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Abstract 

In this thesis computational modelling was used to investigate on the atomistic scale, the 

effects of external electric and electromagnetic fields (EMF) on protein behaviour and 

responses in an aqueous environment. The motivation behind this study is discussed in 

Chapter 1, along with a literature review on previous research on the effects of EMF on 

proteins, from both simulation based studies and experimental research. 

Non-Equilibrium Molecular Dynamics was employed to simulate the protein response to 

external perturbations and the computational methodologies encompassing this technique are 

described in Chapter 2. The history of NEMD is also described in this chapter, along with the 

specific computational details for the simulation of our peptide model, apoC-II(60-70) 

exposed to EMFs of static/oscillating nature and different frequency and strength. 

In Chapter we used all-atom NEMD simulations to understand and quantify the response 

mechanisms of the amyloidogenic apoC-II (60-70) peptides to non-ionising radiation by 

modelling their behaviour under static electromagnetic and electric fields of different 

strengths. 

Chapter 4 expands on the previous study by investigating the role of the field frequency on 

the peptide behaviour in solution. Finally, Chapter 5 presents a summary of the conclusions 

drawn from this work. 
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Chapter 1  

Introduction  

1.1 Background 

In this modern age, electromagnetic (EM) fields are becoming widespread, with existing and 

novel applications evolving constantly. While new (smart) mobile technologies continue to 

grow and reach the entire population of the planet, community concerns about their possible 

health effects are also growing. The consequences of exposure of basic biological systems, 

including water, proteins, DNA, cell membranes, and entire cells, to EM radiation in the 

radio frequency (RF) range have been a subject of intensive debate [1-8], but despite years of 

research, scientists and the public lack conclusive answers. 

On the global level, concerns about EM field effects have been acknowledged by the World 

Health Organisation (WHO), a renowned group with a universal interest to ensure the safety 

of the public. The WHO also directs and coordinates research efforts world-wide on EM field 

exposure and guides policy standards. One such research group is the International Agency 

for Research on Cancer (IARC), which co-ordinated the largest case-control study to 

determine whether there are any links between mobile phone use and head/neck cancers in 

adults. The data from their study resulted in the new classification of EM field as a possibly 

carcinogenic (Group 2B) to humans, a category used when a causal association is considered 

credible, but chance, bias, or other variables cannot be ruled out with reasonable confidence 

[9]. 

In Australia, the National Health and Medical Research Council funded the Australian Centre 

of Excellence for Electromagnetic Bioeffects Research (ACEBR) (2013–2017) [10], which 

was recently renewed for another 5 years, which aims to address the WHO’s research 

recommendations in order to better understand potential health effects of EM field exposure 

and protect the Australian community. The Centre involves research domains ranging from 

epidemiology, dosimetry, in vivo experiments (human and nonhuman), in vitro, and all-atom 

modeling projects, which this thesis forms part of. 
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The aim of this thesis is to investigate the molecular responses of an amyloidogenic peptide 

to EM radiation of different strength and frequency using Non-Equilibrium Molecular 

Dynamics (NEMD).  

 

1.2 Electromagnetic Fields 

EM fields are a mostly invisible form of energy, with a very small section of it being 

detectable by the naked eye, however years of research has revealed much about their form 

and function. They consist of two fields, an electric and magnetic field; radiating outwards 

from their source in orthogonal directions to each other and their source (see Figure 1). 

These fields are characterised by their frequency and wavelength as ways of describing the 

fields in question. 

- Frequency: The number of occurrences of a repeating event per unit of time. 

Specifically in EMF, it’s the number of complete cycles the field makes in a second at 

each point in space. i.e. 1 Hertz (Hz) = 1 full cycle per second. 60 Hz = 60 cycles per 

second. 

- Wavelength: The distance after which the oscillation repeats itself. Inversely 

proportional to the frequency; higher frequency = smaller wavelengths, and vice-

versa. 

