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Abstract

This thesis focuses on the game of cops and robbers on graphs, which was introduced in-
dependently by Quilliot in 1978 and by Nowakowski and Winkler in 1983, and one of its
variants, the firefighter problem. In the game of cops and robbers, the cops start by choosing
their starting positions on vertices of a graph, then the robber chooses his starting point.
Then, they move each in turn along the edges of the graph. The basic objective is to de-
termine whether the cops have a strategy which allows them to catch the robber. Looped
vertices allow the cops and the robber to pass their turn. The first chapter explores the
effect of loops on the cop number and the capture time. It provides examples of graphs
where the cop number almost doubles when the loops are removed, graphs where the cop
number decreases when the loops are removed, graphs where the capture time is quadratic
in the number of vertices and copwin graphs where the cop needs to move away from the
robber in optimal play.

In the second chapter, we investigate the links between this game and algebraic topology.
We extend the game of cops and robbers on graphs by considering the case where the cops
chase the image of the robber by a graph homomorphism. We prove that the cop number
associated with a graph homomorphism is a homotopic invariant. Homotopies between graph
homomorphisms or homotopy equivalences between graphs allow us to compare their cop
numbers and also their capture times. Finally, using homotopic invariants such as homology
groups, we investigate structural properties of copwin graphs.

Finally, in the third chapter, we explore the Firefighter problem, introduced by Hart-
nell in 1995, where a fire spreads through a graph while a player chooses which vertices to
protect in order to contain it. While focusing on the case of trees, we also consider a variant
game called Fractional Firefighter in which the amount of protection allocated to
a vertex lies between 0 and 1. While most of the work in this area deals with a constant
amount of firefighters available at each turn, we consider three research questions which arise
when including the sequence of firefighters as part of the instance. We first introduce an on-
line version of both Firefighter and Fractional Firefighter, in which the number of
firefighters available at each turn is revealed over time. We show that a greedy algorithm on
finite trees is 1/2-competitive for both online versions, which generalises a result previously
known for special cases of Firefighter. We also show that the optimal competitive ratio
of online Firefighter ranges between 1/2 and the inverse of the golden ratio. Next, given
two firefighter sequences, we discuss sufficient conditions for the existence of an infinite tree
that separates them, in the sense that the fire can be contained with one sequence but not
with the other. To this aim, we study a new purely numerical game called targeting game.
Finally, we give sufficient conditions for the fire to be contained on infinite trees, expressed
as the asymptotic comparison of the number of firefighters and the size of the tree levels.
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Chapter 0

Introduction

Like linear programming, information theory and many other areas, the study of pursuit-
evasion games was initially motivated by the military conflict of WWII. The mathematical
study of these games was first introduced in the early fifties by Rufus Isaacs [13], with an
application to missile guidance systems. The first pursuit-evasion games on graphs were
introduced by Torrence Parsons in 1976 [48], and the study of pursuit-evasion games was
then split between continuous games and discrete games. The game of cops and robbers
was introduced only two years later by Alain Quilliot [49] and independently by Richard
Nowakowski and Peter Winkler in 1983 [47]. Since then, the game of cops and robbers on
graphs has become the prime example of a discrete pursuit-evasion game and is now the
subject of a wide literature.

The game of cops and robbers on graphs is the starting point of this thesis. In this game,
a robber and one or several cops move each in turn along the edges of a graph, and the basic
objective is to work out whether the cops can catch the robber. This game has quite a few
applications. The first and most important, theoretically speaking, is network security: a
network may be considered more secure if fewer cops are needed to patrol it. There are also
applications to computer viruses as well as biological viruses. Another application is to the
problem of pipe networks in North America which are contaminated by regenerating agents;
that is, either algae or zebra mussels. The pipes are cleansed using automated robots, and
determining the minimum number of robots required to fight the infection, as well as their
optimal path along the network, is a direct application of a variant of the game. Many such
variants of the game of cops and robbers have been studied: some were created through
slight changes in the rules, like modifying the victory condition, playing with incomplete
information, disallowing the players to pass their turn, speeding up the robber or allowing
the cops to use helicopters (see [10] for a survey of these variant games). Other variants
involve significantly different objectives, like seepage [18], guarding [29], searching [51] or
sweeping [54]. The firefighter variant has given rise to a wide literature; it is also the topic
of Chapter 3 in this thesis.

Our study of the firefighter problem began as a collaboration with Bertrand Jouve and
Pierre Coupechoux for the project Geosafe H2020. Geosafe is a joint project between Aus-
tralia and Europe, the purpose of which is to make our planet safer before year 2020 by
addressing the threat of bushfires. The firefighter problem is a variant game derived from
the game of cops and robbers in which a fire spreads through a graph and the firefighter tries
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to contain it, to the best of his abilities, by choosing at each turn which vertices to protect.
At each turn, the fire spreads to all adjacent unprotected vertices. Other people working
for Geosafe modelise the fire spread by taking into account weather, vegetation, topography,
smoke front, ember spray, roads, electric lines and many other factors; but our simplistic ap-
proach already leads to very complex and interesting problems. Rather than trying to resolve
practical issues, our aim is to further our general understanding of percolation problems on
graphs.

The first two chapters of this thesis are dedicated to the game of cops and robbers while
the third focuses on the firefighter problem. Although these two games are similar in nature,
they led to very different types of study. The first chapter is mostly game theory: it covers
the effect of a small change in the rules of cop and robbers and analyses playing strategies
which apply in specific examples. The second chapter combines cops and robbers with
algebraic topology, starting from the use of homotopies to characterise copwin graphs. The
study of the firefighter problem in the third chapter focuses on approximation results and
online algorithms as well as specific playing strategies.

Notations and definitions

We now introduce some notations and standard definitions of set theory and graph theory,
which will be used throughout the thesis. Notations and definitions which are specific to a
chapter will be specified in the related chapter.

Given two sets A and B, let A \ B = {x ∈ A, x /∈ B}. Let ∅ denote the empty set ;
N will denote the set of non-negative integers and N∗ = N \ {0}; Z will denote the set of
integers, R will denote the set of real numbers and R+ the set of non-negative real numbers.
The cardinality of A will be denoted |A|. The set of functions from B to A is denoted AB,
in particular, AN denotes the set of sequences of A. Given i, i′ ∈ N, lcm(i, i′) and gcd(i, i′)
will respectively denote the lowest common multiple and the greatest common divisor of i
and i′. Given a predicate P , we denote by 1P the associated characteristic function so that
1P (x) = 1 if P (x) is true and 0 otherwise. Given a linear map f , Im f and Ker f denote its
image and kernel, respectively.

Given a vertex u of a graph G = (V,E), we denote by N(u) and N [u] the open and
closed neighbourhoods of u respectively (N [u] = N(u) ∪ {u}). Note that the open and
closed neighbourhoods of a vertex u are equal if there is a loop on u, hence the distinction
vanishes entirely in the case of totally looped graphs. The Cartesian product of two graphs
X = (V,E) and Y = (V ′, E ′), denoted X�Y , is the graph with vertex set V × V ′ and edges
between (x1, y1) and (x2, y2) if x1 = x2 and y1 ∈ N(y2) or if y1 = y2 and x1 ∈ N(x2). Using
the definition in [52], the categorical product of two graphs X = (V,E) and Y = (V ′, E ′),
denoted X × Y , is the graph with vertex set V × V ′ and edges between (x1, y1) and (x2, y2)
if x1 ∈ N [x2] and y1 ∈ N [y2]. Let Pn denote the path with n vertices numbered 0 to n− 1.
Let Hom(X, Y ) denote the set of graph homomorphisms from X to Y , IdX the identity of
X, and Aut(X) the group of automorphisms of X.

A tree T is a connected graph without cycles; V (T ) and E(T ) will denote its vertex set
and edge set, respectively. A rooted tree is a pair (T, r), where r ∈ V (T ) is the root. The
leaves of a tree are its vertices of degree 1, excluding the root, unless the root is the only

8



vertex, in which case it is counted as a leaf; the other vertices are called internal vertices.
Vertices in a rooted tree are referred to as parent, sibling, child, ancestor or descendant of
another vertex, depending on their respective positions in relation to the root. Given an
integer p ≥ 2, a perfect p-ary tree is a tree where every internal vertex has p children and the
leaves are all at the same distance from the root. An n×m grid is the graph Pn�Pm. The
n×m torus grid is the Cartesian product of two cycles of lengths n and m. The Hamming
graph H(d, q) has vertex set {0, . . . , q − 1}d, with its vertices adjacent if and only if they
differ in exactly one coordinate. Given a graph G, a clique is a set of vertices of G which are
all pairwise adjacent and a stable set is a set of vertices with no edges between them. An
induced path of length n of G is a sequence of vertices (u0, . . . , un) where ui and ui+1 are
adjacent and no vertex is repeated.

When in doubt, the reader is referred to [21] for all standard vocabulary of graph theory,
to [31] for complexity theory, to [38] for algebraic topology and to [10] for the topic of cops
and robbers.
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Chapter 1

The Impact of Loops on the Game of
Cops and Robbers on Graphs

1.1 Introduction

The Game of Cops and Robbers is a two-player game played on a graph G. In this game,
the cop starts by choosing her starting position on a vertex of G. Then, the robber chooses
his starting point. Following this, they move each in turn along the edges of the graph. We
assume that they play with complete information, meaning that they can see each other at
all times. The cop’s objective is to catch the robber, which she can achieve either by moving
onto the robber’s position, or by forcing him to move onto her position. The question is:
does the cop have a winning strategy? If so, the graph is said to be copwin, otherwise it is
robberwin. When the graph is robberwin, the question then becomes: how many cops do you
need to catch the robber? When playing with several cops, all the cops must move during
their turn. However, vertices with a loop allow a subset of the cops or the robber to stay in
place by following the loop. The minimum number of cops required to catch a robber on a
graph G is called the cop number of G and is denoted c(G). The notion of cop number was
first introduced in the seminal paper by Aigner and Fromme in 1984 [2].

Most authors play on totally looped graphs, or consider only graphs without loops and
allow the cops and the robber to pass their turn whenever they wish to do so.

Note that some authors, e.g. [14], consider moving onto the robber’s position the only
way for the cop to win. In that case, if there are no loops, the robber will win by shadowing
her movements. Their version has one advantage: copwin graphs become easy to recognise
using dismantlability or other equivalent criteria (see theorem 4.1 in [14]). However, our
winning condition seems more natural and the difficulties which arise from no longer having
an easy characterisation of copwin graphs lead to interesting possibilities, which will be
highlighted in this chapter.

It is always possible to replace a looped vertex by a pair of adjacent twin vertices; hence,
any cops and robber problem on a totally looped or partially looped graph can be reduced
to a similar problem on a simple graph.

We consider that the cops’ objective is to catch the robber as swiftly as possible, whereas
the robber tries to evade the cops for as long as possible. Hence, optimal play for the cops
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involves minimizing the capture time (introduced in [8]) in the worst case scenario, while an
optimal strategy for the robber maximises the same capture time.

Given a graph G, let G+ and G− denote the same graph with loops respectively added
or removed on every vertex.

Previous authors already considered the effect of allowing or forbidding the players to
pass their turn: in [46], Neufeld and Nowakowski distinguish between the passive game,
where both sides may pass their turn, and the active game, where the robber and at least
one cop must move during their turn. While the former is equivalent to playing on totally
looped graphs with our definition, the latter is different from playing without loops with our
definition, and matches only when there is a single cop. In [12] (Lemma 16), it is shown that
c(G+) ≤ c(G−) + 1, which means that the loops can only be slightly of help to the robber.
In this chapter, we will provide examples where this bound is reached for any cop number.
We will also provide examples where the cop number almost doubles when the loops are
removed instead.

In [12], Boyer et al. also disprove a conjecture which states that on copwin graphs, in
optimal play, the distance between the cop and the robber is decreasing. In their counter-
example, the cop has to make a move which keeps her at the same distance from the robber,
and he then moves away from her. We provide examples of graphs where the cop actually
moves away from the robber in optimal play, both in the totally looped and partially looped
cases.

1.2 Comparing the cop numbers of totally looped and

non-looped graphs

A vertex u is said to be dismantlable if there exists a vertex v 6= u such that N(u) ⊂ N [v].
Vertex u is then said to be dominated by v. This means that if the robber is standing on
u and the cop on v, and if it is the robber’s turn to move, then he will be caught on the
cop’s next move. The robber is then said to be cornered. We say that a cop on v covers
the vertices in N [v] in the sense that she prevents the robber from moving to these vertices.
A totally looped graph is said to be dismantlable if it can be reduced to a single vertex
by successively removing dominated vertices. Quilliot[49] and Nowakowski and Winkler[47]
proved independently that a totally looped graph is copwin if and only if it is dismantlable.

If a graph G has several connected components G1, . . . , Gm, then we have c(G) =
m∑
i=1

c(Gi). Hence, from now on, we will consider only connected graphs.

Proposition 1. For any connected graph G, c(G−) ≤ 2c(G+).

Proof. Given a winning strategy for p cops on G+, for each cop, we can place another cop
on a neighbouring vertex in the initial setup. In G−, the extra cop will shadow the former
and switch with her should she need to remain in place in the original winning strategy on
G+.

Remark 1. It is shown in [12] that ∀G, c(G+) ≤ c(G−) + 1. The idea is that one cop
should follow the robber while the others apply their strategy for G−. If the robber follows a
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loop, the cop following him gets closer while the others pass their turn. Thus we obtain that
∀G, c(G+)− 1 ≤ c(G−) ≤ 2c(G+).

Remark 2. For any connected graph G, not necessarily without loops, we have c(G+) ≤
c(G) + 1. Indeed, if G is partially looped, when the robber passes his turn, the cops applying
the strategy for G can go back to their initial positions and start their strategy anew. The
proof of proposition 1 also shows that even if we allow the robber to pass his turn while the
cops may not, then the cop number would be at most 2c(G+).

Proposition 2. For all p ∈ N∗, there exists a connected graph Hp such that c(H+
p ) = p+ 1

and c(H−p ) = p.

a

(0, 1)

(0, 0)

(1, 1)

(1, 0)

Figure 1.1: Graph H1

Proof. Let Hp be the graph obtained by adding to the Hamming graph H(2p, 2) a vertex a
linked to vertices (0, . . . , 0) and (1, 0, . . . , 0). Since Hp is non-looped, Hp = H−p . The degree
of each vertex in H(2p, 2) is 2p, and any two vertices at distance 2 share exactly 2 common
neighbours. Also, adjacent vertices have disjoint open neighbourhoods. Hence, while p cops
may cover the open neighbourhood of any given vertex in H(2p, 2), they cannot cover its
closed neighbourhood. This means that on H(2p, 2)+, the robber has a winning strategy
against p cops. After adding vertex a, the same strategy still works since a is dominated by
(0, . . . , 0), so whenever a cop goes to a, the robber can pretend that she went to (0, . . . , 0)
instead. Therefore, c(H+

p ) > p.
We will now show by induction that on Hp, p cops have a winning strategy which satisfies

the following properties:

• all the cops start on vertex a,

• all the cops place themselves at an even distance from the robber after each move,

• the robber is prevented from ever reaching a.

On the graph H1, there exists such a strategy that allows a single cop to win in two
moves. Let us now assume that we have such a strategy for p cops on Hp, for a fixed p. On
Hp+1, the strategy for p+ 1 cops may be divided into the following steps:

1. First, all p+ 1 cops start at a. The robber then chooses his starting point.
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2. Since H(2p + 2, 2) is bipartite, either (0, . . . , 0) or (1, 0, . . . , 0) is at an even distance
from the robber’s starting point. The cops all move to that one. The bipartite nature
of H(2p + 2, 2) guarantees that the parity of the distance will remain even after the
cops’ move throughout the game, provided that no one goes through a.

3. This step applies only if the robber’s first move brings him to a vertex where the last
two coordinates are either (0, 1) or (1, 0). In this case, the first p cops will move to
match their last two coordinates with the robber’s. In all cases, the first p cops now
have an even number of coordinates which differ from the robber’s, both among the
first 2p coordinates and among the last two.

4. From this point on, by omitting the last two coordinates, the first p cops apply the
strategy for Hp; unless the robber moves along one of the last two coordinates, in
which case they move to match their last two coordinates with the robber’s. As a
result, either the robber’s last two coordinates remain (1, 1) and the cops’ (0, 0), or
those p cops and the robber have matching last two coordinates. This means that the
robber is prevented from reaching vertex a.

5. Meanwhile, the last cop will always move along the first of her coordinates which differ
from the robber’s. Thus, the last cop will catch the robber if he moves along the last
two coordinates more than 2p times. If not, the strategy for Hp will lead to one of the
cops aligning at least all but the last two of her coordinates with the robber’s. This
means that either the robber is caught, or his last two coordinates have remained (1, 1)
until now.

6. In that case, the cop who almost caught the robber will then maintain the alignment
of the first 2p coordinates throughout the rest of the game, thus preventing the robber
from making any further movements along the last two coordinates without immedi-
ately getting caught.

7. The other p cops now go to vertex (0, . . . , 0, 1, 1).

8. Those p cops apply again the strategy for Hp starting from the second move, which
results in the robber’s capture.

Hence, ∀p, c(Hp) ≤ p, and it follows from proposition 1 that we have c(Hp) = c(H−p ) = p
and c(H+

p ) = p+ 1.

We will now construct a sequence of graphs Gp, p ≥ 2 such that c(G+
p ) = p and c(G−p ) =

2p− 1. For p ≥ 2, let Gp be the following graph consisting of three layers. In order to build
the first layer, take a perfect 4p2-ary tree of height 11 and join the children of each internal
vertex into 2p cliques of 2p vertices. Thus, other than the root and leaves, every vertex has
1 parent, 2p − 1 adjacent siblings and 4p2 children. Note that this graph is copwin, with
or without loops, as the cop wins by always moving towards the robber. We now number
the vertices by level, from 1 at the root down to the leaves, so that sibling vertices have
consecutive numbers. For all (2p)13 ≤ i < (2p)13 + p2 and 0 ≤ a < i, we add a vertex vi,a on
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layer 2 linked to every vertex of layer 1 with a number congruent to a mod i. Hence, no two
sibling vertices (adjacent or non-adjacent) are linked to the same vi,a. Layer 3 contains p−1
vertices v1, . . . , vp−1, where vk is linked to vi,a iff i ≡ k mod (p− 1). Since Gp is non-looped,
Gp = G−p .

