistance leading to hyperglycaemia. In this study, the antisteatotic 

effects of Mtr on hyperglycaemia were investigated in a mouse model where type 2 

diabetes is induced by HFD in combination with low doses of streptozotocin (HFD-

STZ). The results showed that oral administration of Mtr to HFD-STZ mice reverses 

hyperglycaemia and hepatosteatosis. These findings support the use of Mtr to treat 

hepatosteatosis and associated disorders in glucose homeostasis. 

 

The second aim of this thesis (Chapter 4) was to examine the therapeutic efficacy of 

Mtr for hepatic inflammation and fibrosis. This was investigated in mice fed a 

methionine choline-deficient (MCD) diet, a well-established mouse model which shares 

pathologic features of severe NASH in humans, in particular hepatic inflammation and 

fibrosis. The study showed that Mtr treatment suppresses the increases in TNFα, CD68, 

MCP-1, NLRP3, and hepatic fibrosis markers (TGFβ and Smad3) induced by MCD 
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diet.  Along with these effects, Mtr inhibits mTOR activation and upregulates HSP72 

expression, suggesting a likely role of mTOR-HSP72 pathway in coordinating the 

therapeutic effects of Mtr for NASH.     

 

The final aim further investigated cellular mechanisms underlying the effects of Mtr on 

the inflammatory pathway. This was conducted using cultured J774A cells, a 

macrophage cell line rused here as a model for Kupffer cells believed to be a major 

source of inflammatory cytokines in the liver. Incubation of J774A cells with LPS 

stimulated the production of TNFα and increased NLRP3, CD68 and TGFβ expression. 

Treatment with Mtr also upregulated HSP72, inhibiting inflammation and fibrosis 

induced by LPS (Chapter 5). Additionally, Mtr suppressed the level of mTOR. These 

results provide further evidence that Mtr may exert its effect against NASH through the 

mTOR-HSP72 pathway. 

 

In summary, this thesis employed three different animal models to characterise a wide 

range of therapeutic effects of Mtr on NASH. Findings from these studies led to the 

following conclusions. Firstly, Mtr is a promising therapy for hepatosteatosis and 

associated glucose disorders. Secondly, Mtr can attenuate NASH-associated 

inflammation and fibrosis. Finally, mTOR-HSP72 may play an important role in 

mediating the therapeutic effects of Mtr on NASH. Overall, these findings provide 

strong pre-clinical evidence to support the repurposing of Mtr as a promising new drug 

for the treatment of NAFLD, particularly on the progression towards NASH. 

 

 

 



 

 

Chapter 1 Introduction and 

Literature Review 
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1.1 Introduction 

 

Non-alcoholic fatty liver disease (NAFLD) is the accumulation of lipid in the liver that 

is not due to alcoholic consumption or viral liver infection. Development of NAFLD is 

generally associated with metabolic disease, and is identified as a hepatic manifestation 

of the metabolic syndrome. Globally, NAFLD is the most common chronic liver 

disease. NAFLD includes simple steatosis, non-alcoholic steatohepatitis (NASH), 

NASH-related cirrhosis and end-stage liver disease. NASH is considered a critical stage 

in the transition of simple steatosis to life-threatening cirrhosis. In addition to obstacles 

in understanding NASH pathogenesis, no effective treatment has yet been approved for 

the treatment of NASH with existing hepatic inflammation and fibrosis. This literature 

review focuses on relevant research to provide (1) the general background of NAFLD, 

including its stages and complications; (2) current treatments and newly developed 

drugs for NAFLD; (3) the rationale behind repurposing matrine (Mtr) for the treatment 

of advanced NAFLD; and (4) cellular targets, pathways and animal models for the 

investigation of new therapeutics for NAFLD. From this review of the literature, gaps 

in the current knowledge are identified and hypotheses/approaches are developed to 

guide the research presented in this thesis. 

 

1.2 Fatty liver disease 

 

Fatty liver is the accumulation of triglycerides (TG) in the liver and within liver cells 

(hepatocytes). Although the liver normally contains fat, when the percentage of this fat 

deposition exceeds 5% of liver tissue weight, it is characterised as fatty liver disease 
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[1]. This generally occurs when the amount of synthesis and delivery of fatty acids 

(FAs) exceeds the amount that is excreted and eliminated [2].  

 

FAs are derived from diet, lipolysis in adipose tissue de novo lipogenesis (DNL) and 

through the uptake of intestinally derived chylomicron remnants. Increase FAs the 

major cause of hepatic lipid accumulation, where saturated FAs (SFA), such as palmitic 

and stearic acids, are the most abundant circulating free FAs [3]. In contrast, 

supplementation with polyunsaturated FAs (PUFA) can improve lipid metabolism in 

NAFLD patients [4]. In addition, an imbalance between energy intake and consumption 

may cause a defect in FA metabolism and eventually fatty liver. 

 

Fatty liver disease may be broadly classified into two types: alcoholic and non-

alcoholic [5]. Alcoholic fatty liver (AFL) is hepatic steatosis caused by the excessive 

consumption of alcohol. NAFLD is a spectrum of diseases that ranges from steatosis to 

steatohepatitis. Conversely, AFL is caused by the production of toxic metabolites 

following excessive alcohol intake and is primarily treated by stopping alcohol 

consumption. The root cause of NAFLD remains unclear and an effective cure has yet 

to be developed. Less common causes of fatty liver disease include medications—for 

example, amiodarone, methotrexate and tamoxifen [6]—and chronic diseases such as 

HIV, hepatitis C virus (HCV) and autoimmune conditions [7]. Fatty liver disease may 

also occasionally occur during pregnancy and is associated with significant morbidity 

and mortality rates [8]. 

 

Because NAFLD has long been a serious health concern worldwide, it is of great 

interest in a broad range of medical fields. The past 30 years have seen increasingly 
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rapid advances in the field of NAFLD research. However, there remains insufficient 

understanding of NAFLD molecular mechanisms and treatments. Although the 

underlying mechanisms of NAFLD have been explored in depth in several studies [6, 

9], there remains an urgent need to address effective treatment modalities for NAFLD. 

To date, no reliable drug has been developed towards this end. Hence, this thesis will 

focus on NAFLD rather than other types of fatty liver disease and intends to explore an 

appropriate drug for treatment. 

 

1.3 Non-alcoholic fatty liver disease (NAFLD) 

 

NAFLD is a metabolic disease characterised by the accumulation of lipid in the liver in 

the absence of alcohol abuse or hepatic infectious disease [6, 10]. It ranges from simple 

hepatosteatosis to steatohepatitis and cirrhosis. In humans, an NAFLD patient is 

diagnosed when deposition of fat exceeds 5% of liver weight based on clinical history, 

clinical examination and non-invasive laboratory tests [1]. It is now globally recognised 

as the most common chronic liver disease in developed countries including Australia, 

the United Kingdom and the United States [6, 11]. 

 

NAFLD prevalence has doubled over the past two decades compared with other 

chronic liver diseases, which have remained relatively stable [12]. NAFLD is closely 

associated with metabolic disorders and abnormal liver physiology. According to the 

American Association for the Study of Liver Diseases (AASLD), even though NAFLD 

presents as hepatosteatosis correlated with dyslipidaemia, obesity and type 2 diabetes 

(T2D), its underlying mechanisms are still not fully understood [10, 13]. 
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There are two forms of NAFLD: simple fatty liver and NASH. Simple fatty liver 

(hepatosteatosis) is defined as an accumulation of lipid unrelated to alcohol 

consumption or viral hepatitis [10]. It is chiefly caused by excessive deposition of fat in 

liver cells (hepatocytes) in the absence of inflammation, fibrosis and hepatocyte injury 

[6]. It has been observed that hepatosteatosis usually presents with high serum TG level 

without any indication of inflammation, hepatocellular injury or liver injury in NAFLD 

patients and mice [14]. 

 

NASH is a critical and severe stage of NAFLD, defined as the presence of 

hepatosteatosis and inflammation with or without fibrosis [15]. Unlike liver disease due 

to viral infections such as hepatitis C, NASH is characterised by steatosis, hepatocyte 

damage, hepatic inflammation and fibrosis [6, 10]. As shown in Table 1.1, NAFLD can 

be classified into two major stages: hepatosteatosis and NASH, where NASH is the 

critical form of the disease because of its potential for progressing to cirrhosis, 

hepatocellular carcinoma (HCC) and liver failure. 

 

Table 1.1 Classifications and grades of NAFLD 

NAFLD stages Grades Remarks 

Hepatosteatosis Mild Increased TG 

NASH without fibrosis Moderate Increased TG + inflammation 

NASH with fibrosis Severe Increased TG + inflammation  

(varying degrees of fibrosis) 

NASH-related cirrhosis End stage 

(irreversible) 

Scar tissue (fibrotic connective 

tissue) + liver failure 
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As shown in Figure 1.1, NAFLD usually starts with simple fat accumulation within 

hepatocytes. Under certain conditions, this can progress to hepatic tissue inflammation 

and fibrosis, causing NASH and finally cirrhosis and even liver cancer (HCC). 

 

 

Figure 1.1 Schematic illustration of NAFLD progression presents a spectrum of 

liver disease.  

The progression of fatty liver from healthy liver to end-stage liver disease is illustrated. 

The first stage starts with excess fat deposits within hepatocytes causing 

hepatosteatosis. Then, an increase in inflammatory cytokines causing NASH with or 

without fibrosis occurs. This leads to an irreversible stage and scar tissue formation in 

cirrhosis, which leads to the end stage of liver disease. Histological sections are shown 

as the healthy normal liver progresses through these stages. Based on Cohen et al. [1]. 

 

Indeed, the pathogenic components of NAFLD are complex and a multitude of factors 

contribute to the development of this disease. Hepatosteatosis appears to be the first 

stage of NAFLD development, and the progression of NASH appears linked to hepatic 

inflammation. 
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1.3.1 Prevalence of NAFLD 

 

NAFLD is becoming increasingly widespread as a result of modern sedentary lifestyles 

and the increased incidence worldwide of related metabolic diseases including obesity, 

T2D and insulin resistance [16]. Obesity and T2D are the major risk factors for NAFLD 

as reviewed in detail in Section 1.3.2. In addition, NAFLD patients are highly 

vulnerable to other metabolic diseases and liver-related morbidity and mortality. The 

overall prevalence of NAFLD has risen significantly over the last two decades along 

with increased prevalences of T2D and obesity [17, 18]. 

 

Several studies have been conducted to estimate the prevalence of NAFLD. Generally, 

it has been reported that the prevalence of NAFLD is around 30% in the adult 

population, and that the prevalence of NASH is almost 3% in most Western populations 

[5]. The prevalence of NAFLD is markedly increased in obese individuals (more than 

25%) [5, 6]. In the United States, approximately 90% obese and 75% diabetic 

individuals have NAFLD, and this may explain the close relationship between NAFLD 

and metabolic diseases [5]. As shown in Table 1.2, metabolic diseases especially 

obesity and diabetes are major factors that seem to determine the prevalence of 

NAFLD. 
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Table 1.2 The prevalence of NAFLD in different countries 

Region/Country % in 

general 

population 

% in 

population 

with obesity 

% in 

population 

with T2D 

Reference 

Africa 9 10 5 [5] 

Australia 30 76 50 [19] 

China 25–31 70–78 20–32 [20, 21] 

Europe/Italy 20–25 80–90 95 [22] 

Iran 34 50–70 15–30 [23] 

India 9–32 61 25 [24] 

Japan 30 80 20–25 [5] 

Korea 38 50 40 [5] 

Northern Africa 17 30–83 60–98 [5] 

Middle East 30–60 68 34 [5] 

USA >30 80–90 45–75 [5, 25, 26] 

 

 

According to the Gastroenterological Society of Australia and the Australian Liver 

Association, NAFLD was the most common liver disease, affecting an estimated 5.5 

million Australians, in 2012. The number of estimated deaths from NAFLD correlated 

to the prevalence rate of NAFLD was 2,264 deaths. In 2008, the Australian Bureau of 

Statistics expected that the prevalence and mortality rates could increase to 7.7 and 4.5, 

respectively [19] (Table 1.3). Further, in the United States, NASH is expected to be the 

leading cause of liver transplant procedures by 2020 [27]. 
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Table 1.3 Prevalence of NAFLD and mortality in Australia in 2012 

 Male Female Total 

Prevalence  2,713,372 2,825,305 5,538,677 

Mortality 1,154 1,110 2,264 

Data adapted from the Gastroenterological Society of Australia and the Australian 

Liver Association in 2012 [19]. 

 

Multiple confounding factors affect the prevalence estimation of NAFLD in the general 

population. These factors include the rapid development of NAFLD and the rather 

vague classification of the disease stages; in addition, the lack of specific NAFLD 

markers is an important factor that can lead to further variations. Despite a lack of 

standard diagnostic tools, and diversity in sample population culture, age, ethnicity and 

gender, an abundance of studies have reported the incidence of NAFLD linked to these 

factors [28]. For example, the incidence of simple hepatosteatosis differs in gender and 

culture and is significantly higher in Hispanic, male and aged populations [5]. It also 

seems that high prevalence of NAFLD in developed countries may be at least in part 

due to dietary factors. 

 

The significance of obesity and T2D in the prevalence of NAFLD has been globally 

recognised [5], and these are strong predictors for this pathological condition in the 

liver. It has been reported that the incidences of NAFLD in patients with obesity (BMI 

>30) and T2D are about 90% and 75%, respectively [5, 25]. Further, the increased 

incidence of progression from hepatosteatosis to NASH is associated with the ongoing 

epidemic of obesity and diabetes [6]. In addition, the different degrees of NAFLD 

associated with metabolic syndrome can affect the estimate of NASH. Numbers of 

patients with mild hepatosteatosis associated with the metabolic syndrome are 
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significantly high compared with patients without the metabolic syndrome. Moreover, 

the selection between stages of NASH and different diagnostic criteria between 

countries affects the estimated prevalence of NAFLD. 

 

1.3.2 Relationship between non-alcoholic fatty liver disease and the 

metabolic syndrome 

 

NAFLD is regarded as a manifestation of the metabolic syndrome in the liver [29], and 

is highly prevalent in patients with the metabolic syndrome [30]. This is clearly seen in 

NAFLD patients with hepatic insulin resistance despite the presence of 

normoglycaemia and mild increased body weight [31]. Further, NAFLD has been 

associated with not only poor glycaemic control but also hypertriglyceridaemia, low 

plasma high-density lipoprotein (HDL)-cholesterol levels, increased waist 

circumference and high blood pressure (Figure 1.2). 

 

The presence of NAFLD is associated with increased risk of obesity, insulin resistance 

and cardiovascular diseases [29, 32], and its development is accompanied by lipid 

metabolism alterations [6, 29]. In addition, the ailment goes beyond mere liver disease 

to become an underlying cause of metabolic syndrome related to failure of other organs 

in the body. It has been discussed that insulin can inhibit lipolysis and increase TG 

synthesis in adipocytes and hepatocytes, respectively [33]. Accordingly, excess hepatic 

fat can induce impairment of glucose and lipid metabolism [31, 34]. This indicates that 

obesity and insulin resistance are associated with abnormalities in lipid metabolism 

associated with NAFLD. It has also been reported that the metabolic syndrome is 

associated with a higher risk of NASH developing in patients [29]. 
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Mechanisms of NAFLD development can be seen by dissecting the metabolic and 

nutritional pathways involving FAs and glucose sensors [6]. In humans, NAFLD is 

significantly increased among patients with T2D or hyperlipidaemia compared with 

non-diabetic or non-obese patients [25, 29]. It has been reported that NAFLD patients 

have high fasting plasma glucose levels with early metabolic derangement compared 

with healthy populations [35]. Conversely, the reversal of hepatosteatosis by reduction 

in hepatic TG content increases insulin sensitivity and glucose metabolism [36]. In 

further studies, various animal models often exhibit similar pathological features of 

NAFLD and associated metabolic diseases [37, 38]. Therefore, animal species and 

strains may be a major factor that influences the development of NAFLD and its 

association with metabolic syndrome in non-human models [39]. 

 

NAFLD is also linked to increased cardiovascular disease, which is a leading cause of 

death worldwide [40]. Progression of NASH increases the risk of cardiovascular 

complications and may be related to increased mortality [15]. A recent study has 

revealed that patients with NAFLD are more likely to have greater myocardial 

dysfunction than are those without NAFLD [41]. Higher incidences of metabolic 

syndrome complications including hypertension, hypertriglyceridaemia, 

hypercholesterolaemia and atherosclerosis have been seen in NAFLD patients with 

higher BMI [32]. Further, individuals with NAFLD are generally accepted as surrogates 

for the risk of developing nephropathy and retinopathy [42]. Therefore, NAFLD is 

increasingly found associated with a more severe adverse outcome and the reversal of 

NAFLD in the early stages can often alleviate these chronic conditions. 
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Figure 1.2 NAFLD and NAFLD-associated metabolic syndrome.  

NAFLD is likely a key indicator of chronic diseases associated with obesity, T2D and 

insulin resistance. Further, NAFLD is usually associated with increased risk of 

cardiovascular complications including hypertension, hypertriglyceridaemia and 

hypercholesterolaemia. 

                                                                           

The impact of dietary factors and nutritional differences in NAFLD-associated 

metabolic syndrome has been widely studied using animal studies. An increase in free 

FAs due to dietary overconsumption can result in TG accumulation in the liver and 

therapeutic hepatosteatosis [2]. A study conducted in rats has clearly indicated that 

there is a strong relationship between NAFLD and metabolic syndrome [43]. Rats fed a 

high-fat diet (HFD), high-fructose (HFru) diet or both have induced hyperglycaemia, 

hyperinsulinaemia and hypertriglyceridaemia associated with hepatosteatosis. The 

impact of diet on hepatosteatosis and insulin resistance has been demonstrated by Ren 

and colleagues [44], who have shown that mice fed a HFD or HFru diet have increased 

hepatosteatosis-induced glucose intolerance. Dietary fructose is almost entirely 

metabolised via the liver in its first pass, mainly as a substrate for DNL in both animals 
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[45-47] and humans [48-51]. In contrast, dietary fat directly provides FAs to produce 

hepatosteatosis. 

 

1.3.3 Pathogenesis of NAFLD 

 

The study of pathogenesis of NAFLD is complicated due to the spectrum of diseases 

arising from various cellular interactions within the disorder [6]. The first stage is a 

hepatic manifestation of the metabolic syndrome represented by hepatosteatosis. NASH 

is a critical and advanced form of NAFLD characterised by hepatocyte damage, release 

of inflammatory cytokines, and various degrees of fibrosis secondary to hepatosteatosis 

[1]. Due to the multiple pathways involved in this disease, there are no approved and 

effective treatments for patients with NAFLD.  A better understanding of the complex 

pathogenesis of NAFLD will help to identify an effective treatment that prevents or 

helps to delay the development of NAFLD and the progression of NASH.  

 

NASH pathogenesis has been established in literature by the two hit hypothesis [52]. 

According to Day et al, the first hit primarily manifests as an excessive TG 

accumulation in the hepatocytes and promotion of hepatosteatosis. As shown in Figure 

1.3, the second hit has been suggested to be the main reason for the progression from 

hepatosteatosis to steatohepatitis. This hit may be caused by inflammatory, 

endoplasmic reticulum (ER) and cell injury mediators directly related to activation of 

inflammation, oxidative stress and apoptosis, respectively.  Progression of NASH could 

irreversible depending on the severity of the disease [6, 52]. The exact mechanism 

behind NASH causation is multifactorial and its understanding is still incomplete [53]. 

During the progression of NAFLD, interaction of different pathways such as oxidative 
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stress, inflammatory cytokines, lipid peroxidation and mitochondrial dysfunction may 

be able to induce steatohepatitis [15, 44]. It has been claimed that the activation of 

inflammatory cytokines in hepatic kupffer cells (KCs) plays an important role in NASH 

development [6].  

 

 

 

Figure 1.3 The hallmark of NASH and the two-hit hypothesis.  

The first hit is caused by TG accumulation in the hepatocytes and promotion of 

hepatosteatosis. The second hit has been suggested to result from the activation of 

distinct pathways leading to simple steatosis and NASH, respectively [1]. 

 

In current literature, different pathways potentially involved in the pathogenesis of 

NASH have been investigated. One of the proposed mechanisms is the chronic 

stimulation of inflammatory cytokines, mainly tumour necrosis factor-α (TNFα) and 

interleukin 6 (IL-6). The activation of inflammatory mediators aggravates liver cell 

injury via pro-fibrogenic transforming growth factor beta (TGFβ), IL-6, intercellular 

adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein 1 (MCP-1) and 

TNFα [54] (Figure 1.4). From this pathway, it appears that inflammation is a dominant 
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factor involved in the process of the progression of NASH; this will be discussed in 

detail in Section 1.6.4. 

 

Another important factor claimed to be involved in the pathogenesis of NAFLD is 

oxidative stress [54]. In general, excessive TG accumulation in the liver causes 

metabolic stress on the mitochondria and ER and the release of reactive oxygen species 

(ROS). It has been reported that there is a significant increase in the products of lipid 

peroxidation among NAFLD patients compared with healthy controls [55]. Increased 

hepatic oxidative stress markers have also been found in severe inflammation in NASH 

induced in mice by feeding them methionine and choline-deficient (MCD) diet [56]. 

Further, several studies have reported that ER stress may be an essential factor in both 

the development of hepatosteatosis and the progression to NASH [57-59]. Indeed, it has 

been shown that attenuation of ER stress prevents the development of hepatosteatosis 

and progression of NASH in vivo and in vitro [60, 61]. 

 

 

Figure 1.4 Proposed ‘multiple hits’ in the pathogenesis of NASH.  
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The initial hit is through increased production of free FAs and hepatic fat deposition, 

usually due to the metabolic syndrome, resulting in hepatosteatosis. Second hits such as 

inflammation, oxidative stress and ER stress are involved in the progression of steatosis 

to NASH. Such multiple factors may include oxidative damage, increased inflammation 

and fibrosis leading to NASH [62]. 

 

To date, several studies have highlighted the multiple-hit theory that is associated with 

the development of NAFLD. Recent evidence suggests that gut-derived bacterial 

lipopolysaccharide (LPS) plays a key role in the development and progression of 

NASH [63]. It has been observed that there is an increase in the growth of LPS bacteria 

in patients with NASH compared with controls. Several studies in rodents have shown 

that LPS/toll-like receptor 4 (LPS/TLR4) and LPS-induced TNFα production are 

involved in the progression of NASH in rats and mice, respectively [64, 65]. Further, 

LPS stimulation with high caloric intake leads to hepatic inflammation and progression 

of NASH in C57BL/6 mice [66]. Interestingly, therapeutics that target LPS elevation 

such as Mtr might ameliorate diet-induced steatohepatitis, particularly fibrosis 

progression [67]. Gut microbiota-triggered LPS-induced hepatic inflammation and 

NASH are vital regulators of NAFLD pathogenesis. 

 

Understanding these NAFLD progression mechanisms will help to develop drugs that 

target hepatosteatosis and NASH that arise along these pathogenesis pathways. Further 

studies may be beneficial to not only dissect these pathways but also present potential 

new therapeutic agents that resolve NAFLD. New approaches have been explored to 

develop appropriate therapeutics that target various elements in the pathogenesis of 

NAFLD and progression of NASH [68]. There is great interest in identifying molecular 

targets for the treatment of this condition, making the outlook of NASH therapy more 
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optimistic. The use of treatments that target predictive risk factors such as obesity and 

T2D has become prominent, but is insufficient [68]. Current medications targeting 

these pathways will be discussed in detail in Section 1.9. 

 

1.4 Economic burden of NAFLD 

 

The burden of NAFLD is associated with tremendous clinical, economic and health-

related quality-of-life costs. The increased prevalence of this disease has led to greater 

analysis of the quantifications of clinical and economic burdens of this condition [69]. 

NAFLD has a high financial cost, which affects the patient’s health and treatment 

system, and the overall economy, and needs to be addressed through healthcare and 

prevention policies. The disease’s progression and related illnesses put a strain on 

national medical services. Hence, estimating economic costs and health burden of fatty 

liver disease is extremely important in monitoring the incidence of NAFLD and other 

related health problems. It is also essential to provide standard classifications in 

outlining the burden of fatty liver, morbidity and deaths affecting individuals and the 

society. This is aggravated by the limited availability of non-invasive and accurate 

diagnostic tools—one of the greatest challenges in NAFLD diagnosis [6]. 

 

There are currently insufficient data available on the cost-effectiveness of prevention 

and treatment of this disease [70]. Data reveal that pharmacological treatments in 

addition to standard lifestyle modifications in NASH patients with advanced fibrosis is 

likely more cost-effective than in NASH patients without advanced fibrosis. Another 

study has reported a total cost of 2,521 purchasing power parity (PPP) for each urban 

NAFLD patient per year including health services, diagnosis and drug treatment [5]. 
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Despite the short-term follow-up, including minimum cost and narrow spectrum of 

healthcare cost, the study reports that the total cost of NAFLD in Iran is 1 billion PPP 

yearly. 

 

The economic burden of NAFLD including diagnosis and treatment is extremely high 

worldwide. Statistics show that NAFLD is the most prevalent liver disease in Australia, 

with an estimated 5.5 million people affected, including 40% of all adults aged 50 years 

and over [19]. NAFLD is also associated with the highest number of deaths, with an 

estimated 2,264 in 2012. According to the same report by the Gastroenterological 

Society of Australia, the Australian government has spent around $5.44 billion on 

patients with liver diseases [19]. The prevalence rate of NAFLD continues to rise 

significantly worldwide including Australia. It is projected that NAFLD will affect 

more than 7 million Australians in 2030 [19]. A recent study has shown that the high 

prevalence of NAFLD has a marked effect on the economy of both the United States 

and Europe, outlining a comprehensive model estimating the clinical and economic 

burdens of NAFLD [69]. From the data reported in the study, the number of NAFLD 

patients in the United States and Europe is 60 million and 50 million patients with an 

annual cost of about $103 billion and €35 billion, respectively. 

 

The enormous economic burdens associated with NAFLD will continue to increase as 

its prevalence rises. Indeed, it is time to improve awareness of NAFLD at a social level 

and give more consideration to NAFLD in health policies worldwide to secure a better 

future for coming generations. Formal cost–benefit analyses in the context of NAFLD 

are needed for better management and treatment. Clearly, defining the natural history of 

NAFLD would be beneficial for the early detection and prevention of NAFLD 
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progression and complications. In turn, the effect of novel treatments on decision-

making may be beneficial to avoid high future healthcare costs related to progression of 

NAFLD. 

 

It is worthwhile to note that lack of awareness of the economic burden of NAFLD 

among hepatologists and non-hepatologists is putting individuals and society at 

elevated risk. This is likely due to underestimated prevalence of NAFLD and its 

implications. One of the most effective ways to monitor development and progression 

of NAFLD is to estimate the economic burden of this disease. Undertaking a study of 

the economic burden of NAFLD has been highly recommended by hepatologists and 

hepatic clinical practitioners to develop a comprehensive understanding of the liability 

of this disease. 

 

1.5 Hepatosteatosis  

 

Hepatosteatosis (also called fatty liver) is defined as the accumulation of TG in the 

liver, where the risk of progression to fibrosis and liver failure in the absence of 

additional insults is relatively small [10]. It is considered a benign stage of NAFLD but 

a primary mediator of most common fatty liver diseases [6] because of excessive lipid 

accumulation in the liver both directly and indirectly through liver-related diseases such 

as obesity and T2D. Simple hepatosteatosis is characterised by a hepatic TG content 

greater than 5% of liver weight in the absence of liver injury, inflammation and fibrosis 

(Figure 1.6). When left untreated, hepatosteatosis may progress to NASH, where the 

risk of fibrosis and cirrhosis is dramatically increased [69]. 
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There are four major causes of hepatosteatosis, including increased dietary fat 

(exogenous fat), increased DNL (endogenous fat synthesised in the liver), reduced fat 

oxidation and impaired fat export out of the liver [2, 71]. Indeed, dysfunction of the 

liver may cause improper trafficking of lipids, resulting in a higher rate of TG synthesis 

than TG secretion [6]. This prolonged impairment of hepatic TG secretion promotes 

inflammation, oxidative stress and fibrosis in the liver to form NASH. 

 

Table 1.4 Major features differences between simple hepatosteatosis and NASH 

Feature Hepatosteatosis NASH 

Lipid accumulation   

Liver injury   

Hepatic inflammation   

Hepatic fibrosis   

Risk of cirrhosis Minimal risk 

(cirrhosis <0.7%) 

High risk 

(cirrhosis >12%) 

Mortality Lower mortality 

(20%) 

Higher mortality 

(42%) 

FAs can also be generated from carbohydrates through DNL, a process initiated by the 

carboxylation of actyl-CoA that is catalysed by acetyl-coA carboxylase (ACC) [6]. It 

has been shown that DNL is promoted by hyperinsulinemia or high consumption of 

carbohydrates [72, 73]. Previous studies also showed DNL is increased in the liver of 

high-fructose fed mice [45]. 

 

FAs are the precursor of TG and play an important role in the development of 

hepatosteatosis. Several mechanisms contribute to increased FAs subsequently causing 

hepatosteatosis. It has been shown that several putative signalling mechanisms, 

including inflammatory cytokines, ER stress and oxidative stress, are activated as a 

result of excessive FAs supply [6]. Regulation of FAs pathways in both adipose tissue 
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and the liver are essential to maintain TG synthesis and secretion, which is essential for 

lipid metabolism in relation to hepatosteatosis [9]. 

 

1.5.1 Hepatic lipid metabolism 

 

Liver TG is formed from FAs and glycerol via hepatocellular long-chain FAs bound to 

coenzyme A to form fatty acyl coenzyme A (acyl-CoA) [35]. FAs are generally derived 

from circulating free FAs, DNL, lipoprotein uptake and TG breakdown [6]. Of the TG 

present in the liver, approximately 59% comes from circulating free FAs, 26% from 

DNL and 15% from the diet [2]. Thus, hepatosteatosis can be considered a 

heterogeneous condition. Our laboratory and others have found that excessive DNL 

represents a key feature of fatty liver from high-carbohydrate diet [6]. These sources 

contribute towards TG synthesis, which is stored and metabolised within the liver then 

exported and stored in adipose tissue. 

 

Dysregulation of lipid metabolism in the liver is strongly correlated with TG 

accumulation within hepatocytes, causing hepatosteatosis [15]. As indicated previously, 

an imbalance between free FA formation and utilisation (lipid synthesis and oxidation) 

can lead to an increase in hepatic free FA concentration, resulting in hepatosteatosis 

[35]. 

 

One important cause of increased fat uptake is excess FA intake, such as with a 

Western diet or HFD, directly leading to excessive accumulation of fat in the liver and 

eventually hepatosteatosis [44, 74]. A possible explanation for this connection may be 
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that circulating FAs mainly derive from digested dietary fat and adipose tissue lipolysis, 

leading to increased lipid deposits in the liver [6]. 

 

Another possibility is that insulin resistance in muscle due to impaired insulin-mediated 

glucose uptake leads to deviation of glucose to the liver for DNL [75]. Conversely, 

increased synthesis of TG through non-esterified FAs (NEFAs) and DNL promotes 

lipid droplets in circulation and in the liver, respectively [6]. During TG lipolysis, 

NEFAs are transported from adipose tissue to the liver and re-esterified with glycerol to 

form TG. The other cause of increased fat synthesis through the highly regulated DNL 

pathway will be discussed in Section 1.5.2. 

