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Abstract

This research aims to investigate the multimodal properties of structural optimization us-

ing techniques from the field of evolutionary computation, specifically niching and bilevel

techniques. Truss design is a well-known structural optimization problem which has impor-

tant practical applications in many fields. Truss design problems are typically multimodal

by nature, meaning that it offers multiple equally good design solutions with respect to

the topology and/or sizes of the members, but they are evaluated to have similar or

equally good objective function values. From a practical standpoint, it is desirable to

find as many alternative designs as possible, rather than finding a single design, as often

practiced. Niching is an intuitive way of finding multiple optimal solutions in a single

optimization run. Literature shows that existing niching methods are largely designed

for handling continuous optimization problems. There does not exist a well-studied nich-

ing method for constrained discrete optimization problems like truss design problems. In

addition, there are no well-defined multimodal discrete benchmark problems that can be

used to evaluate the reliability and robustness of such a niching method.

This thesis fills the identified research gaps by means of five major contributions. In

the first contribution, we design a test suite for producing a diverse set of challenging

multimodal discrete benchmark problems, which can be used for evaluating the discrete

niching methods. In the second contribution, we develop a binary speciation-based PSO

(B-SPSO) niching method using the concept of speciation in nature along with the bi-

nary PSO (BPSO). The results show that the proposed multimodal discrete benchmark

problems are useful for the evaluation of the discrete niching methods like B-SPSO. In

light of this study, a time-varying transfer function based binary PSO (TVT -BPSO) is

developed for the B-SPSO which is the third contribution of this thesis. We propose

this TVT -BPSO for maintaining a better balance between exploration/exploitation during

the search process of the BPSO. The results show that the TVT -BPSO outperforms the

state-of-the-art discrete optimization methods on the large-scale 0-1 knapsack problems.

The fourth contribution is to consider and formulate the truss design problem as a bilevel

optimization problem. With this new formulation, truss topology can be optimized in the

upper level, at the same time the size of that truss topology can be optimized in the lower

level. The proposed bilevel formulation is a precursor to the development of a bilevel nich-

ing method (Bi-NM) which constitutes the fifth contribution of this thesis. The proposed



Bi-NM method performs niching at the upper level and a local search at the lower level

to further refine the solutions. Extensive empirical studies are carried out to examine

the accuracy, robustness, and efficiency of the proposed bilevel niching method in finding

multiple topologies and their size solutions. Our results confirm that the proposed bilevel

niching method is superior in all these three aspects over the state-of-the-art methods on

several low to high-dimensional truss design problems.



CHAPTER 1
Introduction

1.1 Motivation

In mathematics, computer science, and operations research, optimization is the process of

finding the best solution for a given problem under various circumstances [Gupta 2008,

Rao and Rao 2009]. In fact, everybody does optimization to some extent. For example,

we can think about choosing the right amount of crushed ice for a drink, or choosing the

best route to go to work. To optimize something, the first task is to identify the objective,

i.e., a quantitative measure of the performance of the problem under study. Basically,

this objective depends on certain characteristics of the problem represented by variables,

that may or may not be constrained. In optimization, the task is to find values for the

variables that optimize the objective of the problem under consideration.

Optimization deals with the problems that are often continuous or discrete [Arora

2004]. An optimization problem with discrete variables is known as a discrete optimization

problem. Discrete optimization problems concern about the efficient allocation of limited

resources to fulfill the desired objective. Decision variables of such a problem are restricted

to take values from bounded or discrete sets, and additional constraints limit the possible

alternatives that are considered feasible. Typically, there are many possible alternatives

to consider, and a goal determines which of these alternatives are the best. Continuous

optimization problems are different than the discrete one in the sense that they concern

about optimal setting of parameters or continuous decision variables. In this case, no

limited number of alternatives exists, but optimal values for continuous variables have

to be determined. In real-world, many optimization problems exist which have both

continuous and discrete decision variables [Christensen 2012, Christiansen et al. 2015,

Xiao et al. 2012, Ohsaki 2016, Rong et al. 2002, Parmee and Hajela 2012, Lukáš 2001,

Shin et al. 2002, Zhu et al. 2016] and they are often challenging to solve [Socha 2009].

Structural optimization deals with such a challenging real-world optimization problem
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which is the main concern of this thesis.

Structural optimization is a well-established research area which has interesting theo-

retical implications in mathematics and mechanics, as well as important practical applica-

tions in various engineering fields including the industrial design [Naceur et al. 2004], civil

engineering [Huang and Xie 2010], electrical engineering [Zhou et al. 2010], automobile

engineering [Fredricson et al. 2003], aerospace engineering [Krog et al. 2004], and medical

engineering [Sutradhar et al. 2010]. The purpose of structural optimization is to fulfill

the common need of engineers to build structures that not only satisfies their functional

requirements but also perform optimally [Christensen and Klarbring 2009]. Broadly speak-

ing, two types of structural design optimization can be found in the literature [Christensen

and Klarbring 2009]: sizing optimization and topology optimization. In sizing optimiza-

tion, a set of sizing parameters of the design domain may change during the optimization

process without any modification of the structure topology; therefore the topology of the

design domain is predefined and remains unchanged, as shown in Fig. 1.1(a). Unlike

size optimization, topology optimization tries to identify an optimal design by changing

the sizing parameters as well as the topology of the design domain, as shown in Fig.

1.1(b). Structural optimization provides several benefits; specifically, it reduces wastage

of material, minimizes construction cost due to optimization of the amount of material

requirements, minimizes construction time, provides aesthetically pleasing architecture,

and obtains high-performance designs for the structures under consideration.

Several factors make structural optimization problems exceedingly difficult [Wang

et al. 2004]. Firstly, structural design problems governed by the user-defined objectives

and constraints [Miguel et al. 2013]. These constraints often conflict with the objective

function and thus finding an optimal solution for such a problem is a challenging task.

Besides, both the objective function and constraints (which are often nonlinear) cause the

search space of a structural optimization problem to become multimodal, meaning that

multiple optimal solutions may exist in the search space of such a problem. In this case, it

is even more challenging to obtain an optimal solution of such a structural design problem,

because the search process may stuck at a local optimum. Secondly, the optimal design

of a structural problem not only depends on its topology optimization but also on the

size optimization of that topology. This inherent relationship of structural topology and

size variables strongly suggests that structural topology or sizing optimization should be

performed simultaneously [Wang et al. 2004], not separately, as often practiced [Deb and

Gulati 2001, Luh and Lin 2011, Li et al. 2002]. Finally, the structural sizing and topology

variables may have both continuous and discrete values. Hence, optimizing these two types

of variables together may cause considerable mathematical difficulties, and sometimes

lead to ill-conditioning problems because their changes are of widely different orders of

magnitude [Wang et al. 2004].

In the past decades, several structural optimization methods have been developed for

4 (October 4, 2018)
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Figure 1.1: Illustration of (a) the result of sizing optimization, and (b) topology optimiza-
tion of a structural design problem.

structural optimization problems [Bendsøe 1989, Xie and Steven 1993, Deb and Gulati

2001, Tai and Akhtar 2005a]. It can be observed that these existing methods are mainly

designed for locating the single optimal solution. However, structural optimization prob-

lems are the non-convex optimization problems which have several linear and nonlinear

constraints. Due to their non-convex property, there exist multiple equally good quality

solutions in terms of the topology and size of the members, and it is desirable to locate

these solutions for several reasons. Locating all the optimal/near optimal design solutions

not only helps understand better the hidden relationship among found optimal solutions

and facilitates sensitivity studies of the problem under investigation, but also increases

the probability of finding the global optimal design solutions [Li et al. 2002]. In addition,

multiple solutions can be used for designing low cost and high-performance alternative

structures for the structural design problem under consideration.

In the field of evolutionary computation (EC), there has been a growing interest

in applying evolutionary algorithms (EAs) to solve multimodal optimization problems.

Because a multimodal optimization problem involves multiple optimal solutions, many

niching methods have been developed and incorporated into evolutionary algorithms for

locating such optimal solutions. A niching algorithm creates and maintains formation of

several subpopulations within a single population aiming to find multiple optimal solutions

in a single run [Goldberg and Richardson 1987]. Literature shows that fitness sharing is

the first niching method developed by Goldberg and Richardson [Goldberg and Richardson

1987]. Since then many other niching methods have been developed in the past decades

including clearing [Petrowski 1996], deterministic crowding [Mahfoud 1995], species [Li

5 (October 4, 2018)
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et al. 2002], and speciation-based PSO [Li 2004]. In this thesis, these niching methods can

be used as efficient tools for solving multimodal structural optimization problems. How-

ever, these niching methods have been typically designed for solving continuous problems.

From a practical viewpoint, it is desirable to develop niching methods for both continuous

and discrete optimization problems, such as the structural optimization problems.

One possible way of developing discrete niching methods is to extend the idea of

existing continuous niching methods into discrete domains. In literature, several discrete

optimization methods are available which have been developed for solving various discrete

optimization problems [Pedrasa et al. 2009, Liao et al. 2007, Jarboui et al. 2008, Naeem

et al. 2012, Lin et al. 2016, Han et al. 2017]. Although these methods perform well in the

case of global optimization, their behaviour and performance cannot be guaranteed when

applying them to multimodal discrete optimization problems. Hence, it is necessary to

examine and improve these methods before using them for the development of discrete

niching methods.

Artificial multimodal benchmarks are one of the primary tools that EC researchers

use to demonstrate the strengths and weaknesses of a niching algorithm and to compare

new niching algorithms with existing ones on a common ground. In literature, many mul-

timodal benchmarks can be found [Goldberg 1989, Mahfoud 1995, Rönkkönen et al. 2008],

which have been largely designed for the continuous optimization problems. There is no

well-defined benchmark for multimodal discrete/combinatorial optimization. Although

there exist many niching methods (as mentioned earlier) developed for solving the contin-

uous optimization problems, their behaviour and performance cannot be guaranteed when

applying them to discrete/combinatorial optimization problems. Therefore, it is necessary

to design multimodal discrete benchmark problems to help EC researchers evaluate their

niching algorithms, and further test them on structural design problems.

Problem formulation of a structural design problem is significant, as it will determine

the quality of the optimization itself. In fact, optimization cannot provide useful insights

of a structural design problem with an inappropriate formulation. In the past decades,

several formulations have been proposed for structural optimization [Bendsøe 1989, Deb

and Gulati 2001, Friedlander and Gomes 2011, Fenton et al. 2016]. It is worth to mention

that all these formulations have been designed for either the structural topology opti-

mization or size optimization. However, an optimal design of a structural design problem

depends on the simultaneous topology and size optimization, because structural topology

and size are two non-separable problems [Deb and Gulati 2001]. In this context, existing

formulations may not be appropriate for obtaining an optimal solution of such a design

problem. A more suitable formation will be required to facilitate this need of the simul-

taneous topology and size optimization. One of the possible solutions of this issue could

be the use of the idea of bilevel optimization [Bard 1998].

Bilevel optimization is an interesting research topic in EC as well as in classic opti-
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mization literature [Li et al. 2006, Zhu et al. 2006, Sinha et al. 2014, Al-Khayyal et al.

1992, Bard and Moore 1990, Aiyoshi and Shimizu 1984]. In bilevel optimization, two

different levels of optimization take place, with one level (i.e., lower level) of optimization

being nested within the other (i.e., upper level) [Bard 1998]. In this thesis, the idea of

bilevel optimization can be used as a useful tool for solving simultaneous structural topol-

ogy and size optimization. Although this idea already has been used for the structural size

optimization [Kočvara 1997, Christiansen et al. 2001, Noilublao and Bureerat 2013], a sig-

nificant modification is required before applying this idea effectively for the simultaneous

topology and size optimization.

In the real-world, many optimization problems exist that can be considered as bilevel

and multimodal by nature [Sinha et al. 2017]. Due to the multimodal property, there may

exist multiple optimal solutions in the search space of a bilevel optimization problem. To

find these solutions, a bilevel niching method is required. Literature shows that existing

niching methods have been designed for the single level optimization problems [Pérez et al.

2003, Shir et al. 2005, Sheng et al. 2008, Chang et al. 2011]. From the practical standpoint,

it is imperative to develop a bilevel niching method so as to find good quality solutions

for the bilevel optimization problems such as structural design problems.

By considering the above research gaps, this research aims to develop a new struc-

tural optimization framework by incorporating the idea of the niching methods along with

the idea of structural and bilevel optimization so that a diverse set of equally good qual-

ity solutions can be found for the structural design problems, with better efficiency and

accuracy.

1.2 Research Objectives

The specific research objectives of this thesis are as follows:

1. To propose guidelines for designing and implementing multimodal discrete bench-

mark problems and to assess the robustness of a developed discrete niching method

on these new benchmark problems.

2. To identify the limitations of existing discrete optimization methods, specifically,

binary PSO and its popular variants in terms of providing optimal/near optimal

solution of the real-world optimization problems, and to design a new binary PSO

method that overcomes these limitations by means of providing a good balance

between exploration and exploitation.

3. To formulate the truss design as a bilevel problem, and to design a bilevel niching

method that optimizes the bilevel truss problem to find multiple truss topologies

and size solutions.

7 (October 4, 2018)



CHAPTER 1: INTRODUCTION

4. To demonstrate the accuracy, robustness, and efficiency of the proposed bilevel nich-

ing method, compared to other well-known truss optimization methods, over various

challenging low and high-dimensional truss design problems.

1.3 Methodology

Truss design is a well-known structural optimization problem where an optimal design

solution depends on both of its topology and size optimization [Deb and Gulati 2001]. In

truss optimization, the problem related to the topology optimization is a discrete and non-

convex optimization problem which have several linear and non-linear constraints. This

non-convex property causes the search space of such a problem highly multimodal. There

is a good chance that multiple good quality design solutions can be found in the topology

search space of truss design problems. Niching methods are well-established methods in

EC which have the ability of finding multiple solutions in a single run [Goldberg 1989].

In literature, many niching methods exist [Li et al. 2017] that can be used as efficient

tools for the multimodal topology optimization problems. However, these existing niching

methods cannot be applicable for such a problem, because they have been designed for

the continuous multimodal optimization problems. Therefore, a new niching method is

urgently needed to solve the multimodal topology optimization problems.

For the proposed niching method, binary particle swarm optimization (BPSO) [Kennedy

and Eberhart 1997] is selected as a potential solution to handle the truss topology opti-

mization problems. BPSO has been shown to be effective for solving discrete optimization

problems [Jordehi and Jasni 2015]. Literature shows that the niching methods with spe-

ciation concept [Li et al. 2002] can form stable niches than other existing niching methods

[Li 2004]. Hence, this research will adopt the idea of speciation and BPSO to develop the

proposed discrete niching method for the multimodal truss topology optimization.

Performance evaluation is an important task for the validation of any developed

niching method. This can be done by conducting a comparative study between the devel-

oped niching method and state-of-the-art niching methods over well-known multimodal

benchmark suites. Literature shows that existing multimodal benchmark suites [Goldberg

1989, Mahfoud 1995, Rönkkönen et al. 2008] have been largely designed for the continu-

ous problems. There is no well-defined benchmark for multimodal discrete/combinatorial

optimization that can be used for the performance evaluation of discrete niching methods.

To fill this gap, this study will design a new test instance generation tool for generat-

ing multimodal discrete optimization problems. The 0-1 knapsack problem is selected as

a representative combinatorial optimization problem to design this new benchmark gen-

eration tool. The 0-1 knapsack problem has been chosen because, this is a well-known

NP-hard problem and widely used in practice [Mavrotas et al. 2008, Wscher et al. 2007,

Higgins et al. 2008]. This research will investigate the structural relationship between

8 (October 4, 2018)



CHAPTER 1: INTRODUCTION

the knapsack parameters to identify the key factors that allow generating multimodal

instances that facilitate this study.

As mentioned earlier, BPSO is selected as a potential tool for developing the pro-

posed discrete niching method. However, BPSO has the limitations of providing good

quality solutions for the discrete optimization problems [Ting et al. 2006, Tassopoulos

and Beligiannis 2012a;b, Liu et al. 2015a, Han et al. 2017, Liu et al. 2015b, Wang et al.

2013]. Several studies have shown that the sigmoid transfer function of BPSO is one of the

reasons that prevent BPSO to provide good quality solutions [Mirjalili and Lewis 2013,

Bansal and Deep 2012, Liu et al. 2011; 2015b]. To overcome this issue, this study will de-

sign a new transfer function to make a good balance between exploration and exploitation

of BPSO. For the design of new transfer function, we will analyse the search behaviour of

existing BPSO’s [Kennedy and Eberhart 1997, Mirjalili and Lewis 2013, Bansal and Deep

2012, Liu et al. 2011].

Mathematical formulation is significant in the solution process of truss design prob-

lems. In fact, an optimal solution of such a problem highly depends on its proper formu-

lation. In literature, several formulations have been proposed for the truss optimization

[Bendsøe 1989, Deb and Gulati 2001, Friedlander and Gomes 2011, Fenton et al. 2016].

However, these formulations cannot be used for the simultaneous topology and size op-

timization, because they have been particularly designed for the truss topology or size

optimization. To address this issue, the idea of bilevel optimization [Bard 1998] will be

adopted for formulating the truss design problem as a bilevel optimization problem. We

have chosen bilevel optimization, because it will facilitate the simultaneous topology and

size optimization of two non-separable problems like truss topology and size problems.

Like truss design problems, many other optimization problems can be viewed as a

bilevel optimization problem [Christiansen et al. 2015, Xiao et al. 2012, Ohsaki 2016,

Rong et al. 2002, Parmee and Hajela 2012, Lukáš 2001, Shin et al. 2002]. As most of

these problems are non-convex optimization problems, their search spaces may contain

more than one equally good quality solution. Niching methods are required for finding

multiple good quality solutions of these problems. Literature shows that existing niching

methods have been developed for the problems which have only one level of optimization

task [Pérez et al. 2003, Shir et al. 2005, Sheng et al. 2008, Chang et al. 2011]. To fill

this gap, this study will develop a bilevel niching method, specifically for the bilevel truss

design problems. For the proposed bilevel niching method, we will adopt the proposed

discrete niching method and a standard PSO [Kennedy and Eberhart 1997]. The proposed

bilevel niching method will be used to find multiple topology and size solutions of truss

design problems. Finally, we will evaluate the proposed bilevel niching method based on

the following performance criteria: the number of design solutions, the final quality of

the solutions, and efficiency, and compared that with several state-of-the-art structural

optimization methods [Deb and Gulati 2001, Luh and Lin 2011, Li 2015].
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1.4 Contributions

This study makes the following original research contributions in structural design opti-

mization as well as evolutionary algorithms.

• Design and development of a benchmark instance generation tool for generating a

diverse set of multimodal 0-1 knapsack problems. This will facilitate evaluation of

discrete niching methods.

• Propose a new discrete niching method that can find multiple design solutions for

the truss topology optimization problems.

• Propose a new binary PSO, namely the time-varying transfer function based BPSO

(TVT -BPSO) for obtaining the better quality solution of discrete problems by means

of balancing the exploration and exploitation ability of BPSO.

• Formulation of the truss design problem as a bilevel optimization problem to facili-

tate the simultaneous topology and size optimization.

• Development of a bilevel niching method that can identify the multiple topology and

size solutions simultaneously for the bilevel truss design problems.

1.5 Outline of the Thesis

The remaining of this thesis is organized as follows. The background materials of this thesis

are provided in Chapter 2. Chapter 3 contains a benchmark suite for multimodal discrete

optimization problems. This chapter also contains a binary niching method namely B-

SPSO which is developed based on the concept of speciation and the original binary PSO

(BPSO). In addition, this chapter shows how the newly proposed benchmarks pose a

major challenge to the proposed B-SPSO method. In Chapter 4, a time-varying transfer

function based BPSO (TVT -BPSO) is proposed in light of the lessons that we learn from

Chapter 3. In Chapter 5, we first formulate the truss problem as a bilevel problem. Based

on this formulation, a bilevel niching method is proposed which is developed based on the

improved B-SPSO and a standard PSO. Numerous examples are provided in this chapter

to show the efficiency and accuracy of the proposed bilevel niching method over low- and

high-dimensional challenging truss design problems. Finally, we conclude this thesis with

a summary of major findings in Chapter 6.

10 (October 4, 2018)



CHAPTER 2
Background

2.1 Introduction

This chapter contains the background materials that are used throughout this thesis.

Particularly, the idea of general optimization which can be applied to problems with

different types of variables is discussed. The popular metaheuristic algorithms that are

related to this study are introduced. An overview of structural optimization and its key

optimization techniques are provided. The basic ideas of popular multimodal optimization

techniques are introduced. An overview of existing continuous multimodal benchmark

functions and the needs of the discrete multimodal benchmark functions are also discussed.

Finally, bilevel optimization and its application to structural optimization are discussed.

2.2 Optimization

Optimization is the process of finding optimal solutions for a given problem under certain

defined circumstances [Rao and Rao 2009]. In fact, we all do it in our daily life to

some extent. Be it thinking about the choice of the best route between two points or

arranging furniture in such a way that the space in a room can be utilized properly. In

the case of a manufacturing system, we can describe the optimization in the following

way. During the development of such a system, it is necessary to make the different

technological and managerial decisions at several stages. The purpose of making all these

decisions is to minimize the effort required or to maximize the desired profit. Since the

effort required and/or the benefit desired in any practical situation can be expressed as a

function of certain decision variables, optimization can be defined as the process of finding

the conditions that give the maximum (or minimum) value (x∗) of a function, as shown

in Fig. 2.1.
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Figure 2.1: Illustration of the maximum (x∗) of an optimization function f(x) that tries
to find by optimization.

In mathematics and computer science, an optimization problem is a problem of find-

ing the best solution among all of its feasible solutions. To optimize a problem, it is

necessary to be familiar with three key concepts related to optimization i.e., decision

vector, constraints, and objective function, which are defined in the following:

• Decision Vector: In practice, optimization problems are defined by a set of pa-

rameters in which all of them change their values during the optimization process.

Thus, all these parameters are treated as variables of the optimization problem and

are called decision variables xi, i=1, 2, . . . , n. The variables of an optimization

problem are collectively termed as a decision vector x= {x1, x2, . . . , xn}.

• Constraints: In many practical problems, the values of the decision variables can-

not be chosen arbitrarily; rather, they have to satisfy certain specified functional and

other requirements. The restrictions that must be satisfied to produce an acceptable

result are collectively called the constraints of the optimization problem.

• Objective Function: The goal of a typical optimization method is to find an

acceptable solution that must fulfill the requirements of the problem. In general,

the search space of a problem contains more than one acceptable solutions, and

the optimization method aims to find the best one among these feasible solutions.

Certain criteria have to be imposed for comparing the different solutions or for

selecting the best solution. The criterion with respect to which the problem is

optimized, when expressed as a function of the decision variables, is known as the

objective function. The choice of objective function is determined by the problem

properties and the model designer.
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Considering the above, an optimization problem can be defined as follows.

Find x =



x1

x2

.

.

xn


which maximizes f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , q,

(2.1)

where x is an n-dimensional decision vector, f(x) is the objective function, and gi(x) and

hj(x) are inequality and equality constraints, respectively. The problem presented in Eq.

(2.1) is a constrained optimization problem.

2.2.1 Classification of Optimization Problems

Optimization problems can be classified into different categories depending on whether

they are constrained or unconstrained, the variables are separable or non-separable, the

variables are continuous or discrete, and the variables are mixed i.e., continuous and

discrete. A brief description of these categories is provided below:

• Continuous and discrete problems: An optimization problem with continuous vari-

ables is known as a continuous optimization problem. For example, we can consider

the problem stated in Eq. (2.1) as a continuous optimization problem when its de-

cision variable x is treated as a continuous variable. In contrast, an optimization

problem with discrete variables is known as the discrete optimization problem. The

variables of a discrete optimization problem can take a discrete value from a set.

For example, if we restrict the variables such that they can only take on values from

the set {0, 1, 5, 6} then the problem stated in Eq. (2.1) can be said a discrete

optimization problem.

• Mixed variable problems: Many real-world optimization problems can be modeled

using combinations of continuous and discrete variables which are generally called

mixed-variable optimization problems. A mixed variable problem can be defined in

the following way. Let R = (a,g, f) be a mixed-variable model where a represents

a finite set of both discrete and continuous decision variables, g represents the set

of constraints among these variables, and f denotes an objective function to be

minimized or maximized. The search space a consists of n = d + r variables xi

(i = 1, 2, . . . , n) of which d is the number of discrete variables and r is the number

of continuous variables. A feasible solution a ∈ a is a solution that satisfies all

constraints in the set g. A global optimum a∗ ∈ a is a feasible solution that satisfies

f(a∗) ≤ f(a) ∀a ∈ a.
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• Constrained and unconstrained problems: As mentioned earlier, an optimization

problem can be classified as a constrained or unconstrained optimization problem

by determining that whether the constraints exist in the problem or not.

• Separable and non-separable problems: A function f(x) is said to fully separable if

it can be expressed as the sum of n single-variable functions, f1(x1), f2(x2), . . . ,

fn(xn), that is,

f(x) =
n∑
i=1

fi(xi). (2.2)

In a fully separable problem, the objective function and the constraints are totally

separable from each other to each other and it can be expressed as

Find x which maximizes f(x) =

n∑
i=1

fi(xi)

subject to gj(x) =

n∑
i=1

gij(xi) ≤ bj , j = 1, 2, . . . ,m

(2.3)

where bj is a constant. A function f said to be partially separable if it is the sum

of element functions,

f(x) =
m∑
i=1

fi(x), (2.4)

where each individual function fi is a function depending on some of the components

xj , j ∈ Ii for some index sets Ii ⊆ {1, ..., n}(i = 1, ...,m). Finally, a problem is called

a non-separable problem, if its variables show inter-relation among themselves or are

not independent.

2.3 Metaheuristic Algorithms

Optimization algorithms are generally divided into two categories. These are deterministic

algorithms and stochastic algorithms. Deterministic algorithms follow a precise sequence

of actions. Thus, design variables and objective function can have the same values and

repeat the same solution route. On the other hand, a stochastic algorithms always in-

volves randomness. Stochastic algorithms are popular for the optimization problems that

are described in the previous section. Stochastic algorithms can be classified into two cat-

egories such as heuristic and metaheuristic algorithms. Heuristic algorithms are problem

dependent algorithms where each optimization problem has its own heuristic methods and

these heuristics cannot be applied to other types of optimization problems. On the other

hand, metaheuristic based algorithms consist of a general solver template which can be

used for different types of optimization problems by properly tuning its operators and

configuring its parameters. In literature, two different types of metaheuristic algorithms

exist namely the Evolutionary Algorithms (EAs) and Swarm Intelligence Algorithms.
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Evolutionary algorithms optimize a problem based on the evolutionary principle of

survival of the fittest. Particularly, an EA begins with a set of randomly generated popu-

lation individuals (solutions). At each generation, the EA modifies the key characteristics

of the current population in order to form a new population that will be selected based

on the natural selection principle. Examples of evolutionary algorithms include genetic

algorithm (GA) [Holland 1992b], and genetic programming (GP) [Koza 1992]. Swarm in-

telligence algorithms are inspired by the collective behavior of a group of animals or insects

when searching for food. At each iteration, the swarm intelligence algorithm constructs

the solutions based on the historical information attained from previous generations. Ex-

amples of swarm intelligence algorithms include the particle swarm optimization (PSO)

[Kennedy and Eberhart 1995], Ant colony optimization (ACO) [Dorigo et al. 1996], and

artificial bee colony (ABC) [Karaboga 2005]. In the followings, we will provide detailed

descriptions of these optimization algorithms.

2.3.1 Genetic Algorithm (GA)

Genetic algorithm works based on the principles of Darwin’s evolution theory and natu-

ral selection of biological systems [Holland 1992b]. Basically, a genetic algorithm starts

optimization process with a set of randomly generated a population of individuals. Each

of these population individuals is a chromosome encoding a different candidate solution

for the problem under consideration. During each generation, chromosomes are evalu-

ated using a fitness function. To create the next generation, new chromosomes (known

as offspring) are created by the crossover operation. After that, the mutation operator

randomly mutates on a gene of a chromosome. Note that mutation is a crucial step in GA

since it ensures that the population remains diverse and always contains new genes for fu-

ture generations. Finally, a new generation is formed by selecting the fittest chromosomes

(from both the parents and offspring) and rejecting others so as to keep the population

size constant. After several generations, the GA converges to the best chromosome which

represents the optimal or near optimal solution of the problem. The working steps of GA

can be described as follows:

• Step 1: Generate random population of n chromosomes.

• Step 2: Evaluate the fitness f(x) of each chromosome x in the population.

• Step 3: Create a new population by repeating the followings:

– Step 3.1: Select two fittest parent chromosomes from the population of the

current generation.

– Step 3.2: Perform crossover with probability pc to selected fitter parent indi-

viduals to form new offspring (children).
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– Step 3.3: Perform mutation with probability pm to offspring.

– Step 3.4: Apply the selection operation to parents and offspring to form the

new population for the next generation.

• Step 4: Stop the algorithm when the termination criteria is met, otherwise go to

Step 2.

The genetic algorithm has been successfully applied to problems in a variety of fields

of study, and their popularity continues to increase due to their effectiveness, their appli-

cability, and their ease of use. The well-known applications of GA including scheduling

[Murata et al. 1996, Gonçalves et al. 2005, Asadzadeh 2015], vehicle routing [Zuo et al.

2015, Mohammed et al. 2017, Xiao and Konak 2017], reliability design [Taboada et al.

2008, Ye et al. 2010, Sahoo et al. 2012, Duan et al. 2015], transportation [Vignaux and

Michalewicz 1991, Gen et al. 2006, Jo et al. 2007], engineering design [Gen and Cheng

2000, Deb and Gulati 2001, Li 2015], and many others.

2.3.2 Particle Swarm Optimization (PSO)

In [Kennedy and Eberhart 1995], the particle swarm optimization (PSO) is proposed to

optimize the continuous optimization problems. In PSO, the particles (individuals of a

swarm) are first initialized by placing them randomly in the d-dimensional search space

and the search for an optimal solution is done by updating individual over successive

iterations. At each iteration step, the i-th particle knows two pieces of information: its

personal best position pi=(pi1, . . . , pid), which is the best position it has visited so far

(its memory), and the global best position of the whole swarm g=(g1, . . . , gd). At each

iteration, the velocity vi=(vi1, . . . vid) of i-th particle of the swarm is modified by the

following equation:

vk+1
i = vki + c1r

k
1(pki − xki ) + c2r

k
2(gk − xki ), (2.5)

where k represents the current iteration, r1 and r2 are two random numbers drawn from

the uniformly distribution U(0,1), and c1 > 0 and c2 > 0 are the cognitive and social

coefficients, respectively.