The entire electromagnetic spectrum can be divided into several categories based on 

wavelength bands they occupy, however more broadly speaking, EM fields are generally 

referred to as ionizing, and non-ionizing fields. 

Figure 1: Electromagnetic wave diagram with electric field (red) and magnetic field 

(blue). 
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Ionizing radiation (>950 THz) has the potential to induce cellular and DNA damage through 

the excitation of bonds, resulting in bond breaking, or the formation of free radicals within 

the body. The consequences of such effects have been known to result in cancers such as 

melanoma and glioblastoma, which is why human exposure to EM fields in this frequency 

range is limited [11]. 

Non-Ionizing radiation (<950 THz) is EM radiation hat does not carry enough energy per 

quantum (photon energy) to ionize atoms or molecules. The Radio Frequency range (20 KHz 

– 300 GHz) has been used increasingly for local and global communication, with mobile 

phones, Wi-Fi, and ‘Smart’ Meters being some of the main contributors to the increase in EM 

exposure. The emitted frequencies by some of these devices include: 

(i) TV and PC monitors: 3 – 30 kHz; 

(ii) Amplitude modulated radio emitters: 30 kHz – 3 MHz; 

(iii) Induction heaters for industry: 0.3 – 3 MHz; 

(iv) Mobile Phone Networks: 2G (900 MHz), 3G (850 – 2100 MHz), 4G (850 – 

2600 MHz); 5G (1 – 100GHz) 

(v) Microwave ovens: 2.45 GHz; 

(vi) RADAR, Satellite Communications Systems: 3 – 30 GHz;  

(vii) Solar radiations 30 – 300 GHz. 

Due to the ubiquity of these fields, it is imperative to understand the mechanisms of 

interactions of such fields with biological matter.  

 

1.3 EMF: a friend or foe to human health 

The thermal effects of EM fields on macromolecules occurs through heat generation from the 

absorption of EM energy by the exposed matter. This process is well-known and utilised 

daily in kitchens everywhere through the use of microwave ovens, which heats food through 

the exposure of food and water to microwave energy that is absorbed and converted into 

vibrational energy, resulting in heating.  

The non-thermal EM field effects are less well known [6, 12], however it has been suggested 

that EM fields are capable of exciting vibrational modes in proteins, causing structural 
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changes that can go on to alter their conformation and ultimately function [13-18]. These 

changes in conformation can lead to misfolding and aggregation of proteins into insoluble 

plaques. 

The question of non-thermal effects on protein stability, and hence function, in far infrared 

and microwave fields has been the subject of extensive debate, particularly in relation to 

mobile communication signals on human health [19]. Owing in part to health problems of 

exposure to EM fields [5], there exists a body of experimental work on EM effects on protein 

denaturation and stability [20-22]. Other such reported incidents of negative EM field effects 

in humans include increases in cancer and glioblastoma occurrence [23], electro-

hypersensitivity [24], and other deleterious effects [25-28], which will be discussed further in 

the next chapter. 

EM fields have also been investigated for beneficial uses in medicine and industry. The 

medicinal uses of EM fields have been on non-invasive methods of treatment and 

prevention/treatment of various diseases, such as cancers [29] and Alzheimer’s disease [30-

32], and wound healing [33-35]. 

Extensive work has been performed by Arendash and co. [31, 36-38] on the effects of high 

frequency RF fields exposure on amyloid plaques found in the brains of Alzheimer’s patients. 

Their research was performed on rats genetically predisposed to developing Alzheimer’s like 

conditions, as well as common laboratory rats, and found that exposure to an appropriate field 

for 2 hours a day could not only prevent the development of Aβ plaques, but also be used to 

break up early formation of Aβ plaques. This apparently beneficial health effect, if 

substantiated, would suggest that our understanding EM field interactions with tissues is 

incomplete, and that potential novel applications of RF, including treatment of debilitating 

diseases, may emerge. 