 

Dysregulation of FA metabolism is likely caused by FA oxidation-reduction [76]. In 

this pathway, mitochondrial regulated FA oxidation through carnitine 

palmitoyltransferase 1 (CPT1), which is the key enzyme in FA β-oxidation, facilitates 

the transport of acyl-CoA into mitochondria. It has been shown that an increase in 

CPT1 alleviates HFD-induced lipid metabolism disorders in a genetic obesity rat model 

[77]. Indeed, prevention of free FA-induced hepatosteatosis increased mitochondrial β-

oxidation in HepG2 cells and in MCD rats with a carnitine-supplemented diet [78]. In 

contrast, it has been suggested that overexpression of enzymes such as CPT1 increases 

FA oxidation and alleviates HFD-induced hepatosteatosis and inflammation [76]. 

 

Another factor that contributes to the aggravation of NAFLD is mitochondrial 

dysfunction. For example, a decrease in the regulator of mitochondrial biogenesis, 

peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), results 

in impaired lipid metabolism and hepatosteatosis development [79]. Dysregulated 
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mitochondrial metabolism involved in oxidative stress, ER stress and inflammation 

constitutes risk factors that progress NASH in humans and rodents [80, 81]. Hence, 

developing drugs that increase mitochondrial function could ameliorate NASH [82]. 

This indicates that mitochondrial dysfunction has an essential contribution to the 

development of NASH. 

 

Very low density lipoprotein (VLDL) secretion, which is a mechanism of TG removal 

from the liver, is another mechanism of hepatosteatosis [83]. Inhibition of VLDL 

secretion induces hepatosteatosis, suggesting that VLDL production plays a significant 

role in hepatic lipid metabolism and hyperlipidaemia [83]. It has been suggested that 

VLDL secretion deficiency can promote NAFLD progression [6]. Impaired VLDL 

export in a genetic NASH mice model exhibits excessive hepatic TG and increased 

expression of inflammatory markers [84]. In Zucker rats, increased TG secretion from 

the liver by circulation has been shown to prevent the development of hepatosteatosis 

[85]. Impairment of TG export and deficiency in VLDL synthesis leads to TG 

accumulation in liver cells, which may lead to hepatosteatosis. The TG exported from 

the liver is packed into VLDL and released into the blood stream, which is a 

mechanism of hyperlipidaemia [6]. The main cause of reduction in VLDL secretion in 

the liver is lack of microsomal TG transfer protein (MTTP), which plays a vital role in 

the synthesis of apolipoprotein B in VLDL formation. Deficiency of these proteins 

results in hepatosteatosis and NASH exacerbation in mice [86] and humans [87]. 

 

Hyperinsulinaemia has been associated with an increase in lipid synthesis to result in 

hepatosteatosis. Forkhead box protein O1 (FoxO1) is a key mediator in the insulin 

signalling pathway, and acts as a master transcription factor regulating hepatic DNL 
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and gluconeogenesis [88]. Prolonged insulin stimulation restores FoxO1 expression, 

while insulin receptor substrate 2 (IRS-2) is involved in the inhibitory effects of insulin 

on FoxO1 [89, 90]. The expression of FoxO1 regulates lipid metabolism through 

reduced transcriptional activity of sterol regulatory element-binding protein 1c 

(SREBP1c) in vivo and in vitro [91]. 

 

Mitochondria play an essential role in hepatic lipid metabolism and are affected by 

upstream signalling pathways involved in hepatosteatosis [92]. FA oxidation is a 

process to shorten FAs into acetyl-CoA and plays a vital role in hepatosteatosis and 

lipid metabolism. Impairment in FA oxidation and lipid export can increase hepatic 

DNL and thereby trigger hepatosteatosis. It has been suggested that stimulation of 

mitochondrial FA oxidation in the liver may ameliorate hepatosteatosis, inflammation 

and fibrosis and protect against hepatosteatosis [81, 93]. It seems that mild reduction in 

the rate of FA oxidation induces hepatosteatosis and significant reduction of FA 

oxidation exacerbates NASH. 

 

1.5.2 De novo lipogenesis 

 

The liver is a major metabolic organ responsible for the homeostasis of lipids in the 

whole body. DNL is a metabolic process for the conversion of an excess of 

carbohydrates into FAs, which are ultimately esterified with glycerol 3-phosphate to 

form TG [89]. DNL is thought to contribute to the development of NAFLD and related 

metabolic diseases [2]. Excess intake of carbohydrates especially fructose that exceeds 

liver utilisation capacity stimulates the lipogenic pathways and the production of DNL, 

lipids by disposing of glucose and calories [94]. The conversion of excess 
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carbohydrates regulated by the DNL pathway is a critical mechanism involved in lipid 

homeostasis in the liver [1]. Elevated DNL is one important source of hepatic lipid 

accumulation and the development of hepatosteatosis [6]. 

 

Fructose contributes to lipid synthesis via the influx of fructose carbons into lipogenic 

precursors. The role of dietary fructose has been implicated as an important risk factor 

for DNL promotion and NAFLD progression [95]. SREBP1c expression in rodents 

caused by fructose feeding promotes hepatic lipid synthesis [96]. Hepatic lipogenesis is 

affected by multiple factors including liver X receptor (LXR) and peroxisome 

proliferator-activated receptor-α (PPARα) [97, 98]. These elements play a vital role in 

regulating lipid metabolism by reducing the clearance of FAs through oxidation, 

consequently further increasing fat accumulation in hepatocytes [6]. The major 

transcriptional regulators and enzymes involved in hepatic DNL, including SREBP1c, 

carbohydrate-responsive element-binding protein (ChREBP), fatty acid synthase (FAS), 

ACC and stearoyl-coenzyme A desaturase-1 (SCD1), have garnered significant 

attention over recent years [95]. 

 

SREBP1c and ChREBP are two master transcriptional regulators that are widely 

expressed in the liver and drive DNL [89, 99]. Both these DNL transcriptional 

regulators are elevated in the liver during over consumption of fructose [100, 101]. 

Consumption of fructose has distinct effects on the expression of these lipogenic 

transcription factors (ChREBP and SREBP1c) and has been associated with poor 

metabolic outcomes, compared with glucose-fed mice [102]. 
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ChREBP is one of the major regulators of DNL in adipose tissue implicated in 

hepatosteatosis and insulin resistance [103]. It can be activated by high glucose levels 

and inhibited by cAMP [71]. It is a key determinant of lipid synthesis as a glucose-

responsive transcription factor in the liver [103]. Deficiency of ChREBP in the liver of 

genetically obese ob/ob mice markedly improves insulin resistance and hepatosteatosis 

[99]. Rodents fed HFru diet display a significant increase in ChREBP expression [104]. 

 

SREBP1c regulates the expression of genes encoding enzymes responsible for DNL, 

such as FAS [89]. A strong relation between the increased levels of nuclear SREBP1c 

and the elevation rates of hepatic FA synthesis has been previously reported [105]. In 

other words, elevated levels of hepatic SREBP1c lead to increased expression of genes 

for the synthesis of FAs, which in turn is associated with the development of 

hepatosteatosis. 

 

It has been shown that increased SREBP1c expression contributes to the development 

of hyperglycaemia and hepatic steatosis in diabetic mice [105]. As the activation of 

SREBP1c expression is not accompanied by lipogenic gene upregulation in adipocytes 

[106], this transcriptional factor seems to be a dominant regulator of DNL particularly 

in the liver. The expression of SREBP1c can be stimulated by fructose, glucose, insulin 

and ER stress [89]. Inhibition of SREBP1c levels by reducing ER stress decreases 

hepatic lipogenesis and markedly improves hepatosteatosis and insulin sensitivity in 

obese rodents [107]. 

 

Downstream of the enzymes SREBP1c and ChREBP in the lipogenic pathway for 

hepatic lipogenesis are ACC, SCD1 and FAS [71, 108]. These key lipogenic enzymes 
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can be targeted for the treatment of NAFLD. For example, mutant mice lacking ACC1 

are protected against hepatosteatosis [109]. Additionally, ACC inhibitors reverse 

hepatosteatosis in rats with diet-induced NAFLD [110]. Further, mice with liver-

specific SCD1 knockout are protected against hepatosteatosis induced by high-

carbohydrate diet [111], and FAS inhibition leads to a significant reduction in liver TG 

levels and improved insulin sensitivity in db/db mice fed HFru diet [112]. 

 

 

                                                                     

The activity of the lipogenic pathway is dependent upon nutritional conditions [95]. A 

diet rich in carbohydrates, mainly fructose, stimulates the lipogenic pathway in the 

liver, where fructose is cleared from the blood [101]. Several studies have suggested 

that HFru diet may increase DNL, which contributes to the pathogenesis of NAFLD 

Figure 1.5 Effect of carbohydrate 

overfeeding on DNL-induced 

hepatosteatosis.  

The conversion of glucose into FAs through 

DNL is nutritionally regulated by glucose and 

insulin signalling pathways, which induce 

lipogenic gene expression. Glucose activates 

the transcription factor ChREBP, which is 

required for the transcriptional induction of 

FAS and ACC. Insulin activates the 

transcription factor SREBP1c, which is 

required for the transcriptional induction of 

FAS and SCD1. Activation of lipogenic 

enzyme causes dysregulation of lipid 

metabolism, leading to hepatosteatosis and 

ultimately NAFLD development. 
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[100-102]. The transcription of lipogenic enzymes is regulated by insulin and glucose. 

Carbohydrate feeding promotes DNL, as summarised in Figure 1.5. 

 

Hepatic ER stress pathways have been implicated in the development of hepatosteatosis 

during HFru feeding in mice [46]. It has been reported that ER stress can lead to 

hepatosteatosis associated with glucose homeostasis by upregulation of SREBP1c, 

ACC, FAS and SCD1 [45]. Alleviating ER stress and inhibiting DNL has a significant 

impact on improving hepatosteatosis involved in NAFLD [57]. Studies in rodents 

suggest that alleviating ER stress protects against an increase in hepatic lipogenesis and 

hepatosteatosis [57, 107]. Thus, targeting ER stress might be a good candidate for 

NAFLD or NASH treatment. 

 

1.5.3 Non-alcoholic fatty liver disease and hyperglycaemia 

 

Data from several human studies suggest that the presence of NAFLD promotes the 

consecutive development of T2D and is a strong predictor of the metabolic syndrome 

[35]. T2D and obesity are closely associated with increased delivery of FAs to the liver 

and hence are the most common risk factors for the development of NAFLD. They 

have been proposed as major risk factors in T2D with a twofold to fivefold increased 

risk of developing NAFLD [113]. Factors associated with hepatosteatosis, including 

glucose intolerance and insulin resistance, can aggravate to severe NASH [6]. 

 

The liver is largely involved in whole-body insulin resistance and fasting 

hyperglycaemia in T2D [35]. Excessive TG accumulation in the liver may be associated 

with hyperinsulinaemia and dyslipidaemia and can contribute to elevated lipogenesis in 
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obesity and NAFLD [6]. In addition to the liver, adipose tissue plays an important role 

in NAFLD development and is associated with higher risk of mortality. A link between 

intestinal microbiota and development of obesity with its metabolic consequences 

including T2D has been suggested to be involved in NAFLD progression [63]. 

 

Dietary factors significantly contribute to hepatic TG accumulation and hyperglycaemia 

associated with NAFLD. In NAFLD patients with or without obesity or insulin 

resistance, roughly 15% of hepatic FAs originate from diet. During dietary over 

consumption of fructose, hepatosteatosis and insulin resistance occur at a very early 

stage [48, 114]. Dietary fructose in particular has been shown to have a distinct 

tendency to induce hepatosteatosis and insulin resistance in experimental animals. For 

instance, HFru feeding results in hepatosteatosis and insulin resistance induced by 

excessive DNL [44]. The study also suggested that activation of ER stress pathways 

may play an important role in DNL and subsequent hepatosteatosis. 

 

Interestingly, reduction of hepatosteatosis in diabetic patients has been shown to 

markedly improve glycaemia control and insulin sensitivity [36]. The reversal of 

hepatosteatosis and hyperglycaemia via lifestyle modification may be beneficial for the 

prevention of NAFLD and its associated metabolic diseases. For example, a study in 

experimental animals has indicated that improvement in hypertriglyceridaemia and 

insulin resistance induced by fructose protects against developing NAFLD [115]. It has 

been reported that PUFAs ameliorate many of the adverse changes in lipid and glucose 

metabolism responsible for NAFLD development [4]. 
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As previously mentioned, hepatic lipogenesis represents a critical mechanism for 

hepatosteatosis associated with glucose homeostasis [44]. An important reason for the 

activation of this lipogenic pathway in the liver is a diet rich in carbohydrates. Post-

translational and transcriptional mechanisms control the activities of hepatic lipogenic 

enzymes. The transcription of lipogenic enzymes is regulated by insulin and glucose as 

shown in Figure 1.5. 

 

There is clear evidence suggesting a strong relationship between hepatosteatosis and 

insulin resistance in the presence or absence of obesity. Because NAFLD and T2D 

share some common pathological features, most therapeutic approaches for NAFLD 

target the major pathways thought to be essential in the metabolic syndrome [35]. 

Among various stages in the progression of NAFLD, there is increasing interest in the 

prevention of NASH development as it is crucial for the control of fibrosis and disease 

prognosis. 

 

There are many different anti-diabetic drugs that act on the same mechanism in 

increasing insulin sensitivity and decreasing hepatic glucose production. Although 

metformin is one of these drugs because of its efficacy in T2D [116], it is necessary to 

develop an efficient therapy for fighting or preventing NAFLD. 

 

1.6 Non-alcoholic steatohepatitis (NASH) 

 

NASH is a severe and progressive stage of NAFLD, in which hepatocyte damage, 

inflammation and fibrosis are present [10]. Unlike simple hepatosteatosis, NASH may 
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become a more prominent public health issue in the near future with the potential of 

becoming the second most common indication for liver transplantation [6]. 

The pathogenesis of the transition from hepatosteatosis to NASH is complicated and, 

although it has been extensively studied in humans and animals, it remains unclear. It 

has been proposed that inflammation, ER stress, oxidative stress and mitochondrial 

dysfunction may be the dominant mechanisms in this disease [6]. Histologically, 

prolonged inflammation associated with ballooning degeneration of hepatocytes is a 

strong feature for defining NASH [54]. Other signs such as collagen deposition 

contribute to the severity of the disease. 

 

Numerous indications characterise the pathogenesis of NASH but these signs may vary 

considerably in most cases. For example, TG level and plasma levels of liver enzymes 

(aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) have been used 

as markers for diagnosis of NASH [117]. Other markers proposed by Walenbergh et al. 

indicate that oxidised low-density lipoprotein (oxLDL) is a substantial risk factor for 

NASH [118]. It seems that dysfunctional hepatic lipid metabolism may be a key factor 

in progression to NASH [119]. However, it is generally agreed that abnormal lipid 

metabolism alone is insufficient to cause liver injury and NASH [10, 80]. 

 

On the basis of the two-hit hypothesis of NAFLD pathogenesis, hepatosteatosis is 

classified as a first hit but a second hit is required to advance it to NASH [52]. 

Although it is not well understood how NASH occurs, several factors that seem to 

contribute to the progression of NASH have been reported in a number of studies [6]. 

These factors—cell injury, inflammation, ER stress, oxidative stress and mitochondrial 

dysfunction—are associated with the severity of NASH and progression to NASH with 
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fibrosis, while other factors yet to be identified contribute to the progression to severe 

fibrosis. Despite the difficulty in determining NASH due to the lack of definite 

pathogenesis, animal studies have been used to identify the factors critically involved in 

the progression of NASH [120, 121]. NASH characterisations according to the AASLD 

will be discussed in the following sections. 

 

1.6.1 Steatosis 

 

Hepatosteatosis is the hallmark of NAFLD resulting from excessive accumulation of 

lipids in hepatocytes, which can result from increased DNL, reduced utilisation of 

lipids or inhibited export of lipids from hepatocytes [6]. The amount of TG 

accumulated in the liver and other lipids such as FAs, diacylglycerols, phospholipids, 

sphingolipids and cholesterol is influenced by diet, physical activity, age and ethnicity. 

Thus, hepatosteatosis has heterogeneous causes, which are obvious risk factors for 

NASH [122, 123]. 

 

The two-hit hypothesis considers steatosis a first hit to the liver in NASH pathogenesis; 

however, not all patients with steatosis develop NASH: approximately only one-third 

will develop NASH [6]. In animals, a diet rich in fat, carbohydrate or both has been 

shown to cause simple hepatosteatosis [120]. Animal models and diets will be 

discussed in Section 1.8. 

 

Understanding the mechanism involved in the progression of hepatosteatosis to NASH 

is important for the prevention of NASH that can lead to cirrhosis or cancer. According 

to AASLD guidelines, hepatosteatosis does not require pharmacological treatments 
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[10]. However, hepatosteatosis should not be neglected because it is a risk in the 

pathogenesis of NASH. 

 

1.6.2 Cell damage 

 

Hepatocytes are the most predominant cells in the liver and account for 70–80% of 

healthy liver mass. Hepatocytes are the major storage site for excessive TG 

accumulation in the highly metabolised liver cell [124]. Hepatocyte injury is a key 

feature that distinguishes hepatosteatosis from NASH [6]. It is strongly linked to the 

pathogenesis of NASH because of the ability of hepatocytes to release factors that 

promote inflammation and fibrosis in the liver (Figure 1.6). 

 

It has been suggested that repetitive or chronic liver injury may cause dysregulation in 

wound-healing response, promoting progressive hepatic cell damage, which leads to 

cirrhosis [6]. In humans, there exist highly significant correlations between the 

hepatocyte damage and the severity of NASH [125]. Mice fed with special diets such as 

choline-deficient L-amino acid-deficient (CDAA) or MCD show liver injury and 

display more pronounced features of NASH [120]. 

 

Hepatocyte damage induces several factors that activate signalling cascades that result 

in cell death and aggravate NASH development. Fat deposition, ER stress, apoptosis 

and inflammation in the liver are directly or indirectly caused by cell injury. These 

factors associated with cell damage induce signalling pathways that contribute to the 

pathogenesis of NASH. It has been shown that excess lipid in mouse and human 

hepatocytes induces liver injury, inflammation and fibrosis with NASH [126]. 
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Increased lipid droplets cause hepatic inflammation via cholesterol loading of 

macrophages in the liver [127]. 

 

 

 

Figure 1.6 Major cell types involved in the pathogenesis of NASH.  

Hepatocytes are the most predominant cells in the liver and play a vital role in liver 

injury. KCs are macrophages present in liver responsible for the release of 

inflammatory cytokines. HSCs are considered a major source of liver fibrogenic cells. 

 

1.6.3 Macrophages activation and infiltration 

 

Macrophages are a main component of the innate and adaptive immune systems present 

in all living tissues. It has been shown that KCs in NASH are associated with 

stimulation of the immune and inflammatory systems to detect and protect against the 
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disease [6, 128]. Activation of KCs and infiltration of macrophages from the blood 

circulation have been proposed to be essential in NASH and NASH with fibrosis [129]. 

 

Activation of KCs has been identified as a critical factor in NASH pathogenesis, 

mediating inflammation and exacerbating fibrosis (Figure 1.7). It has been found to be 

increased in both humans and animals with NASH [129]. Secretion of inflammatory 

cytokines by activated KCs is a key event in the initiation of NASH [130, 131]. It also 

plays a pivotal role in activation of hepatic stellate cells (HSCs) towards hepatic 

fibrosis and NASH-related fibrosis. It has been reported that targeted deletion of KCs 

completely prevents TNFα production and TGFβ mRNA expression in MCD diet-fed 

mice [131]. 

 

Polarisation of KCs has been demonstrated in prevention of the progression of NASH 

[130]. KCs are classified as M1 when responsible for releasing inflammatory properties 

and M2 when releasing anti-inflammatory properties. Chronic HFD feeding increases 

KCs with M1 phenotype, hence increasing inflammatory cytokines, while KCs 

polarisation switch from M1 to M2 leads to prevention of the development of NAFLD 

in HFD mice [132]. These studies suggest that pharmacological interventions targeting 

M2 KCs polarisation may provide an effective therapy in the prevention of 

inflammatory hepatic injury and hepatic fibrosis in NASH. 

 

1.6.4 Inflammation 

 

Hepatic inflammation plays a critical role in the development of NAFLD and a crucial 

aspect in NASH pathogenesis [15, 133]. It has been reported that macrophage 
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activation causing inflammation leads to NASH in mice [134]. LPS has been shown to 

promote the progression of NASH because of stimulation of inflammatory gene 

expression [135]. Alternatively, inhibition of inflammation by drugs may improve diet-

induced NASH [136, 137]. 

 

Activation of KCs induces the production of inflammatory cytokines generated by LPS-

induced signalling that is dependent on macrophage activation [138]. Inflammatory 

cytokines have two roles: first, to increase the recruitment of inflammatory cells and, 

second, to exacerbate the progression of NASH. The balance between pro- and anti-

inflammatory acting cytokines is an acknowledged regulator of liver diseases including 

NASH [54]. 

 

The major inflammatory cytokine TNFα plays diverse roles in the pathogenesis of 

NASH [15]. The expression levels of TNFα and IL-6, two important inflammatory 

cytokines, are hugely increased in the liver of NASH subjects [139, 140]. Crespo et al. 

report increased hepatic expression of TNFα and tumour necrosis factor receptor 2 

(TNFR2) in patients with NASH compared with healthy people [139]. In NASH 

patients, more advanced fibrosis is also accompanied by increased hepatic expression 

of TNFα. In line with these results, TNFα plasma levels have been shown to correlate 

positively with the grade of liver fibrosis assessed by ultrasound-guided liver biopsy in 

patients with advanced stages of NAFLD. 

 

The release of numerous inflammatory cytokines, including TNFα, mediates 

inflammatory production and liver cell death—inflammation and cell damage are 

known to be involved in the pathogenesis of NASH. An earlier study has revealed that 
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overexpression of TNFα induces elevation of inflammatory and fibrotic signalling 

pathways in patients with more advanced NASH [139]. On the contrary, there are no 

significant differences in the levels of TNFα in NASH patients compared with simple 

hepatosteatosis [141]. However, it is generally agreed that inflammation plays a major 

role in the progression of this disease [133]. 

 

Recently, reduction of TNFα has been shown as an independent predictor for positive 

NASH prognosis [139]. Anti-inflammatory drugs can decrease the activity of this 

cytokine, and thus prevent NASH [67, 142]. In humans, such therapies represent an 

improvement in histological features of this disease through reduction in 

hepatosteatosis and inflammation [143, 144]. The anti-inflammatory effects of 

pentoxifylline reduce the increase in TNFα-induced NASH-like phenotype in mice fed 

HFD with cholesterol or MCD diet [145]. 

 

Activation of inflammatory cytokines also drives activation of inflammasome, which 

contributes to steatohepatitis [146]. Inflammasome and interleukin 1 beta (IL-1β) 

activation are required for the pathogenesis of NASH [147, 148]. Identification of the 

inhibitors of NOD-like receptor family pyrin domain-containing 3 (NLRP3) 

inflammasome is an important step in the process of developing effective drugs for the 

treatment of NASH in which inflammation is a known component [149, 150]. It has 

been reported that the inhibition of NLRP3 inflammasome activation reduces liver 

injury, inflammation and fibrosis in MCD diet-induced steatohepatitis and in foz/foz 

mice with NASH [149]. 
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Another factor contributing to inflammation of the liver involved in the progression of 

this disease is iron accumulation. Hepatic iron deposition is strongly associated with 

hepatocyte injury and inflammation in NASH patients [151]. It has been found in one-

third to half of patients with NAFLD and ranges from mild elevations to about 1000–

1500 ng/mL accumulated within hepatocytes. Accumulation of iron has been also seen 

in KCs, which increases inflammatory and fibrotic cytokines [152]. The mild degree of 

body iron excess compared with markedly raised serum ferritin concentrations suggests 

that iron overload in patients with NAFLD results from a combination of alimentary 

and inflammatory-driven iron loading and retention [153, 154]. This is in line with the 

current evidence that NAFLD is both a metabolic and an inflammatory disease. Indeed, 

iron depletion is effective in the treatment of NASH, including improving hepatic 

enzymes and steatosis and reducing inflammation and oxidative stress [154]. 

 

1.6.5 Fibrosis 

 

Liver fibrosis is a complicated pathological process that leads to the destruction of 

hepatocytes and impairment of liver functions, and it is strongly associated with all-

cause or liver-related mortality in NASH [155]. It is another hallmark of advanced 

NASH where KCs induce inflammatory responses for the subsequent steps towards 

fibrosis. It has been shown that inflammatory cytokines secreted by KCs play a key role 

in fibrogenesis [156]. In fact, several drugs targeting ER stress, inflammation, oxidative 

stress and apoptosis may cause activated HSCs [6, 157]. 

 

At the cellular level, progression to NASH is associated with activated HSCs, the 

primary cells that drive the fibrogenic process [15]. Activation of HSCs leads to 
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increased secretion of fibrotic proteins, including TGFβ, collagen 1, alpha smooth 

muscle actin (α-SMA) and Smad signalling, and other extracellular matrix proteins 

causing the formation of scar tissue and fibrosis in the liver [158]. Several studies have 

shown that diet-induced HSCs activation increases these fibrotic cytokines, promoting 

the development of NASH fibrosis [159, 160]. 

 

The most commonly used model of liver fibrosis in experimental rodents is MCD diet 

[161]. The MCD mouse model represents the progression of NASH and the 

development of liver fibrosis. Rodents fed an MCD diet have significantly increased 

TG and ALT levels, indicators of steatosis and liver injury, respectively [120, 162]. 

TGFβ-1, α-SMA and type 1 collagen expression levels also increase among mice fed 

MCD diet for 8 weeks [14, 159]. 

 

Advanced fibrosis has become a central focus in clinical studies that address fibrosis 

and liver-related clinical endpoints in NASH, but the treatment remains the main 

challenge for scientists [155]. The only treatment available for NASH patients with 

fibrosis is liver transplantation—commonly used but unsatisfactory because of 

increased risk of disease recurrence after transplantation [163]. An antifibrotic drug that 

is safe, potent, bioavailable and specific to the liver is not yet available. Currently, 

several therapies are being scanned for their efficacy in the treatment of liver fibrosis 

via regulation of the activity of collagen deposition and HSCs in humans and animals 

[67, 157, 164]. 
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1.7 Cirrhosis and liver cancer 

 

NASH is a complex pattern of fatty liver disease in the absence of alcohol intake. It is 

one of the highest liver morbidity and mortality diseases worldwide with poor 

prognosis and progression of irreversible diseases such as HCC [165]. NASH is now 

recognised as the most common cause of cirrhosis and may progress to liver cancer 

[166]. Cirrhosis and liver cancer are characterised by the replacement of healthy liver 

tissue by scar tissue or cancer cells, respectively. The severity of the disease in humans 

differs depending on the liver biopsy and clinical and pathological severity. The recent 

increase in NASH and its impact on liver cirrhosis incidence highlight the need for 

effective screening and the development of drugs to halt liver disease progression in 

persons with NASH. A statistical study has revealed that approximately 10% to 29% of 

NASH advances to cirrhosis within 10 years [1]. In addition, it has been suggested that 

NASH significantly increases the incidence rate of HCC. A previous report has shown 

that patients with NASH cirrhosis are at roughly 2.6% increased risk of HCC [167]. 

 

NASH is significantly involved in the progression of cirrhosis and primary liver cancer 

[6]. Some patients suffer NASH-related cirrhosis and liver-related death [168]. Mice 

fed CDAA with carbon tetrachloride (CCl4) have been developed to help understand 

mechanisms of carcinogenesis in NASH [169]. It has been suggested that cirrhosis and 

cancer represent a late complication of NASH-related fibrosis because progressive 

fibrosis increases the risk of cirrhosis and HCC [6]. 
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1.8 Non-alcoholic steatohepatitis animal models 

 

Animal models of NASH have been used extensively and discussed in several reviews 

[120]. The ideal model of NASH should mimic the aetiology and histopathology of 

NASH in humans. However, there is no single animal model that can completely 

replicate this disease in humans. It is important to develop an animal model that mimics 

human disease with respect to disease pathogenesis. It has been recommended that at 

least two individual NASH models should be used for the assessment of anti-NASH 

drugs [170]. 

 

Hepatosteatosis and NASH stages have distinct histopathological features that differ 

from each other. For example, the hallmark of hepatosteatosis is an increase in fat 

droplets within hepatocytes without any damage to hepatocytes. The degree of steatosis 

varies, with mild (≤30%), moderate (31–60%) and severe (≥61%) in humans [10]. 

Conversely, liver NASH shows hepatocellular ballooning, with or without Mallory-

Denk bodies, accompanied by inflammation in the presence of macrosteatosis [6]. 

 

An NAFLD animal model has been a hot topic for scientists interested in NAFLD 

pathogenesis and treatment. Each of the NAFLD stages has distinctive 

histopathological features [6]. As mentioned earlier, hepatosteatosis is characterised 

histologically by excessive fat droplets within hepatocytes. As steatosis progresses to 

NASH, hepatocyte injury (ballooning and Mallory bodies), inflammation and collagen 

depositions develop. Thus, metabolic with inflammatory NASH models are highly 

applicable for preclinical drug testing in NASH [120]. 
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These two features are not always present in one animal model of NASH—that is, the 

presence of the metabolic syndrome features, including central obesity, 

hyperglycaemia, insulin resistance and hypertriglyceridaemia, together with the 

features of hepatic inflammation with or without fibrosis. Apparently, the selection of 

appropriate animal models is challenging because no rodent displays these features 

[120]. 

Some animal models currently used for NAFLD/NASH present only one stage, either 

hepatosteatosis or NASH. For example, HFD, high-fat high-carbohydrate (HFHC) and 

HFru-fed animal models are widely used to produce steatosis, as they have the hallmark 

features observed in humans with NAFLD, including obesity and insulin resistance. 

Other animal models have been developed for studying NASH pathogenesis, such as 

the MCD, CDAA and CCl4 models. 

 

The following section summarises currently used and recently developed animal 

models for NASH. 

 

HFD represents the modern Western diets, which directly lead to NAFLD and obesity. 

This can be replicated in animals fed HFD (containing approximately 45–75% fat, 47% 

carbohydrates and 18% protein) ad libitum. In HFD rat models, a diet of increased FAs 

(composed of more than 71% fat) caused hepatosteatosis-associated increased insulin 

level [121]. However, these animals do not usually show a significant increase in 

plasma level of ALT [80]. Hepatosteatosis, obesity, hyperglycaemia, insulin resistance 

and mitochondrial changes are also present in C57BL/6 mice fed HFD [171]. Similarly, 

male C57BL/6 mice fed HFD (45% fat, 35% carbohydrates and 20% protein) for 10 

weeks develop steatosis with minimal increases in gene expression levels of 
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inflammatory cytokines [172]. However, the degree of NASH appears to depend on the 

rodent strain and duration of HFD. Overall, HFD animal models represent 

hepatosteatosis related to the metabolic syndrome and hepatosteatosis. However, the 

inflammatory and fibrotic features are not displayed in most HFD animals; therefore, 

they are not considered a typical model of NASH. 

 

Food containing high levels of cholesterol is a major risk factor in the development of 

hepatic inflammation and progression of NASH in animals and humans. Several studies 

have suggested that dietary cholesterol increases lipid accumulation and inflammation 

in the liver of HFD-fed mice [80]. It has been suggested that addition of cholesterol 

(0.2%; #C75209, Sigma-Aldrich) to HFD can produce the NASH phenotype [173]. 

Similarly, rats fed the same diet do not show severe inflammation and fibrosis [174]. 

Atherogenic HFD accelerates the development of steatosis and inflammation after 

chronic feeding for 24 weeks [62]. Hepatosteatosis and liver injury (minimal fibrosis) 

may develop in mice fed a diet enriched with high-fructose corn syrup (HFHC-fed 

mice) [175]. 