In practice, PSO often uses the problem-dependent velocity clamping techniques (e.g.

[Shahzad et al. 2009]) to prevent too large velocities. More specifically, the velocity vk+1
i

is bounded by a threshold vmax as follows:

vk+1
i =

vmax, if vk+1
i > vmax,

−vmax, if vk+1
i < vmax.

(2.6)

Once the velocity has been clamped, the position xi of i-th particle is updated ac-

cording to the following equation:

xk+1
i = xki + vk+1

i (2.7)
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Algorithm 1 Pseudocode for the particle swarm optimization.
Require: vmax and xmax . the upper bound of velocity and position
Require: itermax . the maximum number of iterations
Require: popSize . the population size
1: iter = 0;
2: //randomly initialize i-th particle velocity, position, and personal best
3: for i=1 to popSize do
4: xi ∈ {-vmax, vmax};
5: xi ∈ {-xmax, xmax};
6: pi ← xi;
7: end for
8: //main loop
9: repeat

10: for i=1 to popSize do
11: evaluate fitness f(xi);
12: if f(xi) > f(pi) then
13: pi ← xi;
14: end if
15: if f(xi) > f(g) then
16: g← xi;
17: f(g)← f(xi);
18: end if
19: update vi using Eq. (2.5);
20: update xi using Eq. (2.7);
21: end for
22: iter = iter+1;
23: until iter < itermax;

We provide the pseudo-code for the particle swarm optimization in Algorithm 1. In

literature, two common approaches can be found for choosing the global best position,

known as gbest and lbest methods. In the gbest approach, the position of each particle

in the search space is influenced by the best-fit particle of the entire swarm; whereas the

lbest approach only allows each particle to be influenced by a fitter particle chosen from

its local neighbourhood [Kennedy 2011].

Like GA, PSO has been successfully applied to problems in a variety of fields of

study. A comprehensive survey PSO to the application of various problems can be found

in [Zhang et al. 2015, Bonyadi and Michalewicz 2017].

2.3.3 Tabu Search (TS)

Tabu search works by tracking the regions of the solution space that have already been

visited. Tabu search tracks the visited regions in order to avoid repeating the search in

the same areas again [Glover 1989]. Tabu search starts with a random initial solution and

successively moves to one of the neighbors of the current solution. In tabu search, a tabu

list (a special short-term memory) is used to store the previously visited solutions that are

marked as prohibited moves. During the local search, this method examines only those

solutions that are not in tabu list and satisfy at least one predefined aspiration criteria.
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A common aspiration criterion of tabu search is better fitness. The basic working steps

of tabu search algorithm are described in the following:

• Step 1: Generate an initial solution x.

• Step 2: Set the tabu list T := ∅;

• Step 3 While the set of candidate solutions X∗ is not complete.

– Step 3.1: Generate candidate solution x∗ from current solution x.

– Step 3.2: if x∗ is not in tabu list and at least one aspiration criterion is satisfied,

then add x∗ to X∗.

• Step 4: Select the best candidate solution x∗ in X.

• Step 5: If f(x∗) is better than f(x), then x := x∗.

• Step 6: Update the tabu list and aspiration criteria.

• Step 7: Stop when the termination criteria are met, otherwise go to Step 3.

Tabu search algorithm is another popular algorithm which has been applied to var-

ious optimization problems. The well-known applications of Tabu search algorithm are

scheduling and routing Problem [Brandimarte 1993, Gendreau et al. 1994b], assignment

problem [Skorin-Kapov 1990, Misevicius 2005, Acan and Ünveren 2015], and facility lay-

out problem [Chiang and Kouvelis 1996, Samarghandi and Eshghi 2010, Bozorgi et al.

2015].

2.3.4 Binary Particle Swarm Optimization (BPSO)

Kennedy and Eberhart [Kennedy and Eberhart 1997] developed the first binary PSO to

tackle the discrete/combinatorial optimization problems. The BPSO primarily extended

the basic concept of the original PSO by using the sigmoid transfer function to transform

the value of velocity from the continuous space into binary space. In this BPSO, at each

iteration, the velocity vi of i-th particle is modified according to Eq. (2.5). After updating

the velocity, the position xi i-th particle is updated according to the following:

xk+1
i =

0 if rand() ≥ ST (vk+1
i ),

1 otherwise,
(2.8)

where k represents the current iteration, ST (vk+1
i ) is a sigmoid transfer function which

denotes the probability (in the range of [0,1]) for a bit in a binary string that takes the

value 0 or 1:

ST (vk+1
i ) =

1

1 + e−v
k+1
i

. (2.9)

Below we provide the basic working steps for the binary particle swarm optimization.
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• Step 1: Randomly initialize the position and velocity of the particles of a swarm.

Repeat the following steps until the termination criteria met.

• Step 2: Evaluate the fitness of all particles.

• Step 3: Calculate the personal best position for all particles.

• Step 4: Calculate the global best position of the whole swarm.

• Step 5: Update position and velocity of all particles according to Eq. (2.5) and Eq.

(2.8), respectively.

Binary particle swarm optimization (BPSO) is one popular metaheuristic algorithm

which has been used for solving various types of discrete optimization problems [Pedrasa

et al. 2009, Liao et al. 2007, Jarboui et al. 2008, Naeem et al. 2012, Lin et al. 2016,

Han et al. 2017]. However, it has been observed that BPSO seems to be lacking of the

exploration capability that is needed for obtaining high-quality solutions [Bansal and Deep

2012, Mirjalili and Lewis 2013, Liu et al. 2011]. Many BPSO variants have been developed

to tackle this issue [Bansal and Deep 2012, Mirjalili and Lewis 2013, Liu et al. 2011, Ting

et al. 2006, Tassopoulos and Beligiannis 2012a;b, Liu et al. 2015a;b, Wang et al. 2013].

However, the existing BPSO variants still have the issue of maintaining a good balance

between exploration and exploitation ability of BPSO’s.

2.3.5 Ant Colony Optimization

The ant colony optimization algorithm is inspired by the observation of real ant colonies

[Dorigo et al. 2004]. Ants are social insects, meaning that they like to live in colonies

and their food foraging behaviours are driven by the interactions among ants as well as

interactions between ants and the environment. An important and interesting behavior of

ant colonies is their foraging behavior, and, in particular, how ants can find shortest paths

between food sources and their nest (see Fig. 2.2). While walking from food sources to

the nest and vice versa, ants deposit on the path a substance called pheromone, forming in

this way a pheromone trail. Ants can smell pheromone and, when choosing their way, they

tend to follow the paths marked by stronger pheromone concentrations. The pheromone

trail allows the ants to find their way back to the food source (or to the nest). Also, it can

be used by other ants to find the location of the food sources found by their nestmates.

Informally, an ant colony algorithm consists of three procedures: ConstructAntSo-

lutions, UpdatePhenomenons, and DaemonsActions [Dorigo et al. 1999]. Each of these

steps is described below:

• ConstructAntSolutions: This procedure manages a colony of ants that concurrently

and synchronously visit adjacent states of the considered problem by moving through
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Figure 2.2: Illustrations of (a) ants start exploring the double paths, and (b) most of the
ants choose the shortest path [Dorigo et al. 1999].

neighbour nodes of the problem construction graph. They move by applying stochas-

tic local decision policy that makes use of pheromone trials and heuristic informa-

tion. In this way, ants incrementally build solutions to the problem. Once an ant

has built a solution, the ant evaluates the partial solution that will be used by the

UpdatePheromones procedure to decide how much pheromone to deposit.

• UpdatePheromones: UpdatePheromones is the process by which the pheromone

trial are modified. The trail value can either increase, as ants deposit pheromone on

the components or connections they use, or decrease, due to pheromone evaporation.

From the practical viewpoint, the deposit of new pheromone increases the probability

that those components/connections that were either used by many ants or that

were used by at least one ant which produced a very good solution. In addition,

pheromone evaporation implements a useful form of forgetting; it avoids a too rapid

convergence of the algorithm toward a suboptimal region, therefore favoring the

exploration of new areas of the search space.

• DeamonActions: This procedure is used to implement centralized actions which
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cannot be performed by single ants. An example of daemon action is the activation

of a local search procedure that can be used to decide whether it is useful or not to

deposit additional pheromone to bias the search process from a non-local perspective.

As a practical example, the daemon can observe the path found by each ant in the

colony and select one or few ants which are then allowed to deposit additional

pheromone or the components/connections they used.

ACO is one of the popular optimization algorithms which has been widely used for

various problems. The well-known applications of ACO are travelling salesman prob-

lem [Dorigo and Gambardella 1997, Mavrovouniotis and Yang 2013, Escario et al. 2015],

scheduling problem [Chen and Zhang 2009, Merkle et al. 2002], clustering [Shelokar et al.

2004, Runkler 2005], and routing [Bell and McMullen 2004].

Basically, the above metaheuristic algorithms have been designed to tackle complex

optimization problems where other optimization methods have failed to be effective. It

is worth to mention that the performance of continuous metaheuristic algorithms have

been significantly improved over the past decades. However, the performance of discrete

metaheuristic algorithms cannot reach the level that has been achieved by the continuous

metaheuristic algorithms. Because, most of these methods cannot maintaining a better

balance between exploration and exploitation which is the key to find a good quality

solution.

2.4 Structural Optimization

A structure in mechanics is defined as “any assemblage of materials which is intended

to sustain loads” [Gordon 2012]. On the other hand, optimization can be defined as the

process of finding the thing which is the best in a different manner. Thus, structural

optimization is the process of finding an assemblage of materials sustains loads some

measurable and optimal ways. For clarity, consider the Fig. 2.3 where a load F needs to

be transmitted from an area in space to a rigid support. With this, we want to find a

structure that performs this task in the best way. The term “best” could be interpreted as

to make the structure as light as possible. Another interpretation of the “best” could be

to make the structure as stiff as possible or it becomes insensitive to buckling as possible.

It is clear that such minimization or maximization cannot be achieved without imposing

any constraints. For example, if there is no limitation (i.e., constraint) imposed on the

amount of the materials that need to be used, the structure can be made stiff without

limit, but the optimization problem would be a problem without a well-defined feasible

solution.

In structural optimization, the weight, stress, displacements and/or the geometry are

considered as the constraints. For the optimization purpose, these constraints can be used

as the measure of “best” that is, as objective functions. Thus, one can formulate the
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F

Figure 2.3: Structural optimization problem. Find the structure which best transmits the
load F to the support.

structural optimization problem by using one of these constraints as an objective function

that needs to be minimized/maximized and rest of them can be used as the constraints.

To perform optimization, the first task is to define the design domain of the structures

that are going to be optimized. After that, the structural design problem is formulated

and an optimization technique is applied to solve the problem. The general structural

optimization problem can be defined as [Christensen and Klarbring 2009]:

(SO)



minimize f(x,y) with respect to x and y

subject to


behavioral constraints on y,

design constraints on x

equilibrium constraint,

(2.10)

where f defines the objective function which measures the quality of a solution, x repre-

sents the design variable which can be a vector that describe the design, and y represents

a state variable. For a given design x, y represents the response of the structure. For a

mechanical structure, response means displacement, stress, strain or force.

For structural optimization, two approaches are used commonly for defining the design

domain. The first one is the material distribution approach [Xie and Steven 1993] and

the second one is the ground structure approach [Deb and Gulati 2001]. In material

distribution approach, the design domain is discretized into a fixed number of connected

blocks, as shown in Fig. 2.4(a). With this arrangement, the optimal design of a structure

is determined by removing the unnecessary materials from the design domain, according

to the applied boundary conditions. In the ground structure approach, every node in the

design domain is connected to all other nodes by structural elements, such as the frame,

beam, and/or truss elements, as shown in Fig. 2.4(b). Note that a ground structure is a

complete truss with all possible member connections among all nodes (basic or non-basic)
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(a) (b)

Figure 2.4: Design domain representations (a) material distribution and (b) ground struc-
ture methods.

in the structure [Deb and Gulati 2001]. Thus, in a truss having n nodes, there are a

total of m=(n2) different members possible. A ground structure is a collection of all these

members. By the ground structure approach, the optimal design is determined by finding

a subset of structural members and their corresponding cross-sectional areas. There are

several advantages and disadvantages for each approach. In general, the ground structure

approach requires a smaller model with lower computational efforts than the material

distribution method in obtaining a meaningful solution. Therefore, the ground-structure

approach is considered here in this thesis in order to achieve our research objectives.

2.4.1 Topology, Size, and Shape optimization

In literature, mainly three different types of structural optimization (based on the ground

structure model) can be found [Christensen and Klarbring 2009]:

• Topology optimization: This is the most basic form of structural optimization. In

this case, the members of a ground structure are treated as the design variables.

With this, the topology optimization aims to select a subset of the members of a

ground structure to form a stable truss topology that satisfies some user-defined

constraints. For the illustration purpose, a topology optimization problem for a

truss structure is shown in Fig. 2.5.

• Sizing optimization: The sizing optimization finds the member’s cross-sectional areas

of bars in a given ground structure in an optimal way. Sizing optimization for a truss

structure is illustrated in Fig. 2.6.

• Shape optimization: Shape optimization is different from the previous two optimiza-

tions. Shape optimization aims to optimize the nodal coordinates of the selected
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Figure 2.5: Structural topology optimization is carried out by optimizing the members
of a ground structure. In this case, the cross-sectional area of all the truss members are
assumed to be equal and fixed during the optimization.

F F

Initial design Optimized design

F F

Figure 2.6: Sizing optimization is carried out by optimizing the member cross-sectional
areas of bars in a ground structure.

nodes of a ground structure. As a result, the length of the members that are con-

nected with the selected nodes would be changed in optimized design, as illustrated

in Fig. 2.7.

2.4.2 Simultaneous Topology and Size Optimization

Structural optimization problems governed by the user-defined objectives and constraints

[Miguel et al. 2013]. These constraints often conflict with the objective function and thus

finding an optimal solution for such a problem is a challenging task. Besides, both the

objective function and constraints (which are often nonlinear) cause the search space of

a structural optimization problem to be multimodal. In this scenario, it is even more

challenging to find an optimal solution of such a problem, because the search process

may easily get stuck in a locally optimal solution. Another challenge is that the optimal
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F F F F

Initial design Optimized design

Figure 2.7: Shape optimization is carried out by optimizing the nodal coordinates of
a ground structure. In this case, the cross-sectional area of all the truss members are
assumed to be equal and fixed during the optimization run.
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Figure 2.8: Illustration of the simultaneous topology and size optimization of a ground
structure.

design of a structural optimization problem not only depends on its topology optimization,

but also depends on the size optimization [Wang et al. 2004]. Therefore, it is necessary

to perform the structural topology and size optimization simultaneously in order to find

an optimal/near optimal design solution. An example of simultaneous topology and size

optimization of a ground structure is illustrated in Fig. 2.8.

Proper formulation is one of the key steps for the simultaneous topology and size

optimization of a structural design problem, as it determines the quality of the opti-

mization itself. In literature, various formulations have been proposed for the structural

optimization. For example, Bendsøe and Martin [Bendsøe 1989] performs the structural

optimization using an elasticity tensor formulation. Deb and Gulati [Deb and Gulati

2001] performs the structural optimization using a nonlinear programming formulation.

A bi-objective formulation is introduced for the structural optimization in [Noilublao and
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Bureerat 2011; 2013]. Another formulation based on the force method is proposed in [Ra-

hami et al. 2008]. A bilevel formulation for the structural design problems is presented in

[Friedlander and Gomes 2011]. Recently, a new formulation so-called grammatical evolu-

tion is proposed in [Fenton et al. 2016] for the structural optimization problems. Among

these formulations, the following non-linear programming formulation is frequently used

for the structural optimization [Deb and Gulati 2001, Luh and Lin 2011; 2008, Dominguez

et al. 2006]:

Minimize W (A) =

nm∑
j=1

ρj`jAj

Subject to G1 : Truss contains all the basic nodes,

G2 : Truss is kinematically stable,

G3 : Sj ≥ σj(A, ξ), j = 1, 2, .., nm,

G4 : δmaxi ≥ δi(A, ξ), i = 1, 2, .., nn,

G5 : Amin ≤ Aj ≤ Amax, j = 1, 2, .., nm,

G6 : ξmin ≤ ξi ≤ ξmax, i = 1, 2, .., nn,

(2.11)

where W denotes the weights of the truss, A and ξ represent the set of cross-sectional

areas and the set of nodal coordinates, respectively, nm and nn represent the number of

members and nodes of a given ground structure, respectively. The parameters ρj and

`j are the material density and length of the j-th member, respectively. The parameter

Aj represents the cross-sectional area of the j-th member. Constraint G1 ensures that

the truss contains all the basic nodes. Constraint G2 ensures the kinematical stability of

the truss which can be checked by determining the positive definiteness of the stiffness

matrix. Constraint G3 ensures that the stress σj of j-th member is less than or equal to

the allowable stress Sj . Constraint G4 ensures that the displacement δi of i-th node is less

than or equal to the allowable displacement δmaxi . Constraint G5 ensures that the value of

Aj is within the limits [Amin, Amax]. Finally, constraint G6 ensures that the coordinates

of the i-th node ξi is within the limits [ξmin,ξmax].

Note that the existing formulations including Eq. (2.11) have been developed based

on the assumption that the structural topology and size are two separable problems. In

reality, structural topology and size problems are two non-separable problems [Deb and

Gulati 2001], thus the use of these existing formulations may not be appropriate for the

simultaneous topology and size optimization.

2.5 Structural Optimization Methods

In this section, a brief survey of popular numerical and metaheuristic-based structural

optimization methods is provided.
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2.5.1 Numerical Methods

Several numerical structural optimization methods have been proposed in literature; these

methods include the Solid Isotropic Material with Penalization (SIMP), Evolutionary

Structural Optimization (ESO), and Level-set method.

Solid Isotropic Material with Penalization (SIMP)

Solid Isotropic Microstructure with Penalization (SIMP) method is first introduced in

[Bendsøe 1989]. The SIMP method operates on a fixed domain of finite elements with the

aim of minimizing an objective function by identifying whether each element should consist

of solid material or void. This method assumes that the material property of each finite

element is constant, whereas the density of finite elements is defined as a design variable.

Although SIMP is a widely used structural topology optimization method, however the

predefined penalty exponent of this method causes the premature convergence to local

optima. In addition, SIMP method requires an additional filtering arrangement to avoid

the checkerboarding and mesh dependency problem [Deaton and Grandhi 2014]. This

arrangement limits the computational efficiency of the SIMP method [Deaton and Grandhi

2014].

Evolutionary Structural Optimization (ESO)

Evolutionary Structural Optimization (ESO) is another numerical topology optimization

method which is incorporated into finite element analysis [Xie and Steven 1993]. The

ESO method tries to obtain the optimum design of a structure by gradually removing the

low stressed materials from the structure. The simplified version of ESO is described as

follows:

• Step 1: Divide the design domain into a number of small elements using a fine mesh

of finite elements;

• Step 2: Calculate the stress of each element by carrying out finite element analysis.

• Step 3: Determine the low stressed materials and remove from the design domain.

• Step 4: Increase the rejection ratio if a steady state is being reached.

• Step 5: Repeat Steps 2 to 4 until the desired optimum is obtained.

ESO is relatively a simple topology optimization method. However, ESO is highly

inefficient, because it first obtains a large number of solutions by using a heuristic method

and after that, a searching mechanism is initiated to search through this set of solutions to

locate the desired optimal solution. In addition, its premature elements which have already

been removed from the structure cannot be recovered. Hence, the amount of removed
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materials needs to be kept as small as possible. Otherwise, an unoptimized solution will

be obtained. According to [Zhou and Rozvany 2001], ESO method is unable to provide any

mathematical proof that ensures the structure evolved to obtain an expected optimum.

Level-set Method

The level-set method was first introduced in [Wang et al. 2003] for structural topology

optimization based on the level-set model proposed in [Osher and Sethian 1988]. In the

level-set method, the design domain D is implicitly represented by a moving boundary ∂Ω

which is embedded by the zero level set of the level set function Φ(x), as shown in Fig.

2.9. Throughout the optimization, the level set function can move up and down within a

fixed Euler grid. This movement causes the surrounded boundary to experience a radical

shape or topological change. During the course of optimization, the value of Φ(x) on the

boundary always kept to zero. Although the level set method allows natural topological

changes, however, this method cannot find a good topology when there is no minimized

path that reaches it and thus it may get trapped in local optima.

2.5.2 Metaheuristic Methods

In the previous section, we provide a brief description of the classical structural optimiza-

tion methods such as the SIMP [Bendsøe 1989], ESO [Xie and Steven 1993], and level-set

[Wang et al. 2003] methods. Basically, the classical structural optimization methods that

have been developed rely on the use of gradient information derived from the specific

problem formulation. Hence, the final solutions obtained by these approaches for the

same problem usually differ according to the different starting solutions. In order to over-

come the disadvantages of gradient-based approaches to solve the structural optimization

problems, nowadays metaheuristic approaches such as Genetic Algorithm [Deb and Gulati

Zero level set

Φ(x)=0

Level set function

Φ(x)
D

∂Ω

Ω

(a) (b)

Figure 2.9: (a) Illustration (a) 3D level set surface and (b) its 2D boundary at zero level
set [Wang et al. 2014].
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2001, Tai and Akhtar 2005b, Li 2015], Ant Colony Optimization [Kaveh and Talatahari

2010, Gan et al. 2017], Binary Particle Swarm Optimizer [Perez and Behdinan 2007, Kaveh

et al. 2014], Harmony Search [Degertekin 2008] methods are drawing a great attention to

the researchers.

Metaheuristic approaches are stochastic global optimization methods. These ap-

proaches use the binary bits 1/0 to represent the solid/void material distribution, which

represents a direct approach to handle structural topology optimization issues. Unlike

gradient-based approaches, metaheuristic methods usually carry out a more exploratory

global search at the start of the optimization and the results produced are less sensitive to

initial starting positions. So far, most of above methods have been developed for obtain-

ing a single optimal design solution despite the existence of multiple design solutions in a

structural design domain [Deb and Gulati 2001, Miguel et al. 2013]. From the practical

point of view, it is beneficial to find these solution for the several reasons as discussed in

the introduction chapter.

2.6 Multimodal Optimization

Many real-world optimization problems including structural optimization problems can

be characterized by multimodal fitness landscapes where multiple optimal (or close to op-

timal) solutions exist. A method that provides multiple solutions allows a decision maker

to determine which one to eventually choose with respect to different conditions. If we

want to obtain such optimal solutions by traditional metaheuristic algorithms, they need

to be applied through several independent runs, and each time hoping to find a different

optimal solution. Yet all solutions are not guaranteed to be different. An evolutionary

algorithm (EA) can be used to locate multiple solutions by multimodal optimization algo-

rithms which are commonly known as niching methods. Niching methods are well-suited

optimization algorithms for finding multiple optimal solutions in a single optimization

run [Goldberg and Richardson 1987]. As an example, an illustration of a run by such a

niching method is presented in Fig. 2.10. In this figure, the top-most subfigure shows that

a population of individuals take their initial positions in the different regions of the search

space, the middle subfigure shows that the niching technique divides the whole population

into subpopulations in order to form different niches where each of the niches represent a

potential solution of the problem under consideration, and the lowermost subfigure shows

that after Nth generation, the niching method found the different solutions within the

same run.

2.6.1 Niching Methods

In literature, several niching methods have been proposed for the multimodal optimiza-

tion problems. Classic niching methods include fitness sharing [Goldberg and Richardson
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Figure 2.10: Illustration of the idea of locating multiple optimal solutions.

1987], clearing [Petrowski 1996], deterministic crowding [Mahfoud 1995], sequential niche

[Beasley et al. 1993], speciation [Li et al. 2002], and speciation-based PSO (SPSO) [Li

2004]. The following sections contain a brief description of these popular niching meth-

ods.

Fitness Sharing

Literature shows that the fitness sharing is the most widely recognized niching method.

It was proposed by Goldberg and Richardson in 1987 [Goldberg and Richardson 1987].

Inspired by the sharing concept observed in nature, it assumes that there is only limited

and fixed resource available at each niche. Individuals in a niche must share their fitness

value with its neighbours in that niche. This method considers the fitness of the landscape

as a resource to be shared among the similar individuals of the population. Given by

a similarity measure that is defined by distance dij , sharing radius δshare, and sharing
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function f(dij); the fitness sharing method can be described in the following:

• Step 1: Calculate the distance dij between two individuals i and j.

• Step 2: Calculate the sharing function f(dij) between two individuals by the follow-

ing equation:

sh(dij) =

 1− (
dij

δshare
) if dij < δshare,

0 otherwise.
(2.12)

• Step 3: Calculate the shared fitness of individual i by the following equation:

fshare(i) =
fi∑popsize

j=1 sh(dij)
, (2.13)

where fi is the original fitness of the individual i and popsize is the population size.

Fitness sharing method is widely used to identify and maintain the multiple optima

in a single run. However, it has following drawbacks:

• Assumption of the niche radius δshare. It assumes that the optima are far enough

from each other with respect to the niche radius, which is predetermined for the

particular problems and remains fixed during the optimization process.

• Fitness sharing uses O(popsize2) time for the distance calculation between two indi-

viduals to get the shared fitness, which increases rapidly with the number of peaks

and population size.

Crowding

Crowding method is another popular niching method [De Jong 1975]. Initially, this method

was designed to preserve population diversity and prevent premature convergence of GA.

In this method, an offspring is compared with a small random sample taken from the

current population, and only the similar individual in the sample get replaced. An user-

defined parameter namely crowding factor (CF) is often used to determine the size of

the sample. The crowding niching method facilitates the growth of individuals around

underpopulated regions of the solution space. In [Mahfoud 1995], it is mentioned that

the crowding method is unable to maintain more than two peaks of multimodal fitness

landscapes, as it failed to prevent genetic drift in many cases. To overcome this difficulty,

the deterministic crowding method was proposed by Mahfoud in 1995 [Mahfoud 1995].

Deterministic crowding method does not depend on any predefined parameters like niche

radius in fitness sharing method or crowding factor in crowding method. In this method,

similar individuals compete for limited resources. Once reaching the capacity, each weak
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individual is discarded from the population. The algorithm for deterministic crowding

method is as follows:

Repeat until the stopping criteria are not satisfied.

• Step 1: Randomly select two parents p1 and p2 with replacement from the current

population.

• Step 2: Generate two offspring c1 and c2 using the variation operators.

• Step 3: Evaluate the fitness value of offspring, f(c1) and f(c2), and calculate their

distances to parents, i.e., d(p1, c1), d(p1, c2), d(p2, c1), and d(p2, c2).

• Step 4: Identify a close competition pair. If [d(p1, c1) + d(p2, c2)] ≤ [d(p1, c2) +

d(p2, c1)], then the competition starts between p1 ↔ c1 and p2 ↔ c2. Otherwise, the

competition will be in between p1 ↔ c2 and p2 ↔ c1.

• Step 5: Determine the winner. Individuals with higher fitness value win the compe-

tition and will stay in the population. Losers will be discarded.

Deterministic crowding method can discover peaks very fast but maintains them only for

a few generations. On the other hand, deterministic rule promotes convergence but might

suffer from premature convergence.

Clearing

The clearing method is very similar to fitness sharing but is based on the concept of

limited resources of the environment [Petrowski 1996]. Clearing does not divide resources

equally among all individuals of the subpopulation as in fitness sharing but supplies these

resources only to the best-fit individual of the subpopulation. In practice, a species only

accommodates a predefined number of individuals called the niche capacity K. Thus,

clearing preserves the fitness of the best individuals of the species and eliminate the

remaining individuals in the same species and re-initialize them from scratch. A simplified

version of the clearing procedure is presented below in Algorithm 2.

Species-conserving Genetic Algorithm (SCGA)

The SCGA niching method is developed based on the concept of species [Li et al. 2002].

Basically, a species is formed by the individuals in a population which has similar char-

acteristics and dominated by the best-fit individual, called the species seed. Briefly, a

species Si is centered upon its dominating individual i.e., the species seed x∗, if for every

individual y ∈ Si

Distance(x∗,y) < rs, (2.14)
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Algorithm 2 Pseudocode for the clearing procedure.

Require: P and n . Population P of n individuals
Require: r . r is the niche radius
Require: K . K is the capacity of each niche
Require: nbWinners . the number of winners in the subpopulation
1: SortFitness(P)
2: for i:=0 to n-1 do
3: if Fitness(Pi) > 0 then
4: nbWinners:=1;
5: for j:=i+1 to n− 1 do
6: if Fitness(Pi) > 0 and Distance(Pi,Pj)< r then
7: if nbWinners < K then
8: nbWinners:=nbWinners+1;
9: else

10: Fitness(Pj):=0.0;
11: end if
12: end if
13: end for
14: end if
15: end for

and

Fitness(y) < Fitness(x) (2.15)

where rs represents the species radius. For clarity, the Pseudocode for the SCGA niching

method is demonstrated in Algorithm 3.

Speciation-based PSO (SPSO)

The speciation-based PSO (SPSO) [Li 2004] is a more speciation method coupled with

the popular PSO algorithm. In SPSO, speciation involves the splitting of a single popu-

lation into a number of subpopulations (species) according to their similarities measured

by the Euclidean distance. The smaller the Euclidean distance between two population

individuals, the more similar they are:

d(xi,xj) =

√√√√ d∑
k=1

(xi,k − xj,k)2, (2.16)

where, d represents the search dimensions, xi=[xi1, xi2, . . . , xid] and xj=[xj1, xj2, . . . , xjd]

are the position of two population individuals from the PSO population.

The formation of species depends on a user-defined parameter rs, which denotes the

radius measured in Euclidean distance from the center of a species to its boundary. The

center of a species, so-called species seed, is always the best-fit individual in the species.

All the population individuals that fall within the rs distance from the species seed are

classified as being in the same species. Algorithm 4 summarizes the working steps for
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Algorithm 3 Pseudocode for the SCGA niching method [Li et al. 2002].

