
Publicity Verifiable Ranked Choice
Online Voting System

A thesis submitted in fulfilment of the requirements
for the degree of DOCTOR OF PHILOSOPHY.

XUECHAO YANG

Bachelor of Information Technology (with Distinction) RMIT University;
Bachelor of Computer Science (Honours 1st Class) RMIT University.

School of Science
College of Science, Engineering and Health

RMIT UNIVERSITY

OCTOBER, 2018

Author’s declaration

I certify that except where due acknowledgement has been made, the work is that of

the author alone; the work has not been submitted previously, in whole or in part, to

qualify for any other academic award; the content of the thesis is the result of work

which has been carried out since the official commencement date of the approved

research program; any editorial work, paid or unpaid, carried out by a third party is

acknowledged; and, ethics procedures and guidelines have been followed.

SIGNED: .. DATE: ..

i

Xuechao Yang
XUECHAO YANG

Xuechao Yang
22 October 2018

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my senior supervi-

sor Prof. Xun Yi for the continuous support of my Ph.D. study and related research,

for his patience, motivation, and immense knowledge. His guidance helped me in all

the time of research and writing of this thesis. I would also like to thank my associate

supervisors Dr. Fengling Han and Dr. Surya Nepal, who guided me to accomplish

my research goals. Her endless encouragement and continuous support has always

kept me motivated and ensured a smooth candidacy for completion of this research. I

could not have imagined having a better supervision team for my Ph.D. study, which

helped me reach the finishing line of my PhD journey in RMIT.

I appreciate the support of School of Science RMIT and Data61CSIRO for providing

scholarship and a good research environment. I am also thankful to my colleague and

mentor, Dr. Andrei Kelarev, who helped me a lot with suggestions and advice during

my research.

I would also like to thank my family. I am grateful for the sacrifice they made for me.

Especially to my partner Miss Meng Meng, who always provided me mental strength

and courage while being thousands of kilometres away.

Last but not least, I would like to express my gratitude to all my friends in and

outside of RMIT that directly or indirectly supported me throughout this time. I hope

my research findings would benefit the research community.

iii

Publications

• X. Yang, X. Yi, C. Ryan, R. V. Schyndel, F. Han, S. Nepal, and A. Song. “A verifiable ranked

choice internet voting system”. In International Conference on Web Information Systems

Engineering, 490-501, 2017. (CORE Rank A) - Chapter 3.

• X. Yang, X. Yi, S. Nepal, A. Kelarev and F. Han. “A Secure Verifiable Ranked Choice Online

Voting System Based on Homomorphic Encryption”. IEEE Access, 6, 20506-20519, 2018.

(SJR Q1) - Chapter 4.

• X. Yang, X. Yi, S. Nepal, and F. Han. “Decentralized Voting: A Self-tallying Voting System

Using a Smart Contract on the Ethereum Blockchain”. In International Conference on

Web Information Systems Engineering, 2018. (CORE Rank A - Accepted to publish) -

Chapter 5.

• X. Yang, X. Yi, S. Nepal, A. Kelarev and F. Han. “Blockchain Voting: Decentralised Publicly

Verifiable Online Voting Protocols”. Future Generation Computer Systems, 2018. (SJR Q1

- Under second round review) - Chapter 6.

v

Abstract

Elections conducted on paper consume a lot of resources and contribute to the destruction of

forests, which leads to climate deterioration. Moreover, such election process can make it difficult

for some people to vote and it often leads to doubts in the validity of counting, in people submitting

multiple votes, in ineligible people voting. In several well-known previous examples, doubts in

the validity of paper elections lead to the need of recounting and even court battles to decide the

validity of the outcome. Having a way to vote online could be an easier and more reliable solution.

However, secure and verifiable methods of online voting need to be developed to achieve this.

Recent online voting experiences in countries such as the United States, India and Brazil

demonstrated that further research is needed to improve security guarantees for future elections,

to ensure the confidentiality of votes and enable the verification of their integrity and validity.

Electronic voting, to be successful, requires a more transparent and secure approach, than the

approach that is offered by current electronic voting protocols. Advanced security methods are

necessary to introduce effective online voting in the whole world.

Currently, most online voting systems are centralized, which means that they involve central

tallying authorities to take responsibility for verifying, tallying and publishing the final outcome

of the election. These previous systems always assume that their central authorities are honest.

Otherwise, the published final outcome cannot be trusted. The aim of our new research is to

propose and investigate a decentralized ranked choice online voting systems, which never rely on

any third party (such as tallying authorities), thereby significantly increasing the confidence and

vii

trust of the voters.

The thesis presents several publicly verifiable online voting systems and indicates the pro-

cessing steps and stages in the development of a publicity verifiable online voting system from

centralized to semi-decentralized, to fully decentralized. By using Homomorphic cryptosystem,

proof of zero knowledge and Blockchain technology, the proposed system in this thesis can

achieve the following: (1) Flexible voting mechanism: voters can easily rank all candidates; (2)

Publicity verifiable: the whole election procedure is transparent and verifiable by voters; (3)

Self-tallying: the final outcome of the election can be computed by any individual voter; and (4)

Fully decentralized: no tallying authority (or any other trusted third party) involved at all.

The proposed systems presented in this thesis include protocols developed on Blockchain

technology. The particular technology that is used as the basis for a secure online voting system

is “smart contract over Blockchain”, which offers a factor of the integrity of votes and has not

been deeply studied in Blockchain technologies to date. The proposed voting protocols ensure

confidentiality and preserve the voters’ privacy while keeping the election procedures transparent

and secure. The underlying Blockchain protocol has not been modified in any way, the voting

scheme proposed merely offers an alternative use case of the protocol at hand, which could be

presented as the basis for voting systems using Blockchain with further development of the

underlying Blockchain protocols.

viii

Table of Contents

Page

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 Ranked Choice Voting Mechanism . 2

1.1.2 Security Requirements . 3

1.2 Our Research Questions . 5

1.3 Aims and Objectives . 7

1.4 Contributions of this thesis . 7

1.5 Structure of this thesis . 9

2 Literature Review 11

2.1 Underlying Cryptographic Algorithm . 11

2.1.1 ElGamal Cryptosystem . 11

2.1.2 Proof of partial knowledge . 13

2.1.3 Proof of zero knowledge . 14

2.1.4 Distributed cryptosystem . 16

ix

TABLE OF CONTENTS

2.2 Homomorphic Based Online Voting Systems . 17

2.3 Blockchain-based Online Voting Systems . 21

2.4 Summary . 26

3 A PVRC Online Voting System 29

3.1 Motivation of PVRC . 29

3.2 Our PVRC Online Voting System . 30

3.3 Security Analysis on PVRC . 35

3.4 Performance Analysis on PVRC . 36

3.5 Conclusion . 39

4 A LSPVRC Online Voting System 41

4.1 Motivation of LSPVRC . 41

4.2 Preliminaries of LSPVRC . 42

4.3 Our LSPVRC Online Voting System . 44

4.4 Security analysis on LSPVRC . 53

4.5 Performance Analysis on LSPVRC . 59

4.6 Conclusion . 64

5 A SDPVRC Online Voting System 65

5.1 Motivation of SDPVRC . 65

5.2 Preliminaries of SDPVRC . 66

5.2.1 Decentralized Voting with Smart Contract 66

5.3 Our SDPVRC Online Voting System . 67

5.4 Security Analysis on SDPVRC . 74

5.5 Performance Analysis on SDPVRC . 77

5.6 Conclusion . 81

x

TABLE OF CONTENTS

6 A STDPVRC Online Voting System without any Tallying Authority 83

6.1 Motivation of STDPVRC . 83

6.2 Preliminaries of STDPVRC . 84

6.2.1 Our new implicit verification protocol . 85

6.3 Our STDPVRC Online Voting System . 88

6.4 Security Analysis on STDPVRC . 95

6.5 Performance Analysis on STDPVRC . 100

6.6 Conclusion . 105

7 Conclusion and Future Work 107

7.1 Conclusion of the thesis . 107

7.2 Future Work . 109

A Computation details of proof generations and verifications 111

A.1 Each encrypted value is computed correctly . 111

A.2 The sum of all encrypted values is equivalent to the encrypted value from P . . . 112

B Our proposed encryption mechanism for decentralized voting 115

B.1 An example of proof generation for an encrypted value 116

B.2 An example of proof verification for an encrypted value 118

Bibliography 119

xi

List of Tables

TABLE Page

1.1 Security requirements of an online voting system. 4

2.1 Comparison of the outcomes of experiments in previous papers. 20

3.1 Notations used in the rest of Chapter 3. 31

4.1 Notations used in the rest of Chapter 4. 45

5.1 Notations used in the rest of Chapter 5. 68

6.1 Notations used in the rest of Chapter 6. 89

xiii

List of Figures

FIGURE Page

1.1 (a) cast ballot under plurality voting mechanism; (b) cast ballot under preferential voting

mechanism. 3

2.1 Processing procedure of homomorphism based voting scheme. All encrypted votes are multi-

plied, and then decrypted result is equated to the tally result of all plaintext votes. 17

3.1 There are 3 candidates in the election. (a) is an empty ballot, (b) is a cast ballot. 32

3.2 Performance of client side: Time spent encrypting a ballot when the number of candidates is 3,

5, 10, 15, 20. 37

3.3 Performance of client side: The size of a cast ballot (includes all encrypted values and all

proofs) when the number of candidates is 3, 5, 10, 15, 20. 38

3.4 Estimate time spent of ballots’ verification (by using my laptop) for 1000, 2000, 4000, 7000,

10000 ballots. 39

4.1 Here (a), (b) and (c) are the voting mechanism of our e-voting system when the total

number of available points is equal to 6. A voter can treat all candidates equally as in

(a), or support only one candidate as in (b), or rank all candidates as in (c). 42

4.2 (a) is a ballot Bi cast by a voter Vi, (b) is a binary version of Bi, (c) is the encrypted

version E(Bi). 48

4.3 An illustration of tallying two encrypted ballots. 52

xv

LIST OF FIGURES

4.4 Estimate total time spent casting a ballot when the number of candidates (nc) is 3, 5, 10,

15, 20, and the total available points (P) is 6, 10, 20, 30, 40. The performance of the system

considered in [YYR+17] is also shown. 60

4.5 Estimate total size of one submission (including all encrypted values and all proofs) when

nc is 3, 5, 10, 15, 20, and P is 6, 10, 20, 30, 40. The performance of the system considered in

[YYR+17] is also shown. 61

4.6 Estimate of the total time required for the verification of all ballots for 1000, 2000, 4000, 7000,

10000 voters, in the case of 10 candidates in the election. The performance of the system

considered in [YYR+17] is also shown. 63

5.1 The five steps of our proposed decentralized online voting system. 67

5.2 Performance of voter side when the number of candidates is 3, 5, 10, 15, 20: (a) Time spent

encrypting a cast ballot, including generation time of all proofs (b) The size of a submission,

includes all encrypted values and all proofs. 79

5.3 Performance of voter side when the number of candidates is 3, 5, 10, 15, 20: The size of a

submission, includes all encrypted values and all proofs. 79

5.4 Estimate time spent of verifying 1000, 3000, 5000, 8000, 10000 ballots. 80

5.5 Estimate time spent of tallying all ballots, including verifying all partially decrypted values. 81

6.1 Each voter can assign different scores to the different candidates. However, the range of each

score is defined by the election. In this case, the voter can only assign 0 or 1 or 2 to each

candidate (cf. https://en.wikipedia.org/wiki/Range_voting). 85

6.2 Major common steps of proposed decentralized voting system. 88

6.3 Estimate of total time spent casting one vote when the number of candidates nc are 3, 5, 10,

15 and 20, and the corresponding p is also 3, 5, 10, 15 and 20. 101

6.4 Estimate of total size of one vote when the number of candidates nc are 3, 5, 10, 15 and 20,

and the corresponding p is also 3, 5, 10, 15 and 20. 102

xvi

https://en.wikipedia.org/wiki/Range_voting

LIST OF FIGURES

6.5 Estimate of total computation time (by using a laptop) for verifying 100, 300, 500, 800 and

1,000 pending votes, for 10 candidates in the election. 104

6.6 Estimate of total size of the Blockchain database (excluding all corresponding proofs) when

the total number of pending votes are 10,000, 30,000, 50,000, 80,000 and 100,000 pending

votes, for 10 candidates in the election. 105

xvii

Abbreviations and notations

Vi i-th Voter; i ∈ [1,nv]
nv number of Voters
pkvi public key of vi
skvi secret key of vi
Bi the ballot submitted by Vi; i ∈ [1,nv]
Sigvi digital signature of vi
C j j-th Candidate; j ∈ [1,nc]
nc number of Candidates
pkc j public key of c j
skc j secret key of c j
A i i-th Authority; i ∈ [1,na]
na number of Authorities
pkai public key of ai
skai secret key of ai
PK common public key for encrypting ballots
PZK{...} proof of zero knowledge
PPK{...} proof of partial knowledge

PVRC Public Verifiable Ranked Choice Online Voting System
LSPVRC Large-Scale Public Verifiable Ranked Choice Online Voting System
SDPVRC Semi-Decentralized Public Verifiable Ranked Choice Online Voting System
STDPVRC Self-Tally Decentralized Public Verifiable Ranked Choice Online Voting System

xix

Chapter 1

Introduction

1.1 Background and Motivation

Traditional voting systems require each voter to cast a ballot with pen and paper. In 2000 United

States presidents election, George W. Bush and Al Gore participated in the contest. The result

of the election hinged on Florida outcome, and the votes awarded it to Bush. However, the

result was close enough to perform an additional recount under state law, and Gore believed

he could win after undervotes [AP02] were tallied. Bush did not agree with the recount, and

the litigation reached the U.S. Supreme Court. Eventually, the court decided to end the recount

thereby effectively granting Bush the victory. Nevertheless, the controversy did not end as

well, a lot of people thought Gore could win if the U.S. Supreme Court did not stop the recount

[Ket01, Par07, Cha12, WPD15]. There are several potential problems that could occur in paper

based ballots, such as missed ballots and unrecognised ballots.

Elections conducted on paper consume a lot of resources and contribute to the destruction of

forests, which leads to climate deterioration. In recent years, online voting (which can also be

called electronic voting, e-voting, Internet voting) systems have allowed voters to cast their votes

electronically from Internet connected devices. Such systems reduce the cost of an election and

increase voters’ participation (especially for voters with disabilities) due to the convenient voting

1

CHAPTER 1. INTRODUCTION

procedure [ALPL13].

One of the most obvious, direct ways to influence a country’s election is to interfere with the

way citizens actually cast votes. As the United States (and other nations) embrace electronic

voting, it must take steps to ensure the trustworthiness of the systems. Not doing so can endanger

a nation’s domestic democratic will and create general political discord — a situation that can be

exploited by an adversary for its own purposes [Wil16].

The process of online voting (such as democratic voting) requires a strong sense of trust,

otherwise, misleading maps and distorted data from any process of the election can easily

lead to an inaccurate rumour. For example, there was a news saying that "Donald Trump won

3084 of America’s 3141 counties in the 2016 presidential election; Hillary Clinton won just 57."

[MOR16]. Obviously, that was not true, as the article offered no citations or links to support its

claims [LaC16]. However, there is also no evidence to show that the news was fake, because the

processing procedure of the system was not transparent to the public, and even the voters did not

understand how the election outcome was computed [Bea16, Rob16, Bre16].

Thus, advanced security methods are necessary to introduce effective online voting in the

whole world. Recent online voting experiences in countries such as the United States, India and

Brazil demonstrated that further research is needed to improve security guarantees for future

elections, to ensure the confidentiality of votes, enable the verification of their integrity and

validity, and most importantly, the transparency of the whole election processing procedure to

build the trust in the system.

1.1.1 Ranked Choice Voting Mechanism

Online voting systems have been used for government elections in many countries, such as United

States, United Kingdom, France, Canada etc. However, most of current voting systems only used

plurality voting [MPRJ10], but not preferential voting [Top10].

Plurality voting, also known as first-past-the-post, has been most widely used throughout

2

1.1. BACKGROUND AND MOTIVATION

the world. Under the plurality voting system, each voter can only choose one candidate from a

list of candidates, such as (a) of Figure 1.1. The candidate who received the highest number of

votes wins the election. However, this system is only suited to the two-candidate election. If there

are multiple (more than 2) candidates, and two of them are predicted to win the election. Under

this situation, voters are pressured to vote for one of popular candidates rather than their true

preference. The votes for any other candidate are likely wasted because those votes might have

no impact on the final result.

Figure 1.1: (a) cast ballot under plurality voting mechanism; (b) cast ballot under preferential voting
mechanism.

Preferential voting, also known as ranked choice voting, is a voting system used to elect a

winner from multiple candidates. Under the preferential voting system, voters are allowed to

rank all candidates according to their personal preferences rather than voting for only a single

candidate, such as (b) of Figure 1.1. According to the different places assigned to the candidates

in the ranked list, the candidates received different points from each ballot.

1.1.2 Security Requirements

Electronic voting protocols have been around for a while. They have been implemented in different

elections, ranging from university to government based elections. Maintaining the privacy and

security of the voters is a priority for any online voting system. Our voting system ensures

that the following security requirements are met. These requirements are essential for voting

3

CHAPTER 1. INTRODUCTION

according to [DLL12, SCM08]. They are shown in Table 1.1.

Table 1.1: Security requirements of an online voting system.

Eligibility of voters: Only authorized voters can submit votes.
Multiple-voting detection: Each voter can only vote once. Multiple voting by any one

voter is detected and identified.
Privacy of voters: All votes must be stored securely and secretly and should

not reveal voting preferences of the voters.
Integrity of vote: No one can modify or duplicate any submitted vote without

being detected.
Correctness of tallied result: Only verified votes are counted and added to the final

result.
End-to-End Voter Verifiable: Every voter is able to verify whether their vote is posted

and counted correctly.

The process of online voting (such as democratic voting) requires a strong sense of trust — in

the equipment, the process and the people involved. Many viable protocols have been created

since Chaum [Cha04] first proposed Votegrity, which is one of the first end-to-end (E2E) verifiable

voting solutions. An E2E voter verifiable voting system should achieve the following:

• Any voter is able to verify that his/her own vote has been cast as intended based on

the receipt provided by the electronic voting booth, and by verifying that their vote has

propagated to the public web bulletin board correctly.

• Any voter is able to verify that his/her vote has been counted correctly and included in the

final tally outcome.

• Any voter is able to verify that who may not be involved in the election or voting, in order

to ensure that no votes have not been compromised.

Some of the most prominent examples that have stemmed from Chaum’s Votegrity are

Markpledge [Nef04], Prêtà voter [RBH+09], Helios [Adi08], Scantegrity [CCC+10] and STAR-

Vote [BBB+13]. These systems also provide E2E verifiability. Helios 2.0 [ADMP+09], Apollo

[GKV+16] and Zeus [TPLT13] were developed based on Helios.

4

1.2. OUR RESEARCH QUESTIONS

All these centralized online voting systems use a public web bulletin board (WBB) for posing

all of the cast ballots for the public to see. Web bulletin boards in these systems are used as an

authenticated public broadcast channel which, as mentioned above, displays the cast ballots to

the public in an encrypted form. The WBBs serve as an important stage for any E2E protocol.

Typically, after the voter has cast their vote and received a receipt encrypting their choice in a

way that is dependent of what voting protocol used, the encrypted vote is propagated to the WBB.

The receipt is an important part of the voting protocol, as it allows the user to prove their

vote to an authority in case the voter wishes to dispute their vote or prove that they have voted

contrary to what the system has recorded. The receipt also allows the user to find his/her vote

and view how the system recorded the vote. These receipts vary from system to system and so

does the way the voter verifies these receipts. Typically these receipts contain a summary of how

the voter voted, which can be presented to the voter in an encrypted or obfuscated manner.

However, for the previous centralized systems, the security level depends on the centralized

server and authorities. For example, if the content is posted on a WBB and the system provides

receipts, then using such a system, we have to assume that the authorities never collude and

that the centralized server cannot be compromised.

1.2 Our Research Questions

From the investigation of the protocols, it follows that an electronic voting system must be secure

while allowing for as much transparency as possible to be a working E2E verifiable. In order to

enhance the confidentiality of voters, the decentralized online voting system is also proposed and

considered, where the dependence of authorities is reduced.

Blockchain [Nak08] helps to achieve this level of security and transparency, while maintaining

privacy and non-malleability of the transactions, which may indeed be the future of online voting

protocols. The benefits of using Blockchain are in its decentralised nature, relatively low cost

of transactions and tamper-proof properties, which play an important role if a voting system is

5

CHAPTER 1. INTRODUCTION

based on this technology [Del17, Wes16].

By using Blockchain technology, a decentralized publicity verifiable online voting system is

expected to be developed, which should achieve advanced E2E voter verifiable as below:

• Any voter is able to verify that his/her own vote which has been cast as intended and stored

correctly without any receipt that is provided by the centralized system.

• Any voter is able to verify the correctness of the final tally outcome, and even able to

compute final tally outcome individually.

• Since all votes are stored in the Blockchain database (instead of WBB in centralized

systems), no one is able to compromise/modify any confirmed submission. Any voter is able

to verify the correctness/eligibility of any other vote in the Blockchain.

In order to propose a ranked choice online voting system that achieved the advanced E2E

verifiability, the following questions guide the research:

1. What is the strategy to construct each ballot with preferential ranking information without

revealing any voter’s privacy but making it individually verifiable?

2. How to achieve a large-scale verifiable ranked choice online voting system with verifiable

processing procedure and practical performance?

3. How to reduce the importance and dependence of the tallying authorities for a public

verifiable online voting system by using Blockchain technology?

4. How to achieve a Blockchain-based decentralized online voting system with individual and

universal verifiability and self-tallying by any voter, but without any tallying authority?

6

1.3. AIMS AND OBJECTIVES

1.3 Aims and Objectives

We aim to propose an online voting system, which not only allows voters to rank all candidate

rather than vote for one, and the outcome of the election is made publicly verifiable, but also we

aim to enhance the trust of the system and the confidence in the votes by reducing the dependence

on tallying authorities, and even proposing a system without any tallying authority. The primary

aims of this thesis are:

• Design and propose different suitable voting mechanisms for online voting systems, which

will not only allow voters to rank all candidates of an election easily, but will also keep all

submissions of the voters secret all the time.

• Design and propose more practical/feasible online voting systems with larger scale of voters,

without affecting the usability of the voting mechanism and the privacy of the voters.

• Design and propose decentralized online voting systems which can reduce the importance

and the dependence of tallying authorities without affecting the performance and security

level.

• Design and propose a self-tallying decentralized online voting system without any tallying

authority, but fulfilling all security requirements with a reasonable performance.

1.4 Contributions of this thesis

All our proposed online voting systems achieve the following. Authorized voters are able to

register via Internet by submitting their identification documents (e.g. passport or driver’s

licence). Therefore, no one can register more than once, and double voting can also be prevented,

because the identities of voters are public values. Each submitted ballot is encrypted by a

probabilistic encryption, meaning that the ciphertexts are always different every time even if the

inputs are the same. Thus, the ciphertexts can be treated as a proof (receipt) of any particular

7

CHAPTER 1. INTRODUCTION

submission, and used to verify whether a submitted ballot has been posted correctly into the

pool. Everyone is able to verify the eligibility of any voter’s ballot without revealing voter’s

privacy. Once all voters submitted their ballots, the voting information of each encrypted ballot

(only verified ballots) can be added to other ballots directly, and the correctness of the final

tallied outcome is verifiable. Furthermore, any compromised authority can be easily detected by

authorities or voters because the authorities are required to post every step of their work (based

on proof of zero knowledge) into the public bulletin board.

To sum up, we proposed online voting systems which not only satisfy requirements, but also

reduce the importance and dependence of the tallying authorities in the system from building

a centralized system to a decentralized system by using Blockchain technology. Furthermore,

our proposed self-tallying protocol allows the tallying procedure of the election to be processed

by only all voters and candidates, without a need of any tallying authority to get involved. The

contributions of this thesis as the following.

• To the best of our knowledge, our proposed system is the first decentralized ranked choice

online voting system in existence, where voters are able to cast their ballots by assigning

different scores to different candidates (ranking all candidates), rather than only voting for

one candidate.

• We propose a new encryption mechanism, which merges two previously known approaches

and combines the use of the secret keys of all voters and the secret keys of all candidates of

the election.

• We propose a new implicit verification algorithm to verify the validity of all votes submitted

to the election without revealing any voter’s privacy.

• Our proposed protocols ensure security, privacy and public verifiability of the whole election

including the tallying and vote verification processes, which do not rely on a trusted tallying

authority.

8

1.5. STRUCTURE OF THIS THESIS

• No adaptive issue in our proposed self-tallying protocol. In our proposed decentralized

system, the individual who votes last cannot tally the result earlier than other voters.

• The importance and dependence of the tallying authority are reduced, and he/she can never

reveal any voter’s privacy. Even there is no tallying authority needed at all.

1.5 Structure of this thesis

This thesis is organized as follows:

• Chapter 2: briefly introduces the preliminaries on the work about online voting systems.

There are 3 parts in the chapter: 1) we provide the underlying cryptographic algorithms for

all of our proposed systems, such as ElGamal cryptosystem; 2) we describe how the homo-

morphic addition is applied to the online voting systems; 3) the background of decentralized

online system is also presented.

• Chapter 3: A PVRC (public verifiable ranked choice) online voting system is proposed,

which allows each voter to rank all candidates of the election rather than vote-for-one. And

all encrypted ballots are kept as secret all the time after submission, which can be tallied

directly without accessing any submitted ballot.

• Chapter 4: A LSPVRC (large-scale public verifiable ranked choice) online voting system

is proposed, where the voting mechanism is upgraded in comparison to the PVRC system,

in order to improve the computation performance of the system, where it allows each voter

to score different candidates of the election, but the voting preference will not be revealed

after ballot submission.

• Chapter 5: A SDPVRC (semi-decentralized public verifiable ranked choice) online voting

system is proposed by using Blockchain technology, in order to reduce the dependence

on the tallying authorities. According to the voting mechanism in LSPVRC system, we

9

CHAPTER 1. INTRODUCTION

re-designed the proof generation and verification protocols, which means that only one tally

authority is needed, and he/she can never reveal any voter’s submission.