 

One animal model of T2D has been fed HFD with a low dose of streptozotocin (STZ) 

injections for 5 consecutive days to partially damage the pancreatic β-cells [176-178]. 

T2D (HFD-STZ) mice display a significant increase in hyperglycaemia and TG content 

in the liver [88]. However, the HFD-STZ model of T2D only develops metabolic-

related NAFLD, not full-blown NASH. Most rodents fed HFD, HFru and HFHC 

represent hepatosteatosis [120]. However, inflammatory and fibrotic features are not 

displayed in most HFD animals; therefore, they are not considered typical models of 

NASH. 
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MCD diet is commonly used to produce NASH in animals. The diet is deficient in 

methionine and choline, which are essential proteins in regulating lipid secretion in the 

liver [162]. Mice fed MCD diet mimic the pathophysiology of NASH in humans but 

without the phenotype of metabolic syndrome [161]. The development of fibrosis may 

occur within 3 weeks of MCD feeding. MCD-induced inflammation is usually 

associated with an elevated plasma level of ALT [162]. Importantly, animals fed MCD 

diet do not develop obesity or insulin resistance, as in the metabolic profile of NASH in 

humans. However, it has been reported that mice lacking either leptin (ob/ob) or the 

long form of the leptin receptor (db/db) fed MCD exhibit NASH associated with 

metabolic abnormalities [123], and that HFD promotes NASH in these genetic animal 

models [120]. 

 

Genetic animal models have been widely used in the study of NAFLD/NASH and to 

identify novel drugs. Genetic models are associated with minor or major contexts of the 

metabolic syndrome. Animals with a spontaneous truncating mutation, such as acyl-

CoA oxidase null (ACOX−/−), methionine adenosyltransferase (MAT)-1A knockout 

(MATO mice) and liver-specific pten deletion, exhibit severe steatosis associated with 

inflammatory infiltration. However, these mice do not show features of the metabolic 

syndrome. Conversely, ob/ob or db/db mice are steatotic and morbidly obese because 

of hyperphagia but do not display typical characteristics of NASH. Secondary insults 

such as LPS and MCD may induce steatohepatitis with severe fibrosis, but this depends 

on mice strain. The liver of HFD-fed foz/foz C57BL6/J mice shows severe 

inflammation and fibrosis compared with non-diabetic foz/foz BALB/c mice [179]. 

Another genetic model used for lipodystrophy-associated steatohepatitis is called 
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SREBP1c transgenic mouse [120]. This model develops steatosis, inflammation and 

fibrosis where serum leptin levels are usually increased. 

 

A number of environmental factors promote the pathogenesis of NASH. As mentioned 

earlier, excess exogenous fat, increased endogenous fat and decreased lipid secretion 

are the main sources of hepatic lipid accumulation. Animal models produced by these 

three components generally resemble human NAFLD. Firstly, mice fed HFD represent 

hepatosteatosis related to obesity. Secondly, increased endogenous fat defined as DNL 

is observed in mice fed HFru diet, as previously explained in Section 1.6.2. However, 

these two models do not exhibit severe inflammation, hepatocyte injury and fibrosis, as 

occur in humans. Finally, mice fed MCD diet exhibit decreased lipid secretion and 

impaired TG excretion. These mice have become the most commonly used model for 

NASH despite the lack of the phenotype of the metabolic syndrome. 

 

Prevention or treatment of NASH in humans remains a big challenge. Dedicated efforts 

are necessary to develop an appropriate treatment that is able to improve NASH with 

hepatoprotective and metabolically favourable advantages. Animal models that 

recapitulate NASH in humans are important for the evaluation of potential therapeutic 

agents for the treatment of NASH. 

 

In summary, there is no optimal NASH animal model at present. To determine 

pathogenic mechanisms of the transition from hepatosteatosis to steatohepatitis, 

different animal models are required. The table summarises rodent models for NAFLD 

and NASH reported in the literature (Table 1.5). 
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Table 1.5  Current rodent models of NASH 

Manipulation Model Metabolic 

syndrome 

Steatosis NASH Fibrosis Characteristics 

Dietary High-fat diet (HFD) Yes  Yes  Yes  No Modern Western diet, depends on rodent 

strain and feeding duration, long-term 

feeding, not considered a NASH model 

 HF + cholesterol Yes Yes  Yes  No Atherogenic diet, depends on the amount of 

cholesterol and cholate, insulin sensitive, no 

significant fibrosis 

 HFD + streptozotocin 

(HFD-STZ) 

Yes Yes No No Type 2 diabetes model, does not induce 

inflammatory NASH 

 High-fructose (HFru) 

diet 

Yes Yes No No Liver injury may develop, no inflammation, 

not good model for NASH 

 Methionine- and 

choline-deficient 

(MCD) diet 

No Yes Yes Yes Mimics pathological NASH in humans, 

appropriate model for studying inflammation 

and fibrosis in NASH, no metabolic profile of 

NASH in humans 

 Choline-deficient diet 

(CDD) 

No No Yes Yes Depends on time of feeding, metabolic 

alterations in Wistar rats 

 Carbon tetrachloride 

(CCl4) 

No Yes Yes Yes Short-term fibrosis, toxic and high mortality 

Genetic ob/ob, db/db mice Yes Yes Yes No db/db mice have a defect in leptin signalling, 

ob/ob mice have a non-functional leptin gene, 

good models for NAFLD, human metabolic 

syndrome features, poor models for NASH 
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Manipulation Model Metabolic 

Syndrome 

Steatosis NASH Fibrosis Characteristics 

 foz/foz mice Yes Yes  Yes  No Alms1 gene mutation, metabolic syndrome 

profile, poor model for NASH 

 SREBP1c transgenic 

mice 

Yes Yes  Yes Yes Congenital lipodystrophy mouse model, long-

term feeding to develop NASH, severe IR, 

decreased adiposity 

 KK-A
y
 mice Yes Yes No No Loss of melanocortin, MCD diet is a second 

hit required to develop NASH 

 PPARα knockout 

mice 

No  Yes  No No PPARα gene homozygous mutation, steatosis 

in starved state 

 ACOX null mice No Yes Yes No Defective peroxisomal β-oxidation of LCFAs, 

mice develop HCC 

 Zucker fatty rats Yes Yes Yes  No Do not spontaneously develop steatohepatitis, 

resistant to liver fibrosis 

 Otsuka Long-Evans 

Tokushima fatty rats 

Yes Yes No No A model for the metabolic syndrome with 

diabetes, not a suitable model for NASH 

 Prague hereditary 

hypercholesterolaemic 

rats 

Yes Yes No No A model for polygenic 

hypercholesterolaemia, comparable to human 

disease 

 MAT-1A null 

(MATO) mice 

No Yes Yes Yes Methionine adenosyltransferase-1A mutation, 

no metabolic syndrome (rare IR) 

NASH, non-alcoholic steatohepatitis; IR, insulin resistance; HCC, hepatocellular carcinoma. Based on Lau JK. et al, Journal of Pathology, 

2017 [179]. Santhekadur PK. et al, Journal of Hepatology, 2018 [120]. 
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1.9 Current treatments of NASH 

 

NAFLD is the most common liver disease in developed countries, leading to an 

emerging public health crisis that may progress to a more serious situation. Persistent 

NASH leads to cirrhosis or HCC and is a leading cause of liver transplantation. While 

NASH is reversible, untreated NASH and transition to advanced stages of cirrhosis are 

difficult to reverse in most cases. Therefore, NASH is a critical stage in NAFLD broad 

spectrum of diseases and effective treatment that may halt its transition will be of great 

benefit for the control of fatty liver disease. 

 

To date, there is no approved specific drug for NAFLD or NASH. There is rapid 

progress in identification of new therapies, and the development of NASH repurposing 

of currently available drugs is an effective means for the development of new drugs for 

NASH. Treatment of NAFLD is especially important because this can prevent the 

progression to NASH. 

 

Patients with NAFLD and NASH need an effective treatment that can reverse 

hepatosteatosis development and prevent the progression of NASH. Unfortunately, 

treatments of the metabolic syndrome are not effective for the treatment of NASH [67]. 

The lack of non-invasive markers to assess steatosis, liver damage, inflammation and 

fibrosis is also a barrier for developing effective treatments [180]. As NASH results 

from complex pathophysiological processes, therapeutic treatments are likely to include 

a wide array of drugs targeting different mechanisms. Figure 1.7 illustrates the major 

approaches for these mechanisms. Current treatments for NAFLD include reducing the 

risk factors that may cause the disease, such as obesity, prediabetes or diabetes and high 
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cholesterol or TG. Multiple pharmacological agents have been investigated in several 

studies for the treatment of this disease. 

 

 

 

Figure 1.7 Pathways representing possible targets for the treatment of NAFLD.  

Understanding the pathogenesis of NAFLD and progression of NASH helps develop 

effective treatments that target different pathological pathways leading to different 

stages of NAFLD. 

 

The current management of NAFLD includes lifestyle interventions and drug therapy. 

Introduction of lifestyle changes including dietary intervention, increased physical 

activity and reduced weight is usually recommended first for the management of 

NAFLD. However, it is intended to support the treatment of not only NAFLD but also 

diseases associated with obesity, insulin resistance, diabetes and dyslipidaemia. 
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Apart from the above-mentioned lifestyle interventions, some drugs have been 

considered, including those listed in Table 1.6. These include insulin sensitisers 

(metformin, troglitazone, rosiglitazone and pioglitazone), lipid-lowering agents 

(statins), antioxidants (Vitamin E and C), hepatoprotective agents (betaine, 

ursodeoxycholic acid and pentoxifylline) and angiotensin-converting enzyme 

inhibitors. However, none of these drugs is effective for NASH. Therefore, this thesis 

aims to investigate the potential use of Mtr for the treatment of NASH. 
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Table 1.6 Summary of currently drugs used for the treatments of NAFLD/NASH 

Target/Mode of action Example of drugs Hepatosteatosis  Inflammation Fibrosis  Adverse events and concerns 

Weight loss therapies Loss of body weight  Yes  No No 

 

 Hard to achieve and poor compliance 

Liver histology remains unknown 

Anti-metabolic Metformin Yes No No  No effect on liver histology 

Rosiglitazone and 

Pioglitazone 

Yes No No  Weight gain, heart disease 

No effect on inflammation and fibrosis 

Ursodeoxycholic Acid Yes No No  No effect on inflammation and fibrosis 

Antioxidant Vitamin E Yes Yes No  No effect on hepatic fibrosis 

Prostate cancer 

Anti-inflammatory Pentoxifylline No Yes No  No effect on lipid profile 

Amlexanox No Yes No  Safety but require more data 

Cenicriviroc No Yes No  Insufficient data for safety and efficacy 

Antifibrotic Galectin-3 inhibitor  No Yes Yes  Require long-term outcomes 

Simtuzumab No Yes Yes  Ineffective in reducing fibrosis 

Selonsertib No Yes Yes  Require long-term outcomes 

Based on Sanyal, A. J. et al, The New England Journal of Medicine, 2010 [181] and Sumida, Y. et al, Journal of Gastroenterology, 2018 [67]. 

 

 



 Chapter One - Introduction and Literature Review  

55 

Despite increasing development of new drugs to keep up with the increasing incidence 

of NAFLD, there remains an urgent need to identify novel drugs with improved 

efficacy and fewer side effects for the treatment of NASH. 

 

1.10 Identification of matrine as a potential new drug for 

non-alcoholic steatohepatitis 

 

In searching for a new therapeutic treatment for NASH, we have taken the approach of 

repurposing existing drugs for this condition [182]. The main advantage of drug 

repurposing is safety in humans because these existing drugs have been used without 

major side effects [182]. A second important advantage is reduction of the duration, 

risk and cost involved in the drug development pipeline to the clinic and the drug 

regimens [183]. 

 

Several lines of evidence suggest that Mtr may be repurposed for the treatment of 

NASH. Mtr is a small molecule (Figure 1.8), easy to absorb orally and can be scaled 

up. As reviewed by Liu et al., Mtr is a safe drug for the treatment of chronic viral 

infections and tumours in the liver [184]. Another study has shown that high 

concentrations of Mtr may lead to cytotoxicity of human hepatocytes; however, low 

concentrations of Mtr have no severe side effects [185]. Moreover, Mtr may prevent 

progression of HCC via inhibiting overexpression of MMP-9 by reduction of the 

nuclear factor kappa beta (NF-κB) signalling pathways [186]. Mtr has a different 

chemical structure and plasma protein binding from other drugs including metformin, 

which has no effects on TG level, glucose tolerance, lipogenic protein levels (ACC and 
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FAS), and protein expression or activity of energy metabolism markers. Recently, Zeng 

and colleagues have found that Mtr is able to reduce hepatosteatosis and glucose 

intolerance in HFD-fed mice. This study has also revealed that the antisteatotic effect of 

Mtr is associated with upregulation of HSP72 in the liver, suggesting a unique 

mechanism underlying Mtr’s effect [172]. 

 

Figure 1.8 The chemical structure of matrine.  

Mtr is likely to work at different mechanistic levels to reduce 

hepatosteatosis and reverse metabolic dysfunction. It is 

noteworthy to study the benefits of Mtr in the reversal of 

hepatic fibrosis and reduction in the progression of NASH. 

 

1.10.1 Reported effects of matrine on inflammation 

 

As reviewed previously, hepatic inflammation is one of the major hallmarks of NASH. 

An early study has shown that Mtr suppresses LPS-induced production of inflammatory 

cytokines, suggesting Mtr might be an anti-inflammatory drug [187]. Mtr has been 

shown to inhibit TNFα, IL-6 and NF-κB activation in vivo and in vitro. Consistent with 

the anti-inflammatory effects of Mtr in BALB/c mice, Mtr significantly reduces the 

inflammatory gene expression levels in the liver of HFD C57BL/6J mice [172]. Mtr 

treatment has also been shown to decrease virus-induced TNFα expression and the 

nuclear translocation of p65 NFκB [188]. 
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1.10.2 Reported effects of matrine on fibrosis 

 

Liver fibrosis leads to the destruction of hepatocytes and impairment of liver functions 

and is strongly associated with all-cause or liver-related mortality in NASH [155]. Mtr 

has been shown to inhibit the activation of HSCs, which play a central role in liver 

fibrogenesis [189]. The antifibrotic effect of Mtr has been proven in CCL4-induced 

fibrosis in a rat model by attenuating TGFβ and collagen synthesis. 

 

1.10.3 Heat shock protein as putative targets for matrine 

 

Heat shock proteins (HSPs) are chaperone proteins modified by heat shock response 

(HSR) to protect the organism against physiological and environmental stresses [190]. 

HSPs are known to prevent protein aggregation and refolding of damaged proteins 

through proteasomes, autophagy or protein degradation [191]. HSP90 HSF1 and 

HSP70 (stress inducible form is HSP72) have been suggested to modulate inflammation 

[192]. Physiological stress and heat shock activate HSF1 by dissociating it from HSP90 

[193]. This allows HSF1 to translocate into the nucleus and transactivate the expression 

of HSP72. HSP72 is highly inducible and its upregulation has been shown to correlate 

with attenuation of diabetes, obesity and NAFLD [194]. We have chosen to focus on 

HSPs because they are ubiquitous chaperone proteins existing in prokaryotes and 

eukaryotes and they play a major role in inflammatory diseases. 

 

HSP72 is abundantly expressed in the liver under normal conditions [195]. A reduction 

in HSP72 has been seen in the muscle of T2D patients [192]. It has also been 

demonstrated that loss of function of anti-inflammatory HSP70 may increase the 
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progressive liver inflammation influence of NASH [194]. It is possible that HSP72 

expression has a critical role in blocking hepatic inflammation and KCs activation. 

 

The correlation between the progression of NASH and expression of HSPs in the liver 

has been clearly demonstrated [194]. It has been revealed that activation of KCs and 

production of inflammatory cytokines may result in downregulated expression of 

HSP72. In contrast, upregulation of HSP72 improves insulin sensitivity and 

inflammation contributing to insulin resistance and obesity [196]. In humans, there is a 

significant reduction in HSP72 in the liver paralleled by inflammatory cells that 

promote NAFLD development and the progression of NASH [194]. Overexpression of 

HSP72 in mice prevents HFD-induced JNK phosphorylation and impaired insulin 

signalling [196]. Consistent with this, another study has suggested that increased 

hepatic HSP72 results in reductions in glucose intolerance and plasma insulin level, 

hepatic TG content and adiposity in HFD-induced hepatosteatosis mice [172]. 

 

The anti-inflammatory HSP72 pathway has been revealed in many cellular activities 

and is expressed at low level under metabolic disease states [197]. Overexpression of 

HSPs is sufficient to inhibit LPS-induced TNFα, IL-1β, IL-6 and IL-12 response in the 

liver [198]. Overexpression of HSP90, a negative regulator of HSP72, increases the 

activity of hepatitis B virus [192]. Interestingly, HSP72 is involved in the pathogenesis 

of NASH. Reduction of HSP72 paralleled by similar reductions in HSF1 in KCs may 

contribute to NAFLD progression and associated ballooned hepatocytes in NASH [194, 

199]. Studying the link between compounds and HSP72 is essential to understand how 

this association can prevent inflammation. Importantly, docking simulation technique 

has confirmed that there is a strong association between Mtr and HSP72. Further study 
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suggests that Mtr treatment improves HFD-induced hepatosteatosis in mice, at least in 

part by upregulating the expression of HSP72 in the liver [172]. 

 

As discussed in Section 1.6.4, Mtr is one of the oldest drugs used to treat inflammation, 

and has been proposed as a possible anti-inflammatory drug [182]. This proof-of-

principle study reports the potential efficacy of Mtr for the treatment of hepatic 

inflammation [200] via HSP72 [172, 201]. 

 

1.11 Summary, study aims and hypothesis 

 

This review was conducted to identify gaps in the current literature and the aims of this 

thesis were suggested. Subsequent studies were dedicated to investigate the therapeutic 

efficacy and underlying molecular mechanisms of Mtr in this disease. 

 

NAFLD is the most common chronic liver disease, affecting one-third of people 

globally (Section 1.3.1) with a high rate of progression to NASH (Section 1.6) and 

serious complications (Section 1.7). Although in vitro and animal models have been 

developed, and may be appropriate as preclinical models of NASH, there is no single 

animal model that can fully resemble metabolic NASH in humans (Section 1.8). 

Different animal models are therefore needed for the proper evaluation of new 

therapeutics for NASH. While several drugs have been considered for the control of 

NAFLD and the progression of NASH (Section 1.9), none of them satisfy the 

requirements for the treatment of this serious condition. In the quest to find an effective 

and safe treatment for NAFLD and its progressive form, Mtr was selected for the 
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investigation in this thesis on the basis of its reported pharmacological properties and 

safety. 

 

Therefore, the overall purpose of this thesis was to investigate the therapeutic effects 

and mechanisms of Mtr for the treatment of NAFLD and NASH. To address this 

objective, three specific aims were designed as follows: 

 

Aim 1: To investigate the effects of Mtr on lipogenesis-induced hepatosteatosis and 

associated disorders in glucose homeostasis (Chapter 3). 

 

Aim 2: To investigate the effects of Mtr on NASH associated with inflammation and 

fibrosis in MCD-fed mice (Chapter 4). 

 

Aim 3: To investigate the mechanisms involved in the therapeutic effect of Mtr in 

NAFLD/NASH (Chapters 3 and 4) including HSP72 and the role of macrophages in 

LPS-stimulated inflammation (Chapter 5). 

 

The working hypothesis was as follows: Mtr can alleviate hepatic steatosis, 

inflammation, injury and fibrosis by mechanisms involving HSP72 and the inhibition of 

inflammation. 

 

The overall design of the studies for these aims is illustrated below. The results from 

these studies are likely to provide new insight into the therapeutic effects of Mtr in the 

development of NAFLD and progression of NASH. The findings may help decide 



 Chapter One - Introduction and Literature Review  

61 

whether Mtr is a promising new drug for the treatment of NAFLD, particularly of 

NASH. 

 

 

Figure 1.9 Schematic view of the research aims. 

 

 



 

 

Chapter 2 Research Design and 

Methodology
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2.1 Introduction 

 

This section presents all the common methods and techniques used for the studies presented 

in Chapters 3, 4 and5. Special methods and techniques for a particular study are described 

separately in corresponding Chapters.  

 

2.2 Rodent models 

 

The Animal Ethics Committee of RMIT University approved all experimental procedures 

(AEC #1012 and #1415) in accordance with the National Health and Medical Research 

Council of Australia Guidelines on Animal Experimentation [202, 203]. 

 

All animal studies were conducted in male C57BL/6J mice (10 week old and weight 22-25 g) 

that were purchased from the Animal Resources Centre (Perth, Australia). The animals were 

kept in a temperature-controlled room (22 ± 1°C) on a 12-h light/dark cycle. Before any 

procedure was performed, mice were first allowed to acclimatize for at least one week while 

they were fed ad libitum with a standard normal chow diet. The standard chow diet (CH; 

Meat Mouse Diet) was purchased from Specialty Feeds, Western Australia. It contains 12% 

calories from fat, 23% from protein, and 65% from carbohydrate. The digestible energy in 

this diet is 3.34 kcal/kg. 

 

The study animal models were undertaken separately for each animal model Chapter. The 

number, group and statistical analysis were determined for each model to address the specific 
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research questions on the hypotheses. Three animal models design including high fructose, 

HFD-STZ and MCD mice models were demonstrated in Chapter 3 and 4 respectively. 

 

2.3 Measurement of plasma and tissue parameters 

 

Blood samples were collected using heparinized capillary tubes (SteriHealth Laboratory 

Products, Australia) to prevent clotting. Blood samples were collected from the tail tip and 

then immediately mixed with the same volume of saline and stored on ice. Plasma separated 

by centrifugation (13,000 RPM for 1 min) was transferred to a new Eppendorf tube and 

stored at -80°C for subsequent measurements. 

 

Mice were killed by cervical dislocation and liver samples were immediately freeze-clamped 

and stored in -80°C. Next, freeze-clamped liver tissue were weighed and placed in different 

sets of Eppendorf tubes depend on the experimental requirements; such as western blotting 

set for 30 and 20 mg of liver tissue for western blotting and RT-PCR technique, respectively.  

 

2.4 Glucose determination 

 

The body weight of mice was measured in the afternoon one day before the glucose tolerance 

test (GTT) for the calculation of glucose loads. On the day of GTT, food removed from mice 

cages for 5-7 hours before glucose was injected i.p. at a dose indicated in each study. Blood 

glucose levels were analysed at described time (0, 15, 30, 60 and 90 min) points for the 
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measurement of blood glucose using an Accu-Chek glucometer (Roche Diagnostics, 

Australia). The absolute volumes used were depended on the experimental requirements. 

 

2.5 Extraction and determination of tissue triglyceride  

 

The triglyceride level in plasma and liver extracts were determined by a Peridochrom 

triglyceride GPO-PAP kit (Roche Diagnostics), according to the manufacturer’s instructions 

(Roche Diagnostic, Australia). Triglyceride reagent (300 μl) added to all plasma samples (5 

μl), and then incubated at 37°C for 10 min. A FlexStation microplate reader (Molecular 

Devices, USA) was used for reading the absorbance on microtiter plate at 485 nm. A standard 

curve was created using internal standards (glycerol solution, 0.21 mg/ml, Roche, Catalogue 

No.166588). 

 

With regard to measuring liver triglyceride, liver samples were immediately freeze-clamped 

and stored in -80°C after mice were killed by cervical dislocation. Triglyceride extraction 

started with a pre-weighed sample of tissue (30 mg liver). Liver tissue was homogenised in 2 

ml of chloroform/methanol (2:1) using a glass homogeniser. After transferring the 

homogenate to a clean 15 ml tube, the homogeniser was rinsed with another 2 ml of 

chloroform/methanol (2:1) and added to the homogenate. To ensure the complete 

solubilisation of the triglyceride, the tubes were tightly capped and rotated at room 

temperature overnight. A sodium chloride (0.6% NaCl, 2 ml) was added to the tubes followed 

by centrifugation at 2,000 RPM for 10 min to separate the aqueous from the organic phases. 

The lower chloroform layer contained triglycerides was carefully extracted and then 
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transferred into a glass vial and dried completely under air at 45°C. An absolute ethanol (500 

μl) dissolved in the extract and then triglyceride concentration was determined by a 

Peridochrom triglyceride GPO-PAP reagent (Roche Diagnostics, Catalogue No. 11730711). 

 

2.6 Protein quantification 

 

Protein concentrations were determined through use of commercially available colorimetric 

bicinchoninic acid (BCA) protein kit (Sigma-Aldrich, #B9643). Usually, 1 µl tissue lysate 

was added to 19 µl dH2O to dilute lysate, then 200 µl BCA reagent mix (50 parts reagent A 

to 1 parts reagent B) was added to detect concentration of protein in the each sample. 

Solutions were mixed and incubated at 37°C for 30 mins prior to the determination of 

absorbance by spectrophotometry at 562 nm using a Polarstar Optima microplate reader 

(BMG Lab Technologies, Germany). In every BCA assay, varying dilutions of BSA protein 

were included to create a standard curve between the ranges of 0 µg/ml to 2.0 µg/ml
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2.7 Western Blotting 

 

2.7.1 Reagents / Buffers  

 

The table below showed the main buffers and solution used in western blotting technique. 

 

Table 2.1 The preparation of western blotting reagents and buffers  

Name Preparation 

RIPA buffer 65 mM Trizma® base (Tris, Sigma-Aldrich, #T1503), 150 mM NaCl, 5mM EDTA, 1% Nonide-P 40 Substitute (NP-

40, Sigma-Aldrich, #74385), 0.05% Sodium-deoxycholate (Sigma-Aldrich, #D6750), 0.1% (w/v) Sodium dodecyl 

sulphate (SDS, Sigma-Aldrich, #L4390), 10% Glycerol (Sigma-Aldrich, #49770), pH 7.5 and stored at 4°C 

Lysis buffer 10 mM Sodium fluoride (NaF, Sigma-Aldrich, #S7920), 1 mM Sodium orthovanadate (Na3VO4, Sigma-Aldrich, 

#S6508), 1 mM Phenylmethanesulfonyl fluoride (PMSF, dissolved in 100% Ethanol, Sigma-Aldrich, #78830), and 

10 µl/ml Protease/Phosphatase inhibitor (Sigma-Aldrich, #P5726) in RIPA buffer 

4xLaemmli’s 

buffer (100ml) 

8.2 g SDS, 40ml Glycerol, 50 ml 0.5 M Tris, 500 µl 1% Bromo-phenol blue (Sigma-Aldrich, #114391) in dH2O, pH 

6.8 and stored at -20°C. Before use, added 6.2 mg DL-Dithiothreitol (DTT, Sigma-Aldrich, #D9779)  
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Name Preparation 

Running gel 1.5 M Tris Buffer (pH 8.8), 30% Acrylamide/Bis-acrylamide (Sigma-Aldrich, #A3574), 10% (w/v) SDS, dH2O, 

10% Ammonium persulfate (APS, Sigma-Aldrich, #A9164), Tetramethylethylene diamine (TEMED, Sigma-

Aldrich, #T9281) 

Stacking gel 0.5 M Tris Buffer (pH 6.8), 30% Acrylamide/Bis-acrylamide, 10% (w/v) SDS, dH2O, 10% APS and TEMED 

10x Running 

buffer (1L) 

30 g Tris, 144 g Glycine (Sigma-Aldrich, #G8898) and 10 g SDS in dH2O, pH 8.8 and stored at room temperature 

10x Transfer 

buffer (1L) 

30 g Tris, 144 g Glycine in dH2O and stored at room temperature 

10x TBS (1L) 24.2 g Tris and 80 g NaCl in dH2O, pH 7.6 and stored at room temperature 

1x TBS-Tween 

(TBST, 1L) 

100 ml 10x TBS buffer and 500 µl Tween® 20 (Sigma-Aldrich, #P9416) in 900 ml dH2O and stored at room 

temperature 

Blocking buffer 3% (g/100ml) Bovine Serum Albumin (BSA, Sigma-Aldrich, #A9418) in 1x TBST and stored at 4°C 

Stripping buffer 

(1L) 

6.25% 1 M Tris-HCl (pH 6.7), 10% (w/v) 20% SDS in dH2O and stored at room temperature. Added 100 mM 2-

Mercaptoethanol (Sigma-Aldrich, #M7154) before use 
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2.7.2 Sample preparation 

 

Tissue samples were homogenized with a pestle mixer in an ice-cold RIPA buffer 

containing 10 μL/mL protease inhibitor cocktail (Sigma-Aldrich, #9599), 10 μL/mL 

phosphatase inhibitor cocktail (Sigma-Aldrich, #P5726), 10 mM NaF (Sigma-Aldrich, 

#S7920), 1 mM Na3VO4 (Sigma-Aldrich, #450243) and 1 mM phenylmethanesulfonyl 

fluoride (Sigma-Aldrich, #78830). Tissue lysates were then centrifuged at a speed of 

20,000 × g for 15 minutes at 4°C. The protein concentrations in the supernatant were 

determined by bicinchoninic acid assay (Sigma-Aldrich, #B9643). Protein samples 

were then diluted with water and mixed with 4× Laemmli buffer together with 1 mM 

DTT. Finally, samples were boiled at 95°C for 5 minutes to denature the protein.  

 

2.7.3 PAGE gels preparation 

 

Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis (SDS-PAGE) is a 

standard technique used for separating proteins according to their molecular weight. 

 

Table 2.2 Recommended Polyacrylamide % for Separation in Denaturing Gels 

Protein size (kDa) Gel percentage (%) 

25-200 8% 

15-100 10% 

10-70 12% 

4-50 14% 
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Table 2.3 Composition of running gel and stacking gel 

          Running Gel (in ml) (for two gels)                                 

   # Solution 8% 10% 12% 14% 

1 1.5M Tris Buffer, pH 8.8 5 5 5 5 

2 30% Acrylamide/Bis-acrylamide 5.3 6.7 8.0 9.3 

3 10% SDS 0.2 0.2 0.2 0.2 

4 dH2O 9.5 8.1 6.8 5.5 

5 10% APS 0.2 0.2 0.2 0.2 

6 TEMED 0.02 0.02 0.02 0.02 

 

           Stacking Gel (for two gels)                       ml             

1 0.5M Tris Buffer, pH 6.8 1.25 

2 30% Acrylamide/Bis-acrylamide 1.7 

3 10% SDS 0.1 

4 dH2O 7.0 

5 10% APS 0.1 

6 TEMED 0.02 

 

 

2.7.4 Immunoblotting 

 

Following the gel preparation, the denatured protein samples (20 μg/well) and standard 

protein ladders (5 μL/well, Bio-Rad, #161-0374) were loaded to the gel and separated 

at 120 V until the protein ladder above or below the protein of interest were well 

separated. Subsequently, proteins in the gel were transferred to the PVDF membrane 
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(Bio-Rad, #162-0177) in a transfer buffer at 100 V for 2 h. The PVDF membrane was 

incubated in 3% BSA (in TBST buffer, Sigma-Aldrich, #A9418) at room temperature 

for 1 h to block the non-specific binding and then incubated with the primary antibody 

overnight at 4ºC. After 1 h of wash in TBST, the membrane was incubated in the 

horseradish peroxidase conjugate secondary antibody (Santa Cruz, #sc-2004 for rabbit, 

#sc-2005 for mouse) and followed by 1 h of wash in TBST. Enhanced chemilumescent 

(Perkin Elmer, #NEL113001EA) was used for the detection. Densitometric analysis 

was performed using Image Lab software 5.0 (Bio-Rad Laboratories). The primary 

antibodies are listed in Table 2.4. Antibodies from Cell Signaling and Abcam were 

diluted 1:1000 and these from Santa Cruz were diluted 1:500, with a TBST buffer 

containing 1% BSA, 0.02% sodium azide (Sigma-Aldrich, #71289) and 0.0025% 

phenol red (Sigma-Aldrich, #32661). The bound antibody was detected using a 

chemiluminescence system with western lighting ultra solution (Perkin Elmer, 

#NEL113001EA). The membranes were exposed in a ChemiDoc (Bio-Rad 

LaboratoriesInc., USA) for images capturing for a sufficient time. Densitometry 

analysis was performed using Image Lab (version 4.1; Bio-Rad Laboratories, Hercules, 

CA, USA) [45, 88]. 
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2.7.5 Antibody list 

 

Table 2.4 list of common antibodies 

Pathway Name Supplier Catalogue No. 