1: t = 0;
2: Initialize G(t);
3: Evaluate G(t);
4: while not termination condition met do
5: Determine species seeds Xs;
6: Select G(t+ 1);
7: Crossover G(t+ 1);
8: Mutate G(t+ 1);
9: Evaluate G(t+ 1);

10: Conserve species from Xs in G(t+ 1);
11: t = t+ 1;
12: end while
13: Identify global optima;

determining the species seeds from the whole population [Li 2004]. More specifically, this

algorithm takes a list of all particles sorted in descending order of their fitness which is

denoted by Lsorted. The species seed set S is initialized as an empty set. The particles in

Lsorted are checked one by one against the species seeds found so far. If a particle does

not reside within the species radius rs of all the seeds of S, then this particle treats as a

new seed and added to S.

The overall idea of SPSO is provided in the followings. In the beginning, SPSO

divides the whole population into a number of species according to their similarities. The

members of each species are assigned to their own dominating members called species seed.

Once these species seeds are determined, the current generation is preserved by sending

them into the next generation. In the following, the working steps of SPSO algorithm are

provided.

• Step 1: Create a swarm of n number of particles.

• Step 2: Calculate the particle’s fitness value along with setting their personal best

position.

• Step 3: Sort the particles in descending order (according to their fitness value).

• Step 4: Determine species from the current population.

• Step 5: Members of each species are assigned to their own dominating members

called species seeds (see Algorithm 4).

• Step 6: Update particle’s velocity and position according to Eq. (2.5) and Eq. (2.7),

respectively.

• Step7: Stop once the termination condition is fulfilled, otherwise go back to Step 2.
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Algorithm 4 Pseudocode for determining the species seeds [Li 2004]

1: Input: Lsorted- a list of sorted particles
2: Output: S- a list of species seeds (dominating particles)
3: S ← ∅;
4: found← FALSE;
5: repeat
6: Get best p ∈ Lsorted
7: for all s ∈ S do
8: if d(s, p) ≤ rs then
9: found← TRUE;

10: break;
11: end if
12: end for
13: if not found then
14: S.Add(p);
15: end if
16: until not reaching the end of Lsorted

2.6.2 Niching Applied to Multimodal Structural Optimization

The existing niching methods including the fitness sharing and SPSO niching methods

have been developed for the continuous multimodal optimization problems. These nich-

ing methods can be modified for discrete optimization and subsequently for handling

multimodal combinatorial like topology optimization problems. Following this line of

thinking, an artificial immune system algorithm based fitness sharing method is devel-

oped for multimodal structural optimization problems [Luh and Chueh 2004]. Due to the

high computational cost and implementation complexity of this method, the same authors

[Luh and Chueh 2004] developed another more efficient method based on fitness sharing

and BPSO[Luh and Lin 2011]. Basically, it is a two-stage approach which assumes that

structural topology and size variables are linearly separable. Given this assumption, this

method finds different topologies using a BPSO method in the first stage by considering

an equal cross-sectional area for each member of a ground structure. In the second stage,

the size (cross-sectional areas) of the found topologies are optimized by the attractive and

repulsive particle swarm optimization (ARPSO). It is obvious that with this approach,

the optimal designs may not be attainable since these variables are often not linearly

separable in practice [Deb and Gulati 2001]. For clarity, the pseudo-code for BPSO and

ARPSO algorithms are provided in Algorithm 5.

In [Li 2015], an improved species-conserving genetic algorithm is introduced for the

structural topology optimization problems. For clarity, the pseudo-code for the improved

species-conserving genetic algorithm is provided in Algorithm 6. Briefly, this method first

applied niching to find the multiple size solutions of a structural problem. After that, the

truss topologies are obtained by means of discarding unnecessary members (the members
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Algorithm 5 Pseudocode for the BPSO and ARPSO algorithms [Luh and Lin 2011].

1: //initialization
2: TBPSO=Number of iteration of BPSO
3: TARPSO=Number of iteration of ARPSO
4: procedure BPSO-Topology
5: Set parameters NpBPSO, c1, c2, β, [Vmax,Vmin], [Xmax

g ,Xmin
g ], δs, Nmemory

6: Set k = 0;
7: Randomly initialize positions and velocities of particles (X0

g,i and V0
g,i);

8: Transform X0
g,i to X0

p,i using sigmoid function S(V0
g,i);

9: while k < TBPSO do
10: for each particle i in particle swarm do
11: Calculate the fitness f i(A,ξ) and sharing fitness f ishare(A,ξ) for particle i;

12: Update local best Pk
best,i and global best Gk

best,i;
13: Renew particle memory;
14: Update particle swarm Xk+1

g,i , Vk+1
g,i ;

15: Transform genotypic particle Xk+1
g,i to phenotypic particle Xk+1

p,i ;
16: end for
17: k = k + 1;
18: end while
19: end procedure
20: procedure ARPSO-Truss
21: Set parameters NpM , c1, c2, β, [Vmax,Vmin], [Xmax

g ,Xmin
g ], dlow, dhigh

22: Set l = 1;
23: while l ≤ Nmemory do
24: Set k = 0
25: Randomly initialize positions and velocities of particles (X0

i and V0
i )

26: while k < TAESO do
27: for each particle i in particle swarm do
28: Calculate the fitness f i(A,ξ) for particle i;
29: Update local best Pk

best,i and global best Gk
best,i;

30: Update particle swarm Xk+1
i , Vk+1

i ;
31: end for
32: k = k + 1;
33: end while
34: l = l + 1;
35: end while
36: end procedure

whose cross-sectional areas fall below a given threshold value) for the found size solutions.

It is obvious that this method may not obtain the optimal design solution because the

topology solutions are highly dependent on the found size solutions of the problem under

consideration.

Apart from the above methods, a few other research works have taken initiative for

developing non-niching methods to find multiple solutions of structural design problems.

For example, Deb and Gulati [Deb and Gulati 2001] proposed a genetic algorithm to show

that there exist multiple different topologies for the structural design problems with almost

equal overall weight. Another GA based structural optimization method is presented in

[Balling et al. 2006] for multimodal structural topology optimization. In [Miguel et al.
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Algorithm 6 Pseudocode for the improved species-conserving genetic algorithm [Li 2015].
1: t = 0;
2: Initialize G(t);
3: Evaluate G(t);
4: while not termination condition met do
5: Determine species seeds Xs;
6: Select G(t+ 1);
7: Crossover G(t+ 1);
8: Mutate G(t+ 1);
9: Evaluate G(t+ 1);

10: Conserve species from Xs in G(t+ 1);
11: Species Mutation;
12: t = t+ 1;
13: end while
14: Identify global optima;

2013], a single-stage firefly-based algorithm is proposed for the same purpose. Note that

these methods have been developed for the structural topology optimization only where

the size variables of the considered problems assumed to be fixed during the optimization.

It can be summarized that the existing structural optimization methods have the

difficulties of finding good quality design solutions for structural design problems due

to their inherent limitations that are mentioned above. In addition, these methods are

not specifically designed for finding multiple design solutions. Hence, it is necessary to

overcome the limitations of these existing methods to find the structural topology and

size solutions in a simultaneous manner.

2.7 Multimodal Benchmark Functions

Many real-world discrete optimization problems including the 0-1 knapsack problem [Pisinger

1995], traveling salesman problem [Tsai et al. 2004], vehicle routing problem [Gendreau

et al. 1994a], bin packing problem [Martello and Vigo 1998], and structural optimization

problem [Christensen and Klarbring 2009], have multiple good solutions and often require

multimodal optimization methods to locate these optimal solutions.

In the field of evolutionary computation (EC), it is a common practice that the

weakness and strengths of a newly developed niching algorithms can be evaluated over

artificial test problems before applying them to real-world problems. In this context,

several attempts have been made to design multimodal test problems [Deb 1989, Mahfoud

1995, Li et al. 2002] for evaluating the performance of multimodal optimization methods

such as niching methods [Holland 1992a, Goldberg and Richardson 1987, Mahfoud 1995,

Petrowski 1996]. However, most of these test problems are limited to low-dimensional

continuous solution space (see Fig. 2.11), and they cannot be easily tuned. This makes it

difficult to evaluate a niching method’s. To overcome these drawbacks, efforts have been

made to design frameworks for generating controllable challenging multimodal benchmark
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(a) (b)

Figure 2.11: Illustration of the (a) test function having equal maxima and (b) test function
having uneven decreasing maxima [Mahfoud 1995].

(a) (b) (c)

(d) (e) (f)

Figure 2.12: Illustration of the (a) Himmelblau function, (b) Six-Hump camel back func-
tion, (c) Vincent function, (d) Modified Rastrigin function, (e) Composition function 1,
and (f) Composition function 2 [Rönkkönen et al. 2011, Li et al. 2013].

problems (see Fig. 2.12) [Rönkkönen et al. 2008; 2011, Li et al. 2013]. Nevertheless, all

these benchmark problems have been designed for the continuous optimization problems.

There are no well-defined test problems for the discrete multimodal optimization problems

in literature, which can be used to evaluate the weakness and strengths of a developed

discrete niching algorithm.
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2.8 Bilevel Optimization

Multi-level and bilevel optimization have been widely studied in the field of mathemat-

ical programming [Bard 1998, Colson et al. 2007, Dempe 2002]. Multi-level and bilevel

optimization have emerged as an important research area for progress in handling many

real-life problems from a wide range of domain areas. The formulation of the multi-

level programming was first introduced in 1973 by J. Bracken and J. McGill [Bracken and

McGill 1973]. Multi-level optimization is developed for distributed planning problems in a

hierarchical organization where more than one decision makers are involved. The decision

makers have taken their decisions in a sequential manner without any cooperation. The

multi-level can be viewed as a hierarchy of planners where each planner is independent to

control a subset of decision variables.

A bilevel optimization problem can be viewed as a multi-level optimization problem

with two levels. Particularly, in a bilevel optimization problem, two different levels of

optimization take place, with one level (i.e., the lower level) of optimization being nested

within the other (i.e., the upper level), as illustrated in Fig. 2.13. For a bilevel problem,

if the upper level optimizer wants to optimize its objective, then it needs to obtain an

optimal response of the lower level optimizer [Bard 1998]. For the upper level objective

function F and lower level objective function f , the bilevel optimization problem can be

expressed as:

min
~xu∈Xu, ~xl∈Xl

F ( ~xu, ~xl)

s.t. ~xl ∈ argmin
~xl∈Xl

{f( ~xu, ~xl) : gj( ~xu, ~xl) ≤ 0}

Gk( ~xu, ~xl) ≤ 0,

(2.17)

where j = 1, 2, . . . , J and k = 1, 2, . . . ,K, Gk represents the upper level constraints and

gj represents the lower level constraints, respectively. In this formulation, the upper level

objective function evaluates the performance of the lower level objective function through

f( ~xu,~xl), which is obtained by solving the lower level variable ~xl for fixed ~xu.

The idea of bilevel optimization has been applied to various real-world optimization

problems including toll setting problem [Kalashnikov et al. 2016], chemical industry [Halter

and Mostaghim 2006], defense applications [Aksen and Aras 2012], and inverse optimal

control [Mombaur et al. 2010]. In addition to these, the idea of bilevel optimization is also

applied to the structural optimization problem. For example, in [Herskovits et al. 2000],

the bilevel formulation is used for the structural shape optimization. In [Christiansen

et al. 2001], bilevel programming approach is used for the structural size optimization.

The same idea is adopted in [Kočvara 1997] for the structural topology optimization

problem. Recently, the bilevel formulation is employed in [Ahrari and Deb 2016] for the

layout optimization of the structural design problems. It can be observed that these bilevel
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Figure 2.13: Illustration of the relationship between the upper level and lower level search
spaces of a general bilevel problem.

formulations have been successfully applied for either the topology or size optimization

for structural design problems. Nevertheless, the bilevel concept has been applied for

the simultaneous structural topology and size optimization which can be found in the

literature [Colson et al. 2007, Sinha et al. 2017].

2.9 Chapter Summary

This chapter discussed the background materials of this thesis. Firstly, an overview of

general optimization and its popular optimization techniques are provided. Secondly,

an overview of structural optimization and its well-known optimization methods are in-

troduced. Thirdly, the widely used multimodal optimization methods (i.e., niching meth-

ods) and their applicability to multimodal structural optimization problems are discussed.

Fourthly, an overview of multimodal benchmark functions is provided. Finally, the ba-

sic idea of bilevel optimization and its applicability to the structural optimization are

discussed.

In this chapter, we identified five research gaps. Firstly, most existing discrete meta-

heuristic methods have the difficulties of maintaining a good balance between exploration

and exploitation which need to be addressed. Secondly, it is necessary to develop a dis-

crete niching method to handle the structural topology like discrete optimization problem,

since there is no such well-known niching method exists in the literature. Thirdly, it is

necessary to design discrete multimodal benchmark functions for identifying the weak-

nesses and strengths of discrete niching methods. Fourthly, it is necessary to formulate

the structural optimization problem as a bilevel optimization problem in order to facili-
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tate the simultaneous topology and size optimization. Finally, a bilevel niching method

is necessary to develop for the bilevel structural optimization problems so that multiple

topologies and their size solutions can be found in a single optimization run. The following

chapters provide the research contributions towards addressing these identified research

gaps.
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Designing Multimodal 0-1 Knapsack Test

Problems

3.1 Introduction

Test suites are important for the performance evaluation of multimodal optimization meth-

ods. In the last two decades, several attempts have been made to design test suites for

generating multimodal test problems. However, these research works have been limited to

continuous optimization problems. In practice, many optimization problems are combi-

natorial and multimodal by nature. To facilitate analysis of the properties of multimodal

combinatorial optimization problems, a well-defined test suite is required. Literature

shows that there is no such test suite exists which can be used for this purpose. In this

chapter, we choose the 0-1 knapsack problem as a representative NP-hard combinatorial

optimization problem for generating a multimodal combinatorial test problem suite. We

propose a framework for generating a diverse set of challenging multimodal test instances

using the 0-1 knapsack problem. The proposed framework is flexible allowing a user to

have a better control on the settings of the multimodal test instances such as dimen-

sionality, distribution of the optima, the number of optima, and fitness of the optima.

To demonstrate the generalization capability of this framework, we propose 14 standard

multimodal test instances. We further illustrate the usefulness of this multimodal test

function suite using a binary particle swarm optimization based niching method.

The rest of the chapter is organized as follows. In Section 3.2, the research motivation

of this chapter is presented. Section 3.3 describes the background and a brief survey of

existing research works on the 0-1 knapsack problem. Section 3.4 describes the specifying

procedure of multimodal 0-1 knapsack parameters. Section 3.5 demonstrates the software

framework for generating multimodal 0-1 knapsack instances. Section 3.6 demonstrate

the proposed multimodal test instances. We present a binary niching method followed
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by some experimental studies in Section 3.7. The concluding remarks of this chapter are

provided in Section 3.8.

3.2 Motivation

Many real-world problems belong to the family of discrete/combinatorial optimization

problems and they are multimodal by nature1 [Pisinger 1995, He et al. 2016, Gendreau

et al. 1994a, Laskari et al. 2005, Tsai et al. 2004]. To facilitate analyzing the properties of

this kind of problems, a well-defined benchmark is needed. Literature review shows that

existing multimodal benchmark suites are largely artificial continuous functions [Goldberg

1989, Mahfoud 1995, Rönkkönen et al. 2008, Mirjalili and Lewis 2015]. There is no well-

defined benchmark for multimodal combinatorial optimization. Although there exist many

multimodal optimization methods [Goldberg 1989, Mahfoud 1995, Petrowski 1996, Parrott

and Li 2006] developed for solving the continuous optimization problems, their behaviour

and performance cannot be guaranteed when applying them to combinatorial optimiza-

tion problems. Therefore, it is necessary to generate well-defined benchmarks specifically

designed for multimodal combinatorial optimization. In this chapter, we choose the 0-1

knapsack problem as a representative combinatorial optimization problem due to its sim-

plicity and a wide range of applications in practice [Mavrotas et al. 2008, Wscher et al.

2007, Higgins et al. 2008].

The 0-1 knapsack problem has been studied for more than a century, with early works

dating as far back as 1896 [Mathews 1896]. It is one of the classical NP-hard constrained

combinatorial optimization problems [Williamson and Shmoys 2011]. Building on the

early studies of 0-1 knapsack problem, many research works have been conducted to design

methods for generating hard 0-1 knapsack test instances [Martello and Toth 1979, Chvátal

1980, Pisinger 2005]. However, to the best of our knowledge, none of these methods can

generate multimodal test instances with controllable dimensionality, the number of optima,

fitness of the optima, and distribution of optima of the 0-1 knapsack problem.

3.3 Related Work

In this section, we provide a brief survey of existing research works on the classic 0-

1 knapsack problem. The 0-1 knapsack problem is a classical NP-hard combinatorial

optimization problem. It can be expressed as follows. Suppose we have a set of n items

i={i1, i2, . . . , in} and each item has a weight wi and a profit pi. The goal is to select

a subset of items in order to maximize the total profit such that the total weight of the

selected items does not exceed the knapsack capacity C. To model this problem, xi is

1The more generic background information on discrete/combinatorial optimization and multimodality
can be found in Chapter 2.
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introduced as a decision variable for each item. If the i-th item is selected then the value

of xi is set to 1, otherwise its value is set to 0. Formally, the 0-1 knapsack problem can

be expressed as:

Maximize
n∑
i=1

pixi

s.t.
n∑
i=1

wixi ≤ C,

xi ∈ {0, 1}.

(3.1)

The 0-1 knapsack problem has been studied in the last few decades because of its the-

oretical interest and its wide applicability in operations research and engineering. Several

attempts have been made to design frameworks for generating 0-1 knapsack test instances

[Martello and Toth 1979, Chvátal 1980, Balas and Zemel 1980, Chung et al. 1988, Pisinger

2005, Bansal and Deep 2012, Zou et al. 2011b, Bhattacharjee and Sarmah 2014] in order to

facilitate the performance evaluations of classical [Martello and Toth 1997, Monaci et al.

2013] and evolutionary 0-1 knapsack algorithms [Ezziane 2002, Bansal and Deep 2012, Zou

et al. 2011b]. In general, there are two groups of instances for evaluating the performance

of the algorithms, deterministic instances and non-deterministic instances.

The instances in the first group are easier, because their optimal solutions can be

found by exact methods due to the low dimensionality of the instances [Bansal and Deep

2012, Zou et al. 2011b, Bhattacharjee and Sarmah 2014]. For these test instances, there

is no generation procedure available for specifying the 0-1 knapsack parameters. In addi-

tion, these instances are not scalable in terms of the number of dimensions, nor do they

guarantee to contain multiple optima in the search space.

In contrast, the instances of the second group are the hardest test instances ever

designed for the 0-1 knapsack problem [Martello and Toth 1979, Chvátal 1980, Balas

and Zemel 1980, Chung et al. 1988, Pisinger 2005]. For this group, there are mainly

five different types of test instances namely the uncorrelated, weakly correlated, strongly

correlated, inversely strongly correlated, and subset sum instances which are defined by

taking into account the correlation between the profits and weights of items [Pisinger 2005].

It is reported in [Pisinger 1995] that the strongly correlated and subset sum instances are

difficult to solve than the uncorrelated and weakly correlated instances. The generation

procedure of these five types of test instances are provided below:

• Uncorrelated instances (UCI): For this type of test instances, the profit of each item

is independent from its weight. In practice, the weight and profit of each item are

chosen randomly from a certain interval, e.g., [1,R].

• Weakly correlated instances (WCI): For this type, the weight of each item is ran-

domly chosen from [1,R]. Next the profit (pi) of an item (i) is selected from the
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interval [wi − R/10 , wi + R/10] subject to pi ≥ 1, where wi is the weight of the

item.

• Strongly correlated instances (SCI): For these strongly correlated instances, the

weight of an item is also randomly chosen from [1,R]. After that, the profit (pi)

of an item (i) of the strongly correlated instances is chosen as pi =wi +R/10.

• Inversely strongly correlated instance (ISCI): For this type, first, the profit of an item

i is randomly chosen from [1,R] and then the weight of the same item is selected as:

wi =pi +R/10.

• Subset sum instances (SSI): For this type of instances, the weight (wi) of the i-th

item is first chosen randomly from the interval [1,R], then assigned to the profit of

the same item as pi=wi.

For each instance type, the knapsack capacity C is usually set to a certain percentage

of the sum of weights of the items. Mathematically, the knapsack capacity is chosen as:

C = S ×
n∑
i=1

wi, (3.2)

where S is a variable which can be chosen from a real number between 0.1 and 0.9.

The generation procedure of the non-deterministic instance group can produce a

diverse set of 0-1 knapsack instances. However, this procedure cannot guarantee multiple

global optimal solutions to be produced for the 0-1 knapsack problem. This is because of

the random specifications for the set of weights (w) and the set of profits (p) of a test

instance, which is highly unlikely to produce optimal solutions of equal fitness values. This

motivates us to propose a new generation procedure which will guarantee the multiple

global optima in the search space of 0-1 knapsack instances. In addition, it will allow

controlling various properties of the 0-1 knapsack instances such as the number of optima,

fitness of the optima, location of the optima, and distribution of optima.

3.4 New Procedure for Generating Multimodal 0-1 Knapsack

Instances

The following sections will describe how to specify the set of weights, the set of profits, and

knapsack capacity in order to generate a multimodal test instance for the 0-1 knapsack

problem, in particular the strongly correlated and subset sum multimodal 0-1 knapsack

test instances, because they are much harder and have more interesting properties than

the uncorrelated and weakly correlated instances [Pisinger 1995].
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3.4.1 Weights

A commonly used technique to specify the set of weights w={w1, w2, . . . , w(n−1), wn}
randomly in a certain interval, e.g. [1, r], where r is a positive integer number [Martello

and Toth 1979, Chvátal 1980, Balas and Zemel 1980, Chung et al. 1988, Pisinger 2005].

In contrast, this study specifies the set of weights w with the pernicious numbers [Sloane

2017] to produce the multiple optima in the search space of a 0-1 knapsack instance. By

definition, a number m is pernicious, if it contains a prime number of ones in its binary

representation. For example, 14 = (1110)2 is pernicious since it contains 3 ones and 3 is

a prime number. Likewise, the numbers 3, 5, 6, 7, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22,

24, 25, 26, and 28 are also pernicious. So far, the key idea of specify the elements of w

is that at first a certain amount (equal to the number of items) of pernicious numbers is

generated, then these numbers are randomly assigned to the elements of w. According to

this, an example of such a set of weights for a 10-dimensional 0-1 knapsack instance can

be w={12, 7, 5, 13, 11, 10, 3, 9, 6, 17}.

3.4.2 Profits

In Section 3.3, five different types of profits can be found for generating the instances from

the second group. It can be observed that these profits have been specified according to

the certain correlations between the weights and profits of the items. In this chapter,

two out of five existing correlations are used to specify the profits of multimodal test

instances. However, the procedures for generating these profits (as described in Section

3.3) are modified in the following ways:

• Strongly correlated profit (SCP): In this case, the profit of an item is strongly corre-

lated with its weight plus certain shift [Pisinger 2005]. Following this, the strongly

correlated profit (pi ∈ p) for the i-th item is chosen as: pi=wi + (wi × r), where r

is a positive integer number.

• Subset sum profit (SSP): In this case, the profit of an item is a linear function of its

weight. According to this, the set of subset sum profits is specified as: p = w ∗ r.

3.4.3 Knapsack Capacity

In general, the existing frameworks assign the knapsack capacity by a certain percentage

of the sum of the item weights [Martello and Toth 1979, Chvátal 1980, Balas and Zemel

1980, Chung et al. 1988, Pisinger 2005]. Therefore, these frameworks cannot guarantee

multiple optima in the search space of a generated 0-1 knapsack instance. To overcome

this, an investigation is made on the relationship between the weight, profit, and knapsack

capacity of the 0-1 knapsack problem to identify the key factors influencing the generation

of multimodal test instances. This investigation discovers that if a specific value is chosen
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for knapsack capacity C of an instance to satisfy the following criteria, then multiple

optimal solutions can be produced for that instance:

C = wi, and wi ≥ 9, (3.3)

where w i ∈ w is the weight of the i-th item. Note that if the value of C < 9, then the

generated instances will not contain multiple optima with the same fitness value.

3.5 The Proposed Framework for Multimodal 0-1 Knapsack

Instances

In this chapter, the above generation procedure is referred to as the multimodal test

instances generation framework. At this moment, this framework can produce the strongly

correlated and subset sum multimodal 0-1 knapsack test instances. However, the procedure

is easily modifiable for any types of multimodal test instances. For example, the new

correlations between the profits and weights of the items can be applied and adopt them

in this framework to generate different types of multimodal 0-1 knapsack instances.

For convenience, a software tool based on the idea of the new generation procedure is

developed. Fig. 3.1 shows the user interface of this software tool which can be downloaded

from here2.

3.5.1 Examples of Generated Multimodal Instances

To generate a SCMI type multimodal 0-1 knapsack instance, for example, a user can

enter the following generator parameter values: n=5, r=5, and P=SCP via the software

interface (see Fig. 3.1). With this setting, the software tool produces the following SCMI

instance characterized by: w={7, 3, 5, 6, 9}, p={42, 18, 30, 36, 54}, and C =3 to 9. This

instance is referred to as Instance-1. To produce multiple global optima, the value for C

should be chosen ≥ 9 which is already mentioned in Eq. (3.3). Otherwise, this framework

produces a single global optima in the search of the generated instances. For example, let

the weight of the first item is chosen as the knapsack capacity i.e., C=7. In this case, the

search space of Instance-1 contains four optimal solutions according to Eq. (3.1). The

four optimal solutions are “10000”, “01000”, “00100”, and “00010”, respectively. It can

be observed that the profit of the global optimum ”10000” is 42 which is better than the

profit of three other optimums i.e., 18, 30, 36, respectively. This shows that if the value

smaller than 9 is chosen for C, then a single optimum is produced in the search space of

Instance-1.

It is worth to mention that the optima of the multimodal 0-1 knapsack instances of

this study obey the following statement. The statement is: If C = wi and wi ≥ 9, then a

2 https://drive.google.com/uc?export=download&id=0B7T6uXAYMncsUTJJclZ0W\DBTZVk
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Figure 3.1: The user interface of the multimodal 0-1 knapsack test instances generator.

solution is globally optimal if and only if
∑n

i=1wi = C. An explanation of this statement

is given below.

Let the knapsack capacity for the Intance-1 be C=9. In this case, the search space

of this instance contains four optimal solutions “10000”, “01100”, “01010”, and “00001”,

respectively, as shown in Fig. 3.2. Each of them are locally optimal, because all of their

neighboring solutions are either worse (in terms of profit value) than it or infeasible i.e.,∑n
i=1wi > C. According to Eq. (3.1), the fitness value of these optimal solutions are

42, 48, 54, and 54, respectively. It is clear that the solutions “01010” and “00001” are

the global optima, as their fitness values are higher than the fitness value of two other

solutions. It can be found that with C=9, these two global optima fulfilled the condition∑n
i=1wi = C, but two other optima did not fulfill the same given condition.
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Figure 3.2: The search space of Instance-1 which contains two global optima with the
same fitness value.

3.5.2 Optima of Generated Multimodal Instances

According to above description, an optimal solution is guaranteed by selecting a subset of

items for which the accumulated weight is the same as the knapsack capacity C. Basically,

the purpose of such arrangement is to know in advance that in a generated instance, how

many optima exist, what is their fitness value, and what are the locations of the optima in

the search space. For the demonstration purpose, a new multimodal 0-1 knapsack instance

namely Instance-2 is generated by using the following settings n=20, r=5, and P=SCP.

This instance is characterized by: w={14, 21, 5, 26, 24, 6, 19, 20, 17, 28, 12, 25, 9, 22, 3,

7, 11, 18, 13, 10}, p={84, 126, 30, 156, 144, 36, 114, 120, 102, 168, 72, 150, 54, 132, 18,

42, 66, 108, 78, 60}, and C =3 to 28.

To know the number of optima, we choose the knapsack capacity C=w20=10 of

Instance-2 based on Eq. (3.3). In this case, the search space of this instance contains

only two global optima which follow the rule provided in the previous equation. The first

one can be obtained by selecting only one item (the n-th item) of which the weight is 10

(=C) and the second one can be obtained by selecting only two items (15-th and 16-th
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item) of which the weights are 3 and 7 (3+7=C), respectively. Now, we can compute

the locations of these two optima by denoting the selected items of these optima as 1

and unselected items as 0. According to this, the locations of these two optima are

“00000000000000000001” and “00000000000000110000”, respectively. Finally, the fitness

value of these two optima can be computed in the following way. The profit of the item

whose weight is chosen as the knapsack capacity is the fitness value (60 in this case) of

the optima of Instance-2. For any multimodal instances of this study, the fitness value

of the optima can be computed in the similar way. For example, if C=w10=28, then the

fitness value of all the optima of this instance is the profit p10 of the 10-th item i.e., 168.

3.5.3 Controllable Properties of Multimodal Instances

The properties of the multimodal test instances can be controlled by the variables n, r,

and C used in the generation procedure of multimodal 0-1 knapsack instances, where n

determines the number of dimensions, C controls the number of optima, r controls the

relative fitness of the optima of a multimodal test instance.

Dimensionality (Dim)

Since the 0-1 knapsack is NP-hard, the dimensionality of a test instance has a significant

impact on the performance of multimodal optimization algorithms. Therefore, the pro-

posed framework allows the user to control the dimensionality of the test instances in order

to generate instances with various difficulties. The user can control the dimensionality of

the test instances by tuning the value of n via the software tool.

Number of Optima

In multimodal optimization, the number of optimal solutions is an important factor to

evaluate the performance of an optimization method. We can assess the ability of mul-

timodal optimization methods in terms of the ability to locate multiple global optima

simultaneously [Rönkkönen et al. 2011]. The user can control the number of optimal

solutions of a particular test instance by tuning the value of knapsack capacity C. For

example, Instance-3 is generated by setting n=20, r=5, and P=SCP via the software

framework which is characterized by: w={20, 7, 25, 24, 14, 12, 19, 10, 28, 3, 11, 17, 18,

26, 13, 21, 22, 6, 5, 9}, p={120, 42, 150, 144, 84, 72, 114, 60, 168, 18, 66, 102, 108, 156,

78, 126, 132, 36, 30, 54}, and C =3 to 28. For a smaller value of C=12, the search space

of Instance-3 contains only three optima of the fitness value 72, as demonstrated in Table

3.1. However, if the value of C increases to 17 and 22, then the same search space contains

6 different optima of the fitness value 102 and 12 different optima of the fitness value 132,

respectively, as demonstrated in Table 3.1.
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Table 3.1: The optima of Instance-2 for the different value of knapsack capacity C.