• Chapter 6: A STDPVRC (self-tally decentralized public verifiable ranked choice) online

voting system is proposed, which is a self-tallying system without any tallying authority. In

order to enhance the vote confidentiality of the system, the voting mechanism is re-designed

(inspired by the LSPVRC and SDPVRC), and a self-tallying protocol is proposed, which

can be used by any voter individually.

• Chapter 7: concludes this thesis.

10

Chapter 2

Literature Review

In this section, we introduce prerequisites for the underlying cryptographic algorithms, which

are used as building blocks in our proposed online voting systems.

In the rest of this chapter, we describe the related works of Homomorphic based online voting

systems and Blockchain based online voting systems.

2.1 Underlying Cryptographic Algorithm

2.1.1 ElGamal Cryptosystem

ElGamal cryptosystem is very well known (cf. [AARTAD17] and [YPB14]). We assume that the

cyclic group (G, q, g), secret key x and public key y= gx are defined.

Encryption: To encrypt a plaintext message m ∈G:

• Randomly choose an integer r from Z∗
q;

• Computes c1 = gr;

• Computes c2 = gm · yr.

The encrypted message is E(m)= (c1, c2).

Decryption: To decrypt a ciphertext message (c1, c2):

11

CHAPTER 2. LITERATURE REVIEW

• computes a partial decryption value c1
x

• computes
c2

c1x = gm · yr

gr·x = gm · gx·r

gr·x = gm.

Finally, m can be revealed by computing a discrete logarithm.

2.1.1.1 Distributed ElGamal Cryptosystem

We assume there are n users in the system. Each i-th user has its own public key yi and secret

key xi. The distributed ElGamal cryptosystem consists of the following algorithms.

Key generation: A common public key

PK =
n∏

i=1
yi = gx1+···+xn

is used in the distributed ElGamal cryptosystem.

Encryption: To encrypt a plaintext message m ∈G:

• Randomly choose an integer r from Z∗
q;

• Computes c1 = gr;

• Computes c2 = gm ·PK r.

The encrypted message is E(m)= (c1, c2).

Decryption: A common decryption key is not computed. Each user computes and broadcasts a

partially decrypted value, and the final plaintext is revealed by combining all partially decrypted

values. For the ciphertext (c1, c2), decryption proceeds as follows:

• Each i-th user computes c1
xi ;

• All users broadcast commitment of computed values H(c1
xi);

• Each i-th user broadcasts c1
xi and checks if each cxi

1 matches with H(cxi
1);

• Each user computes
c2∏n

i=1 c1xi
= c2

cx1+···+xn
1

= gm.

Finally, m can be revealed by computing a discrete logarithm.

12

2.1. UNDERLYING CRYPTOGRAPHIC ALGORITHM

Homomorphism

ElGamal encryption has an inherited homomorphic property [YPB14], which allows multiplica-

tion and exponentiation to be performed on a set of ciphertexts without decrypting them, such as

addition homomorphic computation

E(m1)×E(m2)= (gr1 , gm1 · pkr1)× (gr2 , gm2 · pkr2)

= (gr1+r2 , gm1+m2 · pkr1+r2)

= E(m1 +m2)

and multiplication homomorphic computation:

E(m1)m2 = (gr1 , gm1 · pkr1)m2

= (gr1·m2 , gm1·m2 · pkr1·m2)

= E(m1 ·m2)

2.1.2 Proof of partial knowledge

Given a cyclic group G of a prime order q with a generator g. The secret key is x, and public key

is y= gx. The verifier can confirm that the ciphertext is either E(m1) or E(m2), but the verifier

will never know which one is the true one [CDS94, Adi12]. The ElGamal encryption algorithm (cf.

Section 2.1.1.1) is used in this protocol.

Prover

• generates a random number r ∈Zq

• computes E(m1)= (c1, c2)= {gr, gm1 · yr}

• generates random numbers t,v2, s2 ∈Zq

• computes T0 = gt

• computes T1 = yt

13

CHAPTER 2. LITERATURE REVIEW

• computes T2 = (gm2·v2 · ys2)/c2
v2

• computes v = hash(c1‖c2‖T0‖T1‖T2)

• computes v1 = v⊕v2, where ⊕ denotes XOR.

• computes s1 = r ·v1 + t

• sends c1, c2,T0,T1,T2,v1,v2, s1, s2 to Verifier

Verifier

• verifies v1 ⊕v2 = hash(c1‖c2‖T0‖T1‖T2)

• verifies gs1 = T0 · c1
v1

• verifies ys1 = T1 · (c2/gm1)v1

• verifies ys2 = T2 · (c2/gm2)v2

If all verification tests return true, the ciphertext can be considered as encryption value of m1

or m2. Therefore the verifier can only confirm that the ciphertext is either E(m1) or E(m2), but

cannot determine the exact value of the plaintext with certainty.

2.1.3 Proof of zero knowledge

This subsection contains prerequisites on the zero knowledge proof algorithm of [Sch91, CP92].

Suppose that plaintext message is m. In the zero knowledge proof algorithm of [Sch91, CP92]

the prover computes E(m) and proofs. The verifier can use the proofs only to verify that the

ciphertext is encrypted from m, but cannot decrypt E(m).

Further, suppose that the ElGamal cryptosystem is used, where G is a cyclic group G of a

prime order q with a generator g, the secret key is x and the public key is y. Then E(m)= (c1, c2)=

(gr, gm · yr) (cf. Section 2.1.1.1). To verify that the ciphertext (c1, c2) is a correct encryption for

m, the algorithm proposes verifying that c1 and
c2

gm have the same exponentiation. This zero

14

2.1. UNDERLYING CRYPTOGRAPHIC ALGORITHM

knowledge proof is correct, because

(2.1) c1 = gr

and

(2.2)
c2

gm = gm · yr

gm = yr

Indeed, if the ciphertext (c1, c2) is E(m), then 2.1 and 2.2 have the same exponent r. Otherwise,

if (c1, c2) is different from E(m), then it is obvious that 2.1 and 2.2 have different exponents.

Prover

• generates random number r ∈Zq

• computes E(m)= (c1, c2)= (gr, gm · yr)

• generates random number t ∈Zq

• computes T1 = gt

• computes T2 = yt

• computes v = Hash(E(m)‖T1‖T2)

• computes s = r ·v+ t

• sends c1, c2,T1,T2,v, s to Verifier

Verifier

• verifies if v = Hash(E(m)‖T1‖T2)

• verifies if gs = c1
v ·T1

• verifies if ys = (c2/gm)v ·T2

If both verifications are passed, the verifier believes the prover’s statement.

15

CHAPTER 2. LITERATURE REVIEW

2.1.4 Distributed cryptosystem

Let G denote a finite cyclic group of prime order q in which the decision Diffie-Hellman problem

is intractable. Let g be a generator in G. There are n users, all of whom agree on (G, g).

We assume there are n different users u1,u2, · · · , un. Each user ui chooses a secret value

xi ∈R Zq, and computes a public value gxi , where 1≤ i ≤ n. Each ui computes a yi as below:

(2.3) yi =

1∏nv
k=2 gxk

if i = 1

gx1∏nv
k=3 gxk

if i = 2

∏i−1
k=1 gxk∏nv

k=i+1 gxk
if i ∈ [3,nv −2]

∏nv−2
k=1 gxk

gxnv
if i = nv −1

∏nv−1
k=1 gxk if i = nv

which is publicly computable since the computation uses all public values gxi .

Encryption: We assume the message for each ui is mi, and the encrypted message is

E(mi, yi, xi)= (yi)xi · gmi

where E(mi, yi, xi) denotes the message mi encrypted using yi and xi

Homomorphism addition: Anyone can compute the sum of all ciphertexts simple by multiply-

ing all encrypted messages:

n∏
i=1

E(mi, yi, xi)=
n∏

i=1
(yi)xi gmi =

n∏
i=1

(yi)xi ×
n∏

i=1
gmi = 1×

n∏
i=1

gmi = g
∑n

i=1 mi

where
∏n

i=1(yi)xi = 1, according to [HRZ10].

16

2.2. HOMOMORPHIC BASED ONLINE VOTING SYSTEMS

2.2 Homomorphic Based Online Voting Systems

Homomorphic encryption allows a few computations (e.g. multiplication and addition) to be

performed directly on the cipher texts without accessing the plain texts. Homomorphism is

very useful in e-voting systems because it allows to perform tallying on encrypted votes, which

protects the privacy of voters. In the voting system, if all votes are encrypted using homomorphic

encryption scheme, then it makes the tallying procedure very simple [CFSY96, HS00, YO11].

Processing procedures of homomorphic tally are shown as Figure 2.1.

Figure 2.1: Processing procedure of homomorphism based voting scheme. All encrypted votes are multi-
plied, and then decrypted result is equated to the tally result of all plaintext votes.

There are several cryptosystems with inherited homomorphic addition/multiplication property,

such as RSA [RSA78], Paillier [PP99] and ElGamal [ElG85]. [YO11] proposed a homomorphism

e-voting system using ElGamal cryptosystem. The system has 5 stages: setup, registration, voting,

tallying and verifying. In the voting stage, all votes are encrypted using ElGamal encryption

algorithm before submission. As the result, all encrypted votes can be tallied by authorities

without revealing the contents of each vote. At the final stage, the tallied result is decrypted

and published. [HA13] proposed a secured e-voting system using Paillier encryption and blind

signature to keep all votes secret during tallying. [ZPWZ14] proposed an e-voting system using

RSA, which used several announcers to reveal the tallied result in order to prevent tally cheating.

Homomorphic encryption is a well-known powerful technique with many useful applications

17

CHAPTER 2. LITERATURE REVIEW

(cf. [LVW14, AARTAD17, CLF17, LMW17, YPB14]). Recently, it has been applied to the design

of online voting systems (see the next section for details). This is motivated by the need to develop

advanced security systems to facilitate a broad introduction of online voting throughout the whole

world. Elections conducted by paper votes are unsustainable, as they consume a lot of resources

and lead to destruction of forests contributing to deterioration of climate. Recent experimental

online voting in countries such as the United States, India and Brazil highlighted significant

challenges that require further research to improve security guarantees in future elections.

Secure e-voting systems are required for casting votes using the Internet. Online voting

systems not only increasing sustainability, but also reduce the overall cost of running elections

and may increase voter participation because of the more convenient procedure, in particular, for

the voters with disabilities. The study of electronic elections contributes to the more general area

of privacy-preservation (cf. [ECMC16, HBB12, MNX+16, MV17, MMS+17]) and relies on secure

implementations of other aspects involved in e-voting (cf. [LLS+16, NSGF16, NCS14, RFB17]).

Since online voting remains vulnerable to malicious activity and hacking attacks, the design of a

secure, flexible and verifiable e-voting system is a very important problem (cf. [Gre16, LK16]).

Homomorphic encryption has been used in online voting systems, for example, in [CFSY96,

HS00, YO11]. The homomorphic property makes it possible to tally all encrypted ballots without

decrypting them and accessing the content of any individual ballot.

Helios [Adi08] is the first web-based voting system. It used ElGamal encryption to achieve

open-audit voting. Helios did do not claim any cryptographic novelty apart from that fact that,

assuming that there were enough auditors, even if all the authorities fully colluded to corrupt

the system, they would be unable to counterfeit the election result without a high chance of being

caught. However, the security of the Helios relies on the trust of all participants in the Helios

server. The security level of Helios depends on a mix-net shuffling mechanism implemented

by the server. It follows that a corrupt Helios server can attempt to shuffle submitted votes

incorrectly or decrypt shuffled votes incorrectly. Further, the performance results reported in

18

2.2. HOMOMORPHIC BASED ONLINE VOTING SYSTEMS

[Adi08] show that the computation time is quite long. The verification and auditing process took

more than three hours on a server and a complete audit took more than four hours on voter, even

though there were only 2 questions in each vote and 500 voters in total. Thus, [Adi08] provided

the time achieved in only one experiment with a fixed number of voters.

All previous voting systems including [Adi08] imposed several security assumptions required

on their systems. The authors of [Adi08] made an assumption that there were several honest

authorities and a central honest server. If any authority is compromised, they can attempt

to shuffle the votes incorrectly. Likewise, a corrupt Helios server knows the usernames and

passwords of all users, and can easily authenticate and cast ballots on behalf of users.

Several improvements to Helios were made in Helios 2.0 (see [ADMP+09]), which was used in

a real election (UCL election). Helio 2.0 could handle 25,000 potential voters. In the UCL election,

5000 participants registered and nearly 4000 voted in each round of the election. Helio 2.0

updated the open-audit mechanism, so that it could provide more evidence of the counters’ works

to all voters. However, their proposed approach distributed the key-generation and decryption

code among a few trusted members of the election commission. This required the trustees to be

technically savvy and honest. There is no indication of the running time of any new experiments

in [ADMP+09].

The security assumptions in [ADMP+09] were the same as in [Adi08]. In particular, a com-

promised server in Helios 1.0 and 2.0 could subvert all data in the ballot box near the end of the

election day.

A multi-authority e-voting system introduced in [PSO11] applied the distributed ElGamal

DSA with an inherited additive homomorphism property. In addition to the authorities and the

voters in the election, a trusted third party was introduced and was used to distribute the shared

secret key among the multiple authorities. The proposed system became receipt-free, because the

encryption of each ballot now is done by the trusted third party. This means that the voters could

not prove how they voted by using their encrypted vote, and the authorities of the election could

19

CHAPTER 2. LITERATURE REVIEW

not learn the content of each vote from its encryption. However, the drawback of the system was

that the third party could collude with any of the authorities and together they could recover

the contents of submitted votes, which would violate the privacy of voters. The paper [PSO11]

assumed that there was a trusted third party involved in the scheme to distribute the shared

secret key among the authorities. There was no indication of the running time or performance

analysis of any new experiments in [PSO11].

Table 2.1: Comparison of the outcomes of experiments in previous papers.

Previous papers Presentation of experimental outcomes

[ADMP+09],
[PSO11].

These papers did not include the running time of any experiments.

[Adi08],
[TPLT13],
[ECH12].

These papers indicated the time achieved in only one experiment with
a fixed number of voters.

[Adi08],
[ADMP+09],
[PSO11],
[ECH12],
[TPLT13].

These papers did not include any line graph, bar chart or histogram
with experimental outcomes.

[Gar16]. This paper presented two diagrams with line graphs comparing only
the time of encryption operations.

[YYR+17]. This paper included two diagrams with line graphs comparing the
performance comparison for elections with various numbers of voters.

Cobra [ECH12] was the first coercion-resistant system. It was a proof-of-concept voting system

offering concurrent ballot authorization. The paper focused on the problem of coercion and vote

selling. However, the proposed registration process could not be applied in practical elections,

because it required each voter to register multiple times. In the performance analysis section, the

authors provided concrete numbers only for a hypothetical election with 5 candidates, 10,000

registered voters, 20,000 submitted ballots and 3 trustees. This example took almost two hours

of computing time on a fully parallel 8-core machine. A careful analysis of the running times of

various steps of the algorithm was presented in [ECH12], but only in one experiment with a fixed

number of voters. In [ECH12], an assumption was made that all authorities (trustees) should be

honest. The trustees of an election authority engaged in a secure, universally verifiable protocol

20

2.3. BLOCKCHAIN-BASED ONLINE VOTING SYSTEMS

implementing a ballot authorization function.

Zeus [TPLT13] was a system developed based on Helio [Adi08]. Zeus used the same workflow

as Helio, but it provided more types of voting. The paper [TPLT13] assumed that the server

should be always trusted. However, a potential security vulnerability of the system was that Zeus

was run in a black box on a remote virtual machine. The lack of control and access to this black

box virtual machine implementation created a possibility that without any control or awareness

of any participants in the election process of how the black box operates, it could be subverted and

confidential information could leak, or even the whole computing procedure could be incorrectly

implemented. Thus, in the proposed implementation Zeus did not provide any reliable guarantee

of anonymity and security to the users. Furthermore, Zeus turned out to be a computationally

expensive system. It took approximately 65 minutes of computing time to handle 10000 votes

by using a 16-core 2.26 GHz machine. This is the only new experiment with the running time

indicated in [TPLT13].

A flexible e-voting system for online discussion forums was proposed in [Gar16], where it

was assumed that there is a trusted third party (registration server). This paper presented

two diagrams with line graphs comparing only the time of the encryption operations, since it

considered the special case of online voting conducted as a part of continuing online debates.

In addition to all the details mentioned above, to facilitate the comparison of results of

previous publications, we include Table 2.1 with a brief outline of the results of experiments in

the previous papers.

2.3 Blockchain-based Online Voting Systems

A Blockchain is a public, append-only, immutable ledger maintained by a decentralised peer-to-

peer network. Whilst first designed for digital currencies without trusted third parties, Blockchain

technology has now moved into many fields beyond finance.

The first cryptocurrency, Bitcoin, was rated as the top performing currency in 2015 ([Des16,

21

CHAPTER 2. LITERATURE REVIEW

Nak08]) and the best-performing commodity in 2016 ([Adi16]). It had more than 300K confirmed

transactions daily in 2017 ([Blo17b]). Since the debut of Bitcoin in 2009, its underlying technique,

Blockchain, has shown promising application prospects and has attracted a lot of attention from

academia and industry ([Che18, LJC+17, SP18, ZMH+18]).

Blockchain technology was first introduced by the Bitcoin digital currency in 2008 [Nak08].

Bitcoin proposed a solution to securely maintain a decentralized ledger in the presence of a

Byzantine failure model [LSP82], in which nodes may act maliciously.

Blockchain ledgers were originally designed to record monetary transactions, but the concept

has been widened to provide support for general purpose computing. Ethereum [But15] provides

a Turing complete platform for decentralized smart contracts [Blo]. Smart Contracts were first

described in 1996 by Nick Szabo [Sza96] and are autonomously executing contracts written in

computer code.

The Blockchain provides the following properties which make smart contracts possible:

Transparency Blockchain transactions are public and can be verified by anyone.

Immutability The transaction history of a Blockchain cannot be altered. As such, the Blockchain

can be seen as an append-only database.

Trustless Participants in Blockchain transactions do not have to rely on a trusted third party

for their interactions. Trust is provided by the underlying consensus protocol.

From this investigation into the protocols, the conclusion can be made that an electronic

voting system must be secure, while allowing for as much transparency as possible to be a working

E2E verifiable. Blockchain’s [Nak08] help to achieve this level of security and transparency, while

maintaining privacy and non-malleability of the transactions, which may indeed be the future of

eVoting protocols. The benefits of using Blockchain is in it’s decentralised nature, relatively low

cost of transactions and tamper-proof properties, which play an important role if a voting system

was based on this technology [Del17, Wes16].

22

2.3. BLOCKCHAIN-BASED ONLINE VOTING SYSTEMS

Here we focus on Blockchain-based online voting. There are a number of existing proposals

for such a system, using the Blockchain as a public bulletin board to store the voting data, such

as FollowMyVote [Fol16] and TIVI [Sab16]. These proposals achieve voter privacy by involving

trusted authorities that obfuscate the relation between real-world identities and keys [Fol16], or

by shuffling encrypted ballots before decrypting [Sab16].

Although different, some elements from above mentioned protocols may apply to the concept

of Blockchain voting. The notion of web bulletin board (WBB), where the encrypted ballots can

be seen by the public members, can persist in Blockchain in the form similar to [Blo17a]. Here

the blocks of transactions can be observed as well as the height of the Blockchain with any other

relevant information. Although Blockchain is a promising technology, we have not found any

relevant papers to date that present a protocol for online voting with Blockchains.

Examples such as FollowMyVote [Fol16] present a seemingly sound voting protocol, however

without any in-depth specification to verify the security of the protocol, there is only the website

information to go by. The code is open-sourced, which if compared to the notion of public cryp-

tographic protocols over the history of private ones, indicates that it may be a secure, however,

without official specification publication, or any other documentation, it is difficult to verify these

claims. One other noteworthy Blockchain technology that could revolutionise electronic voting, as

well as give birth to many other forms of electronic protocols is Ethereum [Woo14]. Ethereum dif-

fers from Bitcoin [Nak08] as it serves as a generic platform for creation of custom functionality in

the form of contracts, while also having a slightly complex structure of transactions. The currency

used by Ethereum is ether and gas, which will be discussed in more detail later in this section.

However, the main difference is the fact that the contracts allow for different functionality using

the Ethereum Virtual Machine (EVM), while being enforced by the peer-to-peer, decentralized

way, inherent to the core structure of Blockchain. Ethereum possesses two types of accounts,

which is another way of specifying types of users. Accounts are used by human entities, and poten-

tially by other smart entities, whereas contracts are also accounts, however they are operated by

23

CHAPTER 2. LITERATURE REVIEW

code on the EVM. Contracts are the agents that bring about the generic functionality of Ethereum

mentioned above. Contacts allow one to create custom behaviour for one’s Blockchain application.

These applications include, and are not limited to, automatic payments or creation of custom

currency, which is worthless outside of the context of the contract application. Ethereum operates

on the context of states and state transitions which are brought about by the transactions. The

contracts, on the other hand, have a failsafe feature which addresses the Turing Halting problem,

in other words, to prevent contract code from infinite function execution, Ethereum introduces

the concept of gas. Gas is consumed for each consumed resource of the contract computation. This

can be each stage of contract execution or the memory used by the contract. Gas costs are dictated

by the gas limit in the contract and the gas costs are deducted from the user account, who wishes

to send transactions to a particular contact. This feature means that upon exceeding the gas

limit for a transaction, the transaction can revert to last state and refund the user account in

case of an unexpected gas limit over overflow. The contracts themselves can be used to send ether

between other contracts, or to other accounts. The transaction between user accounts is simply

moving ether around, which resembles the functionality of Bitcoin [Woo14, But16, Woo17].

The transactions issue receipts back to the user accounts which include information like

post-transaction state, the cumulative gas used in the block containing the transaction receipt

as of immediately after the transaction has happened and others. Entities such as the receipts

and the world state, are stored in Merkle Patricia Trees or tries. Merkle trees are used in Bitcoin

transactions and serve as a way of storing all transactions inside one hash, which can be traversed

to find a particular transaction. The Merkle tree contains hashes of hashes of transactions until

the root hash is obtained. In Ethereum, these tries are used as databases which stores the

mappings between bytearrays of account information [Woo14, But16, Woo17].

One may wonder about the differences between Bitcoin and Ethereum, and the common

question of which one is a better platform arises very often. In reality, there is no better platform

out of the two, it is simply the matter of preference and functionality. Ethereum offers a set of

24

2.3. BLOCKCHAIN-BASED ONLINE VOTING SYSTEMS

features that differs from that of Bitcoin. This gives a brief overview of the Ethereum protocol,

and its main difference to Bitcoin. Ethereum allows the creation of powerful sub-systems, driven

by custom currency and functionality with the immutable support of Blockchain. This makes it a

very good candidate for different protocols, including a voting protocol.

FollowMyVote [Fol16] is generally regarded as the first organization to provide a remote

voting (e-voting) solution using Blockchain technology, which exists entirely online. Firstly, voters

have to establish their identification by uploading their relevant documents (e.g. driver’s licence)

via a downloaded application. The general idea is to use a blind signature scheme, meaning a

trusted signing/verifying party would sign a blind token from a voter. Once a voter’s identification

is verified, he/she is able to request an online ballot and submit his/her ballot with an unblind

token to the Blockchain. Furthermore, FollowMyVote allows multiple submissions from the same

voter since only the most recent ballot of the voter will be counted. Moreover, FollowMyVote

provides anonymous voting because the voters cannot be identified in the Blockchain. However,

the voters are still clearly known to the central authority that enfranchises them. It also achieved

in FollowMyVote based on elliptic curve cryptography (ECC). Each voter has 2 key pairs, one for

identity verification, the other one for voting, which allows voters to verify their votes without

sacrificing their right to vote anonymously.

BitCongress [Bit16] is another decentralized voting scheme that was developed based on

Blockchain technology. It introduced an application called AXIOMITY as the BitCongress wallet

that allows voters to participate in every aspect of the democratic process. In order to vote

for any candidate, each voter should create a custom vote token as a vote, and send it to the

address of that candidate. A decentralized proof-of-tally is also maintained for each voter and

is updated by an election upon registering the voter’s vote, which gives a profile for each voter

along with his/her voting history and is used in voter verification. However, the BitCongress

specification does not provide details as to exactly how this is implemented. For instance, how

is this information maintained throughout the Blockchain so that it is easily accessible for

25

CHAPTER 2. LITERATURE REVIEW

verification purposes? Moreover, anyone can register to become a voter through BitCongress

allowing them to participate in democratic processes. Each address becomes associated with a

Blockchain ID, allowing a person to be mapped to only one address. This ultimately requires a

central authority with identity information to verify a voter and give an address in order for that

voter to interact with BitCongress.

In 2017, McCorry et al. presented a smart contract implementation for the Open Vote

Network that runs on Ethereum [MSH17], which is claimed to be the first implementation of a

decentralized and self-tallying internet voting protocol using Blockchain. The procedure of casting

a vote is similar to the procedure of generating a ring signature: each vote is generated using the

voter’s private key and all other voters’ public keys, and the final result can only be computed

by using all submitted votes. An individual vote can never be revealed unless the private key

is revealed. The final result can be computed by anyone via a public accessible function. The

implementation results show that the proposed protocols used with minimal setup for election,

and McCorry et al. also plan to investigate the feasibility of running a larger-scale election over

the Blockchain in future.

2.4 Summary

The aim of this research is to propose a decentralized publicity verifiable ranked choice online

voting system, which also achieves advanced E2E verifiability. The following cryptographic

techniques are required to present our system.

• ElGamal cryptosystem. ElGamal is a public key cryptosystem that satisfies the inherited

additive homomorphic property. The latter allows all encrypted numbers to be added

directly without decrypting them. The voters’ privacy can be protected well if each cast

vote is encrypted before submission, and the final outcome is still computable without

decrypting any individually vote.

26

2.4. SUMMARY

• Proof of Zero (partial) knowledge. Voters are able to prove the eligibility and correctness of

their cast vote after encryption. This also means that any encrypted vote can be verified by

the public. The proof of partial knowledge can help to develop a usable rank choice voting

mechanism. By applying both the zero-knowledge proof and partial knowledge proof, we

devise a new system that can reduce the dependence on the centralized authorities.

• Blockchain. A Blockchain database can be treated as a complete trusted WBB (in the

centralized system), where the data can never be compromised after adding to the chain

based on the decentralized feature.

Most of the existing homomorphism-based online voting systems are centralized systems.