Lipolysis SREBP1c   

ChEBP   

ACC Cell signaling  3662 

SCD1   

FAS   

ER stress eIF2α Cell signaling 9722 

CHOP Santa cruz  sc-793 

IRE1 Abcam  ab37073 

Inflammation NLRP3 

MCP-1 

AdipoGen 

Cell signaling 

20B-0006-C100 

2027 

Fibrosi TGFβ   

Cell signaling 

Santa cruz 

3709 

Smad3 

Caspase-1 

5678 

G2914 

Loading control GAPDH Cell signaling  2118 

Tubulin 3873 

 

2.8 Real-time quantitative reverse transcription polymerase 

chain reaction (qRT-PCR) 

 

2.8.1 Isolation of RNA from mice  

 

Liver tissues (20-30mg) were homogenised in 1 ml TRIZOL® reagent (Invitrogen, 

Catalogue No.15596026). The homogenate was mixed with 200 μl of Chloroform 
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(VWR, Catalogue No.22711324) by inverting several times, and incubated at room 

temperature for 5 min. The homogenates were subsequently centrifuged at 13,000 rpm 

for 15 min at 4°C. The upper aqueous phase containing RNA was collected and mixed 

with 500 μl of isopropanol (Sigma-Aldrich, Catalogue No.I9516). After another 

centrifugation at 13,000 rpm for 20 min at 4°C, the supernatant was removed. The 

remaining RNA precipitate was washed twice with 500 μl 75% ethanol with vortex. 

The ethanol was removed by centrifugation at 13,000 rpm for 5 min at 4°C. The air-

dried RNA pellet was dissolved in 100 μl of DEPC-treated water (Invitrogen, 

Catalogue No.AM9916) for the measurement of RNA concentration. 

 

2.8.2 Measurement of RNA concentration  

 

The liver RNA purity and concentrations were assessed using a NanoDrop 

Spectrophotometer (Eppendorf Thermo Scientific, Australia) at the absorbance of 260 

and 280 nm, with DEPC water as a blank. Each RNA sample (1.0 µl) was loaded onto 

the sampling platform for the measurement of RNA concentration. The absorption ratio 

of 260/280 nm is used to assess the purity of RNA samples (Ratio should be between 

1.8 and 2.0).  

 

2.8.3 Complimentary DNA synthesis by reverse transcription 

 

Complimentary DNA synthesis by reverse transcription Purified RNA with known 

concentrations was used to generate the complementary DNA (cDNA) using a Reverse 

Transcription System (Bio-Rad Laboratories Inc., USA) with random primers 

according to the manufacturer’s instructions. The RNA concentration of each sample 
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was normalised to 1 μg/8 μl with DEPC water on ice. To remove DNA contamination, 

1 μg of RNA was mixed with 2 μl of DNase I (Invitrogen, Catalogue No.18068-015), 

and incubated at room temperature for 15 min. After the removal of DNA, 1 μl of 25 

mM EDTA was added and incubated for 10 min at 65°C to inactivate DNase I. The 

purified RNA (2 μl) was reverse transcribed using a high capacity cDNA reverse 

transcription kit (Life Technologies, Catalogue No. 4374967) (2 μl of reverse 

transcription buffer, 0.8 μl of dNTP mix, 2 μl of random primers, 1 μl of reverse 

transcriptase and 12.2 μl of DEPC water). Reverse transcription polymerase chain 

reaction was carried out using the following steps: equilibrated at 25°C for 10 min, 

37°C for 2 hr, 85°C for 5 sec, and finally maintained at 4°C. The cDNA products from 

reverse transcription reactions were stored at 4°C to use for RT-PCR analysis. 

 

2.8.4 Real-time polymerase chain reaction  

 

The cDNA samples were analysed for genes of interest by RT-PCR using the SYBR 

Green RT-PCR system (Bio-Rad Laboratories Inc., USA). A reaction master mixture 

(1x IQ SYBR Green Supermix (Bio-Rad Laboratories Inc., USA; Catalogue No.170-

8882), 500 nM forward primers and 500 nM reverse primers, DEPC water to a final 

volume of 24 μl) for each gene of interest was prepared and added to each 1 μl cDNA 

sample in a sterile 96-well plate. The plate was placed in a controlled-temperature heat 

block equilibrated at 50°C for 2 min, 95°C for 3 min and 40-50 cycles of 95°C for 15 

seconds, 72°C for 30 seconds. The gene expression from each sample was analysed in 

duplicates and normalised against the ribosomal housekeeper gene 18S (GeneWorks, 

Australia). All reactions were performed on the iQTM 5 RT-PCR Detection System 
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(Bio-Rad Laboratories Inc., USA). The results are expressed as relative gene expression 

using the ΔCt method. Primers used for specific genes are in Table 2.5. 

 

Table 2.5 Primer sequences for measurements of gene expressions 

Gene Primer Sequences 

18S Forward: 5’-CGCCGCTAGAGGTGAAATTCT-3’ 

Reversed: 5’-CGAACCTCCGACTTTCGTTCT-3’ 

TNFα Forward: 5’-CACAAGATGCTGGGACAGTGA-3’ 

Reversed: 5’-TCCTTGATGGTGGTGCATGA-3’ 

IL1β Forward: 5’-GACGGCACACCCACCCT-3’ 

Reversed: 5’-AAACCGTTTTTCCATCTTCTTT-3’ 

IL6 Forward: 5’-ATTCCAGAAACCGCTATGAAGTTC-3’ 

Reversed: 5’-GTCACCAGCATCAGTCCCAA-3’ 

CD68 Forward: 5’-TGACCTGCTCTCTCTAAGGCTACA-3’ 

Reversed: 5’-TCACGGTTGCAAGAGAAACAT G-3’ 

Collagen 1 Forward: 5’-CTGCTGGTGAGAGAGGTGAAC-3 

Reversed: 5’-ACCAAGGTCTCCAGGAACAC-3 

Each Chapter has designed with measuring specific and interest gene for diagnosis. 

 

2.9 Statistical analysis 

 

Throughout the thesis, results are presented as means ± SEM. For the comparison of 

only two groups, a Student’s t test was used. One-way analysis of variance was used to 

assess the statistical significance across all groups. When significant differences were 

found, the Tukey-Kramer multiple comparisons post-hoc test was used to establish 

differences between groups. Differences at P ≤ 0.05 were considered to be statistically 

significant and P ≤ 0.01 were considered to be highly significant. 
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3.1 Introduction 

 

The liver plays an important role in regulating whole-body lipid metabolism and 

glucose homeostasis. Excess accumulation of lipids (namely hepatosteatosis), either 

from endogenous DNL and/or influx of exogenous FAs, can disturb glucose 

homeostasis, increasing the risk of type 2 diabetes (T2D) [16, 113]. Although the 

degree of hepatosteatosis and T2D are not necessarily tightly coupled [204], inhibition 

of excess hepatic DNL has been shown to ameliorate hepatosteatosis and associated 

glucose intolerance [112]. Shulman and colleagues have also demonstrated that 

correction of hepatosteatosis in patients with T2D is important for hyperglycaemia 

control [36]. In a search for new therapeutic agents for the treatment of hepatic steatosis 

from DNL, we have taken the approach of repurposing existing drugs for these 

conditions [182, 205]. One main advantage of this approach is most existing drugs are 

well-known safety and pharmacokinetic profiles.  

 

Mtr is a small molecule (MW: 248) found in Sophora and is structurally different from 

the drugs currently used to treat T2D [7, 172, 184]. Mtr has been used clinically as a 

hepatoprotective drug for the treatment of tumors and viral hepatitis [184], where DNL 

is often increased [206]. A recent study from our laboratory found that Mtr is able to 

reduce hepatosteatosis, fasting blood glucose and glucose intolerance in high fat (HF)-

fed mice [172]. However, the HF model does not exhibit the characteristics of DNL-

induced hepatosteatosis and glucose intolerance because the accumulation of 

triglyceride (TG) in the liver is due to a direct influx of lipids into the liver from the HF 

diet [44, 45].  
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The liver is a major site of DNL production from carbohydrates [44] and interestingly 

the inhibition of hepatic DNL reduces hepatosteatosis and hyperglycaemia [112, 207]. 

It has been suggested that an increase in DNL is the second major source of lipid 

accumulation in the liver after circulating FFAs and contributes about 26% of patients 

with hepatosteatosis [2]. In mice, a high-fructose (HFru) diet induces hepatosteatosis as 

early as one day [46] prior to the development of glucose intolerance [44, 48, 114]. 

Dietary fructose is almost entirely metabolised in the liver in its first pass, and serves 

mainly as a substrate for DNL in both animals [46, 47] and humans [48-51] . HFru diets 

increase the expression of lipogenic transcription factors, sterol regulatory element 

binding protein (SREBP1c) and carbohydrate response element binding protein 

(ChREBP) which upregulate lipogenic genes. Upregulation of these lipogenic 

transcription factors can result in hepatosteatosis and glucose intolerance via promoting 

DNL [99, 105]. Notably, HFru-stimulated hepatic DNL via SREBP1c is dependent on 

the activation of the ER stress pathway [44]. 

 

The primary aim of the present study was to investigate whether the hepatoprotective 

drug Mtr can limit hepatosteatosis and the associated glucose intolerance that usually 

results from increased DNL in HFru-fed mice. If established, the second aim was to 

investigate whether the action of Mtr is mediated via the ER stress pathway. Finally, we 

also evaluated whether Mtr assists glycemic control in a T2D mouse model generated 

by a combination of HF and streptozotocin (STZ) where an increased DNL via 

SREBP1c is also involved [88, 176]. 
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3.2 Materials and methods 

 

3.2.1 Animals and diets 

 

The experiments described in this study were approved by the Animal Ethics 

Committee of RMIT University (Application ID: 1012) and conducted in compliance 

with the guidelines of the National Health and Medical Research Council of Australia 

for Animal Experimentation. C57BL/6J mice aged 10-12 weeks and weighing 21-24 g 

were obtained from the Animal Resource Centre Pty. Ltd. (Perth, Australia). The 

animals were housed in a temperature-controlled room (22 ± 1˚C) on a 12-h light/dark 

cycle with free access to food and water. Mice were fed ad libitum for 1 week on a 

normal chow diet (~70% calories from starch, ~10% calories from fat, and ~20% 

calories from protein; Gordon's Specialty Stock Feeds, Yanderra, Australia). Mtr (≥ 

98% by HPLC) was purchased from Sigma Aldrich.  

 

Two sets of animal experiments were performed. In the first set of experiments, mice 

were fed a HFru diet (35% fructose, 35% starch, ~10% fat and ~20% protein) to 

generate hepatosteatosis. Mice were fed for 8 weeks with or without Mtr at a dose of 

100 mg/kg every day as a food additive in the last 4 weeks as described previously [7, 

172]. Body weight gain and food intake were measured twice a week. For blood 

glucose levels, blood samples were collected from the tail tip and measured using a 

glucometer (AccuCheck II; Roche, New South Wales, Castle Hill, Australia) after 2 

weeks of Mtr treatment. In the second set of experiments, the effects of Mtr on 

hepatosteatosis and hyperglycaemia were examined in a T2D model induced by HF 

feeding in combination with low doses of STZ as previously reported [88, 208, 209]. 
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Briefly, mice were fed a HF diet (45% calorie from lard, 20% calories from protein and 

35% calories from carbohydrate) for 14 weeks to induce insulin resistance. After 8 

weeks of HF feeding, mice were injected with STZ at a low dose (40 mg/kg per day, ip) 

for 5 consecutive days to reduce the level of plasma insulin by ~50% [88, 208, 209]. 

One week after the last injection of STZ, fasting blood glucose was usually increased 

by 50-100% (Hyperglycaemia, defined as T2D). The T2D mice were then divided into 

2 groups: one group receiving Mtr added in the HF diet (100 mg/kg/day) for 4 weeks 

(T2D-Mtr) whereas the other group was fed HF alone (T2D-Con) for the same period 

of time. During the period of Mtr treatment, fasting blood glucose was monitored once 

a week. A normal control group of mice (CH-Con) was included for the same period. 

At the end of both sets of experiments, mice were killed by cervical dislocation and 

liver tissues were collected and freeze-clamped immediately for further analysis. 

 

3.2.2 Assessment of the effect on hepatosteatosis 

 

Hepatosteatosis was assessed by measuring TG content in the liver. Mice were fasted 

for 5-7 h before being killed; the liver was collected and freeze-clamped immediately. 

As described previously [45, 88] plasma and liver TG levels were determined with a 

Peridochrom triglyceride GPO-PAP biochemical kit (Roche diagnostics). The method 

of lipid extraction from liver with chloroform/methanol has been described previously 

[46]. 
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3.2.3 Assessment of the effect on hepatic FA oxidation  

 

FA oxidation was assessed in fresh liver tissue ex vivo as described [44, 45]. Briefly, 

fresh liver samples were homogenised in an isolating medium which contained 100 

mM sucrose, 50 mM Tris, 100 mM KCl, 1 mM KH2PO4 and 0.1 mM EGTA, 0.2% FA-

free BSA at pH 7.0. The liver homogenate was incubated with [
14

C]-palmitate and 

[
14

C]-CO2 produced from the incubation was collected in 1 M sodium hydroxide. 

Palmitate oxidation rates were determined by counting the 
14

C radioactivity of captured 

CO2 and acid-soluble metabolites and oxidation rate were expressed as nanomoles of 

CO2 per gram of wet weight per hour [44].  

 

3.2.4 Assessment of the effects on DNL and ER stress  

 

DNL and ER stress were assessed by immunoblotting with specific anti-bodies for the 

key proteins in the DNL, ER stress and heat shock protein (HSP) pathways based on 

our recent work [7, 44-46, 172]. Briefly, freeze-clamped liver was homogenized in ice-

cold lysis buffer supplemented with fresh protease inhibitor and phosphatase inhibitor 

(Sigma Aldrich). The key proteins in the DNL pathway included SREBP-1 (Santa 

Cruz), ChREBP (Abcam), acetyl-CoA carboxylase (ACC, Upstate), fatty acid synthase 

(FAS, Abcam) and stearoyl-CoA desaturase 1 (SCD-1, Cell Signaling). The key 

proteins measured in the ER stress pathway included inositol-requiring kinase 1 (IRE1, 

Abcam), eukaryotic translation initiation factor 2α (eIF2α, Cell Signaling) and CHOP 

(Santa Cruz). The effect on the HSP pathway was assessed by heat shock protein 72 

(HSP72, Abcam) based on our recent work [7, 172]. Proteins were quantified using a 
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ChemiDoc and densitometry analysis was performed using Image Lab software (Bio-

Rad Laboratories, USA).  

 

3.2.5 Statistical analysis  

As described in Chapter 2 Section 2.9. 

 

3.3 Results 

 

3.3.1 Effects on body weight, adiposity, hepatosteatosis and glucose 

tolerance in HFru-fed mice  

 

HFru feeding is a well-defined model of hepatosteatosis, visceral adiposity and glucose 

intolerance resulting from increased DNL in the liver [44]. As expected, HFru feeding 

moderately increased the mass of epididymal fat (by 40%, P < 0.01) without altering 

body weight or food intake (P > 0.05) (Figure 3.1A-C). The TG content (indicative of 

hepatosteatosis) was increased dramatically in the liver (by 3 fold) but only moderately 

in muscle (~35%) (Both P < 0.01; Figure 1D). As shown in Figure 3.1E, HFru-fed mice 

also showed moderate in glucose intolerance.    

  

Administration of Mtr prevented the moderate body weight gain (8-10%) in HFru-fed 

mice during this period of time (Figure 1A). It corrected HFru-induced increases in 

epididymal fat, liver TG content and glucose intolerance (all, P < 0.01 vs untreated 

HFru-fed mice) to the levels similar to CH-fed normal mice (Figure 1B-E). Although 
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not significantly reduced, muscle TG content in Mtr-treated HFru-fed mice was no 

longer different from the value of CH-fed normal mice (Figure 3.1D).  

 

 

 

Figure 3.1 Effects of Mtr on body weight gain, visceral adiposity, hepatosteatosis 

and glucose tolerance in HFru-fed mice.  

Mice were fed a high-fructose (HFru) diet for 8 weeks and matrine (Mtr, 100 mg/kg per 

day in diet) was administered in the last 4 weeks. A glucose tolerance test (GTT at 3g 
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glucose/kg BW, ip) was conducted after 2 weeks of treatment with Mtr. Epididymal 

(Epi) fat weight and liver TG content were determined at the end of the study. (A) Body 

weight gain, (B) Epididymal fat weight as a percentage of body weight, (C) Caloric 

intake, (D) Glucose tolerance and (E) TG content in liver and muscle. **P < 0.01 vs 

CH; †P < 0.05, ††P < 0.01 vs HFru (n=7-8 mice/group). 

 

3.3.2 Effects on FA oxidation and DNL in the liver of HFru-fed mice.  

 

We first examined whether Mtr treatment may promote FA oxidation in the liver of 

HFru-fed mice. As shown in Figure 3.2A, palmitate oxidation by the liver 

homogenates was not affected by the treatment with Mtr, suggesting that the reduced 

hepatosteatosis by Mtr is not likely to be due to an increased FA oxidation in the liver. 

We next examined the DNL pathway because HFru-induced hepatosteatosis is believed 

to result from the stimulation to this pathway in the liver [45-47]. As expected, HFru-

fed mice exhibited dramatic increases in DNL proteins in the liver (Figure 3.2B-E), 

including SREBP-1c (by 2-fold), ChREBP (by 33%) ACC (by 3-fold), FAS (by 3.4 

fold) and SCD-1 (by 4-fold) (all P < 0.05). Interestingly, these lipogenic proteins 

except for ACC were significantly reduced by the treatment with Mtr, including 

SREBP-1c (by 45%, P < 0.01), ChREBP (by 33%, P < 0.05), SCD-1 (by 32%, P < 

0.01) and FAS (by 24%, P < 0.05). These results suggest that the reduced TG content in 

the liver by Mtr can be attributed to its inhibitory effect on HFru-induced increase in 

hepatic DNL. 
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Figure 3.2 Effects of Mtr on FA oxidation and DNL pathways in the liver of HFru-

fed mice.  

FA oxidation was detected by incubating fresh liver homogenates with [14C]–palmitate 

and DNL was assessed by the protein expression of palmitate in this pathway. (A). 

Liver lyzates from mice were immunoblotted with the mature form of SREBP-1c and 

ChREBP (B), SCD-1 (C), FAS (D) and ACC (E) and then quantified for statistical 
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analysis. *P < 0.05, **P < 0.01 versus CH-Con; †P < 0.05, ††P < 0.01 versus HFru-

Con, n = 7-8 mice per group. 

 

3.3.3 Effects on ER stress and HSP72 in the liver of HFru-fed mice 

 

By promoting DNL in the liver, the activation of ER stress represents a key step in the 

pathogenesis of hepatosteatosis [44, 59, 210]. As shown in Figure 3.3A, HFru-fed mice 

exhibited significant increases of the mature form of eIF2α (by 2-fold), CHOP (by 2.3-

fold) and IRE1 (by 2-fold) along with the upregulation of the DNL pathway in the liver. 

Treatment with Mtr markedly reduced the protein levels of these hepatic ER markers 

towards the levels seen in CH fed mice. These results indicate that Mtr induced-

suppression of ER markers may be associated with the improvement in lipogenesis, 

which could account for its beneficial effects on hepatosteatosis. Recent studies 

indicate that HSP72 is likely to mediate the effect of Mtr on hepatosteatosis and 

glucose intolerance [172, 192, 196]. As shown in Figure 3B, there was ~50% 

suppression of HSP72 (P < 0.05 vs CH fed mice) in the liver of HFru-fed mice and this 

reduction was reversed following treatment with Mtr (P < 0.05 vs untreated HFru-fed 

mice). 
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Figure 3.3 Effects on ER stress and HSP72 in the liver of HFru-fed mice.  

Liver lyzates from mice were immunoblotted for (A) eIF2α, CHOP and IRE1 and (B) 

HSP72 and quantified for statistical analysis. *P < 0.05, **P < 0.01 versus CH-Con; †P 

< 0.05, ††P < 0.01 versus HFru-Con, n = 7-8 mice per group.  
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3.3.4 Effects on hyperglycaemia in T2D mice  

 

To investigate the relationship of the effect on hepatosteatosis with glycemic control, 

we examined the metabolic effects of Mtr in T2D mice generated by a HF diet in 

combination with low doses of STZ [88, 172, 176]. The body weight was reduced in 

HFD-STZ-induced T2D mice (by ~15%) and treatment with Mtr had no effect on the 

body weight (Figure 3.4A), while visceral adiposity remained unchanged in T2D-Con 

mice compared to CH-fed mice Mtr significantly reduced epididymal fat in T2D mice 

(P < 0.05, Figure 3.4B). T2D-Con mice displayed typical fasting hyperglycaemia and 

Mtr treatment significantly reduced the degree of the hyperglycaemia over the period of 

4 weeks (by 20-30%, Figure 3.4C). As expected, HFD-STZ-induced T2D showed 

severe glucose intolerance but this was not attenuated by the treatment with Mtr (Figure 

AD). 
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Figure 3.4 Effects of Mtr on body weight, visceral adiposity, blood glucose and 

glucose tolerance in T2D mice.  

T2D was generated by a high-fat (HF) diet plus low-dose of STZ injections. After the 

development of hyperglycaemia, Mtr (100mg/kg per day in diet) was administered to 

diabetic mice for 4 weeks. Body weight at the end of the study (A).Epididymal (Epi) fat 

weight (B). Blood glucose levels (after 5-7 h of fasting) (C) were monitored once a 

week. An ipGTT (1.0g glucose/g body weight) was performed after 2 weeks of 

treatment with Mtr (D). **P < 0.01 vs CH-Con; ††P < 0.01 vs T2D-Con (n=7-8 

mice/group).  
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3.3.5 Effect on TG levels in T2D mice  

 

Recent studies indicate that hepatosteatosis can contribute to hyperglycaemia and 

hepatic insulin resistance [30, 44]. To determine whether the reduced hepatosteatosis by 

resulting from Mtr treatment is associated with the control of hyperglycaemia in T2D 

mice, we measured the TG content in the liver. As shown in Figure 3.5A and B, T2D 

mice exhibited hypertriglyceridemia and hepatosteatosis; however Mtr significantly 

reduced these conditions (P < 0.05). Together, these results clearly indicate that Mtr 

reduces the T2D-induced hepatosteatosis that is associated with hyperglycaemia and 

this could account for its beneficial effects on the regulation of lipid metabolism. 

 

 

 

Figure 3.5 Effects of Mtr on TG level in the plasma and livers of T2D mice.  

Plasma levels of TG were measured from blood samples collected in week 2 of the 

treatment (A). Liver TG content was determined from freeze-clamped samples obtained 

at the end of the study (B). **P < 0.01 vs CH-Con; ††P < 0.01 vs T2D-Con (n=7-8 

mice/group). 
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3.4 Discussion   

 

The present study investigated whether the hepatoprotective drug Mtr can treat the 

hepatosteatosis and associated glucose intolerance in HFru-fed mice resulting from 

increased DNL. Consistent with previous studies from our laboratory [45, 46, 211], 

HFru-fed mice developed hepatosteatosis and glucose intolerance by promoting ER 

stress-associated DNL. Treatment of these mice with Mtr ameliorated hepatosteatosis 

and glucose intolerance. Within the liver, Mtr decreased the protein expression of DNL 

enzymes concomitant with reduced ER stress. This study further examined the effects 

of Mtr on hepatosteatosis in relation to glycemic control in T2D mice, which display a 

phenotype of hyperglycaemia and hepatosteatosis associated with increased DNL [88, 

176]. The results showed that Mtr treatment reduced hepatosteatosis and improved 

hyperglycaemia. Collectively, these findings suggest that Mtr has the potential to be 

repurposed for the treatment of hepatosteatosis resulting from increased DNL and 

associated disorders in glucose metabolism.  

 

Overconsumption of dietary fructose can lead to DNL and hepatosteatosis [44, 95], 

which in turn can result in glucose intolerance and contribute to hyperglycaemia [48, 

75]. Therefore, correction of hepatosteatosis is beneficial for improving glucose 

homeostasis in the metabolic syndrome. For example, in obese patients with T2D, a 

reversal of hepatosteatosis can improve hepatic insulin action and glycemic control 

[36]. This study has investigated drugs that have previously been used for the treatment 

of liver conditions, in order to determine whether they can be repurposed to treat 

hepatosteatosis [182]. One such candidate is Mtr chosen because liver has been shown 

to be the major target site of Mtr [212, 213]. Indeed, the study from our laboratory has 
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demonstrated that Mtr is able to attenuate the increased fasting blood glucose and 

improve glucose tolerance in insulin resistant mice induced by a HF diet [172]. The 

same study found that these anti-diabetic effects of Mtr appears to result from its effect 

in reducing hepatosteatosis without affecting HF diet induced lipid accumulation in 

muscle.   

 

Mtr is clinically used for treatment of chronic liver conditions including hepatocellular 

carcinoma and viral hepatitis with minimal adverse effects [172, 182, 184]. 

Interestingly, both hepatocellular carcinoma and viral hepatitis are associated with an 

increase in DNL [7, 214, 215]. Indeed, previous findings in 3T3L1 adipocytes have 

shown that Mtr can reduce DNL and lipid accumulation within the cells [216]. 

Although recent results from our group [172] have shown that Mtr is able to reduce 

hepatosteatosis and glucose intolerance in mice that have been fed a HF diet, the source 

of hepatosteatosis in this mouse model is from the exogenous FA due to the intake of 

dietary fat rather than endogenous FA from an increased DNL. Therefore, it is not clear 

yet whether Mtr is effective for metabolic disorders by that involve an increased hepatic 

DNL [44]. 

 

Several studies have demonstrated that DNL enzymes are over-expressed during the 

development of hepatosteatosis [71, 105]. HFru-fed mice are a well-defined animal 

model of DNL-induced hepatosteatosis and insulin resistance [44, 45], and DNL-

induced hepatosteatosis can be observed as early as one day after HFru feeding [211]. 

Indeed, the present study showed that chronic HFru feeding resulted in hepatosteatosis 

(increased TG level) by promoting DNL (indicated by SREBP1c, ChREBP, acetyl-CoA 

carboxylase (ACC) and fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 
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(SCD-1)) without affecting FA oxidation, as indicated by unchanged levels of [
14

C]–

palmitate in the liver. However, reduced hepatic FA oxidation and mitochondrial 

enzyme activity has been demonstrated to occur prior to the appearance of 

hepatosteatosis, it has been shown that DNL is a primary cause of the development of 

hepatosteatosis [44, 77]. As expected, treatment with Mtr significantly reduced steatosis 

in the liver but not in muscle because of the high distribution of Mtr in the liver after 

oral administration [213]) and the associated glucose intolerance in these mice. Levels 

of key lipogenic enzymes were then measured and it was found that SREBP1c, 

ChREBP, SCD-1 and FAS in the liver were all reduced in HFru-fed mice treated with 

Mtr. These results suggest that Mtr is likely to reduce hepatosteatosis via inhibition of 

the DNL pathway. 

 

As an increase in FA oxidation can also attenuate hepatosteatosis [217], this study next 

examined whether the reduction of hepatosteatosis caused by Mtr in HFru-fed mice 

results from an increase in liver FA oxidation. However, Mtr did not increase oxidation 

of 14C-palmitate in the liver, indicating that the FA oxidation pathway was not activated 

in HFru-fed mice. These findings add further support to our interpretation that Mtr 

reduces hepatosteatosis and glucose intolerance in HFru-fed mice by inhibiting DNL 

rather than by stimulating FA oxidation in the liver.  

 

It has been shown that the ER stress pathway plays a critical role in HFru-induced DNL 

and hepatosteatosis [59, 211]. For example, in ob/ob mice hepatosteatosis is largely due 

to increased DNL as a result of hyperphagia in an ER stress-dependent manner [107]. 

The same study also showed that alleviation of hepatic ER stress by overexpression of 

GRP78 reduces hepatosteatosis and insulin resistance by inhibiting DNL. Similarly, in 
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HFru-fed mice, inhibition of ER stress by tauroursodeoxycholic acid (TUDCA) and 

Betulin suppress DNL and improve insulin signalling in the liver [45-47]. To 

investigate whether the inhibition of hepatic DNL by Mtr involves the ER stress 

pathway, the major ER stress markers in response to HFru-induced DNL was 

examined. Interestingly, the results showed that HFru-induced ER stress (indicated by 

eIF2α, CHOP and IRE1) were all inhibited by Mtr. These findings suggest that 

attenuation of ER stress may be a novel mode of action for the inhibitory effect of Mtr 

on DNL and the resultant hepatosteatosis. 

 

In terms of the possible cellular target of Mtr, published studies from our laboratory 

suggested that a downregulation of HSP72 contributes to lipid accumulation in vivo 

[172], and in vitro [216]. Indeed, Mtr is able to increase HSP72 expression and protect 

against lipid accumulation and glucose intolerance in the liver. Consistent with this 

observation, the present study found that liver tissue from HFru-fed mice had 

significantly lower concentrations of HSP72 protein, and this reduction was prevented 

by Mtr treatment. HSPs have been implicated in the regulation of diverse metabolic 

disorders including hepatosteatosis (the major metabolic defect of non-alcoholic fatty 

liver disease) and insulin resistance (the major metabolic defect of T2D) [194, 196, 

218]. It has been reported that an enhanced expression of HSP72 can block the 

activation of the stress kinase JNK by TNFα [219]. Collectively, the data from this 

study suggest that Mtr may inhibit the ER-DNL axis by up-regulating HSP72 to reduce 

hepatosteatosis and the associated glucose intolerance. 

 

Hepatic DNL and hepatosteatosis also occur in transgenic diabetic mice such as db/db 

[105]. Therefore, the present study explored whether Mtr is able to reduce 
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hepatosteatosis in a mouse model of T2D induced by HFD-STZ [88, 176]. Results from 

previous studies showed that Mtr reduced epididymal fat and lowered hyperglycaemia, 

indicating that Mtr may have the potential to control hyperglycaemia in T2D. Although 

Mtr showed no effect on normal fasting blood glucose, glucose tolerance or liver TG 

content in chow-fed mice [172], the anti-diabetic effects of Mtr could be attributed to 

its effect in reducing hepatosteatosis. 

 

In summary, this thesis reports a potential novel application of the hepatoprotective 

drug Mtr for the treatment of hepatosteatosis and associated abnormal glucose 

homeostasis. This study is the first to evaluate the effect of Mtr on hepatosteatosis 

induced by the ER stress-DNL signalling pathway in HFru-fed mice. As suppression of 

ER stress can reduce hepatosteatosis by inhibiting DNL [2, 211], it is likely that Mtr 

may exert these beneficial effects by suppressing ER stress-induced increase in hepatic 

DNL. This study hypothesises that the upregulation of the chaperon protein HSP72 may 

play a critical role in suppressing ER stress (as illustrated in Figure 3.6) but this 

hypothesis requires validation by further studies using HSP72 knock-down animal 

model. Together with recent findings in HFD-fed mice [172], results from this Chapter 

suggest that Mtr may be repurposed for the treatment of hepatosteatosis and associated 

disorders in glucose homeostasis including T2D.  
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Figure 3.6 Proposed mechanisms underlying the therapeutic effects of Mtr for 

hepatosteatosis and associated disorders in glucose homeostasis. 
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4.1 Introduction 

 

As described in Section 1.9, treatments for NASH fail to improve all aspects of this 

disease because of its diversity and the risks of available drugs. Alternatively, with its 

predictable efficacy in hepatosteatosis-associated disorders in glucose homeostasis 

(Chapter 3) and safety profile raises an attractive possibility that this hepatoprotective 

drug may have therapeutic potential for NASH. 