C # Optima Loc. of the optima Weight Profit

12 3
01000000000000000010 12 72
00000100000000000000 12 72
00000000010000000001 12 72

17 6

01000001000000000000 17 102
00001000010000000000 17 102
00000100000000000010 17 102
00000000010000000011 17 102
00000000001000000100 17 102
00000000000100000000 17 102

22 12

01000100010000000000 22 132
01000001000000000010 22 132
01000000000000000101 22 132
00001000010000000010 22 132
00000101000000000000 22 132
00000010010000000000 22 132
00000001010000000001 22 132
00000000010000100100 22 132
00000000001000000110 22 132
00000000000100000010 22 132
00000000000000100001 22 132
00000000000000001000 22 132

Relative Fitness of Optima

The distance between the fitness of the optima (local and global) is important when the

purpose is not only identifying the global optima, but also the reasonably good local

optima of multimodal optimization problems. In this regard, the proposed framework can

be used to change the fitness of local and global optima. To do this, the user should choose

a smaller r (via the software tool) for maintaining a smaller fitness difference between

two optimums of a test instance, and a larger r for a larger fitness difference between the

optima. As an example, we provide the information of optimal solutions (global and local)

of two SCMI instances namely Instance-4 and Instance-5 in Table 3.2. The Instance-4 is

characterized by: w={11, 21, 14, 9, 5, 12, 17, 20, 19, 3, 6, 7, 13, 10, 18}, p={176, 336, 224,

144, 80, 192, 272, 320, 304, 48, 96, 112, 208, 160, 288}, and C =3 to 21 and Instance-5

is characterized by: w={19, 5, 21, 20, 18, 13, 10, 7, 11, 14, 17, 12, 9, 6, 3}, p={399,

105, 441, 420, 378, 273, 210, 147, 231, 294, 357, 252, 189, 126, 63}, and C =3 to 21. We

generate these two instances with the similar parameter settings as Instance-3, except the

parameter r which is set to 15 for Instance-4 and 20 for Instance-5. According to Table

3.2, the fitness differences between the global optima and local optima of Instance-4 are
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Table 3.2: The fitness values of the optima of Instance-4 and Instance-5.

Instance-4 Instance-5

Optimum Location Fitness Location Fitness

1 000100000000000 144 000000000000100 189
2 000010000100000 128 010000000000001 168
3 000000000110000 144 000000000000011 189
4 000000000001000 112 000000010000000 147

16(144-128) and 32(144-112), respectively. However, the fitness differences between the

global and local optima of Instance-5 are 21(189-168) and 42(189-147) which are larger

than 16 and 32, respectively.

Distribution of Optima

It is well-known that the multimodal instances with irregular distribution of optima are

difficult to solve than the regular distribution of optima. Therefore, the proposed instance

generation framework is designed for the multimodal 0-1 knapsack instances with irregular

distribution of optima. For example, we can calculate the hamming distances between the

optima of Instance-2, in Table 3.1. It can be found that these optima are maintaining

the different distance between them. This proves that they are irregularly distributed in

the search space of Instance-2.

3.6 The Proposed Multimodal 0-1 Knapsack Test Instances

Table 3.3 to 3.5 show three different sets of strongly correlated multimodal 0-1 knapsack

test instances. In these tables, the first column shows the names of the multimodal

instances. The second column gives the generator parameters used for producing the

exemplary multimodal 0-1 knapsack test instances. The third column provides the 0-1

knapsack parameters. The fourth column shows the number of dimensions (Dim) of the

problems. The fifth and sixth column shows the number of optima NOpt and fitness of

the optima, respectively.

In Table 3.3, the first set contains four different 15-dimensional multimodal 0-1 knap-

sack instances namely SCMI-1 to SCMI-4. These instances have the number of optima

ranging from 2 to 11, but their fitness values are different from each other.

Table 3.4 shows the second set of strongly correlated multimodal instances. This set

also contains four different instances namely SCMI-5 to SCMI-8, each of which has the

same number of optima with the same fitness value. However, the number of dimensions

of these instances are ranging from 10 to 35.
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Table 3.3: Description of the first set of multimodal 0-1 knapsack test instances.

Instance Gen. param. Knapsack parameters Dim NOpt Fitness

SCMI-1 n=15, k=5 w={10, 17, 13, 11, 18, 21, 12, 14, 3, 19, 6, 20, 9,
7, 5}, p={60, 102, 78, 66, 108, 126, 72, 84, 18,
114, 36, 120, 54, 42, 30}, C=9

15 2 54

SCMI-2 n=15, k=5 w={10, 17, 13, 11, 18, 21, 12, 14, 3, 19, 6, 20, 9,
7, 5}, p={60, 102, 78, 66, 108, 126, 72, 84, 18,
114, 36, 120, 54, 42, 30}, C=14

15 4 84

SCMI-3 n=15, k=5 w={10, 17, 13, 11, 18, 21, 12, 14, 3, 19, 6, 20, 9,
7, 5}, p={60, 102, 78, 66, 108, 126, 72, 84, 18,
114, 36, 120, 54, 42, 30}, C=19

15 8 114

SCMI-4 n=15, k=5 w={10, 17, 13, 11, 18, 21, 12, 14, 3, 19, 6, 20, 9,
7, 5}, p={60, 102, 78, 66, 108, 126, 72, 84, 18,
114, 36, 120, 54, 42, 30}, C=21

15 11 126

Table 3.4: Description of the second set of multimodal 0-1 knapsack test instances.

Instance Gen. param. Knapsack parameters Dim NOpt Fitness

SCMI-5 n=10, k=5 w={5, 7, 6, 9, 10, 12, 3, 13, 11, 14},p={30, 42,
36, 54, 60, 72, 18, 78, 66, 84}, C=13

10 3 78

SCMI-6 n=15, k=5 w={5, 17, 7, 20, 18, 11, 19, 14, 10, 13, 21, 9,
3, 6, 12}, p={30, 102, 42, 120, 108, 66, 114, 84,
60, 78, 126, 54, 18, 36, 72}, C=13

15 3 78

SCMI-7 n=20, k=5 w={22, 14, 6, 21, 5, 12, 10, 24, 11, 26, 28, 9, 19,
7, 13, 25, 20, 17, 3, 18}, p={132, 84, 36, 126, 30,
72, 60, 144, 66, 156, 168, 54, 114, 42, 78, 150,
120, 102, 18, 108}, C=13

20 3 78

SCMI-8 n=25, k=5 w={18, 7, 31, 35, 34, 9, 12, 25, 14, 10, 20, 3,
26, 11, 36, 13, 33, 6, 24, 5, 28, 22, 17, 21, 19},
p={108, 42, 186, 210, 204, 54, 72, 150, 84, 60,
120, 18, 156, 66, 216, 78, 198, 36, 144, 30, 168,
132, 102, 126, 114}, C=13

25 3 78

SCMI-9 n=30, k=5 w={33, 36, 20, 14, 3, 13, 21, 9, 18, 10, 40, 26,
38, 34, 22, 7, 31, 17, 19, 35, 12, 24, 28, 5, 6,
25, 11, 41, 42, 37}, p={198, 216, 120, 84, 18,
78, 126, 54, 108, 60, 240, 156, 228, 204, 132, 42,
186, 102, 114, 210, 72, 144, 168, 30, 36, 150, 66,
246, 252, 222}, C=13

30 3 78

SCMI-10 n=35, k=5 w={33, 9, 22, 12, 36, 34, 37, 19, 14, 3, 10, 20,
24, 42, 5, 49, 44, 13, 31, 6, 41, 28, 35, 47, 48, 40,
50, 7, 26, 11, 18, 17, 38, 21, 25}, p={198, 54,
132, 72, 216, 204, 222, 114, 84, 18, 60, 120, 144,
252, 30, 294, 264, 78, 186, 36, 246, 168, 210,
282, 288, 240, 300, 42, 156, 66, 108, 102, 228,
126, 150}, C=13

35 3 78

In Table 3.5, the third set of multimodal 0-1 knapsack instances are demonstrated.

This set of instances are different from the previous two sets, as it contains the instances

with the increasing number of dimensions, optima, and fitness of the optima.

In addition to the instances provided in Table 3.3 to 3.5, the user can generate more
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Table 3.5: Description of the third set of multimodal 0-1 knapsack test instances.

Instance Gen. param. Knapsack parameters Dim NOpt Fitness

SCMI-11 n=40, k=5 w={38, 3, 22, 21, 35, 28, 6, 11, 56, 34, 31, 19,
33, 10, 55, 52, 37, 50, 59, 40, 20, 12, 49, 18, 61,
42, 47, 13, 5, 44, 48, 9, 26, 17, 14, 7, 41, 24,
25, 36}, p={228, 18, 132, 126, 210, 168, 36, 66,
336, 204, 186, 114, 198, 60, 330, 312, 222, 300,
354, 240, 120, 72, 294, 108, 366, 252, 282, 78,
30, 264, 288, 54, 156, 102, 84, 42, 246, 144, 150,
216}, C=10

40 2 60

SCMI-12 n=50, k=10 w={73, 41, 22, 25, 47, 20, 68, 34, 74, 66, 24, 44,
35, 55, 21, 18, 6, 37, 19, 69, 7, 3, 61, 26, 9, 14,
67, 38, 12, 11, 48, 62, 33, 52, 31, 13, 50, 36, 72,
49, 17, 28, 56, 10, 5, 40, 59, 70, 42, 65}, p={803,
451, 242, 275, 517, 220, 748, 374, 814, 726, 264,
484, 385, 605, 231, 198, 66, 407, 209, 759, 77, 33,
671, 286, 99, 154, 737, 418, 132, 121, 528, 682,
363, 572, 341, 143, 550, 396, 792, 539, 187, 308,
616, 110, 55, 440, 649, 770, 462, 715}, C=20

50 9 220

SCMI-13 n=60, k=15 w={33, 47, 80, 69, 28, 66, 73, 67, 14, 26, 84, 56,
70, 13, 6, 72, 49, 31, 44, 61, 87, 35, 5, 19, 24, 10,
65, 55, 59, 74, 21, 12, 68, 52, 18, 25, 81, 41, 82,
38, 22, 7, 3, 34, 40, 20, 88, 11, 50, 17, 9, 37, 93,
79, 36, 91, 48, 62, 42, 76}, p={528, 752, 1280,
1104, 448, 1056, 1168, 1072, 224, 416, 1344, 896,
1120, 208, 96, 1152, 784, 496, 704, 976, 1392,
560, 80, 304, 384, 160, 1040, 880, 944, 1184,
336, 192, 1088, 832, 288, 400, 1296, 656, 1312,
608, 352, 112, 48, 544, 640, 320, 1408, 176, 800,
272, 144, 592, 1488, 1264, 576, 1456, 768, 992,
672, 1216}, C=25

60 18 400

SCMI-14 n=70, k=20 w={104, 42, 87, 9, 97, 70, 13, 69, 5, 72, 76, 11,
82, 10, 62, 110, 34, 7, 24, 107, 35, 80, 52, 55,
36, 28, 68, 37, 3, 73, 100, 88, 79, 50, 33, 41, 12,
66, 20, 94, 31, 6, 61, 81, 44, 56, 38, 74, 48, 22,
47, 98, 103, 65, 96, 18, 93, 21, 67, 49, 14, 84, 59,
25, 91, 109, 19, 17, 40, 26}, p={2184, 882, 1827,
189, 2037, 1470, 273, 1449, 105, 1512, 1596, 231,
1722, 210, 1302, 2310, 714, 147, 504, 2247, 735,
1680, 1092, 1155, 756, 588, 1428, 777, 63, 1533,
2100, 1848, 1659, 1050, 693, 861, 252, 1386,
420, 1974, 651, 126, 1281, 1701, 924, 1176, 798,
1554, 1008, 462, 987, 2058, 2163, 1365, 2016,
378, 1953, 441, 1407, 1029, 294, 1764, 1239, 525,
1911, 2289, 399, 357, 840, 546}, C=31

70 38 651

challenging set of strongly correlated and subset sum multimodal 0-1 knapsack instances

using the developed software framework.
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3.7 Experimental Studies

To verify the usefulness of the proposed benchmark instances, experimental studies are

carried out to study the effect of changing dimensionality, the number of optima, and

the fitness of optima on the performance of a niching algorithm. For this purpose, we

propose a binary niching method namely B-SPSO which is adopted and evaluated using

the proposed benchmark instances.

3.7.1 The Proposed Binary SPSO (B-SPSO) Niching Method

A niching method is usually embedded within an evolutionary algorithm, with an aim

to locate multiple optimal solutions within a single run. Some classical niching meth-

ods include fitness sharing [Goldberg and Richardson 1987], clearing [Petrowski 1996],

crowding [Mahfoud 1995], and speciation [Li et al. 2002]. In addition, niching methods

have also developed in conjunction with PSO or DE, e.g., speciation-based PSO (SPSO)

[Li 2004], NichePSO [Brits et al. 2002], and DE/nrand [Epitropakis et al. 2012]. These

niching methods have been largely designed for the continuous problems. However, little

work has been done on niching methods that are specifically designed for solving discrete

problems.

For this chapter, we develop a binary species-based PSO (B-SPSO) niching method

by incorporating the idea of speciation [Li et al. 2002, Li 2004] into the standard binary

PSO model (BPSO) [Kennedy and Eberhart 1997]. Kennedy and Eberhart [Kennedy

and Eberhart 1997] developed the first BPSO to tackle the binary optimization problems.

It uses a number of particles which fly around the binary search space to find the best

solution. At k-th iteration, the velocity and position of the i-th particle are modified

according to the following equations:

vk+1
i = vki + c1r

k
1(pki − xki ) + c2r

k
2(pkg,i − xki ) (3.4)

xk+1
i =

0 if rand() > S(vk+1
i ),

1 otherwise.
(3.5)

where k represents a current iteration, pi and pg,i are the personal best position and

local best position, respectively, rand() is a random number drawn from the uniformly

distributed U(0,1), c1 and c2 are cognitive and social weights, rk1 and rk2 are cognitive and

social random variables in range [0,1], and S(vki ) denotes a sigmoid function which can be

determined by the following equation:

S(vk+1
i ) =

1

1 + e−v
k+1
i

. (3.6)

In binary SPSO (B-SPSO), speciation involves the splitting of a single population

into a number of sub-populations (species) according to their similarities measured by the
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hamming distance (dHam) [Hamming 1950]. The smaller the hamming distance between

two population individuals, the more similar they are:

dHam(xi,xj) =
d∑

k=1

[xi,k 6= xj,k], (3.7)

where, d represents the search dimensions, xi=[xi1, xi2, . . . , xid] and xj=[xj1, xj2, . . . , xjd]

are two binary position of the particles i and j from the BPSO population. In this

equation, the statement xi,k 6= xj,k within the square bracket will return 1 if it is true,

and 0 otherwise.

The formation of species depends on a user-defined parameter rs, which denotes

the radius measured in Hamming distance from the center of a species to its boundary.

The center of a species, so-called species seed, is always the best-fit individual in the

species. All the population individuals that fall within the rs distance from the species

seed are classified as the same species. Fig. 3.3 shows an example of the species seeds

and non-dominating individuals of the seven different species. After creating the species,

B-SPSO determines their dominant members i.e., species seeds according to Algorithm 4

(see Chapter 2), where the distance d and niche radius rs should be measured in terms of

Hamming distance (see Eq. (3.7)). In the followings, we will describe the Pseudocode for

the proposed binary SPSO (B-SPSO) niching method.

Species Species seed 

Non-dominating particles 

rs 

Figure 3.3: Illustration of the species seeds and non-dominating individuals of the seven
species.
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Algorithm 7 Pseudocode of the binary SPSO (B-SPSO) niching method.

1: Randomly generate an initial population
2: repeat
3: for i=1 to popsize do
4: if f(xi) > f(pi) then pi ← xi;
5: end if
6: end for
7: Lsorted ← SORT Desc(P ); . P is the list of particles.
8: S ← GET SEEDS(Lsorted); . Algorithm 4
9: for i=1 to popsize do

10: f(pg,i)← f(xseed,i);
11: pg,i ← xseed,i;
12: Eq. (3.4);
13: Eq. (3.5);
14: end for
15: until the termination criteria is met

Algorithm 7 demonstrates the pseudocode of binary SPSO (B-SPSO) niching method.

In this algorithm, lines 3 to 6 are used to determine the personal best position of the

particles. Line 7 sorts all the particles in descending order of their fitness values. Line 8

determines the species seeds for the current population according to Algorithm 4. Line 9

to 14 are used to update pg,i, vi, and xi, respectively. Finally, line 15 is used to check the

termination criteria of B-SPSO.

3.7.2 Performance Measure

The performance of the binary SPSO method is measured using three popular performance

metrics namely the peak ratio, success rate, and an average number of function evaluations

[Li et al. 2013, Thomsen 2004, Li 2010, Das et al. 2011, Fieldsend 2014]. For clarity, the

definitions of these performance metrics are provided below.

• Peak Ratio (PR): Given a fixed number of function evaluations (maxFEs), the peak

ratio measures the average percentage of all known optima over multiple runs:

PR =

∑NR
k=1NGFk
Ngpt ×NR

, (3.8)

where NGFk represents the number of optima found at the end of k-th run, Nopt

indicates the number of known optima, and NR represents the number of runs.

• Success Rate (SR): The success rate measures the percentage of successful runs (a

successful run is defined as a run where all known optima are found) out of all runs:

SR =
NSR
NR

, (3.9)

where NSR represents the number of successful runs.
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• Average Number of Function Evaluations (AvgFEs): This performance metric mea-

sures the number of function evaluations required to find out all known optima. We

calculate the average FEs over multiple runs:

AvgFEs =

∑NR
k=1 FEk
NR

, (3.10)

where FEk represents the number of evaluations used in the k-th run. If the test

algorithm unable to locate all the optima by the maxFEs, then maxFEs is used when

calculating the average FEs.

3.7.3 Experimental Settings

The population size (popSize) and the maximum number of function evaluations (maxFEs)

are two important parameters of any niching method. Generally, these two parameters

are empirically specified. For example, in SPSO [Parrott and Li 2006], popSize=30 and

maxFEs=60000 were used for the optimization of the problems with 1 to 5 global optima.

In [Qu et al. 2012], for locating 1 to 5 global optima, popSize was set to 50 and maxFEs was

set to 10000, and for 18 global optima, popSize and maxFEs were set to 250 and 100000,

respectively. In our experiments, we choose a fixed popSize=250 and maxFEs=100000,

which would be sufficient for locating all the optimal solutions of the proposed multimodal

0-1 knapsack instances.

For the test instances used in this chapter, since the exact number of optima and the

distances between them are known, a value slightly smaller than the distance between two

closest optima can be chosen as the species radius rs. With this, the binary SPSO should

be able to sufficiently distinguish two different optima. To choose the best value for rs, we

have conducted several experiments using binary SPSO with different niche radius values.

After the preliminary study, the value for the niche radius rs is set to 0.1. In addition, the

other parameters in binary SPSO were fixed to the values of w=1, c1 = 2.05, c2 = 2.05,

and Vmax = 4, as suggested in [Kennedy and Eberhart 1997, Parrott and Li 2006].

The binary SPSO will be terminated when either all the optimal solutions are found

or the maximal number of function evaluations is reached. Note that we run the binary

SPSO 30 times for each multimodal 0-1 knapsack test instance to remove the randomness

of the algorithm.

3.7.4 Results and Discussions

In this section, the experimental results obtained by the binary SPSO are presented.

The binary SPSO method is used as the basic niching methods for the multimodal 0-1

knapsack problem. The obtained results are intended as benchmarks for the multimodal

0-1 knapsack test instances.
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Table 3.6: The mean and standard deviation of SR, PR, and AvgFEs over 30 runs to
locate the optima of the first set of multimodal test instances.

Dim Instance NOpt PR SR AvgFEs

15

SCMI-1 2 0.45(0.01) 0.10(0.01) 93208.33(772.86)
SCMI-2 4 0.50(0.01) 0.07(0.01) 97016.67(430.00)
SCMI-3 8 0.42(0.01) 0.00(0.00) 100000.00(0.00)
SCMI-4 11 0.46(0.00) 0.00(0.00) 100000.00(0.00)

Table 3.7: The mean and standard deviation of SR, PR, and AvgFEs over 30 runs for
locating the optima of the second set of multimodal test instances.

Dim Instance NOpt PR SR AvgFEs

10 SCMI-5 3 1.00(0.00) 1.00(0.00) 2558.33(71.14)
15 SCMI-6 3 0.63(0.01) 0.27(0.01) 87241.67(933.80)
20 SCMI-7 3 0.02(0.00) 0.00(0.00) 100000.00(0.00)
25 SCMI-8 3 0.00(0.00) 0.00(0.00) 100000.00(0.00)
30 SCMI-9 3 0.00(0.00) 0.00(0.00) 100000.00(0.00)
35 SCMI-10 3 0.00(0.00) 0.00(0.00) 100000.00(0.00)

Table 3.6 and 3.7 show the results (mean ± standard deviation) of peak ratio, success

rate, and an average number of function evaluations for locating the optima of each of

the proposed multimodal test instances, using Eq. (3.8), (3.9), and (3.10), respectively.

In these tables, the first, second, and third column represent the number of dimensions

(Dim), instances name, and the number of optima (NOpt) of the test instances, respec-

tively. The fourth, fifth, and sixth column show the peak ratio (PR), success rate (SR),

and the averaged number of function evaluations (AvgFEs), respectively. In these tables,

the best results provided by the B-SPSO are marked in bold.

In Table 3.6, the peak ratio (PR) shows that the B-SPSO can locate on average 45%

optima in all the runs for the first set of instances. However, the obtained success rates

SR show that B-SPSO could not locate all the optima in all the runs within the given

amount of function evaluations, particularly for the instances SCMI-3 and SCMI-4. The

particular reason is that since the optima are irregularly distributed, some of the optima

might be far away from the other optima in the search space. To locate them, better

search ability is required which seems to be lacking in the binary version of SPSO.

As can be seen in Table 3.7, with respect to PR and SR, the B-SPSO can locate 100%

optima of a 10-dimensional multimodal instance in 100% runs with AvgFEs=2558.33.

However, as the number of dimensions increase, both PR and SR decrease significantly

for the 15-dimensional to 35-dimensional multimodal 0-1 knapsack instances. Particularly,

B-SPSO was unable to locate even a single optima for 25-dimensional to 35-dimensional

multimodal 0-1 knapsack instances. The reason might be that the search spaces of the
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instances SCMI-8 to SCMI-10 are much bigger than the instances SCMI-5 to SCMI-7.

Hence, B-SPSO may not have explored such a bigger search space comprehensively and

got stuck in the local optima. For the third set, the B-SPSO was unable to locate the

multiple optima of the third set instances, and thus the results are not provided in this

section.

3.8 Chapter Summary

This chapter addresses an important research gap in designing test suites for the discrete

multimodal optimization problems. A new framework is proposed for generating a diverse

set of challenging multimodal test instances using the classical 0-1 knapsack problem. The

framework offers the flexibility to control the number of dimensions, number of optima,

distribution of optima, and fitness of optima of multimodal test instances. To demonstrate

the framework, we have proposed 14 strongly correlated multimodal benchmark instances

for the 0-1 knapsack problem. For illustration, we have provided experimental results

using the proposed binary SPSO (B-SPSO) niching method to evaluate the proposed

benchmark suite. The results show that the proposed binary SPSO performs well on low-

dimensional multimodal instances (Dim ≤ 10), but often performs poorly as the number of

dimensions and optima increase. This suggests that the proposed framework can generate

the multimodal 0-1 knapsack instances with various levels of difficulties, which can be

useful for evaluating existing niching methods for discrete optimization problems.
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CHAPTER 4
Better Exploration/Exploitation Balance

in a Binary PSO

4.1 Introduction

In the previous chapter, we have seen that the B-SPSO is unable to locate a good num-

ber of optima for the high-dimensional 0-1 knapsack test instances. The reason of this

shortcoming is the poor search ability of B-SPSO. To overcome this issue, this chap-

ter introduces a time-varying transfer function based binary PSO (TVT -BPSO) for the

proposed B-SPSO niching method. The proposed TVT -BPSO has the ability to provide

a better exploration and exploitation of binary PSO. In addition, it has the ability to

make a good balance between exploration and exploitation. The rest of the chapter is

organized as follows. Section 4.2 provides the related work of this chapter. Section 4.3

provides an analysis on the behaviour of existing transfer functions of BPSO. Section 4.4

presents the details of the proposed TVT -BPSO, followed by Section 4.5 on a simple ex-

ample to demonstrate the exploration and exploitation ability of TVT -BPSO. Section 4.6

first presents some statistical results that compare TVT -BPSO with four other well-known

BPSO variants over 0-1 knapsack test instances. Empirical investigations on the influence

of the parameter settings of TVT -BPSO are also conducted. Finally, the summary of this

chapter is presented in Section 4.7.

4.2 Related Work

Since the past decade, many researchers have developed powerful discrete optimization

methods that are inspired by nature, often referred to as metaheuristics [Yang and Xin-She

2010]. Binary particle swarm optimization (BPSO) is one popular metaheuristic algorithm

first proposed by Kennedy and Eberhart [Kennedy and Eberhart 1997]. This BPSO has

been used for solving various types of discrete optimization problems [Pedrasa et al. 2009,
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Liao et al. 2007, Jarboui et al. 2008, Naeem et al. 2012, Lin et al. 2016, Han et al. 2017].

However, it has been observed that BPSO seems to be lacking the exploration capability

that is needed for obtaining high-quality solutions [Bansal and Deep 2012, Mirjalili and

Lewis 2013, Liu et al. 2011]. Many BPSO variants have been developed to tackle this

issue [Bansal and Deep 2012, Mirjalili and Lewis 2013, Liu et al. 2011, Ting et al. 2006,

Tassopoulos and Beligiannis 2012a;b, Liu et al. 2015a, Han et al. 2017, Liu et al. 2015b,

Wang et al. 2013]. However, the existing BPSO variants still have the issue of maintaining

a good balance between exploration and exploitations, since too much exploration often

degrades the fine-tuning ability of BPSO. On the other hand, too much exploitation

gives more refining capability but it may adversely drive the search towards local optimal

solutions.

In BPSO, the transfer function is considered as a key operator for controlling ex-

ploration and exploitation [Bansal and Deep 2012, Mirjalili and Lewis 2013]. Using an

inappropriate transfer function can substantially degrade the performance of the BPSO.

The sigmoid transfer function (ST ) typically employed in BPSO has several identified lim-

itations [Bansal and Deep 2012, Mirjalili and Lewis 2013, Wang et al. 2008b]. Specifically,

this transfer function is unable to provide BPSO a sufficient amount of diversity causing

an imbalance between exploration and exploitation.

In the past few years, two different approaches have been proposed to modify the

original BPSO for improving its performance. The first approach focused on designing

new rules to update the particle’s velocity and position for BPSO. For example, in [Jeong

et al. 2010], the quantum-inspired BPSO (QBPSO) adopts a Q-bit individual for the

probabilistic representation to replace the velocity update equation in BPSO. In [Modiri

and Kiasaleh 2011], a new velocity update equation is proposed based on the observation

of the personal best influence and initial velocity values of BPSO. Another modified BPSO

namely Binary Accelerated Particle Swarm Algorithm (BAPSA) is proposed in [Beheshti

et al. 2013]. In this modified BPSO, a new velocity update equation adopted which is

designed based on Newtonians motion laws. Recently, Banka and Dara [Banka and Dara

2015] proposed a hamming distance based binary particle swarm optimization (HDBPSO)

for features election, classification and validation. In this BPSO, the hamming distance is

used as a proximity measure for updating the velocity of the particle’s in binary PSO. In

another improved BPSO [Han et al. 2017], a new position update rule is used to enhance

the performance of original BPSO for gene selection from microarray data. However,

the above-mentioned BPSOs have several shortcomings, e.g., no strategy to tune the new

parameters, computationally expensive, and relatively hard to implement [Jordehi and

Jasni 2015, Wang et al. 2017]. Therefore, they are not generally applicable to a wide

range of discrete optimization problems.

In contrast, the second approach focused on replacing the sigmoid transfer function

with new transfer functions in order to update each particle’s position in a way to encour-
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age a better exploration of the search space. The V-shaped and linear normalized transfer

function is one such scheme proposed in [Bansal and Deep 2012, Mirjalili and Lewis 2013,

Liu et al. 2011]. It is reported that the V-shaped transfer function based BPSOs [Mirjalili

and Lewis 2013, Liu et al. 2011] and linear normalized transfer function based BPSO

[Bansal and Deep 2012] outperform the original BPSO [Kennedy and Eberhart 1997] and

some other well-known BPSOs [Lee et al. 2008, Shen et al. 2004, Wang et al. 2008a] over

a set of low-dimensional optimization problems [Bansal and Deep 2012, Suganthan et al.

2005]. The reason is also reported in [Bansal and Deep 2012, Mirjalili and Lewis 2013,

Liu et al. 2011] that these transfer functions have the ability to promote more exploration

compared to the conventional sigmoid transfer function.

To examine the general exploration and exploitation capability of the BPSO, it is

necessary to analyze the performance of the existing transfer functions [Bansal and Deep

2012, Mirjalili and Lewis 2013, Liu et al. 2011] over a diverse set of both low-dimensional

and high-dimensional discrete test problems to see whether they can maintain a good

balance between exploration and exploitation.

4.3 Search Behaviour Analysis of BPSO

For the clarity, this section first revisits the BPSO algorithm, and then examines the

behaviour of BPSO employing existing transfer functions to identify their merits and

shortcomings in balancing between exploration and exploitation.

4.3.1 Binary Particle Swarm Optimization Revisited

Kennedy and Eberhart [Kennedy and Eberhart 1997] developed the first binary PSO

to tackle the binary optimization problems. For clarity, we call the original BPSO as

ST -BPSO in this chapter, to differentiate it from other BPSO variants. The ST -BPSO

primarily extended the basic concept of the original PSO by using the sigmoid transfer

function to transform the value of velocity from the continuous space into binary space.