Besides, the existing previous Blockchain voting systems do not support the ranked choice

voting mechanism and large-scale voting. In this research, a public verifiable online voting

system is proposed and developed. It combines the conveniences achieved by applying both

homomorphism and Blockchain technology, so that the system supports a flexible ranked choice

voting mechanism.

27

Chapter 3

A PVRC Online Voting System

3.1 Motivation of PVRC

ElGamal encryption [ElG85], one of the most popular homomorphic encryptions that is used for

online voting systems, inherits the addition property of homomorphism, thus allowing encrypted

ballots to be tallied without decrypting individual ballots. Helio [Adi08] is the first web-based

voting system to use ElGamal encryption to achieve open-audit voting. However, the verification

and auditing take more than 3 hours on a server and 4 hours on a client. Several improvements

to Helio were made in Helio 2.0 [ADMP+09], which was used in a real life election (University

President selection of the Universite Catholique de Louvain in Louvain-la-Neuve, Belgium, 2008).

Zeus [TPLT13] is developed based on Helio [Adi08], but provides more types of voting. Zeus uses

the same workflow as Helio [Adi08] and is computationally expensive.

In this chapter, we propose a Public Verifiable Ranked Choice (PVRC) online voting

system, which allows voters to cast and submit their electronic ballots by ranking all candidates

easily according to their personal preference. Each ballot is treated as a square matrix, with

each element encrypted using the ElGamal cryptosystem before submission. Furthermore, proof

of partial knowledge and zero knowledge are used to verify the eligibility of ballots without

accessing ballot contents. We also implement a prototype to test our proposed voting system. The

29

CHAPTER 3. A PVRC ONLINE VOTING SYSTEM

security and performance analysis indicate the feasibility of the proposed protocols.

3.2 Our PVRC Online Voting System

In this section, we present our ranked choice Internet voting system with illustrations and

examples.

Voter: Each authorized voter can cast a ballot according to personal preference.

Candidate: Each candidate is a contestant in the election, and will receive points from

different voters. The winner is the candidate who received the most points.

Tallying authority: Authorities in the election must take responsibility for auditing the

voting process, such as verifying the identification of voters, verifying the eligibility of each

submission, and revealing the winner of the election.

Public bulletin board: A secure insert-only bulletin board for publishing the information

about the election, such as public keys and submitted ballots. Everyone can access the contents

of the bulletin board at anytime, but no-one is able to modify or delete existing data on it.

Our system consists of the following stages: initialization stage, registration stage, ballot

casting stage, ballot verification stage and tally stage. Table 3.1 provides the notations used to

explain our protocols.

3.2.1 Initialization Stage

This is the beginning of an election, each authority (A i) generates a key pair (public key pkai
and

secret key skai). The common public key (PK) is computed using all pkai
(refer to Section 2.1),

which is posted on the public bulletin board in order to encrypt each ballot before submission.

3.2.2 Registration Stage

In order to register, each voter must visit a registration station in person to present his/her valid

ID (e.g. driver licence). We assume each voter owns a key pair (if not, they can generate it during

30

3.2. OUR PVRC ONLINE VOTING SYSTEM

Table 3.1: Notations used in the rest of Chapter 3.

nc: number of Candidates
nv: number of Voters
na: number of Authorities
Vi: i-th voter; i ∈ [1,nv]

pkvi : public key of Vi; i ∈ [1,nv]
skvi : secret key of Vi; i ∈ [1,nv]

Sigvi : digital signature of vi; i ∈ [1,nv]
Bi: the ballot submitted by Vi; i ∈ [1,nv]

B(i)
j,k: the value on position (j,k) of Bi; j,k ∈ [1,nc]

C(i)
j,k: the encrypted value of B(i)

j,k; j,k ∈ [1,nc]
PC(i)

j,k: the proofs of C(i)
j,k; j,k ∈ [1,nc] to prove C(i)

j,k equals either E(0) or E(1)
Prow(i)

j : the proofs of sum on j-th row in Bi to prove the sum equals E(1)
Pcol(i)k : the proofs of sum on k-th column in Bi

A i: i-th Authority; i ∈ [1,na]
pkai : public key of A i; i ∈ [1,na]
skai : secret key of A i; i ∈ [1,na]
PK : common public key for encrypting votes∏
(...): products of all elements

PZK{...}: proof of zero knowledge
PPK{...}: proof of partial knowledge

registration), which consists of a public key (pkvi) and a private key (skvi). Once a voter’s identity

has been verified the voter should upload his/her pkvi to the public bulletin board.

Next, all authorized voters must sign their submissions using their skvi , and others can verify

their identities by using corresponding pkvi . In this case, Digital Signature Algorithm (DSA) is

used in order to prevent adversaries submitting a ballot by impersonating any authorized voter.

3.2.3 Ballot Casting Stage

We assume there are nc candidates, and the ballot is treated as a nc ×nc square matrix, where

different rows represent potential ranked places of different candidates. Initially, an empty ballot

contains all white circles, such as (a) of Figure 3.1. Voters can rank different candidates on

different rows, by turning white circles to black, such as (b) of Figure 3.1. For a valid cast ballot,

each row and column contains only one black circle.

For a cast ballot, it contains only white or black circles, which are converted to “0” and

31

CHAPTER 3. A PVRC ONLINE VOTING SYSTEM

Figure 3.1: There are 3 candidates in the election. (a) is an empty ballot, (b) is a cast ballot.

“1” respectively. We use Bi to denote the ballot submitted by Vi, and B(i)
j,k denotes the value

of position (j,k) of Bi, where i ∈ [1,nv] and j,k ∈ [1,nc]. If the circle on B(i)
j,k is black, B(i)

j,k = 1,

otherwise, B(i)
j,k = 0.

And then, each B(i)
j,k is encrypted using the common key PK , where we use C(i)

j,k to denote the

encrypted value of B(i)
j,k, such as C(i)

j,k = E(B(i)
j,k). For example, the encryption result of (b) of Figure

3.1 can be presented as follows:

E(Bi)=

C(i)

1,1,C(i)
1,2,C(i)

1,3

C(i)
2,1,C(i)

2,2,C(i)
2,3

C(i)
3,1,C(i)

3,2,C(i)
3,3

=

E(0),E(1),E(0)

E(1),E(0),E(0)

E(0),E(0),E(1)

Once E(Bi) is computed, the voter must convince others the following things: each C(i)

j,k is

either E(0) or E(1), the sums (encrypted) of each row and column equal E(1). The processing

details of ballot casting is shown as Algorithm 1.

3.2.4 Ballot Verification Stage

In order to prevent counting any invalid ballot into the final result, ballot verification is required

as follows:

Verification of ballot’s sender: The verification of each sender can be treated as the

verification of the submission’s signature, where the corresponding public key is published on the

public bulletin board.

32

3.2. OUR PVRC ONLINE VOTING SYSTEM

Algorithm 1: Ballot Casting for a voter
Input :Vi, Bi, PK , Hash function H, where H : {0,1}∗ →G
Output :encrypted ballot E(Bi), all proofs of E(Bi)

1 for j ← 1 to nc do
2 for k ← 1 to nc do
3 r, t,v2, s2 ∈Zq, T0 = gt, T1 = yt

4 if B(i)
j,k = 1 then

5 C(i)
j,k = E(1)= (c1, c2)= {gr, g · yr}, T2 = ys2 /c2

v2

6 else
7 C(i)

j,k = E(0)= (c1, c2)= {gr, yr}, T2 = (gv2 · ys2)/c2
v2

8 end
9 v = hash(c1‖c2‖T0‖T1‖T2), v1 = v⊕v2, s1 = r ·v1 + t . ⊕: XOR

10 PC(i)
j,k =PPK{C(i)

j,k,T0,T1,T2,v1,v2, s1, s2} . proof of ciphertext C(i)
j,k

11 end
12 end
13 for j ← 1 to nc do
14 sum = C(i)

j,1 ×·· ·×C(i)
j,nc

15 t ∈Zq, T1 = gt, T2 = yt, v = Hash(sum‖T1‖T2), s = r ·v+ t
16 Prow(i)

j =PZK(i)
j {sum,T1,T2,v, s} . proof of each row

17 end
18 for k ← 1 to nc do
19 sum = C(i)

1,k ×·· ·×C(i)
nc,k

20 t ∈Zq, T1 = gt, T2 = yt, v = Hash(sum‖T1‖T2), s = r ·v+ t
21 Pcol(i)k =PZK(i)

k {sum,T1,T2,v, s} . proof of each column
22 end
23 digital signature: Sigvi = Sign(E(Bi)‖PC(i)

j,k‖Prow(i)
j ‖Pcol(i)k , skvi)

24 submit: E(Bi), PC(i)
j,k, Prow(i)

j , Pcol(i)k , Sigvi , j,k ∈ [1,nc]

Verification of sums (each row and column): Based on the homomorphic addition,

anyone is able to compute the sum (encrypted) of each row and column, and verify the value by

using the corresponding proofs that are generated by the sender. The processing procedure of

verification is shown as Algorithm 2.

Verification of each value (each ciphertext): Since the verification of each row and

column is not sufficient to confirm a valid submission, verifying each encrypted value can be done

by using the corresponding proofs that are generated during ballot casting (refer to Algorithm 1).

The processing procedure of verification is shown as Algorithm 3.

33

CHAPTER 3. A PVRC ONLINE VOTING SYSTEM

Algorithm 2: Verification of sums for each row and column in the ballot matrix

Input : E(Bi)= C(i)
1,1, · · · ,C(i)

nc,nc , Prow(i)
1 , · · · ,Prow(i)

nc ,Pcol(i)1 , · · · ,Pcol(i)nc

Output :Valid or Invalid
1 for j ← 1 to nc do
2 sum = C(i)

j,1 ×·· ·×C(i)
j,nc

= (c1, c2), Prow(i)
j =PZK(i)

j {sum,T1,T2,v, s}
3 if gs 6= c1

v ·T1 || ys 6= c2/gv ·T2 then
4 return Invalid . Validate each row
5 end
6 end
7 for k ← 1 to nc do
8 sum = C(i)

1,k ×·· ·×C(i)
nc,k = (c1, c2), Pcol(i)k =PZK(i)

k {sum,T1,T2,v, s}
9 if gs 6= c1

v ·T1 || ys 6= c2/gv ·T2 then
10 return Invalid . Validate each column
11 end
12 end
13 return Valid

Algorithm 3: Verification of each ciphertext in the ballot matrix

Input : C(i)
1,1, · · · ,C(i)

nc,nc , PC(i)
1,1, · · · ,PC(i)

nc,nc

Output :Valid or Invalid
1 for j ← 1 to nc do
2 for k ← 1 to nc do
3 C(i)

j,k = (c1, c2)

4 PC(i)
j,k = {C(i)

j,k,T0,T1,T2,v1,v2, s1, s2}

5 if {gs1 6= T0 · c1
v1} ||

{ys1 6= T1 · (c2/g)v1 & ys1 6= T1 · (c2)v2} ||
{ys1 6= T1 · (c2)v1 & ys1 6= T1 · (c2/g)v2} then

6 return Invalid
7 end
8 end
9 end

10 return Valid

An encrypted ballot can be treated as a valid ballot only if the ballot has been verified using

both Algorithms 2 and 3.

3.2.5 Tallying and Revealing Stage

Tallying is performed on each position of the ballot matrix independently. We use C j,k to denote

the tallied result on position (j,k) of the ballot matrix, and the tallied results can be computed

34

3.3. SECURITY ANALYSIS ON PVRC

according to homomorphic tallying (refer to Section 2.1), which is presented as C j,k =
∏nv

i=1 C(i)
j,k.

The tallied results (C1,1, · · · ,Cnc,nc) must be decrypted before publishing, which can only be

done by a collaboration of all authorities. According to the distributed ElGamal cryptosystem,

the value of (j,k) that is the final tallied ballot matrix can be presented as D(C j,k) = gballots,

therefore, the total ballots on position (j,k) can be computed easily by comparing the value

gballots with g1, g2, · · ·, until they are equivalent.

3.3 Security Analysis on PVRC

In this section we analyse the security level of our proposed Internet voting system, under the

following assumptions: 1) there are multiple authorities and at least one of them is honest; 2) the

public bulletin board is secure and insert-only; 3) the Digital Signature Algorithm (DSA), the

ElGamal cryptosystem, proof of zero knowledge and proof of partial knowledge are secure.

Theorem 1. Only authorized voters are allowed to submit their ballots.

Proof. In order to prevent adversaries from casting ballots by impersonating authenticated

voters, all authorized voters must use a DSA private key to sign their submission, which can be

verified by anyone using the public key of DSA. �

Theorem 2. Only valid ballots will be counted into the final results.

Proof. Under our proposed system, each submission has to be verified from 2 aspects, they are

1) each ciphertext in the submission has to be either E(0) or E(1); and 2) the sum (encrypted)

of each row and column has to be E(1). In other words, a submission can be considered as valid

when it has been verified by both Algorithms 2 and 3. �

Theorem 3. The contents of submitted ballots will never be revealed after submission.

Proof. Under our proposed system, the content of each submission is encrypted using distributed

ElGamal cryptosystem, where the encrypted key is computed using all public keys of authorities.

35

CHAPTER 3. A PVRC ONLINE VOTING SYSTEM

In this case, we assume at least one authorities is honest, meaning the content of any submission

will never be revealed because the honest authority will not provide the help required to do so. �

Theorem 4. Any modification about any submission can be identified without difficulty.

Proof. We assume no one can fake the DSA signature of the submission. Thus, adversaries

cannot modify anything about the submission because they cannot generate a new authorized

signature. Furthermore, we assume the public bulletin board is insert-only, which means no-one

can submit twice or modify existing submissions. �

Theorem 5. The correctness of the final tallied result is voter verifiable.

Proof. Voters are able to verify the eligibilities of all submissions, and compute the tallied result

based on homomorphic addition. Furthermore, due to the tallied result being only revealed by

a collaboration of all authorities, we require each authority to post computation details to the

public bulletin board, allowing voters to verify the authority. �

3.4 Performance Analysis on PVRC

This section discusses the performance of our Internet voting system. The analysis was based on

the computation time of each processing step. The computation time was separated into 2 phases,

client-side and server-side. All tests were performed using a 1024-bit key (p is 1024-bit), and

performed on a laptop with the following specifications: CPU: 2.2 GHz Intel Core i7, Memory: 16

GB 1600 MHz DDR3.

In this case, we use t to denote the computation time of one exponentiation, where t = 0.00012

seconds. ElGamal encryption requires 2 exponentiations, and ElGamal decryption requires 1

exponentiation, where the division can be avoided by using an alternative method [WIK]. Thus,

we use tE and tD to denote the computation time of encryption and decryption, respectively,

where tE = 2t and tD = t, approximately.

36

3.4. PERFORMANCE ANALYSIS ON PVRC

3.4.1 Performance of the voter side

The performance of client-side can be analysed by the following aspects:

Total computation time: According to the Algorithm 1, we use Tc to denote the total time

spent on the client-side, where

Tc = tE ×nc
2 +5t×nc

2 +2t×2nc

In this experiment, we tested Tc in five rounds on a laptop, according to different numbers of

candidates (nc = 3,5,10,15,20). The result is shown in Figure 3.2.

Figure 3.2: Performance of client side: Time spent encrypting a ballot when the number of candidates is
3, 5, 10, 15, 20.

From the results in Figure 3.2, we can see the time cost for encrypting one ballot is less than

0.4 seconds even if there are 20 candidates to be ranked.

Total submission size: The size of digital signature is 2048-bit, and we use S to denote the

total submission size (bits) for a voter, where

S = 2048×nc
2 +7168×nc

2 +4096×2nc +2048

and test result is shown in Figure 3.3 based on different numbers of candidates (nc = 3,5,10,15,20).

37

CHAPTER 3. A PVRC ONLINE VOTING SYSTEM

Figure 3.3: Performance of client side: The size of a cast ballot (includes all encrypted values and all
proofs) when the number of candidates is 3, 5, 10, 15, 20.

From the result of Figure 3.3, we found the submission size of one ballot is less than 500KB

even for a 20-candidate ballot.

3.4.2 Performance of the server side

The performance of a server can be treated as the verification of ballots. Due to the verifica-

tion of each sender being equivalent to verifying the signature of each submission, this is not

computationally expensive. Thus, we concentrated on the performance of Algorithm 2 and 3.

We use Ts to denote the total time spent verifying all submitted ballots, which can be

presented as follows:

Ts = (4t×2nc +6t×nc
2)×nv

Again we tested Ts in five rounds according to different numbers of ballots (nv = 1000, 2000,

4000, 7000, 10000). In this experiment, we assume the number of candidates is 10 (nc = 10), and

the result is shown in Figure 3.4.

From the results in Figure 3.4, we found the time spent verifying 10,000 ballots costs less

than 15 minutes using the previously described laptop. If there are multiple super computers

38

3.5. CONCLUSION

Figure 3.4: Estimate time spent of ballots’ verification (by using my laptop) for 1000, 2000, 4000, 7000,
10000 ballots.

executing in parallel or a cloud computing service is available, which would be the expected case

in real life, the time spent will be significantly reduced.

3.5 Conclusion

In this chapter, we have proposed a public verifiable ranked choice (PVRC) online voting

system based on the distributed ElGamal cryptosystem. Under our proposed protocols, the system

allows voters to rank all candidates according to their personal preferences. Although all ballots

remain as ciphertexts after submission, the eligibility of each ballot has to be verified before

contributing to the tallied result. Under our proposed system, voters are required to generate

proofs for their cast ballots, which allows anyone to verify the eligibility of his or her submission

without accessing the contents. An analytical security analysis demonstrated our proposed system

is secure against external and internal adversaries. We also built a prototypical web-based voting

system and tested the computational performance.

39

Chapter 4

A LSPVRC Online Voting System

4.1 Motivation of LSPVRC

In the previous chapter, a PVRC (public verifiable online voting system) is proposed, which

allows voters to cast an electronic ballot by ranking all candidates rather than vote only for one

of the candidates. However, the performance analysis indicated the feasibility of the proposed

voting system with a small number of candidates. The computation cost on the voter-side will be a

problem when the number of candidates is getting bigger since the ballot matrix will contain too

many ciphertexts such as 10×10 when the number of candidates is 10. Thus, we aim to improve

the protocol in order to solve the issue.

In this chapter, a LSPVRC (Large-Scale Public Verifiable Ranked Choice) online voting

system is proposed. The computation performance on the voter side is much better than the

PVRC system, since the ranked choice voting mechanism is re-designed, which makes this system

can handle a large-scale number of voters to participate. The security and performance analyses

included in this chapter not only show that our proposed protocols are feasible for practical

implementations, but also demonstrate that our method has achieved significant improvements

in comparison with the PVRC systems.

41

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

4.2 Preliminaries of LSPVRC

In the LSPVRC online voting system, the re-designed voting mechanism is inspired by the

so-called approval voting also known as score voting, [BF05]. Approval voting has been used

in various elections since 1987. Examples include elections conducted by some scientific and

engineering societies, an econometric society and democratic state committees, [BF05]. However,

to the best of our knowledge, score voting has not been applied in secure, flexible and verifiable

online voting systems.

Our voting system enables voters to score all candidates and assign points to different

candidates directly without any restrictions apart from the total number of available points

specified by the organizers of the election. This is illustrated in Figure 4.1 where the total number

of available points is equal to 6.

Figure 4.1: Here (a), (b) and (c) are the voting mechanism of our e-voting system when the total
number of available points is equal to 6. A voter can treat all candidates equally as in (a), or
support only one candidate as in (b), or rank all candidates as in (c).

Our ranked choice online voting system constructed in this chapter uses the exponential

ElGamal cryptosystem due to [ElG85] (see also [AARTAD17, YPB14]). Before submission, the

contents of each cast ballot are encrypted using the exponential ElGamal encryption. The additive

homomorphism property of this cryptosystem, [BPS12], makes it possible to tally encrypted

ballots directly without decrypting them. Our cryptosystem also includes cryptographic proofs

incorporated to ensure the integrity of the voting process and to verify the validity of each ballot

before it is counted.

The previous proposed online voting system (described in the preceding chapter) enables

42

4.2. PRELIMINARIES OF LSPVRC

voters to cast their ballots by ranking all candidates. The main idea behind the system proposed

here is to convert each cast ballot into a square matrix, where the size of the matrix depends on

the number of candidates. After that, each element in the matrix is encrypted by a verifiable

homomorphic encryption algorithm. This approach, makes it possible to verify the eligibility of

each submitted ballot without accessing the content of the ballot. Besides, the final result can

be computed by using the additive homomorphic property without decrypting the cast ballots.

The major weakness of that system is in the high cost of the computation on the voter side. It is

explained by the number of exponentiations required being equal to the square of the number of

candidates. It follows that the computation time can be expressed as tE ×nc
2, where tE and nc

denote the computation time of a single encryption and the number of candidates, respectively.

Moreover, the number of the proofs that have to be generated before submission of the ballot

is equal to nc
2, because the verification is performed based on these proofs. Creating all the

required proofs significantly increases the computation time of the system proposed in the voting

system (see the preceding chapter). Furthermore, it increases the size of each submission, which

is made up of nc
2 ciphertexts plus nc

2 proofs.

The present system in this chapter is an improved and extended version of the previous

system [YYR+17] as follows.

• The new data structure of a binary matrix is introduced in the present chapter. It was never

considered previously. The paper [YYR+17] also used matrices, but they were different and

had larger dimension.

• This innovation has significantly improved the running time of the system. The running

time of our new algorithm has improved to O(nv lognv), as compared to O(n2
v) in [YYR+17],

where nv denotes the number of voters.

• In the present chapter, several aspects of the election system are adjusted to handle more

general situation. The new system proposed in the present chapter has become applicable

43

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

in a broader class of settings and can be used for elections with less strict requirements.

All algorithms have been improved, so that this chapter contains a new “ballot genera-

tion algorithm ”, “verification algorithm”and “tallying algorithm”. Here are further details on

improvements made here.

(1) Improved ballot generation. In [YYR+17], a voter ranks all candidates to different positions

and the ballot is converted to a square matrix with dimensions nc × nc. In the present

system, a voter assigns arbitrary points to different candidates, and then each point is

converted to its binary representation. This representation is stored in a new binary matrix,

which is not square.

(2) Improved verification algorithm. In [YYR+17], the verification relied on the fact that the

voters were not allowed to rank candidates to the same position in the ranked list. The

system proposed in the present system allows the voters to assign the same rank to different

candidates. This is why a new verification procedure has been included in this chapter.

(3) Improved tallying algorithm. In [YYR+17], the tallying was based only on the additive

homomorphic property. In the present system, the tallying process uses both the additive

and multiplicative homomorphic properties of the cryptosystem.

(4) Improved performance. In [YYR+17], the square matrix had dimensions nc ×nc. In the

present system, a new binary square matrix is introduced to encode ballots. The number of

rows of this matrix is nc, but the number of columns never exceeds 2log(nc). This is why

the running time of the main algorithm in the present chapter has improved to O(nc lognc).

4.3 Our LSPVRC Online Voting System

This section contains an overview of our ranked choice online voting system with illustrations

and examples. The basic idea of our voting system is to encrypt each ballot using the common

44

4.3. OUR LSPVRC ONLINE VOTING SYSTEM

public key of the distributed ElGamal cryptosystem. Since the exponential ElGamal satisfies the

additive homomorphic property, the encrypted ballots can be directly tallied. This procedure is

also known as homomorphic tallying [MMS16]. Finally, the tallied result can only be decrypted

by collaboration of all authorities.

The system consists of the following stages: initialization stage, registration stage, ballot

casting stage, ballot verification stage and tally stage. Table 4.1 provides the notations used to

explain our protocols.

Table 4.1: Notations used in the rest of Chapter 4.

nc: number of candidates
nv: number of voters
na: number of authorities
Ci: i-th Candidate; i ∈ [1,nc]
Vi: i-th Voter; i ∈ [1,nv]
A i: i-th Authority; i ∈ [1,na]
Bi: the ballot submitted by Vi; i ∈ [1,nv]
P: total available points for a ballot

LP the number of bits of P (binary)
B(i)

j,k: the value on position (j,k) of Bi; j ∈ [1,nc], k ∈ [1,LP]
C(i)

j,k: the encrypted value of B(i)
j,k; j ∈ [1,nc], k ∈ [1,LPB]

Sigvi : digital signature of Vi; i ∈ [1,nv]
pkvi : public key of vi; i ∈ [1,nv]
skvi : secret key of vi; i ∈ [1,nv]
pkai : public key of ai; i ∈ [1,na]
skai : secret key of ai; i ∈ [1,na]
PK : common public key for encrypting ballots

PZK{...}: proof of zero knowledge
PPK{...}: proof of partial knowledge

Here we list all entities that are involved in this voting system.

Voters: Each authorized voter can cast a ballot ranking all the candidates by assigning

different points to different candidates according to their own preferences.

Candidates: Each candidate can be treated as a contestant in the election, and can receive

different points from different submitted ballots. The candidate who received the largest total

number of points is the winner of the election.

Authorities: There are multiple authorities in the election, who take responsibility for

45

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

auditing the voting process by computing the common encryption key, verifying the identification

of voters for each submission, verifying the eligibility of each ballot before tallying, revealing the

winner of the election.

Public bulletin board: An insert-only bulletin board, which displays all information about

the election, such as public keys, all submitted ballots and final tallied result. The content of the

board can be viewed by all entities. However, no one is able to modify or delete existing data on it.

4.3.1 Initialization stage

At the beginning of an election, all authorities have to generate a common encryption key (PK)

that can be used by voters in order to encrypt each cast ballot before submission. Each authority

(A i) owns a key pair (public key pkA i
and secret key skA i), and (PK) is computed using the public

keys (pkA i
) of all tallying authorities (cf. Section 2.1.1.1). Finally, the PK is posted on the public

bulletin board, which can be used by all voters.

During the common key generation, each A i has to broadcast their pkA i . In order to prevent

adversaries from replacing any public key of an authority, hash values of pkA i must be broadcast

as a commitment before broadcasting the pkA i . In cryptography, the key commitment is designed

such that any party cannot change the value or statement after all parties have committed to

it. In our system, PK is computed using all pkA i , where a commitment means each A i agreed

to contribute their public key, which cannot be changed later. If any A i modifies the value, the

other authorities can identify this. The common key generation only commences when all the

broadcast keys are authorized.