 

NASH is a severe condition of NAFLD, the most common chronic liver disease. It is 

characterised by liver damage, inflammation and variable degrees of fibrosis, which 

may lead to cirrhosis and HCC [6]. The inflammatory component of NASH may induce 

hepatic fibrosis, which aggravates the progression of this disease [15]. To date, there is 

no drug approved specifically for the treatment of NASH [220]. 

 

As described in Chapters 1 and 3, Mtr has several well-recognised pharmacological 

effects targeting the liver, including anti-inflammatory, anti-tumour and antiviral 

activities [184, 221]. One of the well-characterised anti-inflammatory effects of Mtr is 

inhibition of the inflammatory cytokine production such as  TNFα; a key player in the 

pathogenesis of NASH [143]. Moreover, Mtr treatment significantly inhibits 

inflammation upon challenge with LPS in vivo and in vitro [187, 222] and improves 

liver damage due to reperfusion injury in rats [200]. Recently, it has been found that 

treatment with Mtr attenuates hepatosteatosis and glucose intolerance induced by HFD 

in mice [172]. Further, the results in Chapter 3 show that Mtr is therapeutically 

effective in reducing HFru-induced hepatosteatosis. 
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However, mice fed with either HFD or HFru diet do not exhibit the inflammation and 

fibrosis in characteristic of NASH. Although MCD diet does not induce the metabolic 

syndrome as commonly seen in humans, this diet is still considered the most reliable 

candidate for diet-induced model of NASH in rodents, with liver damage, inflammation 

and fibrosis—a spectrum of changes that mimic the hepatic pathology of NASH [220, 

223]. 

 

The results presented in this Chapter demonstrate the therapeutic efficacy of Mtr in the 

treatment of NASH, which was accompanied by a significant improvement in 

inflammation and fibrosis—major NASH components. In this study, we investigated 

the effect of treatment with Mtr on MCD diet-induced NASH in mice. In addition, 

metformin which has been suggested to be useful for the treatment of NASH [136, 

224], was used in this study for comparison. 

 

4.2 Materials and methods  

 

4.2.1 Animal care, diets and experimental design  

 

Male C57BL/6J mice (10 weeks old) were purchased and acclimatised for at least 1 

week. Mice were randomly assigned to four groups: feeding ad libitum with a standard 

chow diet (CH-Con; Gordon’s Specialty Stock Feeds, Yanderra, NSW, Australia); 

MCD alone (MCD-Con); MCD with Mtr treatment as a food additive (MCD-Mtr; Mtr: 

100 mg/kg/day); and MCD with metformin treatment as a food additive (MCD-Met; 

Met: 250 mg/kg/day) for 6 weeks, as indicated in Figure 4.1. Body weight and food 
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intake were monitored daily throughout the experiment. Before the start of the study 

and at 5 weeks, following 5–7 h of food removal, tail vein blood was collected for 

glucose measurement with a glucometer (AccuCheck II; Roche, Castle Hill, Perth, 

Australia). Before the start of the study and at the end of the study, plasma was 

collected and stored at −80°C for subsequent biochemical testing. Mice were 

anaesthetised with a ketamine/xylazine mixture (up to 100 mg/kg body weight 

ketamine and 20 mg/kg body weight xylazine) was administered via intraperitoneal 

injection. Mice fixation was then performed via transcardial perfusion with heparinised 

phosphate buffered saline (PBS; 10–20 mL/mouse) followed by 4% paraformaldehyde 

(PFA; 10–20 mL/mouse; #C007, ProSciTech). At the completion of the PFA perfusion, 

the right lobe of the liver was dissected and immersed in 4% PFA-filled glass 

scintillation vials for further analysis. 

 

All experiments were approved by the Animal Ethics Committee of RMIT University 

(#1415) in accordance with the guidelines of the National Health and Medical Research 

Council of Australia. Mtr (purity >99.5%) was a gift from Professor Li-Hong Hu from 

the Shanghai Institute of Materia Medica; metformin was purchased from Sigma-

Aldrich. 
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Figure 4.1 Schematic diagram of the experimental plan for studies in MCD diet-

fed mice.  

Male C57BL/6J mice were fed a chow (CH-Con) or MCD diet for 6 weeks. The MCD 

diet-fed mice were assigned into three groups: MCD diet-fed mice without treatment 

(MCD-Con); MCD diet-fed mice with Mtr (100 mg/kg/day) (MCD-Mtr); and MCD 

diet-fed mice with metformin (250 mg/kg/day) (MCD-Met). ipGTT: intraperitoneal 

glucose tolerance test; MRI: magnetic resonance imaging. 

 

4.2.2 Assessment of the effect on hepatic steatosis 

 

Hepatosteatosis was assessed by measuring TG contents in the liver using the method 

of Folch and a colorimetric assay kit (Triglyceride GPO-PAP; Roche, Castle Hill, 

NSW, Australia), as described previously [44]. 

 

4.2.3 Evaluation of total body fat content 

 

Total body fat content in mice was evaluated using the EchoMRI™-100H body 

composition analyser (EchoMRI). Mice were restrained live inside a tube during this 

harmless and non-invasive analysis. The principle of measuring the whole-body fat 
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composition using the EchoMRI™-100H was based on the magnetic resonance 

imaging (MRI) technique measuring live body composition such as fat tissue, lean 

tissue and free fluid. 

 

4.2.4 Assessment of the effect on liver damage 

 

To examine the effects of Mtr on liver damage, the second component of NASH, 

plasma ALT and AST were measured at baseline and at Week 6 using commercial kits 

(ALT/SGPT Liqui-UV; Australia) [80]. Food was removed from mice cages for 5–7 h, 

and blood was collected from the tail vein (50 μL blood + 50 μL saline; fast spin for 1 

min), and then mixed with 200 μL reagent (R1:R2 = 5:1, as described in the 

manufacturer instructions). The absorbance was measured at 340 nm using a 

FlexStation (Molecular Devices, Australia). 

 

4.2.5 Quantitation of total and non-heme iron 

 

The total iron, and heme and non-heme iron, contents of liver samples were determined 

colorimetrically [225] because iron deposition is also regarded as a characteristic of 

NASH [226, 227]. As described previously [228], the fixated liver tissue (50–60 mg) 

was homogenised with 50 mM NaOH (using suitable volume to provide uniform 

homogenisation). The sample was incubated overnight at 75–80°C, and then separated 

into two aliquots for determination of the total and non-heme iron contents. The total 

iron was determined by adding reagent A (a freshly mixed solution of equal volumes of 

1.4 M HCl, 4.5% (w/v) KMnO4 and 40% TCA in H2O), and the non-heme iron was 
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determined by adding reagent B (same as reagent A without KMnO4), to the sample 

[229]. 

 

The iron content of the sample was calculated by comparing its absorbance to that of a 

range of standard concentrations of equal volume. Standards (five diluted standards) 

were prepared as a mixture of FeCl3 in 10 mM HCl and 50 mM NaOH. The standard 

value was measured using lysis reagent that either contained or lacked permanganate 

[229]. The mixture was transferred into 96-well plates and its absorbance was measured 

at 550 nm. 

 

4.2.6 Real-time polymerase chain reaction of liver RNA 

 

Total RNA was isolated from mouse liver using TRIzol reagent (Invitrogen, 

#15596026) as previously described [88]. Reverse-transcription polymerase chain 

reaction (RT-PCR) was carried out using the IQ SYBR Green Supermix (Bio-Rad 

Laboratories, USA) for interest genes and analysed by real-time PCR using specific 

primer sets. Target gene expression levels were normalised to a housekeeping gene 

(18s). Primer sequences are listed in Table 4.1. 
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Table 4.1 Primers used in quantitative RT-PCR 

Gene Primer sequences 

18S Forward: 5′-CGCCGCTAGAGGTGAAATTCT-3′ 

Reverse: 5′-CGAACCTCCGACTTTCGTTCT-3′ 

TNFα Forward: 5′-CACAAGATGCTGGGACAGTGA-3′ 

Reverse: 5′-TCCTTGATGGTGGTGCATGA-3′ 

IL-1β Forward: 5′-GACGGCACACCCACCCT-3′ 

Reverse: 5′-AAACCGTTTTTCCATCTTCTTT-3′ 

CD68 Forward: 5′-TGACCTGCTCTCTCTAAGGCTACA-3′ 

Reverse: 5′-TCACGGTTGCAAGAGAAACATG-3′ 

Collagen 1 Forward: 5′-CTGCTGGTGAGAGAGGTGAAC-3′ 

Reverse: 5′-ACCAAGGTCTCCAGGAACAC-3′ 

 

 

4.2.7 Western blotting 

 

Liver lysates were resolved by SDS-PAGE and immunoblotted with specific antibodies 

[45]. Antibodies listed in Table 4.2 were diluted 1:1000 with a TBST buffer containing 

1% bovine serum albumin (BSA), 0.02% sodium azide (Sigma-Aldrich, #71289) and 

0.0025% phenol red (Sigma-Aldrich, #32661). Ponceau Red ensured equal loading of 

blots staining (Roth). Proteins were quantified using a ChemiDoc, and densitometry 

analysis of bands was performed using Image Lab software (Bio-Rad Laboratories, 

USA). 
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Table 4.2 List of antibodies used in western blotting 

Pathway Antibody Supplier Catalogue no. 

Inflammation MCP-1 Cell Signaling  2027 

NLRP3 AdipoGen 20B-0006-C100 

 HSF1 Cell Signaling  4356 

 HSP72 Enzo Life Sciences C92F3A-5 

 HSP90 Enzo Life Sciences ADI-SPA-840HRP 

Fibrosis TGFβ Cell Signaling  3709 

Smad3 Cell Signaling  9523 

Autophagy mTOR Cell Signaling  2983 

Loading control Tubulin Cell Signaling  3873 

 GAPDH Cell Signaling  2118 

Secondary antibody Goat anti-mouse  Santa Cruz sc-2005 

 Goat anti-rabbit  Santa Cruz sc-2004 

 Goat anti-rat Santa Cruz Sc-2065 

 

4.2.8 Histopathological examination 

 

The liver samples were perfused using PFA and sliced into 5 μm sections. Free-floating 

sections were stained with picrosirius red for liver fibrosis, and then quantified in five 

non-overlapping fields of view per animal by using an Olympus BX41 microscope with 

a 20× objective lens and an Olympus DP72 digital camera (Olympus, Australia) [80, 

230]. The mean value was calculated for each experimental group using the threshold 

function in the ImageJ software package (NIH, Bethesda, MD, USA). Data are 

represented as percentage (%) of positive area per field. To obtain statistical 

significance, at least five random-field images were taken per slide, and at least seven 

mice per group were scored (n = 7). 
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4.2.9 Statistical analysis 

 

The statistical analysis was carried out as described in Chapter 2, Section 2.9. 

 

4.3 Results  

 

4.3.1 Effects on adiposity, hepatosteatosis and plasma glucose  

 

MCD diet feeding is a common nutritional model of NASH despite lack of the 

metabolic phenotype [162]. As expected, MCD diet-fed mice showed reduced body 

weight and body weight gain but no significant changes in food intake, calorie intake 

and blood glucose level. As shown in Table 4.3, the TG content (indicative of 

hepatosteatosis) was increased dramatically in the liver of MCD-Con compared with 

CH-Con mice (by 1.5 fold, P < 0.01). The difference in weight gain between chow, 

MCD alone and MCD with treatments was maintained throughout the treatment period 

of 6 weeks. 

 

Mtr had no effect on body weight gain and calorie intake in MCD diet-fed mice. 

Consistent with previous studies [161, 231], MCD diet-fed mice did not show any 

glucose intolerance or metabolic abnormality. Glucose levels in Mtr-treated MCD diet-

fed mice did not differ from the value of CH-fed mice. Associated with these effects, 

Mtr had no effect in reducing hepatic TG content in MCD diet-fed mice (Table 4.3). 

Similarly, metformin did not show any effect on any of these parameters in MCD diet-

fed mice. 
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Table 4.3 Effects of Mtr and metformin on body weight, total food intake and liver 

triglyceride 

 CH-Con MCD-Con MCD-Mtr MCD-Met 

Body weight (g) 24.3 ± 0.2 23.5 ± 0.2** 22.6 ± 0.1†† 22.7 ± 0.1†† 

Body weight gain (g) 2.0 ± 0.2 0.4 ± 0.2** 0.3 ± 0.2 0.7 ± 0.1 

Food intake (g/kg/day) 80.5 ± 2.3 85.6 ± 2.3 86.5 ± 2.5 85.6 ± 3.0 

Caloric intake 

(kcal/kg/day) 268.2 ± 7.5  313.7 ± 9.0 319.7 ± 10.0 334.8 ± 18.4 

Fasting blood glucose 

(mM) 8.0 ± 0.5 7.4 ± 0.4 6.3 ± 0.4 6.4 ± 0.5 

Liver TG (mmol/g) 13.8 ± 4.2 31.6 ± 3.3** 28.2 ± 2.5 31.2 ± 3.1 

Mice were fed a chow (CH-Con), MCD alone (MCD-Con), MCD treated with matrine 

100 mg/kg/day (MCD-Mtr) or MCD treated with metformin 250 mg/kg/day (MCD-

Met). Body weight and food intake were measured twice a week. Blood glucose 

measurement was performed at Week 5. Plasma was collected before tissue collection 

at Week 6 for subsequent analysis of ALT and AST. **P < 0.01 vs. CH-Con; ††P < 

0.01 vs. MCD-Con (n = 8 mice/group). 

 

4.3.2 Effects on body composition using magnetic resonance imaging 

 

MCD diet feeding resulted in a lack of metabolic phenotype possibly because of 

significantly decreased body weight (Figure 4.2A). Total body fat content using the 

EchoMRI analyser was measured in all mice. As illustrated in Figure 4.2B, in spite of 

the reduction in body weight by MCD diet feeding, there was a significant increase in 

fat mass in MCD diet-fed mice compared with the chow-fed group. MRI analysis also 

revealed that MCD diet-fed mice and mice treated with either Mtr or metformin had a 

significant decrease in lean mass compared with the chow group (Figure 4.2C). 

However, Mtr and metformin had no effect on fat mass. 
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Figure 4.2 Effects of Mtr on body composition in MCD mice.  

The body composition of CH-Con, MCD-Con, MCD-Mtr and MCD-Met was 

determined by EchoMRI analyser at Week 4. (A) Lean + fat mass; (B) Fat mass; (C) 

Lean mass. *P < 0.05, **P < 0.01 vs. CH-Con; †P < 0.05 vs. MCD-Con; ns: not 

significant (n = 8 mice/group). 

 

4.3.3 Effects on plasma levels of liver enzymes and iron deposition 

 

Liver damage has been suggested as an important factor that distinguishes NASH from 

hepatosteatosis [129]. The present study examined whether Mtr treatment might inhibit 

liver damage of MCD diet-fed mice. As shown in Figure 4.3A and B, along with the 

increase of hepatosteatosis in the liver, MCD-fed mice exhibited marked increases in 

ALT (by 68%, P < 0.01) and AST (by 40%, P < 0.05) levels, resulting from liver 
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damage. Treatment with Mtr or metformin markedly decreased ALT levels (±80% and 

25%, respectively). In addition, Mtr treatment but not metformin, further decreased 

AST levels (P < 0.05) in MCD diet-fed mice, indicating Mtr may reduce liver damage, 

a hallmark in the progression of NASH. We further examined the effects of Mtr on iron 

levels in the liver of MCD-fed mice. Neither Mtr nor metformin treatment altered the 

accumulation of heme and non-heme iron induced by MCD diet (Figure 4.3C and D). 

This was likely due to an excessive overload of iron in the liver among mice fed MCD 

diet. 

 

 

 

Figure 4.3 Effects of Mtr on liver damage and iron level.  
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After 6 weeks of feeding and drug treatment, blood samples were collected for the 

measurement of (A) ALT and (B) AST levels. Liver tissue was collected for iron 

measurement (C) heme iron and (D) non-heme iron. *P < 0.05, **P < 0.05 vs. CH-

Con; †P < 0.05, ††P < 0.01 vs. MCD-Con (n = 7–8 mice/group). 

 

4.3.4 Effects on hepatic inflammation  

 

An important pathological characteristic of NASH is hepatic inflammation, and MCD 

diet has previously been shown to cause marked hepatic inflammation [10, 120]. Key 

inflammatory proteins, including TNFα, IL-1β, MCP-1, cluster of differentiation 68 

(CD68) and NLRP3 inflammasome, are particularly associated with liver inflammation 

and the progression of NASH [53, 232]. To examine the anti-inflammatory effects of 

Mtr in MCD diet-fed mice, the protein expression levels of these inflammatory markers 

was measured. Consistent with other studies [56, 149, 162], MCD feeding resulted in a 

marked inflammatory response in the liver as evidenced by increased expression levels 

of TNFα and CD68 (±50% and 80%, respectively; both P < 0.05), an indicator of KCs 

activation [233]. Further, livers of MCD-Con mice with NASH exhibited a substantial 

increase in MCP-1 and NLRP3 expression (both 38% vs. CH-Con). Mtr treatment 

normalised the expression levels of TNFα, CD68 (both P < 0.05 vs. MCD-Con) and 

MCP-1 (P < 0.01 vs. MCD-Con), as shown in Figure 4.4A, B and D. However, no 

significant differences were detected in the expression of IL-1β among the experimental 

groups (Figure 4.4C). It has been suggested that NLRP3 blockade reverses advanced 

stage liver inflammation and fibrosis in MCD diet-induced NASH [149]. Consistent 

with the previous study, there was ±65% reduction in NLRP3 inflammasome 

expression (P < 0.05 vs. CH-Con) (Figure 4.4E). In contrast to Mtr, metformin had no 
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effect on the expression levels of inflammatory markers including TNFα, CD68, MCP-

1 and NLRP3 (Figures 4.4A-E). 

 

 

 

Figure 4.4 Effects of Mtr on hepatic inflammation in MCD diet-fed mice.  
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(A) TNFα mRNA, (B) CD68 mRNA, (C) IL1β mRNA, (D) MCP-1 (E) NLRP3 and (F) 

representative western blot images. *P < 0.05 vs. CH-Con; †P < 0.01, ††P < 0.01 vs. 

MCD-Con; ns: not significant (n = 7–8 mice/group). 

 

4.3.5 Effects on expression of genes involved in hepatic fibrosis 

 

Liver fibrosis is another hallmark of advanced NASH [15]. An ideal anti-inflammatory 

approach to NASH treatment would not only abolish inflammation but also reverse 

established liver fibrosis. Therefore, the effect of Mtr on hepatic fibrosis was examined. 

As shown in Figure 4.5A-C, MCD diet-fed mice exhibited marked increases in the 

expression of key proteins of the pro-fibrotic pathway in the liver, namely collagen 1, 

TGFβ and Smad3 (all P < 0.05 vs. CH-Con), and these results were consistent with 

others [14, 149]. Treatment of MCD diet-fed mice with Mtr inhibited hepatic 

expression of these proteins (±55%, 65% and 45%, respectively) towards the levels 

seen in CH-Con mice. In contrast, metformin treatment had no effect on MCD diet-

induced liver fibrosis. There were no significant changes in caspase-1 protein 

expression between groups (Figure 4.5D). These results revealed that treatment with 

Mtr attenuated MCD diet-induced fibrosis in the liver, which may support its beneficial 

effects in NASH with fibrosis. 
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Figure 4.5 Effects of Mtr on hepatic fibrosis in MCD-fed mice.  

(A) A hepatic fibrosis gene of collagen 1 was determined by quantitative RT-PCR 

analysis. Liver lysates from mice were immunoblotted for (B) TGFβ, (C) Smad3 and 

(D) caspase-1 and quantified for statistical analysis. *P < 0.05 vs. CH-Con; †P < 0.05, 

††P < 0.01 vs. MCD-Con; ns: not significant (n = 7–8 mice/group). 
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4.3.6 Effects on liver fibrosis using picrosirius red stained liver 

sections 

 

MCD diet caused extensive fibrosis at 6 weeks, evidenced by collagen accumulation 

combined with thickened hepatocytes cell membranes (Figure 4.6A). Picrosirius red 

staining of the liver sections for collagen confirmed the beneficial effects of Mtr 

treatment on hepatic fibrosis. In agreement with the gene expression and western blot 

data, treatment with Mtr resulted in a robust reduction in collagen accumulation As 

shown in Figure 4.6B, there was an increase in liver fibrosis of ±83% (P < 0.01 vs. 

CH-Con) in the liver of MCD-fed mice and this increase was reversed following 

treatment with Mtr (reduction of ±66%, P < 0.01 vs. MCD-Con). In comparison, no 

obvious hepatic fibrosis changes were observed in mice fed MCD diet with metformin 

treatment. 
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Figure 4.6 Effects on extent of liver fibrosis stained with picrosirius red.  

(A) Representative images showing collagen staining with picrosirius red in liver 

sections from CH-Con, MCD alone and MCD treated groups (scale bar = 200 µm (top 

set) and 50 µm (below set), 10× magnification). (B) Mtr-treated mice had significantly 

reduced fibrosis area compared with MCD diet-fed mice. **P < 0.01 vs. CH-Con; ††P 

< 0.01 vs. MCD-Con (n = 7–8 mice/group). 
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4.3.7 Effects on hepatic mTOR and heat shock protein expression 

 

Dysregulation of mTOR signalling has been implicated in fatty liver diseases [234]. 

Inhibition of mTOR has previously been shown to be efficacious in improvement of 

NASH-induced by MCD diet [235-237]. It has been reported that Mtr treatment inhibits 

autophagy in cell lines by impairing the activity of lysosomal proteases [238]. To 

elucidate the mechanism underlying mTOR inhibition-induced by Mtr, protein 

expression using western blotting was performed to evaluate whether mTOR 

contributes to hepatocyte damage, inflammation, and fibrosis in NASH. Interestingly, 

treatment with Mtr normalised the protein level of mTOR (P < 0.01 vs. MCD-Con) 

towards the levels seen in CH-Con mice (Figure 4.7A). These results revealed that 

treatment with Mtr inhibited MCD diet-induced hepatic mTOR expression. 

 

A recent study has examined the effects of Mtr on the expression of HSP72 [172]. This 

study has shown that the antisteatotic effect of Mtr is associated with the upregulation 

of HSP72 in the liver of HFD-fed mice. To determine whether Mtr treatment is 

associated with the upregulation of HSP-induced improvement in NASH, HSP90, 

HSF1 and HSP72 expression was measured in the liver. As shown in Figure 4.7B-D, 

HSP90 and HSP72 expression levels were blunted (50% reduction vs. CH-Con, P < 

0.05) by MCD diet feeding, but there was no significant effect on the protein levels of 

HSF1. Treatment with Mtr upregulated hepatic HSP72 and HSF1 expression levels (P 

< 0.01 vs. MCD-Con) in MCD diet-fed mice, but had no significant effect on HSP90 

expression. Therefore, these results indicated that the beneficial effect of Mtr on the 

development of MCD diet-induced NASH might be associated with its ability to limit 
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mTOR and upregulate HSPs. In comparison, metformin treatment significantly rescued 

HSF1 but had no significant effect on the expression of HSP72 and HSP90. 

 

 

 

Figure 4.7 Effects of Mtr on mTOR, HSF1, HSP90 and HSP72 in MCD-fed mice.  

Liver lysates from mice were immunoblotted for (A) mTOR, (B) HSP90, (C) HSF1 and 

(D) HSP72 and quantified for statistical analysis. *P < 0.05 vs. CH-Con; †P < 0.05, 

††P < 0.01 vs. MCD-Con (n = 7–8 mice/group). 
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4.4 Discussion 

 

This study found that Mtr markedly ameliorated MCD diet-induced NASH by 

suppressing key regulators of hepatic damage, inflammation and fibrosis. Results of 

this Chapter showed that Mtr treatment was therapeutically effective for the treatment 

of NASH compared with metformin in MCD diet-fed mice. These effects were 

associated with an inhibition of mTOR and upregulation of HSPs, suggesting Mtr 

might be repurposed for the treatment of NASH by a novel mechanism different from 

those recognised at the present time [67]. 

 

Previous studies have reported a potential effect of Mtr in ameliorating hepatosteatosis, 

fasting blood glucose and glucose intolerance in HFD-fed mice [172]. In addition, Mtr 

treatment is effective at reversing hepatosteatosis and glucose intolerance, probably via 

reduced ER stress associated with decreased hepatic lipogenesis in mice fed HFru diet. 

Despite the possible benefits of Mtr for the treatment of NAFLD-associated glucose 

intolerance, the therapeutic effects in NASH are not clear because of the absence of 

NASH features in these mouse models. Therefore, the studies described in Chapter 4 

particularly examined the protective effect of Mtr against MCD diet-induced NASH in 

mice. 

 

MCD diet feeding is a well-recognised model of NASH and rapidly induces 

steatohepatitis in mice [120, 161]. Although MCD-fed mice do not exhibit metabolic 

abnormalities such as insulin resistance and hyperglycaemia; MCD diet feeding is a 

frequently used dietary model because it causes severe NASH with hepatic steatosis, 

damage, inflammation and fibrosis [162]. This study showed that 6-week Mtr treatment 
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significantly ameliorated liver damage, inflammation and fibrosis, albeit not 

hepatosteatosis. 

 

The degree of hepatosteatosis may predict the severity of NAFLD and vary among 

NASH patients [28]. MCD diet has been shown to induce higher levels of TG in the 

liver compared with normal chow diet [145]. To investigate the antisteatotic effects of 

Mtr in the liver, hepatic TG content was measured in MCD diet-fed mice. Treatment of 

these mice with Mtr or metformin did not change hepatosteatosis in relation to body 

weight and glucose level in MCD mice. This might be due to the lack of metabolic 

abnormalities in MCD diet-induced NASH. Secondly, Mtr treatment exerts its 

beneficial effects on NASH independent of an improvement in hepatosteatosis. 

 

It is suggested that elevations of liver enzymes and hepatic iron levels are strongly 

associated with hepatocyte injury and liver damage [239]. ALT is used as a marker of 

liver damage in fatty liver including NASH [240]. Consistent with these reports, 

feeding mice MCD diet produces a significant increase in ALT levels in the mouse 

MCD diet model of NASH [241]. Mtr showed a beneficial effect in the inhibition of 

MCD diet-induced increases in plasma ALT and AST; this indicates that Mtr can 

attenuate the liver damage without changes in body composition in mice. Conversely, 

metformin had moderate effect on ALT levels, but did not change AST levels; 

therefore, it is not strongly recommended for NASH treatment [10, 242, 243]. 

 

The activation of inflammatory cytokines plays a vital role in the progression of NASH 

[244]. The increase in inflammatory cytokines production, in particular TNFα by KCs, 

resident hepatic macrophages, was suggested to be the key mediator of the progression 
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of NASH [245]. In line with increased TNFα production, increased CD68 and MCP-1 

are associated with the severity of NASH [80, 231]. Alternatively, inhibition of TNFα 

activity using anti-inflammatory drugs improves liver damage, inflammation and 

NASH [145, 246]. It is generally believed that the anti-inflammatory activities of Mtr 

are largely due to its ability to inhibit hepatic inflammation [200, 222]. 

 

Iron overload plays a role in liver damage where simple uncomplicated steatosis 

progresses to fibrotic NASH [153, 154]. It has been suggested that iron overload 

exacerbates inflammation and fibrosis-induced steatohepatitis in humans [151, 227] and 

in animals [226, 247]. Further, iron accumulation in tissue is positively correlated with 

the severity of NASH manifestations in the Tsumura Suzuki obese diabetes (TSOD) 

mouse model [248]. It appears that reduced iron overload may prevent development 

and progression of NASH. Despite the inhibitory effects of Mtr on liver enzymes, the 

elevation of heme and non-heme iron did not change during the treatment period with 

Mtr or metformin. These findings together raise the possibility that Mtr might offer 

additional therapeutic effects on manifestations of NASH through reduction of liver 

enzymes. 

 

Results in this Chapter revealed that Mtr prevented NASH-associated hepatic 

inflammation and fibrosis after 6 weeks of treatment. Mtr suppressed the increases in 

TNFα, CD68 and MCP-1, major inflammatory markers in NASH. Another central 

participator in the development of NASH is the activation of NLRP3 inflammasome 

[147, 249]. It has been recently reported that blockage of NLRP3 activation reduces 

liver inflammation and fibrosis in MCD-fed mice [149]. Consistent with the anti-

inflammatory effects, a similar reduction in NLRP3 expression in the liver was 
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observed compared with CH-Con mice. The results support Mtr may reduce NASH via 

inhibition of inflammatory pathways. 

 

Hepatic fibrosis is known as another hallmark feature of NASH after inflammation, 

which can cause scaring, resulting in liver cirrhosis and cancer [15, 240]. Because of its 

severe impact on the prognosis of NASH, the control of hepatic fibrosis is regarded as a 

key criterion in the treatment of NASH [6]. Although Mtr has been reported to prevent 

liver fibrosis (TGFβ and collagen synthesis) induced by CCl4 in rats [189], whether Mtr 

inhibits fibrosis in MCD-induced NASH remains unclear. To investigate whether the 

inhibition of hepatic inflammation by Mtr involves the inhibition of fibrosis pathways 

[147], this study examined the effect of Mtr on the major fibrotic markers in response 

to MCD diet-induced NASH. Consistent with the reduction in inflammation, our data 

indicated that Mtr inhibited the activation of fibrosis by suppression of TGFβ, Smad3 

and collagen synthesis in the liver of MCD diet-fed mice. These results provide further 

support for the idea that Mtr might provide a possible mechanism for the inhibition of 

fibrosis because of its antifibrotic effects. Indeed, this is the first experimental evidence 

that Mtr can prevent and ameliorate the progression of NASH of not only inflammation 

but also fibrosis in the liver of a NASH model. 

 

In terms of possible cellular targets of Mtr, a critical role of the activated mTOR 

pathway in the severity and progression of NASH has become a focus for research 

[234, 250, 251]. The involvement of the mTOR pathway in MCD-induced advanced 

NASH has been explored [237]. Recently, Mtr has shown beneficial effects in the 

inhibition of mTOR in cell lines and primary cells of acute myeloid leukaemia [252]. 

Mtr treatment decreased the expression of mTOR in the liver of MCD diet-fed mice. In 
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particular, Mtr may provide a protective effect against the progression of NASH 

through mTOR inhibition. 

 

Another interesting finding presented in this Chapter was that Mtr is able to modulate 

HSP expression levels. It has been reported that overexpression of HSP72 may 

attenuate inflammation and restore homeostasis even in the face of metabolic insult 

[196], which may likely be attributed to its ability to suppress the production of 

inflammatory cytokines [253]. A previous study from our laboratory has suggested that 

upregulation of HSP72 may contribute to hepatosteatosis induced by HFD or HFru 

feeding in mice [172]. Consistent with this observation, the present study found that 

liver tissue from MCD diet-fed mice had significantly lower levels of HSP72 and 

HSP90, and this reduction was rescued by Mtr treatment. It is noteworthy that 

upregulation of HSPs by Mtr treatment has been associated with the improvement of 

NASH. Importantly, Mtr exerts these effects through a distinct pathway different from 

that of metformin without any significant change in mTOR or HSP72. These data 

suggest that the therapeutic effects of Mtr in treating NASH may involve dysregulation 

of mTOR or HSPs. 