 

1.4 Protein structure 

Proteins are important biological macromolecules that play many vital roles in living 

organisms, from enzymes and antibodies for digestion and immune response, to making up 

structural components of body tissues, such as muscle fibres. A protein is composed of amino 

acid residues that are joined via peptide bonds in a polymeric chain. There are 20 different 
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amino acids that occur naturally in proteins. Each amino acid is composed of a central carbon 

atom (Cα), attached to a hydrogen atom (H), an amino group (NH2), and a carboxyl group 

(COOH). Individual amino acids are distinguished from one another by a unique side-chain 

(R) attached to the Cα through its fourth valence. 

Amino acids are joined during protein synthesis by the formation of peptide bonds, linking 

the carboxyl group of one amino acid to the amino group of another. During this process a 

water molecule is lost. A polypeptide chain consists of a regularly repeating part, called the 

main-chain or backbone (NH–CαH–C'=O), and a variable R-group, comprised of distinctive 

side-chains. It is the chemical nature of the side-chain components of individual residues that 

determines the property of the protein. The properties are usually divided into three different 

groups. 

 1
st
: amino acids with strictly hydrophobic side-chains: Ala (A), Val (V), Leu (L), Ile 

(I), Phe (F), Pro (P), and Met (M); 

 2
nd

: the four charged residues: Asp (D), Glu (E), Lys (K), and Arg (R);  

 3
rd

: those with polar side-chains: Ser (S), Thr (T), Cys (C), Asn (N), Gln (Q), His (H), 

Tyr (Y), and Trp (W). 

The amino acid Gly (G) is the simplest of the 20 amino acids; it has only a hydrogen atom as 

a side-chain, therefore has special properties and is usually considered to be a member of the 

hydrophobic amino acid group. Cysteine residues have a unique property in their ability to 

form disulfide bridges with another Cys side-chain in an oxidative environment. As the two 

cysteines are covalently bonded, the disulfide bond is very strong, and is essential for the 

folding, structure and function of a protein. In some proteins, these bridges hold together 

different polypeptide chains, such as the A and B chain of insulin, which are linked by two 

separate disulfide bonds. 

Proteins are assembled from amino acids using the information encoded in our DNA 

(deoxyribonucleic acid). However, the process of protein synthesis is conducted over several 

important steps. Initially, the DNA transcribes a messenger RNA (mRNA) through 

transcription, where a small copy of a gene is released to the cytoplasm. Translation of the 

mRNA occurs in the ribosomes, located in the cytoplasm. During translation, the mRNA is 

decoded to produce a specific polypeptide chain according to rules specified by the genetic 

code. Shortly after or during synthesis, the residues in the proteins are often chemically 
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modified by post-translational modification, where the physical and chemical properties of 

the protein are altered, resulting in changes in the fold, stability and function of the protein. 

 

The functional properties of proteins depend on their three-dimensional structure, which for 

convenience is represented in several structural levels. The amino acid sequence of a 

protein’s polypeptide chain is called its primary structure. Different regions of the sequence 

form local regular secondary structures, such as α-helices or β-strands Figure 2. The three 

essential torsion angles: ϕ, ψ, and ω determine the conformation of the protein backbone. By 

convention, the angle of rotation around the N−Cα bond is called the phi (ϕ) angle, while the 

rotation around the Cα−C bond is called psi (ψ). The rotation around the C−N bond is called 

omega (ω), and this angle has a value close to 180° (except for cis-prolines, which have ω- 

angle close to 0°). The secondary structure is formed when consecutive residues have similar 

dihedral angle (ϕ, ψ) values that lie within known regions on the Ramachandran map [40], 

which is a plot used to visualise energetically allowed regions in protein structure. There are 

three sterically allowed regions on the Ramachandran plot. These regions correspond to 

secondary structures with well-defined dihedral angles: the right-handed α-helix, the left-

Figure 2: Protein secondary structure, (top) -helix, (bottom) beta 

pleated sheet [39]. 
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handed α-helix and the β-strand. The α-helix is a classical element of protein structure, and is 

easily recognised by its spiral-look. This structural motif is stabilised by the formation of 

parallel hydrogen bonds between the backbone atoms of consecutive residues in a protein. 