Note that the total available points for a ballot (P) must be confirmed before the election

starts, the value is decided based on the number of candidates (nc). For example, when there are

3 candidates, the value of P could be 5 or 8, as long as P is greater than nc. Once the value of P

is confirmed, all voters have to agree and use it when casting their ballots. More explanations are

given in Section 4.3.

46

4.3. OUR LSPVRC ONLINE VOTING SYSTEM

4.3.2 Registration Stage

In order to register with our e-voting system, each voter (Vi) must present their valid ID (e.g.

driver licence). Once a voter’s identity has been verified, he/she generates a signature key pair,

which consists of a public key (pkvi) and a private key (skvi). The pkvi is uploaded to the public

bulletin board, and the skvi is kept secret by the voter Vi.

Once a voter has completed the registration, their identity and the corresponding public key

can be found on the public bulletin board. Our system requires each voter to sign their ballots

using Digital Signature Algorithm (DSA), where the skvi of voter is used to sign the voter’s

submission and published pkvi can be used to verify their signature Sigvi .

4.3.3 Ballot Casting Stage

This voting system allows voters to rank all candidates based on their personal preferences. Each

voter can assign different numbers of points to candidates, and the winner is the candidate who

receives the largest total number of points.

Voters are allowed to assign any points to any candidate. The only restriction is that the total

number of assigned points must be equal to the total available points (P). To illustrate, here

we look at an example where there are 3 candidates and P = 6. Then all options Figure 4.1(a),

Figure 4.1(b) or Figure 4.1(c) are acceptable, because 2+2+2= 6 for Figure 4.1(a), 0+0+6= 6 for

Figure 4.1(b), and 1+3+2= 6 for Figure 4.1(c).

After that, all assigned points are converted into binary, and the content of the cast ballot is

treated as a matrix. The size of the matrix is nc ×LP , where we use nc to denote the number of

candidates, and we use LP to denote the number of bits of P (binary). For example, the ballot

illustrated in Figure 4.1(c) is converted to its binary version in Figure 4.2(b), where P = 6 and

LP = 3.

Once the ballot (Bi) is converted into its binary version, such as (b) of Figure 4.2, the content

must be encrypted (using PK) before submission. In our system, each binary bit of Bi is encrypted

47

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

individually, as in Figure 4.2(c), where B(i)
j,k denotes the binary bit (0 or 1) on position (j,k) of the

ballot, and C(i)
j,k denotes the encrypted value of B(i)

j,k, where j ∈ [1,nc] and k ∈ [1,LP].

Once the encrypted ballot (E(Bi) = C(i)
1,1, · · · ,C(i)

nc,LP
) is ready, there are two types of proofs

to be computed and sent with the encrypted ballot. The voter (prover) must convince everyone

(authorities and other voters) that each C(i)
j,k is either E(1) or E(0) (cf. Algorithm 4) and that the

number of total number of assigned points is equal to P (cf. Algorithm 5). To this end, our system

uses proof of partial knowledge (cf. Section 2.1.2) and proof of zero knowledge (cf. Section 2.1.3) to

generate proofs for each C(i)
j,k and the total number of assigned points, respectively, This allows

authorities and other voters to verify E(Bi) without revealing the content of Bi.

Algorithm 4: Generating proofs for each element in an encrypted ballot.
Input :Vi, E(Bi), PK
Output :PPKs(i)

1 set PPKs = {}
2 for j ← 1 to nc do
3 for k ← 1 to LP do
4 PPK of C(i)

j,k: prove C(i)
j,k = (c1, c2) is either E(0) or E(1) . cf. Section 2.1.2

PPK{(C(i)
j,k,T0,T1,T2,v1,v2, s1, s2) :

v1 ⊕v2 = H(C(i)
j,k‖T0‖T1‖T2), gs1 = T0 · c1

v1 ,
PK s1 = T1 · (c2/g1)v1 , PK s2 = T2 · (c2/g0)v2 }

PPKs(i) =PPKs(i) ∪ PPK
5 end
6 end
7 return PPKs(i)

Remark 1 The exponential ElGamal encryption is used, where E(m)= (gr, gm · yr). For the

convenience of readers, more details are given in Section 2.1.1.1.

Figure 4.2: (a) is a ballot Bi cast by a voter Vi, (b) is a binary version of Bi, (c) is the encrypted
version E(Bi).

48

4.3. OUR LSPVRC ONLINE VOTING SYSTEM

Algorithm 5: Generating proofs for the total number of assigned points of an encrypted
ballot.

Input :Vi, E(Bi), PK , P
Output :PZK(i)

1 set PZK = {}
2 set PBi = E(0)
3 for j ← 1 to nc do
4 set t = 1
5 for k ← LP to 1 do
6 PBi = PBi × (C(i)

j,k)t

7 t = t×2
8 end
9 end

10 generates proof of PBi : prove PBi = (c1, c2) is E(P) . cf. Section 2.1.3
11 PZK(i){(PBi ,T1,T2, s) : v = hash(PBi‖T1‖T2), gs = c1

v ·T1,PK s = (c2/gP)v ·T2}.
12 return PZK(i)

Remark 2 The proof of partial knowledge and the proof of zero knowledge in Algorithms 4

and 5 are denoted by PPK {a,b, · · · :α,β, . . . } and PZK{a,b, · · · :α,β, . . . }, respectively. Here a,b, . . .

are the proofs generated by the prover, and α,β, . . . are the conditions satisfied by a,b, The

algorithm PPK verifies that a ciphertext E(m) is the encryption of one of the multiple values

m1,m2, . . . without decrypting it. Likewise, PZK verifies (without decryption) that the ciphertext

E(m) is the encryption of m. Both PPK and PZK never reveal the content of the ciphertext. The

algorithms PPK and PZK are well-known. For the readers’ convenience, more details on PPK and

PZK are included in Sections 2.1.2 and 2.1.3, respectively.

When the ballot has been cast, a digital signature (Sigvi) of the voter (Vi) is generated and

sent with E(Bi) and all proofs to the server. In this case, DSA is used, which means that Sigvi is

generated by using skvi and can be verified by using pkvi , as explained in the next subsection.

To summarize, each submission consists of the following: encrypted contents of a cast ballot

(E(Bi)), proofs of each ciphertext (PPKs(i)), proofs of total number of assigned points for the ballot

(PZK(i)) and a digital signature (Sigvi).

49

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

4.3.4 Ballot Verification Stage

The contents of each submission are posted on the public bulletin board, including all encrypted

values, all proofs and the digital signature. However, to prevent tallying any invalid ballot to the

final result, the verification of each submission is a necessary and crucial step. It consists of the

following three verifications: (1) verifying whether the sender of the submission is authorized, (2)

verifying whether each encrypted element of the cast ballot (E(Bi)) is either E(1) or E(0), and (3)

verifying whether the total number of assigned points of the E(Bi) is equal to P.

In our system, each ballot is tallied to the final result only if its submission has been validated

in the following three verification steps.

(1) Verify the sender of each submission: In order to prevent unauthorized people imper-

sonating authorized voters, we require each voter to sign their submission by using their private

key (skvi) based on the DSA algorithm. This means that the signature can be verified by using

the voter’s public key (pkvi).

Since the pkvi of every authorized voter is posted on the public bulletin board once he/she

is successfully registered, it follows that anyone can verify whether a subsequent submission is

sent by an authorized voter or not. To this end it suffices to verify its signature. For example, if

V eri f ySignature(Sigvi , pkvi) is true, then the identification of the sender holds true and the

sender is an authorized user; otherwise, the submission is discarded.

(2) Verify each encrypted element of the cast ballot: Each ballot is treated as a binary

matrix during ballot casting, as in Figure 4.2(b). It means that each element of a valid submitted

ballot must be either E(1) or E(0), as in Figure4.2(c).

Our system generates proofs for each voter submission based on the well-known proof of par-

tial knowledge protocol (cf. Section 2.1.2). This proof can be used to verify each encrypted element

of the ballot without decryption. The verification of each element consists of two statements, both

of which have to be confirmed as true. If either of these two statements is not true, then the whole

ballot E(Bi) cannot be counted in the final result. Only if all elements of the E(Bi) are confirmed

50

4.3. OUR LSPVRC ONLINE VOTING SYSTEM

as valid, then E(Bi) is considered as valid.

(3) Verify the total number of assigned points of the cast ballot: The total available

points (P) of a ballot has been confirmed before the election. It is necessary to verify that the total

number of assigned points for each ballot are equal to P in order to prevent a voter assigning

more points to their ballots. In our system, we require each voter to generate proof for the total

number of assigned points for their ballots based on zero knowledge proof procedure explained in

Section 2.1.3.

In this case, anyone is able to compute the total assigned points of any submitted ballots

according to lines 1 to 8 of Algorithm 5. Then the self-computed value can be verified by using the

voter-generated proof without decrypting anything. For convenience of the readers, more details

on zero knowledge proof procedure are given in Section 2.1.3.

4.3.5 Tallying and Revealing Stage

In our system, each cast ballot is encrypted by using ElGamal encryption algorithm, which

allows all encrypted ballots to be tallied directly without decrypting the contents of any ballot (cf.

Section 2.1.1.1).

The tallying is performed on each row of the binary ballot matrix, because each row denotes

the received points of a particular candidate. In this case, we use P c j to denote the final tallied

result for Candidate C j, where i ∈ [1,nc]. In order to tally P c j for C j, the assigned points of each

encrypted ballots are converted to decimal values by doing the exponentiation computation (cf.

Section 2.1.1.1). Once all encrypted ballots are converted as encrypted decimal ballots, the final

result can be tallied based on different rows of all ballots. An illustration of tallying two encrypted

ballots E(B1) and E(B2) is shown in Figure 4.3 where there are 3 candidates C1, C2 and C3.

The procedure of tallying all valid encrypted ballots is described in Algorithm 6.

Since the final tallied results (P c1 , · · · ,P cnc) for all candidates remain stored as ciphertexts,

all of them have to be decrypted before publication. According to the distributed ElGamal

51

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

Figure 4.3: An illustration of tallying two encrypted ballots.

Algorithm 6: Tally all valid encrypted ballots.
Input :all encrypted ballots E(B1), · · · ,E(Bnv)
Output : P c1 , · · · ,P cnc

1 for j ← 1 to nc do
2 set P c j = E(0)
3 end
4 for i ← 1 to nv do
5 for j ← 1 to nc do
6 set t = 1
7 for k ← LP to 1 do
8 P c j = P c j × (C(i)

j,k)t . cf. Section 2.1.1.1
9 t = t×2

10 end
11 end
12 end
13 return P c1 , · · · ,P cnc

cryptosystem (cf. Section 2.1.1.1), the decryption procedure can only be done by collaboration of

all authorities (A1, · · · , Ana), which requires each A i to compute a partially decrypted value (cf.

Section 2.1.1.1), such as c
skAi
1 and broadcast it to the others. In order to prevent a compromised

A i from any bad actions, such as somehow computing the value incorrectly, our system requires

each A i has to generate proof of zero knowledge (cf. Section 2.1.3) in order to prove that the

broadcast value is computed correctly, such as the exponent of the broadcast value (e.g. c
skAi
1)

must be the same as the exponent of its public key (e.g. pkA i = gskAi).

After decryption, the tallied result of each candidate must be revealed (cf. Section 2.1.1.1)

and published on the bulletin board.

52

4.4. SECURITY ANALYSIS ON LSPVRC

4.4 Security analysis on LSPVRC

This section is devoted to a theoretical security analysis of our system. Note that none of the

previous related papers provided a formal security model. They only included a description and

an informal security discussion of their systems: see Section 1. Our system relies on the ElGamal

cryptosystem and several basic cryptographic protocols, which are presented in Section 2 and

have reliable published proofs of their security. This is why here we include brief self-contained

proofs of several theorems, which demonstrate that our proposed system fulfils all the security

requirements.

Theorem 6. If the digital signature algorithm (DSA) is unforgettable, no one is able to submit a

ballot by impersonating another voter.

Proof. In order to prevent adversaries from casting ballots by impersonating authenticated

voters, we use a digital signature algorithm (DSA), which requires each voter Vi to have a key pair

(public key pkvi and private key skvi). The key pair is generated only if a voter is successfully

verified during the registration. Then the pkvi of each verified voter is posted on the public

bulletin board, and the voter is responsible for keeping their private key secret.

Once the election starts, each authorized voter signs their cast ballot by using their skvi ,

and submits the encrypted ballot E(Bvi ,PK) (which indicates the cast ballot Bvi by voter Vi

is encrypted using the common public key PK) along with their signature Sigvi to the public

bulletin board, such as

{E(BV1 ,PK),corresponding proofs,Sigv1}

on the bulletin board. Others are able to verify the eligibility of each submission by verifying

the Sigvi using the corresponding pkvi of Vi, where all pkvi of the successfully registered voters

should be published on the public bulletin board.

In our protocols, no skvi of voters is ever transferred. This means that only the voters

themselves know their private keys. Therefore, no one is able to fake a voter’s signature without

53

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

the private key, and an adversary cannot submit a ballot by impersonating an authorized voter.

�

Theorem 7. Only one submission from each voter can be stored on the server.

Proof. In our voting system, only the content of a submitted ballot is encrypted, the identification

of the voter is in plaintext and can be viewed by everyone. For instance, in the extended previous

example

V1 → {E(BV1 ,PK),corresponding proofs,Sigv1}

where the Vi is not encrypted.

Everyone is able to see the voter has submitted their ballots (e.g. voter’s name or ID Vi is

plaintext), but no one is able to discover how he/she voted.

Thus, multiple-voting detection is achieved by our system, because it is clear that it can always

detect whether a voter has previously submitted a ballot: the voter id Vi for each submission is

done on plaintext in the public bulletin board.

Furthermore, according to the requirements in the real-life case, our system can keep the first

submission of each voter or replace the previous submission for each voter before the deadline. �

Theorem 8. If the ElGamal cryptosystem is semantically secure and at least one of authorities is

honest, then the contents of ballots will not be revealed during ballot submission.

Proof. Every cast ballot is encrypted before submission. We use the distributed ElGamal cryp-

tosystem (cf. Section 2.1.1.1), which inherits the homomorphic property from the standard

ElGamal system and is semantically secure as long as at least one of authorities is honest.

In our system, no one can reveal the contents of the ballots because of the following three

reasons. First, all the submitted ballots remain in encrypted form as ciphertexts E(Bvi ,PK) all

the time. The homomorphic property makes it possible to add all E(Bvi ,PK) without decrypting

them. Second, there is no relationship between the ciphertexts E(Bvi ,PK) and the corresponding

54

4.4. SECURITY ANALYSIS ON LSPVRC

plaintexts Bvi , since the cryptosystem employed is probabilistic. It applies random numbers so

that the ciphertext E(Bvi ,PK) can take on different values even when the encryption E(Bvi ,PK)

is computed with the same Bvi and PK . Third, the decryption must be done via collaboration of

all authorities A i as in the expression

D(E(Bvi ,PK), skA i , · · · , skAna
),

where Bvi cannot be correctly computed if any of the skA i is missing. As mentioned above, we

assume that at least one of the authorities is honest and will not help others to do the decryption.

Thus, the contents of each ballot remain secure. �

Theorem 9. If the partial knowledge proof protocol (cf. Section 2.1.2) and the zero knowledge

protocol (cf. Section 2.1.3) o not reveal knowledge, contents of ballots will not be revealed during

ballot verification.

Proof. In order to prevent counting invalid ballots to the final result, each encrypted ballot has

to be verified before tallying. In our system, each encrypted ballot will be verified from 2 aspect:

verify each encrypted element of the ballot, and verify the total number of assigned points of the

ballot. Neither of the verification algorithms will reveal the voter’s privacy, the analysis is shown

as follows:

Verifying each element of a ballot: For an encrypted ballot, each element in the ballot is

encrypted individually. We also require the voter to generate proofs of each element, which is

computed based on proofs of partial knowledge (cf. Section 2.1.2).

The proof of each encrypted element PPK{...} is generated based on the proof of partial

knowledge, which consists of T0,T1,T2,v1,v2, s1 and s2, where v2 and s2 are random values, and

T0,T1,T2,v1, s1 are computed by using random values t,v2, s2. Furthermore, the proof of partial

knowledge is given in [Adi08], which will not reveal the content of the original plaintext.

55

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

By using PPK{· · · }, everyone can verify any element without decryption. The verifier(s) could

only know if an element is either E(0) or E(1), but cannot determine the exactly value of the

element is 0 or 1, and so the content of the ballot did not be revealed.

Only if all elements of a ballot are verified as valid, can the ballot be regarded as valid. In this

case, we assume/assert the proof of zero knowledge is secure and will not reveal the information

of the content. Thus, our protocol is secure and will not revealing voter privacy.

Verifying the total number of assigned points of a ballot: The total number of assigned

points of a ballot can be computed according to lines 1 through to 8 of Algorithm 5. We also

require each voter to generate the proof for the total assigned points in order to convince the

verifier(s) that the total number of assigned points is equal to the total available points.

According to the proof of knowledge PZK{...} (cf. Section 2.1.3), the self-computed total

assigned points by verifier(s) can be verified by using voter-generated proofs without decrypting

the self computed value.

The PZK{...} consists of T1,T2,v and s, where all of these elements are generated by using

another random number t, which is unrelated to PZK{...} and PPK{...}. This means that nobody

can derive any useful information from PZK{...}. The usability of PZK{...} is proved in [YYR+17].

Moreover, even if the total number of assigned points of the ballot is decrypted, the voting

preferences of the voter will not be disclosed and the voters’ privacy will not be revealed because

the total number of assigned points of each ballot should equal the total available points (public

information), otherwise the ballot will be considered invalid and be discarded. �

None of the steps “verify each element of the ballot”and “verify the total assigned points

of the ballot”require decryption. It follows that no one is able to reveal the content from the

ciphertext without decryption because of the assumption that the ElGamal cryptosystem is

secure. Furthermore, the decryption needs the collaboration of all authorities, and we assume

that an honest authority will never commit bad actions. This means that decryption will never be

executed in cases where it is not required. To sum up, the contents of the ballot and the privacy

56

4.4. SECURITY ANALYSIS ON LSPVRC

of voters remain secure in our verification protocols.

Theorem 10. Integrity of ballots is secured after submission.

Proof. We require voters to sign their ballots by using their private keys based on DSA, and we

assume that all voters do not share their private keys with anyone else, to ensure that nobody

can fake anyone else’s signature.

The integrity of ballots can be protected in the following aspects: 1) Voters are able to save all

contents (the ciphertexts) of the submissions as original receipts. Once the signature is verified,

all contents are posted to the public bulletin board: voters can easily detect if their submissions

are modified by comparing the original receipts and the published contents. 2) Once all contents

of the submissions are posted on the public bulletin board, everyone can verify the integrity of

any ballot by verifying the signature of the submission, because the signature is computed based

on the content of the ballot (cf. Section 4.3). �

Theorem 11. Invalid ballots will be detected and discarded before tallying.

Proof. To prevent any invalid ballot from being tallied in the final result, each ballot has to

undergo two verifications to check the total number of assigned points of a ballot and each

element in the ballot.

Verifying each element in a cast ballot: In our protocol, the verifiers are able to verify

that any element of a submitted ballot is either E(0) or E(1), which is used and proved in

[Adi08, ADMP+09]. Once the ballot is verified as consisting only of 0s or 1s in plaintext, it follows

that the voter did not assign negative points to any candidate because the value (decimal) of a

binary that contains only occurrences of the digits 1 and/or 0 must be greater than or equal to 0.

Once all elements are verified as valid, all candidates of the ballot receive non-negative points.

Verifying the total number of assigned points in a cast ballot: An honest voter can

assign any point to any candidate according to their personal preferences, but the sum of all

57

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

assigned points PBi should be equal to the total available points P for a ballot, which is confirmed

before the election begins.

In our system, the total number of assigned points of a ballot can be computed according to

lines 1 to 8 of Algorithm 5, and verified by using voter-generated proof (cf. Section 4.3.4). Once

the total assigned points is verified as valid, it follows that the voter did not assign excess points

to the ballot, which is used and proved in [YYR+17]. �

To sum up, a ballot can be considered as valid and contribute to the final result if and only if

1) the voter did not assign negative points to any candidate and 2) the voter did not assign excess

points for the ballot. Otherwise, the ballot will be discarded.

Theorem 12. Voters are able to verify the integrity and eligibility of their ballots and the correct-

ness of final tallied result.

Proof. In our system, all contents (encrypted ballot, all proofs and signature) of each submission

are be posted on the public bulletin board, where they can be accessed by anyone. We assume that

the bulletin board is secure, and it is “append-only”. Voters can use the contents published on

the public bulletin board to verify the following. First, they can verify the integrity of their own

submission, because in the ElGamal cryptosystem each ciphertext (gr, gm · yr) can be verified,

since g and y are public values, m is the voting message and each r is known to the corresponding

voter. Thus, each voter can verify that the ciphertext is a correct encryption of the ballot. Second,

all participants can verify the eligibility of submissions of other voters, because the “verification

of each submission uses only encrypted submissions available to all users as part of our system

(see Section 4.3.4).

Furthermore, the final tallied result (ciphertext) can also be computed by anyone, because all

encrypted ballots have to be tallied based on additive and multiplicative homomorphic property of

ElGamal cryptosystem (cf. Section 2.1.1.1), which is also a publicly accessible algorithm. The final

decryption is performed by the collaboration of all authorities, where each authority computes

58

4.5. PERFORMANCE ANALYSIS ON LSPVRC

the partial decryption value by using their secret keys. In our system, we require that each

authority A i be able to convince other users that the computed value (gr)skAi is the partial

decryption of ciphertext (gr, gm · yr) using proof of zero knowledge, where the value has the same

exponentiation as gskAi , the public key of the authority. �

4.5 Performance Analysis on LSPVRC

The analysis of performance of each processing step is presented in a separate subsection below.

All tests were performed using a 1024-bit key (p and q are 1024-bit). All tests were performed

on a laptop with the following specifications: 2.8GHz quad-core Intel Core i7 (Turbo Boost up to

4.0GHz) with 6MB shared L3 cache and with 16GB of 1600MHz DDR3L onboard memory. We

used a high performing implementation from libgmp via the gmpy2 python module [GMP]. We

use t to denote The computation time of one exponentiation is denoted by t. For the computer

used in our experiments, we have t = 0.00012 seconds.

ElGamal encryption requires two exponentiations, and ElGamal decryption requires one

exponentiation (cf. Section 2.1.1.1), where the division can be avoided by using an alternative

method [ElG85]. In this case, we use tE and tD to denote the computation time of encryption and

decryption, respectively, where tE = 2t and tD = t, approximately.

4.5.1 Performance of the voter side

On the client-side, each voter should cast a ballot and submit it to the server. In order to prevent

the voting preferences of each ballot being revealed after submission, we require each voter to

encrypt their cast ballots, where every element in the ballot must be encrypted.

In this case, we set P = 2nc, so that the total available points P is equal to twice the number

of candidates nc. For example, if there are 10 candidates (nc = 10) in the election, each voter has

20 available points (P = 2nc = 20) for their cast ballot. Since all elements in the cast ballot have to

be encrypted, the larger the number of candidates participating, the more encryption processing

59

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

time is required and the larger the submission grows. Therefore, the performance of the voter

side can be summarized in two aspects: total computation time and total submission size.

Total computation time. We use the well-known Digital Signature Algorithm (DSA) to

sign each ballot before submission. The processing time of signing is approximately equal to the

time of one exponentiation, that is t. Thus, according to Section 4.3, the total computation time

for a voter can be presented as the total computation time of E(Bi), PPKs(i), PZK(i) and Sigvi ,

which can be expressed as

2t×nc ×LP +5t×nc ×LP +2t+ t.

In this experiment, we test the total time spent for encrypting one ballot in five rounds on the

laptop, according to different numbers of candidates (nc =3, 5, 10, 15, 20) and different total

available points (P = 2nc = 6, 10, 20, 30, 40). Hence the numbers of bits (LP) for each available

points are LP = 3, 4, 5, 6, 6, respectively. The result is shown in Figure 4.4.

Figure 4.4: Estimate total time spent casting a ballot when the number of candidates (nc) is 3, 5, 10, 15,
20, and the total available points (P) is 6, 10, 20, 30, 40. The performance of the system considered in
[YYR+17] is also shown.

The computation time presented in Figure 4.4 does not include the thinking time of the voters.

It represents only the computation time of the algorithm converting all plaintext ballots cast by

60

4.5. PERFORMANCE ANALYSIS ON LSPVRC

the voters to ciphertext ballots and tallying them.

From the results in Figure 4.4, we can see that the time cost for casting a ballot is approxi-

mately 0.1 seconds even if there are 20 candidates in the election.

Total submission size. In our system, the size of a ciphertext that is encrypted by El-

Gamal is 2048-bit (cf. Section 2.1.1.1), and the size of proofs for each ciphertext is 7168-bit (cf.

Section 2.1.2). Furthermore, the size of proof of total number of assigned points is 5120-bit (cf.

Section 2.1.3) and the size of digital signature is 2048-bit. Thus, according to Section 4.3, the

total submission size for a voter can be summarized as the total size of E(Bi), PPKs(i), PZK(i)

and Sigvi :

2048×nc ×LP +7168×nc ×LP +5120+2048.

In this experiment, we test the total submission size (including all encrypted elements, all proofs

and a digital signature) for one cast ballot in five rounds on the laptop, according to different

numbers of candidates (nc = 3,5,10,15,20) and different total available points (LP = 3,4,5,6,6).

The result is shown in Figure 4.5.

Figure 4.5: Estimate total size of one submission (including all encrypted values and all proofs) when nc
is 3, 5, 10, 15, 20, and P is 6, 10, 20, 30, 40. The performance of the system considered in [YYR+17] is also
shown.

61

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

From these results, we found that the size of one submission is less than 150KB even for a

20-candidate ballot including all encrypted values and all proofs. It may be hard for the voters

to compare too many candidates, and so much larger numbers of candidates seldom occur in

elections. According to the Speedtest Global Index [36], in December 2017 the global average

internet speed was equal to 21.25 Mbps download with 8.88 Mbps upload for mobile internet

connections, and 40.71 Mbps download with 20.22 Mbps upload for fixed broadband connections,

respectively. The Speedtest Global Index [Spe17] evaluates and ranks the mobile and fixed

internet connection speeds from around the world on a monthly basis. This demonstrates that the

submission size of a cast ballot in our system is small enough to be submitted over the internet

without delays for the voters. Note that the internet connection speed is rapidly increasing in the

whole world.