 

This studies reported in this chapter have provided direct support for our hypothesis 

that Mtr treatment markedly ameliorates NASH via inhibiting the inflammatory and 

fibrotic pathways. Therefore, Mtr has the potential to be a therapeutic drug for the 

treatment of NASH, possibly by inhibiting mTOR expression and upregulating HSP72. 

Importantly, anti-inflammatory and antifibrotic effects of Mtr are related to the 

inhibition of key aspects of NASH (Figure 4.8). 
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In summary, the study in this Chapter demonstrated that Mtr may be useful as an 

effective drug to prevent NASH-associated inflammation and fibrosis. It is possible that 

the improvement of inflammation and fibrosis by Mtr treatment occurs via the 

inhibition of mTOR, which appears associated with the upregulation of HSP72. 

Compared with metformin, Mtr demonstrates clear superiority for the treatment of 

NASH. Further works are needed to explore whether the anti-inflammatory and 

antifibrotic effects of Mtr result directly from its effects on the hepatic mTOR-HSP72 

pathway, given that previous studies from our laboratory have excluded the commonly 

recognised mechanisms. 
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Figure 4.8 Schematic diagram illustrating the proposed mechanism underlying the 

effects of Mtr against MCD diet-induced NASH. 
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5.1 Introduction 

 

As reviewed in Chapter 1, macrophages including hepatic KCs play an important role 

in perpetuating the inflammatory phase of NASH by the release of inflammatory and 

fibrogenic mediators [130, 254]. It has been shown that LPS stimulates the 

inflammatory activation of KCs, which contributes to NASH [255]. Because 

macrophages are critical in initiating liver damage and inflammation, targeting 

macrophages activation may guide the development of effective treatment for the 

inflammation in NASH [129]. For example, mice with lack of hepatic TLR4 stimulated 

with LPS are protected from hepatosteatosis and inflammation via impaired 

hepatocytes and activated KCs [256]. J774A.1 is a macrophage-like cell line that is 

used as a model for KCs in the liver and the macrophages in the circulation. Activation 

of J774A.1 by LPS produces inflammatory cytokines and promotes the fibrogenic 

process [257]. 

 

LPS or endotoxin comprises a major portion of the cell wall of gram-negative bacteria 

and is a potent inducer of the inflammatory response in macrophages via its receptor 

the CD14/TLR4 complex [258]. It has been proposed that LPS may be a ‘second hit’, 

which contributes to the progression of simple hepatosteatosis to NASH [54]. 

Activation of macrophages by LPS induces the expression of TLR4, which mediates 

the secretion of inflammatory cytokines such as TNFα [138, 259]. The release of TNFα 

can cause severe liver inflammation and contribute to pro-fibrotic activity and 

eventually NASH [129]. An increase in the synthesis of inflammatory cytokines 

including TNFα has been reported in patients [129, 131, 139] and rodents [142, 245] 
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with NAFLD/NASH. Indeed, inhibition of LPS-induced TNFα production reduces 

inflammatory cytokine activation and decreases inflammation [260]. 

 

The studies reported in Chapter 4 revealed that Mtr treatment inhibits the elevated 

expression of TNFα and related inflammatory and fibrotic signals in the liver. Chapters 

3 and 4 have described the ability of Mtr to reduce lipid accumulation, inflammation 

and fibrosis in the liver. However, the underlying cellular mechanisms of the effects of 

Mtr in these conditions are not clear because of multiple interactions among different 

cells in the organ. As cell lines are homogenous, and are easily manipulated and 

propagated for the study of signalling pathways, they can be used to provide a clearer 

understanding of the cellular mechanisms of Mtr on specific cell types for NASH. This 

Chapter investigates the cellular mechanisms underlying the effects of Mtr on 

inflammatory and fibrogenic pathways in a cell line that represents the major cell type 

responsible for the inflammatory cytokines in NASH. 

 

5.2 Materials and Methods  

 

5.2.1 Cell Culture  

 

J774A.1 a murine reticulocyte sarcoma cell line derived from a female BALB/c mouse, 

was purchaesed ATCC
®
 TIB-67

™
 and maintained in RPMI (Gibco/Invitrogen, 

Carlsbad, CA, USA) supplemented with 2 mM L-glutamine, 100 U/mL penicillin, 100 

μg/mL streptomycin and 10% (v/v) heat-inactivated foetal bovine serum in a 

humidified 5% CO2 atmosphere at 37°C. Cell culture medium was changed every two 
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or three days and used at passages numbers 6–15 for all experiments. Briefly, cells 

were subcultured at 1 in 10 dilutions when cells reached 80–90% confluence. 

Subculture was formulated by rinsing the cells first with warm 1× PBS, and then 

adding 2–3 mL 1× trypsin-EDTA solution to detach the cells from the T75 flask. Cells 

were then centrifuged at 100 × g for 5 min and re-suspended in ±10 mL fresh growth 

medium, and the desired amount of cells was transferred into a new T75 flask 

containing fresh RPMI growth medium. 

 

5.2.2 Chemicals and drugs 

 

LPS was purchased from Sigma-Aldrich (O127:B8; Australia). It was dissolved in 

water to obtain a stock concentration of 10 mg/mL. Mtr (≥98% by high performance 

liquid chromatography) was purchased from Sigma-Aldrich. Mtr (purity >99.5%) was a 

gift from Professor Li-Hong Hu from the Shanghai Institute of Materia Medica. 

Quercetin was purchased from Sigma-Aldrich (Q4951; Australia), dissolved in 

dimethyl sulfoxide (0.1% DMSO) and stored at −20°C. Bay 11-7082 was purchased 

from Sigma-Aldrich (B5556; Australia). 

 

5.2.3 Treatments of J774A.1 macrophage cell line 

 

To induce inflammation in J774A.1 cells, a serial dilution of LPS was prepared and 

1 mg/mL stock LPS solution was kept at −80°C for further experiments. On the day 

before testing, the cultured cells were confirmed as having a confluence of >90% and 

cell viability of >90% by microscopic examination and LDH release cytotoxicity assay, 

respectively (Section 5.2.5). Medium was aspirated from the cell culture flask and 
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10 mL fresh RPMI medium added to the flask. Cells were removed using a cell scraper 

and 0.5 (× 2) mL was used to start a new passage, while the remaining 9 mL was placed 

into a 15-mL conical tube. Cells were counted using trypan blue at a 1:10 dilution. The 

desired volume of the cell-containing medium (at a density of 2 × 10
5
 cells per well) 

was transferred into a 24-well culture plate with fresh growth medium. Two hours prior 

to inflammatory stimulation, each prepared drug was added to the appropriate well at a 

indicated concentration. The plate was then returned to the incubator for the indicated 

periods of time. Then, LPS was added to appropriate wells to induce inflammation. 

After 2 h of incubation, the cell supernatant was collected in 1.5-mL Eppendorf tubes 

for enzyme‑linked immunosorbent assay (ELISA). Cell lysates were harvested after 

washing with cold PBS and kept at −80°C for further analysis. 

 

5.2.4 Determination of TNFα, IL-1β and IL-6 production 

 

The production of the inflammatory cytokines, TNFα, IL-1β and IL-6, in the culture 

medium of J774A.1 was determined using commercially available ELISA kits (BD 

Biosciences) according to the manufacturer protocol. The experimental design is 

illustrated in Figure 5.1. 

 

 

 

Figure 5.1 Schematic diagram of the in vitro experimental protocol.  



Chapter Five – Cellular Mechanism of Matrine’s effects 

130 

Cells were harvested and seeded at 2 × 10
5
 cells/mL per well into 96-well plates. After 

cells were treated with selected compounds, followed by incubation with or without 

3 ng/mL LPS at 37°C for 2 h, the culture supernatants were collected into microfuge 

tubes and centrifuged at 10,000 rpm for 2–3 min at 4°C. J774A.1 cells were lysed after 

washing with ice-cold 1× PBS buffer. 

 

5.2.5 Determination of lactate dehydrogenase release 

 

The cytotoxicity was assessed by measuring the activity of released lactate 

dehydrogenase (LDH) in the medium. The enzyme activity in the whole cell lysate and 

medium was determined using a CytoTox 96
®
 Non-Radioactive Cytotoxicity Assay kit 

(#G1780; Promega) according to the manufacturer protocol. Briefly, 50 µL diluted cell 

medium (1:5) or cell lysate (1:10) was transferred into a 96-well plate before the 

addition of 50 µL reconstituted substrate mixture. The plate was then covered with foil 

and incubated at room temperature for 30 min; subsequently, 50 µL stop solution was 

added to each well before measuring absorbance. The absorbance was read at 490 nm 

using a POLARstar OPTIMA microplate reader (BMG Lab Technologies, Germany). 

The LDH released into the medium (a measure of cells viability) was expressed as a 

percentage of the total LDH activity (ratio of LDH in lysate and in the medium) [216]. 

 

5.2.6 Determination of protein concentration 

 

As described in Section 2.6, protein concentration in J774A.1 cells was measured 

through the use of a colorimetric bi-cinchoninic acid (BCA) protein kit (#B9643; 

Sigma-Aldrich). First, 1 µL diluted tissue lysate (1 part lysate to 9 µL dH2O) was added 

to 200 µL BCA reagent mix (50 parts reagent A to 1 part reagent B). Solutions were 
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then mixed and incubated at 37°C for 30 min prior to the determination of absorbance 

at 562 nm using a POLARstar OPTIMA microplate reader (BMG Lab Technologies, 

Germany). In each BCA assay, varying dilutions of BSA protein were included to 

create a standard curve in the range of 0–2.0 µg/mL. 

 

5.2.7 Other methods 

 

Other methods used in this study are as described in Chapter 2. 

 

5.3 Results 

 

5.3.1 Inflammatory response of J774A.1 cells to the stimulation of LPS  

 

We firstly determined the effective concentration of LPS (1–100 ng/mL) to induce 

inflammatory cytokines in J774A.1 cells. As shown by the inflammatory cytokines in 

cell culture media, at 1 ng/mL, LPS had no effect on the production of TNFα, whereas 

at 3–100 ng/mL LPS increased TNFα production in a concentration-dependent manner 

(Figure 5.2A). As shown in Figure 5.2B and C, however, there was no significant 

difference between vehicle and LPS-treated J774A.1 in the production of IL-1β and IL-

6 at this range of concentrations. On the basis of these results, 3 ng/mL LPS was used 

in further experiments and TNFα was used as the readout of cell inflammation. 

 

To determine the optimal Mtr concentration, cells were treated with different 

concentrations of Mtr in the absence of LPS. Mtr had no effect on the basal production 
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of TNFα (Figure 5.2D). In contrast, in the presence of LPS, Mtr (1–50 µM) 

significantly reduced LPS-induced increase in TNFα production in a concentration-

dependent manner (Figure 5.2E). The minimum inhibitory concentration of Mtr to 

suppress LPS-induced TNFα production in J774A.1 macrophages was 1 µM. Its 

efficacy was similar to that of the well-known inflammatory inhibitor Bay 11-7082 at 

its maximum concentration (15 µM). 
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Figure 5.2 Effects of Mtr on LPS-induced production of inflammatory cytokines in 

J774A.1 cells.  

J774A.1 cells (2 ×10
5
 cells/mL) were treated with 1–100 ng/mL LPS for 2 h to 

stimulate the production of inflammatory cytokines. Levels of (A) TNFα, (B) IL-1β and 

(C) IL-6 in culture media were determined by ELISA. Cells were pretreated with 
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different concentrations of Mtr (0.1, 1, 10 and 50 µM) and 15 µM Bay 11-7082 for 2 h, 

and then treated (D) without or (E) with 3 ng/mL LPS for 2 h. At the end of treatment, 

each cell culture medium was collected and the production of TNFα was determined by 

ELISA as described in Section 5.2.4. Results are expressed as ±SEM and represent at 

least three independent experiments. **P < 0.01 vs. Veh; ††P < 0.01 vs. LPS-untreated 

group; ns: not significant. Veh: vehicle. 

 

 

5.3.2 Effects on the viability of J774A.1 macrophages 

 

To exclude a possibility that the inhibition of inflammation by Mtr resulted from 

cytotoxic effects, we determined LDH activity in the culture medium as an indicator of 

cell damage. As shown in Figure 5.3A, LPS and Mtr caused no significant elevation in 

LDH level at 3 ng/mL and 1 µM, respectively, compared with the positive control 

causing elevation of LDH activity. Consistent with the negative results of LDH release, 

the cells displayed normal morphology in response to these treatments. Similarly, cells 

treated with Mtr or LPS remained similar to the vehicle without cell damage observed 

(Figure 5.3B). 
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Figure 5.3 Effects of Mtr on cell viability and morphology in J774A.1 cells.  

(A) J774A.1 cells (2 × 10
5
 cells/mL) were treated with 3 ng/mL LPS or 1 μM Mtr for 2 

h, and cell viability was determined by LDH assay in the cultured medium. (B) Cells 

were examined under a light microscope (magnification, ×100). Results are expressed 

as ±SEM and represent at least three independent experiments. **P < 0.01 vs. Veh; ns: 

not significant. Veh: vehicle. 

 

 

 



Chapter Five – Cellular Mechanism of Matrine’s effects 

136 

5.3.3 Changes in mTOR and heat shock proteins  

 

As shown in Chapters 3 and 4, the anti-inflammatory effects of Mtr are associated with 

the downregulation of mTOR and upregulation of HSP72. To assess the potential 

involvement of mTOR and HSPs in the effects of Mtr in LPS-activated J774A.1 

macrophages, we measured the mTOR, HSP72, HSF1 and HSP90 expression levels in 

the cell lysate using western blotting. Consistent with the results from the previous 

Chapters, treatment with Mtr reversed the increased protein level of mTOR (P < 0.01 

vs. LPS) to normal levels as seen in the vehicle (Figure 5.4A). 

 

Interestingly, HSP72 expression was significantly suppressed (40% reduction vs. 

vehicle, P < 0.01) following stimulation with LPS with a trend to reduce HSF1. 

However, HSP90 was not affected. Pretreatment with Mtr upregulated HSP72 and 

blocked the suppression of LPS on HSF1 protein expression with no significant effect 

on HSP90 expression (Figure 5.4B-D). 

 

To elucidate the potential mechanism by which Mtr upregulates HSP72 in LPS-

activated J774A.1 macrophages, the HSP72 inhibitor quercetin was examined for 

comparison in this Chapter. Cells were pretreated with quercetin (50 μM) for 2 h, and 

then treated with LPS (3 ng/mL) for 2 h. Interestingly, quercetin significantly increased 

mTOR expression in the presence of LPS compared with the vehicle (Figure 5.4A). As 

expected, quercetin significantly decreased HSP72 (P < 0.01 vs. vehicle) expression in 

the presence of LPS (Figure 5.4B), whereas there were no significant changes in HSF1 

and HSP90 expression levels (Figure 5.4C-D). These data suggest that the reversal of 

LPS-induced upregulation of mTOR may be dependent on an upregulation of HSP72. 
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Figure 5.4 Changes in mTOR, HSF1, HSP90 and HSP72 in J774A.1 macrophage 

cells. Cells (2 × 10
5
 cells/well) were pretreated with 1 μM Mtr or 50 μM quercetin for 

2 h, and then treated with 3 ng/mL LPS for 2 h. Cell lysates were immunoblotted for 

(A) mTOR, (B) HSP72, (C) HSF1 and (D) HSP90 and quantified for statistical 

analysis. Results are expressed as ±SEM and represent at least three independent 

experiments. *P < 0.05, **P < 0.01 vs. Veh; †P < 0.05, ††P < 0.01 vs. LPS; ns: not 

significant. Veh: vehicle; Q: quercetin. 
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5.3.4 Effects of matrine on lipopolysaccharide-induced changes in 

inflammatory markers 

 

The anti-inflammatory effect of Mtr was previously explored by measuring secretion of 

TNFα in the cell culture medium. In line with this, the effect of Mtr on CD68 mRNA 

expression was examined by quantitative RT-PCR and the protein expression levels of 

MCP-1 and NLRP3 inflammasome were detected by western blotting. As shown in 

Figure 5.5A-C, LPS at 3 ng/mL significantly increased the levels of these 

inflammatory markers in cell lysate (all P < 0.05 vs. vehicle). As expected, Mtr 

completely reversed all of these increases induced by LPS. In contrast, treatment with 

the HSP72 inhibitor quercetin in the presence of LPS did not show any significant 

reduction in any of these inflammatory markers. 
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Figure 5.5 Effects of Mtr in LPS-induced inflammatory markers in the lysate of 

J774A.1 macrophage. Cells were pretreated with 1 µM Mtr or 50 μM quercetin for 

2 h, and then treated with 3 ng/mL LPS. Quantitative RT-PCR results were normalised 

against 18s mRNA for (A) CD68 mRNA expression. Western blotting was analysed 

with densitometry for (B) MCP-1 and (C) NLRP3. Results are expressed as ±SEM and 

represent at least three independent experiments. *P < 0.05 vs. Veh; †P < 0.05, ††P < 

0.01 vs. LPS. Veh: vehicle; Q: quercetin. 
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5.3.5 Effects of matrine on lipopolysaccharide-induced fibrogenic 

markers 

 

The data presented in Chapter 4 showed that Mtr significantly inhibited MCD diet-

induced fibrosis in the liver. To determine the potential mechanisms, the effect of Mtr 

on LPS-induced fibrogenic protein expression in J774A.1 cells was determined. As 

shown in Figure 5.6A and B, exposure to LPS stimulated the expression of key 

proteins of the fibrogenic pathway, namely collagen 1 and TGFβ (all P < 0.01 vs. 

vehicle). Mtr inhibited the increased expression of these proteins in LPS-activated 

J774A.1 macrophages (±55% and 56%, respectively) towards levels seen in the vehicle 

control. In contrast, the HSP72 inhibitor quercetin showed no effect on the increased 

expression of both proteins induced by LPS (P < 0.05 vs. vehicle). There were no 

significant changes in Smad3 and caspase-1 protein expression levels between groups 

(Figure 5.6C and D) during the treatment with LPS, Mtr or quercetin. These results 

suggest that Mtr may attenuate LPS-stimulated fibrogenic pathways and that this effect 

is associated with an upregulation of HSP72 as previously shown. 
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Figure 5.6 Effects of Mtr on LPS-induced fibrogenic markers in J774A.1 

macrophages. Cells were pretreated with 1 µM Mtr or 50 μM quercetin for 2 h, and 

then treated with 3 ng/mL LPS. Quantitative RT-PCR results were normalised against 

18s mRNA for (A) collagen 1 mRNA expression. Western blotting was analysed with 

densitometry for (B) TGFβ, (C) Smad3 and (D) caspase-1. Results are expressed as 

±SEM and represent at least three independent experiments. *P < 0.05 vs. Veh; ††P < 

0.01 vs. LPS; ns: not significant. Veh: vehicle; Q: quercetin. 
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5.4 Discussion 

 

This Chapter investigated the effects of Mtr on LPS-induced activation of the pathways 

of inflammation and fibrogenesis at the cellular level in J774A.1 macrophages. The 

results showed that Mtr markedly ameliorated LPS-induced stimulation of cellular 

inflammatory and fibrotic activities in J774A.1 macrophages. The inhibitory effect of 

Mtr was associated with downregulation of mTOR and upregulation of HSP72. One 

consistent pattern of the effect of Mtr to inhibit LPS-induced increases in mTOR and 

markers of inflammatory and fibrogenic pathways was the upregulation of HSP72. 

 

Macrophages play a major role in both inflammation and fibrosis in NASH. The 

macrophages present within the liver come from the activation of KCs (resident 

macrophages within the liver) and circulating monocyte-derived macrophages [261]. 

Once activated, macrophages produce inflammatory and fibrogenic cytokines to cause 

liver inflammation and fibrosis [262]. The results from this Chapter show that a low 

LPS concentration level can activates TNFα production in J774A.1 after 2 h. This is 

consistent with the report that stimulation of J774A.1 murine macrophages with LPS 

markedly increases TNFα production [263]. It has been suggested that the presence of 

LPS in KCs accelerates liver injury and aggravates the progression of NASH [128, 

264]. The increase in TNFα production enhances inflammation and fibrogenesis in 

J774A.1 macrophages. Interestingly, the present study showed that low LPS 

concentration increased TNFα, but not IL-1β and IL-6, production. This suggests that 

TNFα is the major inflammatory cytokine observed after LPS stimulation. This is 

consistent with previous reports showing that Mtr inhibits the release of TNFα induced 

by KCs activation in cold ischaemia–reperfusion injury [200]. These data together 
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suggest that the inhibitory effect of Mtr on hepatic inflammation observed in Chapter 4 

is likely to be a result, at least in part due to its effects on macrophages including KCs. 

 

Several studies have suggested that upregulation of HSP72 is associated with the 

inhibition of inflammation [265, 266]. Earlier studies have indicated that upregulation 

of HSP72 by Mtr or other substances significantly protects against TNFα production, 

inhibiting inflammation [219, 267, 268]. Consistent with results from Chapters 3 and 4, 

the anti-TNFα effect of Mtr was associated with upregulation of HSP72 in J774A.1 

cells. Given that upregulation of HSP72 might play a role in the anti-inflammatory 

effects of Mtr, the upregulation of this protein may be a potential cellular mechanism 

leading to reduction of inflammation and fibrosis. In this Chapter, protection by Mtr 

was correlated with quercetin, an HSP72 inhibitor, to further investigate the cellular 

mechanism of the anti-inflammatory effects of Mtr. These data add support to the role 

of HSP72 in Mtr preventing inflammation. These findings together raise the possibility 

that Mtr might offer distinct therapeutic effects to manifestations of NASH. 

 

Another potential cellular target for the inhibitory effect of Mtr is mTOR. Inhibition of 

mTOR in experimental liver fibrosis significantly decreases fibrosis progression [164]. 

The results in this Chapter showed that Mtr also independently inhibited mTOR protein 

in J774A.1 macrophages, in agreement with the effect on mTOR in NASH mice. This 

is also consistent with recent clinical observations that Mtr inhibits mTOR expression 

in acute myelocytic leukaemia [252]. Further, the effects of Mtr on mTOR were evident 

even after treatment with the HSP72 blocker quercetin. 
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Consistent with the increased TNFα production following LPS stimulation, increased 

inflammatory markers including CD68, MCP-1 and NLRP3 were observed in activated 

J774A.1 cells. These findings are novel because there are no reports regarding the 

effect of Mtr on inflammation marker levels in LPS-stimulated macrophages. Further, 

the anti-inflammatory effects of Mtr could inhibit the inflammatory cytokines, 

consistent with the previous observations from Chapter 4. Quercetin however increased 

the expression of these proteins and exacerbated inflammation after stimulation with 

LPS. Blocking of HSP72 by quercetin can make cells more vulnerable to inflammatory 

and mTOR activity. Indeed, upregulation of HSP72 by Mtr was accompanied by 

inhibition of TNFα in LPS-stimulated inflammation. These results suggest that the 

induction of HSP72 by Mtr may confer protection against LPS-induced inflammation at 

least in part by inhibiting production of key inflammatory cytokines. 

 

Another protective effect of Mtr is the prevention of the increased expression of 

fibrogenic pathways induced by MCD diet in mice (Chapter 4). In this Chapter, Mtr 

inhibited TGFβ and collagen 1–associated LPS-induced stimulation of cellular 

fibrogenesis, whereas quercetin further increased both cytokines after stimulation with 

LPS. This is consistent with previous findings that Mtr inhibits TGFβ and prevents liver 

fibrosis in vitro and in vivo in other animal models [189]. These results provide further 

support for the idea that inhibition of fibrogenic pathways by Mtr might provide a 

possible mechanism for its antifibrotic effects. 

 

In summary, the results in this Chapter have revealed the possible mechanism—and 

promising novel anti-inflammatory and antifibrotic properties—of the beneficial effect 

of Mtr. Consistent with the previous Chapters, the major target of this mechanism 



Chapter Five – Cellular Mechanism of Matrine’s effects 

145 

appears to be the mTOR-HSP72 axis. In addition, treatment with quercetin inhibited 

HSP72 and increased mTOR, supporting this explanation. It is likely that Mtr confers 

protection against LPS-induced inflammation and fibrosis at least in part by 

upregulating HSP72 and inhibiting mTOR. These findings suggest that the anti-

inflammatory and antifibrotic effects of Mtr in macrophages are important mechanisms 

for the therapeutic effects in NASH as discussed in previous Chapters. 
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6.1 Introduction 

 

This Chapter will summarise the key findings from Chapters 3, 4 and 5 and discuss the 

potential implications and limitations of the study. It concludes by providing 

suggestions for further research based on the novel findings in this thesis. 

 

6.2 Major findings 

 

Chapter 1 reviewed literature reports on the research of NASH and current status of the 

treatments for NASH. Secondly, it elaborates the rationale for the selection of Mtr as a 

candidate for the study in this thesis to investigate its effects and mechanisms for the 

treatment of this disease with distinct properties different from others. 

 

In brief, NAFLD is an umbrella term for metabolic liver disease, with a global increase 

in prevalence accompanied by increased metabolic diseases such as obesity and T2D. It 

is the most common cause of chronic liver disease and regarded as a manifestation of 

the metabolic syndrome in the liver. NAFLD has different stages based on its natural 

history and the disease pathogenesis. It has been widely recognised that excessive lipid 

accumulation in the liver causes the first hit. This benign stage can progress to NASH 

(steatohepatitis) with additional inflammation, cell damage and/or fibrosis in the liver, 

and may further deteriorate to cirrhosis and liver failure. However, treatment of 

NAFLD is currently unsatisfactory. One challenge in the study of therapeutics for 

NASH is the lack of a single animal model that fully reflects the pathological 

characteristics as presented in humans. 
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Current drugs used for the treatment of NAFLD are inadequate because of various 

adverse effects or unreliable effects on inflammation and fibrosis. Indeed, it is 

important to identify a novel therapeutic for NAFLD, and drug repurposing may be an 

effective strategy. This approach has been increasingly used in recent years because of 

existing knowledge of bioavailability and more reliable safety. Using this approach, this 

thesis selected Mtr as a candidate drug to examine its therapeutic effects for the 

treatment of NAFLD. 

 

Chapter 3 investigated the potential of Mtr for the treatment of NAFLD in HFru-fed 

and HFD-STZ models in mice. Mtr treatment was able to attenuate hepatosteatosis and 

associated disorders in glucose homeostasis. Chapter 4 examined the therapeutic effects 

of Mtr in the treatment of hepatic inflammation and fibrosis, two other characteristics 

of NASH. Chapter 5 examined the therapeutic effects of Mtr on inflammation in a 

macrophage-like cell line and the cellular mechanism involved. These major findings 

are summarised in the following three sections. 

 

6.2.1 Reduction of hepatosteatosis and associated disorders in glucose 

homeostasis 

 

Chapter 3 evaluated the therapeutic effects of Mtr on hepatosteatosis and associated 

disorders in glucose homeostasis in HFru-fed mice. The most important finding from 

this study is that Mtr was effective for the treatment of hepatosteatosis and associated 

glucose intolerance. Several mechanisms for the antisteatotic effects of Mtr were 

examined. The results suggested that Mtr reduced TG accumulation in the liver, but not 

in muscle. This indicates that the liver is a major site for the action of Mtr and that 
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improved glucose tolerance is attributable to a reduction in hepatosteatosis. Further 

studies suggested that inhibition of hepatic DNL is likely the underlying mechanism 

responsible for the antisteatotic effect of Mtr in mice fed with HFru diet. Moreover, Mtr 

inhibited ER stress, which was associated with increased DNL, and upregulated hepatic 

protein expression of HSP72. Importantly, Mtr displayed a distinct mechanism in 

reducing hepatosteatosis associated with glucose intolerance via upregulation of 

HSP72. This Chapter further examined the efficacy of Mtr in hepatosteatosis-associated 

hyperglycaemia in a mouse model of T2D induced by HFD-STZ. The anti-

hyperglycaemic effects of Mtr observed in this study were also found closely associated 

with a reduction in hepatosteatosis (Figure 6.1). 
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Figure 6.1 Mtr ameliorated of hepatosteatosis and associated hyperglycaemia. (A) 

Excess carbohydrate causes increased hepatic ER stress-DNL pathways through 

downregulation of HSP72. (B) Mtr exerts its effects through upregulation of HSP72, 

preventing hepatic ER stress-DNL pathways and associated hyperglycaemia. 
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In summary, Mtr treatment improved hepatosteatosis and glucose tolerance in both 

models, suggesting that the liver is the major target of Mtr because lipid and glucose is 

mainly metabolised in the liver. Upregulation of HSP72 by Mtr may suppress ER stress 

to inhibit DNL, and therefore hepatosteatosis, hyperglycaemia and NAFLD. The 

findings of upregulation of HSP72 from our present study demonstrate, for the first 

time, a plausible mechanism for the antisteatotic therapeutic effect of Mtr on 

hepatosteatosis and hyperglycaemia in mouse models of HFru feeding. 

 

6.2.2 Amelioration of hepatic inflammation and fibrosis 

 

The third study (Chapter 4) investigated the hepatoprotective effect including anti-

inflammatory and antifibrotic effects in an MCD diet-induced mouse model of NASH. 

The first important finding of this study is that Mtr was able to inhibit inflammation 

without affecting caloric intake in MCD mice. However, Mtr treatment failed to reduce 

hepatosteatosis in MCD-fed mice as it does in HFD, HFru diet and T2D mice models. 

Because MCD diet-induced hepatosteatosis is due to the disruption of TG export, this 

finding suggests that Mtr does not promote TG export. 

 

The second important finding is that Mtr exerted its antifibrotic effects at the transition 

stage of NASH without fibrosis to severe NASH-related fibrosis. The anti-

inflammatory effect of Mtr in MCD diet-induced NASH was evidenced by marked 

decreases in the activation of TNFα secretion and CD68 and NLRP3 expression. This 

mouse model displayed mild fibrosis in the liver because of a short period of MCD diet 

feeding. In this short-term MCD model, Mtr reduced TGFβ and Smad3 expression and 

inhibited fibrosis. In addition, protein expression levels of TGFβ and caspase-1 (which 
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play a role in fibrosis), and Smad3 and collagen type 1 (which are associated with 

collagen deposition), were decreased. Overall, Mtr demonstrated therapeutic effects for 

the inhibition of inflammation and fibrosis in MCD diet-fed mice. Again, the anti-

inflammatory and antifibrotic effects of Mtr were accompanied by upregulation of 

HSP72 and downregulation of mTOR pathways (Figure 6.2). 

 

 

 

Figure 6.2 Mtr dysregulated of HSP72 and mTOR expression. (A) Hepatic 

inflammation and fibrosis are the major phenotypes of NASH. (B) Mtr exerts its effects 

through upregulation of HSP72 and downregulation of mTOR, preventing hepatic 

inflammation and fibrosis, and therefore protecting against the development of NASH. 
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6.2.3 Cellular mechanism involved in the effects of matrine 

 

Chapter 5 investigated the mechanism of the anti-inflammatory and antifibrotic effects 

in macrophages, a key cell type responsible for NASH, using a well characterised 

murine macrophage cell line. The findings obtained in this Chapter were similar to the 

markers measured in Chapter 4, as a further indication of the anti-inflammatory effects 

of Mtr at the cellular level. The major inflammation and fibrosis markers activated by 

LPS in J774A.1 macrophages were inhibited by Mtr despite the low concentration of 

Mtr used. Notably, Mtr markedly inhibited LPS-induced increases in mTOR in 

J774A.1, suggesting that the therapeutic effect of Mtr may involve the inhibition of 

mTOR-related autophagy and inflammation in NASH, similar to the results in the MCD 

diet model reported in this thesis. 