There are three types of commonly occurring helices: α-helix, 310-helix, and π-helices, all 

varying according to the hydrogen bond coordination of their backbone atoms, making the 

chain either more loosely or more tightly coiled. 

The second major structural element found in globular proteins is a β-strand. The β-strand has 

a predisposition to self-associate and to form β-sheets, which are composed of several β-

strands bound together by hydrogen bonds between the backbone atoms. The β-strands have 

an extended conformation, with average dihedral angles of (-120°, 120°), which belong in the 

broad region in the upper left quadrant of the Ramachandran plot. These strands interact in 

two ways to form pleated β-sheets: parallel and anti-parallel. The β-sheet structures are 

associated with the formation of amyloid fibrils, which are known to be the cause of many 

debilitating diseases. 

Most protein structures are built up from a combination of secondary structure elements, such 

as helices and β-strands that are connected by turns and loop regions of various lengths and 

shapes. Loop regions that connect two adjacent anti-parallel β-strands are called β-hairpins. 

These structural elements are essential for protein folding and the formation of compact 

tertiary structures, as well as enabling flexibility in the protein, which is often related to its 

activity. The formation of tertiary structure is mostly driven by hydrophobic interactions 

between the secondary structure elements which minimise the solvent accessible surface area 

and increase the protein’s conformational stability [41]. 

The arrangement of multiple folded protein molecules in a multi-subunit complex is referred 

to as a quaternary structure. An example is the insulin dimer that consists of two distinct 

monomer structures bound together by disulfide bonds, which combines further into a 

hexamer in the presence of metal ions, such as zinc. 

The correct three-dimensional structure or native state is essential for protein function. 

Failure to fold into the native shape usually produces proteins with different properties that 

sometimes can be toxic, such as the prion-protein, which is associated with variant 

Creutzfeldt-Jakob disease. Several neurodegenerative and other diseases result from the 

accumulation of misfolded proteins. 
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1.5.1 Protein Folding and Aggregation 

One of the most fundamental phenomena in nature is the capability of proteins to fold de 

novo to their native conformation, also known as their biologically functional state. While all 

the information needed for proteins to fold is encoded in their amino acid sequence, there are 

many more elements that play a part in vivo. In a crowded cellular environment, surrounded 

by interacting proteins, nascent polypeptides face a formidable challenge in finding the 

correct interactions that result in a folded and functional protein. Many become trapped in 

meta-stable intermediate structures, which are usually recognised by proteasomal machinery 

and degraded or refolded by chaperones. Alternatively, they can also misfold and self-

associate leading to formation of either amorphous compounds or structures of elongated-

unbranched morphology, known as amyloid fibrils. An accumulation of these fibrils can 

result in a range of human diseases commonly referred to as amyloidosis. Some of the 

diseases associated with amyloid fibrils are Alzheimer’s, variant Creutzfeldt-Jakob disease, 

Parkinson’s, type II diabetes and many others. 

In 1935, Astbury and Dickinson placed a poached egg white in an X-ray beam and observed 

a diffraction pattern with perpendicular reflections at ~4.7 Å along the meridional direction 

and ~10 Å along the equatorial direction [42]. The pattern suggested that the protein chains of 

the egg white pack in an extended β-conformation, with the chains perpendicular to the long 

axis. This cross-β X-ray diffraction pattern was observed for the amyloid deposits in most 

diseased tissues. In 1959, Cohen and Calkins found that the amyloid, which is hyaline and 

structureless under light microscopy, in fact has a characteristic fibrillar ultrastructure when 

analysed with an electron microscope [43]. This finding was confirmed in several other 

studies [44-48], which gave further insight into the specific structural organisation of amyloid 

fibrils. Although the morphology of the fibrils is similar, consisting of a cross-β structure 

with the β-strands perpendicular to the fibril axis (Figure 3), the proteins from which they are 

built are different. 
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Significant progress has been made in determining the structures of amyloid fibrils in atomic 

detail using experimental [50-53] and simulation methods [54-57] to improve the knowledge 

around how amyloid fibrils form and behave so that hopefully one day there will be 

treatments or preventative measures to their formation and the diseases that they cause. 