Besides, in implementing practical applications the running time of our system can be

improved further fine-tuning the system, for example, if the secure method for handling the

encryption proposed in [KKJ+16] is applied. Other efficient applications of encryption have been

developed, for example, in [BSE17, BHRC17, PRB+17, XMY+17].

4.5.2 Performance of the server side

The performance of the server can be summarized from two aspects: verification of senders and

verification of ballots. The verification of each sender is equivalent to verifying the digital signa-

ture of each submission, which does not cost much computation time. Therefore, we concentrate

on the performance of ballot verification, which has two parts: the time of verifying each element

of each ballot and time of verifying the total assigned points of each ballot. The total computation

time on the server side is equal to

6t×nc ×LP ×nv +4t×nv

Our experiments determined the total time spent on verifying all submitted ballots in five rounds

according to different numbers of voters (nv = 1000,2000,4000,7000,10000). In this experiment,

62

4.5. PERFORMANCE ANALYSIS ON LSPVRC

we assume that the number of candidates is 10 (nc = 10), and the total available points for a

ballot is 20 (P = 20). Thus, the result is shown in Figure 4.6.

Figure 4.6: Estimate of the total time required for the verification of all ballots for 1000, 2000, 4000, 7000,
10000 voters, in the case of 10 candidates in the election. The performance of the system considered in
[YYR+17] is also shown.

From the results in Figure 4.6, we found that the time spent of verifying 10,000 ballots

took approximately 6 minutes using the same laptop (the specifications of which are provided

in the beginning of this section). Furthermore, in our protocols, all verifications can be done

by an individual without collaboration with others. Thus, all submitted ballots can be divided

into multiple groups for simultaneous verification by different authorities. This can significantly

reduce the time spent. For example, if there are 10 authorities in the election, then in practice the

total verification time is approximately 10 times faster than the corresponding result presented in

our diagrams, because in practice all authorities can work in parallel at the same time. Moreover,

in the case of actual elections, it is natural to expect that cloud computing services will be

available or multicore super computers can be used to execute the algorithms in parallel. This

means that the running time will be further reduced.

The results presented in Figures 4.4, 4.5, and 4.6 clearly demonstrate that our system has

63

CHAPTER 4. A LSPVRC ONLINE VOTING SYSTEM

achieved a substantial improvement in the running time in comparison to [YYR+17]. It is easy

to see this, because all the experimental results of [YYR+17] are also included as line graphs in

Figures 4.4, 4.5, and 4.6.

4.6 Conclusion

In this chapter, we propose a LSPVRC online voting system, which is an extended version

of the PVRC system (in Chapter 3). The LSPVRC online voting system allows the voters to

cast their ballots by assigning arbitrary numbers of points to different candidates. This means

that the voters can assign equal points to different candidates, and they are also allowed to

assign different points to different candidates. Our system incorporates the distributed ElGamal

cryptosystem. Each cast ballot is encrypted before submission and remains encrypted at all times.

The additive homomorphic property of the exponential ElGamal cryptosystem enables effective

processing of the ciphertexts during these procedures. Furthermore, the eligibility of voters and

their submissions can be verified by anyone without the contents of the ballots being revealed.

The security and performance analysis not only confirm the feasibility of our online voting system

for practical elections but also demonstrate that it has achieved significant improvements over

other systems considered previously.

64

Chapter 5

A SDPVRC Online Voting System

5.1 Motivation of SDPVRC

In the previous Chapter, a LSPVRC (Large-Scale Public Verifiable Ranked Choice) online

voting system is proposed by using a score based voting mechanism. However, there is a limitation

of the system, which is that we have to assume that there are multiple tallying authorities in

the system and at least one of them is honest since otherwise, the system is not secure if all

authorities colluded. In this Chapter, we aim to solve this issue.

In this chapter, a SDPVRC (Semi-Decentralized Public Verifiable Ranked Choice)

online voting system is proposed. We argue that Blockchain technology, combined with modern

cryptography can provide the transparency, integrity and confidentiality required from reliable

online voting. Furthermore, we present a decentralized online voting system implemented as a

smart contract on the Ethereum Blockchain. The system only needs one tallying authority, and

he/she can never reveal any voter’s privacy.

65

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

5.2 Preliminaries of SDPVRC

We aim to propose a SDPVRC online voting system using a smart contract deployed on Ethereum.

The system reduces the responsibilities of election authorities to a minimum and allows candidate

ranking, instead of just voting for one candidate [MSH17]. The system’s voting mechanism is

inspired by score voting (also used in LSPVRC online voting system, Chapter 4), which enables

voters to assign points to different candidates directly without any restrictions apart from the

total number of available points specified (Figure 4.1).

Our proposed decentralized voting system uses the exponential ElGamal encryption system

(Section 2.1.1) and an open ballot network protocol (Section 2.1.5). The additive homomorphism

property of the cryptographic system makes it possible to tally encrypted ballots directly without

decrypting them. This proposed system also incorporates cryptographic proofs to ensure the

integrity of the voting process and to verify the validity of each ballot before it is saved to the

Blockchain. To the best of our knowledge our voting system is the first decentralized ranked

choice online voting system in existence, which meets the following security requirements in

Chapter 1.

5.2.1 Decentralized Voting with Smart Contract

Ethereum provides a natural platform for our distributed voting system, in that it provides a

decentralized “public bulletin board" to support coordination amongst voters. The execution of the

election procedure is enforced by the same consensus mechanisms that secures the Blockchain.

The smart contract code is stored on the Blockchain and executed by all peers to reach consensus

on its output.

We present a simple voting contract written in Ethereum’s Solidity language. The implemen-

tation was deployed on Ethereum’s Kovan test network and the contract’s interface is as follows:

VotingContract(candidateList, voterList, definedPoint): this is the constructor function of the

contract. In order for the election administrator to deploy a new contract, there are three para-

66

5.3. OUR SDPVRC ONLINE VOTING SYSTEM

meters that have to be provided: 1) a list of candidates; 2) a list of eligible voters; and 3) total

available points. Once the contract is deployed, it is immutable.

submitVote(vote, voterSign): an eligible voter is able to cast and submit a vote via this function.

This function calls a contract internal verifyPendingVote(vote) function, which verifies the

eligibility of the vote. The function returns true (success) or false.

verifyAddedVote(voterID) constant returns (bool): Each voter is able to verify the eligibility of

any other voter’s submission before self-tallying.

tallyVotes(candidateName) constant returns (uint8): voters can tally any candidate’s final

received points independently by using this self-tallying function.

The above voting contract submits and stores data in plaintext format. In order to protect the

privacy of voters, an encryption system has to be used.

5.3 Our SDPVRC Online Voting System

In this section we present our proposed decentralized, self-tallying, ranked choice, smart contract-

based voting system. The basic idea is as follows: The election administrator deploys a voting

contract by confirming public parameters (such as the public key of the election). Each voter can

then submit a ballot via the voting contract, with each ballot constituting a transaction of the

Blockchain system. In case of the ballot not being verified as valid by the checks performed in

the smart contract, the transaction reverts. After being mined by the Blockchain’s consensus

algorithm, the ballot is considered final. Figure 5.1 presents the stages of our proposed election.

Figure 5.1: The five steps of our proposed decentralized online voting system.

The involved participants in our proposed system are:

Election administrator: An election administrator is required to set the election’s parame-

67

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

ters, begin the registration stage and add voters to the list of eligible voters. The administrator

should also generate a key pair (public key and private key) of the election and contribute the

public key to the Blockchain. Furthermore, the administrator is responsible for voter registration,

generating a candidate list, setting rules of the election, and deploying the voting contract, which

cannot be changed once the election started.

Candidates: A list of candidates is generated by the election administrator. Each candidate

is a contestant in the election and will receive points from different voters.

Voters: Each voter has a private key and public key. The public key is added to the Blockchain

after the eligibility of the voter is verified by the election administrator. The voter can submit

his/her cast ballot via the function provided by the smart contract.

Blockchain database: A distributed and append-only database. All submissions will be

added to the latest block of the chain once they are verified.

The system consists of the following stages: initialization stage, registration stage, ballot

casting stage, ballot verification stage and tally stage. Table 5.1 provides the notations used to

explain our protocols.

Table 5.1: Notations used in the rest of Chapter 5.

nc: number of Candidates
nv: number of Voters
Vi: i-th voter; i ∈ [1,nv]
C j: j-th candidate; j ∈ [1,nc]
xc j

vi : secret key of i-th voter that is used to vote for C j candidate; i ∈ [1,nv], j ∈ [1,nc]
pk: public key of election administrator
sk: secret key of election administrator
P: the pre-defined point, where the sum of all assigned points must equal to P.

pc j
vi a point that is assigned by Vi to C j, i ∈ [1,nv], j ∈ [1,nc]

pc j total received point of C j, j ∈ [1,nc]
PZK{...}: proof of zero knowledge

68

5.3. OUR SDPVRC ONLINE VOTING SYSTEM

5.3.1 Initialization Stage

Before an election can start the cyclic group (G, p, g) is defined. The election administrator

generates an ElGamal key pair (public key pk and secret key sk), and pk is added to the

Blockchain database, which can be accessed by all voters.

The only rule for defining the election parameters is that the sum of all assigned points

must be a fixed number (which we treat it as P), the election administrator defines a list of the

candidates and the value of P before the election starts.

5.3.2 Registration Stage

In order to register, each voter must select nc secret keys xc j
vi ∈ Zp and compute the nc correspond-

ing public keys gx
c j
vi (mod p). The voter must register his real-world identification and his/her nc

public keys to the election administrator. Once the eligibility is verified, the voter will be added

to the list of eligible voters, and all his/her gx
c j
vi will be added to the Blockchain. Once all eligible

voters are registered for the election (or the deadline of registration has passed), the election

administrator deploys the voting contract.

5.3.3 Ballot Casting Stage

The proposed voting system allows voters to assign different scores to different candidates

according to their personal preferences. There are three phases in the voting stage: pre-computing,

ballot casting and proof generation.

We do not remove the connection between the identity of voters and their ballots, meaning

everyone can see that a voter submitted his/her ballot. However, the content of ballots is encrypted,

meaning no-one is able to reveal the content of any individual ballot.

Pre-computing: We assume there are nv registered voters, and all gx
c j
vi are viewable in the

Blockchain database. Thus, the pre-computing values yc j
vi of voters can be computed by using all

69

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

other gx
c j
vi via Equation 2.3. At the end, each Vi has nc pre-computed values as yc1

vi , yc2
vi , · · · , ycnc

vi ,

and each value can only be used to ballot for the particular C j.

Ballot casting: Each Vi is able to assign any integer point (from 0 to P) to different candi-

dates, but the sum of all assigned points must equal to P (see Figure. 4.1), which is the rule each

voter has to follow. Because each ballot consists of multiple assigned points (according to the

number of candidates), those points are treated as private and confidential to the voters. Thus,

those scores must be encrypted before submission. In our case, we use pc j
vi to denote a score that

is assigned by voter Vi to candidate C j, which will be encrypted twice: ElGamal encryption and

distributed encryption.

ElGamal encryption Each assigned point is encrypted using the public key pk of the

election administrator. For example

E(pc j
vi , pk)= gr, g(p

c j
vi) · pkr

meaning the score pvi
c j is encrypted using pk according to the ElGamal encryption.

Distributed encryption: Once the point is encrypted by ElGamal encryption, the first part

(gr) of the encrypted value will be "encrypted" again by using the private voting key (xvi) of the

voter Vi, such as

gr → (yc j
vi)

x
c j
vi · gr

where yc j
vi is computed during the pre-computing phase and publicly accessible.

To summarise, we developed the encryption algorithm based on both the ElGamal encryption

and group-based encryption, meaning each assigned point will be encrypted as per Equation 5.1.

(5.1) E(pc j
vi , pk, yc j

vi , xc j
vi)= (yc j

vi)
x

c j
vi gr, g(p

c j
vi) · pkr

70

5.3. OUR SDPVRC ONLINE VOTING SYSTEM

where pc j
vi is encrypted by using pk (public key of the election), yc j

vi (pre-computed value that

is used by Vi to ballot C j) and xc j
vi (the particular private key of Vi to ballot for C j). Thus, a cast

Bvi (with nc candidates) can be presented as:

Bvi =

E(pc1

vi , pk, yc1
vi , xc1

vi)

...

E(pcnc
vi , pk, ycnc

vi , xcnc
vi)

Proof generation: In order to allow anyone to verify the eligibility of each ballot without

decrypting the cipher text and revealing the content, each voter is required to generate several

proofs for his/her ballot before submission (PZK denotes zero knowledge proof):

• PZK(xc j
vi): to prove each encrypted point for the candidate C j is computed correctly using

the voter’s private key xc j
vi .

• PZK(P): to prove that the sum of all encrypted points is equal to P.

The voter vi has to generate PZK(xc j
vi) for each encrypted point E(pc j

vi , pk, yc j
vi , xc j

vi), and PZK(P) for

the Bvi . The summarised processing procedure of the voting stage is shown in Algorithm 7.

Remark 3 The computation details about how to generate the PZK(xc j
vi) and PZK(P) can be found

in Appendix A.1.

5.3.4 Ballot Verification Stage

In order to prevent multiple counting of any individual ballot into the final result, ballot verifica-

tion is required as follows:

Verify each encrypted point: In order to prevent having any error during tallying all

submissions, each encrypted point E(pc j
vi , pk, yc j

vi , xc j
vi) has to be confirmed as to have been computed

with the correct parameters. The verification can be done by using the corresponding proofs

PZK(xc j
vi) that are generated during ballot casting.

71

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

Algorithm 7: function submitBallot
Input :pre-defined point: P, public key pk,

all secret keys of Vi: xc1
vi , · · · , xcnc

vi

voting public keys of all voters gxc1
v1 , · · · , gxnc

vnv

Output : Bvi

1 computes yc j
vi , j ∈ [1,nc]. . refer to Equation 2.3

2 set Bvi = []
3 for j ← 1 to nc do

4 E(pc j
vi , pk, yc j

vi , xc j
vi)=

(
(yc j

vi)x
c j
vi · gr, gp

c j
vi · pkr) . refer to Equation 5.1

5 PZK(xc j
vi): {K1,K2, Z1, Z2} . Remark 3

6 Bvi = Bvi ∪ [E(pc j
vi , pk, yc j

vi , xc j
vi),PZK(xc j

vi)]
7 end
8 PZK(P): {T1,T2, s, z} . Remark 3
9 Bvi = Bvi ∪ [PZK(P)]

10 Sigvi =Sign(Bvi)
11 if verifyPendingBallot(Bvi) == False then
12 | return False
13 end

14 return Bvi =

E(pc1

vi , pk, yc1
vi , xc1

vi),PZK(xc1
vi)

...
E(pcnc

vi , pk, ycnc
vi , xcnc

vi),PZK(xcnc
vi)

PZK(P)

 ,Sigvi

Verify sum of all encrypted points: According to the rules of the election, each voter

cannot assign more than the pre-defined total available point P in his/her cast ballot. Using

homomorphic addition, anyone is able to compute the sum (encrypted) of all encrypted points

and verify the value by using the corresponding proof PZK(P) that are generated by the voter.

The processing procedure of the verification is shown as Algorithm 8 (The purpose of function

verifyAddedBallot is similar, but the input parameters differ).

Remark 4 The computation details about how to verify the PZK(xc j
vi) and PZK(P) can be found

in Appendix A.2.

5.3.5 Tallying and Revealing Stage

Once all voters have submitted their Bvi and the deadline of submission has passed, the election

administrator must do the following: 1) compute the tallying result (via homomorphic addition),

2) compute their partially decrypted value and proof; 3) send partially decrypted values (including

72

5.3. OUR SDPVRC ONLINE VOTING SYSTEM

Algorithm 8: function verifyPendingBallot

Input : Bvi , g, all gx
c j
vi , all yc j

vi

Output :Valid or Invalid
1 for j ← 1 to nc do
2 sum ∗= E(pc j

vi , · · ·)
3 //verify E(pc j

vi , · · ·) using corresponding PZK(xc j
vi) . Remark 4

4 E(pc j
vi , · · ·)= (c1, c2) . refer to Algorithm 7

5 PZK(xc j
vi)= {K1,K2, Z1, Z2} . refer to Algorithm 7

6 compute c = Hash(K1‖K2)

7 if (yc j
vi)

Z1 gZ2 6= K1 × (c1)c OR gZ1 6= K2 × (gx
c j
vi)c then

8 return False
9 end

10 end
11 //verify sum using corresponding PZK(P) . Remark 4
12 assume sum = (c1, c2)
13 PZK(P) = {T1,T2, s, z} . refer to Algorithm 7
14 compute c = Hash(T1||T2)

15 if (yc j
vi)

s 6= (
c1

z
)c ·T1 OR pks 6= (

c2

gP)c ·T2 then

16 return False
17 end
18 return True

proofs) to the Blockchain.

Each point is encrypted using our developed encryption algorithm (Equation 5.1), in which

the cipher texts can be computed by homomorphic addition. In this case, we can simply multiply

all Bvi in the Blockchain database as shown below, where we assume there are nv voters and nc

candidates, and all Bvi have been verified as valid.

(5.2)
nv∏
i=1

Bvi =

∏nv

i=1 E(pc1
vi · · ·)

...∏nv
i=1 E(pcnc

vi · · ·)

=

∏nv

i=1(yc1
vi)xc1

vi gr1 , g
∑nv

i=1 pc1
vi pkr1

...∏nv
i=1(ycnc

vi)xcnc
vi grnc , g

∑nv
i=1 pcnc

vi pkrnc

Due to

∏nv
i=1(yc j

vi)
x

c j
vi = 1 (refer to Section 2.1.4),

∏nv
i=1 Bvi can be treated as nc ciphertexts by

ElGamal encryption, such as E(
∑nv

i=1 pc j
vi), j ∈ [1,nc].

The election administrator then has to compute partially decrypted values, such as (gr1)sk, · · · , (grnc)sk.

73

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

He/she must also generate the corresponding proof for each partially decrypted value to prove

that each value is computed correctly using the secret key sk. Finally, the election administrator

broadcasts the partially decrypted values (including the corresponding proofs PZK(sk)) to the

Blockchain. The winner of the election can be computed by any voter with Algorithm 9.

Algorithm 9: function tallyBallots
Input :all valid ballots Bv1 , · · · ,Bvnv in Blockchain

all partial decryption values (gr1)sk, · · · , (grnc)sk by election administrator
Output : pc1 , · · · , pcnc

1 compute
∏nv

i=1 Bvi . refer to Equation 5.2
2 //verify each partial decryption value using corresponding PZK(sk)
3 for j ← 1 to nc do
4 verify (gr j)sk using corresponding PZK(sk) . Remark 5
5 end
6 //reveal result for all candidate using partial decryption values
7 for j ← 1 to nc do

8 pc j =
∏nv

i=1 gpc1
vi pkr j

(gr j)sk = g
∑nv

i=1 p
c j
vi (gsk)r j

(gr j)sk = gp
c j
v1+···+p

vc j
vnv . refer to Section 2.1.4

9 end
10 return pc1 , pc2 , · · · , pcnc

Remark 5 The verification of each partial decrypted value can be treated as verifying if (gr j)sk

has the same exponentiation as pk, where pk = gsk. The procedure is the same as the example in

Section 2.1.3.

5.4 Security Analysis on SDPVRC

This section is devoted to a theoretical security analysis of our system. Noted that none of the

previous related papers provided a formal security model, including only a description and an

informal security discussion of their systems. Our analysis makes the following assumptions: 1)

the election administrator and voters are always identifiable, as all Blockchain transactions are

signed with sender’s private key. 2) Voters will never disclose their private voting keys xc j
vi ; 3)

the Blockchain database is secure and insert-only; 4) Our system relies on several cryptographic

protocols, which are presented in Section 2 and have reliable published proofs of their security.

74

5.4. SECURITY ANALYSIS ON SDPVRC

The security assumptions of our system are required by the previously published algorithm that

our systems uses, as explained below.

Theorem 13. If the digital signature algorithm (such as DSA) is non-falsifiable, no one is able to

submit a ballot by impersonating another voter.

Proof. In order to prevent adversaries from casting ballots by impersonating authenticated

voters, we require each voter to submit with his/her digital signature algorithm. In our proposed

system, only eligible voters are added to the voters list by the election administrator once their

identities have been verified. The signing_verify key of each verified voter is stored on the

Blockchain, and the voter is responsible for keeping their signing key secret. Once the election

starts, each authorized voter signs their ballots by using his/her signing key and submits the

ballot along with their signature. The smart contract is able to verify if each submission by

verifying the digital signature using the corresponding signing_verify key. �

Theorem 14. Only one submission from each voter is accepted as valid.

Proof. In our proposed system, only the content of a cast ballot is encrypted, the identification

of the voter (and the digital signature) is in plaintext and can be viewed by everyone. Thus,

multiple-voting detection is achieved by our system, as it can always detect whether a voter has

previously submitted a ballot. Furthermore, depending on the requirements of the particular

scenario, our system can accept one submission of each voter or accept multiple submissions for

each voter and use the last ballot as valid. �

Theorem 15. If the underlying cryptographic systems are semantically secure, then the ballots’

contents will never be revealed to anyone (including the election administrator).

Proof. Every ballot is encrypted twice before submission. We use the ElGamal cryptosystem and

a distributed encryption algorithm, which inherits the homomorphic property from the standard

ElGamal system. Both algorithms are semantically secure.

75

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

All the submitted ballots remain in encrypted form as cipher texts all the time. The ho-

momorphic property makes it possible to add all encrypted ballots without decrypting them.

Furthermore, there is no relationship between the cipher texts and the corresponding plaintexts

since the cryptosystem employed is probabilistic. It applies random numbers, so that the cipher

text can take on different values even when the encryption is computed from the same input.

Finally, due to each value being encrypted by both the public key of the election administrator

and the secret voting key of the voter, the decryption must be done via collaboration of the election

administrator and the voter. This means that, if the voter kept his/her secret voting keys as

secret all the time (that is also one of our assumptions), even the election administrator cannot

reveal anything. �

Theorem 16. Integrity of all cast ballots are secured after submission.

Proof. Firstly, we require voters to sign their cast ballots by using their signing keys (refer to

Algorithm 7), and we assume voters do not share their signing keys, to ensure that nobody can

modify the content of a submission and fake the voter’s signature. Secondly, all cast ballots will

be verified being before being added to the Blockchain. Third, all verified ballots will be added to

the Blockchain, being logged in an immutable ledger. Thus, the integrity of all submitted ballots

is treated as secure. �

Theorem 17. Invalid ballots can be detected by any individual voter.

Proof. Each cast ballot is added to the Blockchain database with corresponding proofs, generated

by using Zero Knowledge Proof. The verification algorithm is public to all voters, which means

the voters are able to verify any ballot without any assistant. �

Theorem 18. The self-tallying algorithm is proposed public accessible and anyone can use it to

tally ballots without assistant.

76

5.5. PERFORMANCE ANALYSIS ON SDPVRC

Proof. Once all ballots are verified and added to the Blockchain, we require the election admin-

istrator to compute the partially decrypted value in order to allow voters to compute the tallied

result by themselves. In the meantime, the election administrator must generate corresponding

proofs to convince all voters that all partially decrypted values are computed correctly. �

Theorem 19. Voters are able to verify everything of the election.

Proof. In our system, all content (encrypted ballots, proofs and signature) for each submission

is broadcasted and added to the Blockchain database, where they can be accessed by anyone. We

assume that the Blockchain database is secure, and it is “append-only”. The voters can do the

following without any assistant:

1) Voters can verify the Blockchain transactions themselves.

2) Voters can verify the integrity of each submission by using the corresponding signing_verify

keys from all voters.

3) Voters can verify each partially decrypted value (computed by election administrator) is

computed correctly.

4) Voters can self-tally all ballots and compute the final result of the election. �

5.5 Performance Analysis on SDPVRC

This section discusses the performance of our proposed voting system. The analysis is based on

the computation time of each processing step, separated into 3 phases, ballot casting performance,

ballots verification performance and ballots tallying performance. In our proposed protocol, each

ballot is encrypted twice using different keys (common key of election administrator and secret

key of the voter, refer to Algorithm 7). All tests were performed using a 512-bit key (p is 512-bit),

which provides a higher security level than one-time encryption using a 1024-bit key.

We tested our proposed protocol using a high performance implementation of libgmp via the

gmpy2 python module [GMP], on a laptop with the following specifications: 2.8GHz quad-core

77

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

Intel Core i7 with 6MB shared L3 cache and with 16GB of 1600MHz DDR3L on-board memory.

We use t to denote the computation time of one exponentiation, where t = 0.09 milliseconds.

ElGamal encryption requires two exponentiations, and ElGamal decryption requires one exponen-

tiation, where the division can be avoided by using an alternative method [WIK]. Thus, we use tE

and tD to denote the computation time of encryption and decryption, respectively, where tE = 2t

and tD = t, approximately. Pre-computed values of distributed encryption (refer to Equation 2.3)

require one exponentiation (the inverse power computation), and encryption also has cost of one

exponentiation.

5.5.1 Performance of Ballot Casting

The performance can be analysed for the following aspects:

Total computation time: According to the Algorithm 7, we use Tvoter to denote the total

time spent before submission (including the proof generation time), where

Tvoter = (tE ×nc + t∗nc)+ (3∗nc ∗ t)+ (3∗ t)= (6nc +3)t

In this experiment, we tested Tvoter in five rounds, varying the number of candidates (nc =

3,5,10,15,20). The result is shown in Figure 5.2.

From the results in Figure 5.2, we can see the time cost for casting a ballot is less than 12

milliseconds even if there are 20 candidates to be ranked.

Total submission size: We assume the size of digital signature is 1024-bit (refer to Algorithm

7), and we use Sballot to denote the total submission size (bits) for a voter,

Sballot = (1024×nc)+ (2048×nc)+ (2048+512+2∗nc ∗512)+ (1024)= 4096∗nc +3584.

The test result is shown in Figure 5.3 based on different numbers of candidates (nc =

3,5,10,15,20).

From the result of Figure 5.3, we found the submission size of one ballot is less than 11KB

even for a 20-candidate ballot.