1

4p2 − 2p + 2,

. . . , 4p2 + 1

2, . . . , 2p + 1

..

.

..

.

Leaves

Leaves

..

.

u

v(2p)13,a

0 ≤ a < (2p)13

v(2p)13+1,a

0 ≤ a < (2p)13 + 1
vi,a... ...

v(2p)13+p2−1,a

0 ≤ a < (2p)13 + p2 − 1

u ≡ a mod i

v1 v2 vk vp−1... ...

i ≡ k

mod (p− 1)

Figure 1.2: The three layers of Gp: circles represent cliques, rectangles are stables.

While the perfect tree we used as a base for Gp is, strictly speaking, no longer a tree,
since edges were added to it, we will keep using the vocabulary of trees, in particular “leaf”
and “internal vertex”, as a convenient way to refer to its vertices and their relative positions.
We will also identify a vertex u in layer 1 with its number 1 ≤ u ≤

∑11
k=0(2p)2k.

The construction of the graph Gp underwent many changes throughout four years of
research. The main idea was to create a graph with key vertices which need to be occupied
at all times in order to catch the robber efficiently. Despite the simplicity of this concept,
the end result is a very complex structure. Initial versions for G2 used a grid with diagonals
instead of a tree and had routes via layer 2 allowing the robber to escape to other quadrants
of the grid. However, proving the properties is impractical and it therefore remains uncertain
whether these graphs are actually valid examples or not. In order to reach the current setup,
we used the following criteria in order to find working parameters: choose a perfect n-ary
tree of height h, where sibling vertices are grouped in d cliques of size c, with M internal
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vertices and N vertices in total. In layer 2, imin ≤ i < imax and 0 ≤ a < i. The proof
requires the following constraints:

• imin ≥ n so that no two siblings are adjacent to the same vi,a.

• d > 2p− 2 so that the robber cannot be trapped on an internal vertex (lemma 2, point
1).

• M > 3(2p− 2)imax so that the robber can always go from vi,a to an internal vertex of
layer 1 (lemma 2, point 2).

• imin ≥ 2p− 2 so that the robber cannot be trapped on vk (lemma 2, point 3).

• i2min > N(imax−imin) so that two vertices of layer 1 cannot have more than one common
neighbour in layer 2 (lemma 3).

• imax − imin > (p− 1)(p+ 1) for the conclusion of lemma 3.

• c ≥ p + 1 so that p− 1 cops on layer 2 and p− 1 cops on layer 3, alternating at each
turn, cannot trap the robber (lemma 4).

The values selected for Gp are among the simplest that satisfy all the above conditions
for all values of p.

Lemma 1. For all p ≥ 2, c(G+
p ) ≤ p and c(G−p ) ≤ 2p− 1.

Proof. A winning strategy for p cops on G+
p consists of having p−1 cops occupy the vertices

of layer 3, thus denying access to layer 2 to the robber, while the last cop chases the robber
on layer 1, which is copwin. Similarly, 2p − 1 cops can catch the robber on Gp by having
p− 1 pairs alternating between layers 2 and 3, thus always occupying layer 3, while the last
cop chases the robber on layer 1, eventually cornering him on a leaf.

Lemma 2. For all p ≥ 2, the only vertices of Gp where the robber may be cornered by 2p−2
cops are the leaves of layer 1.

Proof. In order to prove this, we need to consider three cases: the internal vertices of layer
1, all of layer 2 and layer 3.

1. An internal vertex of layer 1 has 4p2 children, sorted into 2p cliques. No other vertex
in the graph has neighbours in two of these cliques. Hence, at least 2p cops are needed
to trap the robber on an internal vertex of layer 1.

2. Let M denote the number of internal vertices on layer 1:

M =
10∑
k=0

(2p)2k. For any vertex x, let Niv(x) denote the intersection of N(x) with

the internal vertices of layer 1. Given any vertex vi,a of layer 2, no two elements of
Niv(vi,a) are siblings. Hence, a cop in layer 1 will cover at most 3 elements of Niv(vi,a)
(the parent, one child and either a sibling or her own position). Also, for (i′, a′) 6= (i, a),

|Niv(vi,a) ∩Niv(vi′,a′)| ∈ {0,
⌊

M

lcm(i, i′)

⌋
,

⌈
M

lcm(i, i′)

⌉
},
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depending on the values of a and a′. For i 6= i′, since gcd(i, i′) ≤ |i− i′| ≤ p2, we have
lcm(i, i′) = ii′

gcd(i,i′)
≥ 226p24 > M . Thus,

|Niv(vi,a) ∩Niv(vi′,a′)| ≤ 1.

Finally, for vk in layer 3, Niv(vk) = ∅. On the whole:

∀x ∈ G, x 6= vi,a, |Niv(vi,a) ∩Niv(x)| ≤ 3.

The cardinality of Niv(vi,a) is either
⌈
M
i

⌉
or
⌊
M
i

⌋
. Hence,

|Niv(vi,a)| ≥
⌊

M

(2p)13 + p2

⌋
> 3(2p− 2).

This means that if the robber is in layer 2, 2p − 2 cops cannot cover all the internal
vertices of layer 1 in his neighbourhood.

3. Let us now consider vertex vk of layer 3. Its neighbours are the vi,a with i ≡ k
mod (p − 1). For such an i and a 6= a′, no vertex other than vk is adjacent to both
vi,a and vi,a′ . Since i > 2p− 2, it is impossible to trap the robber on layer 3 with only
2p− 2 cops.

Thus, the only vertices of Gp where the robber might be cornered by 2p− 2 cops are the
leaves of layer 1.

Lemma 3. For all p ≥ 2, with 2p− 2 cops, if the robber is on a vertex of layer 1 of Gp, he
can always move to layer 2 without getting immediately caught, unless all vertices of layer 3
are occupied by cops.

Proof. For u in layer 1, let NL2(u) = {vi,a, u ≡ a mod i}.

∀u′ 6= u, |NL2(u) ∩NL2(u′)| = |{(2p)13 ≤ i < (2p)13 + p2, i|u− u′}|.

For (2p)13 ≤ i, i′ < (2p)13 + p2, i 6= i′, we have lcm(i, i′) ≥ 226p24. Since layer 1 has fewer
than 226p24 vertices, this means that there cannot be two distinct i and i′ which divide u−u′.
Hence:

∀u′ 6= u, |NL2(u) ∩NL2(u′)| ≤ 1.

Note that for any vertex u in layer 1 and any vk in layer 3,

|NL2(u) ∩N(vk)| = |{vi,a, u ≡ a mod i, i ≡ k mod (p− 1)}|
= |{(2p)13 ≤ i < (2p)13 + p2, i ≡ k mod (p− 1)}|.

Thus, |NL2(u)∩N(vk)| = p+1 for all but one value 2 ≤ k ≤ p−1 and ∃!k, 2 ≤ k ≤ p−1,
|NL2(u)∩N(vk)| = p+2. It follows that if the robber is in layer 1 and one or several vertices
of layer 3 are not occupied by cops, the remaining cops are insufficient to prevent the robber
from reaching layer 2.

Lemma 4. For all p ≥ 2, the robber can evade 2p− 2 cops on Gp.
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Proof. The robber’s winning strategy against 2p−2 cops can be simply described as follows:
choose a starting position on a grandchild of the root at distance at least 2 from every cop,
then, move arbitrarily while remaining at distance 2 from the cops and avoid moving to the
leaves of layer 1 unless forced to do so. Finding a suitable starting position is always possible
since at least one child of the root is not initially occupied by a cop, and it follows from
the proof of lemma 2 part 1 that at least one of its children is not covered by the cops. We
proved in lemma 2 that if the robber is in layer 2, he can always escape to an internal vertex
of layer 1. Note that if there are p− 1 cops on layer 3 and p− 1 cops on layer 2, the robber
can always move to an adjacent sibling vertex since at most p − 1 of those are covered by
the cops. Hence, it follows from lemma 3 that the only situation where the cops can force
the robber to move to a leaf is if the robber is on the parent of that leaf, p− 1 cops occupy
layer 3 and one cop occupies the parent of the robber’s vertex. In this situation, after the
robber moves to a leaf, the cops on layer 3 have to move to layer 2, and at most p− 2 cops
can move to layer 3. Hence, the robber will be able to escape via layer 2 immediately after
being forced to move to a leaf of layer 1.

We can now conclude that Gp indeed has the required property, which gives us the
following proposition:

Proposition 3. For all p ≥ 2, there exists a connected graph Xp such that c(X+
p ) = p and

c(X−p ) = 2p− 1.

Proof. The graph Gp has this property. Indeed, it stems from lemma 1 and lemma 4 that
c(Gp) = c(G−p ) = 2p− 1, and it follows from lemma 1 and proposition 1 that c(G+

p ) = p.

Proposition 1 states that removing all the loops from a totally looped graph at most
doubles the cop number. We have shown that removing all the loops from G+

p almost
doubles the cop number. Not only is this asymptotically optimal, we believe that this is the
actual limit:

Conjecture 1. For any connected graph G, c(G−) < 2c(G+).

It is true that c(G+) = 1 → c(G−) = 1. Indeed, on a totally looped copwin graph, the
cop never follows a loop in optimal play, as it would allow the robber to repeat the position
by doing the same thing. To our knowledge, all other cases remain open.

1.3 Quadratic capture time

It was shown in [33] that for a totally looped copwin graph with n vertices, n ≥ 7, the
capture time in optimal play is at most n − 4. For partially looped graphs, the boundary
is quadratic instead of linear. We will provide an example of a sequence of partially looped
grids where the capture time increases quadratically in the number of vertices.

Proposition 4. Given a copwin graph with n vertices, the capture time in optimal play is
at most n(n− 1).
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Proof. The number of positions of the cop and the robber is n(n−1), and an optimal winning
strategy for the cop does not allow repeats of the same position.

Remark 3. The same reasoning can be applied to p cops. Also, if a graph G displays some
symmetry, we can be more precise. Indeed, the group of automorphisms Aut(G) acts on the
set of positions of the cop(s) and robber. Since optimal winning strategies for the cop(s) do
not allow repeats of the same position up to automorphism, the capture time is bounded by
the number of orbits of this action.

Example of a partially looped grid: Consider the 2 × n grid, with n ≥ 5. Its vertices
shall be represented by the elements of {1, 2} × {1, . . . , n}. After adding a loop on vertices
(1, 1) and (1, n), the resulting graph will be denoted Gn. We will show that the optimal
strategy on Gn, which is copwin, has two unusual properties: the capture time is quadratic
(proposition 6), and the cop is required to move away from the robber several times in a row
(corollary 3).

While these properties will seem evident to anyone who briefly examines the strategy of
the cop described in proposition 7, they are surprisingly difficult to prove. Showing that
this strategy is winning is easy, however, showing that it is optimal is not. The key point
is to prove that the cop needs to stay on row 1 (corollary 2). Our attempts at proving it
elegantly have failed. However, there is a brute force method which can be used to prove
that a strategy is optimal: after computing the capture times obtained from applying this
strategy for all possible starting position, it suffices to show that in any position, either the
robber gets caught immediately, or the capture time decreses by 1 after each player makes
their best move. While this is a simple matter of calculation, all the properties of the game
can then be deduced from these capture times.

(1, 1)

(2, 1)

(1, n)

(2, n)

Figure 1.3: Partially looped 2× n grid

For any two vertices of Gn, (x, a) and (y, b), we define ct((x, a), (y, b)) as follows:
ct((x, a), (y, b)) = 0 if (x, a) = (y, b).
ct((x, a), (y, b)) = 1 if (x, a) and (y, b) are neighbours.
ct((1, a), (1, b)) = n b−a+1

2
− a if a < b− 1 and a+ b is odd.

ct((1, a), (1, b)) = na+b
2

+ a− 1 if a < b, a+ b is even and a+ b ≤ n.
ct((1, a), (1, b)) = n2n+2−a−b

2
− a if a < b, a+ b is even and a+ b > n.

ct((1, a), (2, b)) = n b−a
2
− a if a < b and a+ b is even.

ct((1, a), (2, b)) = na+b−1
2

+ a− 1 if a < b, a+ b is odd and a+ b ≤ n+ 1.
ct((1, a), (2, b)) = n2n+3−a−b

2
− a if a < b, a+ b is odd and a+ b > n+ 1.

ct((2, a), (1, b)) = n b−a+2
2
− a+ 1 if a < b and a+ b is even.

ct((2, a), (1, b)) = na+b+1
2

+ a if a < b, a+ b is odd and a+ b < n.
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ct((2, a), (1, b)) = nn+1
2
− a+ 1 if a < b, a+ b is odd and a+ b = n.

ct((2, a), (1, b)) = n2

2
+ a if a < b, a+ b is odd and a+ b = n+ 1.

ct((2, a), (1, b)) = n2n+3−a−b
2

− a+ 1 if a < b, a+ b is odd and a+ b > n+ 1.
ct((2, a), (2, b)) = n b−a+1

2
− a+ 1 if a < b− 1 and a+ b is odd.

ct((2, a), (2, b)) = na+b
2

+ a if a < b− 1, a+ b is even and a+ b ≤ n.
ct((2, a), (2, b)) = n2n+2−a−b

2
− a+ 1 if a < b− 1, a+ b is even and a+ b > n.

ct((x, a), (y, b)) = ct((x, n+ 1− a), (y, n+ 1− b)).

Lemma 5. If (x, a) and (y, b) are neither equal nor adjacent, then:

ct((x, a), (y, b)) = 1 + min
(x′,a′)∈N((x,a))

max
(y′,b′)∈N((y,b))

ct((x′, a′), (y′, b′)),

where ct is the function defined above.

The proof of lemma 5 consists of a simple case by case verification of the formula. The
detailed calculations will not be fully included here, as they are both trivial and very lengthy.
A couple of cases will be detailed in the appendix (section 1.6) in order to give the reader an
idea of what the full version might look like. Yet, the idea that the problem can be solved
in this way is more interesting than the verification itself. While this is not fully satisfying,
my projects for future works include two possible alternatives: either finding a more elegant
way to prove that the the cop needs to stay on the first row, or creating a machine-aided
proof using an algorithm which verifies the formula in all cases.

Proposition 5. If the cop starts in (x, a) and the robber starts in (y, b), then ct((x, a), (y, b))
is the capture time.

Proof. The capture time can be defined by induction using the fact that if the cop makes her
best move, then the robber makes his best move, the capture time decreases by one. This
property is described by the minmax formula in lemma 5. Thus ct is the capture time.

Corollary 1. The partially looped grid Gn is copwin.

Proof. The capture time ct is finite. Hence, Gn is copwin.

Corollary 2. Any optimal strategy for the cop requires her to start and stay on row 1, except
for the very last move whence she may catch the robber on row 2.

Proof. For all a < b, ct((1, a), (1, b)) < ct((2, a), (2, b)) and ct((1, a), (2, b)) < ct((2, a), (1, b)).
Hence, when the cop moves to the second row, the robber can increase the capture time by
making a vertical movement.

Proposition 6. The capture time for Gn is
⌊
n2

2

⌋
.

Proof. The capture time for Gn is given by the following formula:

ct(Gn) = min
(x,a)

max
(y,b)

ct((x, a), (y, b)).

Using the symmetry of the graph and corollary 2, we may consider only the cases where
the cop starts in (1, a) with a ≤ n

2
. If n is even, the formulas for ct give ct((1, a), (y, b)) ≤
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n2

2
+ a− 1, and this boundary is reached for (y, b) = (1, n− a) or (2, n+ 1− a). If n is odd,

then ct((1, a), (y, b)) ≤ nn+1
2
− a, which is reached in (1, n+ 1− a) and (2, n+ 2− a).

Hence, if n is even, the cop should start in the corner (1, 1), and the robber in (1, n− 1)
or (2, n), for a capture time of n2

2
(see fig. 1.4). And if n is odd, the cop should start in

the middle in (1, n+1
2

) and the robber in (2, n−1
2

) or (2, n+3
2

), for a capture time of n2−1
2

(see
fig. 1.5).

(1, 1)

(2, 1)

(1, n)

(2, n)

optimal starting point for the cop
optimal starting point for the robber

Figure 1.4: Optimal starting points for n even

(1, 1)

(2, 1)

(1, n)

(2, n)

optimal starting point for the cop
optimal starting point for the robber

Figure 1.5: Optimal starting points for n odd

Proposition 7. The optimal strategy for the cop on Gn is to go back and forth between the
loops, following the loop once each time, until she can move to catch the robber. Assuming
that the cop and robber both start in their optimal starting positions, the cop’s first move
should be to follow the loop if n is even, or to move on the first row towards the robber if n
is odd.

Proof. Corollary 2 states that in optimal play, the cop stays on the first row. Also, in
optimal play, the cop can never move along the same edge twice in a row, as it would
allow the robber to repeat the position by doing the same. This only leaves the cop a
single possibility at each turn after the first. On the first move, if n is even, she can either
follow the loop or move to (1, 2). If she moves to (1, 2), the robber can move to (2, n − 1).
Since ct((1, 2), (2, n − 1)) = n2

2
+ 1, which is greater than the capture time for Gn, this

is not optimal for the cop. If n is odd and the robber starts in (2, n+3
2

), the cop may go
either to (1, n−1

2
) or (n+3

2
). In the former case, the robber may then go to (1, n+3

2
), and
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ct((1, n−1
2

), (1, n+3
2

)) = nn+1
2
− n−1

2
= n2+1

2
. Hence, going to (1, n−1

2
) is not optimal for the

cop.

Remark 4. The cop’s optimal strategy is almost independent of how the robber plays. Only
her first and last moves are influenced by the robber. In fact, if we assume that the cop has
limited visibility, meaning that she can only see the robber if he is in her neighbourhood, the
graph Gn remains copwin. If the cop with limited visibility is informed of the robber’s starting

point, then the capture time remains
⌊
n2

2

⌋
.

Proposition 8. If the cop is using her optimal strategy, an optimal strategy for the robber is
to go back and forth along the path (1, 1), (2, 1), (2, 2), . . ., (2, n), (1, n), following the loop
once each time. If n is even, the robber will go to (1, n) on his first move, then follow the
loop. If n is odd, the robber will go to (2, n+1

2
) on his first move.