In this BPSO, at each iteration, the velocity vid is modified according to the following

equation:

vk+1
id = vkid + c1r

k
1d(p

k
id − xkid) + c2r

k
2d(g

k
d − xkid), (4.1)

where (k + 1) represents the current iteration, d represents the dimension, r1d and r2d

are two random numbers drawn from the uniformly distribution U(0,1), and c1 > 0 and

c2 > 0 are the cognitive and social weights, respectively.

After updating the velocity, the position xid is modified according to the following:

xk+1
id =

0 if rand() ≥ ST (vk+1
id ),

1 otherwise,
(4.2)
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where ST (vk+1
id ) is a sigmoid transfer function which denotes the probability (in the range

of [0,1]) for a bit that takes the value 0 or 1:

ST (vk+1
id ) =

1

1 + e−v
k+1
id

. (4.3)

It is reported that BPSO has the difficulties to provide a sufficient amount of explo-

ration, because of the conventional sigmoid transfer function [Ting et al. 2006, Wang et al.

2008b, Lee et al. 2008, Shen et al. 2004, Yang et al. 2014]. To overcome this, the modified

BPSO with a linear normalized and two different V-Shaped transfer functions were pro-

posed in literature [Bansal and Deep 2012, Mirjalili and Lewis 2013, Liu et al. 2011]. In

the followings, we will provide a brief analysis of the behavior of sigmoid function, linear

normalized function, and two different V-shaped functions to demonstrate that they have

the difficulties to maintain a good balance between exploration and exploitation. However,

before providing this analysis, it is important to describe the basics of two key phases of

a typical BPSO search process, i.e., the exploration phase and exploitation phase.

4.3.2 Exploration and Exploitation Phase of BPSO

In BPSO, the search space is considered as a hypercube, in which a particle moves from

one node to another by flipping one or more bits of its position vector xi = (xi1, . . . , xid).

BPSO uses a transfer function to determine the probability of the value of each bit xid

(0 or 1), which depends on the corresponding velocity. If the absolute velocity is high,

then the corresponding bit will have a very high probability to be 1 (positive velocity) or 0

(negative velocity). On the other hand, if the velocity is close to zero, then the value of the

corresponding bit becomes uncertain. In other words, in BPSO, a large absolute velocity

leads to exploitation, and a small absolute (close to zero) velocity leads to exploration.

The exploration and exploitation phase can be determined for the binary search space

by measuring the Hamming distance [Hamming 1950] between the previous position xki
and the current position xk+1

i of the i-th particle of BPSO. The equation for measuring

the Hamming distance is demonstrated in Eq. (3.7). According to the Eq. (3.7), if the

measured hamming distance is found to be sufficiently large, then it can be said that

BPSO is exploring the search space, otherwise, it is exploiting the search space.

4.3.3 Analysis of the Behaviour of Existing Transfer Functions

In literature, three different transfer functions can be found for BPSO, namely the sig-

moid transfer function [Kennedy and Eberhart 1997], linear normalized transfer function

[Bansal and Deep 2012], and V-shaped transfer function [Liu et al. 2011, Mirjalili and

Lewis 2013]. The behaviour of these transfer functions on the performance of BPSO are

examined in the following sections.
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Figure 4.1: Illustration of the sigmoid transfer function (ST ).

Sigmoid Transfer Function

In [Kennedy and Eberhart 1997], the sigmoid transfer function (see Fig. 4.1 ) is introduced

to map a real-valued velocity vid ∈ vi to a probability value in the range of [0,1] for

changing a binary position xid ∈ xi. According to Fig. 4.1, the sigmoid transfer function

provides a higher bit flipping probability with the smaller absolute value of velocity and

a lower bit flipping probability with a higher value of velocity. According to this, a small

absolute value of velocity (close to zero) is preferable to better explore the search space

in the early stages of the run. On the other hand, a large absolute value of velocity is

preferable to better exploit the search space in the final stages of the run.

According to Eq. (4.1), the velocity vk+1
id takes a smaller value when pkid 6= gkd , and

takes a larger value when pkid = gkd . Since both pid and gd controls the velocity of i-

th particle, ST -BPSO cannot always maintain a smaller velocity in the early stages of

the run and a higher velocity in the final stages of the run. Consequently, the sigmoid

transfer function has the difficulties in maintaining a good balance between exploration

and exploitation for ST -BPSO.

To validate the above analysis, we conduct an experiment to predict the sequences

of the mean value of velocity vk+1
id of ST -BPSO over 30 independent runs (500 iterations

per run) under different pkid and gkd values which are unchanged over time. For the sake of

simplicity, this experiment has been conducted using a basic BPSO model where a single

particle and a single dimension is considered. For this experiment, the velocity is updated

using Eq. (4.1) where i has been set to 1 for the single particle, d has been set to 1 for the

single dimension. The other parameters have been set to their standard value as w = 1,
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Figure 4.2: The curves of the mean value of velocity vk+1 of ST -BPSO over 30 independent
runs, with w=1, c1 = c2 = 2, and vmax = 6, when (a) v0=0 and (b) v0=vmax=6

c1 = c2 = 2 and vmax = 6. The position of i-th particle is updated using Eq. (4.2).

With the above settings, we can demonstrate the sequences of the mean value of

velocity in two extreme scenarios: 1) when the velocity takes a small initial value v0=0;

and 2) when it takes a large initial value v0=vmax=6, as shown in Fig. 4.2. By considering

the curves in this figure, if we assume that the search process is in the initial stages of
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the run, ST -BPSO is expected to require a stronger exploration, i.e., a higher bit flipping

probability to explore the search space. In this case, if p 6= g, then ST -BPSO provides

a small velocity value, from which the sigmoid transfer function can produce a stronger

exploration for BPSO. However, if p = g, then the sigmoid transfer function cannot

provide a stronger exploration due to the higher value of the velocity, as demonstrated in

Fig. 4.2. As a result, most of the promising regions of the search space will remain to be

unexplored; there is a higher possibility that ST -BPSO may get trapped in local optima.

Now, if we assume that the search process is in the final stage of the run; ST -BPSO

would need a stronger exploitation, i.e., a lower bit flipping probability to improve the

quality of the found solutions. According to Fig. 4.2, if p = g, then the sigmoid transfer

function will provide a low bit flipping probability (because vk+1 = 6 and ST (vk+1) ' 0)

for exploiting the search space. However, if p 6= g, ST will provide a high bit flipping

probability (because vk+1 ' 0 and ST (vk+1) ' 0.5) instead of a low bit flipping probability

for ST -BPSO. In this case, there is a higher chance that ST -BPSO would lose the good

solutions which have been found in the exploration phase.

Given the above discussion, it can be said that ST -BPSO cannot maintain a good

balance between exploration and exploitation due to the limitation of the sigmoid transfer

function.

Linear Normalized Transfer Function

Bansal, et al. [Bansal and Deep 2012] proposed a modified BPSO termed as LT -BPSO

where a linear normalized transfer function (LT ) is used to improve the exploration ability

of ST -BPSO. The linear normalize transfer function of LT -BPSO is illustrated in Fig. 4.3

and mathematically defined by the following:

LT (xkid, v
k+1
id ) =

xkid + vk+1
id + vmax

1 + 2vmax
. (4.4)

In LT -BPSO, the velocity of i-th particle is modified according to Eq. (4.1). This

velocity is then transformed into probability using Eq. (4.4), of which the position of i-th

particle is updated as follows:

xk+1
id =

0 if rand() ≥ LT (xkid, v
k+1
id ),

1 otherwise.
(4.5)

It can be observed that LT -BPSO and ST -BPSO uses the same velocity and position

updating rules, except the transfer function for updating the particle position. There-

fore, LT -BPSO should experience the same difficulties as ST -BPSO as described earlier.

However, the only difference between these BPSOs is that the linear normalized transfer

function can provide a better exploration compared to the sigmoid transfer function. For

example, if vid=-3 and xid=0, then according to the Eq. (4.3) and Fig. 4.4, there is a
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Figure 4.3: Illustration of the linear normalized transfer function (LT ).
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Figure 4.4: Comparison between the sigmoid and linear normalized transfer function.

probability of 0.047 that xid will be flipped from 0 to 1. Now according to the Eq. (4.4),

the probability of flipping xid from 0 to 1 is 0.111 which is greater than 0.047. With the

higher bit flipping probability, there is a higher chance that the bits of xid will be flipped

in the next iteration.
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Figure 4.5: Illustration of two different V-shaped transfer functions VT1 and VT2.

V-shaped Transfer Functions

Two different V-shaped transfer functions were proposed in literature [Liu et al. 2011,

Mirjalili and Lewis 2013]. The first V-shaped transfer function is termed as VT1 [Liu et al.

2011] and the second one VT2 [Mirjalili and Lewis 2013], as shown in Fig. 4.5, and the

corresponding modified BPSOs are VT1-BPSO and VT2-BPSO.

Below we provide some explanation on why these two V-shaped transfer functions

are unable to produce a good balance between exploration and exploitation.

1) V-shape transfer function VT1: The first V-shaped transfer function VT1 (as proposed

for VT1-BPSO) transforms a particle’s velocity to a binary position using the following

equation:

VT1(v
k+1
id ) =


1− 2

1+e
−vk+1

id

if vk+1
id ≤ 0,

2

1+e
−vk+1

id

− 1 otherwise.
(4.6)

In VT1-BPSO, Eq. (4.1) is first used to update the velocity of the i-th particle of the

swarm. Eq. (4.6) is then used to transform the velocity into a probability value, by which

the position of i-th particle is updated using the following:

xk+1
id =


0 if rand() ≤ VT1(vk+1

id ) and vk+1
id ≤ 0,

1 if rand() ≤ VT1(vk+1
id ) and vk+1

id > 0,

xkid if rand() > VT1(v
k+1
id ).

(4.7)
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Figure 4.6: The curves of the mean value of velocity vk of VT1-BPSO over 30 independent
runs under different p and g values with wmin=0.4, wmax=0.9, and c1=c2=2, when (a)
v0=0 and (b) v0=6, respectively.

Like ST -BPSO and LT -BPSO, VT1-BPSO is also unable to make a good balance

between exploration and exploitation either. This can be seen by the curves of the mean

velocity values in Fig. 4.6. Here we ran these experiments using the similar parameter

settings as in Fig. 4.2, except that the inertia weight w was linearly decreased from 0.9
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to 0.4, in order to obtain the best performance for VT1-BPSO.

Fig. 4.6 shows two different situations of the mean velocity value vk of VT1-BPSO.

First, if p 6= g, then vk fluctuates in between -0.35 and +0.35. With these velocity values,

VT1 can produce a 16% bit flipping probability which is insufficient to explore the search

space in the early stages of the run. In this situation, VT1-BPSO can easily get stuck in

a local optimum due to the lack of exploration. Second, if p = g, then vk takes the value

either 0 or -2.5. With these velocity values, VT1-BPSO forces xk to take the value 0, be-

cause vk satisfies the first condition of Eq. (4.7). This situation also prevents VT1-BPSO

from exploring the search space, and the probability of getting trapped in the local optima

is increased.

2) V-shape transfer function VT2: This transfer function is used in VT2-BPSO. Here, a tan-

gent hyperbolic function is employed to transform a real-valued velocity into a probability

value:

VT2(v
k+1
id ) =

∣∣∣∣ 2π arctan(
π

2
vk+1
id )

∣∣∣∣ . (4.8)

Like VT1-BPSO, VT2-BPSO modifies the velocity of i-th particle according to Eq.

(4.1). Once the velocity is updated, Eq. (4.8) is used to transform this velocity into

probability, which in turn updates the i-th particle’s position according to the following:

xk+1
id =

(xkid)
−1

if rand() < VT2(v
k+1
id ),

xkid otherwise.
(4.9)

To understand the search behaviour of VT2-BPSO, we conduct another experiment

to show the curves of the mean velocity value vk in Fig. 4.7 (similar to Fig. 4.5). Fig.

4.7(a) shows that if p=g=1 and p 6= g, then vk takes the value of either 0 or close to 0.

With these values, VT2 produces a 0% bit flipping probability for this modified BPSO,

and thus in the next iteration, xk will not change its position. It is clear that VT2-BPSO

cannot provide the exploration ability as needed in the early stages of the run.

Fig. 4.7(b) also shows that vk reaches to the maximum limit when p=g. In this case,

VT2 produces the highest bit flipping probability according to the Eq. (4.8). As we know

that a higher bit flipping probability provides a stronger exploration which is good for

VT2-BPSO to explore the search space in the early stages of the run. However, this higher

bit flipping probability is not desirable for VT2-BPSO, since it prevents the exploitation

of the search space in the final stages of the run.

Considering the above discussion in this section, clearly there is a mismatch between

the velocity update equation and transfer function, resulting in the above mentioned

BPSOs being unable to maintain a good balance between exploration and exploitation.

To overcome this problem, this chapter proposes a new transfer function employing a
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Figure 4.7: The curves of the mean velocity vk of VT2-BPSO over 30 independent runs
under different p and g values with wmin=0.4, wmax=0.9, and c1=c2=2, when (a) v0=0
and (b) v0=6, respectively.

time-varying scheme in order to provide a better balance between the exploration and

exploitation during the run of a BPSO.

4.4 Time-varying Transfer Function Based BPSO (TVT -BPSO)

In this section, we first describe the design considerations of time-varying transfer function,

followed by the details of the proposed TVT -BPSO.
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4.4.1 Design Considerations for the Time-varying Transfer Function

Generally speaking, in the early stages of the run, an optimization algorithm is expected

to focus more on exploration to avoid being trapped in local optima, but in the later stages

of the run, the algorithm needs to switch to emphasizing more on exploitation to refine

the solution quality. Following this intuition, we design a dynamic transfer function for

the proposed TVT -BPSO with the following considerations:

• In the early stages of the run, the transfer function should provide a high probability

of flipping all the bits of xid at any value of the velocity vid so that the BPSO can

provide a stronger exploration.

• In the intermediate stages of the run, the BPSO should start shifting from explo-

ration to exploitation. This can be achieved by using a transfer function able to

decrease the probability of flipping all the bits of xid at any value of velocity vid over

iterations.

• In the final stages of the run, the transfer function should provide a low probability

of flipping all the bits of xid at any value of velocity vid so that the BPSO can provide

a stronger exploitation capability.

We apply the above concepts by adopting a new control parameter ϕ in the sigmoid

transfer function as given in Eq. (4.3). This new transfer function is given as the following:

TVT (vk+1
id , ϕ) =

1

1 + e
−

vk+1
id
ϕ

, (4.10)

where vk+1
id is the velocity of the i-th particle at (k + 1)-th iteration.

Eq.(4.10) can be used as a transfer function for the proposed TVT -BPSO. However,

instead of using a fixed value for the control parameter ϕ, we start with a larger value for

ϕ and gradually decrease it as the run progresses, in order to shift smoothly from more

exploration to exploitation over time. This is achieved by the following:

ϕ = ϕmax − Itrk+1 ∗
(
ϕmax − ϕmin

Itrmax

)
, (4.11)

where ϕmax and ϕmin are the bounds on the control parameter ϕ, Itrmax is the maximum

number of iterations, and Itrk+1 is the current iteration, where k = 0, 1, 2, ..., Itrmax − 1.

We call the proposed transfer function as the time-varying transfer function (TVT )

because the shape of this transfer function changes over time depending on the different

value of ϕ, as illustrated in Fig. 4.8. The curve TVT (vid, ϕmax) represents the initial

shape of the proposed transfer function obtained by setting ϕ=4. Similarly, the curve

TVT (vid, ϕmin) represents the final shape of the proposed transfer function obtained by

setting ϕ=0.05. Other curves are obtained by the linearly decreasing values of ϕ.
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Figure 4.8: An illustration of different shapes of the time-varying transfer function (Eq.
(4.10)) with different values of the control parameter ϕ.

As can be seen in Fig. 4.8, the curve TVT (vid, ϕmax) linearly increases as the velocity

value increases, which is much slower than the other curves. It should be noted that the

probability of flipping the bits of position xid increases as the slope of the curve becomes

steeper. For each given velocity value, the curve TVT (vid, ϕmax) provides the highest

amount of bit flipping probability, because the curve is the closest to the probability value

of 0.5 than any other curves. On the other hand, TVT (vid, ϕmin) provides the lowest

amount of bit flipping probability for changing the position xid of i-th particle. Based on

this observation, we propose TVT -BPSO to adopt curves TVT (vid, ϕmax) to TVT (vid, ϕmax-

1.0) at the start of a run in order to provide a stronger exploration; TVT (vid, ϕmax-2.0)

to TVT (vid, ϕmax-3.0) in the intermediate stage of the run to provide a moderate level of

exploration; and towards the final stage of the run TVT (vid, ϕmin+0.3) to TVT (vid, ϕmin)

to have a stronger exploitation.

4.4.2 The Proposed TVT -BPSO

Like ST -BPSO, TVT -BPSO uses Eq. (4.1) for velocity update of each particle. TVT -

BPSO uses the new time-varying transfer function Eq. (4.10) instead of the sigmoid
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transfer function in Eq. (4.3) for updating the position of i-th particle:

xk+1
id =

1 if rand() < TVT (vk+1
id , ϕ),

0 otherwise.
(4.12)

The pseudo-code of the proposed TVT -BPSO is provided in Alg. 8.

4.5 Behaviour Analysis of TVT -BPSO

This section provides an example to illustrate the differences between TVT -BPSO and two

well-known BPSOs, by considering their exploration and exploitation behaviours using a

decision variable vector of 4-binary bits.

4.5.1 Exploration

Let us consider an example such that at k-th iteration of the early stages of run, the

i-th particle xki and pki with 4-binary bits is (0010), the current gk is (0011), and at the

(k+ 1)-th iteration, the velocity corresponding to xki is vk+1
i ={-3.5, -3.8, 3.2, -0.1}. Note

Algorithm 8 Pseudocode of the proposed TVT -BPSO algorithm.
Require: vmax . the upper bound of velocity
Require: itermax . the maximum number of iterations
Require: popSize . the population size
1: //initialization
2: iter = 0;
3: //randomly initialize i-th particle velocity, position, and personal best
4: for i=1 to popSize do
5: xi ∈ {-vmax, vmax}
6: xi ∈ {0, 1};
7: pi ← xi;
8: end for
9: //main loop

10: repeat
11: for i=1 to popSize do
12: evaluate fitness f(xi);
13: if f(xi) > f(pi) then
14: pi ← xi;
15: end if
16: if f(xi) > f(g) then
17: g← xi; f(g)← f(xi);
18: end if
19: update vi using Eq. (4.1);
20: calculate ϕ using Eq. (4.11);
21: calculate TVT (vi, ϕ) using Eq. (4.10);
22: update xi using Eq. (4.12);
23: end for
24: iter = iter+1;
25: until iter < itermax;
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that at the (k + 1)-th iteration, if pkid=g
k
d , then BPSO provides a higher value for vk+1

id ,

otherwise, it provides a lower value for vk+1
id (according to Fig. 4.2). For example, three

higher values could have been chosen for the first, second, and third bit of xki and one lower

value for the fourth bit, giving us vk+1
i ={-3.5, -3.8, 3.2, -0.1}. Note that the maximum

velocity bound vmax=4 is considered here for BPSO. Based on this vk+1
i , we can compute

the new position xk+1
i using Eq. (4.3) and Eq. (4.2) for ST -BPSO and using Eq. (4.10)

and Eq. (4.12) for TVT -BPSO, respectively.

For ST -BPSO, we can compute the probabilities of flipping the first, second, third,

and fourth bit of xki using Eq. (4.3), which are 0.029, 0.021, 0.039, and 0.475, respectively.

It is obvious that with these probabilities, only the fourth bit of xki is highly likely to

be flipped in the (k + 1)-th iteration of the run, resulting in ST -BPSO updating xki from

(0010) to (0011) using Eq. (4.2).

For TVT -BPSO, let us assume that the curve TVT (vid, ϕmax-0.5) of Fig. 4.8 is used

for determining the bit flipping probabilities of xki . From this curve, we can compute

the bit flipping probabilities of the first, second, third, and fourth bit of xki , which are

approximately 0.331, 0.318, 0.345 and 0.495, respectively. It can be noted that with the

same vk+1
i , the bit flipping probabilities obtained by TVT -BPSO is much higher than the

bit flipping probabilities obtained by ST -BPSO. In this case, there is a much higher chance

that all of the bits of xki of TVT -BPSO will be flipped at (k + 1)-th iteration, leading to

the value of xki being updated from (0010) to (1101).

The hamming distances between xki and xk+1
i are 1 and 4 respectively for the above

two BPSOs according to Eq. (3.7). In this case, TVT -BPSO resulting in a larger hamming

distance suggesting that it has a stronger exploration capability than ST -BPSO which only

results in a smaller hamming distance.

4.5.2 Exploitation

Let us consider another example such that at the k-th iteration of the final stages of run,

the i-th particle xki and pki with 4-binary bits is (0101), the current gk is (0111), and at

the (k+ 1)-th iteration, the velocity vk+1
i ={-4.0, 4.0, -0.5, 4.0} has been chosen the same

way as in the previous section. We can compute xk+1
id using Eq. (4.8) and Eq. (4.9) for

VT2-BPSO and using Eq. (4.10) and Eq. (4.12) for TVT -BPSO, respectively.

In case of VT2-BPSO, we can compute the probability of flipping the first, second,

third and, fourth bit of xki using Eq. (4.8), which are 0.899, 0.899, 0.359, and 0.899. With

these higher probabilities, there is a higher chance that the first, second, and fourth bit

of xki be flipped at (k + 1)-th iteration, resulting in VT2-BPSO updating xki from (0101)

to (1000) using Eq. (4.9).

In case of TVT -BPSO, let us assume that the curve TVT (vid, ϕmin) of Fig. 4.8 is used

to determine the bit flipping probabilities of xki . From this curve, we can compute the bit

flipping probability of four different bits of xki , which in this case are all zeros. With the
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zero probabilities, xi will remain unchanged at the (k + 1)-th iteration, resulting in xk+1
i

being (0101).

The hamming distances between xki and xk+1
i are 3 and 0 respectively for the above

two BPSOs according to Eq. (3.7). In this case, TVT -BPSO resulting in a smaller ham-

ming distance suggests that it has a stronger exploitation capability than VT2-BPSO.

4.6 Experimental Studies

In this section, we first carry out experiments on the deterministic and non-deterministic

0-1 knapsack benchmark instances, which are commonly used benchmark problems for

testing binary optimization algorithms [Bansal and Deep 2012, Zou et al. 2011a, Wang

et al. 2013]. The purpose of this experiment is to identify the best values for the three

parameters of TVT -BPSO, namely ϕ, m, and the velocity bound vmax. Our second ex-

periment is used to compare TVT -BPSO with ST -BPSO [Kennedy and Eberhart 1997],

LT -BPSO [Bansal and Deep 2012], VT1-BPSO [Liu et al. 2011], and VT2-BPSO [Mirjalili

and Lewis 2013] over the low-dimensional (4 ≤ D ≤ 500) 0-1 knapsack instances. The

third experiment is carried out to further investigate the performance of these five BPSOs

over the high-dimensional (1000 ≤ D ≤ 5000) 0-1 knapsack instances.

4.6.1 Selecting the Best Values for m, vmax, and ϕ of TVT -BPSO

In this section, an experiment is conducted to find the suitable values for the three param-

eters m, vmax, and ϕ. Three representative deterministic 0-1 knapsack instances Ks 8a,

Ks 16b, and Ks 24d have been selected from [Bansal and Deep 2012]. And three non-

deterministic 0-1 knapsack instances WCI100, UCI500, and ISCI1000 have been selected,

from those generated using the procedure described in Section 3.3 where the value for R

is set to 1000, S is set to 0.5, and the value for n is set to 100, 500, and 1000, respectively.

This experiment has been conducted with the values of m=20 to 50, vmax=1 to 16, ϕ=1

to 5, and c1=c2=2. The maximum number of iterations is set to 1000 for the subsequent

experiments, which is sufficient to reach competitive results for the low-dimensional as

well as the high-dimensional 0-1 knapsack instances of this chapter.

Table 4.1 shows the results on TVT -BPSO, which are means over 30 independent

runs. From this table, the best combinations of m, vmax, and ϕ have been presented in

Table 4.2.

Table 4.2 shows that TVT -BPSO obtained the best results when the swarm size m

has been set to 30, 40, and 50. For this chapter, we choose the swarm size 40 (which

is also a standard swarm size for BPSO [Wang et al. 2008b, Lee et al. 2008]) for all the

following experiments.

Table 4.2 also shows that TVT -BPSO uses the different vmax for obtaining the best

results of six representative 0-1 knapsack instances. It can be observed that TVT -BPSO re-
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Table 4.1: Results obtained by TVT -BPSO on Ks 8a, Ks 16b, Ks 24d, WCI100, UCI500,
ISCI1000 over 30 independent runs.

Instance D m ϕ vmax=2 vmax=4 vmax=6 vmax=8

Ks 8a 8

40
4 3924400.00 3923992.00 3923584.00 3920320.00
5 3924400.00 3924400.00 3923584.00 3920728.00

50
4 3924400.00 3923992.00 3921952.00 3919912.00
5 3924400.00 3924400.00 3923584.00 3921544.00

Ks 16b 16

40
4 9352998.00 9352822.60 9341453.27 9299547.90
5 9352647.20 9352822.60 9351945.60 9339999.47

50
4 9352998.00 9352647.20 9338888.57 9327993.80
5 9352822.60 9352647.20 9344899.37 9341450.33

Ks 24d 24

40
4 11782041.70 11810362.67 11796323.70 11777536.27
5 11768199.07 11806689.43 11798464.23 11788310.37

50
4 11783470.80 11803592.73 11800329.20 11782663.23
5 11779794.33 11806170.67 11801253.70 11790710.47

Instance D m ϕ vmax=10 vmax=12 vmax=14 vmax=16

WCI100 100

40
4 26565.17 26356.53 26125.07 25809.67
5 26577.17 26517.70 26371.07 26197.80

50
4 26483.20 26487.40 26248.83 25967.20
5 26546.90 26561.70 26467.50 26295.60

UCI500 500

40
4 190915.27 190089.23 189437.57 186639.97
5 190838.33 190682.17 190588.47 190443.97

50
4 189783.00 190539.67 189216.20 186931.80
5 189943.37 191836.93 191058.23 190780.77

ISCI1000 1000

30
4 258711.50 258702.63 258066.97 257099.60
5 258934.27 259088.20 259114.77 258280.57

40
4 257657.10 258074.33 258066.87 257529.03
5 257906.97 258804.40 258979.37 258837.37

Table 4.2: Best combinations of m and vmax (according to Table 4.1) in the optimization
of ks 8a, ks 16b, ks 24d, WCI100, UCI500, and ISCI1000.

Instance D m vmax

Ks 8a 8 40 2
Ks 16b 16 40 2
Ks 24d 24 40 4
WCI 100 100 40 10
UCI 500 500 50 12
ISCI 1000 1000 30 14

quires a larger vmax for high-dimensional problems and a smaller vmax for low-dimensional

problems. Note that, in practice, the original BPSO [Kennedy and Eberhart 1997] and

its variants [Wang et al. 2008b, Bansal and Deep 2012, Mirjalili and Lewis 2013] used

a constant vmax (4 or 6) instead of variable vmax. We conduct a logarithmic regression

analysis using the dimension D and vmax values from Table 4.2, as shown in Fig. 4.9.

Based on this analysis, we recommended the following rule for choosing vmax according
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Figure 4.9: A fitting curve capturing the relationship between D and vmax using the
logarithmic regression analysis.

to a given D value:

vmax(D) = 2.6655 ln(D)− 4.10,

D ≥ 4.
(4.13)

To find out the optimal value for ϕ, the results on TVT -BPSO with a fixed swarm

size of 40 is presented in Table 4.3. It can be seen that TVT -BPSO obtained the best

results with ϕ=1 to ϕ=5, and thus the upper and lower limit of ϕ are chosen as ϕmax=5

and ϕmin=1, for the experiments on TVT -BPSO in this chapter.

4.6.2 Results and Discussions

Following the previous section, we compare TVT -BPSO with ST -BPSO, LT -BPSO, VT1-

BPSO, and VT2-BPSO, respectively. For this comparison, first, we use the low-dimensional

0-1 knapsack instances, then the high-dimensional 0-1 knapsack instances. All the com-

parison results are averaged over 30 independent runs. For each instance, the best BPSO

was compared with the other four BPSOs using a t-test with the significance level set at

0.05. If the best BPSO is significantly better than the other four, then the corresponding

value is marked in bold. In addition, if a BPSO consistently achieved the optimal value or

better than the best known value (where the optimal value is unknown), the corresponding

entry is marked with ∗.

In Table 4.4, the parameter settings used for TVT -BPSO and four other well-known

BPSOs are summarized. The value of vmax and w of ST -BPSO, LT -BPSO, VT1-BPSO,

and VT2-BPSO are set according to [Kennedy and Eberhart 1997], [Bansal and Deep 2012],

[Liu et al. 2011], and [Mirjalili and Lewis 2013], respectively.
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Table 4.3: Results obtained by TVT -BPSO on Ks 8a, Ks 16b, Ks 24d, WCI100, UCI500,
ISCI1000 with the swarm size 40.

Ks 8a Ks 16b Ks 24d

vmax=2 vmax=2 vmax=4

ϕ=1 3921952 9352998 11769796.3
ϕ=2 3924400 9352998 11804350.6
ϕ=3 3924400 9352471.8 11806885.3
ϕ=4 3924400 9352998 11810362.7
ϕ=5 3924400 9352647.2 11806689.4

WCI100 UCI500 ISCI1000
vmax=10 vmax=12 vmax=14

ϕ=1 25169.23 151145.2 242298.8
ϕ=2 25959.1 164316.57 256189.03
ϕ=3 26376.4 185893.37 257066.9
ϕ=4 26565.17 190089.23 258066.87
ϕ=5 26577.17 190682.17 258979.37

Table 4.4: Parameter settings of five different BPSOs for the experiments over the 0-1
knapsack benchmark problems.

Algorithm m c1=c2 vmax ϕmax ϕmin wmax wmin

ST -BPSO 40 2 4 - - 1 1
LT -BPSO 40 2 4 - - 1 1
VT1-BPSO 40 2 6 - - 0.9 0.4
VT2-BPSO 40 2 6 - - 0.9 0.4
TVT -BPSO 40 2 Eq. (4.13) 5 1 1 1

Low-dimensional 0-1 Knapsack Instances

In this section, three different sets of 0-1 knapsack instances have been used for the

comparison purpose, which are widely used test instances in the literature [Zou et al.