78

5.5. PERFORMANCE ANALYSIS ON SDPVRC

Figure 5.2: Performance of voter side when the number of candidates is 3, 5, 10, 15, 20: (a) Time spent
encrypting a cast ballot, including generation time of all proofs (b) The size of a submission, includes all
encrypted values and all proofs.

Figure 5.3: Performance of voter side when the number of candidates is 3, 5, 10, 15, 20: The size of a
submission, includes all encrypted values and all proofs.

5.5.2 Performance of Ballots Verification

We have also evaluated the performance of the verification time for submissions a member of

the public or an independent observer might with to verify. Due to the verification of each voter’s

identification being equivalent to verifying the digital signature of each submission, this is not

79

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

computationally expensive. Thus, we concentrated on the performance of Algorithm 8. We use

Tverify to denote the total time spent verifying ballots and n to denote the total number of ballots

being verified, which can be presented as follows:

Tverify =
(
(5t×nc)+ (nc +1+2∗nc)t+ (6t)

)×n = (8∗nc +7)t.

We tested Tverify in five rounds, varying the numbers of ballots verified (n = 1000, 3000, 5000,

8000, 10000). In this experiment, we assume the number of candidates is 10 (nc = 10), and the

result is shown in Figure 5.4.

Figure 5.4: Estimate time spent of verifying 1000, 3000, 5000, 8000, 10000 ballots.

From the results in Figure 5.4, we found the time spent verifying 10,000 ballots costs less

than 1.5 minutes.

5.5.3 Performance of Tallying and Revealing

Our proposed system allows voters to self-tally all submitted ballots by using all partially

decrypted values from the election administrators. However, before tallying starts, each partially

decrypted value must be verified using the corresponding proofs (refer to Section 5.3.5). Treveal

80

5.6. CONCLUSION

is used to denote the total time spent verifying all partially decrypted values, tally all ballots,

reveal the result (refer to Algorithm 9), which is presented as:

Treveal = (4t∗nc)+ (nc ∗ t)= 5∗nc ∗ t

Again, we tested Ttally in five rounds varying the number of candidates (nc = 3,5,10,15,20).

The result of this experiment is shown in Figure 5.5.

Figure 5.5: Estimate time spent of tallying all ballots, including verifying all partially decrypted values.

We found the time spent tallying all ballots (including verifying all partial decryption proofs)

costs less than 10 millisecond using the same test machine.

5.6 Conclusion

In this chapter, we have proposed a SDPVRC (semi-decentralized public verifiable ranked choice)

online voting system using cryptography and a smart contract, which allows the voters to cast

their ballots by assigning arbitrary numbers of points to different candidates. This means that

the voters can assign equal points to different candidates, or they can assign different points

81

CHAPTER 5. A SDPVRC ONLINE VOTING SYSTEM

to different candidates. The security and performance analysis confirm the feasibility of our

proposed cryptographic voting contract.

To the best of our knowledge, this proposed system is the first decentralized ranked choice

online voting system in existence, which can hide the content of each voter’s submission. The

underlying Ethereum platform enforces the correct execution of the voting protocol. We also

present a security and performance analysis, showing the feasibility of our proposed protocol for

real-world voting applications at large scale.

82

Chapter 6

A STDPVRC Online Voting System

without any Tallying Authority

6.1 Motivation of STDPVRC

In the previous chapter, we proposed a SDPVRC (Semi-Decentralized Public Verifiable

Ranked Choice) online voting system by using smart contract over Ethereum Blockchain. In

the SDPVRC, there is only one tallying authority needed, and the authority can never reveal any

voter’s submission. However, the authority is required to compute the partial decryption value in

order to allow all voters to reveal the final outcome of the election. Thus, we must assume the

authority will do the correct things, otherwise, the system is disrupted, which means no one can

compute the final outcome of the election.

In organising elections, a difficult problem is to achieve the trust of tallying authorities

in the tallying process. Practical elections often lead to recounting of the submitted votes and

raise questions about the validity of many submitted votes. There are even situations when the

opposition raises concerns about the validity of the whole election process due to insufficient

transparency in the verification of the votes and in tallying.

In this chapter, we aim to solve the issue, and proposed a decentralized online voting system

83

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

without any tallying authority. The present chapter proposes a STDPVRC (Self-Tally Decen-

tralized Public Verifiable Ranked Choice) online voting system based on the Blockchain

technology. The main advantages of STDPVRC are that all votes are submitted with complete

proofs of validity and are available for public access in an encrypted form. The proposed self-

tallying protocol makes the results of the election publicly computable and verifiable without any

tallying authority.

6.2 Preliminaries of STDPVRC

Online voting systems that support verifiability usually assume the existence of a public bulletin

board that provides a consistent view to all voters. In practice, an example of implementing

the public bulletin board can be seen in the yearly elections of the International Association of

Cryptologic Research (IACR) [fCR16]. It uses the Helios voting system [Adi08] whose bulletin

board is implemented as a single web server. This server is trusted to provide a consistent

view to all voters. Instead of such a trust assumption, [MSH17] explored the feasibility of using

the Blockchain as a public bulletin board, in which the voters are responsible for coordinating

communications among themselves.

There are already proposals to use a Blockchain for online voting. The Abu Dhabi Stock

Exchange is launching a Blockchain voting service [Hig16] and a recent report [Bou16] by the

Scientific Foresight Unit of the European Parliamentary Research Service discusses whether

Blockchain-enabled e-voting will be a transformative or incremental development. In practice,

companies such as The Blockchain Voting Machine [Her15], FollowMyVote [Fol16] and TIVI

[Sab16] propose solutions that use the Blockchain as a ballot box to store voting data.

These solutions achieve voter privacy with the involvement of trusted third parties (e.g. a

central server or tallying authorities). Under our proposed system, the voters’ privacy does not

need to rely on the trust in a central server, and all submitted votes can be counted without

involving third parties in tallying. Our protocols allow each voter to rank all candidates by

84

6.2. PRELIMINARIES OF STDPVRC

assigning different scores to them, rather than just voting for one candidate, which is slightly

different from the voting mechanism in SDPVRC system (Chapter 5).

Figure 6.1: Each voter can assign different scores to the different candidates. However, the range of each
score is defined by the election. In this case, the voter can only assign 0 or 1 or 2 to each candidate (cf.
https://en.wikipedia.org/wiki/Range_voting).

6.2.1 Our new implicit verification protocol

In our implicit verification protocol, each submitted vote is protected by our new encryption

mechanism, which invokes the public key of the voter and the public keys of all the candidates.

When the secret keys of the candidates are released at the end of the vote, the value of each

submitted vote remains protected by the public key of the corresponding voter. This is why all

submitted votes remain confidential even after the verification and tallying process.

In this case, the ElGamal encryption algorithm (cf. Section 2.1.1) is used. Given a cyclic group

G of a prime order q with a generator g, the secret key is sk, and the public key is pk = gsk.

We assume that there are n different messages m1,m2, . . . ,mn. The prover computes a

ciphertext E(mi, pk), and generates proofs for a statement “E(mi, pk) is one of E(m1, pk), . . . ,

E(mn, pk), where 1 ≤ i ≤ n is true. The verifiers can verify the statement without decrypting

E(mi, pk), meaning they will never know which one is the truth [CDS94].

In the following example, we assume mi = m1 (all below computation included mod p at the

end, for easy reading, we ignore to write them):

85

https://en.wikipedia.org/wiki/Range_voting

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

Prover

• generates a random number r ∈Zq,

• computes E(m1, pk)= (c1, c2)= {gr, gm1 · pkr},

• generates random numbers t j ∈Zq, where j ∈ [1,n],

• generates random numbers v j ∈Zq, where j ∈ [2,n],

• computes s j = r ·v j + t j, where j ∈ [2,n],

• computes T0 j = gt j , where j ∈ [1,n] (e.g. T01 = gt1),

• computes T j = (gm j ·v j · pks j)/c2
v j , where j ∈ [1,n],

• T1 = pkt1 in this case, because we assume mi = m1 (if mi = m3, T3 = pkt3),

• computes

v =Hash(c1‖c2‖T01‖T02‖ . . .‖T0n‖T1‖T2‖ . . .‖Tn)

• computes v1 = v⊕v2 ⊕v3 ⊕·· ·⊕vn, ⊕ denotes XOR,

• computes s1 = r ·v1 + t1,

• sends c1, c2,T01, . . . ,T0n,v1, . . . ,vn, s1, . . . , sn to Verifier.

Verifier

• computes T j = (gm j ·v j · pks j)/c2
v j since the verifier knows g,m j,v j, pk, s j, c2 and v j

• verifies if

v1 ⊕v2 ⊕·· ·⊕vn =Hash(c1‖c2‖T01‖ . . .‖T0n‖T0‖ . . .‖Tn),

• verifies if gs j = T0 j · c1
v j , where j ∈ [1,n].

86

6.2. PRELIMINARIES OF STDPVRC

There are 4 types of proofs available: T0 j,T j,v j and s j. The prover only sends T0 j, v j and s j.

Every verifier can 1) compute T j using s j and v j; 2) verify v j using T0 j and T j; 3) verify s j

using T0 j and v j. The verification processes proceed iteratively in a cycle so that, if all verification

steps succeed, then this means all values in the submitted vote are correct.

The following reasons explain why the verifier cannot recover the secret information from the

proofs.

1. Each T0 j is computed by different random number t j, which did not send/transfer at all.

2. The equality T0 j = gt j is satisfied. It does not reveal the value of t j to the verifier, because

the secret key is x, the public key is gx, and x is never revealed.

3. The equality s j = r ·v j + t j holds true. The verifier knows s j and v j, but they don’t know r

and t j. Each value t j is used only once to compute the particular s j.

4. Only in the “real proof” the equality T j = pkt j holds. However, for verifier, all T j = (gm j ·v j ·

pks j)/c2
v j , which did not use t j at all.

Thus, the verifier cannot reveal any values r, t j and mi from the proofs.

If all verification tests return true, it can be concluded that the statement is true. This means

that then the verifiers can trust that the ciphertext is one of the form E(m1, pk), . . . ,E(mn, pk).

However, they can never know which one of the messages has been encrypted in the ciphertext.

Since all the values used to compute each T j are public values, any verifier can compute

T j = (gm j ·v j · pks j)/c2
v j by using g,m j,v j, pk, s j, c2.

However, for the prover, only the “real proof” is pkt j , all other T j are “fake proofs”. For the

verifier, all proofs are "fake proofs", even the “real” one pkt j also equals T j = (gm j ·v j · pks j)/c2
v j .

Thus, there is no way to know which one is real. In other words, the prover can prove that a

ciphertext E(mi, pk) is either E(1, pk), E(2, pk) or E(3, pk) when n = 3, but the verifier can never

figure out whether mi is equal to 1 or 2 or 3.

87

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

6.3 Our STDPVRC Online Voting System

We propose a protocol for an online score voting with proofs of the validity of votes and tallying

process, which requires all registered voters to make sure that they submit a valid vote. The

encryption of the keys is organised using split secret keys shared among all the candidates or

parties participating in the votes and the representatives of the organisers and the independent

observers of the election.

The keys are only decrypted for those voters, who did not submit a vote. After the deadline

for voting is passed, the keys of the voters who did not submit a valid vote are recovered, and

the system automatically submits dummy votes with equal zero ranks for all candidates. These

dummy votes do not modify the outcome of the election, but make sure that all our formulas

are applicable. To ensure trust in this step, it is made possible only when all candidates and the

representatives of the election organisers and observers provide their shared keys for this step to

proceed.

This proposed system has common major common stages illustrated in Figure 6.2, they are

initialization stage, voter registration stage, ballot casting stage, ballot verification stage, and

tallying and revealing stage.

Figure 6.2: Major common steps of proposed decentralized voting system.

The system consists of the following stages: initialization stage, registration stage, ballot

casting stage, ballot verification stage and tally stage. Table 6.1 provides the notations used to

explain our protocols.

88

6.3. OUR STDPVRC ONLINE VOTING SYSTEM

Table 6.1: Notations used in the rest of Chapter 6.

Vi: i-th voter, i ∈ [1,nv].
nv: the total number of voters.
Vj: j-th candidate, j ∈ [1,nc].
nc: the total number of candidates.
xvi : voting private key of i-th voter, i ∈ [1,nv].

gxvi : voting public key of i-th voter, i ∈ [1,nv].
yvi : pre-computed (public) value of i-th voter, i ∈ [1,nv].

skc j : private key for retrieving all votes for j-th candidate, j ∈ [1,nc].
pkc j : public key of j-th candidate, j ∈ [1,nc].

p: the highest score that can be assigned to any candidate.
pc j

vi : the score that was assigned by voter Vi to candidate C j.
pc j : the final tallied score of candidate C j.
Bi: the vote that is submitted by voter Vi.

Sigvi : digital signature (signed by Vi ’s private key).
PZK(xvi): zero knowledge proof of xvi . We use it to prove that a computed value contains

xvi without revealing xvi .
PPK(pc j

vi): partial knowledge proof of pc j
vi . It is used to prove the range of pi

c j
without

revealing pi
c j

.

6.3.1 Initialization Stage

In the initialization stage, all candidates generate their key pairs (private key and public key),

and broadcast them to the Blockchain database which can be accessed by anyone.

All voters and candidates agree on (G, g), where G denotes a finite cyclic group of prime order

q in which the Decisional Diffie-Hellman (DDH) problem is intractable, and g is a generator in G.

We assume there are nc candidates. Each candidate ci chooses a private key skci ∈Zq, and

computes the public key pkci = gskci , where all pkci will be broadcast to the Blockchain database,

which is publicly readable but becomes immutable once the content is added to that database.

Thus, the first block should contain all candidates’ public keys, such as pkc1 , . . . , pkcnc
, which are

generated by the election organizers.

We assume there are nc candidates. Each candidate ci chooses a private key skci ∈Zq, and

computes the public key pkci = gskci , where all pkci will be broadcast to the Blockchain database,

which is publicly readable but becomes immutable once the content is added to that database.

Thus, the first block should contain all candidates’ public keys, such as pkc1 , . . . , pkcnc
, which are

89

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

generated by the election organizers.

Further, the highest accepted score p is defined in this stage. For example, if p = 3, the score

for each candidate can only be 0 or 1 or 2 or 3. Any score which is greater than p or less than 0

will result in the whole vote being treated as invalid.

6.3.2 Registration Stage

In the registration stage, all voters register to the voting system by providing verified photo

identification document(s). Successfully registered voters must upload their public keys and keep

their private key secret at all times.

Each voter Vi chooses a voting private key xvi ∈Zq, and computes a voting public key gxvi ,

where i ∈ [1,nv].

There are two ways to register to vote in the election:

(1) voters submit their identification documents (e.g. passport or driver’s licence) and their

voting public key for the system; and

(2) voters present their identification document at one of the voting stations in person. Both

ways will require the successfully registered voters to broadcast their public voting keys (gxvi)

to the Blockchain database (publicly readable but immutable), where the second block of the

database should contain all voters’ voting public keys, such as gxv1 , . . . , gxvnv .

6.3.3 Ballot Casting Stage

In the ballot casting stage, each voter casts his/her ballot by assigning different scores to different

candidates, and protects the contents by using his/her own private key and all candidates’ public

keys.

We assume all voters are registered, which means that all public voting keys gxvi of all

successfully registered voters are added to the Blockchain database. Thus, the pre-computing

value yvi of any voter can be computed by using all other gxvi via Equation 2.3.

90

6.3. OUR STDPVRC ONLINE VOTING SYSTEM

Our proposed e-voting protocols allow voters to assign different scores to different candidates

according to their personal preferences, and the winner is the candidate who receives the highest

score. There are three phases in the voting stage: pre-computing, ballot casting and proof

generation.

Our proposed voting protocols do not remove the connection between the identity of voters

and their ballots, meaning everyone can see if or when a voter submitted his/her ballot. However,

the content of their ballots are encrypted, meaning no-one is able to reveal the content of any

individual ballot.

Each voter is able to assign any score between 0 and p to candidates. Because each vote

consists of multiple scores, those scores are treated as private and confidential to the voters. Thus,

the scores must be encrypted before submission. In our case, we use pi
c j

to denote a score that is

assigned by voter Vi to candidate C j, which is encrypted using our novel encryption mechanism

presented in Section B with computation details.

Denote by pc j
vi the score assigned by voter Vi to candidate C j. Applying ElGamal encryption

and using the public key pkc j of candidate C j, we get the ciphertext

E(pc j
vi , pkc j)= gr, g(p

c j
vi)(pkc j)

r.

After that, we apply group-based encryption (cf. Section 2.1.4) to mask the first part of the

ElGamal ciphertext. Namely, the first part gr of the encrypted value is “encrypted" again by

using the pre-computed value yvi explained in Section 2.1.4 and the private voting key xvi of the

voter Vi, according to the mapping

gr → (yvi)
xvi · gr.

This means that each score pi
c j

is encrypted by applying the following combined formula (6.1).

(6.1) E(pc j
vi , pkc j , yvi , xvi)= (yvi)

xvi gr, g(p
c j
vi) · (pkc j)

r.

where the score pc j
vi is encrypted by using yvi (voting public keys of all voters), pkc j (public key of

the score’s recipient) and xvi (the voting private key of the voter). Finally, the whole cast vote Bi

91

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

can be presented as

(6.2) Bi =

E(pc1

vi , pkc1 , yvi , xvi)

...

E(pcnc
vi , pkcnc

, yvi , xvi)

where a Bi can be treated as a container of different encrypted scores (pc1

vi , ..., pcnc
vi) that are

assigned to different candidates (C1, ...,Cnc) by the voter Vi.

Proof generation: In order to allow anyone (not just miners and voters, but anyone who

can access the Blockchain database) to verify each encrypted score E(pc j
vi , pkc1 , yvi , xvi) without

decrypting the ciphertext and revealing the content, the voters are required to generate two

kinds of proofs for each encrypted score before submission: they are PPK(pc j
vi) and PZK(xvi).

• PPK(pc j
vi): partial knowledge proof of pc j

vi , which is used to prove the value of score pc j
vi is in

the range between 0 and p (where p is pre-defined at the Initialization stage).

• PZK(xvi): zero knowledge proof of xvi , which is used to prove the encrypted score is computed

correctly using voting private key xvi of the voter Vi.

The voter vi has to generate both of PZK(xvi) and PPK(pc j
vi) for each score E(pc j

vi , pkc j , yvi , xvi).

The summarised processing procedure of the voting stage is shown as Algorithm 10.

PPK(pc j
vi) and PZK(xvi) are based on the proof of zero knowledge (cf. Section 2.1.3) and the

proof of partial knowledge (cf. Section 6.2.1).

In order to protect the privacy of the voters, each score is encrypted (cf. Equation 6.1) before

submission. However, voters have to generate corresponding proofs to prove their votes are cast

correctly by observing the following:

1. the score is between 1 and p (p = 3 in this case);

2. the encrypted score is computed correctly using the voter’s private key xvi .

An example about the computation details can be found in the Appendix B.1.

92

6.3. OUR STDPVRC ONLINE VOTING SYSTEM

Algorithm 10: Voting (pre-computing, vote casting and proof generation).
Input :Voter Vi, private key of Vi: xvi ,

the highest score for each candidate: p,
all voting public keys of voters gxv1 , . . . , gxnv ,
all public keys of candidates pkc1 , . . . , pkcnc .

Output :Bi and Sigvi

1 Compute yvi . . cf. Equation 2.3
2 // Verify if Vi submitted a Bi previously.
3 // Verify if the voter is eligible (all public keys of the eligible voters are added to the Blockchain).
4 if search(Sigvi) == true then
5 throw; . if there is a signature of vi in the Blockchain
6 end
7 Set Bi = [].
8 for j ← 1 to nc do

9 E(pc j
vi , pkc j , yvi , xvi)=

(
(yvi)

xvi · gr, gp
c j
vi · pkr

c j

)
. . cf. Equation (6.1)

10 PPK(pc j
vi): {T01, . . . ,T0p,v1, . . . ,vp, s1, . . . , sp}. . cf. Section 6.2.1

11 PZK(xvi): {K1,K2, Z1, Z2}. . cf. Section 2.1.3
12 Bi =Bi ∪ [E(pc j

vi , pkc j , yvi , xvi),PPK(pc j
vi),PZK(xvi)].

13 end
14 Generate the signature Sigvi =Sign(Bi). . Sign the Vote using vi ’s private key.

15 return Bi =

E(pi

c1
, pkc1 , yvi , xvi),PPK(pi

c1
),PZK(xvi)

...
E(pi

cnc
, pkcnc , yvi , xvi),PPK(pi

cnc
),PZK(xvi)

 ,Sigvi .

6.3.4 Ballot Verification Stage

In the verification stage, the eligibility of each submission has to be verified before adding it to

the Blockchain database, which actions are processed by miners (voters can also apply to act as

miners).

The verification algorithm employed in our protocols is publicly accessible. This means that

anyone with access to the Blockchain database can verify any submitted vote. Each Bi consists of

multiple encrypted scores E(pc j
vi , pkc j , yvi , xvi), and each encrypted score has two proofs: PPK(pc j

vi),

PZK(xvi). Both PPK(pc j
vi) and PZK(xvi) can be verified without revealing the content of the

encrypted score. The processing procedure of verification is shown in Algorithm 11.

Only if both PPK(pc j
vi) and PZK(xvi) are verified, the score E(pc j

vi , pkc j , yvi , xvi) can be consid-

ered as valid. And only when all encrypted scores in a Bi are verified as valid, can the Bi be treated

as a verified submission, and added to the Blockchain database. An example of computation

93

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

Algorithm 11: Verify a submitted Bi (can be performed by miners or voters).
Input :a vote Bi and the public voting key of Vi: gxvi .
Output :Accept or Reject.

1 for j ← 1 to nc do

2 E(pc j
vi , pkc j)= (c1, c2)= ((yvi)

xvi · gr, gp
c j
vi · pkr

c j
) . cf. Algorithm 10

3 PPK(pc j
vi)= {T01, . . . ,T0p,v1, . . . ,vp, s1, . . . , sp} . cf. Algorithm 10

4 Verify PPK(pc j
vi): . cf. Section 6.2.1

5 for k ← 1 to p do
6 Verify if gsk = T0k · c1

v j .
7 //By using publicity available values in the Blockchain
8 compute Tk = (gk·vk · pksk)/c2

vk

9 end
10 Verify if v1 ⊕v2 ⊕·· ·⊕vp =Hash(c1‖c2‖T01‖ . . .‖T0p‖T1‖ . . .‖Tp).
11 PZK(xvi)= {K1,K2, Z1, Z2} . cf. Algorithm 10
12 Verify PZK(xvi): . cf. Section 2.1.3
13 Verify if (yvi)

Z1 gZ2 = (c1)Hash(K1‖K2)K1.
14 Verify if gZ1 = (gxvi)Hash(K1‖K2)K2.
15 end
16 if all the above verifications are passed then
17 return Accept
18 else
19 return Reject

details can be found in Appendix B.2.

6.3.5 Tallying and Revealing Stage

In the tallying stage, all candidates reveal their private keys, and all users who can access the

Blockchain database are able to compute the final result.

Once the deadline of the election is expired. The confidentiality authority will check if all

voters have submitted their votes and if they submitted valid votes. In this case, we can assume

all voters have submitted their votes, all candidates must broadcast their private key (skc1 ,

skc2 ,. . . , skcnc
) to the Blockchain.

Under our proposed algorithm, each score is encrypted using our developed ElGamal encryp-

tion (cf. Equation 6.1), where the ciphertexts can be computed according to homomorphic addition

(cf. Section 2.1.1.1). In this case, we can simply multiply all valid Bi in the Blockchain database,

94

6.4. SECURITY ANALYSIS ON STDPVRC

such as below.

nv∏
i=1

Bi =

∏nv

i=1 E(pc1
vi , . . .)

...∏nv
i=1 E(pcnc

vi , . . .)

=

∏nv

i=1(yvi)
xvi gr1 ,

∏nv
i=1 g(pc1

vi)(pkc1)r1

...∏nv
i=1(yvi)

xvi grnc ,
∏nv

i=1 g(pcnc
vi)(pkcnc

)rnc

 ,

where we assume there are nv voters and nc candidates.

Since
∏nv

i=1(yvi)
xvi = 1 (as explained in Section 2.1.4),

nv∏
i=1

Bi =

∏nv

i=1 gr1 ,
∏nv

i=1 g(pc1
vi)(pkc1)r1

...∏nv
i=1 grnc ,

∏nv
i=1 g(pcnc

vi)(pkcnc
)rnc

=

(gr1 , g

∑nv
i=1 pc1

vi (pkc1)r1)

...

(grnc , g
∑nv

i=1 pcnc
vi (pkcnc

)rnc)

 .

Finally, the total score of each candidate C j can be revealed by using the published private

key skc j of all candidates,

pc1

...

pcnc

=

D

(
gr1 , g

∑nv
i=1 pc1

vi (pkc1)r1 , skc1

)
...

D
(
grnc , g

∑nv
i=1 pcnc

vi (pkcnc
)rnc , skcnc

)

=

g

∑nv
i=1 pc1

vi

...

g
∑nv

i=1 pcnc
vi

 ,

where we use pc j to denote the total tallied score of the candidate C j, and D(. . .) denotes

decryption algorithm of ElGamal decryption (cf. Section 2.1.1). The winner of the election can be

determined by comparing pc1 , ..., pcnc . The candidate who receives the highest score is the winner.

The summarized self-tally algorithm is shown as Algorithm 12, which can be used by anyone.

6.4 Security Analysis on STDPVRC

The security level of our proposed protocols can be analysed according to the security requirements

(cf. Section 1), and the analysis assumes that all voters will never share their private keys with

others, and that candidates will never share their private keys with others until the voting has

closed.

The identification of voters has to be verified in order to participate in the election.

95

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

Algorithm 12: Self-tally all votes
Input :all votes B1, . . . ,Bnv

all privates keys of candidates skc1 , . . . , skcnc
Output : pc1 , . . . , pcnc

1 sets pc1 , . . . , pcnc = 1
2 for i ← 1 to nv do
3 for j ← 1 to nc do
4 pc j = pc j ×E(pc j

vi , pkc j , yvi , xvi) . cf. Section 2.1.1
5 end
6 end
7 for j ← 1 to nc do

8 pc j = D(pc j , skc j)= D
(∏nv

i=1 E(pc j
vi , pkc j), skc j

)= g
∑nv

i=1 p
c j
vi

9 end
10 return pc1 , pc2 , . . . , pcnc

Theorem 20. Only successfully registered voters are able to submit their votes.