Proof. Since the cop’s optimal strategy is known and independent of how the robberplays,

we can easily verify that this strategy allows the robber to get caught in exactly
⌊
n2

2

⌋
moves.

Since that is the maximum capture time, this strategy is optimal.

Remark 5. When it is the cop’s turn to play, an even distance between the cop and the
robber is favourable to the robber, while an odd distance is favourable to the cop. The reason
why both players go back and forth between the looped vertices is that they are fighting to set
the parity in their favour. However, the cop is able to follow the shortest path between the two
loops, whereas the robber is forced to go via the second row in order to dodge her. So every
time the cop reaches the next loop, the distance between the cop and the robber decreases by
two.

Corollary 3. On the graph Gn, in optimal play, the cop moves away from the robber
⌊
n−3

2

⌋
times in a row.

Proof. If n is odd, in optimal play, the cop moves away from the robber on turns 2 to n−1
2

when she reaches the loop. If n is even, the robber first crosses to the left of the cop on turn
n
2

+ 2; she then moves away from him until she reaches the loop on the nth turn.

Remark 6. Non-looped graphs with the same properties as Gn may be obtained either by
replacing the looped vertices with pairs of adjacent twin vertices, or by replacing the loops
with triangles.

Remark 7. Since Gn has 2n vertices and a symmetry, the capture time
⌊
n2

2

⌋
tends to a

quarter of the upper-bound given in remark 3 when n→ +∞. When a loop is added to vertex
(2, 1), the robber now goes back and forth between (2, 1) and (1, n), so the path followed by
the cop is shorter by 1 instead of 2. Thus the capture time is nearly doubled, for large values
of n, by adding that loop. Since this also removes the symmetry, again, a quarter of the
theoretical upper-bound is reached.
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1.4 Increasing the distance

We will now prove that on the graph G in fig. 1.6, there is a case in optimal play where the
cop has to move away from the robber, thereby increasing the distance between them. Note
that in fig. 1.6, although the loops were omitted for the sake of clarity, the graph G should
be viewed as totally looped.

In order to determine the optimal capture time and starting position for the cop, we will
apply the method developed in [17]. The original characterisation of totally looped copwin
graphs developed in [47] and [49] involves dismantling the graphs by retracting dominated
vertices one by one. The method in [17] consists of retracting every dominated vertex of the
graph at each step (unless there are adjacent twin vertices dominating each other, in which
case we have to leave one of the twins). The advantage of this method is that the capture
time ct can be deduced from the number of steps required to dismantle the graph. Note that
we will revisit this in more detail and using homotopies in section 2.4.

Grouping the vertices according to the step at which they are removed defines a partition
of the graph called a copwin partition. The following result is Theorem 3.3 in [17]:

Proposition 9. Let G have a copwin partition X1, X2, . . . , Xk. Then, ct(G) = k − 1 if
every vertex of Xk is adjacent to every vertex of Xk−1, or G has only one vertex. Otherwise,
ct(G) = k.

In order to illustrate this process, we number the vertices of G in the following way:
first, the dismantlable vertices are labelled 1. Then, we label i the vertices which become
dismantlable when all vertices with labels strictly smaller than i are removed (see fig. 1.7).

A B C D E F

G

H
I

J

K

L

M

N
O

P

Q R S T U V W X Y

Figure 1.6: Graph G

Denoting by Xi the set of vertices labelled i, X1, ..., X9 defines a copwin partition of
G. Since every vertex numbered 8 is adjacent to the only vertex numbered 9, the capture
time in optimal play is 8 moves. The cop’s optimal starting position is vertex Q, which
has the highest label. Indeed, if the cop starts anywhere to the left (resp. right) of Q, the
robber will survive longer than 8 turns by staying at Y (resp. A). Now if the robber chooses
to start at J, and the cop moves either to O or P, the robber will go to G, then F and
all the way to A, where he will be captured in 9 moves. Thus, unexpectedly, the optimal
first move for the cop is to go to M. By doing so, she increases the distance between them
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7
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7
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9 8 7 6 5 4 3 2 1

Figure 1.7: Labelling of G

from 2 to 3. The reason for this counterintuitive move is that the cop needs to cover the
escape route via F before she closes in on the robber. Optimal play could proceed like this:
(Q,J)→(M,P)→(O,N)→(L,I)→(N,G)→(H,K)→(I,J)→(K,J)→(J,J).

1.5 Conclusion

Our objective was to further the analysis of the effect of loops on the game of cops and
robbers. This has led us to discover graphs which display various unusual properties. While
passing their turn seems counterintuitive for the cops, we provided examples of graphs where
preventing them from doing so almost doubles the cop number. While we showed that the
cop number cannot be more than doubled with this process, we conjectured that doubling
it is also impossible. This conjecture is trivial in the copwin case; yet, all other cases remain
entirely open. Should this hold true, our examples would then maximise the cop number
increase derived from removing the loops of a totally looped graph. We have also shown
that while the capture time on totally looped graphs has a linear bound, there are very
simple partially looped grids which have a quadratic capture time. On copwin graphs, an
upper-bound to the capture time in optimal play is given by the number of different pairs
of positions of the cop and the robber, up to isomorphism. In the examples that we give,
the capture time is only a quarter of that upper-bound, so it remains to see how it can
be tightened. These same examples of grids also require the cop to move away from the
robber several times in a row. We have also found an example of a totally looped graph
where the cop needs to move away from the robber, but making it happen several times
in a row remains to be done and seems far more difficult than in the partially looped or
non-looped cases. All these examples demonstrate that the case of partially looped graphs
is a lot more complex than the totally looped case. The most important challenge remains
to find a characterisation of partially looped copwin graphs. Understanding these unusual
behaviours may eventually lead to such a characterisation.
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1.6 Appendix

In this section, we verify that ct satisfies the formula which characterises the capture time in
two cases. The cases where x+ y + a+ b is odd are all similar to the first while the rest are
similar to the second. The reason for this division is the opposition phenomenon, well-known
to chess players, which describes positions where who holds the advantage is determined by
whose turn it is to move [40]. In this case, the parity of x + y + a + b determines which
player holds the opposition. The cases are split according to the respective rows of the cop
and robber, whether the cops starts to the right or to the left of the robber, and the parity
of x + y + a + b. Special cases must be added for when either or both start on one of the
four corners of the grid.

• If x = y = 1, 1 < a < b− 1, b < n and a+ b is odd:
ct((2, a), (2, b)) = n b−a+1

2
− a+ 1

ct((2, a), (1, b− 1)) = n b−a+1
2
− a+ 1

ct((2, a), (1, b+ 1)) = n b−a+3
2
− a+ 1

ct((1, a− 1), (2, b)) = n b−a+1
2
− a+ 1

ct((1, a− 1), (1, b− 1)) = n b−a+1
2
− a+ 1

ct((1, a− 1), (1, b+ 1)) = n b−a+3
2
− a+ 1

ct((1, a+ 1), (2, b)) = n b−a−1
2
− a− 1

ct((1, a+ 1), (1, b− 1)) = n b−a−1
2
− a− 1

ct((1, a+ 1), (1, b+ 1)) = n b−a+1
2
− a− 1

max
(y′,b′)∈N((1,b))

ct((2, a), (y′, b′)) = n b−a+3
2
− a+ 1

max
(y′,b′)∈N((1,b))

ct((1, a− 1), (y′, b′)) = n b−a+3
2
− a+ 1

max
(y′,b′)∈N((1,b))

ct((1, a+ 1), (y′, b′)) = n b−a+1
2
− a− 1

Hence min
(x′,a′)∈N((1,a))

max
(y′,b′)∈N((1,b))

ct((x′, a′), (y′, b′)) = n b−a+1
2
− a− 1.
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• If x = y = 1, 1 < a < b− 1, b < n and a+ b is even:

ct((2, a), (2, b)) = n
a+ b

2
+ a if a+ b ≤ n

= n
2n+ 2− a− b

2
− a+ 1 if a+ b > n

ct((2, a), (1, b− 1)) = n
a+ b

2
+ a if a+ b ≤ n

= n
n+ 1

2
− a+ 1 if a+ b = n+ 1

=
n2

2
+ a if a+ b = n+ 2

= n
2n+ 4− a− b

2
− a+ 1 if a+ b > n+ 2

ct((2, a), (1, b+ 1)) = n
a+ b+ 2

2
+ a if a+ b ≤ n− 2

= n
n+ 1

2
− a+ 1 if a+ b = n− 1

=
n2

2
+ a if a+ b = n

= n
2n+ 2− a− b

2
− a+ 1 if a+ b > n

ct((1, a− 1), (2, b)) = n
a+ b− 2

2
+ a− 2 if a+ b ≤ n+ 2

= n
2n+ 4− a− b

2
− a+ 1 if a+ b > n+ 2

ct((1, a− 1), (1, b− 1)) = n
a+ b− 2

2
+ a− 2 if a+ b ≤ n+ 2

= n
2n+ 4− a− b

2
− a+ 1 if a+ b > n+ 2

ct((1, a− 1), (1, b+ 1)) = n
a+ b

2
+ a− 2 if a+ b ≤ n

= n
2n+ 2− a− b

2
− a+ 1 if a+ b > n
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ct((1, a+ 1), (2, b)) = n
a+ b

2
+ a if a+ b ≤ n

= n
2n+ 2− a− b

2
− a− 1 if a+ b > n

ct((1, a+ 1), (1, b− 1)) = n
a+ b

2
+ a if a+ b ≤ n

= n
2n+ 2− a− b

2
− a− 1 if a+ b > n

ct((1, a+ 1), (1, b+ 1)) = n
a+ b+ 2

2
+ a if a+ b ≤ n− 2

= n
2n− a− b

2
− a− 1 if a+ b > n− 2

max
(y′,b′)∈N((1,b))

ct((2, a), (y′, b′)) = n
a+ b+ 2

2
+ a if a+ b ≤ n− 2

= n
n+ 1

2
− a+ 1 if a+ b = n− 1 or n+ 1

=
n2

2
+ a if a+ b = n or n+ 2

= n
2n+ 4− a− b

2
− a+ 1 if a+ b > n+ 2

max
(y′,b′)∈N((1,b))

ct((1, a− 1), (y′, b′)) = n
a+ b

2
+ a− 2 if a+ b ≤ n

= n
n+ 1

2
− a+ 1 if a+ b = n+ 1

=
n2

2
+ a− 2 if a+ b = n+ 2

= n
2n+ 4− a− b

2
− a+ 1 if a+ b > n+ 2

27



max
(y′,b′)∈N((1,b))

ct((1, a+ 1), (y′, b′)) = n
a+ b+ 2

2
+ a if a+ b ≤ n− 2

= n
n+ 1

2
− a− 1 if a+ b = n− 1

=
n2

2
+ a if a+ b = n

= n
2n+ 2− a− b

2
− a− 1 if a+ b > n

Hence min
(x′,a′)∈N((1,a))

max
(y′,b′)∈N((1,b))

ct((x′, a′), (y′, b′)) = na+b
2

+a−2 if a+b ≤ n or n2n+2−a−b
2

−

a− 1 if a+ b > n.
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Chapter 2

Cops, Robbers and Algebraic
Topology

2.1 Introduction

Perhaps the most fascinating aspect of the game of cops and robbers is that it links three
very distinct areas of mathematics, ranging from the most applied to the most fundamental:
game theory, graph theory and algebraic topology. What truly distinguishes the game of cops
and robbers from countless other games on graphs is that it has strong algebraic properties,
showing that this topic is of deep theoretical interest rather than just a simple mathematical
curiosity. Already in Quilliot’s thesis [49], the use of homotopies to characterise copwin
graphs was established. Unfortunately, while knowledge of both the game of cops and robbers
and homotopy theory of graphs has been vastly expanded since then, the combination of the
two has made little progress. Quite possibly, the main obstacle is the difficulty in bridging the
gap between fundamental and applied mathematics. Mathematicians who study cops and
robbers mostly belong to the community of discrete mathematics, and while most are aware
of the underlying notions of homotopy theory, few are attracted to this aspect of the game.
Another issue is that homotopy theory of graphs is not standardised and many different
notions of homotopy can be found in the literature (e.g. s-homotopy in [11], ×-homotopy in
[22], homotopy of of digraphs in [34],. . . ).

Nevertheless, the underlying topological idea is very simple: a cycle of length 4 or greater
which is not subdivided into triangles forms a sort of hole in a graph, and the robber can
evade a single cop by running around the hole. Homology groups formalise this notion of
hole, and extend it to n-dimensional holes. A necessary condition for a graph to be copwin
is that it should have no holes of any dimension. While less visual, homotopies give a much
more precise condition as they correspond to the dismantling of the graph.

The objective of this chapter is to introduce the tools of algebraic topology in a way
that is hopefully easy to understand for graph theorists who may not already be familiar
with them. We will show how some well-known properties of copwin graphs can be derived
from those tools. In particular, we will show how the capture time of a copwin graph can
be computed using homotopies. We will also demonstrate how homotopies can be used to
compare the cop numbers of graphs as well as their capture times for any number of cops.
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We will start by introducing an extension of the game where instead of trying to catch
the robber the usual way, the cops start on a second graph and chase his image via a graph
homomorphism. This defines an extension of the game of cops and robbers which naturally
extends the notions of cop number and capture time to graph homomorphisms. While the
idea of having the cops chase the robber’s image by a retraction is commonly used, studying
the generalisation of the game will give us an interesting perspective on the initial game.

Let us recall that given a graph G, the cop number c(G) is the minimum number of cops
required to catch the robber, and the graph G is said to be copwin if c(G) = 1. We define
the capture time ctk(G) as the minimal number of turns required for k cops to catch the
robber. Note that ctk(G) = +∞ if k < c(G).

In this chapter, we only consider simple graphs with loops on every vertex. The loops
serve a dual purpose: they allow graph homomorphisms to send adjacent vertices to the
same vertex and they allow the cops and the robber to pass their turn whenever they wish.

2.2 Cops, robbers and homomorphisms

Let f ∈ Hom(X, Y ). We consider the game where k cops are moving on Y while the robber
moves on X, and the cops win if one of them is positioned on the image by f of the robber’s
position. We say that f is k-copwin if k cops have a winning strategy. The cop number of
f , c(f), is the smallest integer k such that f is k-copwin. The capture time ctk(f) is the
number of turns required for k cops to win in optimal play, given that the robber tries to
escape for as long as possible.

Remark 8. This game is an extension of the original game, with the latter corresponding
to the case f = IdX . Hence, c(X) = c(IdX) and ∀k, ctk(X) = ctk(IdX).

Proposition 10. If f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), then
c(g ◦ f) ≤ min{c(f), c(g)} and ∀k, ctk(g ◦ f) ≤ min{ctk(f), ctk(g)}.

Proof. If k cops on Y can catch the image by f of a robber in X in n turns, then on Z,
they can apply the image by g of this strategy to catch the image of the robber by g ◦ f in
the same number of turns. Similarly, if k cops on Z can catch the image by g of a robber in
Y in n turns, they can apply the same strategy to catch the image by g of the image of a
robber in X by f in the same number of turns.

Corollary 4. If f ∈ Hom(X, Y ), then c(f) ≤ min{c(X), c(Y )} and
∀k, ctk(f) ≤ min{ctk(X), ctk(Y )}.

Proof. This result follows by taking first f = IdX , then g = IdY , in proposition 10 and using
remark 8.

Remark 9. It was shown in [42] and [50] that if X is a graph of order n, then c(X) =
O(n2−(1+o(1))

√
log2n). It follows from corollary 4 that this bound also applies to graph homo-

morphisms: c(f) = O(n2−(1+o(1))
√
log2n), where n = |range(f)|. Similarly, it was shown in

[2] that if X is planar, then c(X) ≤ 3. It follows that if either X or Y is planar, then
c(f) ≤ 3.
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Remark 10. The cop number is almost functorial, but not quite. Indeed, let C be the category
with ob(C) = N∗, hom(C) = (N∗)3, (l,m, n) ∈ hom(C) has source l and target m, (n, n, n) is
the identity of n and (m,n, q) ◦ (l,m, p) = (l, n,min(p, q)). For any graph X and any graph
homomorphism f : X → Y , we can define F (X) = c(X) and F (f) = (c(X), c(Y ), c(f)).
If we had an equality instead of c(g ◦ f) ≤ min{c(f), c(g)}, F would be a functor from the
category of graphs into C.

The following examples show that we do not always have c(g ◦ f) = min{c(f), c(g)}.
Example 2 shows that it can be false even when f and g are surjective.

Example 1. Let C be the Hamming graph H(3, 2). Let p : C → C, (a, b, c) 7→ (a, b, 0) and
q : C → C, (a, b, c) 7→ (a, 0, c). We have c(p) = c(q) = 2, yet c(q ◦ p) = 1.

Example 2. Given n > m ≥ 2, let X be an n×n grid, Y an m×m torus grid and Z a cycle
of length m. Let p : X → Y , (a, b) 7→ (a mod m, b mod m) and q : Y → Z, (a, b) 7→ a.
The homomorphisms p and q are surjective, yet we have c(p) = c(q) = 2 and c(q ◦ p) = 1.

Proposition 11. If f ∈ Hom(X, Y ) is an isomorphism, then c(f) = c(X) and ∀k, ctk(f) =
ctk(X). In particular, c(X) = c(IdX) and ∀k, ctk(X) = ctk(IdX).

Proof. It follows from corollary 4 that c(f) ≤ c(X) and ctk(f) ≤ ctk(X). Applying proposi-
tion 10 with g = f−1 gives the reverse inequalities.

Proposition 12. If f ∈ Hom(X, Y ) is constant, then c(f) = 1 and ∀k, ctk(f) = 0.

Proof. It suffices for a cop to start on the single image point of f .

2.3 Cops, robbers and homotopies

The notion of homotopy is not standard in graph theory as it is in general topology. We
use the definition given in [52]. Given f, g ∈ Hom(X, Y ), a homotopy between f and g of
length n is an F ∈ Hom(X × Pn+1, Y ) such that F (x, 0) = f(x) and F (x, n) = g(x). The
homomorphisms f and g are then said to be homotopic, and we write f ∼ g. An alternative
description of a homotopy between f and g is a finite sequence fi ∈ Hom(X, Y ), 0 ≤ i ≤ n,
such that f0 = f , fn = g and if v ∈ N [u], then fi+1(v) ∈ N [fi(u)].