2011a, Bansal and Deep 2012, Liu et al. 2015b, Wang et al. 2013]. The first two sets

belong to the deterministic group [Zou et al. 2011a, Wang et al. 2013] and [Bansal and

Deep 2012]. Since the optimal solution of these instances is known, the comparison is made

on the basis of average profit (AvgPft), standard deviation SD)), success rate (SR), and

an average number of function evaluations (AvgFEs). Here, the success rate measures

the percentage of successful runs where a successful run is defined as a run that produces

the optimal solution before the run is terminated. For these two sets of instances, all the

BPSOs in Table 4.4 will be terminated when they find the global optimum or they reach

the maximum number of iterations Itrmax. The third set of 0-1 knapsack instances belong

to the non-deterministic group. This set consists of four 100-dimensional and four 500-

dimensional instances generated from the procedures in Section 3.3. More specifically, the
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instances of 100 dimensions are generated using the value for R=1000, S=0.5, and n=100.

Likewise, the instances of 500 dimensions are generated using the value forR=1000, S=0.5,

and n=500. Since these instances have been randomly generated, the optimal solutions

of these 0-1 knapsack instances are unknown. The comparison is made on the basis of

average profit (AvgPft), standard deviation (SD), and the p-value obtained by t-test.

For this set of instances, all BPSOs will be terminated when they reach the maximum

number of iterations Itrmax.

The results on the first and second set of 0-1 knapsack instances are summarized in

Table 4.5 and 4.6, respectively. The column “BK” of Table 4.6 represents the best-known

profit [Bansal and Deep 2012, Liu et al. 2015b] for each of the instances of the second set.

Table 4.5 shows that TVT -BPSO and VT2-BPSO obtained similar results on the first

set of 0-1 knapsack instances. However, if we compare these two BPSOs in terms of the

results of SR and AFE, then TVT -BPSO is better, since it has a higher success rate for all

Table 4.5: The obtained results on AvgPft ± SD (first line), SR (second line), and
AvgFEs (third line) obtained by the five BPSO variants over the test instances f1 to f10
[Zou et al. 2011a, Wang et al. 2013].

Instance D Opt TVT -BPSO* BPSO L-BPSO VT1-BPSO VT2-BPSO

f3 4 35
35.00±0.00 35.00±0.00 35.00±0.00 34.70±1.32 35.00±0.00

100 100 100 93.33 100
41 92 45 2712 43

f4 4 23
23.00±0.00 23.00±0.00 22.97±0.18 22.97±0.18 23.00±0.00

100 100 96.67 96.67 100
41 461 1372 1372 43

f9 5 130
130.00±0.00 130.00±0.00 127.20±5.16 128.40±4.15 130.00±0.00

100 100 76.67 86.67 100
54.67 1058.67 9373.33 5377.33 56

f7 7 170
107.00 ±0.00 103.90 ±4.28 105.73±1.41 103.53±4.54 107.00±0.00

100 30 46.67 43.33 100
140 28019 21364 22685 167

f1 10 295
295.00±0.00 294.57±1.38 290.77±10.66 281.83±21.11 295.00±0.00

100 86.67 56.67 26.67 100
413 8556 17429 29369 851

f6 10 52
52.00 ±0.00 51.80±0.55 51.63±0.85 51.33±1.15 52.00±0.00

100 86.67 83.33 66.67 100
180 7913 6973 13469 280

f5 15 481.07
481.07±0.00 478.19±10.94 474.80±17.01 427.19±39.87 481.07±0.00

100 93.33 73.33 16.67 100
1976 4223 10920 33364 14715

f2 20 1024
1024.00±0.00 1024.00±0.00 1002.53±22.32 931.27±53.80 1024.00±0.00

100 100 26.67 0 100
6820 3533 29449 40000 31289

f10 20 1025
1025.00±0.00 1025.00±0.00 989.70±36.43 933.07±50.78 1025.00±0.00

100 100 13.33 3.33 100
4707 1980 34703 38681 29440

f8 23 9767
9767.00±0.00 9766.93±0.37 9766.30±2.59 9757.33±8.93 9766.97±0.18

100 96.67 90 20 96.67
11060 6001 6424 32371 36060
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Table 4.6: The results on AvgPft (first line), SD (second line), SR (third line), AvgFEs
(fourth line) of five different BPSOs over the test instances Ks 16a to Ks 24e [Bansal and
Deep 2012].

Instance D Opt. BK TVT -BPSO* ST -BPSO LT -BPSO VT1-BPSO VT2-BPSO

Ks 16a 16 7850983 7848800

7850983.00 7771152.37 7797246.87 7693936.93 7850983.00
±0.00 ±76092.77 ±67539.40 ±122910.45 ±0.00

100 16.67 26.67 16.67 100
9252 35263 29888 33775 21676

Ks 16b 16 9352998 9352800

9352998.00 9245414.87 9250490.53 9127967.97 9352998.00
±0.00 ±84778.02 ±120292.36 ±159529.14 ±0.00

100 26.67 26.67 3.33 100
7835 30153 29907 38725 19859

Ks 16c 16 9151147 9149200

9150326.30 9036801.60 9052814.63 8924175.00 9150326.30
±4495.16 ±105374.18 ±83568.41 ±147544.37 ±4495.16

96.67 13.33 16.67 6.67 96.67
9223 35448 33597 37441 19669

Ks 16d 16 9348889 9345000

9347669.20 9271454.97 9294715.13 9188651.17 9347262.60
±3721.96 ±69041.39 ±52798.58 ±95956.06 ±4217.41

90 13.33 20 0 86.67
13440 35053 32740 40000 25804

Ks 16e 16 7769117 7767300

7768496.13 7693213.00 7713892.53 7587932.27 7767875.27
±3400.63 ±75474.04 ±78597.11 ±125788.08 ±4725.57

96.67 13.33 30 3.33 93.33
13660 35517 28467 38681 21015

Ks 20a 20 10727049 10720314

10724840.50 10669618.47 10692481.67 10563639.87 10714666.40
±7523.13 ±60759.13 ±58716.61 ±120918.17 ±13060.22

90 26.67 33.33 3.33 43.33
18976 32543 27853 38672 38615

Ks 20b 20 9818261 9805480

9815420.10 9735538.37 9766711.50 9632312.53 9797837.57
±9323.38 ±79571.34 ±57579.60 ±112517.84 ±20116.05

90 20 30 0 40
18389 34121 29204 40000 38263

Ks 20c 20 10714023 10710947

10712635.83 10615440.83 10688081.47 10486056.43 10709990.30
±4077.25 ±115323.68 ±45556.95 ±133805.32 ±6230.09

86.67 23.33 36.67 0 60
19208 32559 26319 40000 36317

Ks 20d 20 8929156 8923712.21

8929156.00 8866124.10 8883763.17 8735162.43 8916392.47
±0.00 ±74952.33 ±70473.79 ±104543.78 ±15587.49

100 33.33 43.33 0 53.33
15155 31507 24383 40000 37295

Ks 20e 20 9357969 9355930.35

9356953.67 9306943.83 9318815.13 9181466.33 9353699.90
±3038.76 ±54249.45 ±68243.98 ±126241.20 ±9589.14

66.67 23.33 20 0 56.67
24236 34183 32973 40000 36537

Ks 24a 24 13549094 13532060

13533425.33 13507548.40 13512451.77 13323722.73 13499799.43
±20555.05 ±58236.73 ±31391.28 ±137591.62 ±22346.71

56.67 36.67 26.67 3.33 0
30016 31949 31051 38796 40000

Ks 24b 24 12233713 12223443

12222004.63 12152367.53 12191466.07 12031294.90 12182354.87
±15052.33 ±71669.10 ±51448.35 ±107235.86 ±25839.01

53.33 16.67 30 0 3.33
29381 36640 30167 40000 39867

Ks 24c 24 12448780 12443349

12444101.20 12395398.53 12420324.73 12255888.23 12414359.70
±10802.00 ±78169.05 ±47375.30 ±114864.01 ±27122.87

70 36.67 40 3.33 16.67
29713 31723 26820 39008 38471

Ks 24d 24 11815315 11803712

11809811.83 11778345.20 11776442.47 11632526.57 11776692.07
±9023.92 ±58548.76 ±59364.89 ±128661.51 ±21915.93

50 46.67 26.67 0 10
32332 29028 30903 40000 39400

Ks 24e 24 13940099 13932526

13937049.83 13914845.70 13904779.23 13777674.00 13897801.70
±6653.97 ±45334.60 ±67627.36 ±150279.17 ±26691.06

76.67 43.33 43.33 13.33 13.33
28019 30343 25769 35296 39533
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the 0-1 knapsack instances with the least amount of AFE. This proves that TVT -BPSO is

reliable and faster than the four other BPSOs over the first set of 0-1 knapsack instances.

Compared to TVT -BPSO, VT1-BPSO has the lowest success rate and the highest amount

of AFE for all the instances, except the instance ks 24d. Therefore, it can be said that

VT1-BPSO is not a reliable neither a faster algorithm for this set of instances.

Table 4.6 shows that TVT -BPSO performs well on the optimization of the second set

of 0-1 knapsack instances. In particular, TVT -BPSO obtained better results than the best-

known results and the results obtained by the other four BPSOs with the least amount

of AvgFEs. In addition, TVT -BPSO obtained these results with the highest success rate.

These results show that TVT -BPSO is more reliable and faster for this set of instances.

Table 4.6 also shows that VT2-BPSO obtained similar results to those of TVT -BPSO on the

instances of 16-D. However, the performance of VT2-BPSO decreases significantly with the

increase of dimensions of the instances Ks 20a to Ks 24e. It can be seen that VT1-BPSO

shows the worse performance in terms of AvgPft, SD, SR, and AvgFEs.

Table 4.7 summarized the results on 8 non-deterministic 0-1 knapsack instances of

100 and 500 dimensions. In this table, the first and second lines have been used to present

AvgPft ± SD and the p-values obtained by t-test, respectively. A highlighted p-value

(< 0.05) means that the results obtained by TVT -BPSO are much better than the results

obtained by the existing BPSOs or vice verse. The last row of this table represents the

number of instances that TVT -BPSO wins/ties/loses over the existing BPSOs.

Table 4.7 shows that TVT -BPSO significantly performs well on the optimization of

Table 4.7: The results on AvgPft ± SD (first line) and p-value (second line) of five
different BPSOs over 100-D and 500-D non-deterministic 0-1 knapsack instances. Under
the t-test, if TVT -BPSO is statistically better than an existing BPSO, then the p-value
corresponding to that BPSO is highlighted.

Instance D TVT -BPSO* ST -BPSO LT -BPSO VT1-BPSO VT2-BPSO

UCI100 100
41082.83±40.06 40712.53±220.53 40676.07±692.24 38131.00±1802.62 34830.10±534.03

- 3.38E-10 0.003193397 7.31E-10 4.75E-33

WCI100 100
26656.13±29.68 25537.77±172.07 26441.40±90.42 26410.83±127.55 25243.77±116.74

- 2.37E-26 2.34E-14 1.15E-11 5.13E-36

SCI100 100
30499.50±40.15 29684.67±124.12 30257.10±80.75 30355.13±148.75 29507.93±90.99

- 1.71E-28 2.70E-18 1.23E-05 4.20E-39

ISCI100 100
23215.43±37.03 22345.37±115.84 22921.5±101.12 23038.53±148.30 22182.30±84.09

- 2.02E-30 3.57E-17 3.76E-07 3.95E-41

UCI500 500
194552.37±599.16 149200.87±2716.56 175225.43±3178.31 173451.57±11976.25 141932.70±1510.21

- 9.09E-40 1.22E-25 1.44E-10 5.89E-57

WCI500 500
135212.10±230.51 128062.43±375.87 129691.47±250.54 134244.50±511.36 127765.13±257.35

- 5.26E-55 2.48E-63 8.92E-12 3.98E-70

SCI500 500
150899.93±204.06 145025.33±279.12 146495.30±279.03 150448.47±458.71 144913.63±178.81

- 1.65E-60 6.24E-54 1.50E-05 2.06E-70

ISCI500 500
130218.50±196.51 125561.10±212.23 126668.97±204.35 129927.20±325.56 125454.73±157.00

- 3.31E-63 3.75E-57 0.000117656 4.67E-65

w/t/l - 8/0/0 8/0/0 8/0/0 8/0/0
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Figure 4.10: Comparing five different BPSOs on the benchmark instances ks 16a and
WCI100 on their a) convergences, and b) diversity profiles.

100-D, 500-D non-deterministic instances. In contrast, VT2-BPSO shows the worst per-

formance on the optimization of this set of test instances. Specifically, the performance

of VT2-BPSO has been decreased with the number of dimensions of the problems. It is

mentioned in [Mirjalili and Lewis 2013], VT2-BPSO significantly performs well compared

to the well-known BPSOs [Lee et al. 2008, Shen et al. 2004, Wang et al. 2008a] on the set

of low-dimensional continuous optimization problems [Suganthan et al. 2005]. However,

our experimental results show that VT2-BPSO is not suitable for the higher dimensional

problems. In this set of instances, VT1-BPSO obtained the better optimization results

compared to ST -BPSO and LT -BPSO.

Figure 4.10 shows the convergence and diversity profiles of the five BPSO variants

on the instances ks 16a and WCI100. From Fig. 4.10(a), it can be seen that TVT -BPSO

was able to outperform the other BPSO variants consistently on both the deterministic

and non-deterministic 0-1 knapsack benchmark instances. VT1-BPSO performed poorly

ks 16a. However, though better on WCI100 of 100-D. Comparing to VT1-BPSO, VT2-

BPSO performed better on the instance ks 16a but poorly on the instance WCI100.
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Fig. 4.10(b) shows the diversity profiles on instances ks 16a and WCI100. This figure

shows that TVT -BPSO can maintain a better diversity for both instances resulting in

a good balance between exploration and exploitation during the run. It can be noted

that the swarm diversity decreases to zero towards the end of the run, which shows that

TVT -BPSO can provide a stronger exploitation in the final stage. This helps explain the

better results by TVT -BPSO on the above sets of 0-1 knapsack instances. In contrast,

Fig. 4.10(b) shows that ST -BPSO, LT -BPSO, VT1-BPSO, and VT2-BPSO are unable to

maintain a good balance between exploration and exploitation, resulting in their poorer

results.

High-dimensional 0-1 Knapsack Instances

Table 4.5 to Table 4.7 show that TVT -BPSO performs well on instances up to 500 di-

mensions. In order to investigate the scalability of TVT -BPSO to even higher dimensions,

additional experiments have been carried out on twelve 0-1 knapsack instances of 1000,

2000, and 5000 dimensions. For these experiments, we use the same parameter settings

as shown in Table 4.4.

Table 4.8 presents the results by the five different BPSOs on 1000-D, 2000-D, and

5000-D instances, where the last row represents the number of instances that TVT -BPSO

Table 4.8: The results on AvgPft±SD (first line) and p-value (second line) of five different
BPSOs over 1000-D to 5000-D non-deterministic 0-1 knapsack instances.

Instance D TVT -BPSO* ST -BPSO LT -BPSO VT1-BPSO VT2-BPSO

UCI1000 1000
380640.03±1397.89 285096.00±2907.05 312836.60±4455.70 340616.60±19044.61 276968.53±2047.78

- 4.53E-60 8.09E-41 2.29E-12 2.09E-75

WCI1000 1000
269081.53±578.08 256849.47±628.30 259007.63±391.60 268128.43±1091.88 256723.57±296.24

- 2.94E-60 5.33E-55 0.000118 1.42E-53

SCI1000 1000
312629.20±520.02 303167.17±429.02 305246.57±420.93 312332.83±775.88 303130.40±283.43

- 2.08E-55 2.79E-50 0.099603 9.66E-50

ISCI1000 1000
262444.47±525.65 254392.30±333.35 256063.80±319.78 262017.30±630.85 254470.63±374.25

- 4.28E-51 1.36E-45 0.006114 1.12E-52

UCI2000 2000
756871.80±3380.62 559550.23±5350.69 598293.10±6658.42 660994.97±32962.45 550112.60±3337.33

- 1.24E-69 2.14E-55 5.27E-16 5.27E-16

WCI2000 2000
530579.83±751.70 512181.07±695.33 515252.33±795.73 529786.27±1093.49 512122.00±520.41

- 6.32E-66 7.39E-60 0.001892 5.30E-63

SCI2000 2000
624930.57±898.16 611012.67±491.29 613746.70±597.27 625499.53±1073.54 611051.63±429.11

- 1.04E-48 2.14E-47 0.030007 2.45E-46

ISCI2000 2000
516189.63±785.10 504070.47±503.50 506166.50±462.34 516505.00±735.64 503910.47±371.00

- 1.90E-51 4.01E-46 0.113843 2.25E-46

UCI5000 5000
1758217.77±7747.40 1327171.07±7616.02 1385014.63±9786.66 1527048.27±48696.11 1311025.30±3667.60

- 4.09E-86 9.39E-76 3.35E-22 8.20E-70

WCI5000 5000
1302697.10±1494.24 1268726.00±964.20 1273625.77±1047.98 1299083.80±2204.27 1268303.47±666.19

- 7.84E-60 4.89E-58 1.13E-09 3.70E-52

SCI5000 5000
1283927.03±1314.99 1250033.87±1000.27 1255255.63±756.80 1281307.33±1937.18 1249858.17±540.63

- 7.72E-66 1.90E-56 1.29E-07 1.06E-52

ISCI5000 5000
1262279.00±1304.29 1239822.40±768.42 1243482.67±714.20 1262350.17±1562.29 1240059.40±678.69

- 3.58E-52 2.52E-47 0.848801 1.30E-49

w/t/l - 12/0/0 12/0/0 12/3/0 12/0/0
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wins/ties/loses. It can be observed that TVT -BPSO significantly outperformed other four

BPSO variants on the non-deterministic 0-1 knapsack instances with more than 1000

dimensions. In contrast, the performance of VT2-BPSO deteriorates a great deal on this

set of instances. It is also worth noting that for this set of instances, VT1-BPSO performed

better than ST -BPSO, LT -BPSO, and VT2-BPSO.

4.7 Chapter Summary

In this chapter, we have proposed a modified version of BPSO termed TVT -BPSO, which

adopts a time-varying transfer function to address the shortcoming of existing transfer

functions by providing a better balance between exploration and exploitation for the

BPSO during its optimization run. We have presented some empirical analyses of the

search behaviours of these BPSO variants using different transfer functions, in an effort

to understand how this time-varying transfer function makes a good balance between

exploration and exploitation during the search. The behaviours of TVT -BPSO are com-

pared with that of the original BPSO (ST -BPSO) and three other well-known modified

BPSOs over several low-dimensional (D≤500) 0-1 knapsack benchmark instances. Our

experimental results have demonstrated that TVT -BPSO outperforms the existing BP-

SOs over these low-dimensional benchmark instances. Furthermore, we have examined

the scalability of TVT -BPSO on high-dimensional (1000 ≥D≤5000) 0-1 knapsack bench-

mark instances. The experimental results have shown that TVT -BPSO can scale well to

high-dimensional combinatorial optimization problems.

In the following chapter, we will deal with a real-world structural optimization prob-

lem namely the truss optimization problem. For the truss design problem, we will develop

a bilevel niching method where the proposed TVT -BPSO will be used along with the

B-SPSO for the truss topology optimization.
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CHAPTER 5
Multimodal and Bilevel Techniques for

Truss Design Problems

5.1 Introduction

Truss design is a well-known structural optimization problem which has important prac-

tical applications in various engineering fields [Naceur et al. 2004, Huang and Xie 2010,

Zhou et al. 2010, Sutradhar et al. 2010]. Truss design problems are typically multimodal

by nature, meaning that it offers multiple optimal solutions with respect to the topology

and/or sizes of the members, but they are evaluated to have similar or equally good objec-

tive function values. From a practical standpoint, it is desirable to find as many alternative

designs as possible, rather than finding a single design, as often practiced. To facilitate

this, this chapter proposes a bilevel formulation for the truss design problem so that mul-

tiple truss topologies and their size solutions can be obtained in the simultaneous manner.

This formulation is the precursor to the development of a bilevel niching method which

is developed based on the B-SPSO (Chapter 3), TVT -BPSO (Chapter 4), and a standard

PSO (see Chapter 2 Section 2.3.2). The proposed bilevel niching method has the ability

to locate multiple topologies and their corresponding size solutions of well-known truss

design problems.

The rest of the chapter is organized as follows. Section 5.2 provides the motivation

of this chapter. Section 5.3 presents the related work. Section 5.4 describes the bilevel

formulation of the truss optimization problem. Section 5.5 describes the proposed bilevel

niching method. In Section 5.6, some challenging low- and high-dimensional truss design

problems are selected from literature, on which the accuracy, robustness, and efficiency of

the proposed bilevel niching method are evaluated and compared with the best available

methods in the literature. The concluding remarks of this chapter are provided in Section

5.7.
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5.2 Motivation

The optimal design of truss structures using metaheuristic methods has been an active

area of research since it was initiated by the work of Goldberg and Samtani [Goldberg

and Samtani 1986]. Since then, several metaheuristic methods have been proposed for

truss optimization. While most of these metaheuristics deal with the size optimization

of the truss structures [Adeli and Kamal 1991, Flager et al. 2014, Li et al. 2007, Kaveh

et al. 2014, Ho-Huu et al. 2016], metaheuristic methods have also been proposed for

optimizing simultaneously the topology, and size of the truss structures [Deb and Gulati

2001, Tang et al. 2005, Fenton et al. 2016, Ahrari and Deb 2016]. It has been shown that

the simultaneous optimization of the topology, and size are more accurate than the just

the size optimization [Deb and Gulati 2001]. Nevertheless, these metaheuristic methods

have been mostly designed for finding a single optimal solution instead of multiple optimal

solutions for a specific truss problem.

Niching methods, which are purposely designed for finding multiple solutions in a sin-

gle optimization run [Goldberg and Richardson 1987], can be effectively used for finding

multiple truss design solutions. Recently, a few research works [Luh and Lin 2008; 2011,

Li 2015] adopted niching methods in the popular single- or two-stage truss optimization

approaches for finding multiple topologies and their corresponding size solutions. Basi-

cally, the two-stage approach uses a niching technique in the first stage to identify multiple

truss topologies. In this case, a fixed cross-sectional area for all the members of a given

ground structure is considered for the evaluation purpose. In the second stage, a standard

optimizer is used to find the optimal/near optimal size solution for all identified topolo-

gies. It is noticeable that the two-stage approach optimizes the topology and size in two

different stages with the assumption that these two sub-problems are linearly separable.

However, in reality, these two problems are non-separable [Deb and Gulati 2001]. For ex-

ample, a topology found in the first stage might be feasible for a given fixed cross-sectional

area of the members, but this may not be feasible in the second stage for different cross-

sectional areas of the members due to the stress and displacement constraints. Therefore,

the optimal designs derived from a given ground structure may not be attainable with the

two-stage approach. In case of the single-stage approach, the topology and size optimiza-

tion are performed together in the following manner: firstly the single-stage approach uses

a niching technique to perform the size optimization of the given ground structure. Then,

non-active members are identified (whose cross-sectional area found to be zero or less than

the critical area ε) and eliminated to realize the topology from the given ground structure.

It is noticeable that in this approach, the optimal/near optimal topologies highly depend

on the found size solutions.

From the above observations, we can see that it would be desirable to overcome these

shortcomings of the single- and two-stage truss optimization approaches.
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5.3 Related Work

In the past decades, several techniques based on classical optimization methods have been

developed for simultaneous optimization of topology, size, and shape of a truss structure

[Ringertz 1985, Kirsch 1989]. Metaheuristic methods have also been adopted for this

purpose because of their appealing properties, i.e., they do not make certain assumptions

and possess better global search capabilities than the classical methods. For example, a

real-coded Genetic Algorithm (GA) scheme was introduced in [Deb and Gulati 2001] to

efficiently handle the truss optimization problems, where the GA operators are directly

applied to real-value coded variables instead of binary strings. Mixed encoding schemes

including binary, real numbers, and integers are also employed by the GA to encode the

variables of a truss problem [Tang et al. 2005]. This encoding scheme, so called surrogated

reproduction is adopted for producing offspring from the parent solutions.

Many other metaheuristic methods including evolutionary algorithms (EAs), differen-

tial evolution (DE), evolutionary strategy (ES), firefly algorithm (FA), and particle swarm

optimization (PSO) have been used for the simultaneous optimization of the topology, and

size of the truss problem [Ahrari and Deb 2016, Noilublao and Bureerat 2011, Miguel et al.

2013]. The optimization results show that DE, ES, FA, and PSO can produce better qual-

ity solutions compared to the GA based methods [Ahrari and Deb 2016, Ahrari et al.

2015, Wu and Tseng 2010, Wu et al. 2017]. Nevertheless, it can be observed that all these

methods were designed for obtaining a single solution instead of multiple solutions for a

truss optimization problem in a single optimization run.

Niching methods are well-suited optimization methods for finding multiple optimal

solutions in a single optimization run [Goldberg and Richardson 1987]. Classic niching

methods include fitness sharing [Goldberg and Richardson 1987], clearing [Petrowski 1996],

speciation [Li et al. 2002, Li 2004]. Niching methods were first adopted in [Hajela et al.

1993] for multimodal structural optimization, where a GA based fitness sharing method is

used to find multiple topologies for a truss structure. Later on, in [Luh and Lin 2008], an

ant algorithm is combined with fitness sharing for the same purpose. In [Luh and Lin 2011],

the fitness sharing concept is incorporated into a modified binary PSO for multimodal

truss optimization. In these methods [Hajela et al. 1993, Luh and Lin 2008; 2011], the

truss topology and size variables are optimized in two different stages where the topology

and size variables are assumed to be linearly separable. In such a multi-stage approach,

different topologies are obtained in the first stage by assuming an equal cross-section area

for each member of a ground structure. In the later stage, the area of each member of

these obtained topologies is optimized to realize the optimal design of a truss problem.

It is apparent that the true optimal/near-optimal designs of a truss structure may not be

achievable by such a method, since these two types of variables are not necessarily linearly

separable [Deb and Gulati 2001]. Recently, Li [Li 2015] proposed an improved species-

convergence genetic algorithm (SCGA) for the multimodal truss optimization problems.
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In this method, the niching technique is applied to the single-stage truss optimization

method for multiple topologies and their corresponding size solutions. In such a case, the

truss topologies are determined based on the size solutions of a given ground structure

[Deb and Gulati 2001]. It is obvious that such a method may not obtain the optimal/near

optimal truss design solutions, because the derived topologies are highly depends on the

found size solutions of the ground structure. This motivates us to introduce a new bilevel

formulation for the truss problem which is elaborated in the following section.

5.4 Problem Formulation

The goal of this research is to find multiple design solutions for the truss design problems

in terms of the topology and size. To do this, the truss topology and size optimization1

need to be performed simultaneously [Wang et al. 2004], not separately, as often practiced

[Hajela et al. 1993, Luh and Lin 2008; 2011]. Following this, we formulate the truss

design problem as a bilevel optimization problem2. The bilevel formulation contains two

levels of optimization tasks where the size optimization task is nested within the topology

optimization. The nested structure of the overall problem requires that a solution to the

topology problem may be feasible only if it is an optimal solution to the size problem.

We begin the bilevel formulation for a truss problem by considering its ground struc-

ture, which is a complete truss with all possible member (M) connections among all nodes

(N) in the structure, as shown in Fig. 5.1(a). For the bilevel formulation, the topology

variables of such a ground structure are treated as the variables of the upper-level prob-

lem, and at the same time, size variables are treated as the variables of the lower-level

problem. Considering this, the objective functions of the upper-level problem and lower

level problem are provided below.

Upper level problem: For a given set of members M and nodes N of a ground structure

(see Fig. 5.1(a)), the upper level optimization task is to select a subset of members to find

a stable topology subject to the given constraints. In this case, we consider xu ∈ xu as a

upper level problem which represents a stable topology of the ground structure consisting

of m members and n nodes (see Fig. 5.1(b)). Here, the variables that are related to xu

are the discrete variables. Now, the lower level optimization task is to find the optimal

cross-sectional areas of the members of topology xu (see Fig. 5.1(c)). Let xl ∈ xl be the

lower level problem consisting of the set of member cross-sectional areas A and the set

of nodal coordinates ξ of topology xu. Here, the variables that are related to xl are the

continuous variables. Considering the upper level variable xu and lower level variable xl,

1The more generic background information on truss topology and size optimization can be found in
Chapter 2.

2The more generic background information on bilevel optimization is provided in Chapter 2.
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Figure 5.1: Illustration of (a) the 10-member ground structure, (b) one of its possible
topology solutions, and (c) one of the possible size solutions of that topology where A
represents the member cross-sectional area, l represents the member length, and ξ(x, y, z)
represents the node coordinate.

the objective function of the upper level problem is formulated as:

find xu

min
xu∈xu,xl∈xl

W (xu, xl)

s. t. G1(xu, xl) : Truss contains all the basic nodes,

G2(xu, xl) : Truss is internally and externally stable,

G3(xu, xl) : xl ∈ argmin
xl∈xl

{w(xu, xl) : gj(xu, xl)

≤ 0, j = 1 . . . J}.

(5.1)

where W represents the weight of the topology xu, constraint G1 ensures that the truss

consists of all the basic nodes, and constraint G2 ensures the internal and external stability

of the truss. The internal and external stability of a truss can be checked by the following

Grubler’s inequality equations [Ghosh and Mallik 2011]:

m ≥ 2n− 3, (5.2)

and

m+ r ≥ 2n, (5.3)

where m denotes the number of members exist in xu, n denotes the number of nodes

exist in xu, and r denotes the number of reaction components [Krenk and Høgsberg 2013].

Finally, constraint G3 associates with the lower level problem which is described below.