Proof. In our protocols, all voters have to register before the election starts, and all successfully

registered voters are required to upload their voting public keys, which will be added to the

Blockchain database, and can be seen by everyone.

Once the election starts, each voter should generate a digital signature by using their voting

private keys, and submit it along with their votes. After submission, anyone can verify the

eligibility of each vote by verifying the digital signature using the corresponding voting public

key.

If no corresponding key can be found in the database, or if the digital signature is found to be

invalid, the submission will be treated as invalid and be discarded. �

In order to ensure the fairness of the election, each verified voter is only allowed to contribute

one vote to the election.

Theorem 21. Each voter can only submit once, meaning multiple submissions from the same

voter can be detected and discarded.

Proof. In our protocols, the id/name of each submission is public information for everyone: only

the content of the submission is encoded. Thus, multiple submissions can be easily detected by

96

6.4. SECURITY ANALYSIS ON STDPVRC

searching the database for the id/name. If a submission has been added to the database with the

same id/name, the latest submission will be discarded. Otherwise, the latest submission will be

added to the database. �

Each submitted vote contains the voting preference of the voter, which can be treated as

private to the voter and must be kept secret at all times.

Theorem 22. The content of any individual vote will never be revealed.

Proof. In our protocols, each score is given by the expression E(pc j
vi , pkc j , yvi , xvi) (cf. Algo-

rithm 10), which is encoded by using not only the public key (pkc j) of the candidate, but also the

voting private key xvi of the voter.

Each encrypted score E(pc j
vi , pkc j , yvi) can be decrypted only by using both the private key of

the candidate (skc j) and the xvi of the voter. Although all candidates will reveal their skc j at the

close of voting, the E(pc j
vi , pkc j , yvi , xvi) cannot be decrypted without the xvi .

Thus, it can be assumed the contents of any encrypted votes will never be revealed on the

basis that voters will never disclose their voting private key xvi to others, and there is no way to

decode the encrypted scores without those voting private keys. �

Our protocols use a Blockchain database, which is maintained by all users (miners). All votes

will be verified before being added to the database, whereupon the content cannot be further

modified. In this case, we assume most users (miners) are honest, and the Blockchain database is

secure and unbreakable.

Theorem 23. No one can modify any data in a submission once it is confirmed and added to the

Blockchain database.

Proof. A Blockchain database is a decentralized database, which means there is not a centralized

server managing the database, but everyone has the latest version of the whole database. In this

situation, no one can actually modify any data in the database because the modification will not

97

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

be accepted by most users (miners) who are (at least generally) assumed to be honest. To sum up,

no one is able to change anything from the Blockchain database without a general notification,

and most users (miners) will reject any unauthorized modification, given the assumption (i.e. that

most users are honest), meaning the integrity of all or any submissions cannot be compromised

once they have been confirmed and added to the Blockchain database. �

We assume everything that has been added to the Blockchain database can be accessed by

everyone but is immutable, and the correctness of the final result can be analysed from two

aspects.

Theorem 24. Any individual submission can be verified by anyone without accessing the content

of the submission.

Proof. A submission can only be included in the final result if it has been verified as valid

using Algorithm 11. The corresponding proofs of each submitted vote are generated by the voter

according to the proof of partial knowledge (cf. Section 6.2.1) and the proof of zero knowledge (cf.

Section 2.1.3), which can be verified without knowing any relevant information about the content.

�

Theorem 25. The final tallied result can be computed by any voter (or miner) using his/her

voting private key and all candidates’ private keys.

Proof. In our protocols, all candidates have to reveal their private keys once all votes are

received and verified as valid. At that point, everyone or anyone can compute the final score

for any candidate via Algorithm 12, which uses the private key of the particular candidate and

his/her own voting private key. �

End-to-end voter verification is achieved by our proposed protocols: the analysis has the

following three aspects.

98

6.4. SECURITY ANALYSIS ON STDPVRC

Theorem 26. Each vote is cast-as-intended, meaning the voter is able to verify that the vote has

been generated correctly as intended.

Proof. In our protocols, each vote is cast based on ElGamal encryption (cf. Section 2.1.1) and

group-based encryption (cf. Section 2.1.4) using all candidates’ public keys, all voters’ voting public

keys and the voter’s voting private key (cf. Section 10). As all the necessary elements/components

are public for the voter himself/herself, he/she can re-generate the vote in order to verify that the

vote has been computed correctly. �

Theorem 27. Each submission is recorded-as-cast, meaning any modification to the submission

can be discovered without difficulty.

Proof. ElGamal encryption is a probabilistic encryption, meaning the encrypted result will

always be different even if one encrypts the same plaintext multiple times. Thus, the voter is able

to save the cast vote (encrypted) as an original receipt before submission. Once the submission is

added to the Blockchain, the voter can easily verify if the recorded submission is the one he/she

submitted by comparing the content with the content of the original receipt. �

Theorem 28. Each vote is counted-as-recorded, meaning the voter is able to verify if his/her vote

has contributed correctly to the final result.

Proof. In our protocols, a self-tally algorithm (cf. Algorithm 12) can be used by any individual

voter, which means everyone and any one is able to tally all submissions, find the winner without

any collaboration with others, and verify that the published result is correct. �

Theorem 29. There is no way for a voter to prove how his/her vote is cast after submission,

unless the voter’s private key is revealed.

Proof. In our protocols, each vote is encrypted by using yvi , xvi and pkci and equation (6.1),

where the xvi is the private key of the voter. The voter has to reveal all the 3 factors in order to

99

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

prove how he/she voted. However, one of our assumptions is that the voters have to keep their

private keys secret all the time. Thus, there is no way to prove how the vote was cast without

revealing the private key xvi . �

6.5 Performance Analysis on STDPVRC

The analysis of performance has two subsections: client (voters) and the server (miners). All

tests were performed on a laptop with the following specifications: CPU: 2.2 GHz Intel Core i7,

Memory: 16 GB 1600 MHz DDR3.

All tests used high performance code from libgmp via the gmpy2 python module [GMP] with

1024-bit length key (p and q are 1024-bit). We use t to denote the computation time of one

exponentiation (such as a ga mod b), in this case, t = 0.00012 seconds on the laptop.

ElGamal encryption requires two exponentiations, and ElGamal decryption requires one

exponentiation (cf. Section 2.1.1). The division can be avoided by calculating c1
q−sk instead of

c1
sk, where c1

q−sk is the inverse of c1
sk. In this case, we use tE and tD to denote the computation

time of encryption and decryption, respectively, where tE = 2t and tD = t, approximately.

6.5.1 Performance on voters’ side

On the voters’ side, each voter casts and submits a vote to the Blockchain database. To prevent

the voting preferences of each vote being revealed, and also to protect the voters’ privacy, we

require voters to encrypt their votes before broadcasting them to the Blockchain database.

Thus, the performance on the voters’ side can be summarized as being the total computation

time for casting a vote and the total submission size of the vote.

Total computation time for casting one vote. In this case, we use Tvoter to denote the

total computation time on the voters’ side, where we only focus on the computation cost of

all exponentiations. According to Algorithm 10, the computation time for each candidate costs

an ElGamal encryption computation (2t, cf. Section 2.1.1), a PPK computation (5pt− 2t, cf.

100

6.5. PERFORMANCE ANALYSIS ON STDPVRC

Section 6.2.1) and a PZK computation (3t, cf. Section 2.1.3). Therefore, the total computation

time on the voters’ side can be presented as

Tvoter = (5pt+3t)∗nc

where p and nc denotes the number of possible scores for each candidate and the number of

candidates, respectively.

In this experiment, we tested the Tvoter over five rounds on the laptop, according to different

numbers of candidates (nc = 3, 5, 10, 15 and 20) and different total available points (p = nc). The

result is shown in Fig. 6.3.

Figure 6.3: Estimate of total time spent casting one vote when the number of candidates nc are 3, 5, 10,
15 and 20, and the corresponding p is also 3, 5, 10, 15 and 20.

From the results in Fig. 6.3, we can see that the time taken for casting one vote is less than

0.25 seconds even if there are 20 candidates in the election.

Total submission size for one vote. In this case, we use Sone_ballot to denote the total

submission size for one vote, which contains nc encrypted value, nc proofs of PPK and nc proofs

of PZK. Thus, the total submission size Sone_ballot can be presented as

Sone_ballot = 1024∗ (3p+6)∗nc

101

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

where an encrypted score for each candidate contains an ElGamal encrypted value which is

1024∗2 bits (cf. Section 2.1.1), a proof of PPK is 1024∗ (3p) bits (cf. Section 6.2.1) and a proof of

PZK is 1024∗4 bits (cf. Section 2.1.3).

In this experiment, we also tested the Sone_ballot over five rounds on the laptop, where the

numbers of candidates (nc) and the total available points (p) are the same as the previous

experiment, which is nc = p = 3, 5, 10, 15 and 20. The result is shown in Fig. 6.4.

Figure 6.4: Estimate of total size of one vote when the number of candidates nc are 3, 5, 10, 15 and 20,
and the corresponding p is also 3, 5, 10, 15 and 20.

From the result of Figure 6.4, we found the size of one submission is less than 200KB even for

a 20-candidate vote. Based on the publicly-available assessment of the speedtest ranks Internet

access speed in more than 100 countries [Mur17], the slowest Internet speed is 3.03 Mbps and

the fastest is 62.59 Mbps. It shows that the submission size for a vote (including all encrypted

values and all proofs) of our protocols should not be problematic.

102

6.5. PERFORMANCE ANALYSIS ON STDPVRC

6.5.2 Performance on miners’ side

Our protocols use a Blockchain database. Therefore, the performance on the miners’ side can be

summarized as having the following attributes: 1) the computation time for verifying all pending

submissions and 2) the computation of self-tallying all verified votes.

Please note, here we do not discuss the computation time for solving the mathematical puzzle

of the Blockchain database in order to confirm a new block: the difficulty level can be defined by

the organizers.

The computation time for verifying all pending submissions. In this case, we use

Tverify to denote the total computation time for verifying all pending submissions, which can

be treated as the sum of verification time of PPK proofs and verification time of PZK proofs.

According to Algorithm 11, the computation time for verifying a PPK and a PZP are 5pt (cf.

Section 6.2.1) and 5t (cf. Section 2.1.3) respectively. Thus the total computation time for verifying

all pending submissions is

Tverify = (5pt+5t)∗nc ∗nv

where nv denotes the number of the pending submissions.

In this experiment, we assume there are 10 candidates (nc = p = 10) in the election, and test

the Tverify over five rounds on the laptop, where the numbers of pending submissions are 3, 5, 10,

15 and 20. The results are shown in Fig. 6.5.

From the results in Fig. 6.5, we found the time spent in verifying 1,000 votes takes approxi-

mately one minute using a standard laptop (the specifications of which were provided at the start

of this section), where the miners usually use at least a server-power computer, which means

that the running time will be further reduced.

The cost of self-tallying all verified votes. In our protocols, all voters are able to download

all votes from the Blockchain database. We assume all votes must be verified before being added

to this database. This means normal users do not need to download all corresponding proofs

unless they want to independently verify them. Self-tallying the votes is done using Algorithm 12.

103

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

Figure 6.5: Estimate of total computation time (by using a laptop) for verifying 100, 300, 500, 800 and
1,000 pending votes, for 10 candidates in the election.

In this case, we use Sall_ballots and Ttally to denote the total size of the whole Blockchain database

(excluding all corresponding proofs) and the computation time for tallying all verified votes, which

can be presented as

Sall_ballots = 1024∗2∗nc ∗nv and Ttally = t∗nc,

respectively, according to Algorithm 12.

In this experiment, we again assume there are 10 candidates (nc = p = 10) in the election,

which means Ttally = t∗nc = 10t, and we test Sall_ballots over five rounds on the same laptop, based

on five different numbers of votes (10,000, 30,000, 50,000, 80,000 and 100,000). The results are

shown in Fig. 6.6.

From the results in Figure 6.6, we found the total size of the whole Blockchain database

(excluding all corresponding proofs) is less than 250 MB when there are 100,000 votes. The

computation time for self-tallying all votes only regards the number of candidates: in this case, it

only took 0.0012 seconds to tally them by using a standard laptop (the specifications of which

were provided at the start of this section).

104

6.6. CONCLUSION

Figure 6.6: Estimate of total size of the Blockchain database (excluding all corresponding proofs) when
the total number of pending votes are 10,000, 30,000, 50,000, 80,000 and 100,000 pending votes, for 10
candidates in the election.

6.6 Conclusion

In this chapter, we have proposed STDPVRC online voting system inspired by the SDPVRC

system in Chapter 5, which is a decentralised publicly verifiable online voting protocol based

on Blockchain technology and a new encryption mechanism. They store all submitted votes in a

Blockchain database, which can be accessed by all users but is immutable. Our proposed protocols

also allow voters to cast their ballots by assigning different points to different candidates.

Each vote is encrypted before submission and remains encrypted at all times. The additive

homomorphic property of the exponential ElGamal cryptosystem enables effective processing of

the ciphertexts during these procedures. Moreover, the eligibility of voters and their submissions

can be verified by anyone without revealing the contents of the votes, and our proposed verification

and self-tallying algorithms allow any voter to verify the correctness of the final result. The whole

Blockchain based voting system is processed by all users (voters and registration authorities),

and tallying procedure can be processed without a need to involve a third party (e.g. tallying

105

CHAPTER 6. A STDPVRC ONLINE VOTING SYSTEM WITHOUT ANY TALLYING
AUTHORITY

authority) in computation and verification. The proposed system also provides a security and

performance analysis and confirms the feasibility of our proposed Blockchain online voting

protocols for real-life elections.

106

Chapter 7

Conclusion and Future Work

7.1 Conclusion of the thesis

The aim of the research was to build a decentralized publicity verifiable ranked choice online

voting system, which not only has no tallying authority at all, but also can achieve the advanced

E2E voter verifiability. This thesis also shows the processing steps of how such a system is

proposed. In this thesis, we propose several public verifiable ranked choice online voting systems,

which address our research questions.

The first research question is treated in Chapter 3. The main objective of this chapter is

to design an easy-use ranked choice online voting system, which also achieved standard E2E

verifiability. In order to protect the confidentiality of the votes, each cast ballot is encrypted

before submission. Furthermore, during voting the system ensures that proofs are generated and

stored for each element in the cast ballot. These proofs can then be used to verify the correctness

and the eligibility of each ballot before counting without decrypting and accessing the content

of the ballot. This validates the votes in the counting process and at the same time maintains

confidentiality.

Regarding the second research question, an advanced ranked choice voting mechanism is

designed and proposed in Chapter 4. Since the privacy of voters is protected by encrypting the

107

CHAPTER 7. CONCLUSION AND FUTURE WORK

cast ballots before submission, it follows that the size of each encrypted ballot is critical for

proposing a large-scale online voting system. In this chapter, the addition property of ElGamal is

redesigned, so that the cryptosystem can also compute multiplication directly on the ciphertext.

For most of existing online voting systems, there is a centralized server with trusted au-

thorities, such as tallying authorities. Once all ballots are submitted by all voters, the tallying

authorities are responsible to (1) verify all submissions, (2) count only valid ballot, and (3) publish

the final outcome of the election. The security level of such centralized systems is relied to

whether the authorities are honest or not, because the encryption key that is used to encrypt

each cast ballot is computed by all authorities. That’s why there are multiple tallying authorities

in the system (refer to Chapter 3 and Chapter 4). We have to assume that at least one of them

is honest, since the voters’ privacy will be revealed if all authorities are colluded. Under this

assumption, we also require each authority to prove what and how he/she did in every step he/she

is involved. Under this assumption, we also require each authority to prove what and how he/she

did in every step he/she involved. However, in the real-life, it’s quite difficult to persuade voters

to trust the authorities in the system.

In order to reduce the dependence on the centralized server and authorities, the third research

question is addressed in Chapter 5. In this chapter, we propose a semi-decentralized online voting

system. In the system, each cast ballot is still encrypted before submission, but the encryption

key is not just from the authorities. Each cast ballot is also encrypted by using the voter’s private

key. This is why the system needs only one authority, and he/she can never decrypt any voter’s

submission without the voter’s private key. The reason why we called it as ”semi-decentralized”

system is the system still need one authority to help to reveal the final outcome of the election,

but he/she cannot reveal any voter’s privacy. Thus, the voters will never worry that their voting

preferences can be revealed by any tallying authority.

However, if the only tallying authority does not help to reveal the final outcome, the system is

aborted. Although the privacy of voters is secure, it’s meaningless if no one can reveal the final

108

7.2. FUTURE WORK

outcome of the election.

Finally, in Chapter 6 we propose a solution to the fourth research question. We propose

further development of the protocols to make the system totally decentralized and eliminate

any need to use any tallying authority. The outcome of the election can be revealed by all voters

and candidates in the election. Our proposed self-tallying protocol allows the outcome can be

computed by any individual without any other’s assistance, which enhanced the trustworthiness

of the system and vote of confidential.

Overall, a decentralized ranked choice online voting system is proposed by using Blockchain

technology. The system has no hardwired restrictions on possible vote assignments to candidates,

protects voter confidentiality by using a homomorphic encryption system and stores proofs for

each element of a vote. Furthermore, the system achieves advanced E2E verifiability, which

mostly enhances the trust in the system and the confidentiality of the voters. We propose a self-

tallying online voting system without any tallying authority. The voters will never need to assume

the centralized server and authorities are not compromised, because there is no centralized party

at all. The candidates and voters of the election take the responsibility for the whole procedure of

the election.

7.2 Future Work

In order to enhance the trustworthiness of an online voting system, we designed and proposed

several systems from centralized to decentralized, which reduced the dependence of the tallying

authorities step by step. However, for a decentralized online voting system without any tallying

authority, there are still several issues exist, such as abortive issue by voters. In such a decentral-

ized online voting system, we have to assume all involved voters submitted their ballots. However,

in practical life, we can never make this assumption. In the future work, we are planning to

address this issue.

Furthermore, we will investigate the feasibility of running a large-scale election over the

109

CHAPTER 7. CONCLUSION AND FUTURE WORK

Blockchain. Based on the knowledge gained from this Thesis, we believe that if such a perspec-

tive is ever considered possible, its implementation will almost certainly require a dedicated

Blockchain. For example, we build our own Ethereum-like Blockchain, which only stores the

voting smart contract. This new Blockchain can have a larger block size to store more transactions

on-chain and may be maintained in a centralised manner.

110

Appendix A

Computation details of proof

generations and verifications

In order to protect the privacy of the voters, each assigned point is encrypted (refer to Equation

5.1) before submission. However, voters have to generate corresponding proofs to prove their votes

are cast correctly by observing the following: 1. each encrypted score is computed correctly using

the voter’s private key xc j
vi ; 2. The sum of all encrypted points must be equal to the pre-defined

total number of available points P.

A.1 Each encrypted value is computed correctly

We present the proofs generation and verification for an encrypted score in Bv1 , where we assume

V1 assigned 5 points to C1, and the encrypted value should be E(5, pk, yc1
v1 , xv1)= (c1, c2), where

c1 = (yc1
v1)xc1

v1 · gr, c2 = g5 · pkr:

Prover

• generates a random number k1,k2 ∈Zq

• computes K1 = (yc1
v1)k1 · gk2

111

APPENDIX A. COMPUTATION DETAILS OF PROOF GENERATIONS AND VERIFICATIONS

• computes K2 = gk1

• computes c = Hash(K1‖K2)

• computes Z1 = xc1
v1 c+k1

• computes Z2 = rc+k2

• sends PZK(xc1
vi) = {K1,K2, Z1, Z2} to Verifier

Verifier

• compute c = Hash(K1‖K2)

• verify if (yc1
v1)Z1 gZ2 = K1 × (c1)c

• verify if gZ1 = K2 × (gxc1
vi)c

where yc1
vi and gxc1

vi are public values, and the verifier(s) will never know the value is encrypted

from 5.

A.2 The sum of all encrypted values is equivalent to the

encrypted value from P

We present the proofs generation and verification for the sum of all encrypted points in Bv1 ,

where we assume P = 10, and there are 3 candidates C1,C2 and C3. Voter V1 cast a vote as:

E(5, pk, yc1
v1 , xc1

v1)= (yc1
v1)xc1

v1 · gr1 , g5 · pkr1

E(2, pk, yc2
v1 , xc2

v1)= (yc2
v1)xc2

v1 · gr2 , g2 · pkr2

E(3, pk, yc3
v1 , xc3

v1)= (yc3
v1)xc3

v1 · gr3 , g3 · pkr3

112

A.2. THE SUM OF ALL ENCRYPTED VALUES IS EQUIVALENT TO THE ENCRYPTED VALUE
FROM P

Prover

• multiply them as

E(5, pk, yc1
v1 , xc1

v1)×E(2, pk, yc2
v1 , xc2

v1)×E(3, pk, yc3
v1 , xc3

v1)

=(yc1
v1)xc1

v1 · (yc2
v1)xc2

v1 · (yc3
v1)xc3

v1 · gr1+r2+r3 , g5+2+3 · pkr1+r2+r3

=(yc1
v1)xc1

v1 · (yc2
v1)xc2

v1 · (yc3
v1)xc3

v1 · gr4 , g10 · pkr4

• We use c1 and c2 to denote (yc1
v1)xc1

v1 · (yc2
v1)xc2

v1 · (yc3
v1)xc3

v1 · gr4 and g10 · pkr4 , respectively.

• compute z =∏nc
j=1(yc j

v1)x
c j
v1 . In this case, z = (yc1

v1)xc1
v1 · (yc2

v1)xc2
v1 · (yc3

v1)xc3
v1

• selects random numbers k1,k2,k3 ∈Zq

• computes K1 = (yc1
v1)k1 · (yc2

v1)k2 · (yc3
v1)k3

• computes K2 = gk1 , K3 = gk2

• computes K3 = gk2

• computes K4 = gk3

• computes c = Hash(K1‖K2‖K3‖K4)

• computes Z1 = xc1
v1 c+k1

• computes Z2 = xc2
v1 c+k2

• computes Z3 = xc3
v1 c+k3

• PZK(z) = {K1,K2,K3,K4, Z1, Z2, Z3}

• Prove
c1

z
(= gr4) and

c2

g10 (= pkr4) has the same exponentiation (refer to Section 2.1.3)

– selects t ∈ Z

– computes T1 = (g)t

– computes T2 = pkt

– computes c = Hash(T1||T2)

113

APPENDIX A. COMPUTATION DETAILS OF PROOF GENERATIONS AND VERIFICATIONS

– computes s = r4 · c+ t (r4 in this case)

– PZK(P) = {T1,T2, s, z,ZKP(z)}.

• sends PZK(z) and PZK(P) to Verifier

Verifier

• firstly verify z using ZKP(z), compute c = Hash(K1‖K2‖K3)

– verify if (yc1
v1)Z1(yc2

v1)Z2(yc3
v1)Z3 = K1 × (z)c

– verify if (yc1
v1)Z1 = K1 × (gxc1

v1)c

– verify if (yc2
v1)Z2 = K2 × (gxc3

v1)c

– verify if (yc3
v1)Z3 = K3 × (gxc3

v1)c

• secondly verify P using T1,T2, s and z

– multiplies E(5, · · ·),E(2, · · ·) and E(3, · · ·) as (c1, c2)

– computes c = Hash(T1||T2)

– verifies if gs = (
c1

z
)c ·T1

– verifies if pks = (
c2

g10)c ·T2

– Same as to verify
c1

z
and

c2

g10 has the same exponentiation r4.

114

Appendix B

Our proposed encryption mechanism

for decentralized voting

Here we propose a new encryption mechanism for our election protocols. Note that it is not

enough to use the classical ElGamal encryption to protect the privacy of the voters. Indeed, if

only ElGamal encryption is used, and if the votes are encrypted by voters public key, then only

the voter can reveal the final result. If the content is encrypted by a voter’s private key, then

everyone can view the content as the user’s public key is in the public domain. Finally, if the

content of the votes is encrypted by a third party’s public key, then, the third party can reveal the

content of all users’ transactions, which is not suitable for our decentralised protocols.

This is why, to achieve appropriate protection of the voter’s privacy, here we propose a new

encryption mechanism, which merges ElGamal encryption and group-based encryption into

one scheme. The content of votes is encrypted using each voter’s private key and is masked by

applying public keys of the candidates, as explained in this section.

This new encryption mechanism achieves the following advantages. First, the privacy of all

votes is ensured. No one can reveal any vote without the private key of the user and the private

key of the corresponding candidate. We assume that all users and all candidates are going to keep

115

APPENDIX B. OUR PROPOSED ENCRYPTION MECHANISM FOR DECENTRALIZED VOTING

their keys confidential. Second, even the person voting last cannot determine the final outcome

before submitting their vote. The final outcome can be computer without revealing contents

of votes by using the homomorphic property. We assume that the candidates will apply their

private keys after the deadline for the submission of votes, when all votes are submitted and

the final outcome is already computed in such a way that everyone can verify the validity of all

calculations in the blockchain database.

Denote by pc j
vi the score assigned by voter Vi to candidate C j. Applying ElGamal encryption

and using the public key pkc j of candidate C j, we get the ciphertext

E(pc j
vi , pkc j)= gr, g(p

c j
vi)(pkc j)

r.

After that, we apply group-based encryption (cf. Section 2.1.4) to mask the first part of the

ElGamal ciphertext. Namely, the first part gr of the encrypted value is “encrypted" again by

using the pre-computed value yvi explained in Section 2.1.4 and the private voting key xvi of the

voter Vi, according to the mapping

gr → (yvi)
xvi · gr.

This means that each score pc j
vi is encrypted by applying the following combined formula.

(B.1) E(pc j
vi , pkc j , yvi , xvi)= (yvi)

xvi gr, g(p
c j
vi) · (pkc j)

r.

where the score pc j
vi is encrypted by using yvi (voting public keys of all voters), pkc j (public key of

the score’s recipient) and xvi (the voting private key of the voter).