If f ∼ g, the homotopic distance d(f, g) is the smallest integer n for which there exists a
homotopy between f and g of length n.

Proposition 13. The homotopic distance defines a distance on each homotopy class of
Hom(X, Y ).

Proof. If f ∼ g, d(f, g) = 0 if and only if f = g. Also, given a homotopy between f and g
of length m and a homotopy between g and h of length n, we obtain a homotopy between
f and h of length m + n by concatenating the two finite sequences. Hence, d(f, h) ≤
d(f, g) + d(g, h).

Remark 11. The distance d may be extended to all of Hom(X, Y ) by setting d(f, g) = +∞
when f and g are not homotopic, if we allow distances to be infinite.
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Theorem 1. Let f, g ∈ Hom(X, Y ). If f ∼ g, then c(f) = c(g) and
∀k, |ctk(f)− ctk(g)| ≤ d(f, g).

Proof. Let F = (f0, . . . , fn) be a homotopy between f and g of length n. Assume that f is
k-copwin. There is a strategy which allows k cops to catch the image of the robber by f . At
this point, the robber is on a vertex r and there is a cop on f(r). If the robber then moves
to a vertex r′ adjacent to r, since f0(r) and f1(r′) are adjacent, the cop on f(r) can move to
f1(r′). By induction, the cop who caught the robber’s image by f can catch his image by fi
i turns later. Hence, g = fn is k-copwin and ctk(g) ≤ ctk(f) + n.

We have just shown that the cop number of a graph homomorphism is a homotopic
invariant, while its capture time is a quasi-invariant. In the following section, we will use
homotopy equivalences to evaluate and compare the usual cop numbers and capture times
of graphs, which remains our main objective.

2.4 Cops, robbers and homotopy equivalences

Recall that given a graph X = (V,E), a vertex u is dominated by vertex v if N [u] ⊂ N [v].
We define a dominated set of vertices as a subset W ⊂ V such that ∀w ∈ W , ∃v ∈ V \W :
w is dominated by v. The set of all dominated vertices is not always a dominated set,
because twin vertices may dominate each other. The practical way of identifying a maximal
dominated set of vertices is to find the set of all dominated vertices, then identify twin pairs
or groups of twins within that set and finally, for each group of twins, unless the vertices of
that group are all dominated by another vertex, remove any one of the twins from the set.

The following definitions are analogous to standard definitions in topology: topological
spaces and continuous functions are replaced with simple graphs and graph homomorphisms.

A null-homotopy is a graph homomorphism which is homotopic to a constant homomor-
phism. Two graphs X and Y are homotopy equivalent if there are graph homomorphisms
f : X → Y and g : Y → X such that g ◦ f ∼ IdX and f ◦ g ∼ IdY . The graphs X and Y
are then said to have the same homotopy type, and the maps f and g are called homotopy
equivalences. A graph X is contractible if it has the homotopy type of a point, which is equiv-
alent to saying that IdX is null-homotopic. We may now reformulate the characterisation of
copwin graphs ( [47, 49]) using this new vocabulary:

Theorem 2. A finite graph is copwin if and only if it is contractible.

Proof. If a graph X is contractible, it follows from proposition 11, theorem 1 and proposi-
tion 12 that c(X) = c(IdX) = c(cst) = 1, where cst is a constant homomorphism.

Conversely, if X is copwin, then it can be reduced to a single vertex by successively
applying one-point retractions (see [10] p. 32). By setting f0 = IdX and fi equals the
composition of the first i retractions, we define a homotopy between f and a constant
map.

Remark 12. The first part of this proof also works for infinite graphs: infinite contractible
graphs are copwin. However, the example (taken from [10] p. 11) of an infinite tree formed
by attaching a path of each finite length to a root, is copwin but not contractible.
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The characterisation of copwin graphs is far from new and has already been stated under
various forms. The initial idea consists of dismantling the graph via an elimination ordering
of the vertices (see [47]). This idea then became applying successive one-point retractions
(see [10] p.31). In [25], dismantlability is characterised using homotopies. The true bonus of
our approach comes in the following proposition, which also characterises the capture time
in terms of homotopic distance.

Proposition 14. If X = (V,E) is a finite copwin graph, then ct1(X) = min
x∈V

d(IdX , cstx),

where cstx ∈ Hom(X,X) sends all X to x.

Proof. Applying theorem 1 to IdX and cstx gives ct1(X) ≤ d(IdX , cstx), ∀x ∈ V .

We prove the converse by induction on the capture time. If ct1(X) = 0, then X has a
single vertex x and d(IdX , cstx) = 0. Assume that ct1(X) = n + 1. Let W be a maximal
dominated set of vertices. Whenever the cop’s strategy requires her to move to a vertex of
w ∈ W before the (n+ 1)-th move, we can replace this movement with going to a vertex in
V \W which dominates w. This modification does not affect the cature time. After applying
the first n moves of this new strategy, the cop has remained in V \W and the robber is
either caught or trapped on a dominated vertex v. In the latter case, the maximality of W
implies v ∈ W . Hence, on the graph induced by V \W , the cop can win in n turns by using
this strategy. By induction, there exists x ∈ V \W and a homotopy (f0, . . . , fn) between
IdV \W and cstx. Sending each element of W to a vertex in V \W which dominates it defines
a retraction r : V → V \W which is a graph homomorphism, and (IdX , f0 ◦ r, . . . , fn ◦ r) is
a homotopy of length n+ 1 between IdX and cstx.

Remark 13. In the proof of proposition 14, by successively substracting maximal dominated
sets of vertices Wi, we define retractions ri : V \Wi → V \Wi+1 and construct a homotopy
between IdX and cstx via fi = ri ◦ . . . ◦ r0.

Remark 14. A method to compute the capture time of copwin graphs was first developed in
[17] (see proposition 9, which is Theorem 3.3 in [17]). Instead of using maximal dominated
sets of vertices, the authors of [17] choose to deal with twin vertices in a slightly different
way: at each step of the induction, they replace the vertex set with its quotient by the relation
which identifies twin vertices before removing all dominated vertices.

Theorem 3. If X and Y are homotopy equivalent, then c(X) = c(Y ). And if f ∈ Hom(X, Y )
and g ∈ Hom(Y,X) are homotopy equivalences with d1 = d(g◦f, IdX) and d2 = d(f ◦g, IdY ),
then −d2 ≤ ctk(X)− ctk(Y ) ≤ d1, for all k.

Proof. If f and g are homotopy equivalences between X and Y , then c(X) = c(IdX) =
c(g ◦ f) ≤ c(f) ≤ c(Y ). Similarly, c(Y ) ≤ c(X). And ctk(X) = ctk(IdX) ≤ ctk(g ◦ f) + d1 ≤
ctk(f) + d1 ≤ ctk(Y ) + d1. And similarly, ctk(Y ) ≤ ctk(X) + d2.

In the end, we obtained a criterion to compare not only cop numbers of graphs, but also
capture times, even in cases where the number of cops is greater than the cop number.
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2.5 Cops, robbers and homology

It was shown in section 2.4 that all finite copwin graphs are homotopy equivalent; more
precisely, they all have the homotopy type of a point. This means that any homotopic
invariant will have the same value for all finite copwin graphs. Hence, by choosing appropriate
invariants, we may identify structural properties of copwin graphs. For instance, the number
of connected components of a graph is a homotopic invariant; it follows that all finite copwin
graphs must be connected. The objective of this section is to derive less trivial properties of
finite copwin graphs by using homology groups.

In algebraic topology, singular homology groups Hn(X), n ∈ N, are used to describe
“holes” in a topological space X. In this section, we define homology groups of graphs
specifically tailored to our purpose by replacing topological spaces and continuous functions
with graphs and graph homomorphisms. Other possible approaches, which we will not
detail here, include defining those homology groups via the clique complex of the graph.
The cliques of a graph form a simplicial complex, so we could also define the homology of a
graph as the simplicial homology of its clique complex. Alternatively, the clique complex can
be viewed as a topological space, which enables us to consider its singular homology. Since
all three definitions are equivalent, all the basic properties of singular homology, starting
with homotopy invariance, long exact sequence and excision (see [38] pp. 110,113), can be
transferred to the homology of graphs. For our purposes, we will only need the homotopy
invariance, which is why we will follow the graph theoretical approach.

Let Kn denote the complete graph with n vertices numbered 0 to n − 1, and let Ki
n

denote the i-th face of Kn obtained by removing vertex i. The face Ki
n may be identified

with Kn−1 by decrementing by 1 the indices greater than i. Given a graph X, let Cn(X) be
the free module generated by the graph homomorphisms σ : Kn+1 → X; elements of Cn(X)
are formal linear combinations of graph homomorphisms with coefficients in Z. Using the
usual terminology of algebraic topology: for n > 0, the linear maps ∂n : Cn(X)→ Cn−1(X),

σ 7→
n∑
i=0

(−1)iσ|Ki
n+1

and ∂0 : C0(X) → Z,
∑
k

nkσk 7→
∑
nk are called boundary maps. The

elements of Ker ∂n are called n-cycles (not to be confused with cycles in the graph theoretical
sense) and the elements of Im ∂n+1 are called n-boundaries.

Elements of Hom(K2, X) can be identified with directed edges of X̃, where X̃ is the
directed graph with the same vertex set as X and a pair of edges (u, v) and (v, u) for each
edge uv in X, as well as loops on every vertex. The boundary map ∂1 sends the directed edge
(u, v) to v − u. It follows that elements of C1(X) correspond to the labellings of the edges

of X̃ with finite support and with values in Z , and the 1-cycles correspond to circulations
on X̃ with finite support. The loops are the boundaries of the constant homomorphisms
in Hom(K3, X). Also, the boundary of the homomorphism in Hom(K3, X) which sends
vertices 0 and 2 to u and 1 to v is (v, u) − (u, u) + (u, v). It follows that the 1-boundaries

are the circulations of X̃ generated by cyclic flows based on cycles of length 1, 2 and 3.

Lemma 6. For all n ∈ N, ∂n ◦ ∂n+1 = 0; in other words, Im ∂n+1 is a subgroup of Ker ∂n.

Proof. For i < j, the term in ∂n ◦∂n+1σ corresponding to the restriction of σ to the i-th face
of Kj

n and that of the (j − 1)-th face of Ki
n cancel out . In this fashion, all terms cancel out
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two by two.

Based on lemma 6, we can define the homology groups : for all n ∈ N, Hn(X) =

Ker ∂n/Im ∂n+1. For instance, H1(X) corresponds to the classes of circulations of X̃ where
two circulations are equivalent if they differ by a cycle of length 1, 2 or 3. Hence, H1(X) is
generated by the cycles of X which cannot be reduced to a point by successively shifting by
a triangle.

Proposition 15. If X has a single vertex, then ∀n ∈ N, Hn(X) = 0.

Proof. For all n, Cn(X) = Z. If n is even, Ker ∂n = Im ∂n+1 = 0 and if n is odd,
Ker ∂n = Im ∂n+1 = Z.

Proposition 16. If X and Y are homotopy equivalent, then ∀n ∈ N, Hn(X) = Hn(Y ).

The proof of proposition 16 was sent to the appendix (section 2.7) as it requires some
preliminary results which are not useful to the rest of this chapter.

Corollary 5. If X is a finite copwin graph, then ∀n ∈ N, Hn(X) = 0.

Proof. This follows immediately from proposition 15 and proposition 16.

The example shown in fig. 2.1 shows that the converse is false: ∀n ∈ N, Hn(G) = 0 and
c(G) = 2. It can be clearly seen that filling in the triangles of G leaves no holes, yet G is
not dismantlable.

Figure 2.1: Graph G

Corollary 6. If X is a finite copwin graph, the group of circulations of X̃ is generated by
cyclic flows based on cycles of lengths 1, 2 and 3.

Proof. Since H1(X) = 0, every 1-cycle is a 1-boundary.

Remark 15. This result gives a more detailed description of the structure of copwin graphs
than the Triangle Lemma, Lemma 4 in [32], which states that in a copwin graph, every edge
either disconnects the graph or belongs to a triangle. Indeed, the Triangle Lemma says that
in every cycle of a copwin graph, every edge belongs to a triangle, whereas corollary 6 says
that any cycle in a copwin graph can be reduced to a single point by successively shifting by
a triangle.
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Corollary 7. If X is a copwin plane graph, every internal face is contained inside a triangle.

Proof. Consider a non-triangular internal face F of a copwin graph X. Since X is copwin,
the perimeter of F can be reduced to a point by succesively shifting by a triangle. At some
point along the process, there is a cycle which contains F that is shifted to a cycle which
does not contain F . These two cycles differ by a triangle which contains F .

2.6 Conclusion and future works

Extending the notions of cop number and capture time from graphs to graph homomorphisms
gives us powerful algebraic tools to study the game of cops and robbers on graphs. Homo-
topies between graph homomorphisms play an essential role in the study of cop numbers and
capture times. The method which uses homology groups to derive structural properties of
copwin graphs could perhaps be used with other homotopic invariants in order to uncover
further characteristics. The game of cops and robbers on graph homomorphisms is interest-
ing in itself and investigating its properties should be worthwhile. It shares many common
properties with the standard version.

Another variant involves having both the cops and the robber moving in X, with the cops
trying to have one of their images catch that of the robber. Unfortunately, the homotopy
invariance does not work in that case. This variant and others involving homomorphisms
should be added to the long list of interesting variants of the game of cops and robbers worth
investigating.

2.7 Appendix: homotopy invariance

The following method is based on the standard proof of the homotopy invariance of singular
homology (see [38] p. 120). Although the calculations seem perfectly identical, the objects
used are different as topological spaces and continuous functions have been replaced with
graphs and graph homomorphisms, respectively. This apparent redundancy could be cir-
cumvented by using the alternative approaches mentioned in the introduction of section 2.5,
however, the method we use here has the advantage of using only graph theory without
resorting to general topology.

Proposition 17. A graph homomorphism f ∈ Hom(X, Y ) canonically induces group ho-
momorphisms f] : Cn(X)→ Cn(Y ) and f∗ : Hn(X)→ Hn(Y ), for all n ≥ 0.

Proof. We define f] as follows: f] : σ 7→ f ◦ σ. Since the operations of composing with f
and taking the restriction to a face commute, the diagram in fig. 2.2 is commutative:

We may describe this property using more concise notations: f]∂ = ∂f]. From this, we
deduce that f] sends n-cycles to n-cycles and n-boundaries to n-boundaries. So we define f∗
as the group homomorphism which maps the equivalence class of σ to the equivalence class
of f](σ).

Lemma 7. i) If f ∈ Hom(X, Y ) and g ∈ Hom(Y, Z), then (gf)∗ = g∗f∗
ii) (IdX)∗ = IdHn(X)
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Cn−1(X)

Cn(X)

Cn−1(Y )

Cn(Y )

f]

f]

∂n ∂n

Figure 2.2: Commutative Diagram

Proof. i) Follows from associativity of composition. ii) Follows immediately from the defini-
tion.

Theorem 4. Given f, g ∈ Hom(X, Y ), if f ∼ g, then f∗ = g∗.

Proof. Let us first consider the case where d(f, g) = 1. In the prism Kn+1 × P2, let us
denote by v0, . . . , vn and w0, . . . , wn the vertices of Kn+1×{0} and Kn+1×{1} respectively.
Let F : X × P2 → Y be a homotopy of length 2 between f and g. We define σ × Id :
Kn+1 × P2 → X × P2, (u, v) 7→ (σ(u), v). Using this, we now define the prism operator
P : Cn(X)→ Cn+1(Y ) by the following formula:

P (σ) =
n∑
i=0

(−1)iF ◦ (σ × Id)|[v0,...,vi,wi,...,wn]

where [v0, . . . , vi, wi, . . . , wn] denotes the subgraph of the prism induced by the enclosed
vertices. We will show that ∂P+P∂ = g]−f]. In the following calculations, when restricting
σ to the j-th face, we will use the notation v̂j to indicate that vertex vj is skipped. Let
σ : Kn+1 → X.

∂P (σ) =
∑
j≤i

(−1)i(−1)jF ◦ (σ × Id)|[v0,...,v̂j ,...,vi,wi,...,wn]

+
∑
j≥i

(−1)i(−1)j+1F ◦ (σ × Id)|[v0,...,vi,wi,...,ŵj ,...,wn]

The terms with i = j cancel out, except for F ◦ (σ × Id)|[v̂0,w0,...,wn] and −F ◦ (σ ×
Id)|[v0,...,vn,ŵn], which are g](σ) and f](σ) respectively. The terms with i 6= j are exactly
−P∂(σ) since

P∂(σ) =
∑
i<j

(−1)i(−1)jF ◦ (σ × Id)|[v0,...,vi,wi,...,ŵj ,...,wn]

+
∑
i>j

(−1)i−1(−1)jF ◦ (σ × Id)|[v0,...,v̂j ,...,vi,wi,...,wn].
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Using ∂P +P∂ = g]−f], if α ∈ Cn(X) is an n-cycle, then g](α)−f](α) is an n-boundary.
So g](α) and f](α) are in the same homology class, whence f∗ = g∗.

Now if d(f, g) = n, there is a homotopy F = (f0, . . . , fn), where f0 = f and fn = g. Since
d(fi, fi+1) = 1, we have (fi)∗ = (fi+1)∗, for all i. Hence f∗ = g∗.

We can now prove this result given in section 2.5:

Proposition 16: If X and Y are homotopy equivalent, then ∀n ∈ N, Hn(X) = Hn(Y ).

Proof. If f : X → Y and g : Y → X are homotopy equivalences, it follows from theorem 4
that (gf)∗ = (IdX)∗ and (fg)∗ = (IdY )∗. Using lemma 7, we deduce that f∗ and g∗ are
inverse group isomorphisms between Hn(X) and Hn(Y ).
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Chapter 3

Firefighting on Trees1

3.1 Introduction and definitions

3.1.1 Context

The firefighting problem - Firefighter - was formally introduced by B. Hartnell in 1995
([36], cited in [27]) as a variant of the game of cops and robbers. Since then, it has raised
the interest of many researchers. While this game started as a very simple model for fire
spread and containment problems for wildfires, it can also represent any kind of threat able
to spread sequentially in a network (diseases, viruses, rumours, flood . . . ).