Lower level problem: In a bilevel truss problem, the lower level task is associated

with the size optimization of a topology provided by the upper level, subject to the given
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constraints. Specifically, the goal of the lower level optimization is to minimize the weight

of a topology solution xu (received from the upper level) by optimizing its member cross-

sectional areas. To achieve this goal, the lower level problem is expressed as a nonlinear

programming problem (NLP) in the following way:

min
xl∈xL

w(xu, xl) =
m∑
i=1

ρi`iAi

s. t. g1(xu, xl) : Truss is kinematically stable

g2(xu, xl) : Si ≥ σi(A, ξ), i = 1, 2, ..,m,

g3(xu, xl) : δmaxj ≥ δj(A, ξ), j = 1, 2, .., n,

g4(xu, xl) : Amin ≤ Ai ≤ Amax, i = 1, 2, ..,m,

g5(xu, xl) : ξmin ≤ ξj ≤ ξmax, j = 1, 2, .., n,

(5.4)

where m and n represent the number of members and nodes of the topology xu, respec-

tively. The parameters ρi and `i are the material density and length of the i-th member

of the topology xu, respectively. Here, the length `i depends on the start coordinate

ξsi (x, y, z) ∈ ξ and end coordinate ξei (x, y, z) ∈ ξ of the i-th member of xu topology. For

example, the length of the 6th member l6 (see Fig. 5.1(c)) depends on its two coordinates

ξ1 and ξ3. The parameter Ai ∈ A represents the cross-sectional area of the i-th member

of topology xu. In this equation, constraint g1 ensures that the kinematical stability of

the truss is checked by determining the positive definiteness of the stiffness matrix. Con-

straint g2 ensures that stress σi of a member is less than or equal to the allowable stress

Si. Constraint g3 ensures that the displacement δj of j-th node is less than or equal to

the allowable displacement δmaxj . Constraint g4 ensures that the value of Ai is within the

limits [Amin, Amax]. Finally, constraint g5 is used to ensure that the coordinates of the

j-th node ξj is within the limits [ξmin, ξmax].

5.5 Bilevel Niching Method for Truss Optimization

The bilevel truss problem formulated in the previous section can be used to obtain mul-

tiple design solutions in terms of topology as well as the sizes of cross-sectional areas.

Although it is possible to apply niching at both the upper and lower levels, applying

niching to the upper level alone seems to be sufficient to provide the necessary diversity

in topology and size solutions. We choose to use a standard meta-heuristic for the lower

level optimization so as to keep the proposed bilevel niching method as a whole more

computationally tractable. Fig. 5.2 provides an example to illustrate this. Here, niching

is applied only to the upper level. In the upper level, initially a number of individuals

(representing different topologies, e.g., topologies A, B, and C) are randomly generated.

If these topologies are found to be valid, then they will be sent to the lower level for size

optimization. In Fig. 5.2, the topologies after the size optimization are represented by
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Figure 5.2: Illustration of an example where niching is applied in the upper level and a
standard optimizer is used at the lower level to optimize a bilevel truss problem.

solutions A’, B’, and C’, where the dashed lines represent the non-active members3 of

these topology solutions. After the size optimization, all these candidate solutions will

be sent back to the upper level optimizer. At the upper level, niching is applied to these

topology solutions in order to form different species. The best topology of each specie

will be chosen to survive to the next iteration. Now consider that A’, B’, and C’ are the

best solutions found in the final stage of the run. According to [Deb and Gulati 2001],

if we remove the non-active members from solutions A’, B’, and C’, then some solutions

(e.g., A’ and B’) may be found to have the same topology, but there is a high probability

that their size solutions are still different from each other, since they are obtained through

optimization in different species.

The proposed method achieves niching at the upper level by adopting a binary niching

method, more specifically an updated version of B-SPSO. At the lower level, a basic PSO

is used [Shi and Eberhart 1998]. This bilevel niching method encourages good and also

3If the cross-sectional area (Ai) of a truss member found to be less than the critical cross-sectional
area (ε) i.e., Ai < ε, then this type of truss member is called non-active member.
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different topological solutions to be identified without imposing too early the sizing and

other constraints. Similarly good feasible size solutions (of different topologies) found

from the lower level would also have a chance to participate in the niching process at the

upper level. Each iteration of the upper and lower level optimization continues to improve

the overall quality of the solutions. By allowing a more diverse pool of solutions optimized

at both upper and lower level, we avoid making the assumption that topology and size

are two separable aspects of the truss problem. In the following section, we will describe

the modified binary SPSO before introducing the working steps of the proposed bilevel

niching method.

5.5.1 The Modified Binary SPSO (MB-SPSO) Niching Method

In Chapter 3, we developed a binary niching method (termed as B-SPSO) by adopting

the speciation concept [Li et al. 2002, Li 2004] in binary PSO (BPSO). The experimental

results showed that this B-SPSO has the difficulties of providing the satisfactory results

specially for the high-dimensional 0-1 knapsack test instances. Our investigation in Chap-

ter 4 shows that the standard BPSO has the difficulties in maintaining a good balance

between the exploration and exploitation which restrict B-SPSO from providing satis-

factory results for the high-dimensional 0-1 knapsack test instances of Chapter 3. To

overcome the limitation of BPSO, Chapter 4 introduced a time-varying parameter ϕ into

the sigmoid function in a modified gbest BPSO (termed as TVT -BPSO), creating a new

time-varying transfer function (TVT ), as illustrated in Fig. 5.3. The curves in Fig. 5.3
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Figure 5.3: Illustration of the time-varying sigmoid transfer function (TVT ).
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are produced by this time-varying sigmoid transfer function TVT as defined below:

TVT (vk+1
i , ϕ) =

1

1 + e
−

vk+1
i
ϕ

, (5.5)

where vk+1
i is the velocity of the i-th particle at (k + 1)-th iteration; ϕ is a time starting

with a large value (ϕ =4) and gradually decreased to (ϕ=0.5) as the run progresses.

For this study, we develop a lbest version of TVT -BPSO in order to handle the topol-

ogy optimization problem. Like the original TVT -BPSO, the lbest TVT -BPSO defines the

flight of particles through their velocity and position updates in the binary search space,

in order to find the best solution. At each iterative step, the lbest TVT -BPSO updates

the velocity vi and the position xi according to the following equations:

vk+1
i = vki + c1r

k
1(pki − xki ) + c2r

k
2(pkg,i − xki ), (5.6)

and

xk+1
i =

0 if rand() > TVT (vk+1
i , ϕ),

1 otherwise,
(5.7)

respectively, where pg,i denotes the local best (lbest) of the i-th particle, and other symbols

have their usual meaning as in Eq. (3.4).

This study adopts the lbest TVT -BPSO in B-SPSO (which we called the modified

B-SPSO) so that it can comprehensively explore the topology search space of the truss

design problems. In the following section, this modified B-SPSO will be used as an upper

level optimizer (for the topology optimization) of the proposed bilevel niching method.

5.5.2 The Proposed Bilevel Niching Method

The general outline for applying the bilevel niching method to the truss problem is pre-

sented in Alg. 9, where the outer loop is used for the upper-level optimization and the

inner loop is used for the lower level optimization. For clarity, the detail of this algorithm

is provided below, where U/u and L/l denote the steps of the upper-level optimizer (the

modified B-SPSO) and the lower level optimizer (PSO), respectively.

Step U1-Generate an initial swarm of B-SPSO for the topology solutions: For a

truss ground structure with m members and n nodes, an initial population of Nu particles

are randomly generated in the m-dimensional search space. The velocity of i-th particle is

denoted by vui which is drawn from U(-vmax,vmax). The position of i-th particle is denoted

by xui . Each element of xui holds a binary number 1 or 0 which represents the presence (or

absence) of a member of a ground structure. For example, consider a 10-member, 6-node

ground structure (see Fig. 5.1(a)), the position xui =[1011001101] represents a topological

solution of this structure where the elements 1, 3, 4, 7, 8, and 10 are present and the

element 2, 5, 6, and 9 are absent from the structure. Each particle in the initial population
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Algorithm 9 BiL-NM for bilevel truss problems.

1: Initialize the topology (upper level) solutions
2: repeat
3: Check the validity of each topology solution
4: for each valid topology do
5: Initialize the size (lower level) solutions
6: Optimize the size solutions
7: Return the optimal size solution
8: end for
9: Apply niching to all the validate topology solutions

10: until termination criteria not met

represents an initial truss topology based on the random bit information contained in this

position vector xui .

Step U2-Check the validity of each topology solution xui : If the truss topology cor-

responding to xui violates constraints G1 and G2, then this solution will be ignored by

assigning a large penalty as the fitness of xui . Otherwise, this topology will be sent to the

lower level optimizer for size optimization.

For the lower level optimization, the standard PSO is used (see section 2.3.2) whose

working steps in terms of the truss size optimization are described below.

Step L1-Generate an initial swarm of PSO for the size solutions of the received xui
topology : For this given truss topology xui , an initial population of Nl particles is generated

randomly first.

Step L2-Optimize the size solutions: Size optimization begins with the evaluation

process of the particles used for the lower level optimization. In this case, the fitness value

considered constraint violation from [Deb and Gulati 2001] are adopted in this study:

f j(A, ξ) =

107, if g1 is violated,

C(A, ξ), otherwise,
(5.8)

where C(A, ξ)=wj(A, ξ)+105
∑m

p=1 | 〈g
p
2〉 |+105

∑n
q=1 | 〈g

q
3〉 |. Here, f j(A, ξ) and wj(A, ξ)

denote the fitness value and weight of the truss structure corresponding to the j-th particle.

The operator 〈〉 is the bracket-operator penalty term [Deb and Gulati 2001]. Note that

since the standard PSO allows the size variables and shape variables to be bounded within

specified limits [Amin , Amax] and [ξmin , ξmax], the constraints g4 and g5 are automatically

satisfied.

After calculating the fitness value of j-th particle, PSO determines the personal best

position plj of this particle and the best global position plg for the whole swarm. Subse-

quently, PSO updates vlj and xlj of j-th particle according to Eq. (2.5) and Eq. (2.7),

respectively. The lower level optimizer, i.e., the PSO then checks its termination condition.

It will terminate the run when a predefined number of iterations is reached, otherwise it
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will follow the whole procedure in Step L2.

Step L3-Returning the optimal size solution for the given truss topology xui : The best

size solution that is held by plg is sent back to the upper level for optimization, as follows.

Step U3- Apply niching to the topology solutions: This step involves the following:

1. Sort all the particles: All the particles of modified B-SPSO are sorted in an ascending

order according to the fitness values of their personal best positions. The modified

B-SPSO stores these sorted particles in a list called Psorted.

2. Determine the species seeds: In this step, the modified B-SPSO uses the particles in

Psorted to determine the species based on the niche radius rs, as described in Chapter

2. Since the upper-level optimization works in a binary-valued space, the species are

determined by comparing the Hamming distances between the particles in Psorted.

Note that if the topology solution xi of i-th particle and xj of j-th particle have the

same member connectivity (i.e., the hamming distance between xi and xj is zero)

as well as their weights are the same, then they will belong to the same species,

otherwise they will belong to the different species (see Algorithm 4 in Chapter 2).

Here, the species seeds represent the different solutions of a given ground structure.

In the end, this algorithm will return S, a list containing all dominating particles,

i.e., the species seeds from all identified species, which make up the entire population.

3. Update each lbest: Assign pug,i = xseedi , where xseedi is the i-th seed of the species

seed set S.

4. Update each vui and xui : The modified B-SPSO updates its velocity and position

according to Eq. (5.6) and Eq. (5.7), respectively.

Step U4-Stopping criteria: The upper-level optimizer, i.e., the modified B-SPSO

terminates the run when the results do not improve for the predefined number of iterations

or function evaluations, otherwise it goes back to Step U2 .

5.6 Numerical Examples

Four well-known truss design problems are considered in this section to demonstrate the

effectiveness of the proposed bilevel formulation and bilevel niching method (BiL-NM).

These problems include the 15-member, 17-member, 39-member [Deb and Gulati 2001,

Li et al. 2007, Fenton et al. 2016, Li 2015, Miguel et al. 2013, Luh and Lin 2011, Wu and

Tseng 2010], and 72-member [Ho-Huu et al. 2016, Kaveh et al. 2015] ground structures,

respectively. For these design problems, the bilevel niching method parameters were set

according to the values presented in Table 5.1. Note that the value of the parameters

(except rs) of B-SPSO have been chosen from [Islam et al. 2017]. The value of c1, c2, w
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Table 5.1: Parameters used in modified B-SPSO (upper level) and PSO (lower level) of the
proposed niching method. Here, Amax and Amin represent the maximum and minimum
allowed cross-sectional areas of the members of a given truss problem.

Parameters Modified B-SPSO PSO

No. of particles 60 30
Acceleration constant c1 and c2 2.00 and 2.00 1.49445 and 1.49445
Inertia weight (w) 1 0.9 to 0.2 (decreasing)
Velocity limit [-vmax,vmax] [-6,6] [Amin, Amax]
Position limit [xmin,xmax] {0,1} [0, Amax]
Control parameter limit [ϕmin,ϕmax] [1,5] -
Niche radius rs 0.0 -

of PSO have been chosen from [Shi and Eberhart 1998]. The velocity and position limits

of PSO have been set according to the literature [Deb and Gulati 2001, Li 2015, Luh and

Lin 2011].

The results of the proposed BiL-NM are compared with the state-of-the-art methods

including GA [Deb and Gulati 2001], FSh-AA) [Luh and Lin 2008], and SCGA [Li 2015].

For all the experiments, the statistical results (including the best, worst, and mean weights,

and the standard deviation) are provided for the proposed method over 30 independent

runs. It should be noted that the statistical results are calculated based on the best weight

found in each run. All the other results are taken from a run that obtains the best results

among all the other runs. We allow B-SPSO and PSO to run until it is unable to improve

the quality of the solution for 10 consecutive iterations. Note that in all our experiments

we consider only topology and size optimization, leaving out the shape optimization for

future studies

5.6.1 Selecting the Best Population Sizes (Nu and Nl) and Niche

Radius (rs)

Population size is one of the important parameters of any niching method. It has a signif-

icant impact on the performance of such an algorithm. For example, a large population

size increases the number of function evaluations, thus experiencing a high computational

burden. On the other hand, a small population size limits the niching methods in terms

of finding a reasonable amount of good quality solutions. To reduce the computational

burden and locating a reasonable amount of design solutions, this study chooses a moder-

ate population size (Nu=60) for the B-SPSO and a standard population size (Nl=30) for

the PSO. These two population sizes seem to be sufficient for finding multiple solutions

in terms of topology and size of the members of the mentioned truss design problems.

In this study, the niche radius rs is only the user-defined parameter of BiL-NM which

needs to be chosen carefully. In practice, a small value for rs is chosen for locating multiple
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optimal/near optimal solutions of truss design problems. For example, Luh and Lin [Luh

and Lin 2008] set the value 0.8 for the niche radius rs. Likewise, a small value for rs

(=0.3) is also chosen in [Li 2015] to locate the multiple optimal/near optimal solutions

for the truss design problems. Considering these, we have conducted several experiments

using BiL-NM with different niche radius values (0.1 to 2.5) on the mentioned truss design

problems. To do this experiment, the value for the parameters of BiL-NM have been set

according to Table 5.1. After the preliminary study, the value for the niche radius rs

of BiL-NM is set to 0.1 which is found to be a better niche radius for the truss design

problems of this study.

5.6.2 Example 1: 15-member, 6-node Truss

The 15-member, 6-node ground structure is presented in Fig. 5.4. The material density

and modulus of elasticity are 0.1 lb/in.3 and 10,000 ksi, respectively. The allowable stress

and displacement are ±25 ksi and ±2.0 in., respectively. There are 15 members in this

truss and the critical area for these members is set to ε=0.09 in.2. The minimal and

maximal cross-sectional areas are set to Amin=0.00 and Amax=35.00 in2, respectively. To

optimize this truss, a vertical load 100,000 lb is considered at node 2 and 3, respectively.

Best Found Solutions

Fig. 5.5 shows the four different topologies obtained by the proposed BiL-NM (from the

15-member, 6-node ground structure). The size solutions of these topologies are provided

in Table 5.2. Note that like BiL-NM, the first topology (Fig. 5.5(a)) is also found by the

single-stage method: GA [Deb and Gulati 2001] and SCGA [Li 2015], and the two-stage

method: FSh-AA [Luh and Lin 2008], respectively. For this topology, BiL-NM found three

different size solutions, whereas the compared methods found only a single size solution

for the same topology, as shown in Table 5.2. Due to the fact that non-active members

are removed at the end of the run and the discrete nature of the upper level search space,

duplicate topologies are possible to be present in the upper level population. As a result,

it is possible to obtain multiple size solutions for the same topology solution. It can

be observed that the weights of the size solutions of BiL-NM are 4707.10, 4712.73, and

4714.36 lb, respectively. On the other hand, the weights of the size solutions of GA, FSh-

AA, and SCGA are 4734.34, 4730.82, and 4732.12 lb, respectively. These results show

that the weights of the solutions provided by BiL-NM are lighter than the weights of the

solutions produced by the compared methods. Like the first topology, the second one

(Fig. 5.5(b)) is also found by SCGA [Li 2015]. In this case, the SCGA found a single size

solution for this truss topology and its weight is 5011.28 lb, as shown in Table 5.2. For

the same topology, the BiL-NM found two different size solutions of the weights 4874.33

and 4949.52 lb, respectively which are 136.95 lb (i.e., 5011.28 - 4874.33) and 61.76 lb (i.e.,

5011.28 - 4949.52) lighter than the weights in the solutions found by SCGA [Li 2015]. In
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Figure 5.4: Illustration of the 15-member, 6-node ground structure.
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Figure 5.5: Illustration of (a-d) the four different topologies obtained by the proposed
BiL-NM, from 15-member, 6-node ground structure.

addition to these topologies, the BiL-NM found two additional topologies for this truss

problem, as illustrated in Fig. 5.5(c) and Fig. 5.5(d), respectively. Each of these two

topologies consist of two size solutions (see Table 5.2). Since there are no such topologies
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Table 5.2: Member areas (in.2) of the design solutions of the 15-member ground structure.
Here, the Soln.-1, Soln.-2, and Soln.-3 represent the first, second, and third size solution
of a found topology, respectively. The best result is highlighted in bold.

GA FSh-AA SCGA Proposed BiL-NM

Fig. 5.5(a) Fig. 5.5(a) Fig. 5.5(a) Fig. 5.5(b) Fig. 5.5(a) Fig. 5.5(b) Fig. 5.5(c) Fig. 5.5(d)

Mem. No. Soln.-1 Soln.-1 Soln.-1 Soln.-1 Soln.-1 Soln.-2 Soln.-3 Soln.-1 Soln.-2 Soln.-1 Soln.-2 Soln.-1 Soln.-2

1 28.187 28.876 28.1577 31.2073 28.4802 29.7820 29.2399 30.0328 29.8143 35.0000 35.0000 29.8772 30.207
3 5.219 5.428 5.2936 21.9711 5.3047 5.5203 5.6702 22.1163 23.1973 17.8406 17.7497
4 10.3798 15.2584 14.0494 17.7458 18.015 7.7545 6.8447
5 3.9801 4.9944
7 20.310 20.549 20.2771 25.4616 20.3067 19.1828 19.8427 21.0824 21.1369 34.9996 35.0000 22.3237 22.4403
8 7.772 7.617 7.7142 6.0888 7.6481 7.4989 7.4049 6.045 7.3295 10.6998 11.653
10 20.650 20.265 21.0245 21.9380 20.4701 20.1222 21.4029 20.9488 21.2727 25.058 24.935 21.3113 21.6976
12
15 14.593 14.3387 14.3387 14.2424 14.7043 13.6203 24.2378 23.5969

Weight (lb) 4731.65 4730.82 4732.12 5011.28 4707.10 4712.73 4714.36 4874.33 4946.52 5742.04 5742.23 5808.88 5830.20

σmax(ksi) 19.100 18.858 19.098 23.394 19.294 25.000 25.000 13.217 14609
Mem. no. 8 8 8 8 8 5 5 8 4

δmax(in.) y-axis -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

for the 15-member, 6-node truss structure as reported in literature, we only provide the

weights of the size solutions of these topologies here. The weights of the size solutions of

the third topology are 5742.04 and 5742.23 lb, and the weights of the size solutions of the

fourth topology are 5866.18 and 5873.39 lb, respectively.

Table 5.2 also presents the maximum yield stresses of the members and displacements

of the active nodes of the four topologies obtained by BiL-NM, to show that how close

these solutions are to the boundaries of the problem. It can be seen that all the solutions

provided by BiL-NM lie on the intersection of some constraints. For example, the yield

stress and displacement of the first size solution of the third topology (Fig. 5.5(c)) are

25.00 ksi and -2.00 inches which are equal to the allowable limits. For clarity, we compare

results (see Table 5.3) on stresses and nodal displacements for the first size solution of

the first topology (Fig. 5.5(a)) of the 15-member truss structure, among several existing

optimization methods. Fig. 5.5 and Table 5.2 show that the proposed bilevel niching

method is capable of finding multiple topologies and their corresponding size solutions in

a single run.

Table 5.4 shows the statistical results of 30 independent runs of BiL-NM for the 15-

member, 6-node ground structure. It can be seen that the mean weight and standard

deviation are 4708.34 and 0.699, respectively. This shows that the performance of the

proposed method is also more reliable on this truss problem.

Efficiency and Sensitivity Analysis

In this section, we compare the efficiency of the proposed BiL-NM with GA [Deb and

Gulati 2001] and SCGA [Li 2015], respectively. The reason is that these two methods also

performed simultaneous topology and size optimization for this truss problem.

Fig. 5.6 shows the convergence behaviour of BiL-NM when using a fixed population

size (30) for the PSO and four different population sizes (20, 40, 60, and 80, respectively)
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Table 5.3: Comparisons on stresses and displacements among different methods respec-
tively, for the first topology solution for the 15-member ground structure.

Stresses in existing members

GA FSh-AA SCGA Proposed BiL-NM

Fig. 5.5(a) Fig. 5.5(a) Fig. 5.5(a) Fig. 5.5(a)

Mem. No. Soln. -1 Soln. -1 Soln. -1 Soln. -1 Soln. -2 Soln. -3

1 7.095 6.92 7.1 7.02 6.71 6.83
3 19.161 -18.42 -18.89 -18.85 -18.11 -17.63
7 -6.962 -6.88 -6.97 -6.96 -7.37 -7.12
8 18.194 18.56 18.33 18.49 18.85 19.09
10 6.865 6.97 6.72 6.90 7.02 6.6
15 -6.852 -6.98 -6.97 -7.02 -6.8 -7.34

Node Displacement at active nodes

2 x=-0.69, y=-2.00 x=-0.66, y=-2.00 x=-0.68, y=-1.99 x=-0.51, y=-2.00 x=-0.49, y=-2.00 x=-0.53, y=-2.00
3 x=0.25, y=-0.75 x=0.24, y=-0.74 x=0.25, y=-0.75 x=0.25, y=-0.5 x=0.24, y=-0.77 x=0.25, y=-0.76
4 x=-0.49, y=-2.00 x=-0.50, y=-1.99 x=-0.50, y=-2.0 x=-0.68, y=-2.00 x=-0.65, y=-2.00 x=-0.63, y=-2.00

Table 5.4: Statistical result of 30 independent runs of the BiL-NM for the 15-member
ground structure.

Best weight (lb) Worst weight(lb) Mean weight (lb)±SD

4707.10 4709.97 4708.34±0.699
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Figure 5.6: Convergence behaviour of BiL-NM with different population sizes for 15-
member, 6-node ground structure.

for B-SPSO to optimize the 15-member, 6-node truss structure. It can be seen that BIL-

NM solves this problem more efficiently when the population size is set to 60. In this case,

BiL-NM reached a similar best weight as that of GA (4731.65 lb) and SCGA (4732.12

lb) after about 55,000 function evaluations (FEs). However, both GA and SCGA reached

the same weight after 85,050 and 250,000 FEs [Deb and Gulati 2001, Li 2015] which are

higher than the BiL-NM, respectively.
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Fig. 5.6 also shows that BiL-NM is not sensitive to the population sizes on this truss

problem. BiL-NM can reliably obtain the best weight 4707.10 lb when using different

population sizes, with population size of 60 the fastest in reaching this best weight.

5.6.3 Example 2: 17-member, 9-node Truss

This popular 17-member, 9-node truss structure is illustrated in Fig. 5.7(a). The material

density and modulus of elasticity are 0.268 lb/in.3 and 30,000 ksi, respectively. The

allowable stress and displacement are ±50 ksi and ±2.0 in., respectively. There are 17

members in this truss and the critical area for these members is set to ε=0.1 inches2.

The minimal and maximal cross-sectional areas are set to Amin=0.00 and Amax=20.00

in2, respectively. To optimize this truss structure, a vertical load of 100 kips at node 9 is

considered.

Best Found Solutions

In literature, several meta-heuristic methods including the harmony search algorithm

(HSA) [Seok and Woo 2004], firefly algorithm (FA), and [Miguel et al. 2013] have been

used to study this 17-member ground structure particularly in terms of size optimization.

SEOIGE [Fenton et al. 2016] and GP [Assimi et al. 2017] methods perform the topology

and size optimization together for this truss problem. However, those state-of-the-art

methods, i.e., GA [Deb and Gulati 2001], FSh-AA) [Luh and Lin 2008], and SCGA [Li

2015] did not include this truss problem. Hence, in this study, we compare our results of

BiL-NM only with those of FA, SEOIGE, and GP methods.

Fig. 5.7(c-d) shows two different topologies of 17-member truss structure obtained by

BiL-NM. The first found topology (Fig. 5.7(c)) consists of 11 members. For this topology,

BiL-NM found two different size solutions, whereas GP, FA, and SEOIGE found a single

size solution for the same topology (see Table 5.5). It can be observed that the weights

of the size solutions of BiL-NM are 2563.15 lb and 2563.79 lb, respectively. The weights

provided by GP, FA, and SEOIGE methods are 2575.44 lb, 2581.94 lb, and 2581.90 lb,

respectively. These show that the average weight (2563.47 lb) of the size solutions of

BiL-NM is less than the average weight (2576.42 lb) of the size solutions provided by

the compared methods. The second found topology (Fig. 5.7(d)) consists of 14 members

and BiL-NM found only one size solution for this topology, as shown in Table 5.5. To

the best of our knowledge, this is the first time in any study which manages to find this

second topology and its size solution for the 17-member ground structure ( with a weight

2784.24 lb). Table 5.5 shows the maximum yield stresses and nodal displacements of

the size solutions related to these two different topologies. It can be observed that the

proposed BiL-NM obtained all the design solutions without violating the given stress and

displacement constraints.
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Figure 5.7: Illustration of (a) the 17-member, 9-node ground structure, (b) the design
solution employed by GP [Assimi et al. 2017], and (c-d) the design solutions employed by
BiL-NM.

Table 5.6 summarizes the results of BiL-NM on the 17-member truss problem. The

considerably small standard deviation shows that the performance of BiL-NM is very

reliable for this truss problem.
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Table 5.5: Member cross-sectional areas (in.2) of the design solutions of 17-member, 9-
node ground structure. Here, the Soln.-1, and Soln.-2 represent the first, and second size
solution of a found topology, respectively.

FA GP SEOIGE Proposed BiL-NM

Fig. 5.7(a) Fig. 5.7(b) Fig. 5.7(c) Fig. 5.7(c) Fig. 5.7(d)

Mem. No. Sol.n-1 Sol.n-1 Sol.n-1 Sol.n-1 Sol.n-2 Sol.n-1

1 15.896 15.9356 15.0000 15.0000 12.9674
2 0.103 0.1009 5.7125
3 12.092 12.0529 12.0839 11.5911 15.000
4 0.100
5 8.063 8.0311 8.3796 8.233 12.6931
6 5.590 5.5696 5.5636 5.7828 5.2867
7 11.915 11.9087 11.9534 12.2158 8.3984
8 0.100 0.1429
9 7.965 7.9207 8.237 7.7985 4.1668
10 0.100 0.1011 6.0216
11 4.076 4.0658 4.0031 4.3046 8.5022
12 0.100 0.1011 4.1408
13 5.600 5.6503 5.5604 5.5530 6.0381
14 3.998 4.0159 4.1888 4.0301 4.3076
15 5.548 5.5670 5.8261 5.7767
16 0.103 0.1009 6.0621
17 5.537 5.5849 5.5288 5.8590

Weight (lb) 2581.94 2575.44 2581.90 2563.15 2563.79 2784.24

σmax(ksi) 26.66 26.66 -26.66
Mem. no. 1 1 3

δmax(in.) -2.00 -2.00 -2.00

Table 5.6: Statistical result of 30 independent runs of the BiL-NM for the 17-member,
9-node ground structure.

Best weight (lb) Worst weight(lb) Mean weight (lb)± SD

2563.15 2567.47 2563.42 ± 0.927

Efficiency and Sensitivity Analysis

Fig. 5.8 shows the convergence behaviour of BiL-NM on the 17-member, 9-node truss

problem. BiL-NM provides a faster convergence speed when the population size is set to

60. In this case, it converged to the best weight (2563.15 lb) after only 50,000 FEs. In

contrast, FA [Miguel et al. 2013] converged to its best weight (2581.94 lb) after 150,000

FEs. It shows that BiL-NM can provide good quality solutions than FA with fewer number

of FEs. Note that the GP [Assimi et al. 2017] and SEOIGE [Fenton et al. 2016] methods
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Figure 5.8: Convergence behaviour of BiL-NM with different population sizes for the
17-member, 9-node ground structure.

did not provide the convergence history for this truss problem. Hence, we do not provide

a comparison with these algorithms here. Fig. 5.8 also shows that BiL-NM behaved

similarly as in Fig. 5.6, i.e., BiL-NM is not sensitive to the different population sizes on

this truss problem.

5.6.4 Example 3: 39-member, 10-node Truss

For this experiment we choose a widely-used 3-D truss structure which has an 39-member

and 10-node ground structure [Deb and Gulati 2001, Luh and Lin 2008, Li 2015], as

shown in Fig. 5.9. Here, members are grouped considering the symmetry on opposite

sides, as done by GA [Deb and Gulati 2001] and SCGA [Li 2015]. The members grouping

is presented in the followings (see Fig. 5.9)- G1: A1(1-2); G2: A2(1-4), A3(2-3), A4(1-

5), A5(2-6); G3: A6(2-4), A7(2-5), A8(1-3), A9(1-6); G4: A10(3-6), A11(4-5), A12(3-4),

A13(5-6); G5: A14(3-10), A15(6-7), A16(4-9), A17(5-8); G6: A18(4-7), A19(3-8), A20(5-10),

A21(6-9); G7: A22(6-10), A23(3-7), A24(4-8), A25(5-9); G8: A26(5-7), A27(6-8), A28(3-9),

A29(4-10); G9: A30(3-5), A31(4-6); G10: A32(1-7), A33(1-10), A34(2-9), A35(2-8); G11:

A36(2-7), A37(2-10), A38(1-8), A39(1-9).For this truss structure, the material properties

and design parameters are set as follows: Young’s modulus and density of the materials

are the same as before. The allowable stress and displacement are set to ±40 ksi and

±0.35 inches, respectively. The lower (Amin) and upper (Amax) limits on the member

areas are set to be between 0.0 and 35.0 in2. This truss problem is optimized by applying

four forces: (1,000; 1,0000; -5,000) on node 1, (0; 10,000; -5,000) on node 2, and (500; 0;

0) on node 3 and 6, respectively. The same loading condition is also considered by GA

[Deb and Gulati 2001], Fsh-AA [Luh and Lin 2008], and SCGA [Li 2015], among which,
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Figure 5.9: Illustration of the 39-member, 10-node ground structure.