B.1 An example of proof generation for an encrypted value

Next, we present the proofs generation for an encrypted score in vote Bi, where we assume an

encrypted score is E(1, pkc1 , yvi , xvi)= (yvi)
xvi · gr1 , g1 · (pkc1)r1 :

Generating proofs for E(1, pkc1):

1. The score is between 1 and 3 (cf. Section 2.1.2):

116

B.1. AN EXAMPLE OF PROOF GENERATION FOR AN ENCRYPTED VALUE

• generates random numbers t1, t2, t3,v2,v3 ∈Zq

• computes s2 = t2 + r ·v2

• computes s3 = t3 + r ·v3

• computes T01 = gt1 /(yvi)
xvi

• computes T02 = gt2 /(yvi)
xvi

• computes T03 = gt3 /(yvi)
xvi

• computes T1 = pkc1
t1

• computes T2 = (g2·v2 · (pkc1)s2)/c2
v2

• computes T3 = (g3·v3 · (pkc1)s3)/c2
v3

• computes v =Hash(c1‖c2‖T01‖T02‖T03‖T1‖T2‖T3)

• computes v1 = v⊕v2 ⊕v3, where ⊕ denotes XOR.

• computes s1 = t1 + r ·v1

• PPK(p1
c1

): {T01,T02,T03,v1,v2,v3, s1, s2, s3}

2. The score E(1, pkc1 , yvi , xvi) is computed correctly via Equation 6.1 using private key xvi (cf.

Section 2.1.3):

• generates a random number k1,k2 ∈Zq

• computes K1 = (yv1)k1 · gk2

• computes K2 = gk1

• computes c =Hash(K1‖K2)

• computes Z1 = xvi c+k1

• computes Z2 = r1c+k2

• PZK(xvi): {K1,K2, Z1, Z2}

117

APPENDIX B. OUR PROPOSED ENCRYPTION MECHANISM FOR DECENTRALIZED VOTING

B.2 An example of proof verification for an encrypted value

Next, we give the computation details of verifying PPK(pc j
vi) and PZK(xvi). In the verification of

the proofs for E(1, pkc1), we treat E(1, pkc1 , yvi , xvi)= (c1, c2).

1. Verification of PPK(pc1
vi)

• computes T1 = (g1·v1 · pkc1
s1)/c2

v1

• computes T2 = (g2·v2 · pkc2
s2)/c2

v2

• computes T3 = (g3·v3 · pkc3
s3)/c2

v3

• verify if v1 ⊕v2 ⊕v3 =Hash(E(1, pkc1 , yvi , xvi)‖ T01‖T02‖T03‖T1‖T2‖T3)

• verify if gs1 = T01 · c1
v1

• verify if gs2 = T02 · c1
v2

• verify if gs3 = T03 · c1
v3

2. Verification of PZK(xvi)

• verify if (yv1)Z1 gZ2 = K1 × (c1)Hash(K1‖K2)

• verify if gZ1 = K2 × (gxvi)Hash(K1‖K2)

where yvi and gxvi are public values.

118

Bibliography

[AARTAD17] Anees Ara, Mznah Al-Rodhaan, Yuan Tian, and Abdullah Al-Dhelaan. A secure

privacy-preserving data aggregation scheme based on bilinear elgamal cryp-

tosystem for remote health monitoring systems. IEEE Access, 5:12601–12617,

2017.

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In USENIX security symposium,

volume 17, pages 335–348, 2008.

[Adi12] B. Adida. Helios v4. http://documentation.heliosvoting.org/verification-

specs/helios-v4, 2012.

[Adi16] J. Adinolfi. And 2016’s best-performing commodity is ... bitcoin? http:

//www.marketwatch.com/story/and-2016s-best-performing-commodity-is-

bitcoin-2016-12-22, 2016.

[ADMP+09] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques Quisquater, et al. Electing

a university president using open-audit voting: Analysis of real-world use of helios.

EVT/WOTE, 9(10), 2009.

[ALPL13] R Michael Alvarez, Ines Levin, Julia Pomares, and Marcelo Leiras. Voting made safe and

easy: the impact of e-voting on citizen perceptions. Political Science Research and

Methods, 1(1):117–137, 2013.

[AP02] Alan Agresti and Brett Presnell. Misvotes, undervotes and overvotes: The 2000 presidential

election in florida. Statistical Science, pages 436–440, 2002.

119

http://documentation.heliosvoting.org/verification-specs/helios-v4
http://documentation.heliosvoting.org/verification-specs/helios-v4
http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin-2016-12-22
http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin-2016-12-22
http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin-2016-12-22

BIBLIOGRAPHY

[BBB+13] Susan Bell, Josh Benaloh, Michael D Byrne, Dana DeBeauvoir, Bryce Eakin, Gail Fisher,

Philip Kortum, Neal McBurnett, Julian Montoya, Michelle Parker, et al. Star-vote:

A secure, transparent, auditable, and reliable voting system. USENIX Journal of

Election Technology and Systems (JETS), 1(1):18–37, 2013.

[Bea16] Adrian Beaumont. Us election final results: how trump won. http://

theconversation.com/us-election-final-results-how-trump-won-69356,

December 17, 2016.

[BF05] Steven J Brams and Peter C Fishburn. Going from theory to practice: the mixed success of

approval voting. Social Choice and Welfare, 25(2-3):457–474, 2005.

[BHRC17] Amit Banerjee, Mahamudul Hasan, Md Auhidur Rahman, and Rajesh Chapagain. Cloak:

A stream cipher based encryption protocol for mobile cloud computing. IEEE Access,

5:17678–17691, 2017.

[Bit16] BitCongress. BitCongress - Process For Blockchain Voting & Law. http://

www.bitcongress.org/, 2016.

[Blo] Blockgeeks. Smart Contracts: The Blockchain Technology That Will Replace Lawyers.

https://blockgeeks.com/guides/smart-contracts/.

[Blo17a] Blockchain.info. Bitcoin block explorer blockchain. https://blockchain.info/, 2017.

[Blo17b] Blockchain.info. What if blockchain technology revolutionised voting? scientific fore-

sight unit (stoa), european parliamentary research service, sept. 2016. https://

blockchain.info/charts/n-transactions?timespan=1year, 2017.

[Bou16] P Boucher. What if blockchain technology revolutionised voting? scientific foresight unit

(stoa), european parliamentary research service, sept, 2016.

[BPS12] Michael Brenner, Henning Perl, and Matthew Smith. Practical applications of homomor-

phic encryption. In SECRYPT, pages 5–14, 2012.

120

http://theconversation.com/us-election-final-results-how-trump-won-69356
http://theconversation.com/us-election-final-results-how-trump-won-69356
http://www.bitcongress.org/
http://www.bitcongress.org/
https://blockgeeks.com/guides/smart-contracts/
https://blockchain.info/
https://blockchain.info/charts/n-transactions?timespan=1year
https://blockchain.info/charts/n-transactions?timespan=1year

BIBLIOGRAPHY

[Bre16] Ken Bredemeier. How did trump win election while losing popular vote?

https://www.voanews.com/a/how-didi-trump-win-election-while-losing-

popular-vote/3591226.html, Nov 11, 2016.

[BSE17] Khadijeh Bagheri, Mohammad-Reza Sadeghi, and Taraneh Eghlidos. An efficient public

key encryption scheme based on qc-mdpc lattices. IEEE Access, 5:25527–25541, 2017.

[But15] Vitalik Buterin.A Next-Generation Smart Contract and Decentralized Application Plat-

form. https://github.com/ethereum/wiki/wiki/White-Paper, 2015.

[But16] Vitalik Buterin. Devcon2: Ethereum in 25 minutes. https://www.youtube.com/watch?v=

66SaEDzlmP4, 2016.

[CCC+10] Richard Carback, David Chaum, Jeremy Clark, John Conway, Aleksander Essex, Paul S

Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L Rivest, Emily Shen, et al.

Scantegrity ii municipal election at takoma park: the first e2e binding governmental

election with ballot privacy. 2010.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge

and simplified design of witness hiding protocols. In Annual International Cryptology

Conference, pages 174–187. Springer, 1994.

[CFSY96] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung. Multi-authority

secret-ballot elections with linear work. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 72–83. Springer, 1996.

[Cha04] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE security &

privacy, 2(1):38–47, 2004.

[Cha12] Jonathan Chait. Yes, Bush v. Gore Did Steal the Election. http://nymag.com/daily/

intelligencer/2012/06/yes-bush-v-gore-did-steal-the-election.html,

2012.

[Che18] R.-Y. Chen. A traceability chain algorithm for artificial neural networks using T-S fuzzy

cognitive maps in blockchain. Future Generation Computer Systems, 80:198–210, 2018.

121

https://www.voanews.com/a/how-didi-trump-win-election-while-losing-popular-vote/3591226.html
https://www.voanews.com/a/how-didi-trump-win-election-while-losing-popular-vote/3591226.html
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.youtube.com/watch?v=66SaEDzlmP4
https://www.youtube.com/watch?v=66SaEDzlmP4
http://nymag.com/daily/intelligencer/2012/06/yes-bush-v-gore-did-steal-the-election.html
http://nymag.com/daily/intelligencer/2012/06/yes-bush-v-gore-did-steal-the-election.html

BIBLIOGRAPHY

[CLF17] Liquan Chen, Ming Lim, and Zijuan Fan. A public key compression scheme for fully

homomorphic encryption based on quadratic parameters with correction. IEEE Access,

5:17692–17700, 2017.

[CP92] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In Annual

International Cryptology Conference, pages 89–105. Springer, 1992.

[Del17] Deloitte. Blockchain technology: 9 benefits & 7 challenges. https://

blog.deloitte.com.ng/blockchain-technology-benefits-challenges/, 2017.

[Des16] Jeff Desjardins. It’s official: Bitcoin was the top performing currency of 2015.

http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-

performing-currency-of-2015/, 2016.

[DLL12] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Defining privacy for weighted

votes, single and multi-voter coercion. In European Symposium on Research in Com-

puter Security, pages 451–468. Springer, 2012.

[ECH12] Aleksander Essex, Jeremy Clark, and Urs Hengartner. Cobra: Toward concurrent ballot

authorization for internet voting. In EVT/WOTE, page 3, 2012.

[ECMC16] Christian Esposito, Aniello Castiglione, Ben Martini, and Kim-Kwang Raymond Choo.

Cloud manufacturing: security, privacy, and forensic concerns. IEEE Cloud Computing,

3(4):16–22, 2016.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[fCR16] International Association for Cryptologic Research. About the helios system. https://

www.iacr.org/elections/eVoting/about-helios.html, 2016.

[Fol16] Followmyvote.com. Introducing a secure and transparent online voting solution for the

modern age: Follow My Vote. https://followmyvote.com/, 2016.

[Gar16] DA López García. A flexible e-voting scheme for debate tools. Computers & Security,

56:50–62, 2016.

122

https://blog.deloitte.com.ng/blockchain-technology-benefits-challenges/
https://blog.deloitte.com.ng/blockchain-technology-benefits-challenges/
http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-performing-currency-of-2015/
http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-performing-currency-of-2015/
https://www.iacr.org/elections/eVoting/about-helios.html
https://www.iacr.org/elections/eVoting/about-helios.html
https://followmyvote.com/

BIBLIOGRAPHY

[GKV+16] Dawid Gaweł, Maciej Kosarzecki, Poorvi L Vora, Hua Wu, and Filip Zagórski. Apollo–end-

to-end verifiable internet voting with recovery from vote manipulation. In International

Joint Conference on Electronic Voting, pages 125–143. Springer, 2016.

[GMP] GMPY2.Welcome to gmpy2’s documentation! https://gmpy2.readthedocs.io/en/

latest/.

[Gre16] M. Gregory. Electronic voting may be faster but carries security risks.

http://www.theaustralian.com.au/business/technology/opinion/electronic-

voting-may-be/faster-but-carries-security-risks/news-story/

f0b6b44844214605e3860ef1887b2bb9, 2016.

[HA13] Hanady Hussien and Hussien Aboelnaga. Design of a secured e-voting system. In Computer

Applications Technology (ICCAT), 2013 International Conference on, pages 1–5. IEEE,

2013.

[HBB12] Omar Hasan, Lionel Brunie, and Elisa Bertino. Preserving privacy of feedback providers

in decentralized reputation systems. Computers & Security, 31(7):816–826, 2012.

[Her15] A. Hertig. The first Bitcoin voting machine is on its way. http://motherboard.vice.com/

read/the-first-bitcoin-votingmachine-is-on-its-way, 2015.

[Hig16] S. Higgins. Abu Dhabi Stock Exchange Launches Blockchain Voting. https://

www.coindesk.com/abu-dhabi-exchange-blockchain-voting/, 2016.

[HRZ10] Feng Hao, Peter YA Ryan, and Piotr Zieliński. Anonymous voting by two-round public

discussion. IET Information Security, 4(2):62–67, 2010.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic encryp-

tion. In International Conference on the Theory and Applications of Cryptographic

Techniques, pages 539–556. Springer, 2000.

[Ket01] Martin Kettle. Recount shows Gore had won. https://www.theguardian.com/world/

2001/mar/12/uselections2000.usa, 2001.

123

https://gmpy2.readthedocs.io/en/latest/
https://gmpy2.readthedocs.io/en/latest/
http://www.theaustralian.com.au/business/technology/opinion/electronic-voting-may-be/faster-but-carries-security-risks/news-story/f0b6b44844214605e3860ef1887b2bb9
http://www.theaustralian.com.au/business/technology/opinion/electronic-voting-may-be/faster-but-carries-security-risks/news-story/f0b6b44844214605e3860ef1887b2bb9
http://www.theaustralian.com.au/business/technology/opinion/electronic-voting-may-be/faster-but-carries-security-risks/news-story/f0b6b44844214605e3860ef1887b2bb9
http://motherboard.vice.com/read/the-first-bitcoin-votingmachine-is-on-its-way
http://motherboard.vice.com/read/the-first-bitcoin-votingmachine-is-on-its-way
https://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/
https://www.coindesk.com/abu-dhabi-exchange-blockchain-voting/
https://www.theguardian.com/world/2001/mar/12/uselections2000.usa
https://www.theguardian.com/world/2001/mar/12/uselections2000.usa

BIBLIOGRAPHY

[KKJ+16] Yonggon Kim, Ohmin Kwon, Jinsoo Jang, Seongwook Jin, Hyeongboo Baek,

Brent Byunghoon Kang, and Hyunsoo Yoon. On-demand bootstrapping mechanism for

isolated cryptographic operations on commodity accelerators. Computers & Security,

62:33–48, 2016.

[LaC16] Kim LaCapria. Did trump win 3,084 of 3,141 counties, clinton only 57?

https://www.snopes.com/fact-check/trump-won-3084-of-3141-counties-

clinton-won-57/, 2 December 2016.

[LJC+17] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey on the security

of blockchain systems. Future Generation Computer Systems, pages In Press, DOI

10.1016/j.future.2017.08.020, 2017.

[LK16] J. Lavelle and D. Kozaki. Electronic voting has advantages but remains vulnerable to se-

curity, software problems. http://www.abc.net.au/news/2016-07-11/electronic-

voting-has-support-but-security-fears-remain/7587366, 2016.

[LLS+16] Joseph K Liu, Kaitai Liang, Willy Susilo, Jianghua Liu, and Yang Xiang. Two-factor

data security protection mechanism for cloud storage system. IEEE Transactions on

Computers, 65(6):1992–2004, 2016.

[LMW17] Zengpeng Li, Chunguang Ma, and Ding Wang. Towards multi-hop homomorphic identity-

based proxy re-encryption via branching program. IEEE Access, 5:16214–16228, 2017.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.

ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,

1982.

[LVW14] Wenjun Lu, Avinash L Varna, and Min Wu. Confidentiality-preserving image search: a

comparative study between homomorphic encryption and distance-preserving random-

ization. IEEE Access, 2:125–141, 2014.

[MMS16] Víctor Mateu, Josep M Miret, and Francesc Sebé. A hybrid approach to vector-based

homomorphic tallying remote voting. International Journal of Information Security,

15(2):211–221, 2016.

124

https://www.snopes.com/fact-check/trump-won-3084-of-3141-counties-clinton-won-57/
https://www.snopes.com/fact-check/trump-won-3084-of-3141-counties-clinton-won-57/
http://www.abc.net.au/news/2016-07-11/electronic-voting-has-support-but-security-fears-remain/7587366
http://www.abc.net.au/news/2016-07-11/electronic-voting-has-support-but-security-fears-remain/7587366

BIBLIOGRAPHY

[MMS+17] Mithun Mukherjee, Rakesh Matam, Lei Shu, Leandros Maglaras, Mohamed Amine Ferrag,

Nikumani Choudhury, and Vikas Kumar. Security and privacy in fog computing:

Challenges. IEEE Access, 5:19293–19304, 2017.

[MNX+16] Abid Mehmood, Iynkaran Natgunanathan, Yong Xiang, Guang Hua, and Song Guo. Pro-

tection of big data privacy. IEEE access, 4:1821–1834, 2016.

[MOR16] EREN MORENO. Did you know? trump won 3,084 out of 3,151 counties. hillary only won

57. http://archive.is/L3Dbc, 1 December 2016.

[MPRJ10] Reshef Meir, Maria Polukarov, Jeffrey S Rosenschein, and Nicholas R Jennings. Con-

vergence to equilibria in plurality voting. In Proc. of 24th Conference on Artificial

Intelligence (AAAI-10), pages 823–828, 2010.

[MSH17] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for board-

room voting with maximum voter privacy. In International Conference on Financial

Cryptography and Data Security, pages 357–375. Springer, 2017.

[Mur17] Kevin Murnane. Speedtest Ranks Internet Access Speed In More Than 100 Countries.

https://www.forbes.com/sites/kevinmurnane/2017/08/14/speedtest-ranks-

internet-access-speed-in-more-than-100-countries/#335534f065b5, 2017.

[MV17] Ricardo Mendes and João P Vilela. Privacy-preserving data mining: Methods, metrics, and

applications. IEEE Access, 5:10562–10582, 2017.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. academia.edu, 2008.

[NCS14] Vu Duc Nguyen, Yang-Wai Chow, and Willy Susilo. On the security of text-based 3d

captchas. Computers & Security, 45:84–99, 2014.

[Nef04] C Andrew Neff. Practical high certainty intent verification for encrypted votes, 2004.

[NSGF16] Ricardo Neisse, Gary Steri, Dimitris Geneiatakis, and Igor Nai Fovino. A privacy enforcing

framework for android applications. computers & security, 62:257–277, 2016.

[Par07] Michael Parenti. The Stolen Presidential Elections. http://www.michaelparenti.org/

stolenelections.html, 2007.

125

http://archive.is/L3Dbc
https://www.forbes.com/sites/kevinmurnane/2017/08/14/speedtest-ranks-internet-access-speed-in-more-than-100-countries/#335534f065b5
https://www.forbes.com/sites/kevinmurnane/2017/08/14/speedtest-ranks-internet-access-speed-in-more-than-100-countries/#335534f065b5
http://www.michaelparenti.org/stolenelections.html
http://www.michaelparenti.org/stolenelections.html

BIBLIOGRAPHY

[PP99] Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems provably secure

against active adversaries. In Advances in Cryptology-ASIACRYPT’99, pages 165–179.

Springer, 1999.

[PRB+17] Raj R Parmar, Sudipta Roy, Debnath Bhattacharyya, Samir Kumar Bandyopadhyay, and

Tai-Hoon Kim. Large-scale encryption in the hadoop environment: Challenges and

solutions. IEEE Access, 5:7156–7163, 2017.

[PSO11] Adewole A Philip, Sodiya Adesina Simon, and Arowolo Oluremi. A receipt-free multi-

authority e-voting system. International Journal of Computer Applications, 30(6):15–

23, 2011.

[RBH+09] Peter YA Ryan, David Bismark, James Heather, Steve Schneider, and Zhe Xia. Prêt à

voter: a voter-verifiable voting system. IEEE transactions on information forensics and

security, 4(4):662–673, 2009.

[RFB17] Bahman Rashidi, Carol Fung, and Elisa Bertino. Android resource usage risk assessment

using hidden markov model and online learning. Computers & Security, 65:90–107,

2017.

[Rob16] Dan Roberts. Why hillary clinton lost the election: the economy, trust and a

weak message. https://www.theguardian.com/us-news/2016/nov/09/hillary-

clinton-election-president-loss, Nov 9, 2016.

[RSA78] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[Sab16] Samira Saba. Now you can vote online with a selfie. http://www.businesswire.com/

news/home/20161017005354/en/VoteOnline-Selfie, 2016.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology,

4(3):161–174, 1991.

[SCM08] Altair O Santin, Regivaldo G Costa, and Carlos A Maziero. A three-ballot-based secure

electronic voting system. IEEE Security & Privacy, 6(3):14–21, 2008.

126

https://www.theguardian.com/us-news/2016/nov/09/hillary-clinton-election-president-loss
https://www.theguardian.com/us-news/2016/nov/09/hillary-clinton-election-president-loss
http://www.businesswire.com/news/home/20161017005354/en/VoteOnline-Selfie
http://www.businesswire.com/news/home/20161017005354/en/VoteOnline-Selfie

BIBLIOGRAPHY

[SP18] P. K. Sharma and J. H. Park. Blockchain based hybrid network architecture for

the smart city. Future Generation Computer Systems, pages In Press, DOI

10.1016/j.future.2018.04.060, 2018.

[Spe17] Speedtest Global Index. Ranking mobile and fixed broadband speeds from around the world

on a monthly basis. http://www.speedtest.net/global-index, December 2017.

[Sza96] Nick Szabo. Smart contracts: building blocks for digital markets. EXTROPY: The Journal

of Transhumanist Thought,(16), 1996.

[Top10] Jurij Toplak. Preferential voting: definition and classification. In Annual Meeting of the

Midwest Political Science Assication 67th Annual National Conference, 2010.

[TPLT13] Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and Panayiotis Tsanakas.

From helios to zeus. In EVT/WOTE, 2013.

[Wes16] Taylor Wessing. How secure is blockchain? https://www.taylorwessing.com/download/

article-how-secure-is-block-chain.html, 2016.

[WIK] WIKIPEDIA. ElGamal encryption. https://wikipedia.org/wiki/

ElGamal_encryption.

[Wil16] Rick Wilking. How vulnerable to hacking is the us election cyber infrastruc-

ture? https://theconversation.com/how-vulnerable-to-hacking-is-the-us-

election-cyber-infrastructure-63241, July 30, 2016.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 151:1–32, 2014.

[Woo17] G. Wood. Ethereum blockchain mechanism (proof of work). https://i.stack.imgur.com/

afWDt.jpg, 2017.

[WPD15] CNN Wade Payson-Denney. So, who really won? What the Bush v. Gore studies showed.

http://edition.cnn.com/2015/10/31/politics/bush-gore-2000-election-

results-studies/, 2015.

127

http://www.speedtest.net/global-index
https://www.taylorwessing.com/download/article-how-secure-is-block-chain.html
https://www.taylorwessing.com/download/article-how-secure-is-block-chain.html
https://wikipedia.org/wiki/ElGamal_encryption
https://wikipedia.org/wiki/ElGamal_encryption
https://theconversation.com/how-vulnerable-to-hacking-is-the-us-election-cyber-infrastructure-63241
https://theconversation.com/how-vulnerable-to-hacking-is-the-us-election-cyber-infrastructure-63241
https://i.stack.imgur.com/afWDt.jpg
https://i.stack.imgur.com/afWDt.jpg
http://edition.cnn.com/2015/10/31/politics/bush-gore-2000-election-results-studies/
http://edition.cnn.com/2015/10/31/politics/bush-gore-2000-election-results-studies/

BIBLIOGRAPHY

[XMY+17] Rui Xu, Kirill Morozov, Yanjiang Yang, Jianying Zhou, and Tsuyoshi Takagi. Efficient

outsourcing of secure k-nearest neighbour query over encrypted database. Computers

& Security, 69:65–83, 2017.

[YO11] Xun Yi and Eiji Okamoto. Practical remote end-to-end voting scheme. In International

Conference on Electronic Government and the Information Systems Perspective, pages

386–400. Springer, 2011.

[YPB14] Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic encryption and applications,

volume 3. Springer, 2014.

[YYR+17] Xuechao Yang, Xun Yi, Caspar Ryan, Ron van Schyndel, Fengling Han, Surya Nepal,

and Andy Song. A verifiable ranked choice internet voting system. In International

Conference on Web Information Systems Engineering, pages 490–501. Springer, 2017.

[ZMH+18] J. H. Ziegeldorf, R. Matzutt, M. Henze, F. Grossmann, and K. Wehrle. Secure and anony-

mous decentralized Bitcoin mixing. Future Generation Computer Systems, 80:448–466,

2018.

[ZPWZ14] Yingming Zhao, Yue Pan, Sanchao Wang, and Junxing Zhang. An anonymous voting

system based on homomorphic encryption. In Communications (COMM), 2014 10th

International Conference on, pages 1–4. IEEE, 2014.

128

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Ranked Choice Voting Mechanism
	Security Requirements

	Our Research Questions
	Aims and Objectives
	Contributions of this thesis
	Structure of this thesis

	Literature Review
	Underlying Cryptographic Algorithm
	ElGamal Cryptosystem
	Proof of partial knowledge
	Proof of zero knowledge
	Distributed cryptosystem

	Homomorphic Based Online Voting Systems
	Blockchain-based Online Voting Systems
	Summary

	A PVRC Online Voting System
	Motivation of PVRC
	Our PVRC Online Voting System
	Security Analysis on PVRC
	Performance Analysis on PVRC
	Conclusion

	A LSPVRC Online Voting System
	Motivation of LSPVRC
	Preliminaries of LSPVRC
	Our LSPVRC Online Voting System
	Security analysis on LSPVRC
	Performance Analysis on LSPVRC
	Conclusion

	A SDPVRC Online Voting System
	Motivation of SDPVRC
	Preliminaries of SDPVRC
	Decentralized Voting with Smart Contract

	Our SDPVRC Online Voting System
	Security Analysis on SDPVRC
	Performance Analysis on SDPVRC
	Conclusion

	A STDPVRC Online Voting System without any Tallying Authority
	Motivation of STDPVRC
	Preliminaries of STDPVRC
	Our new implicit verification protocol

	Our STDPVRC Online Voting System
	Security Analysis on STDPVRC
	Performance Analysis on STDPVRC
	Conclusion

	Conclusion and Future Work
	Conclusion of the thesis
	Future Work

	Computation details of proof generations and verifications
	Each encrypted value is computed correctly
	The sum of all encrypted values is equivalent to the encrypted value from P

	Our proposed encryption mechanism for decentralized voting
	An example of proof generation for an encrypted value
	An example of proof verification for an encrypted value

	Bibliography