Like the game of cops and robbers, it is a deterministic discrete-time game defined on
a graph. However, unlike the game of cops and robbers, it is a one-player game. In the
beginning, a fire breaks out on a vertex and at each step, if not blocked, the fire spreads
to all adjacent vertices. In order to contain the fire, the player is given a number fi of
firefighters at each turn i and can use them to protect vertices which are neither burning
nor already protected. The game terminates when the fire cannot spread any further. In
the case of finite graphs, the aim is to save as many vertices as possible; while in the infinite
case, the player wins if the game finishes, which means that the fire is contained.

This problem and its variants give rise to a generous literature; the reader is referred
to [27] for a broad presentation of the main research directions. A significant amount of
theoretical work deals with its complexity and approximability behaviour in various classes
of graphs [7, 15, 26, 30] and its parametrised complexity (e.g. [6, 15]). In particular, when
one firefighter is available at each turn it is known to be polynomially solvable in some classes
of graphs, which include graphs of maximum degree 3 if the fire breaks out on a vertex of
degree at most 2 [26], interval graphs, permutation graphs and split graphs [30]. However
it is known to be very hard, even in some restrictive cases. In particular, the case of trees
was revealed to be very rich and a lot of research focuses on it. The problem, with the same

1This chapter is based on a collaborative work between Bertrand Jouve (IMT Toulouse, France), Pierre
Coupechoux (LAAS-CNRS, Toulouse, France), my supervisor Marc Demange (RMIT University, Melbourne,
Australia) and myself (RMIT University, Melbourne, Australia). The results were presented by Pierre at
the International Symposium on Combinatorial Optimization, ISCO 2018. A 12-page version was published
in conference proceedings [19]. A full version, submitted to the journal Theoretical Computer Science, is
currently in press [20].
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number of firefighters at each turn, is NP-hard on finite trees of maximum degree 3 [26],
as well as in even more restricted cases [7]; the reader is also referred to [16] for further
complexity results. Regarding approximation results on trees, a greedy strategy was first
shown to be a 1

2
-approximation algorithm [37] if a fixed number of firefighters is available at

each turn. For a single firefighter, a (1− 1
e
)-approximation algorithm is proposed in [15] for

the problem in trees. This ratio was improved in [39] for ternary trees and, very recently, a
polynomial time approximation scheme was obtained in trees [1]. This essentially closes the
question of approximating the firefighter problem in trees with one firefighter and motivates
considering some generalisations. The problem is hard to approximate within n1−ε on general
graphs and with a single firefighter [3].

Most papers on this subject deal with a constant firefighter sequence. In fact, the problem
was originally defined with one firefighter per turn. The case of infinite grids is of particular
interest and has led to the model being extended by varying the available resources per
turn. The change was motivated by the fact that a fire of any size on an infinite grid can be
contained with two firefighters per turn but not with one [28, 53]. In order to refine these
results, M.-E. Messinger started considering periodic firefighter sequences [45] while more
general sequences are considered in [24]. A related research direction investigates integer
linear programming models for the problem, especially on trees [1, 35, 44]. This line of
research makes very natural a relaxed version where the amount of firefighters available at
each turn is any non-negative real number and the amount allocated to vertices lies between
0 and 1. A vertex with a protection less than 1 is partially protected and its unprotected
part can burn partially and transmit only its fraction of fire to the adjacent vertices. Thus,
the fi may take any non-negative value. This defines a variant game called Fractional
Firefighter which was introduced in [28].

3.1.2 Our contribution

The main thread of this chapter is the focus on general firefighter sequences, which raises
three specific research questions. We address these questions when a single fire spreads
throughout a rooted tree.

First, we introduce an online version of both Firefighter and Fractional fire-
fighter where the sequence of firefighters is revealed over time (online) while the graph
(a tree in our case) is known from the start. To our knowledge, this is the first attempt at
analysing online firefighter problems. Although our motivation is mainly theoretical, this
paradigm is particularly natural in emergency management where one has to make quick
decisions despite lack of information. Any progress in this direction tells us how lack of
information impacts the quality of the solution. Note that a version of the game introduced
in [9] also models a lack of information. In that version, rather than the firefighting re-
sources, the missing information is where the fire will spread. Also, randomised analyses
are proposed to maximise the expected number of saved vertices while we use worst case
analyses expressed in terms of competitive ratios.

A second question, the separating problem, deals specifically with infinite trees. Separat-
ing two given firefighter sequences means finding an infinite tree on which the fire can be
contained with one sequence but not the other.

The third question deals with criteria for the fire to be contained based on the asymptotic
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behaviours of the firefighter sequence and the size of the levels in the tree. Unlike the first two
questions, it has already been investigated in some articles (e.g., [23, 41]) for Firefighter
with firefighter sequences of the form (λn).

The chapter is organised as follows: in section 3.2 we define formally Firefighter
and Fractional Firefighter as well as their online versions. Section 3.3 deals with
competitive analysis when the fire spreads in a finite tree and the firefighter sequence is
revealed online. We first generalise an analysis of a greedy algorithm known only in special
cases of Firefighter to Fractional Firefighter. For the offline case, it answers an
open question proposed in [27, 35]. Then we propose improved competitive algorithms for
online Firefighter with a small total number of firefighters while establishing that the
greedy approach is optimal in the general case. The last two sections (section 3.4 and
section 3.5) both deal with the infinite case. Section 3.4 deals with our second question.
Considering the class of spherically symmetric trees where all vertices at the same level have
the same degree, we express the separation problem as a purely numerical one-player game,
which we call the targeting game. We propose two sufficient conditions for the existence
of a winning strategy. Section 3.5 deals with our third question. We establish sufficient
conditions for containing the fire expressed as asymptotic comparisons of the number of
available firefighters and the size of the levels in the tree. In the online case, for a particular
class of trees the level size of which grows linearly, we also give a sufficient condition to
contain the fire.

3.1.3 Some notations

Let T be a tree rooted in r. Given two vertices v and v′, vC v′ denotes that v is an ancestor
of v′ (or v′ is a descendant of v) and v E v′ denotes that either v = v′ or v C v′. For any
vertex v, let T [v] denote the sub-tree induced by v and its descendants. Let Ti denote the
i-th level of T rooted in r, where {r} = T0. For a finite tree T rooted in r, the height h(T )
is the maximum length of a path from r to a leaf. If i > h(T ), we have Ti = ∅. The weight
w(v) of a vertex v is the number of vertices of T [v]. When no ambiguity may occur, we will
simply write wv = w(v).

We denote by B(T ) the tree obtained from T by contracting all vertices from levels 0
and 1 into a new root vertex rB: for all u1 ∈ T1 and u2 ∈ T2, every edge ru1 is contracted
and every edge u1u2 ∈ E(T ) gives rise to an edge rBu2 ∈ E(B(T )). For k ≤ h(T ), Bk(T )
will denote the kth iteration of B applied to T : all vertices from levels 0 to k are contracted
into a single vertex denoted by rBk which becomes the new root.

3.2 Problems and preliminary results

3.2.1 Firefighter and Fractional Firefighter

An instance of Fractional Firefighter is defined by a triple (G, r, (fi)), where G =
(V (G), E(G)) is a graph, r ∈ V (G) is the vertex where the fire breaks out and (fi, i ≥ 1)
is the non-negative firefighter sequence. Note that the game could be extended by allowing
negative values for fi, however, we will exclude pyromaniac firefighters, with one exception
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in section 3.4.2 for the purpose of simplifying a proof. Let Si denote the cumulative amount
of firefighters received: Si =

∑i
j=1 fj.

At turn i = 0, the game is in its initial state where r is burning and all other vertices
are unprotected, and i ≥ 1 corresponds to the different rounds of the game. At each turn
i ≥ 1 and for every vertex v, the player decides which amount pi(v) of protection to add to
v. Throughout the game, for every vertex v the part of v which is burning at turn i ≥ 0
is denoted by bi(v), with b0(r) = 1 and b0(v) = 0 for all v 6= r. Similarly the cumulative
protection received by vertex v is pci(v) with pc0(v) = 0 for all v. Both (bi(v), i ≥ 0) and
(pci(v), i ≥ 0) are non-decreasing sequences with bi(v)+pci(v) ≤ 1 for all i and v. At each turn
i, the player’s choice of pi(v) is subject to the constraints pi(v) ≥ 0, bi−1(v)+pci−1(v)+pi(v) ≤
1 and

∑
v∈V (G) pi(v) ≤ fi. The new protection of v is pci(v) = pci−1(v) + pi(v). The fire then

spreads following the rule

bi(v) = max{ max
v′∈N(v)

bi−1(v′)− pci(v), bi−1(v)}, (3.1)

where N(v) denotes the open neighbourhood of v. The game finishes when the fire stops
spreading (i.e. bi(v) = bi−1(v) for all v).

We show that this game always terminates on a finite graph G. Let Lr(G) denote the
maximum length of an induced path in G with extremity r, we have:

Proposition 18 ([20]). The maximum number of turns before a game of Firefighter or
Fractional Firefighter on a finite graph G will terminate is Lr(G).

Proof. First, we show by induction on i that:

For all i ≥ 1, for all vertex v, if bi(v) > bi−1(v), then there is an induced path
Pi,v = (u0 = r, u1, . . . , ui = v) of length i such that bj(uj) is non-increasing along
the path.

For i = 1 and v ∈ V (G), if b1(v) > b0(v) then v is a neighbour of r and b0(r) = 1 ≥ b1(v).
The path P1,v = (r, v) is of length 1.

Suppose the property holds at turn i and that bi+1(v) > bi(v) for some v. Necessarily, v
receives the additional amount of fire from a neighbour w:

bi+1(v) = bi(w)− pci+1(v) > bi(v).

We necessarily have bi(w) > bi−1(w) since otherwise bi(w) = bi−1(w) and we would have
the following contradiction:

bi(v) ≥ bi−1(w)− pci(v) = bi(w)− pci(v) ≥ bi(w)− pci+1(v) > bi(v).

Applying to w the induction hypothesis, there is an induced path Pi,w = (u0 = r, u1, . . . , ui =
w) such that (bj(uj)) is non-increasing. Since, bi+1(v) = bi(w) − pci+1(v), we have bi+1(v) ≤
bi(w).

Also, for all j < i, uj and v are not adjacent since otherwise, we would have the following
contradiction:
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bi(v) ≥ bj+1(v) ≥ bj(uj)− pcj+1(v) ≥ bi(w)− pci+1(v) > bi(v).

It follows that the path Pi+1,v obtained by adding the edge wv to Pi,w is an induced path
which satisfies the required property.
Thus, if bi+1(v) > bi(v) for some v, we have i + 1 ≤ Lr(G). Consequently, the fire can no
longer spread at turn Lr(G) + 1.

Conversely, let P be an induced path with extremity r of length Lr(G). If (fi) = (|G| −
Lr(G)−1, 0, 0, 0 · · · ) and if the complement of P is protected during the first turn, the game
will terminate in exactly Lr(G) turns.

Example 3. On a perfect binary tree (Bn, r) of height n, given one firefighter per turn, the
length of (Fractional) Firefighter is exactly n = Lr(Bn), whatever the player’s strategy
(this will be an immediate consequence of proposition 21).

The standard Firefighter problem is similar to Fractional Firefighter, but with
the additional constraint that the pi(v) are all binary variables. It follows that pci(v) and
bi(v) are also binary. In this case, the firefighter sequence must have integral values.

3.2.2 Simplification for trees

Given an instance (T, r, (fi)), where T is a tree, T will be considered rooted in r. In order to
remove trivial cases, we will exclude algorithms which place at turn i more protection on a
vertex v than the part of v that would burn if no protection were placed starting from turn
i. If T is finite, proposition 18 implies that the game will end in at most h(T ) turns. We
consider that it has exactly h(T ) turns, eventually with empty turns where no firefighters
are allocated towards the end of the game.

Solutions on trees have a very specific structure. Indeed, it immediately follows from
eq. (3.1) that, when playing on a tree, at each turn i, the amounts of fire bi(v) are non-
increasing along any path from the root, which means that the fire will only spread outwards
from the root. Also, for every vertex v in Tj for some j, the amount of fire bj(v) can no
longer increase after turn j. Hence, no protection is placed in Tj at turn i > j. Note also
that for any solution which allocates a positive amount of protection at turn i to a vertex
v ∈ Tk, k > i, allocating the same amount of protection to the parent of v instead strictly
improves the performance. Indeed, if vertex v can still burn, so can its parent. So we may
consider only algorithms that play in Ti at turn i. For an optimal algorithm, this property
was emphasised in [37].

This holds for both Firefighter and Fractional Firefighter on trees. For such
an algorithm, pci(v) = pi(v) and the values of pi(v) and bi(v) will not change after turn i for
v ∈ Ti. Hence, the index i may be dropped by denoting p(v) = pi(v) and b(v) = bi(v) for
v ∈ Ti. A solution p is then characterised by the values p(v), v ∈ V (T ). For any solution
p, while p(v) represents the amount of protection received directly, vertex v also receives
protection through its ancestors, the amount of which is denoted by Pp(v) =

∑
v′Cv p(v

′)
(used in section 3.3.1). Since we only consider algorithms that play in Ti at turn i and
do not place extraneous protection, for any vertex v, p(v) + Pp(v) ≤ 1. Also, for any
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vertex v ∈ Ti, we have bi−1(v) = 0 and by summing eq. (3.1) from 1 to i, we deduce that
p(v) + Pp(v) + b(v) = 1.

Any solution p for Firefighter or Fractional Firefighter will satisfy the con-
straints:

[C]
{ ∑

v∈Ti p(v) ≤ fi (i)
∀v, p(v) + Pp(v) ≤ 1 (ii)

In [44], a specific boolean linear model has been proposed for solving Firefighter on
a tree T involving these constraints. Solving Fractional Firefighter on T corresponds
to solving the relaxed version of this linear program.

3.2.3 Online version

Online optimisation [4] is a generalisation of approximation theory which represents situa-
tions where the information is revealed over time and one needs to make irrevocable decisions.
We now introduce online versions of Firefighter and Fractional Firefighter on trees.
The graph and starting point of the fire are known from the start, but the firefighter sequence
(fi)i≥1 is revealed over time. This set-up can be seen as a game between the online player
(or algorithm) and a malicious adversary. At each turn i, the adversary reveals fi and then
the player chooses where to allocate protection. We refer to the usual case, where (fi)i≥1 is
known in advance, as offline.

Let us consider an online algorithm OA for one of the two problems and let us play
the game on a finite tree T until the fire stops spreading. The value λOA achieved by
the algorithm, defined as the amount of saved vertices, is measured against the best value
performed by an algorithm which knows in advance the sequence (fi). In the present case,
it is simply the optimal value of the offline instance, referred to as the offline optimal value,
denoted by βI when considering the online Firefighter (I stands for “Integral”) and βF
for the online Fractional Firefighter. We will call Bob such an algorithm, able to see
the future and guaranteeing the value βI or βF for online Firefighter and Fractional
Firefighter.

Algorithm OA is said to be γ-competitive, γ ∈]0, 1], for the online Firefighter (resp.
Fractional Firefighter) if for every instance, λOA

βI
≥ γ (resp. λOA

βF
≥ γ); γ is also

called a competitive ratio guaranteed by OA. An online algorithm will be called optimal if
it guarantees the best possible competitive ratio.

The arguments given in section 3.2.2, to justify considering only algorithms that play
in Ti at turn i, are still valid for online algorithms; thus we will only consider such online
algorithms. Let us start with a reduction:

Proposition 19 ([20]). We can reduce online (Fractional) Firefighter on trees to
instances where f1 > 0.

Proof. If fi = 0 for all i such that 1 ≤ i ≤ k, then the instance (T, r, (fi)) is equivalent to
the instance (Bk(T ), rBk , (fi+k)).

In the infinite case we do not define competitive ratios, but only ask whether the fire can
be contained by an online algorithm. Sections 3.3.1 and 3.3.2 deal with the finite case while
section 3.5.3 deals with a class of infinite trees.
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3.3 Online firefighting on finite trees

3.3.1 Competitive analysis of a greedy algorithm

Greedy algorithms are usually very good candidates for online algorithms, sometimes the
only known approach. Mainly two different greedy algorithms have been considered in the
literature for Firefighter on a tree [27] and they are both possible online strategies in
our set-up. The degree greedy strategy prioritises saving vertices of large degree; it has been
shown in [7] that it cannot guarantee any approximation ratio on trees, even for a constant
firefighter sequence. A second greedy algorithm, introduced in [37] for an integral sequence
(fi), maximises at each turn the total weight of the newly protected vertices. We generalise
it to any firefighter sequence for both the integral and the fractional problems. Let GR
denote the greedy algorithm that selects at each turn i an optimal solution of the linear
program Pi with variables x(v), v ∈ Ti and constraints [C]:

Pi :


max

∑
v∈Ti x(v)w(v)∑

v∈Ti x(v) ≤ fi (i)
∀v ∈ Ti, x(v) + Px(v) ≤ 1 (ii)

An optimal solution of Pi is obtained by ordering vertices {v1, . . . , v|Ti|} of level i by
non-increasing weight and taking them one by one in this order and greedily assigning to
vertex vj the value x(vj) = min(fi−

∑
k<j x(vk), 1−Px(vj)). Note that GR is valid for both

Firefighter and Fractional Firefighter.

It was shown in [37] that the greedy algorithm on trees gives a 1
2
-approximation of the

restriction of Firefighter when a single firefighter is available at each turn. They claim
that this approximation ratio remains valid for a fixed number D ∈ N of firefighters at each
turn. We extend this result to any firefighter sequence (fi)i≥1, integral or not. Since GR is
an online algorithm, the performance can also be seen as a competitive ratio for the online
version.

Theorem 5 ([20]). The greedy algorithm GR is 1
2
-competitive for both online Firefighter

and Fractional Firefighter on finite trees.

Proof. Let us first consider the fractional case with an online instance (T, r, (fi)) of Frac-
tional Firefighter on a tree.