 

 

 

 

 

Figure 3: Background image of triplet TTR(105-115) fibril taken using 

TEM (Left).  TTR(105-115) triplet fibril fitted into cryo-EM reconstruction 

(Center and Right). [49] 
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1.6 Apolipoprotein C-II 

The peptide model used in this thesis is apolipoprotein C-II (ApoC-II) derived peptide apoC-

II(60-70), known to form fibrils in vivo [58-60]. ApoC-II is a 79 residue protein and a 

member of the very-low-density-lipoproteins (VLDL) [61]. It plays an important role in 

human physiology as an activator of lipoprotein lipase [62, 63]. Lipoprotein lipase is an 

enzyme found in the capillaries that catalyses the hydrolysis of triacylglycerols in 

chylomicrons to glycerol and fatty acids. Deficiencies in apoC-II have been associated with 

an elevation in triacylglycerol levels in the blood, which is consequently linked to 

atherosclerosis, and by extension, the risk of heart disease and stroke [64]. 

 

1.6.1 ApoC-II Structure 

ApoC-II binds reversibly to the polar lipid surface of plasma lipoprotein particles in vivo and 

associates with a range of natural and synthetic lipid surfaces in vitro with an accompanying 

change in secondary structure. Analysis of this conformational change and the amino acid 

sequence of the lipid binding regions has led to the generally accepted hypothesis that 

apolipoproteins associate with lipid surfaces by means of amphipathic helices predicted to be 

present in all members of the family [65]. MacRaild and co-workers determined the lipid 

bound structure of apoC-II in the presence of dodecylphosphocholine micelles [66].  

Figure 4: Ribbon representation of apoC-II(13-79) showing secondary structure 

and side-chains. 
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The primary sequence of human apoC-II is listed in Table 1. The region between residues 1 

to 12 is highlighted in grey because the structure of this region was too difficult to assign [66, 

67]. The secondary structure of apoC-II is well defined, with α-helical elements over most 

of the sequence, specifically between residues Leu15 to Lys39 and Tyr63 to Gly77. The 

central region, comprising residues Thr40 to Gly65 is substantially disordered, containing 

predominantly coil and turn structures. A representation of the secondary structure of apoC-

II(13-79) is shown in Figure 4. 

 1 2 3 4 5 6 7 8 9 10 

0 Thr Gln Gln Pro Gln Gln Asp Glu Met Pro 

10 Ser Pro Thr Phe Leu Thr Gln Val Lys Glu 

20 Ser Leu Ser Ser Tyr Trp Glu Ser Ala Lys 

30 Thr Ala Ala Gln Asn Leu Tyr Glu Lys Thr 

40 Tyr Leu Pro Ala Val Asp Glu Lys Leu Arg 

50 Asp Leu Tyr Ser Lys Ser Thr Ala Ala Met 

60 Ser Thr Tyr Thr Gly Ile Phe Thr Asp Gln 

70 Val Leu Ser Val Leu Lys Gly Glu Glu  

Table 1: Primary sequence of apoC-II (PDB code 1SOH). The sequence coloured in grey represents 

the residues with undefined structure. 

 

1.6.2 ApoC-II misfolding and aggregation studies 

In the presence of lipids, apoC-II is comprised of mostly α-helical structures, however in 

lipid-poor conditions apoC-II readily aggregates into twisted ribbon-like fibrils. This protein 

is one of the few amyloid systems to form fibrils at physiological pH without prolonged 

agitation. ApoC-II and several other apolipoproteins have been identified in atherosclerotic 

plaques in vivo [64] and it is found colocalised in human coronary artery plaques with serum 

amyloid P, a non-fibrillar marker of amyloid deposits [62]. The fibrils formed by apoC-II in 

vitro are homogeneous when viewed by electron microscopy and display a characteristic X-

ray diffraction pattern, indicating the formation of cross-β structure [68]. 