 

Overall, this thesis addressed the specific aims based on the gaps in knowledge 

identified by careful evaluation of the literature in Chapter 1. The relationship of the 

concluded studies to the specific aims are summarised in Figure 6.3. 
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Figure 6.3 A schematic view of the findings related to the research aims in Figure 

1.9. 

Mtr acts as a promising antisteatotic drug by blocking the ER stress-DNL axis required 

for the development of hepatosteatosis. Many of the markers in this pathway, such as 

eIF2α, CHOP, IRE1, SREBP1c, ChREBP, SCD1 and FAS, are downregulated after 

Mtr treatment. Moreover, Mtr improves hyperglycaemia associated with 

hepatosteatosis, and attenuates hepatic inflammation and fibrosis by inhibiting 

inflammatory and fibrogenic pathways in NASH. The anti-inflammatory and 

antifibrotic effects are evidenced by blocking TNFα, NLRP3, CD68, TGFβ and 

collagen 1 expression. These anti-NASH effects involve upregulation of HSP72 as well 

as reduction in the mTOR axis. Figure 6.4 illustrates the proposed mechanism linking 

the above-mentioned effects to Mtr’s therapeutic properties in NAFLD and associated 

disorders. 
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Figure 6.4 Schematic illustration of the proposed mechanism for Mtr’s therapeutic 

effects. Mtr achieves these effects through ameliorating ER stress, DNL, and 

inflammatory and fibrotic signalling cascades via hepatic HSP72 upregulation and 

mTOR reduction. These findings suggest that Mtr may be repurposed for the treatment 

of NAFLD and associated diseases such as hyperglycaemia and NASH. Solid lines 

indicate hypothesised mechanistic links; dotted lines indicate pathways requiring future 

studies. 
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6.3 Limitations and future studies 

 

To achieve the ultimate goal of repurposing Mtr for the treatment of NAFLD/NASH, 

further studies are needed in three general aspects. 

6.3.1 Long-term safety for the new usage 

 

The results in Chapter 3 showed that the antisteatotic effects of Mtr are due to 

decreased DNL and associated disorders in glucose metabolism. First, further 

evaluation of the long-term safety at the dose designed for this new therapeutic 

application is required. This is important because the reported safety of Mtr has not 

been evaluated for the metabolic condition described in this thesis. Treatments for 

metabolic conditions including NAFLD/NASH require long-term administration. 

 

6.3.2 Clinical trials for the new usage 

 

Second, additional studies are needed to fully characterise the therapeutic effects of Mtr 

to provide more comprehensive evidence to guide the clinical trials for its new 

application. According to the basic science data from this Chapter, Mtr is able to target 

the major components of NAFLD pathogenesis. Randomised controlled trials are the 

most appropriate study design to confirm the effectiveness of Mtr treatment in humans 

with NAFLD/NASH. 
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6.3.3 Precise mechanism for the molecular mode of action 

 

6.3.3.1 Anti-hepatosteatosis 

 

Third, the molecular mode of action and pathways involved require more detailed 

studies. The specific proposals for the second and third aspects are suggested below. 

Mtr showed a reduction in lipid accumulation in HFru and HFD-STZ mice. However, 

signs of hepatosteatosis were not assessed by morphological studies. One feasible 

approach for the assessment of lipid droplets is the use of oil red O staining [269, 270]. 

In future studies, histological liver sections should be performed to further assess 

hepatosteatosis in these nutritional models. 

 

In addition, the mechanisms underlying the effect of Mtr on hepatosteatosis need 

further study. As reviewed in Chapter 3, dietary fructose has been shown to have a 

special tendency to induce NAFLD dependent on the activation of the ER stress 

pathway [44]. ER stress may be a novel mode of action for the inhibitory effect of Mtr 

on hepatosteatosis. Experiments using TUDCA, a classic inhibitor of ER stress, in HFru 

mice treated with Mtr are suggested. This will help to determine whether the 

amelioration of HFru-induced hepatosteatosis and associated disorders in glucose 

homeostasis by Mtr is due to decreased ER stress. Measuring ER stress markers 

including eIF2α, CHOP, IRE1 and XBP1 will help to confirm the role of ER stress in 

Mtr’s inhibitory effects. A similar animal study may be conducted with HSP72 

knockout mice to confirm the role of HSP72 in this model. The HSP72 knockdown 

approach may be used to provide definitive evidence to prove the hypothesised role of 

HSP72 in Mtr’s antisteatotic effects. 
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6.3.3.2 Anti-inflammation 

 

The data from Chapter 4 suggested that the anti-inflammatory effects of Mtr may be 

related to upregulation of hepatic HSP72 as a likely mechanism. Another possible 

mechanism is the inhibition of hepatic mTOR, which was downregulated in Mtr-treated 

MCD diet-fed mice—this will be discussed below. Using an animal model with HSP72 

knockdown or knockout may provide definitive evidence to prove the hypothesised role 

of HSP72 in Mtr’s anti-inflammatory effects. Importantly, mice with muscle-specific 

transgenic overexpression of HSP72 are protected against high fat-induced obesity and 

metabolic disorders [196]. Future studies are needed to examine the anti-inflammatory 

effect of Mtr by using an HSP72 knockout model. Further, the only mouse model in 

which mTOR is genetically altered is the ‘flat-top’ mutant, where incomplete and 

complete deletions cause failure of mTOR inhibition and shorter lifespan of mice, 

respectively [271]. 

 

Current data in this Chapter showed that Mtr can significantly inhibit the activation of 

inflammatory cytokines. This inhibition was proposed to be associated with HSP72-

mTOR pathways in the liver. However, NASH features were not assessed by 

histological abnormalities of steatohepatitis in the liver. In future studies, the NASH 

activity scores of hepatic steatosis, inflammation, hepatocyte ballooning and fibrosis 

should be performed to further assess Mtr’s efficiency for the treatment of NASH in 

this nutritional model [10]. This can be achieved by staining liver sections with H&E to 

examine macrovesicular and microvesicular steatosis, admixtures of inflammatory 

cells, collagen fibres and hepatocyte ballooning—features that are often observed in 

NASH [272]. 
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6.3.3.3 Anti-cell injury 

 

Hepatic cell injury has been proposed as another component of NASH features [6]. 

Therefore, further studies may be performed to examine the anti-cell injury of Mtr by 

using cell lines such as HepG2 cells, which mimic hepatocytes. First, hepatic injury 

may be assessed by measuring plasma ALT, a standard indication of liver injury. 

Hepatocyte ballooning is another indication of cell injury and a key feature required for 

the diagnosis of NASH. With H&E staining and microscopic examination, hepatocyte 

ballooning is seen as hepatocytes with fatty changes and groups of ballooned 

hepatocytes with enlarged, rounded, rarefied cytoplasm, some of which contain small 

Mallory-Denk bodies. Mtr’s effects on hepatocyte ballooning can be quantified by 

histological grading and staging systems of NASH [10]. 

 

6.3.3.4 Anti-fibrosis 

 

In light of these antisteatotic, anti-inflammatory and antifibrotic effects of Mtr, it may 

be worthwhile to investigate the cellular mechanism underlying the antifibrotic effects 

of Mtr in cell lines representative of HSCs. The antifibrotic effects of Mtr may be 

further studied using an appropriate cell line. For example, human HSCs (LX-2) can be 

pretreated with Mtr, and then exposed to a potent fibrotic inducer [273, 274]. 

Quantitative RT-PCR and western blotting can be used to measure mRNA and protein 

levels of fibrogenic genes. 
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6.4 Final conclusion and potential significance 

 

Overall, the studies in this thesis have laid a solid base for further investigation of the 

cellular mechanism of the therapeutic effects of Mtr attributed to its effects on HSP72-

mTOR pathways for the treatment of NASH and associated metabolic disorders. The 

results will serve the development of new treatments for NAFLD. 

 

The findings from this thesis have significant implications for evaluating the 

therapeutic effects of Mtr in the treatment of NAFLD/NASH. The novelty of Mtr is of 

potential great significance for the treatment of patients suffering NAFLD. 
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Repurposing matrine for the treatment of hepatosteatosis and
associated disorders in glucose homeostasis in mice
Ali Mazhari1, Xiao-Yi Zeng1, Xiu Zhou1, Songpei Li1, Jun Xu2, Wen Tan3, Ross Vlahos1, Stephen Robinson1 and Ji-Ming YE1

The present study investigated the efficacy of the hepatoprotective drug matrine (Mtr) for its new application for hepatosteatosis
and associated disorders in glucose homeostasis. The study was performed in two nutritional models of hepatosteatosis in mice
with various abnormal glucose homeostasis: (1) high-fructose diet (HFru) induced hepatosteatosis and glucose intolerance from
hepatic, and (2) hepatosteatosis and hyperglycemia induced by high-fat (HF) diet in combination with low doses of streptozotocin
(STZ). Administration of Mtr (100 mg/kg every day in diet for 4 weeks) abolished HFru-induced hepatosteatosis and glucose
intolerance. These effects were associated with the inhibition of HFru-stimulated de novo lipogenesis (DNL) without altering
hepatic fatty acid oxidation. Further investigation revealed that HFru-induced endoplasmic reticulum (ER) stress was inhibited,
whereas heat-shock protein 72 (an inducible chaperon protein) was increased by Mtr. In a type 2 diabetic model induced by HF-STZ,
Mtr reduced hepatosteatosis and improved attenuated hyperglycemia. The hepatoprotective drug Mtr may be repurposed for the
treatment of hepatosteatosis and associated disorders in glucose homeostasis. The inhibition of ER stress associated DNL and fatty
acid influx appears to play an important role in these metabolic effects.

Keywords: matrine; hepatosteatosis; glucose intolerance; hyperglycemic control
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INTRODUCTION
The liver plays an important role in regulating whole-body lipid
metabolism and glucose homeostasis. Excess accumulation of
lipids (namely hepatosteatosis), either from endogenous de novo
lipogenesis (DNL) and/or influx of exogenous fatty acids (FA), can
disturb glucose homeostasis, increasing the risk of type 2
diabetes (T2D) [1, 2]. Although the degree of hepatosteatosis
and T2D do not necessarily tightly coupled [3], inhibition of excess
hepatic DNL has been shown to ameliorate hepatosteatosis and
associated glucose intolerance [4]. Shulman and colleagues have
also demonstrated that correction of hepatosteatosis in patients
with T2D is important for hyperglycemia control [5]. In search for a
new therapeutic for the treatment of hepatic steatosis from DNL,
we have taken the approach of repurposing existing drugs for
these conditions [6, 7].
Matrine (Mtr) is a small molecule (MW: 248) found in

Sophora and it is structurally different from the drugs currently
used to treat T2D [8–10]. Mtr has been used clinically as a
hepatoprotective drug for the treatment of tumors and
viral hepatitis [8], where DNL is often increased [11]. A recent
study from our laboratory found that Mtr is able to reduce
hepatosteatosis, fasting blood glucose and glucose intolerance in
high fat (HF)-fed mice [9]. However, the HF model does not
exhibit the characteristics of DNL-induced hepatosteatosis and
glucose intolerance because the accumulation of triglyceride (TG)
in the liver is due to a direct influx of lipids into the liver from the
HF diet [12, 13].

The liver is a major site of DNL production from carbohydrates
[12, 14] and interestingly the inhibition of hepatic DNL reduces
hepatosteatosis and hyperglycemia [4, 15]. It has been suggested
that an increase in DNL is the second major source of lipid
accumulation in the liver and contributes about 26% of patients
with hepatosteatosis [16]. In mice, a high-fructose (HFru) diet
induces hepatosteatosis as early as 1 day [17] prior to the
development of glucose intolerance [12, 18, 19]. Dietary fructose is
almost entirely metabolised in the liver in its first pass, and serves
mainly as a substrate for DNL in both animals [13, 17, 20] and
humans [19, 21–23]. HFru diets increase the expression of
lipogenic transcription factors, sterol regulatory element binding
protein (SREBP1c) and carbohydrate response element binding
protein (ChREBP), which upregulate lipogenic genes. Upregulation
of these lipogenic transcription factors can result in hepatostea-
tosis and glucose intolerance via promoting DNL [24, 25]. Notably,
HFru-stimulated hepatic DNL via SREBP1c is dependent on the
activation of the ER stress pathway [12, 26].
The primary aim of the present study was to investigate

whether the hepatoprotective drug Mtr can limit the hepatostea-
tosis and the associated glucose intolerance that usually results
from increased DNL in HFru-fed mice. If so, the second aim was to
investigate whether the action of Mtr is via the ER stress pathway.
Finally, we also evaluated whether Mtr assists glycemic control in a
T2D mouse model generated by a combination of HF and
streptozotocin (STZ) where an increased DNL via SREBP1c is also
involved [27, 28].
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MATERIALS AND METHODS
Animals and diets
C57BL/6J mice aged 10–12 weeks and weighing 21–24 g were
obtained from the Animal Resource Centre Pty. Ltd. (Perth,
Australia). The animals were housed in a temperature-controlled
room (22 ± 1 °C) on a 12-h light/dark cycle with free access to food
and water. Mice were fed ad libitum for 1 week on a normal chow
diet (~70% calories from starch, ~10% calories from fat, and ~20%
calories from protein; Gordon’s Specialty Stock Feeds, Yanderra,
Australia). Mtr (≥ 98% by HPLC) was purchased from Sigma
Aldrich. The experiments described in this manuscript were
approved by the Animal Ethics Committee of RMIT University
(Application ID: 1012) and conducted in compliance with the
guidelines of the National Health and Medical Research Council of
Australia for Animal Experimentation.
Two sets of animal experiments were performed. In the first set

of experiments, mice were fed a HFru diet (35% fructose, 35%
starch, ~10% fat and ~20% protein) to generate hepatosteatosis.
Mice were fed for 8 weeks with or without Mtr at a dose of 100
mg/kg every day as a food additive in the last 4 weeks as
described previously [9, 10]. Body weight gain and food intake
were measured twice a week. For blood glucose levels, blood
samples were collected from the tail tip and measured using a
glucometer (AccuCheck II; Roche, New South Wales, Castle Hill,
Australia) after 2 weeks of Mtr treatment. In the second set of
experiments, the effects of Mtr on hepatosteatosis and hypergly-
cemia were examined in a T2D model induced by HF feeding in
combination with low doses of STZ as previously reported [28–30].
Briefly, mice were fed a HF diet (45% calorie from lard, 20%
calories from protein and 35% calories from carbohydrate) for
14 weeks to induce insulin resistance. After 8 weeks of HF feeding,
mice were injected with STZ at a low dose (40 mg/kg per day, ip)
for 5 consecutive days to reduce the level of plasma insulin by
~50% [28–30]. One week after the last injection of STZ, fasting
blood glucose was usually increased by 50%–100% (hyperglyce-
mia, defined as T2D). The T2D mice were then divided into 2
groups: one group receiving Mtr added in the HF diet (100mg/
kg per day) for 4 weeks (T2D-Mtr) whereas the other group was
fed HF alone (T2D-Con) for the same period of time. During the
period of Mtr treatment, fasting blood glucose was monitored
once a week. A normal control group of mice (CH-Con) was
included for the same period. At the end of both sets of
experiments, mice were killed by cervical dislocation and liver
tissues were collected and freeze-clamped immediately for further
analysis.

Assessment of the effect on hepatosteatosis
Hepatosteatosis was assessed by measuring TG content in
the liver. Mice were fasted for 5–7 h before being killed; the
liver was collected and freeze-clamped immediately. As
described previously [13, 28] plasma and liver TG levels
were determined with a Peridochrom triglyceride GPO-PAP
biochemical kit (Roche diagnostics). The method of lipid extraction
from liver with chloroform/methanol has been described
previously [17].

Assessment of the effect on hepatic FA oxidation
FA oxidation was assessed in fresh liver tissue ex vivo as
described [12, 13]. Briefly, fresh liver samples were homogenised
in an isolating medium which contained 100mM sucrose,
50mM Tris, 100mM KCl, 1 mM KH2PO4 and 0.1 mM EGTA, 0.2%
FA-free BSA at pH 7.0. The liver homogenate was incubated
with [14 C]-palmitate and [14 C]–CO2 produced from the incubation
was collected in 1 M sodium hydroxide. Palmitate oxidation
rates were determined by counting the 14 C radioactivity of
captured CO2 and acid-soluble metabolites and oxidation
rate were expressed as nanomoles of CO2 per gram of wet
weight per hour [12].

Assessment of the effects on DNL and ER stress
DNL and ER stress were assessed by immunoblotting with specific
anti-bodies for the key proteins in the DNL, ER stress and heat shock
protein (HSP) pathways based on our recent work [9, 10, 12, 13, 17].
Briefly, freeze-clamped liver was homogenized in ice-cold lysis
buffer supplemented with fresh protease inhibitor and phosphatase
inhibitor (Sigma Aldrich). The key proteins in the DNL pathway
included SREBP-1 (Santa Cruz), ChREBP (Abcam), acetyl-CoA
carboxylase (ACC, Upstate), fatty acid synthase (FAS, Abcam) and
stearoyl-CoA desaturase 1 (SCD-1, Cell Signaling). The key proteins
measured in the ER stress pathway included inositol-requiring
kinase 1 (IRE1, Abcam), eukaryotic translation initiation factor 2α
(eIF2α, Cell Signaling) and CHOP (Santa Cruz). The effect on the HSP
pathway was assessed by heat shock protein 72 (HSP72, Abcam)
based on our recent work [9, 10]. Proteins were quantified using a
ChemiDoc and densitometry analysis was performed using Image
Lab software (Bio-Rad Laboratories, USA).

Statistical analysis
All results are presented as means ± s.e.m. One-way analysis of
variance was used to assess the statistical significance across all
groups. When significant differences were found, the Tukey-
Kramer multiple comparisons post hoc test was used to establish
differences between groups. Differences at P < 0.05 were con-
sidered to be statistically significant and P < 0.01 were considered
to be highly significant.

RESULTS
Effects on body weight, adiposity, hepatosteatosis and glucose
tolerance in HFru-fed mice
HFru feeding is a well-defined model of hepatosteatosis, visceral
adiposity and glucose intolerance resulting from increased DNL in
the liver [12]. As expected, HFru feeding moderately increased the
mass of epididymal fat (by 40%, P < 0.01) without altering body
weight or food intake (P > 0.05; Fig. 1a–c). The TG content
(indicative of hepatosteatosis) was increased dramatically in
the liver (by threefold) but only moderately in muscle (~35%)
(both P < 0.01; Fig. 1d). As shown in Fig. 1e, HFru-fed mice also
showed moderate glucose intolerance.
Administration of Mtr prevented the moderate body weight

gain (8%–10%) in HFru-fed mice during this period of time
(Fig. 1a). It corrected HFru-induced increases in epididymal fat,
liver TG content and glucose intolerance (all, P < 0.01 vs untreated
HFru-fed mice) to the levels similar to CH-fed normal mice
(Fig. 1b–e). Although not significantly reduced, muscle TG content
in Mtr-treated HFru-fed mice was no longer different from the
value of CH-fed normal mice (Fig. 1d).

Effects on FA oxidation and DNL in the liver of HFru-fed mice
We first examined whether Mtr treatment may promote FA
oxidation in the liver of HFru-fed mice. As shown in Fig. 2a,
palmitate oxidation by the liver homogenates was not affected by
the treatment with Mtr, suggesting that the reduced hepatostea-
tosis by Mtr is not likely to be due to an increased FA oxidation in
the liver. We next examined the DNL pathway because
HFru-induced hepatosteatosis is believed to result from the
stimulation to this pathway in the liver [13, 17, 20]. As expected,
HFru-fed mice exhibited dramatic increases in DNL proteins in the
liver (Fig. 2b–e), including SREBP-1c (by 2-fold), ChREBP (by 33%)
ACC (by 3-fold), FAS (by 3.4-fold) and SCD-1 (by 4-fold; all P < 0.05).
Interestingly, these lipogenic proteins except for ACC were
significantly reduced by the treatment with Mtr, including
SREBP-1c (by 45%, P < 0.01), ChREBP (by 33%, P < 0.05), SCD-1
(by 32%, P < 0.01) and FAS (by 24%, P < 0.05). These results
suggest that the reduced TG content in the liver by Mtr can be
attributed to its inhibitory effect on HFru-induced increase in
hepatic DNL.
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Effects on ER stress and HSP72 in the liver of HFru-fed mice
By promoting DNL in the liver, the activation of ER stress represents
a key step in the pathogenesis of hepatosteatosis [12, 31, 32].
As shown in Fig. 3a, HFru-fed mice exhibited marked increases of
the mature form of eIF2α (by 2-fold), CHOP (by 2.3-fold) and
IRE1 (by 2-fold) along with the upregulation of the DNL pathway
in the liver. Treatment with Mtr markedly reduced the protein
levels of these hepatic ER markers towards the levels seen in CH
fed mice. These results indicate that Mtr induced-suppression of ER
markers may be associated with the improvement in lipogenesis,
which could account for its beneficial effects on hepatosteatosis.
Recent studies indicate that HSP72 is likely to mediate the effect of
Mtr on hepatosteatosis and glucose intolerance [9, 33, 34]. As
shown in Fig. 3b, there was ~50% suppression of HSP72 (P < 0.05
vs CH fed mice) in the liver of HFru-fed mice and this reduction was
reversed following treatment with Mtr (P < 0.05 vs untreated HFru-
fed mice).

Effects on hyperglycemia in T2D mice
To investigate the relationship of the effect on hepatosteatosis
with glycemic control, we examined the metabolic effects of Mtr
in T2D mice generated by a HF diet in combination with low doses
of STZ [9, 27, 28]. The body weight were reduced in HF-STZ
induced T2D mice (by ~15%) and treatment with Mtr had no
effect on the body weight (Fig. 4a), while visceral adiposity
remained unchanged in T2D-Con mice compared to CH-fed mice
Mtr significantly reduced epididymal fat in T2D mice (P < 0.05,
Fig. 4b). T2D-Con mice displayed typical fasting hyperglycemia
and Mtr treatment significantly reduced the degree of the
hyperglycemia over the period of 4 weeks (by 20%–30%, Fig. 4c).
As expected, HF-STZ-induced T2D showed severe glucose
intolerance but this was not attenuated by the treatment with
Mtr (Fig. 4b).

Effect on TG levels in T2D mice
Recent studies indicate that hepatosteatosis can contribute to
hyperglycemia and hepatic insulin resistance [12, 35]. To
determine whether the reduced hepatosteatosis by resulting from
Mtr treatment is associated with the control of hyperglycemia in
T2D mice, we measured the TG content in the liver. As shown in
Fig. 5a, b, T2D mice exhibited hypertriglyceridemia and hepatos-
teatosis, however Mtr significantly reduced these conditions (P <
0.05). Together, these results clearly indicate that Mtr reduces the
T2D-induced hepatosteatosis that is associated with hyperglyce-
mia and this could account for its beneficial effects on the
regulation of lipid metabolism.

DISCUSSION
The present study investigated whether the hepatoprotective
drug Mtr can treat the hepatosteatosis and associated
glucose intolerance in HFru-fed mice resulting from increased
DNL. Consistent with our previous studies [13, 17, 36], HFru-fed
mice developed hepatosteatosis and glucose intolerance
by promoting ER stress associated DNL. Treatment of these
mice with Mtr ameliorated hepatosteatosis and glucose intoler-
ance. Within the liver, Mtr decreased the protein expression
of DNL enzymes concomitant with reduced ER stress. We
further examined the effects of Mtr on hepatosteatosis in
relation to glycemic control in T2D mice, which display a
phenotype of hyperglycemia and hepatosteatosis associated
with increased DNL [27, 28]. The results showed that Mtr
treatment reduced hepatosteatosis and improved hyperglycemia.
Collectively, these findings suggest that Mtr has the potential
to be repurposed for the treatment of hepatosteatosis resulting
from increased DNL and associated disorders in glucose
metabolism.

Fig. 1 Effects of Mtr on body weight gain, visceral adiposity, hepatosteatosis and glucose tolerance in HFru-fed mice. Mice were fed a high-
fructose (HFru) diet for 8 weeks and matrine (Mtr, 100mg/kg per day in diet) was administered in the last 4 weeks. A glucose tolerance
test (GTT at 3 g glucose/kg BW, ip) was conducted after 2 weeks of treatment with Mtr. Epididymal (Epi) fat weight and liver TG content were
determined at the end of the study. (a) Body weight gain, (b) Epididymal fat weight as a percentage of body weight, (c) Caloric intake, (d) TG
content in liver and muscle. (e) Glucose tolerance. **P < 0.01 vs CH; #P < 0.05, ##P < 0.01 vs HFru (n= 7–8 mice/group)

Repurposing matrine for the treatment of hepatosteatosis
A Mazhari et al.

3

Acta Pharmacologica Sinica (2018) 0:1 – 7



Overconsumption of dietary fructose can lead to DNL and
hepatosteatosis [12, 37], which in turn can result in glucose
intolerance and contribute to hyperglycemia [19, 38]. Therefore,
correction of hepatosteatosis is beneficial for improving glucose
homeostasis in metabolic syndrome. For example, in obese
patients with T2D, a reversal of hepatosteatosis can improve
hepatic insulin action and glycemic control [5]. We have
investigated drugs that have previously been used for the
treatment of liver conditions, in order to determine whether they
can be repurposed to treat hepatosteatosis [7]. One such
candidate we have identified by this approach is Mtr because
liver has been shown to be the major target site of Mtr [39, 40].
Indeed, our recent work has demonstrated that Mtr is able to
attenuate the increased fasting blood glucose and improve
glucose tolerance in insulin resistant mice induced by a HF diet
[9]. The same study found that these anti-diabetic effects of Mtr
appears to result from its effect in reducing hepatosteatosis
without affecting HF diet induced lipid accumulation in muscle.
Mtr is clinically used for treatment of chronic liver conditions

including hepatocellular carcinoma and viral hepatitis with
minimal adverse effects [7–9]. Interestingly, both hepatocellular
carcinoma and viral hepatitis are associated with an increase in
DNL [10, 41, 42]. Indeed, our studies in 3T3L1 adipocytes have
found that Mtr can reduce DNL and lipid accumulation within the
cells [43]. Although our recent studies have demonstrated that Mtr
is able to reduce hepatosteatosis and glucose intolerance in mice
that have been fed a HF diet [9], the source of hepatosteatosis in
this mouse model is from the exogenous FA due to the intake of
dietary fat rather than endogenous FA from an increased DNL.
Therefore, it is not clear yet whether Mtr is effective for metabolic
disorders by that involve an increased hepatic DNL [12].
Several studies have demonstrated that DNL enzymes are over-

expressed during the development of hepatosteatosis [24, 44].
HFru-fed mice are a well-defined animal model of DNL-induced
hepatosteatosis and insulin resistance [12, 13], and DNL-induced
hepatosteatosis can be observed as early as 1 day after HFru

feeding [36]. Indeed, the present study showed that chronic HFru
feeding resulted in hepatosteatosis (increased TG level) by
promoting DNL (indicated by SREBP1c, ChREBP, acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FAS) and stearoyl-
CoA desaturase-1 (SCD-1)) without affecting FA oxidation, as
indicated by unchanged level of [14C]–palmitate. However,
reduced hepatic FA oxidation and mitochondrial enzyme activity
has been demonstrated to occur prior to the appearance of
hepatosteatosis, it has been shown that DNL is a primary cause of
the development of hepatosteatosis [12, 45]. As expected,
treatment with Mtr significantly reduced steatosis in the liver
(not muscle because high distribution of Mtr in the liver after and
oral administration [40]) and the associated glucose intolerance in
these mice. We then examined the key lipogenic enzymes and
found that SREBP1c, ChREBP, SCD-1 and FAS in the liver were all
reduced in HFru-fed mice treated with Mtr. These results suggest
that Mtr is likely to reduce hepatosteatosis via inhibition of the
DNL pathway.
As an increase in FA oxidation can also attenuate hepatos-

teatosis [46], we next investigated whether the reduction of
hepatosteatosis caused by Mtr in HFru-fed mice results from
an increase in liver FA oxidation. However, Mtr did not increase
the oxidation of 14C-palmitate in the liver, indicating FA
oxidation pathway was not activated in HFru-fed mice. This
finding adds further support to our interpretation that Mtr
reduces hepatosteatosis and glucose intolerance in HFru-fed
mice by inhibiting DNL rather than by stimulating FA oxidation
in the liver.
It has been shown that the ER stress pathway plays a critical role

in HFru-induced DNL and hepatosteatosis [32, 36]. For example, an
ob/ob mice hepatosteatosis is largely due to increased DNL as a
result of hyperphagia in an ER stress-dependent manner [47]. The
same study also showed that alleviation of hepatic ER stress by
overexpression of GRP78 reduces hepatosteatosis and insulin
resistance by inhibiting DNL. Similarly, in HFru-fed mice, inhibition
of ER stress by TUDCA and Betulin suppress DNL and improve

Fig. 2 Effects of Mtr on FA oxidation and DNL pathways in the liver of HFru-fed mice. FA oxidation was detected by incubating fresh liver
homogenates with [14 C]–palmitate and DNL was assessed by the protein expression of palmitate in this pathway. (a) Liver lyzates from mice
were immunoblotted with the mature form of SREBP-1c and ChREBP (b), SCD-1 (c), FAS (d) and ACC (e) and then quantified for statistical
analysis. *P < 0.05, **P < 0.01 versus CH-Con; #P < 0.05, ##P < 0.01 versus HFru-Con, n= 7–8 mice per group
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insulin signaling in the liver [13, 17, 20]. To investigate whether the
inhibition of hepatic DNL by Mtr involves the ER stress pathway,
we examined the major ER stress markers in response to HFru-
induced DNL. Interestingly, the results showed that HFru-induced

ER stress (indicated by eIF2α, CHOP and IRE1) were all inhibited by
Mtr. These findings suggest that attenuation of ER stress may be a
novel mode of action for the inhibitory effect of Mtr on DNL and
the resultant hepatosteatosis.