Let x(v) and y(v) be the amounts of firefighters placed on vertex v by GR and Bob,
respectively. We have λGR =

∑
v x(v)w(v) and βF =

∑
v y(v)w(v).

Recall that Px(v) =
∑

v′Cv x(v′) and Py(v) =
∑

v′Cv y(v′). We split y(v) into two non-
negative quantities, y(v) = g(v) + h(v), where g(v) is the part of y(v) already protected by
GR through the ancestors of v, while h(v) is the part of y(v) which, when added on top of
Py(v), exceeds Px(v). So, if Py(v) < Px(v) < y + Py(v), we have h(v) = y(v) − Px(v). The
general formula is:
g(v) = min{y(v),max{0, Px(v)−Py(v)}} and h(v) = max{0, y(v) + min{0, Py(v)−Px(v)}}.

We now claim that ∀v′ ∈ T ,
∑

vEv′ g(v) ≤ Px(v
′) and prove it by induction. Since

g(r) = 0, it holds for the root r. Assuming that the inequality holds for a vertex v′, let v′′
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be a child of v′. If Px(v
′′)− Py(v′′) ≥ 0, then we directly have:∑

vEv′′

g(v) =
∑
vCv′′

g(v) + g(v′′) ≤
∑
vCv′′

y(v) + (Px(v
′′)− Py(v′′)) = Px(v

′′).

Else, g(v′′) = 0 and using
∑

vEv′ g(v) ≤ Px(v
′) and Px(v

′′) ≥ Px(v
′), the inequality holds

for v′′; which completes the proof of the claim. Thus:∑
v′

∑
vEv′

g(v) ≤
∑
v′

Px(v
′) =

∑
v′

∑
vCv′

x(v) ≤
∑
v′

∑
vEv′

x(v).

Since w(v) =
∑

vEv′ 1, by changing the order of summation on both sides, we obtain:∑
v

g(v)w(v) ≤
∑
v

x(v)w(v) = λGR. (3.2)

Let us now consider the coefficients h(v). We claim that the coefficients h(v) with v ∈ Ti
satisfy the constraints (i) and (ii) of Pi: indeed for (i), we have h(v) ≤ y(v) and y satisfies
constraint (i). For (ii) note that h(v) + Px(v) = max{Px(v), y(v) + min{Px(v), Py(v)}} ≤
max{Px(v), y(v) + Py(v)} ≤ 1.

Hence, ∀i,
∑

v∈Ti h(v)w(v) ≤
∑

v∈Ti x(v)w(v) and therefore:∑
v∈T

h(v)w(v) ≤
∑
v∈T

x(v)w(v) = λGR. (3.3)

Finally, since g(v) + h(v) = y(v), we conclude from eqs. (3.2) and (3.3) that βF ≤ 2λGR.
Hence the Greedy algorithm is 1

2
-competitive for the online Fractional Firefighter

problem. Since the greedy algorithm gives an integral solution if (fi) has integral values and
since βF ≥ βI , it is also 1

2
-competitive for the Firefighter problem. This concludes the

proof of theorem 5.

Conjecture 2.3 in [35] (which is also Conjecture 3.5 in [27]) claims that there is a constant
ρ such that the optimal value of Fractional Firefighter is at most ρ times the optimal
value of Firefighter. It was supported by extensive experimental tests [35], but finding
such a constant and proving the ratio is one of the open problems proposed in [27] (Problem
7). Theorem 5 can be expressed as λGR ≤ βI ≤ βF ≤ 2λGR, which shows that ρ = 2 is such
a constant:

Corollary 8 ([20]). In Fractional Firefighter, the amount of vertices saved is at most
twice the maximum number of vertices saved in Firefighter.

3.3.2 Improved competitive algorithm for Firefighter

In this section, we investigate possible improvements for online strategies for Firefighter
on finite trees. Let ϕ = 1+

√
5

2
denote the golden ratio, satisfying ϕ2 = ϕ+ 1.
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For any integer k ≥ 2, we denote by αI,k the best possible competitive ratio for online
Firefighter on finite trees if at most k firefighters are available in the entire game. We
have:

αI,k = inf
T∈T

max
OA∈AL

min
(fi)∈NN∗ ,

∑
i fi≤k

λOA

βI
,

where T denotes the set of finite rooted trees and AL the set of online algorithms for
Firefighter on finite trees.

Note that in the definition of αI,k, λOA and βI depend on T . Also, the maximum and
the minimum are well defined since on a finite tree T , the set of possible ratios is finite. An
online algorithm, choosing for any fixed T a strategy which achieves this maximum, will be
αI,k-competitive for instances with at most k firefighters. Such an algorithm is optimal for
these instances.

The sequence (αI,k) is non-increasing. We define αI = lim
k→∞

αI,k; again, the index I stands

for Integral and refers to the Firefighter problem.

Remark 16. The limit αI is the greatest competitive ratio that can be reached on any tree.
Indeed, given a finite tree T , it suffices to consider the instances with at most |V (T )| fire-
fighters.

In this section, we give an online algorithm for instances of Firefighter on a finite
tree that is optimal (i.e., αI,2-competitive) if at most two firefighters are presented. Based
on proposition 19, we may assume f1 6= 0. If f1 = 2, one firefighter will be called the first
and the other one the second. An online instance is then characterised by when the second
firefighter is presented. It can be never if only one firefighter is presented or at the first turn
if f1 = 2. Note that this later case is trivial since an online algorithm can make the same
decision as Bob by assigning both firefighters to two unburnt vertices of maximum weights.
Our algorithm works also in this case and will make this optimal decision.

Lemma 8 ([20]). Let a and b be two vertices of maximum weights in T1. If
∑

i fi ≤ 2, there
is an optimal offline algorithm for Firefighter which places the first firefighter on either
a or b.

Proof. If the first firefighter is placed on v ∈ T1 \{a, b} by an optimal offline algorithm, since
at most two firefighters are available, ∃u ∈ {a, b}, T [u] burns completely. Hence, replacing v
by u when assigning the first firefighter would produce another optimal solution (necessarily
wv = wu).

We suppose Bob has this property. However, even if wa > wb, he will not necessarily
choose a; as illustrated by the graph W1,10,20 (fig. 3.1) where if the firefighter sequence is
(1, 0, 1, 0, 0, 0 . . .), then Bob’s needs to protect x during the first turn. Note also that, when
the root is of degree at least 3, the second firefighter is not necessarily in V (T [a])∪ V (T [b]).

We now consider algorithm 1 and assume that the adversary will reveal at most two fire-
fighters. The algorithm works on an updated version T̃ of the tree: if one vertex is protected,
then the corresponding sub-tree is removed and all the burnt vertices are contracted into the
new root r̃ so that the algorithm always considers vertices of level 1 in T̃ . Before starting
the online process, the algorithm computes the weights of all vertices. The weights of the
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unburnt vertices do not change when updating T̃ . The value of h(T̃ ), required in line 9, can

be computed during the initial calculation of weights and easily updated with T̃ . For the
sake of clarity, we do not detail all updates in the algorithm.

In this section only, for any vertex v ∈ Ti and any i ≤ j ≤ i + h(T [v]), we denote by vj
a vertex of maximum weight wvj in Tj ∩ V (T [v]), i.e. among the descendants of v which are
in level j (or v itself if i = j). We also define w̄vj for all j via:

w̄vj = wvj if j ∈ [i; i+ h(T [v])] and 0 otherwise.

Algorithm 1

Require: A finite tree T with root r - An online adversary.
1: (T̃ , r̃)← (T, r); Compute wv, ∀v ∈ V (T̃ )
2: First F irefighter ← TRUE;
3: {Start of the online process}
4: At each turn, after the fire spreads, T̃ is updated - burnt vertices are contracted to r̃;
5: If several firefighters are presented at the same time, we consider them one by one in the

following lines;
6: if a new Firefighter is presented and r̃ has at least one child then
7: if First F irefighter then
8: Let a and b denote two children of r̃ with maximum weight wa, wb and wa ≥ wb

(a = b if r̃ has only one child);

9: if min
2≤i≤1+h(T̃ )

wa+w̄bi
wb+w̄ai

≥ 1
ϕ

then

10: Place the first firefighter on a;
11: else
12: Place the first firefighter on b;
13: First F irefighter ← FALSE;
14: else
15: Place the firefighter on a child v of r̃ of maximum weight

Theorem 6 ([20]). Algorithm 1 is a 1
ϕ

-competitive online algorithm for online Firefighter
with at most two firefighters available. It is optimal for this case.

Proof. While algorithm 1 runs feasibly on any instance, we limit the analysis to the case
where at most two firefighters are available. If the adversary does not present any firefighter
before the turn h(T ), both algorithm 1 and Bob cannot save any vertex and, by convention,
the competitive ratio is 1.

Let us suppose that at least one firefighter is presented at some turn k ≤ h(T ); the tree
still has at least one unburnt vertex. During the first (k − 1) turns, the instance is updated
to (Bk−1(T ), rBk−1 , (fi+k−1)). In the updated instance, at least one firefighter is presented
during the first turn and the root has at least one child. Proposition 19 ensures that it is
equivalent to the original instance.

If the root rBk−1 has only one child, line 8 gives a = b and algorithm 1 selects a at line 10.
In the updated instance, all vertices are saved; so the competitive ratio is equal to 1.

48



Else, we have a 6= b with wa ≥ wb (line 8). If the adversary presents a single firefighter
for the whole game, then algorithm 1 protects either a or b. Meanwhile, Bob will protect a,
saving wa vertices. If wa ≥ ϕwb, then we have:

∀i, 2 ≤ i ≤ 1 + h(T ),
wa + w̄bi
wb + w̄ai

≥ wa
wb + wa

≥ ϕwb
wb + ϕwb

=
1

ϕ
. (3.4)

So algorithm 1 protects a (line 9), guaranteeing a competitive ratio of 1. Otherwise, if
wb >

1
ϕ
wa, even placing the firefighter on b guarantees a ratio of at least 1

ϕ
.

Suppose now that the adversary presents two firefighters. We consider two cases.
Case (i): If algorithm 1 places the first firefighter on a at line 10, and if the adversary
presents the second firefighter at turn i ≥ k, then the algorithm will save wa + w̄xi , for some
x ∈ Tk \ {a} such that w̄xi = maxu∈Tk\{a} w̄ui . For the same instance, Bob will save wv + w̄yi
for some v ∈ {a, b} and y ∈ Tk \ {v}. If the two values are different (the optimal one is
strictly better), then necessarily v = b and y = a. In this case the criterion of line 9 ensures
that the related competitive ratio is at least 1

ϕ
.

Case (ii): Suppose now that algorithm 1 places the first firefighter on b at line 12, and say
the adversary presents the second firefighter at turn j ≥ k. Lines 8 and 9 ensure that:

∃i, 2 ≤ i ≤ 1 + h(T ),
wa + w̄bi
wb + w̄ai

<
1

ϕ
. (3.5)

Hence, we have wa < ϕwb, since in the opposite case, eq. (3.4) would hold. Algorithm 1 now
saves wb + w̄xj , for x ∈ Tk \ {b} such that w̄xj = maxu∈Tk\{b} w̄uj . Meanwhile, Bob selects
v ∈ {a, b} and, if it exists, yj for some y ∈ Tk \ {v}, for a total of wv + w̄yj vertices saved. If
y 6= b, then w̄yj ≤ w̄xj , by definition of x, and thus:

wb + w̄xj
wa + w̄yj

≥
wb + w̄xj
wa + w̄xj

≥ wb
wa

>
1

ϕ
. (3.6)

Finally, if y = b, then v = a and the competitive ratio to evaluate is
wb+w̄xj
wa+w̄bj

. We claim

that the following holds:

wa + w̄bi
wb + w̄ai

×
wb + w̄xj
wa + w̄bj

≥ 1

ϕ2
. (3.7)

If i ≥ j, then w̄ai ≤ w̄aj and since a 6= b, w̄aj ≤ w̄xj . Hence:
wb+w̄xj
wb+w̄ai

≥ wb+w̄xj
wb+w̄aj

≥ 1 and

therefore:
wa + w̄bi
wb + w̄ai

×
wb + w̄xj
wa + w̄bj

≥ wa + w̄bi
wa + w̄bj

≥ wa
wa + wb

.

Now, if i < j, we get:
wa+w̄bi
wa+w̄bj

≥ 1 and therefore:

wa + w̄bi
wb + w̄ai

×
wb + w̄xj
wa + w̄bj

≥
wb + w̄xj
wb + w̄ai

≥ wb
wa + wb

.

In both cases, since wa
wa+wb

≥ wb
wa+wb

≥ 1
1+ϕ

= 1
ϕ2 , we obtain eq. (3.7). Now, eqs. (3.5)

and (3.7) imply that in case (ii), when y = b, we also have
wb+w̄xj
wa+w̄bj

≥ 1
ϕ
. Together with

eq. (3.6), this concludes case (ii) and shows that algorithm 1 is 1
ϕ

-competitive.
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Even though complexity analyses are not usually proposed for online algorithms, it is
worth noting that line 9 only requires the weights of vertices in V (T [a]) ∪ V (T [b]) and the
maximum weight per level in T [a] and T [b]. Hence, algorithm 1 requires O(|V (T [a])| +
|V (T [b])|) to choose the position of the first firefighter and O(|V (T )|) altogether.

We conclude this section with a hardness result justifying that the greedy algorithm GR
is optimal and that algorithm 1 is optimal if at most two firefighters are available. These
hardness results will all be derived from the graphs Wk,l,m (fig. 3.1).

rx y

.

.

.

l vertices

. . .

. . .

. . .

...

..

.

m vertices

k chains

Figure 3.1: Graph Wk,l,m

Proposition 20 ([20]). For all k ≥ 2, 1
2
≤ αI,k ≤ 1

ϕ
, more precisely:

(i) αI = 1
2
, which means that the greedy algorithm is optimal for Firefighter in finite

trees;
(ii) αI,2 = 1

ϕ
, which means that algorithm 1 is optimal if at most two firefighters are available;

(iii) αI,4 <
1
ϕ

.

Proof. Theorem 5 shows that αI ≥ 1
2
. Given integers l,m, k such that k|m − 1, we define

the graph Wk,l,m as shown in fig. 3.1. We will assume that m > k2.
(i) Let us consider an online algorithm for Wk,l,m. As established in section 3.2.3 we

can assume that the online algorithm plays in Ti at turn i. If f1 = 1, the algorithm will
protect either x or y. If x is selected and the firefighter sequence is (1, 1, 0, 0, 0, . . .), our
online algorithm protects the branch of x and one of the k chains, while the optimal offline

algorithm protects y and the star. Its performance is then
l+m−1

k

l+m−1
. If, however, y is protected

instead during the first turn and if the firefighter sequence is (1, 0, 1, 1, 1, . . .), the online
algorithm protects the branch of y and one vertex of the star whilst the optimal algorithm
protects the branch of x as well as the k chains, minus k(k+1)

2
vertices. If l = m − 1 = k4,

for large values of k, the online algorithm which protects x is more performant and its

competitive ratio is
1+ 1

k

2
. Having k → +∞ shows that α ≤ 1

2
. Since the greedy algorithm

GR guarantees αI ≥ 1
2
, we have αI = 1

2
.

(ii) Consider the graphs W1,l,bϕlc. If the online algorithm protects x, the adversary selects
the sequence (1, 0, 0, 0, . . .), whereas if the online algorithm protects y, (1, 0, 1, 0, 0, 0, . . .) is
selected. In both cases, the performance tends to 1

ϕ
when l→ +∞.

(iii) If at most 4 firefighters are available, the graph W4,901,1001 gives an example where
1
ϕ

cannot be reached. Indeed, if f1 = 1 and the online algorithm protects x, then the

adversary will select the sequence (1, 1, 0, 0, 0, . . .), as in the proof of (i), for a performance
of 1151

1901
. If the online algorithm protects y, since firefighters are limited to 4, the adversary
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will select (1, 0, 1, 1, 1, 0, 0, 0, . . .), for a performance of 1002
1645

. This second choice is slightly
better; however 1002

1645
< 1

ϕ
.

I have also proved that there is a 1
ϕ

-competitive algorithm if three firefighters are pre-

sented (i.e., αI,3 = 1
ϕ

). This algorithm is similar to algorithm 1 in that it places the first
firefighter on one of the three largest branches and greedily places each of the other two on
the largest branch available at the time they are presented. The proof uses the fact that
the optimal online and offline algorithms both place the first firefighter on one of the three
largest branches available. The possible cases branch out further as the next firefighters may
or may not be placed on descendants of vertices protected by the other algorithm, just like
in the case for two firefighters, but with many more variations. At the time when I proved
it, I did not know that αI,4 = 1

ϕ
, and I was striving to find a 1

ϕ
-competitive algorithm for any

number of firefighters. With hindsight, the result for three firefighters is a lot less interesting
since cannot lead to any generalisation. Thus, the lengthy proof has not been included here.

3.4 Separating firefighter sequences

3.4.1 Definitions

We now consider the fractional firefighter problem on infinite graphs. We say that a sequence

of firefighters (fi) is weaker than (f ′i) (or (f ′i) is stronger than (fi)) if ∀k, Sk ≤ S ′k =
k∑
i=1

f ′i ,

and we write (fi) � (f ′i). If we also have ∃k : Sk < S ′k, (fi) is said to be strictly weaker than
(f ′i) and we write (fi) ≺ (f ′i).

Lemma 9 ([20]). If the fire can be contained in the instance (G, r, (fi)) and if (fi) � (f ′i),
then the fire can also be contained in (G, r, (f ′i)) by an online algorithm that knows (fi) in
advance.

Proof. Given a winning strategy in the instance (G, r, (fi)), if (f ′i) firefighters are available,
we contain the fire by protecting the same vertices, possibly earlier than in the initial strategy.

However, if (fi) ≺ (f ′i), for Fractional Firefighter, it is not always the case that
there is an infinite graph G such that the fire can be contained in (G, r, (f ′i)) but not in
(G, r, (fi)) (see example 4). We call such a G a separating graph for (fi) and (f ′i), and we
say that G separates (fi) and (f ′i) in N turns if the fire can be contained in N turns for (f ′i)
but not for (fi). In this section, we give sufficient conditions for the existence of a separating
graph.