SCGA only provides the results of this truss associated with this given loading condition.

Therefore, this study only compares the results of BiL-NM with those of SCGA.

Best Found Solutions

For 39-member ground structure, BiL-NM found 4 different topologies which are presented

in Fig. 5.10. For these topologies, BiL-NM found different numbers of size solutions

for each topology, as shown in Table 5.7. Particularly, BiL-NM found three different

size solutions for the first topology, two different size solutions for the second and third

topologies, and one size solution for the fourth topology. The cross-sectional areas of

the active members of these design solutions as well as their weights are also provided

in Table 5.7. It can be observed that the best weight obtained by BiL-NM is 169.90 lb

belonging to the first obtained topology. In contrast, the best weight provided by Li [Li

2015] is 224.66 lb, which is 54.76 lb larger. The first obtained topology (Fig. 5.10(a))

has two other size solutions and their weights are 171.51 and 173.37 lb, respectively. The

weights of the solutions of the second, third, and fourth topologies (Fig. 5.10(b-d)) range

from 171.28 to 174.10 lb. These weights are significantly smaller than the weights found

by SCGA. Table 5.7 shows the maximum yield stresses and displacements of the design

solutions of BiL-NM. It can be seen that all the design solutions exist in the intersections

of some constraints. For example, the yield stress and nodal displacement of the third

solution of the first topology are 39.954 ksi and 0.35 in., which are almost the same as

107 (October 4, 2018)



CHAPTER 5: MULTIMODAL AND BILEVEL TECHNIQUES FOR TRUSS DESIGN PROBLEMS

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 
6 

4 

Weight=169.90, 171.51, and 173.37 lb 
z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 
6 

4 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 
6 

4 

Sol:2 
Sol:3 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 
6 

4 

Sol:4 
z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 
6 

4 

Sol:6 
z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 
6 

4 

Sol:12 

Weight=171.28 and 171.44 lb Weight=171.90 lb 

Weight=172.18 and 172.19 lb Weight=174.10 lb Weight=176.25 lb 

(a) (b) (c) 

(c) (d) (f) 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 

6 
4 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 

6 
4 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 

6 
4 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 

6 
4 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 

6 
4 

z 

Y 

X 

10 

1 

2 

9 

8 

7 

5 

3 

6 
4 

Figure 5.10: Illustration of (a-d) the four different topologies of 39-member, 10-node
ground structure employed by BiL-NM.

the allowable limits 40 ksi and 0.35 inches, respectively. Table 5.8 shows again that the

mean and standard deviation are 170.15±0.0494 which are considerably good for this truss

problem.

Efficiency and Sensitivity Analysis

As shown in Fig. 5.11, like in the previous two scenarios, BiL-NM quickly converged to

the best weight with a population size of 60. BiL-NM managed to reach the weight 180

lb only after 10,000 FEs, and 169.90 lb after 170,000 FEs. In contrast, SCGA obtained

its best weight which is 224.66 lb after 50,000 FEs [Li 2015]. If we consider the weight

180 lb is the cut-off point, then we would find that the BiL-NM is 5 times faster than the

SCGA for this truss problem.

Fig. 5.11 shows that on this truss problem BiL-NM was somewhat slightly sensitive

to the population sizes. It is noticeable that BiL-NM again performed the best when

population size is set to 60.
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Table 5.7: Member cross-sectional areas (in.2) of the design solutions of 39-member, 10-
node ground structure. Here, the Soln.-1, Soln.-2, and Soln.-3 represent the first, second,
and third size solution of a found topology, respectively.

Proposed BiL-NM

SCGA Fig. 5.10(a) Fig. 5.10(b) Fig. 5.10(c) Fig. 5.10(d)

Ele. Group Soln.-1 Soln.-2 Soln.-1 Soln.-2 Soln.-3 Soln.-1 Soln.-2 Soln.-1 Soln.-2 Soln.-1

G1 0.55227 0.48337 0.0825 0.0612 0.0315 0.0867 0.0438 0.0432 0.0533
G2 0.07919 0.00684 0.0066 0.0090
G3 0.02029 0.0065 0.0093
G4 0.0166 0.021 0.0237 0.026 0.0310 0.0117
G5 0.04090 0.04069
G6 0.0303 0.0309 0.0197
G7 0.09024 0.0091 0.063 0.0193 0.0279 0.0267 0.0172 0.0286 0.0198
G8 0.01154 0.01176 0.011 0.0252 0.0255 0.0333 0.0293 0.0199
G9 0.0200
G10 1.00820 1.01622 1.7499 1.7439 1.7123 1.7499 1.7415 1.7359 1.7382 1.672
G11 1.08541 1.17183 0.0459 0.0513 0.0966 0.0422 0.0544 0.0515 0.0426 0.1548

Weight (lb) 224.66 226.24 169.90 171.51 173.37 171.28 171.44 172.18 172.19 174.10

σmax(ksi) -21.931 -33.333 -39.954 -21.162 -37.177 -36.121 -30.837 -15.967
Mem. no. 1 13 1 1 1 1 1 38

δmax(in.) 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Table 5.8: Statistical result of 30 independent runs of the BiL-NM for the 39-member,
10-node ground structure.

Best weight (lb) Worst weight(lb) Mean weight (lb)±SD

169.90 170.19 170.15±0.0494
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Figure 5.11: Convergence behaviour of BiL-NM with different population sizes for the
39-member, 10-node ground structure.
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5.6.5 Example 4: 72-member, 20-node Truss

In this section, we evaluate BiL-NM on a high-dimensional truss problem namely 72-

member, 20-node ground structure, as shown in Fig. 5.12. This structure was previously

examined by CSP [Kaveh et al. 2014], ADE [Ho-Huu et al. 2016], and FPA [Bekdas

et al. 2015] in terms of size optimization. However, in this study we consider to optimize

both the topology and size for this high-dimensional truss structure. To the best of our

knowledge, very limited studies have been considered to optimize the topology and size

for this high-dimensional truss structure e.g., IFA [Wu et al. 2017]. The following settings

are considered (according to [Kaveh et al. 2014, Ho-Huu et al. 2016, Bekdas et al. 2015,

Wu et al. 2017]): the material density is 0.1 lb/in.3, modulus of elasticity is 104 ksi, stress

limit is ±25,000 psi, and nodal displacements limit is ±0.25 inches, respectively. The

lower (Amin) and upper (Amax) limits on the member areas are set to be between 0.0 and

03.00 in2. The structure has 72 members which are divided into 16 groups as follows: G1:

A1-A4, G2: A5-A12, G3: A13-A16, G4: A17-A18, G5: A19-A22, G6: A23-A30, G7: A31-A34,

G8: A35-A36, G9: A37-A40, G10: A41-A48, G11: A49-A52, G12: A53-A54, G13: A55-A58,

G14: A59-A66, G15: A67-A70, and G16: A71-A72. This structure is optimized by applying

the load (Px=5.0 kip, Py=5.0 kip, and Pz=-5.0 kip) at node 17.

Best Found Solutions

Fig. 5.13 shows two different topology obtained by BiL-NM, from the 72-member truss

structure. The first topology (Fig. 5.13(a)) has only 56 members and the second topology

(Fig. 5.13(b)) has 54 members, respectively. BiL-NM found two different size solutions for

the first topology and three size solutions for the second topology. The cross-sectional

areas along with the maximum yield stresses and displacements of these solutions are

presented in Table 5.9. The found solutions are compared with those that are reported

in literature [Kaveh et al. 2014, Ho-Huu et al. 2016, Bekdas et al. 2015]. It can be

observed that the weights of the design solutions employed by the proposed method range

from 349.79 lb to 353.74 lb. However, the weights of the design solutions provided by

the compared methods range from 379.97 lb to 389.334 lb, which are significantly higher

than the weights of the solutions obtained by BiL-NM. Note that the second topology

which is presented in Fig. 5.13(b) for the 72-members ground structure is found by

the both BiL-NM and improved firefly algorithm (IFA) [Wu et al. 2017]. However, the

weight (368.26 lb) found by the IFA method for this topology is higher than the weight

(353.70) found the proposed BiL-NM. In this study, the best weight corresponds to the

topology in Fig. 5.13(a) which is 349.79 lb. A typical convergence trajectory of the best

topology is illustrated in Fig. 5.14. The best result over 30 independent runs has a weight

349.79 lb (see Table 5.9), which is considerably lower than the weights of the solutions in

the cited work mentioned in Table 5.9. The results in Table 5.10 again show that that
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Figure 5.12: Illustration of the 72-member, 20-node ground structure.
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Figure 5.13: Illustration of (a) the first topology, and (b) the second topology of the
72-member, 20-node ground structure obtained by BiL-NM.
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6

Table 5.9: Member areas (in.2) of the design solutions of the 72-member, 20-node ground
structure. Here, the Soln.-1, and Soln.-2 represent the first, and second size solution of a
found topology, respectively. The best result is highlighted by bold.

IFA CSP FPA ADE Proposed BiL-NM

Fig. 5.13(b) Fig. 5.12 Fig. 5.12 Fig. 5.12 Fig. 5.13(a) Fig. 5.13(b)

Group Soln-1 Soln-1 Soln-1 Soln-1 Soln-1 Soln-2 Soln-1 Soln-2 Soln-3

G1 1.989 1.9446 1.8758 1.990 1.8000 1.8000 1.8000 1.8000 1.7997
G2 0.562 0.5026 0.5160 0.563 0.5170 0.4985 0.5396 0.5352 0.5133
G3 0.1000 0.1000 0.111
G4 0.1000 0.1000 0.111
G5 1.227 1.2676 1.2993 1.228 1.2228 1.2959 1.2416 1.2573 1.3006
G6 0.442 0.5099 0.5246 0.442 0.4975 0.4977 0.5181 0.5148 0.5266
G7 0.1000 0.1001 0.111
G8 0.1000 0.1000 0.111
G9 0.562 0.5067 0.4997 0.563 0.4871 0.5135 0.4991 0.4814 0.4991
G10 0.562 0.5165 0.5089 0.563 0.4945 0.4955 0.5159 0.5138 0.5169
G11 0.1075 0.1000 0.111
G12 0.111 0.1000 0.1000 0.111 0.1577 0.1237
G13 0.195 0.1562 0.1575 0.196 0.1027 0.1063 0.1213 0.1213 0.1215
G14 0.562 0.5402 0.5329 0.563 0.5514 0.5353 0.514 0.527 0.5093
G15 0.442 0.4223 0.4089 0.391 0.4072 0.4105 0.4304 0.4468 0.4146
G16 0.562 0.5794 0.5731 0.563 0.5023 0.5747 0.6212 0.5898 0.6711

Weight (lb) 368.26 379.97 379.09 389.334 349.79 350.15 353.70 353.71 353.74

σmax(ksi) -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00
Mem. no. 55 55 55 55 55 55 55

δmax(in.) 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Table 5.10: Statistical result of 30 independent runs of the BiL-NM for the 72-member,
20-node ground structure.

Best weight (lb) Worst weight(lb) Mean weight (lb)± SD

349.79 379.35 355.116±5.449

BiL-NM is a reliable method capable of providing better quality solutions, even on this

high-dimensional truss problem.

Efficiency and Sensitivity analysis

Fig. 5.14 shows the convergence behaviour of BiL-NM for the four different population

sizes. Like the previous three examples, BiL-NM converges quickly to the best weight in

the case of a population size of 60. With this population size, BiL-NM spent 210,000 FEs

in order to obtain the best weight 349.79 lb.

As shown in Fig. 5.14, BiL-NM with different population sizes managed to converge

to the best weight or close to the best weight, though with different numbers of FEs. It is

also apparent from these results and those from the previous experiments, the population

size 60 seems to be the good choice for the proposed BiL-NM to find good quality solutions,

for both the low- or high-dimensional truss problems.
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Figure 5.14: Convergence behaviour of BiL-NM with different population sizes for the
72-member, 20-node ground structure.

5.7 Chapter Summary

In this chapter, we have proposed a bilevel formulation for the truss design optimization

problem, making it possible to consider optimal solutions in terms of both topology and

size without having to treat each as a separable problem. This is usually difficult to achieve

with the single- and two-stage approaches of the truss problem as seen in literature. With

this bilevel formulation, a bilevel niching method (BiL-NM) is also proposed, where the

enhanced B-SPSO has been applied to the upper level optimization while a standard

PSO is applied to the lower level. In the enhanced B-SPSO, a time-varying transfer

function is employed to enhance its search ability. In this study, the accuracy, stability,

and efficiency of the proposed BiL-NM have been examined over the well-known low- and

high-dimensional truss design problems. Our numerical studies show that BiL-NM has

the ability to find multiple design solutions (topologies) at the upper level of the bilevel

truss problem formulation. In addition, it can provide different size solutions for the same

topology, i.e., multiple solutions of the member cross-sectional areas at the lower level as

well. The results indicate the superiority of the BiL-NM over the state-of-the-art methods

on the low-dimensional and as well as high-dimensional truss problems that can be found

in literature.

The proposed BiL-NM has the ability to locate multiple topology and size solutions

for all types of trusses including roof truss.
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Conclusion

In this research, we have been motivated to investigate the relatively unexplored area of

structural optimization using techniques from the field of evolutionary computation. Par-

ticularly, this research has examined existing evolutionary niching and bilevel techniques

and designed an optimization framework for identifying multiple design solutions in terms

of topology and size of structural design problems in a single optimization run.

One of the major challenges of obtaining an optimal design solution of a structural

design problem is that this design solution should be obtained by means of simultaneous

structural topology and size optimization because these two problems are non-separable

problems [Deb and Gulati 2001]. Hence, we have formulated the structural optimization

problem as a bilevel optimization problem which allows the structural topology optimiza-

tion in its upper level and at the same time, it allows the size optimization of that topology

in its lower level. A bilevel niching method (BiL-NM) has been proposed for finding mul-

tiple solutions to a bilevel structural design problem. This study has also proposed a

discrete niching method for solving structural topology like multimodal discrete optimiza-

tion problems. In this thesis, challenging discrete multimodal benchmark instances have

been proposed to test the weaknesses and strengths of discrete niching methods. In ad-

dition, a time-varying transfer function based binary PSO method has been proposed

for the better balance between exploration and exploitation of the search spaces of dis-

crete optimization problems. Finally, the proposed BiL-NM has been applied to a widely

known real-world structural optimization problem namely truss optimization problem.

The results have shown that the proposed BiL-NM has the ability to find multiple truss

topologies and their corresponding size solutions in a single optimization run.

In the following sections, we will revisit the research objectives that have been pre-

sented in the introduction chapter. Along with this, the major findings of this study will

be presented. Finally, several directions for future research will be discussed, and the

concluding remark of the thesis will be presented.



CHAPTER 6: CONCLUSION

6.1 Research Objectives Revisited

1. To propose guidelines for designing and implementing multimodal discrete

benchmark problems and to assess the robustness of a developed discrete nich-

ing method on these new benchmark problems.

Multimodal test suites are important for investigating the weaknesses and strengths of any

developed niching method. Several attempts have been made to design such test suites

specifically for generating continuous multimodal test problems [Mahfoud 1995, Li et al.

2002, Rönkkönen et al. 2008, Li et al. 2013]. Literature shows that there does not exist

such multimodal test problems specially designed for discrete optimization problems. To

address this issue, Chapter 3 proposed a framework for generating a diverse set of chal-

lenging multimodal test instances for well-known discrete optimization problem namely

the 0-1 knapsack problem. The framework is flexible allowing a user to have a better con-

trol on the settings of the multimodal 0-1 knapsack test instances such as dimensionality,

distribution of the optima, the number of optima, and fitness of the optima.

In addition to multimodal benchmarks, Chapter 3 also proposed a binary particle

swarm optimization based discrete niching method, specifically a binary speciation-based

PSO (B-SPSO). The performance of B-SPSO has been assessed in terms of the peak ratio,

success rate, and an average number of function evaluations over the proposed discrete

multimodal benchmark problems. The experimental results have shown that the proposed

B-SPSO performs well on low-dimensional multimodal 0-1 knapsack instances but often

performs poorly as the number of dimensions and optima increase. This suggests that the

search performance of B-SPSO need to be improved for the high-dimensional 0-1 multi-

modal knapsack instances.

2. To identify the limitations of existing discrete optimization methods, specif-

ically, binary PSO and its popular variants in terms of providing optimal/near

optimal solution of the real-world optimization problems, and to design a new

binary PSO method that overcomes these limitations by means of providing

a good balance between exploration and exploitation.

The experimental results in Chapter 3 showed that the proposed B-SPSO performed poorly

with the increasing number of dimensions of the proposed multimodal 0-1 knapsack in-

stances. For this research, it is necessary to enhance the searchability of B-SPSO, because

it is one of the key optimizers of the proposed bilevel niching method (see Chapter 5).

In Chapter 3, we use the original BPSO for the implementation purpose of the pro-

posed B-SPSO. As the part of the enhancement of B-SPSO, we analyze the exploration

and exploitation ability of the original BPSO and its well-known variants. The results

have shown that the BPSO and its variants are unable to provide a better exploration of
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the search space. In addition, these BPSO’s are also unable to provide a good balance

between exploration and exploitation. Chapter 4 introduced a modified BPSO namely

time-varying transfer function based BPSO (TVT -BPSO), which adopts a time-varying

transfer function to address the shortcoming of existing BPSO’s by providing a better

balance between exploration and exploitation for the BPSO during its optimization run.

To understand the search behaviour of the proposed TVT -BPSO, a systematic analysis of

its exploration and exploitation capability is provided.

The experimental results have shown that TVT -BPSO outperforms existing BPSO

variants on both low-dimensional (D ≤ 500) and high-dimensional (1000 ≥ D ≤5000)

classical 0-1 knapsack problems, suggesting that TVT -BPSO is able to better scale to

high-dimensional combinatorial problems than the existing BPSO variants.

3. To formulate the truss design as a bilevel problem, and to design a bilevel

niching method that optimizes the bilevel truss problem to find multiple truss

topology and size solutions.

Truss design is a well-known structural optimization problem which has important prac-

tical applications in various fields. Truss design problems are typically multimodal by

nature, meaning that it offers multiple optimal solutions with respect to the topology

and/or sizes of the members, but they are evaluated to have similar or equally good

objective function values.

Chapter 5 addressed the shortcoming of the existing research works on truss opti-

mization and achieved the above goal by proposing the truss design problems as a bilevel

problem. The bilevel formulation allows the truss topology and size optimizations in its

two different levels namely the upper level and lower level, respectively. In the upper level,

the truss topology is treated as the design variable of the given design problem. In the

lower level, the cross-sectional areas of the members of the found topology (in the upper

level) are optimized as the part of the size optimization. The proposed formulation allows

the truss topology and size optimization working together simultaneously. We proposed a

bilevel niching method which consists of two optimizers; the first one is for the topology

optimization and the second one is for the size optimization. The bilevel niching method

used the modified B-SPSO (see Chapter 5) as the topology optimizer and a standard PSO

[Shi and Eberhart 1998] as the size optimizer.

The proposed bilevel niching method is unique than the state-of-the-art methods in

three different aspects. Firstly, it has the ability to perform the simultaneous topology

and size optimization for the low- to high-dimensional truss design problems. Secondly,

it can find multiple design solutions in terms of topology, at the same time it can find

multiple size solutions the found topologies in a single optimization run. Finally, it can

find multiple design solutions with the less number of function evaluations.
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4. To demonstrate the accuracy, robustness, and efficiency of the proposed

bilevel niching method, compared with other well-known truss optimization

methods over various challenging low and high-dimensional truss design prob-

lems.

Performance evaluation is one of the important tasks for the validation of a niching

method. This should be done by conducting a comparative study between the devel-

oped niching method and other state-of-the-art niching methods over a diverse set of real

or artificial benchmark problems. Chapter 5 addressed the limitations of existing studies

on niching-based truss optimization and achieved the above goal by analyzing the accu-

racy, robustness, and efficiency of the proposed bilevel niching method over the real-world

challenging low- and high-dimensional truss design problems [Deb and Gulati 2001, Luh

and Lin 2008, Li 2015, Ho-Huu et al. 2016].

The numerical studies have shown that the proposed bilevel niching method can

find multiple design solutions (topologies) at the upper level of the bilevel truss problem

formulation. In addition, it can provide different size solutions for the same topology,

i.e., multiple solutions of the member cross-sectional areas at the lower level as well. The

results indicate the superiority (in terms of the accuracy, robustness, and efficiency) of the

proposed bilevel niching method over the state-of-the-art methods [Deb and Gulati 2001,

Luh and Lin 2008, Li 2015] on the given low-dimensional and as well as high-dimensional

truss design problems.

6.2 Future Research

In this thesis, we took a major step in formulating the use of bilevel approach for finding

multiple topology and size solutions for challenging structural design problems. We have

also provided a practical framework for solving such design problems. However, there

remain several important aspects that require further investigations.

Multimodal Benchmark Suite

The focus of this thesis was mainly on multimodal structural design problems. For this, we

have developed a bilevel niching method using a binary SPSO (B-SPSO) niching method

and a standard PSO. The B-SPSO is a newly developed discrete niching method which has

to be examined over the discrete multimodal benchmark problems, before using it for the

real-world optimization problems. However, there are no well-known discrete multimodal

benchmark problems in the literature which can be used for this purpose. Therefore,

this study has designed a new benchmark suite for producing the multimodal 0-1 knap-

sack benchmark problems. With respect to the new benchmark suite, the following areas
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require further investigation.

• Designing new types of multimodal 0-1 knapsack instances: The 0-1 knapsack prob-

lem has been widely studied in the previous decades. In the recent years, several

studies have shown the interest on a new type of instance 0-1 knapsack instance

namely the spanner instance [Pisinger 2005, Patvardhan et al. 2014; 2015, Agra

et al. 2016]. In this study, we have shown only the design procedure for the multi-

modal strongly correlated and subset sum instances. So, there is still room for the

improvement of the proposed benchmark suite by adopting the design procedure of

multimodal spanner instances.

• Discover multiple solutions for other challenging combinatorial optimization prob-

lems: Despite the 0-1 knapsack problem, many other real-world problems belong

to the family of combinatorial optimization problems and they are also multimodal

by nature e.g., the traveling salesman problem [Tsai et al. 2004], vehicle routing

problem [Gendreau et al. 1994a], cryptography [Laskari et al. 2005], and design op-

timization problem [Deb and Gulati 2001]. To facilitate analyzing the multimodal

properties of these combinatorial problems, well-defined benchmarks are required.

As an initiative, this study proposed a multimodal benchmark suite for producing

the multimodal 0-1 knapsack instances. However, there is a need to discover mul-

tiple solutions for other challenging real-world multimodal combinatorial problems,

from a decision maker’s perspective.

Time-varying Transfer Function Based BPSO (TVT -BPSO)

In the previous section, we briefly explored some potential future research topics in the con-

text of multimodal benchmark instances specifically design for the 0-1 knapsack problem.

In this section, we explore several potential research directions with respect to improve

the performance of TVT -BPSO.

• Designing a new velocity update equation: In Chapter 4, we have shown that the

BPSO’s have the difficulties of providing a good balance between exploration and

exploitation during an optimization run. This study identified one of the reasons for

this problem is that the static nature of the transfer functions of BPSO’s. Hence,

a time-varying transfer function has been proposed for the BPSO in Chapter 4. In

addition to this, the research on the exploration and exploitation balancing can be

extended by developing new velocity update equations for the BPSO.

• Performance test over other challenging real-world discrete optimization problems:

In this study, the performance of TVT -BPSO has been examined over the low and

high dimensional 0-1 knapsack benchmark problems. However, this study can be
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extended in terms of the performance evaluation over the well-known discrete op-

timization problems such as the traveling salesman problem [Tsai et al. 2004], and

scheduling problem [Gendreau et al. 1994a].

Multimodal Truss Structure Design Framework

In this section, we explore several potential research directions with respect to the en-

hancement of the proposed bilevel truss optimization framework.

• Consideration of realistic design constraints: In literature, most of the research works

on the simultaneous truss topology and size optimization have been considered two

well-known constraints namely stress and displacement constraints. However, the

design optimization of truss structures with fundamental or multiple-frequency con-

straints is extremely useful when improving the dynamic performance of structures

[Grandhi 1993, Sedaghati et al. 2002]. Due to this, the topology and size optimiza-

tion of truss structures with frequency constraints is one of the active areas in the

research of structural optimization at present [Zuo et al. 2011, Kaveh and Zolghadr

2012, Gomes 2011, Kaveh and Zolghadr 2014, Farshchin et al. 2016a;b]. In this

study, the proposed bilevel truss optimization framework only considered the stress

and displacement constraints. However, there are still rooms for the improvement

of the proposed framework by means of including the more realistic constraints such

as the natural frequency constraint.
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D. Lukáš. Shape optimization of homogeneous electromagnets. In U. van Rienen,

M. Günther, and D. Hecht, editors, Scientific Computing in Electrical Engineering,

pages 145–152, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD thesis, Champaign, IL,

USA, 1995.

S. Martello and P. Toth. The 0-1 knapsack problem. In N. Christofides, A. Mingozzi,

P. Toth, and C. Sandi, editors, Combinatorial Optimization, pages 237–279. John Wiley

and Sons, 1979.

S. Martello and P. Toth. Upper bounds and algorithms for hard 0-1 knapsack problems.

Operations Research, 45(5):768–778, 1997.

S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing problem.

Management science, 44(3):388–399, 1998.

129 (October 4, 2018)



BIBLIOGRAPHY

G. B. Mathews. On the partition of numbers. Proceedings of the London Mathematical

Society, s1-28(1):486–490, 1896.

G. Mavrotas, D. Diakoulaki, and A. Kourentzis. Selection among ranked projects under

segmentation, policy and logical constraints. European Journal of Operational Research,

187(1):177–192, 2008.

M. Mavrovouniotis and S. Yang. Ant colony optimization with immigrants schemes for

the dynamic travelling salesman problem with traffic factors. Applied Soft Computing,

13(10):4023–4037, 2013.

D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-

constrained project scheduling. IEEE transactions on evolutionary computation, 6(4):

333–346, 2002.

L. F. F. Miguel, R. H. Lopez, and L. F. F. Miguel. Multimodal size, shape, and topology

optimisation of truss structures using the firefly algorithm. Advances in Engineering

Software, 56:23 – 37, 2013.

S. Mirjalili and A. Lewis. S-shaped versus v-shaped transfer functions for binary particle

swarm optimization. Swarm and Evolutionary Computation, 9:1–14, 2013.

S. Mirjalili and A. Lewis. Novel frameworks for creating robust multi-objective benchmark

problems. Information Sciences, 300:158 – 192, 2015.

A. Misevicius. A tabu search algorithm for the quadratic assignment problem. Computa-

tional Optimization and Applications, 30(1):95–111, 2005.

A. Modiri and K. Kiasaleh. Modification of real-number and binary pso algorithms for

accelerated convergence. IEEE Transactions on Antennas and Propagation, 59(1):214–

224, 2011.

M. A. Mohammed, M. K. A. Ghani, R. I. Hamed, S. A. Mostafa, M. S. Ahmad, and

D. A. Ibrahim. Solving vehicle routing problem by using improved genetic algorithm

for optimal solution. Journal of Computational Science, 21:255–262, 2017.

K. Mombaur, A. Truong, and J.-P. Laumond. From human to humanoid locomotionan

inverse optimal control approach. Autonomous robots, 28(3):369–383, 2010.

M. Monaci, U. Pferschy, and P. Serafini. Exact solution of the robust knapsack problem.

Computers & operations research, 40(11):2625–2631, 2013.

T. Murata, H. Ishibuchi, and H. Tanaka. Multi-objective genetic algorithm and its ap-

plications to flowshop scheduling. Computers & Industrial Engineering, 30(4):957–968,

1996.

130 (October 4, 2018)



BIBLIOGRAPHY

H. Naceur, Y. Guo, and J. Batoz. Blank optimization in sheet metal forming using an

evolutionary algorithm. Journal of Materials Processing Technology, 151(1):183–191,

2004.

M. Naeem, U. Pareek, and D. C. Lee. Swarm intelligence for sensor selection problems.

IEEE Sensors Journal, 12(8):2577–2585, 2012.

N. Noilublao and S. Bureerat. Simultaneous topology, shape and sizing optimisation of

a three-dimensional slender truss tower using multiobjective evolutionary algorithms.

Computers & Structures, 89(23):2531–2538, 2011.

N. Noilublao and S. Bureerat. Simultaneous topology, shape, and sizing optimisation of

plane trusses with adaptive ground finite elements using moeas. Mathematical Problems

in Engineering, 2013, 2013.

M. Ohsaki. Optimization of finite dimensional structures. CRC Press, 2016.

S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algo-

rithms based on hamilton-jacobi formulations. Journal of computational physics, 79(1):

12–49, 1988.

I. Parmee and P. Hajela. Optimization in industry. Springer Science & Business Media,

2012.

D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a particle

swarm model using speciation. IEEE Transactions on Evolutionary Computation, 10

(4):440–458, Aug 2006.

C. Patvardhan, S. Bansal, and A. Srivastav. Solution of hard knapsack instances using

quantum inspired evolutionary algorithm. International Journal of Applied Evolutionary

Computation (IJAEC), 5(1):52–68, 2014.

C. Patvardhan, S. Bansal, and A. Srivastav. Quantum-inspired evolutionary algorithm

for difficult knapsack problems. Memetic Computing, 7(2):135–155, 2015.

M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill. Scheduling of demand side resources

using binary particle swarm optimization. IEEE Transactions on Power Systems, 24

(3):1173–1181, 2009.
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