Fig. 3 Effects on ER stress and HSP72 in the liver of HFru-fed mice. Liver lyzates from mice were immunoblotted for (a) eIF2α, CHOP and IRE1
and (b) HSP72 and quantified for statistical analysis. *P < 0.05, **P < 0.01 versus CH-Con; #P < 0.05, ##P < 0.01 versus HFru-Con, n= 7–8 mice per
group

Fig. 4 Effects of Mtr on body weight, visceral adiposity, blood glucose and glucose tolerance in T2D mice. T2D was generated by a high-fat
(HF) diet plus low-dose of STZ injections. After the development of hyperglycemia, Mtr (100mg/kg per day in diet) was administered to
diabetic mice for 4 weeks. Body weight at the end of the study (a). Epididymal (Epi) fat weight (b). Blood glucose levels (after 5–7 h of fasting)
(c) were monitored once a week. An ipGTT (1.0 g glucose/g body weight) was performed after 2 weeks of treatment with Mtr (d). **P < 0.01 vs
CH-Con; ##P < 0.01 vs T2D-Con (n= 7–8 mice/group)
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In terms of the possible cellular target of Mtr, our previous work
suggested that a downregulation of HSP72 may contribute to lipid
accumulation in vivo [9], and in vitro [43]. We showed that Mtr is
able to increase HSP72 expression and protect against lipid
accumulation and glucose intolerance in the liver [9]. Consistent
with this observation, the present study found that liver tissue
from HFru-fed mice had significantly lower concentrations of
HSP72 protein, and this reduction was prevented by Mtr
treatment. HSPs have been implicated in the regulation of diverse
metabolic disorders including hepatosteatosis (the major meta-
bolic defect of non-alcoholic fatty liver disease) and insulin
resistance (the major metabolic defect of T2D) [33, 48, 49]. It has
been reported that an enhanced expression of HSP72 can inhibit
ER stress to protect cell survival [50]. Collectively, our findings
suggest that Mtr may inhibit the ER-DNL axis by up-regulating
HSP72 to reduce hepatosteatosis and the associated glucose
intolerance.
Hepatic DNL and hepatosteatosis also occur in transgenic

diabetic mice such as db/db [24]. Therefore, in the present study
we explored whether Mtr is able to reduce hepatosteatosis in a
mouse model of T2D induced by HF-STZ [27, 28]. Our results
showed that Mtr reduced epididymal fat and lowered hypergly-
cemia, indicating that Mtr may have the potential to control
hyperglycemia in T2D. Because Mtr showed no effect on normal
fasting blood glucose, glucose tolerance or liver TG content in
chow-fed mice [9], the anti-diabetic effects of Mtr could be
attributed to its effect in reducing hepatosteatosis.
In summary, we report here a potential novel application of the

hepatoprotective drug Mtr for the treatment of hepatosteatosis
and associated abnormal glucose homeostasis. This study is the
first to evaluate the effect of Mtr on hepatosteatosis induced by

the ER stress-DNL signaling pathway in HFru-fed mice. As
suppression of ER stress can reduce hepatosteatosis by inhibiting
DNL [16, 36], it is likely that Mtr may exert these beneficial effects
by suppressing ER stress-induced increase in hepatic DNL. We
speculate that the upregulation of the chaperon protein HSP72
may play a critical role in suppressing ER stress (as illustrated in
Fig. 6) but this hypothesis requires validation by further studies
using HSP72 knock-down animal model. Together with our recent
findings in HF-fed mice [9], our results suggest that Mtr may be
repurposed for the treatment of hepatosteatosis and associated
disorders in glucose homeostasis including T2D.
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Abstract 

Ethnopharmacological relevance: Matrine has been isolated from Sophora flavscens, and 

used as a prescribed for treatment of inflammation, cancer, and liver diseases. 

Aim of this study: The present study investigated the effects of matrine (Mtr) on a methionine 

choline-deficient (MCD) diet-induced NASH.  

Materials and methods: C57B/6J mice were fed a MCD diet for 6 weeks to induce NASH 

with or without the treatment of Mtr or metformin as a comparator.  

Results: The results showed that Mtr treatment suppressed plasma ALT, TNFα, and hepatic 

fibrosis markers (TGFβ and Smad3) induced by MCD diet. Along with these effects, Mtr 

reversed the reduced level of HSP72 induced by MCD diet, suggesting a likely role of HSP72 

in coordinating the therapeutic effects of Mtr for NASH. Metformin did not improve 

inflammation and had no effect on collagen 1 and caspase-1. Notably, Mtr treatment 

simultaneously decreased mTOR which is frequently activated in NASH.  

Conclusions: These findings suggest Mtr may be able to upregulate HSP72 and inhibit 

mTOR against NASH induced by MCD diet in a mechanism different from metformin.  

Key words: Matrine; NASH; inflammation; fibrosis; HSP72; mTOR; methionine choline-

deficient diet 
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1. Introduction 

Non-alcoholic steatohepatitis (NASH) is a severe condition of non-alcoholic fatty liver 

disease (NAFLD), the most common chronic liver disease. It is characterized with liver 

steatosis, damage, inflammation and variable degrees of fibrosis by the American Association 

for the Study of Liver Diseases (AASL) [1]. Although the exact mechanism (s) that mediate 

the transition from steatosis to steatohepatitis remain unknown, hepatic inflammation is 

believed to play a key role in NASH pathogenesis [2]. Furthermore, it may induce hepatic 

fibrosis that aggravates the progression of this disease [1]. Untreated NASH with advanced 

fibrosis may increase the incidence rate of liver cirrhosis, hepatocellular carcinoma and liver 

transplantation [1]. Therefore, the major treatment of NAFLD has been focused on NASH 

because effective control of NASH can prevent or delay the progression to these conditions. 

To date, there is still no approved drug specifically for NASH [1]. 

Matrine (Mtr) is a small molecule (MW: 248), a natural product derived from a plant named 

Sophora Flavescens (Kushen alkaloids) [3]. The active compound Mtr has been widely 

prescribed as a hepatoprotective drug in China with very minimum adverse effects [4]. In 

addition, Mtr has several well-recognized pharmacological effects targeting the liver 

including anti-inflammatory, antitumor and anti-viral activities [3, 4]. One of the well-

characterized anti-inflammatory effects of Mtr is inhibition of pro-inflammatory cytokines 

TNFα, the golden key in the pathogenesis of NASH [5]. Moreover, Mtr treatment 

significantly inhibits inflammation upon challenge with LPS in vivo and in vitro and liver 

damage in reperfusion injury of rat liver [6]. Our previous study reported the therapeutic 

effects of Mtr on hepatosteatosis and glucose intolerance induced by a high-fat diet in mice, 

with a mechanism different from metformin [7]. Given the close relationship between 
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metabolic syndrome and NAFLD, we are going to further investigate the effect of Mtr 

contained the active compound that suppress NASH with a focus on hepatic damage, 

inflammation and fibrosis, which are three hallmarks of NASH [1].  
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2. Materials and Methods 

 

2.1. Animal care, diets and experimental design  

Male C57BL/6J mice (10-week old) were purchased from the Animal Resources Centre 

(Perth, Australia) and acclimatized in the animal facility at RMIT University with a standard 

chow diet (CH diet, Specialty Feeds, Australia) for at least one week. Mice were assigned to 

four groups randomly: 1) fed ad libitum with a standard chow diet (CH-Con), 2) MCD alone 

(MCD-Con), 3) MCD treated with matrine (MCD-Mtr; Mtr: 100 mg/kg/day), and 4) MCD 

treated with metformin (MCD-Met; Met: 250 mg/kg/day) as a food additive for 6 weeks. 

Body weight and food intake were monitored daily throughout the experiment. 5-7 hours 

after food removal, tail vein blood was collected for glucose measurement using a glucometer 

(AccuCheck II; Roche, Australia). At the end of the study, plasma was also collected from 

the tail vein and stored at -80°C for biochemical test. A ketamine/xylazine mixture (up to 100 

mg/kg body weight ketamine and 20 mg/kg body weight xylazine) is administered via 

intraperitoneal injection. Mice fixation was performed via transcardial perfusion with 

heparinized PBS (10-20 ml/mice) then perfused with 4% paraformaldehyde (PFA; 10-20 

ml/mice, ProsciTech; # C007). At the completion of the paraformaldehyde perfusion, liver 

right lobe was dissected and immersed in 4% PFA-filled glass scintillation vials for further 

experiments. All experiments were approved by the Animal Ethics Committee of RMIT 

University (#1415) in accordance with the guidelines of the National Health and Medical 

Research Council of Australia.  
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2.2. Preparation of Matrine 

Mtr (Purity > 99.5%) was a gift from Professor Li-Hong Hu 

from the Shanghai Institute of Materia Medica; metformin 

was purchased from Sigma-Aldrich. The powders were 

stored at -20 °C then weighted and carefully mixed with 

diet at a dose of 100 mg/kg every day.  Fig. 1 shows the 

molecular structure of matrine. 

 

 

 

2.3. In vivo Evaluation of Total Body Fat Content 

After four weeks of treatment, the total body fat content in mice was evaluated using the 

EchoMRI™-100H Body Composition Analyzer (Echo Medical Systems, Houston, TX, 

USA). 

2.4. Assessment of the effect on hepatic steatosis 

Hepatosteatosis was assessed by measuring hepatic TG content, which was extracted by the 

method of Folch and determined using a colorimetric assay kit (Triglyceride GPO-PAP; 

Roche Diagnostics, Australia), as described previously [8]. 

2.5. Assessment of the effect on liver damage  

To examine the effects of Mtr on liver damage, the second component of NASH, plasma 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in 

week five using commercial kits (ALT/SGPT and AST/SGOT both Liqui-UV Kit, Boerne, 

USA) [9]. 5-7 hours after food removal, blood plasma was collected from the tail vein and 

Fig. 1 Molecular structure of matrine. 
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prepared according to the manufacturer’s instructions. The absorbance was measured at 340 

nm using a FlexStation (Molecular Devices, Sunnyvale, CA, USA).  

2.6. Quantification of total and non-heme iron  

The total iron and non-heme iron contents of liver samples were determined calorimetrically 

[10], because iron deposition is also regarded as a characteristic of NASH [11, 12]. As 

described previously [13], a fixative liver tissue was homogenized with 50 mM NaOH  and 

incubated overnight at 75-80 degrees. To quantify the amount of total iron and non-heme 

iron, either reagent A (a freshly mixed solution of equal volumes of 1.4 M HCl, 4.5% [w/v] 

KMnO4 and 40% TCA in H2O) or reagent B (same as reagent A without KMnO4) was added 

to samples [10].  

The iron content of the sample was calculated by comparing its absorbance to that of a range 

of standard concentrations of equal volume. Standards (5x diluted standards) were prepared 

as a mixture of FeCl3 in 10 mM HCl, 50 mM NaOH. Standard value was measured using 

lysis reagent that either contained or lacked permanganate [13]. The mixture was transferred 

into 96 well plate and its absorbance was measured at 550 nm. 

2.7. Real-time polymerase chain reaction of liver RNA 

Total RNA was isolated from mouse livers using TRIzol reagent (Invitrogen, #15596026) as 

previously described [14]. Real-time PCR was carried out using the IQ SYBR Green 

Supermix (Bio-Rad Laboratories Inc, USA) for genes of interest. Target gene expression was 

normalized to the housekeeping gene (18S). The primer sequence (5′ to 3′) of 18S is 

CGCCGCTAGAGGTGAAATTCT (sense) and CGAACCTCCG ACTTTCGTTCT 

(antisense); TNFα: CACAAGATGCTGGGA- CAGTGA (sense) and 

TCCTTGATGGTGGTGCATGA (antisense); IL-1β: 

CAACCAACAAGTGATATTCTCCATG (sense) and GATCCACACTCTCCAGCTGCA 

(antisense); CD68: TGACCTGCTCTCTCTAAGGCTACA (sense) and 
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TCACGGTTGCAAGAGAAACATG (antisense); Collagen 1: 

CTGCTGGTGAGAGAGGTGAAC (sense) and ACCAAGGTCTCCAGGAACAC 

(antisense). 

2.8. Western Blotting 

Liver lysates were resolved by SDS-PAGE and immunoblotted with specific antibodies [15]. 

Antibodies were diluted 1:1000 with a TBST buffer containing 1% BSA, 0.02% sodium 

azide (Sigma-Aldrich, #71289) and 0.0025% phenol red (Sigma-Aldrich, #32661). 

Antibodies for HSP72 (Catalogue No. C92F3A-5, 1:1000 dilution) and HSP90 (ADI-SPA-

840HRP, 1:1000) were purchased from Enzo Life Sciences, Farmingdale, NY, USA; MCP-1 

(#2027, 1:1000), HSF1 (#4356, 1:1000), TGFβ (#3709, 1:1000), Smad3 (#9523, 1:1000), 

mammalian target of rapamycin (mTOR), phospho
Ser2448

 mTOR (#2983, 1:1000), α-Tubulin 

(#3873, 1:1000) and GAPDH (#2118, 1:1000) were purchased from Cell Signaling, Danvers, 

MA, USA. A nod-like receptor pyrin containing 3 (NLPR3, #20B-0006-C100, 1:1000) was 

purchased from AdipoGen San Diego, USA. Goat Anti Mouse (#sc-2005), Goat Anti Rabbit 

(#sc-2004) and Goat Anti-Rat (#sc-2065) from Santa Cruz (USA). Proteins were quantified 

using a ChemiDoc, and densitometry analysis was performed using Image Lab software (Bio-

Rad Laboratories, Australia). 

2.9. Histological evaluation of liver sections 

The liver samples perfused using PFA were sliced to 5 μm sections. Free-floating sections 

were used and stained with picrosirius red for liver fibrosis. Slides were quantified in five 

non-overlapping fields of view per animal using an Olympus BX41 microscope with a 20X 

objective lens and an Olympus DP72 digital camera (Olympus, Australia) [9, 16]. The mean 

of value was calculated for each experimental group using the threshold function in the 

ImageJ software package (NIH Image, Bethesda, MD, United States). Data are represented as 

percentage (%) of positive area per field.  
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2.10. Statistical analysis 

All results are presented as means ± SEM. One-way analysis of variance was used to assess 

the statistical significance across all groups. When significant differences were found, the 

Tukey-Kramer multiple comparisons post-hoc test was used to establish differences between 

groups. Differences at p ≤ 0.05 were considered statistically significant and p ≤ 0.01 were 

considered highly significant. 
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3. Results 

3.1. Effects on adiposity, hepatosteatosis and plasma glucose  

MCD diet feeding is a common dietary model of NASH despite the absence of several 

metabolic phenotype on body weight gain and calorie intake [17, 18]. As expected, MCD 

diet-fed mice showed a reduced body weight, body weight gain fasting and blood glucose 

level despite a significant increase in calorie intake. As shown in Table 1, the excess TG 

accumulation, indicative of hepatosteatosis, was increased dramatically in the liver of MCD-

Con mice compared with CH-Con (by 2 fold, p < 0.01). The difference in weight gain 

between chow, MCD alone and MCD with treatments was maintained throughout the 6-week 

treatment period.  

Mtr had no effect on body weight gain and calorie intake in MCD diet-fed mice. Consistent 

with previous studies [18, 19], MCD diet-fed mice showed increased adiposity and 

hepatosteatosis but no glucose intolerance or mild hypoglycemia. There was no change in 

fasting blood glucose level in Mtr-treated MCD diet-fed mice compared to MCD diet-fed 

group. Associated with these effects, Mtr also was had no effect in reducing hepatic TG in 

MCD diet-fed mice (Table 1). Similarly, metformin did not show any effect on any of these 

parameters in MCD diet-fed mice. 
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Table 1. Effects of matrine and metformin on body weight, total food intake and liver 

triglyceride 

 CH-Con MCD-Con MCD-Mtr MCD-Met 

Body weight (g) 24.3±0.2 23.5±0.2
**

 22.6±0.1
††

 22.7±0.1
††

 

Body weight gain (g) 2.0±0.2 0.4±0.2
**

 0.3±0.2 

 

0.7±0.1 

Caloric intake (kcal/kg.day) 268.2±7.5 313.7±9.0 319.7±10.0 

 

334.8±18.4 

Fasting blood glucose (mM) 8.0±0.5 7.4±0.4 6.3±0.4 

 

6.4±0.5 

Liver triglyceride (mol/g) 13.8±4.2 31.6±3.3
**

 28.2±2.5 

 

31.2±3.1 

 

Mice were fed a chow (CH-Con), or MCD alone (MCD-Con), MCD-treated with matrine 

(MCD-Mtr; 100mg/kg/day) or MCD-treated with metformin (MCD-Met; 250mg/kg/day). 

Body weight and food intake were measured twice a week. Blood glucose was performed at 

week 5. Plasma was collected before tissue collection at week 6 for the subsequent analysis 

for ALT and AST. **p < 0.01 vs. CH-Con; ††p < 0.01 vs. MCD-Con (n = 8 mice/group). 

 

3.2. Effects on body composition using MRI 

MCD diet feeding resulted in a lack of metabolic phenotype possibly due to significantly 

decreased body weight (Fig. 2A). As illustrated in Fig. 2B, in spite of the reduced body 

weight as a result of MCD diet feeding, there was a significant increase in fat mass in MCD 

diet-fed mice compared to the CH-Con group. MRI also revealed that MCD diet-fed mice 

with or without treatment of Mtr or metformin had significant decreases in lean mas 

compared to the CH-Con group (Fig. 2C). However, Mtr and metformin had no effect on the 

fat mass of MCD diet-fed mice.  
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Fig. 2. Effects of Mtr on body composition in MCD mice 

The body composition of CH-Con, MCD-Con, MCD-Mtr and MCD-Met was determined by 

EchoMRI analyzer at week 4 (A) Lean+fat mass; (B) Fat mass; (C) Lean mass. *p < 0.05, 

**p < 0.01 vs. CH-Con; †p < 0.05 vs. MCD-Con; ns: no significant vs. CH-Con or MCD-

Con (n = 8 mice/group). 

 

3.3. Effects on hepatic inflammation  

Hepatic inflammation is critical in the progression of NASH, in which secreted pro-

inflammatory cytokines produced by the Kupffer cells promote cell injury and fibrogenesis in 

the liver [1]. Key inflammatory cytokines, including TNFα, IL1β, MCP-1 and NLRP3, are 

particularly associated with liver inflammation, ultimately NASH [1, 20]. To examine the 

role of inflammation in MCD diet-fed mice, the protein activity or expression of these 

inflammatory markers were measured. As expected, MCD-diet resulted in a marked pro-

inflammatory response in the liver as evidenced by increased gene expression of TNFα (2-

fold increase), as well as increased protein levels of MCP1 (1.5-fold) and NLRP3 (1.5-fold). 

The increased expression of MCP1 coincided with an increased gene expression of CD68, 

suggesting recruitment and activation of the Kupffer cells, confirming the presence of hepatic 
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inflammation. Administration of Mtr, but not metformin, significantly decreased the 

expression of TNFα, CD68 (both p < 0.05 vs. MCD-Con mice) and MCP-1 (p < 0.01 vs. 

MCD-Con mice) (Fig. 3 A, C and D). However, no significant differences were detected in 

the expression of IL-1β amongst the experimental groups (Fig. 3 B). It has been suggested 

that NLRP3 blockade reverses advanced stage liver inflammation and fibrosis in MCD diet-

induced NASH [2]. Consistent with results on the inhibition of inflammatory markers, Mtr 

significantly decreased the inflammasome activation in MCD diet-fed mice (Fig. 3 E). In 

contrast to Mtr, metformin had no effect on the activities or expression of these markers (Fig. 

3 A-E). 
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Fig. 3. Effects of Mtr on inflammation in MCD-fed mice. (A) TNFα mRNA, (B) IL1β 

mRNA and (C) CD68 mRNA. Protein expression of MCP-1 (D) and NCLP3 (E), and the 

corresponding representative blots (F). *p < 0.05 vs. CH-Con; †p < 0.01, ††p < 0.01 vs. 

MCD-Con; ns: no significant vs. CH-Con or MCD-Con (n = 7-8 mice/group). 

 

3.4. Effects on the hepatic fibrogenesis 

The effect of Mtr on hepatic fibrosis was examined, as liver fibrosis is another hallmark of 

advanced NASH [21, 22]. As shown in Fig. 4 A-C, MCD diet-fed mice exhibited marked 

increases in the hepatic expression of key fibrogenic proteins , namely TGFβ, collagen1 and 

Smad3 (p < 0.05 vs. CH-Con). Mtr treatment completely normalized the protein abundance 

of these fibrotic markers to the corresponding levels in CH-Con mice. Meanwhile, metformin 

treatment decreased these markers but less effective compared to Mtr treatment. There was 

no significant change in caspase-1 protein expression between groups (Fig. 4 D).  
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Fig. 4. Effects of Mtr on fibrosis in MCD diet-fed mice. Liver lysates from mice were 

immunoblotted for (A) TGFβ, (C) Smad3 and (D) Caspase-1 or RT-PCR for (B) collagen 1.  

*p < 0.05 vs. CH-Con; †p < 0.01, ††p < 0.01 vs. MCD-Con; ns: no significant vs. CH-Con or 

MCD-Con (n = 7-8 mice/group).  

 

To further evaluate the effect of Mtr on hepatic fibrogenesis, liver sections were stained with 

picrosirius red to quantify the extent of liver fibrosis. As shown in Fig. 5, there was ~83% 

increase of liver fibrosis (p < 0.01 vs. CH-Con fed mice) in the liver of MCD-fed mice and 

this increase was reversed following treatment with Mtr (~66% reduction, p < 0.01 vs. MCD-

Con mice). In comparison, no significant reduction of liver fibrosis was observed following 

metformin treatment.  

 



18 

 

 

Fig. 5. Effects of Mtr on fibrosis in MCD diet-fed mice. (A) Representative images 

showing collagen staining with picrosirius red in liver sections from control and treated 

groups. Scale bar = 200 µm, 10, 40x magnification. (B) Mtr treated mice had significantly 

reduced fibrosis area compare to MCD-Con group. **p < 0.01 vs. CH-Con; ††p < 0.01 vs. 

MCD-Con (n = 7-8 mice/group).  

3.5. Effects on plasma level of liver enzymes and iron deposition 

Liver damage has been suggested to be an important factor that distinguishes NASH from 

hepatosteatosis [23]. We next examined whether Mtr treatment may alleviate liver damage in 
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MCD diet-fed mice. As shown in Fig. 6 A, MCD diet-fed mice exhibited marked increases in 

ALT (by 2-fold) and AST (by 1-fold) levels along with the increase of hepatosteatosis in the 

liver (Table 1). Mtr treatment markedly decreased both plasma ALT and AST levels, 

indicating Mtr may reduce liver damage. In contrast, metformin reduced the level plasma 

ALT, but not AST, in MCD diet-fed mice (Fig. 6 B). Iron overload plays an important role in 

the development of NASH [11]. It has been demonstrated that iron overload exacerbates 

inflammation and fibrosis-induced steatohepatitis in humans [24] and rodents [12, 25, 26]. 

We further examined the effects of Mtr on iron levels in the liver of MCD diet-fed mice. 

Consistent with previous reports, the hepatic level of heme or non-heme iron was elevated in 

mice fed a MCD diet (Fig. 6 C and D). However, Mtr or metformin treatment had no effect 

on the increased level of heme or non-heme iron in the liver of MCD diet-fed mice (Fig. 6 C 

and D).  
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Fig. 6. Effects of Mtr on liver damage and iron level. After six weeks of feeding and drug 

treatment, blood sample was collected for the measurement of plasma levels of (A) ALT and 

(B) AST. Liver tissue was collected for the measurement of(C) heme and (D) non-heme iron. 

*p < 0.05, **p < 0.05 vs. CH-Con; †p < 0.01, ††p < 0.01 vs. MCD-Con (n = 7-8 mice/group). 

 

3.6. Effects on hepatic mTOR and HSPs expression  

Elevated protein expression of mTOR has been observed in NASH patients [27]. It has been 

reported that activation mTOR enhance hepatic inflammatory and fibrotic pathways, mTOR 

inhibitors decrease these pathways in HepG2 cells and rodents [27, 28]. Inhibition of mTOR 

has been shown to alleviate liver damage and fibrosis in a mouse model of NASH induced by 

MCD diet [29]. To explore whether the effect of Mtr on NASH involved the inhibition of 

mTOR pathway, the hepatic protein level of mTOR was assessed. Consistent with the 

observation in human NASH patient, MCD-Con mice had increased protein level of mTOR 

in the liver. Interestingly, treatment with Mtr normalized the protein level of mTOR (p < 0.01 

vs. MCD-Con) towards the levels seen in CH-Con mice (Fig. 7 A). Our results suggested that 

Mtr treatment inhibited MCD diet-induced hepatic mTOR expression. In comparison, 

metformin had no effect on the hepatic mTOR level in MCD diet-fed mice. 

Previous work from our laboratory has showed that the antisteatotic effects of Mtr involve the 

activation of HSP72 in the liver of HFD-fed mice [7]. The dissociation of HSP90 from HSF1 

triggers the trimerization and activation of HSF1, which in turn initiates the expression of 

HSP72 [30]. To determine whether Mtr-induced improvement on NASH was associated with 

the upregulation of HSP72, we measured the HSP90, HSF1 and HSP72 protein expression in 

the liver. As shown in Fig. 7 B-D, HSP90 and HSP72 expression were blunted (50% 

reduction compared to CH-Con mice, p < 0.05) by MCD diet feeding, but had no significant 

change on the protein level of HSF1. In addition to the upregulation of hepatic HSP72 and 
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unchanged level of HSP90, which is consistent with our previous report [7], Mtr treatment 

significantly increased the hepatic HSF1 level. In comparison, metformin treatment had no 

effect on the expression of HSP72 and HSP90, despite of the normalization of HSF1 level. 

These results indicate that the therapeutic effect of Mtr on NASH is associated with inhibition 

of mTOR and upregulation of HSPs and, in particular, HSP72.  

 

 

Fig. 7. Effects of Mtr on HSF1, HSP90, HSP72 and mTOR in MCD diet-fed mice. Liver 

lysates from mice were immunoblotted for (A) mTOR (B) HSP90, (C) HSF1 and (D) HSP72 

and quantified for statistical analysis.  *p < 0.05 vs. CH-Con; †p < 0.01, ††p < 0.01 vs. MCD 

-Con (n = 7-8 mice/group). 

 

4. Discussion 
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Our previous studies, which focused on the metabolic effect of Mtr, have demonstrate that 

Mtr treatment was effective in reducing hepatosteatosis, adiposity and glucose intolerance in 

various diet-induced mouse models [7]. Current study further investigates the effect of Mtr on 

NASH, a hepatic manifestation of the metabolic syndrome [1]. This study demonstrated that 

Mtr markedly ameliorated hepatic damage, inflammation and fibrosis, with inhibition of 

mTOR and upregulation of HSP72, in a mouse model of NASH induced by MCD diet 

feeding. In comparison, metformin had no effect on inflammation, collagen deposition, 

HSP72 or mTOR. 

While high-fat or high-fructose feeding results in several prominent features of metabolic 

syndrome (including obesity, hepatosteatosis, glucose intolerance etc.), they do not induce 

apparent and severe hepatic damage or fibrosis in the liver [31]. In contrast, MCD diet 

feeding is a well-recognized model of NASH that rapidly induces hepatic steatosis, damage, 

inflammation and fibrosis in mice, despite of the absence of insulin resistance and 

hyperglycemia [17, 18, 31]. Therefore, we evaluated the protective effects of Mtr on NASH 

in mice fed a MCD diet.  

Consistent with previous studies, mice fed a MCD diet developed hepatic inflammation and 

fibrosis that reflected the natural course of NASH in human [18, 19, 32]. Mtr prevented MCD 

diet-induced inflammation and fibrosis in the liver after 6 weeks of treatment, as 

demonstrated by a Mtr-induced suppression of the increases in TNFα, CD68, MCP-1 and 

NLRP3, and hepatic fibrosis markers (TGFβ, Smad3 and collagen1) induced by MCD diet.  

Several studies indicated that activation of inflammatory cytokines has a vital role in the 

progression of NASH [1, 22].The increase of pro-inflammatory cytokines production via the 

activation of Kupffer cells, in particular TNFα, was suggested to be the key mediator of 
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NASH progression [33].  Alternatively, inhibition of TNFα activity using anti-inflammatory 

drugs improved liver damage, inflammation and NASH [34, 35]. Furthermore, in line with 

increased TNFα production, the increased presence of CD68 and MCP-1 are associated with 

the severity of NASH [1, 9]. The results of the current study proved that Mtr significantly 

reduced these inflammatory targets-induced by MCD diet feeding. Another central 

participator in the development of NASH is the activation of the NLRP3 inflammasome [20, 

36]. It has been recently reported that blockage NLRP3 activation reduced liver inflammation 

and fibrosis in MCD diet-fed mice [2]. It generally believes that the anti-inflammatory 

activities of Mtr are largely due to its ability to scavenge airway inflammation and hepatic 

inflammation [6]. The result of Mtr-induced attenuation of hepatic inflammation, through 

inhibiting the activity of TNFα and suppressing several inflammatory proteins and 

chemokines (including CD68, MCP-1 and NLRP3) in the MCD diet-fed mice, supported the 

notion that Mtr is likely to reduce NASH via inhibition of the inflammation pathway.  

Consistent with elevated levels of pro-inflammation cytokines and exacerbated fibrosis, 

MCD-diet feeding resulted in hepatic fibrosis, is also known as another hallmark of NASH 

[1, 18], and it is considered as a result of repetitive inflammation events [22]. In NASH, 

fibrosis closely correlates with the degree of inflammation and severity of the disease [21, 

22]. While Mtr prevents liver fibrosis (TGFβ and collagen production) induced by carbon 

tetrachloride (CCl4) in rats [37], whether Mtr inhibit fibrosis in a NASH model without the 

involvement of chemical toxicity remains unclear. To investigate whether the inhibition of 

hepatic inflammation by Mtr involves the inhibition of fibrosis signaling and collagen 

production [20, 38]; we examined the effect of Mtr on fibrosis in a mouse NASH model 

induced by MCD diet. Consistent with the reduction in inflammation, our data indicated that 

Mtr inhibited the activation of fibrosis by suppression of TGFβ, Smad3 and collagen 1 
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synthesis in the liver of MCD diet-fed mice. The effect of Mtr in alleviating fibrosis was 

further support by the histological data revealing a significant reduction in the number of 

collagen proportionate area in MCD diet-fed mice after Mtr treatment.  

Consistent with elevated levels of pro-inflammation cytokines and exacerbated fibrosis, 

MCD-diet feeding resulted in severe liver damage as indicated by the elevated plasma level 

of liver enzymes, particularly ALT, which has been considered as a requisite in the diagnosis 

of NASH [1, 39]. Treatment with Mtr significantly decreased the elevated plasma levels of 

ALT and AST, indicating a less extent of liver damage, which is in line with the effect of Mtr 

on hepatic inflammation and fibrosis.  

After demonstrating the effect of Mtr in improving inflammation, fibrosis and liver damage 

in MCD diet-induced NASH, we next investigated the possible molecular mechanism 

involved. Our previous work suggested that upregulation of HSP72 may contribute to 

hepatosteatosis induced by HFD or HFru feeding in mice [7]. Another study from our lab 

showed that Mtr could reduce glucose intolerance in mice caused by an increase in de novo 

lipogenesis (DNL) in HFru diet-fed mice (accepted data). Consistent with this observation, 

the present study found that liver tissue mice fed with MCD diet had significantly lower 

concentrations of HSP72 and HSP90 protein, and this reduction was rescued by Mtr 

treatment. Heat shock protein 72 (HSP72) is the major inducible heat shock protein, exerts 

cytoprotective effects by assisting in protein folding, protein degradation, signal transduction 

and translocation of client proteins across membranes [40]. It is been suggested that HSP72 

expression is progressively suppressed in the liver and muscle of obese and NAFLD patients 

[41], and in skeletal muscle of T2D patients [42]. An elevation in HSP72 is associated with 

the reduction in JNK phosphorylation and attenuation of insulin resistance [43]. These results 
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suggest the anti-inflammatory effects of Mtr, at least in part, involving the activation of 

HSP72 in the liver.  

It is worthwhile noting that Mtr also inhibited MCD-induced increase in mTOR. This is 

interesting because overexpression of mTOR contributes to NAFLD progression [27]. It has 

been suggested to play an important role in the development of NASH by activating 

inflammation and fibrosis in mice fed with choline-deficient diet-induced steatohepatitis [29]. 

In comparison, metformin showed no effect on MCD-induced increase in mTOR or NASH 

phenotype. These data suggest that the suppressed mTOR by Mtr may also contribute to its 

therapeutic effects for NASH. However, studies are required to determine the molecular 

mechanism involved and how the HSP pathway may interact with the mTOR pathway to 

medicate the therapeutic effects of Mtr for NASH. 

In conclusion, the present study suggests that Mtr, a hepatoprotective drug, might offer 

protective effects against NASH via suppression of hepatic inflammation, fibrosis and 

damage, possibly via the upregulation of HSP72 and the reduction of mTOR (Fig. 8). Future 

work involving the use of HSP72 and/or mTOR liver-specific knock-out model is required to 

further confirm the exact molecular regulator of the effect of Mtr. 
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Fig. 8. A Schematic diagram illustrating the proposed mechanism underlying the effects 

of Mtr against MCD diet-induced NASH 
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