Example 4. Let f1 = 1, f ′1 = 1.5 and ∀i ≥ 2, fi = f ′i = 0. Although (fi) ≺ (f ′i), no graph
separates those two sequences.

Note that for Firefighter, the problem is trivial, as shown in corollary 9.
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3.4.2 Spherically symmetric trees

Given a sequence (ai) ∈ (N∗)N∗ , the spherically symmetric tree T ((ai)) is the tree rooted in
r where every vertex of level i − 1 has ai children [43]. Note that if T = T ((ai)), we have
|Ti| =

∏i
j=1 aj. The total amount of fire at level i is the sum of the amounts of fire on all

vertices of level i.

Proposition 21 ([20]). In the instance (T ((ai)), r, (fi)), the total amount of fire that spreads
to level i is max{0, Fi}, where F0 = 1 and Fi = aiFi−1 − fi for all i.

Proof. At turn i, the player only protects vertices on level i. If no protection is placed, the
total amount of fire is multiplied by ai. Hence, if fi ≥ aiFi−1, the fire is contained; else, the
total amount of fire spreading to level i is aiFi−1 − fi, regardless of how the protection is
distributed among the vertices of level i.

Corollary 9 ([20]). Let (fi) and (f ′i) be two distinct integral valued sequences. There is a
spherically symmetrical tree which separates (fi) and (f ′i).

Proof. Let k be the first rank where fk 6= f ′k. We may assume that fk < f ′k. It follows from
proposition 21 that in the instance (T ((fi + 1)), r, (fi)), the amount of fire that spreads to
each level is equal to 1. Yet, in (T ((fi + 1)), r, (f ′i)), the fire is contained at turn k.

For the purpose of the following technical lemma, we define a new firefighter sequence,
which may include a negative term. Given a firefighter sequence (fi) and two non-zero

integers k and ε, we define the firefighter sequence (f
(k,ε
i ) via:

f
(k,ε)
i =


fk + ε if i = k
fk+1 − ε if i = k + 1
fi otherwise

Note that there is a possibility that f
(k,ε)
k+1 might be negative; however, this does not impact

the reasoning. We also define the sequence (F
(k,ε)
i ) via F

(k,ε)
0 = 1 and F

(k,ε)
i = aiF

(k,ε)
i−1 −f

(k,ε)
i .

It follows from proposition 21 that the amount of fire which spreads to level i in the instance
(T ((ai)), r, (f

(k,ε)
i )) is max{0, F (k,ε)

i }.

Lemma 10 ([20]). The spherically symmetric tree T = T ((ai)) separates (fi) and (f
(k,ε)
i ) if

and only if there is a rank N such that: A ≤
∑N

i=k+2

fi∏i
j=k+2 aj

< B, where A = F
(k,ε)
k+1 and

B = Fk+1.

Proof. It follows from proposition 21 that Fn =
∏n

j=1 aj −
∑n

i=1 fi
∏n

j=i+1 aj. So, Fn =

|Tn|(1 −
∑n

i=1
fi
|Ti|). The condition for T ((ai)) to separate (fi) and (f (k,ε)) can be stated as

follows: there is a rank N such that F
(k,ε)
N ≤ 0 < FN . Hence, there is an N such that

|TN |(1−
N∑
i=1

f
(k,ε)
i

|Ti|
) ≤ 0 < |TN |(1−

N∑
i=1

fi
|Ti|

).
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Therefore

1−
k+1∑
i=1

f
(k,ε)
i

|Ti|
≤

N∑
i=k+2

fi
|Ti|

< 1−
k+1∑
i=1

fi
|Ti|

.

And finally,

A ≤
N∑

i=k+2

fi∏i
j=k+2 aj

< B,

with A = F
(k,ε)
k+1 = |Tk+1|(1−

∑k+1
i=1

f
(k,ε)
i

|Ti| ) and B = Fk+1 = |Tk+1|(1−
∑k+1

i=1
fi
|Ti|).

Proposition 22 ([20]). Given two sequences (fi) and (f ′i) such that (fi) � (f ′i), let k be
the smallest integer such that fk 6= f ′k and let ε = f ′k − fk. The spherically symmetric
tree T = T ((ai)) separates (fi) and (f ′i) if and only if there is a rank N such that: A ≤∑N

i=k+2

fi∏i
j=k+2 aj

< B,

where A = F
(k,ε)
k+1 and B = Fk+1.

Proof. We have (f
(k,ε)
i ) � (f ′i), as indeed, (f

(k,ε)
i ) is the weakest sequence in {(gi) ∈ RN|∀i <

k, gi = fi, gk = fk + ε and (fi) � (gi)}. Hence, any tree separating (fi) and (f
(k,ε)
i ) also

separates (fi) and (f ′i). We conclude using lemma 10.

3.4.3 Targeting game

Given the form of the condition in proposition 22, we can view satisfying it as a special case
of a purely numerical problem, which we will call the targeting game. The instance of the
problem is given by two positive real numbers, A < B, and a sequence of non-negative real
numbers (fi) which represents the movements towards the target [A,B[. The player starts
at position u0 = 0 with an initial step size of 1. We denote by δi the step size at turn i, so
δ0 = 1. At each turn i > 0, the player chooses a positive integer ai by which he will divide

the previous step size, that is to say δi =
δi−1

ai
=
∏i

j=1 a
−1
j . Then, the position of the player

is updated with the rule ui = ui−1 + fiδi. If there is an integer N such that uN ∈ [A,B[,
then the player wins with the strategy (ai).

The targeting game can be summarised as follows: Given 0 < A < B and a sequence

(fi), is there an N and a sequence (ai) such that A ≤
∑N

i=1

fi∏i
j=1 aj

< B ?

We give two sufficient conditions on the data to ensure the existence of a winning strategy
for the player.

Theorem 7 ([20]). If there is an N such that
∑N

i=1 fi ≥ A

⌈
A

B − A

⌉
, then there exists a

sequence (ai) with ai = 1,∀i ≥ 2 such that the player wins the targeting game at turn N by
selecting (ai).
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Proof. First, note that if m ≥ A

B − A
, then (m+ 1)A ≤ mB. It follows that

[A

⌈
A

B − A

⌉
,+∞[⊂

⋃
k∈N∗

[kA, kB[.

Hence, there is a k such that kA ≤
∑N

i=1 fi < kB. So, A ≤
∑N

i=1

fi
k
< B. Therefore, if the

player chooses a1 = k and ai = 1, for i ≥ 2, he will have reached the target at turn N .

Theorem 8 ([20]). If |{i : fi ≥ B}| ≥ log2

(
B

B − A

)
, then the player wins the targeting

game by choosing at each turn i the smallest positive integer ai such that ui < B.

Proof. Consider a turn i such that ai > 1. Given that the player chooses the minimum ai, it

follows that B ≤ ui−1 +
δi−1

ai − 1
fi. By definition of ui and δi, we have δi−1fi = ai(ui − ui−1),

so B ≤ ui−1 +
ai

ai − 1
(ui − ui−1). Then B(ai − 1) ≤ ui−1(ai − 1) + ai(ui − ui−1) and

ai(B − ui) ≤ B − ui−1. (3.8)

Now consider the sequence xi =
B − ui
δi

. By dividing eq. (3.8) by δi−1, we see that

xi ≤ xi−1 when ai > 1. When ai = 1, we also have xi = xi−1 − fi ≤ xi−1. Thus (xi) is
non-increasing, and ∀i, xi ≤ x0 = B.

At any turn i where fi ≥ B, we have fi ≥ xi−1 and

δi−1fi ≥ δi−1xi−1 = B − ui−1 > ui − ui−1 = δifi.

So δi−1 > δi, and ai > 1. It then follows from eq. (3.8) that B − ui ≤
B − ui−1

2
.

Note also that, since (xi) and (δi) are non-increasing, (B − ui) is also non-increasing.
Hence, for all N , we have:

B − uN ≤
B − u0

2|{i≤N :fi≥B}|
=

B

2|{i≤N :fi≥B}|
.

Finally, choosing N such that |{i ≤ N : fi ≥ B}| ≥ log2

(
B

B − A

)
, we have A ≤ uN <

B.

Proposition 23 ([20]). Given (fi) < (f ′i), let k be the smallest integer such that fk 6= f ′k

and let ε = f ′k − fk. If there is an N such that
∑N

k+2 fi ≥ 2

⌈
2

ε

⌉
or |{k + 2 ≤ i ≤ N ; fi ≥

2}| > 1 − log2ε, then there is a spherically symmetric tree which separates (fi) and (f ′i) in
N turns.
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Proof. For i ≤ k, we choose the smallest ai such that Fi > 0; i.e. ai =
⌊

fi
Fi−1

⌋
+ 1. We then

choose ak+1 = max{2,
⌊
fk+1

Fk

⌋
+ 1}.

Using proposition 22, it is sufficient to have a rank N such that:

A ≤
N∑

i=k+2

fi∏i
j=k+2 aj

< B,

where A = |Tk+1|(1−
∑k+1

i=1
f
(k,ε)
i

|Ti| ) and B = |Tk+1|(1−
∑k+1

i=1
fi
|Ti|)

It follows from the choice of ai that for i ≤ k, (ai− 1)Fi−1− fi ≤ 0. Hence, aiFi−1− fi ≤
Fi−1, and Fi ≤ Fi−1. If ak+1 =

⌊
fk+1

Fk

⌋
+ 1, then Fk+1 ≤ Fk. Otherwise, if ak+1 = 2,

Fk+1 ≤ 2Fk. Finally, we have B = Fk+1 ≤ 2F0 = 2.

Also, B−A =
∑k+1

i=1 (f
(k,ε)
i −fi)

∏k+1
j=i+1 aj = (f

(k,ε)
k −fk)ak+1 +(f

(k,ε)
k+1 −fk+1) = (ak+1−1)ε.

Having chosen ak+1 ≥ 2, we have B − A ≥ ε.

Thus, we have an N such that
∑N

k+2 fi ≥ 2

⌈
2

ε

⌉
≥ A

⌈
A

B − A

⌉
or |{k + 2 ≤ i ≤ N |fi ≥

2}| > 1− log2ε ≥ log2

(
B

B − A

)
. The result follows by applying theorem 7 or theorem 8.

Remark 17. In the case where |{k + 2 ≤ i ≤ N ; fi ≥ 2}| > 1 − log2ε, the sequence (ai) is
entirely created by a greedy algorithm which selects the minimum value of ai such that Fi > 0
(and ak+1 ≥ 2). The value of ai is therefore a function of Fi−1 and fi.

Special credit for the targeting game should be given to Pierre Coupechoux, as it was his
idea. After studying it together, we began wondering if it might possibly have applications
other than the firefighter game. We first tried the field of robotics, after imagining a mechan-
ical arm that would be aimed towards a target using several gears. However, PhD students
who actually study robotics informed us that they saw no reason for the parameters of any
such construct to be limited to integers. We imagined a rabbit hopping towards its burrow
playing the targeting game. While the successive hops and the target interval are there, why
would the jumping strength of the rabbit be divided by integers? Replacing the rabbit with
a kangaroo appealed to those of us residing in Australia, but did not otherwise help. A hot
air balloon dropping unusually weighted ballast could explain the integers, unfortunately,
hot air balloons do not hop. In the end, it was Marc who found the correct interpretation:

In a far away land, rebellious mathematicians who tried to subvert the mathematical
society are held prisoners in a penitentiary where they are made to break rocks all day long.
The prison warden knows that many rebels remain on the outside and wishes to have the
inmates betray their fellow rebels. He offers them a deal: one day, they are given a large
number of huge rocks to break into rubble. After finishing a rock, they are allowed to betray
some of their friends who will then join them in their task, though to be fair, each inmate
should betray the same number of rebel friends. The warden promises them that if they
manage to complete the task during dusk on the third day of the trial, they will all obtain
full pardon and a reduction of their teaching load.
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3.5 Firefighting sequence vs. sevel growth

3.5.1 Infinite offline instances

On infinite trees, the objective is to contain the fire. Hence, finite branches of infinite trees
are irrelevant. In particular, the problem is trivial on infinite trees without infinite branches
and we exclude this case. Given an infinite rooted tree T with at least one infinite branch,
let us consider the union T ∗ of all leafless sub-trees of T with the same root, where the union
T1 ∪ T2 of two sub-trees of T is the sub-tree induced by V (T1) ∪ V (T2). T ∗ is leafless (it is
obtained from T by pruning finite branches). Playing on T is equivalent to playing on T ∗.
Without loss of generality, we may restrict the infinite case to leafless trees. Note that if T
is leafless, then (|Ti|) is non-decreasing.

Intuitively, it seems that when the fire cannot be contained on an infinite tree, it means
that the number of vertices per level must grow faster, in some sense, than the firefighter
sequence. Following this line of reasoning, proposition 24 and theorem 9 give criteria for
infinite instances to be winning based on the asymptotic behaviours of those two sequences.

Proposition 24 ([20]). Let (T, r, (fi)) be an instance of Fractional Firefighter where
T is a tree of infinite height. If

∑+∞
i=1

fi
|Ti| > 1, then the instance is winning.

Proof. The firefighter wins by spreading at each turn n the amount of protection evenly
among all vertices of Tn. The amount of fire that reaches v ∈ Tn is max{0, 1 −

∑
i≤n

fi
|Ti|}.

Hence, the fire is contained after a finite number of turns.

Unfortunately, we need a more complex criterion to obtain a sufficient condition to win
in both Firefighter and Fractional Firefighter.

Theorem 9 ([20]). Let (T, r, (fi)) be an instance of Firefighter or Fractional Fire-
fighter where T is a leafless tree. If Si → +∞ and Si

|Ti| 9 0, then the instance (T, r, (fi))
is winning for the firefighter.

The proof of theorem 9 will require the following lemma, which is probably well-known:

Lemma 11 ([20]). If (un) is a positive sequence that increases towards +∞, then
∑ un−un−1

un
diverges.

Proof. Let vn = un−un−1

un
. If vn 9 0, then

∑
vn diverges. Let us assume that vn → 0.

Since un−1

un
= 1 − vn, we have ln u0

un
= ln

∏n
i=1 1 − vi =

∑n
i=1 ln(1 − vi). Since un → +∞,

ln u0
un
→ −∞, so

∑
ln(1− vi)→ −∞, and since vn → 0,

∑n
i=1 vi → +∞.

We may now prove theorem 9.

Proof. Since T is leafless, (|Ti|) is non-decreasing and since Si
|Ti| 9 0, there is a positive

constant C and an increasing injection σ : N→ N such that

∀i, |Tσ(i)| ≤ CSσ(i) <∞.

Let a : V (T ) → [0, 1] denote the amount of protection we will place on each vertex. In
order to describe the amount of each vertex that remains unprotected at the end of each
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turn, we use a sequence of labellings li : V (T )→ [0, 1]. Initially, all vertices are unprotected,
so l0 = 1. At turn i, protection is placed on vertices of Ti, so ∀v ∈ V (T ), li(v) = li−1(v) −∑

v′∈Ti a(v′)1v′Ev. For any W ⊂ V (T ) and any labelling l, we define l(W ) =
∑

v∈W l(v).
For all i and h ∈ N∗ with h > i, for all v ∈ Ti, let wh(v) = |{v′ ∈ Th, v C v′}|. Thus,∑
v∈Ti wh(v) = |Th| and for all j < i,∑

v∈Ti

wh(v)lj(v) = lj(Th). (3.9)

It follows from lemma 11 that
∑ Sσ(i)−Sσ(i−1)

Sσ(i)
diverges. Hence

∏
(1+

Sσ(i)−Sσ(i−1)

CSσ(i)
) also diverges.

Let N be such that
∏N

i=1(1 +
Sσ(i)−Sσ(i−1)

CSσ(i)
) > 2C and let h be such that Sσ(h) > 2Sσ(N).

We consider the following strategy. At each turn i, we protect the vertices which have
the most descendants in level σ(h), i.e., a(v), v ∈ Ti, is an optimal solution of the following
linear program: 

max
∑

v∈Ti a(v)wσ(h)(v)
a(v) ≤ li−1(v) ; v ∈ Ti∑

v∈Ti a(v) ≤ fi

If fi ≥ li−1(Ti) then we can protect the whole level Ti, thus Tσ(h), and the fire is contained.

So we assume fi < li−1(Ti) for all i < σ(h). Then, fi
li−1(v)
li−1(Ti)

, v ∈ Ti is a solution of the linear

program with
∑

v∈Ti fi
li−1(v)
li−1(Ti)

= fi. It follows, by optimality and using eq. (3.9), that:∑
v∈Ti

a(v)wσ(h)(v) ≥
∑
v∈Ti

fi
li−1(v)

li−1(Ti)
wσ(h)(v) =

fili−1(Tσ(h))

li−1(Ti)

Note that for j ≤ i, lj−1(Tj) ≤ |Tj| ≤ |Tσ(i)|. Hence,

lσ(i−1)(Tσ(h))− lσ(i)(Tσ(h)) =

σ(i)∑
j=σ(i−1)+1

∑
v∈Tj

a(v)wσ(h)(v)

≥
σ(i)∑

j=σ(i−1)+1

fjlj−1(Tσ(h))

lj−1(Tj)

≥
σ(i)∑

j=σ(i−1)+1

fjlσ(i)(Tσ(h))

|Tσ(i)|

≥
Sσ(i) − Sσ(i−1)

CSσ(i)

lσ(i)(Tσ(h)) (since |Tσ(i)| ≤ CSσ(i)).

So

lσ(i−1)(Tσ(h)) ≥ (1 +
Sσ(i) − Sσ(i−1)

CSσ(i)

)lσ(i)(Tσ(h)).

Therefore,

|Tσ(h)| ≥ lσ(0)(Tσ(h)) ≥
N∏
i=1

(1 +
Sσ(i) − Sσ(i−1)

CSσ(i)

)lσ(N)(Tσ(h)) > 2Clσ(N)(Tσ(h)).
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And consequently,

lσ(N)(Tσ(h)) ≤
|Tσ(h)|

2C
≤ 1

2
Sσ(h) ≤ Sσ(h) − Sσ(N).

This means that the firefighters available between turns σ(N) and σ(h) outnumber the
unprotected vertices on level σ(h). Hence, the strategy will win in at most σ(h) turns.

Conversely, asymptotic behaviours cannot guarantee that an instance will be losing. In-
deed, if f1 ≥ |T1|, the instance is winning regardless of asymptotic behaviours. However,
having selected asymptotic behaviours where the levels of the tree grow faster than the
firefighter sequence, theorem 10 guarantees that some instances with those asymptotic be-
haviours will be losing.

Theorem 10 ([20]). Let (ti) ∈ N∗N∗ and (fi) ∈ R+N∗
be such that (ti) is non-decreasing and

tends towards +∞. Then,
∑ fi

ti
converges if and only if there exists a spherically symmetric

tree T rooted in r such that:

• ∃N : ∀i ≥ N, ti
2
≤ |Ti| ≤ ti

• the instance (T, r, (fi)) is losing for (Fractional) Firefighter.

Proof. 1) Suppose that
∑ fi

ti
converges. Let M be such that

∑+∞
i=M+1

fi
ti
< 1

4
and let N > M

be such that tN > 4SM . We choose a1 = tN , ai = 1 for 2 ≤ i ≤ N , and ai =

⌊
ti∏i−1
j=1 aj

⌋
for

i > N . We will show that T = T ((ai)) is a solution.
Let us show by induction that ∀i ≥ N, ti

2
≤ |Ti| ≤ ti. Note that

|TN | =
N∏
j=1

aj = tN .

Assume that the result holds for i− 1 where i > N :

ti−1

2
≤

i−1∏
j=1

aj ≤ ti−1.

Since ti ≥ ti−1, we have ai ≥ 1. Hence,

ai ≤
ti∏i−1
j=1 aj

≤ ai + 1 ≤ 2ai.

So, ti
2
≤ |Ti| ≤ ti, and the result holds for all i ≥ N .

Since T is spherically symmetric, the amount of fire that spreads to level n is max(0, Fn),
where Fn = |Tn|(1−

∑n
i=1

fi
|Ti|). For n > N , we have:

n∑
i=1

fi
|Ti|

=
SN
tN

+
n∑

i=N+1

fi
|Ti|

≤ SM
tN

+
1

tN

N∑
i=M+1

fi + 2
n∑

i=N+1

fi
ti

<
1

4
+

1

4
+

2

4
= 1.
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Hence, Fn > 0 for all n, and therefore the fire cannot be contained.

2) Conversely, if
∑ fi

ti
diverges and T = T ((ai)) is such that ∃N : ∀i ≥ N,

ti
2
≤ |Ti| ≤ ti, then

∑ fi
|Ti| also diverges. It follows that Fn = |Tn|(1 −

∑n
i=1

fi
|Ti|) is negative

above a certain rank. Hence, the fire is contained.

Corollary 10 ([20]). Let (ti) ∈ N∗N∗ and (fi) ∈ R+N∗
be such that (ti) is non-decreasing

and tends towards +∞. Let Si =
∑

1≤k≤i fk. If Si → +∞ and Si
ti
9 0, then

∑ fi
ti

diverges.

Proof. If
∑ fi

ti
were convergent, it follows from theorem 10 that there would be a spherically

symmetric tree T such that:

• ∃N : ∀i ≥ N, ti
2
≤ |Ti| ≤ ti

• the instance (T, r, (fi)) is losing for (Fractional) Firefighter.

It then follows from theorem 9 that Si 9 +∞ or Si
|Ti| → 0. Hence Si 9 +∞ or Si

ti
→ 0.

It follows that for Fractional Firefighter, theorem 9 is weaker than proposition 24.
Theorem 9 remains interesting for Firefighter and it gives an alternative winning method
for Fractional Firefighter.

Remark 18. Under the hypotheses of theorem 10, if
∑ fi

ti
converges, we can create a losing

instance (T ′, r′, (fi)) with ∀i, |Ti| = ti by adding ti − |Ti| leaves to level i for all i. We will
have |Tn| = tn without adding leaves if and only if there exists a spherically symmetric tree
with ti vertices on level i for all i.

Remark 19. Remark 1.12 in [23] gives a sufficient condition for an instance to be losing for
Firefighter in a general graph satisfying some growth condition, using a similar criteria to
the convergence of

∑ fi
ti

. In general, both results cannot be compared. In our set-up however,

their result can be seen as the particular case of Firefighter where (ti) = (λi) for some λ.

3.5.2 Conjecture

This section describes my attempts at extending proposition 24 to include the case of Fire-
fighter. After reducing the problem to the case of one firefighter per turn, two possible
strategies are suggested, both coming close to solving the problem. It is my hope that they
might eventually provide keys to a complete solution.

Conjecture 2. Let (T, r, (fi)) be an instance of Firefighter where T is a tree of infinite
height. If

∑+∞
i=1

fi
|Ti| > 1, then the instance is winning.

Let us start with a reduction:

Lemma 12 ([20]). In order to show that instances of Firefighter where
∑ fi
|Ti| diverges

are winning, it is sufficient to prove it for instances with fi = 1, ∀i.
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Proof. Given an instance (T, r, (fi)) of Firefighter where fi = p ≥ 2, an equivalent
instance is obtained by adding p1 vertices on each edge between Ti and Ti+1 and replacing fi
by 1, 1, . . . , 1, fi times, in the firefighter sequence. Repeating this process for each i gives an
equivalent instance with one firefighter per turn, and the nature of

∑ fi
|Ti| is unchanged.

Using this reduction, we may consider only instances with one firefighter per turn. A first
candidate for a winning strategy is to select a level h, with h large enough, and protect at
each turn i the vertex vi ∈ Ti with the highest number of descendants in Th, as in the proof of
theorem 9. In the hope of obtaining a contradiction, we may assume that this strategy is not
winning in before turn h, which means, using the same notations as in the proof of theorem 9,
that

∑h
i=1 wh(vi) < |Th|. It follows from the pigeonhole principle that at each turn i ≤ h,

there is an unprotected vertex v ∈ Ti such that wh(v) ≥ li−1(Th)
li−1(Ti)

. Hence, wh(vi) ≥ li−1(Th)
li−1(Ti)

and 1 > 1
|Th|
∑h

i=1wh(vi) ≥
∑h

i=1
1
|Th|

ρih, where ρih = li−1(Th)
|Th|

|Ti|
li−1(Ti)

. Since
∑

1
|Ti| diverges, we

can choose h such that
∑h

i=1
1
|Ti| >

1
ε
, for ε > 0. It follows that

∑h
i=1

1
|Ti|

ρih∑h
i=1

1
|Ti|

< ε.

In other words, the barycentre of the ρih with coefficients 1
|Ti| tends to 0. Since |Ti|

li−1(Ti)
≥

1, this implies that li−1(Th)
|Th|

tends to 0. Unfortunately, this does not guarantee that this
strategy is winning. For this strategy to fail for a given h, we need it to protect vertices, the
descendants of which form a greater proportion of Th than of the Tj, for i < j < h. This can
be done using chains which split into many vertices at level h, so that protecting a vertex
of the chain at turn i protects a single vertex in each level Tj, but many vertices in Th. The
real problem is whether or not there exists a tree for which this strategy will fail for any h.
I tried looking at trees where |Ti| = bi log(i)c and all vertices of Ti except one have exactly
one child. This design creates long chains which split into many vertices at some point, but
none of my attempts even came close to providing a working counter-example.

In the case of spherically symmetric trees, the coefficients ρih are always equal to 1, which
is why

∑h
i=1

1
|Ti| > 1 is sufficient in that case to guarantee a win. Indeed, in spherically

symmetric trees, placing a firefighter on a vertex vi ∈ Ti protects the same proportion of
each level Tj, j > i. The problem with the previous strategy is that we lose too much
by selecting moves based only on their impact at level h with no regards for other levels.
Thus, a refined idea is to select moves which protect a high proportion of not just one, but
an infinite number of lower levels. At turn i, for each h, there is at least one vertex in
Ti such that wh(v) ≥ li−1(Th)

li−1(Ti)
. Since Ti is finite, there is a vertex vi ∈ Ti which satisfies

wh(vi) ≥ li−1(Th)
li−1(Ti)

for an infinite number of values of h. We can even choose vi so that the set

H = {h > i, wh(vi) ≥ li−1(Th)
li−1(Ti)

} satisfies
∑

h∈H
1
|Th|

is divergent. The following process is used

to describe the resulting new strategy:

For any A ⊂ N∗, we define the measure of A as µ(A) =
∑

h∈A
1
|Th|

. We now define the

sequence (Hi) by induction with H0 = N∗, if i /∈ Hi−1, then Hi = Hi−1 and if i ∈ Hi−1, then

there is a vertex vi ∈ Ti such that µ(Hi,vi) = +∞, where Hi,v = {h ∈ Hi−1, wh(v) ≥ li−1(Th)
li−1(Ti)

},
and we set Hi = Hi,vi . The strategy is this: when i ∈ Hi−1, we protect vi, so the labelling is
updated via ∀v ∈ T , li(v) = li−1(v)−1viEv; and when i /∈ Hi−1, we skip the turn, so li = li−1.
Note that ∀i, µ(Hi) = +∞, and for i ∈ Hi−1, as long as the fire is not contained, vi is well
defined, if not uniquely, since Hi−1 =

⋃
i∈Ti,li−1(v)=1Hi,v. The induction process stops if and
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when the fire is contained.
Let H = {i ∈ Hi−1}. This strategy was designed to obtain the same advantage we had

with spherically symmetric trees. It allows us to extract an infinite set of turns, H ⊂ N∗,
so that there is a sequence of moves (vi, i ∈ H) where ∀i, j ∈ H,i < j, wj(vi) ≥ li−1(Tj)

li−1(Ti)
. We

call such a set H a good set. This is where disaster occurs: while H was built via an infinite
sequence of extractions of subsets of infinite measure, H may not have infinite measure itself!
If we could find a good set H with µ(H) > 1, we would have a winning strategy. If the
induction process above produces an H of measure less than 1, it basically means that we
have skipped too many turns. The complement of H still has infinite measure, so we can try
using the turns we skipped, reinitialising the process with H0 = N∗\H. By repeating this,
we can partition N∗ into good sets. Alas, there is still no guarantee that one of them will
have a measure greater than 1.

I have not yet found an example that resists either of the two strategies described in this
section. A counter-example to conjecture 2 would need to resist both of them.

3.5.3 Online firefighting on trees with linear level growth

In the previous section, proposition 24 gives a winning strategy for online Fractional
Firefighter in cases where

∑ fi
|Ti| > 1. However, theorem 9 is limited to the offline case,

as the winning strategy requires the player to be able to compute σ(h) from the start. In
this section, we give a result which works for online Firefighter in the case of rooted trees
(T, r) where the number of vertices per level increases linearly, i.e. |Ti| = O(i). We say that
such a tree has linear level growth.

Remark 20. The linear level growth property of T remains if we choose a different root
r′. Indeed, if d is the distance between r and r′, the set of vertices at distance i from r′ is
included in

⋃i+d
j=i−d Tj, the cardinal of which is O(i).

Theorem 11 ([20]). There is an online algorithm for instances (T, r, (fi)) of Firefighter
where T has linear level growth, such that if some non-zero periodic sequence is weaker than
(fi), the fire will be contained.

The proof of theorem 11 will use the following lemma:

Lemma 13 ([20]). For any real number a > 1, limn→+∞
∏n

j=1
ja−1
ja

= 0.

Proof. We have ln
∏n

j=1
ja−1
ja

=
∑n

j=1 ln(1− 1
ja

) and since
∑n

j=1
1
ja
→ +∞, we have∑n

j=1 ln(1− 1
ja

)→ −∞. Hence,
∏n

j=1
ja−1
ja
→ 0.

We can now prove theorem 11:

Proof. Since T has linear level growth, let C be such that ∀i, |Ti| ≤ Ci. Without loss of
generality, we assume C > 1. That a non-zero periodic sequence is weaker than (fi) means
that (1n|i) � (fi) for all n greater than some m. First, we will give an offline strategy to
contain the fire with one firefighter every n turns. Then, we will show that online instances
with (1n|i) � (fi) for an n known to the player are winning. Finally, we will describe an
online winning strategy when such a (1n|i) is unknown.
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Given an integer n, let us first consider the instance (T, r, (1n|i)). It follows from lemma 13

that there exists an integer N such that
∏N

j=1
Cnj−1
Cnj

< 1
2Cn

. Let h(n) = 2nN . A winning
strategy for this offline instance is obtained by protecting at turn nj the unprotected ver-
tex of Tnj with the highest number of descendants in level h(n). Since |Tnj| ≤ Cnj, the
remaining number of unprotected vertices in Th(n) is reduced by at least 1

Cnj
of its previous

value. So the number of unprotected vertices of Th(n) remaining after nN turns is less than

|Th(n)|
∏N

i=1
Cnj−1
Cnj

≤ |Th(n)|
2Cn

≤ N . Since N firefighters remain to be placed between turns N

and h(n), the strategy is winning in at most h(n) turns.

If the player knows in advance that (1n|i) � (fi) for a given n, the above strategy can be
adapted using lemma 9.

In the general case, assume that (1n|i) � (fi) for some n, but the player does not know
which n. The online strategy proceeds as follows: we initially play as though under the
assumption that (1n0|i) � (fi) with n0 = 100. If the fire is not contained by turn h(n0),
or later on by turn h(nk), we choose nk+1 = h(nk)

(⌈
Sh(nk)

⌉
+ 1
)
. We now assume that

(1h(nk)|i) � (fi). It follows that after cancelling the first h(nk) terms of (fi), i.e., replacing
f` with 0 for ` ≤ h(nk), the resulting sequence is stronger than (1nk+1|i). So we can consider
that the first h(nk) turns were wasted and follow the strategy for nk+1 until turn h(nk+1).
Eventually, this strategy will win when nk is large enough.

3.6 Future research

By considering a general sequence of number of firefighters available at each turn in (Frac-
tional) Firefighter, we obtained three independent research questions: the online ver-
sion, the separating problem, and determining which infinite instances are winning based on
asymptotic behaviours.

After introducing the online version of (Fractional) Firefighter on trees, we pro-
vided initial results for the finite case. So far, our results outline the potential of this
approach and suggest many open questions. To our knowledge, theorem 5 is the first non-
trivial competitive (and also approximation) analysis for Fractional Firefighter and a
first question would be to investigate whether a better competitive ratio can be obtained for
Fractional Firefighter in finite trees. Although the case of trees is already challenging,
the main open question will be to study online (Fractional) Firefighter problem in
other classes of finite graphs.

As far as we know, the second question has never before been considered. The existence
of a separating tree for any two given firefighter sequences seems very hard in general.
Spherically symmetric trees provide convenient examples of separating trees since they allow
us to ignore the playing strategy. This allowed us to express the problem in terms of the
targeting game, which completely hides the structure of the tree. An interesting question
will be to investigate whether the existence of a separating tree implies that of a spherically
symmetric separating tree. So far, we only considered the case where one of the sequences
is weaker than the other. The general case remains fully open.

We have shown that some conditions on the asymptotic behaviours of the firefighter
sequence vs. the tree growth guarantee that the instance is winning. Yet, other conditions
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guarantee the existence of losing instances. We conjectured that all Firefighter instances
where

∑ fi
|Ti| diverges are winning.

Finally, note that the question of approximating (Fractional) Firefighter in finite
trees for a general firefighter sequence is also an important research direction that, to our
knowledge, remains uninvestigated.
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Chapter 4

Conclusion

4.1 Ongoing and future works

While specific research questions have already been mentioned at the end of each chapter,
the following problems combine results and ideas from different chapters.

A long term objective common to the first two chapters of this thesis is the character-
isation of partially looped or non-looped copwin graphs. While chapter 2 only considers
totally looped graphs, an important research direction is to extend the results to the par-
tially looped case. Any partially looped copwin graph must have a vertex u dominated in
the sense that there is a vertex v such that N(u) ⊂ N(v), otherwise the robber cannot be
trapped anywhere. However, removing u does not necessarily produce a copwin graph. Yet,
if we remove u and add a loop on v that can only be used by the cop, then the resulting
graph is copwin. Removing u may be viewed as applying a one-point retraction where the
displaced point and its image need not be adjacent. It follows that dismantlability via those
one-point retractions is a necessary condition for partially looped graphs to be copwin. Fol-
lowing the same reasoning as in chapter 2, we can deduce that the group of circulations for
partially looped copwin graphs is generated by cyclic flows based on cycles of lengths 1 to 4.
Candidates satisfying this condition include grids or partial grids with loops. Unfortunately,
the case of grids is already extremely complex, as illustrated by the partially looped 2 × n
grids considered in chapter 1. Reaching a characterisation probably requires a more complete
understanding of the strange behaviours which occur on those grids. The step above grids
would be tilings with both triangular and quadrilateral cells.

Since the online versions of the firefighter problem seem very promising, a similar idea
would be to introduce an online version of the game of cops and robbers. For instance, we
could play the game with n cops while the adversary reveals at each turn how many cops
can make a move. We could also let the adversary decide specifically which cops are allowed
to move. Both of these online variants could be enhanced by allowing cops to make several
moves in one turn. To my knowledge, no one has studied these variants yet.

During Bertrand Jouve’s last visit to Melbourne in March 2018, we started examining
a new type of firefighting game. Bertrand’s stay coincided with the visit of a Corsican
firefighter who also worked for Geosafe. He explained to us the differences in firefighting
management in Australia and in Corsica. When a fire starts in the Australian bush, a major
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issue is to detect it and get there in time before the fire burns so hot that nothing can be
done to control it. However, when a fire starts in Corsica, thanks to having firefighting
resources spread out all over the island, they can always reach it in time. Unfortunately,
those resources are limited, and if there are too many fires, they need to prioritise the most
dangerous ones. In fact, it is important for them do define a strict policy for making such
decisions, especially when human lives may depend on it. Such a policy can be described
as a classic online travelling salesman problem with time windows, generalising a problem
studied in [5]: a time window opens whenever a fire starts and closes when it burns too
hot to be contained. The extra condition is that all the time windows have a width greater
than the time it takes to travel from any point in the space considered. The time windows
also have a weight describing the importance of stopping that fire. The initial results that
we have obtained so far seem promising and should lead to a publication in the foreseeable
future.
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