A unique property of mature apoC-II fibrils is that they are relatively small and remain 

soluble, allowing characterisation of fibril formation by analytical ultracentrifugation. Binger 
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and co-workers used this technique to show that mature fibrils assemble via a reversible 

pathway that includes fibril breaking and joining [69]. Solution conditions, such as the 

presence of auxiliary proteins [70], macro-molecular crowding agents [71] and the presence 

of phospholipids below and above the critical micelle concentrations alter the kinetics of 

apoC-II fibril formation and fibril morphology [51, 72]. Specifically, micellar phospholipid 

concentrations were found to inhibit apoC-II fibril formation, whereas sub-micellar 

concentrations accelerate the fibril forming process. Recent experimental work explored the 

effect of oxidation and mutation of methionine residues on the amyloidogenic nature of the 

protein [73]. Oxidation of the Met residues (Met9 and Met60) with hydrogen peroxide 

inhibited fibril formation. However, the oxidised monomers were found to have no effect on 

the already formed native apoC-II fibrils. This finding suggested that oxidised molecules 

have a reduced ability to interact with growing fibrils. Additionally, single Met60Val and 

Met60Gln mutations were also performed. The Met60Val mutant assembled into fibrils with 

similar kinetics to the wild-type apolipoprotein. In contrast, the Met60Gln mutant showed a 

significant delay in fibril formation when compared to the wild-type, however the fibril 

formation was not completely inhibited. This finding together with the oxidation of Met60 

have showed that a change in hydrophobicity at a single position in the apoC-II core region is 

sufficient to significantly reduce the fibril-forming ability of this protein [73]. 

Wilson and co-workers performed hydrogen/deuterium exchange and proteolysis studies to 

identify the core region(s) within apoC-II fibrils that may stimulate amyloid formation [74]. 

The peptide fragments composed of residues 60 to 70 (Figure 5) and 56 to 76 have been 

shown to exhibit an inherent propensity for amyloid fibril formation in solution. The 

Figure 5: ApoC-II and the amyloidogenic peptide apoC-II(60-70) shown as inset (black). 

60 61 62 63 64 65 66 67 68 69 70 

Met Ser Thr Tyr Thr Gly Ile Phe Thr Asp Gln 
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synthetic apoC-II(56-76) readily formed fibrils, although with a different morphology and 

thioflavin T fluorescence yield compared to full-length apoC-II. Furthermore, Wilson et al. 

postulated that the ability of apoC-II(60-70) to independently form amyloid fibrils may be the 

underlying cause of apolipoproteins and their peptide derivatives to accumulate in amyloid 

deposits in vivo [74]. 

The amyloidogenic properties of apoC-II have been extensively studied in vitro and these 

studies form the basis for much of the current knowledge of amyloid fibril formation by 

apolipoproteins [75]. Recently, in silico studies were performed to gain insight into the 

atomistic detail of the dynamics and association in various environments of apoC-II peptides. 

The small size and amyloidogenic nature of the apoC-II(60-70) peptide were the driving 

motivation behind the extensive theoretical and experimental studies of this peptide in 

ambient and various experimental conditions in our group [57-60, 76-78, 81, 82, 84]. Our 

simulations identified the fibrillation propensities of apoC-II(60-70) under varying pH, 

different degree of oxidation, mutations, lipid concentrations, and in the proximity of 

nanoparticles [79, 85]. As an example, at fibril-favouring conditions (neutral and low pH) the 

peptide preferentially adopts structures similar in shape to a β-hairpin, while under fibril-

disruptive conditions (lipid-rich and oxidised Met) significantly different structures were 

obtained. The formation of a strong hydrophobic core, as exhibited in a β-hairpin structure 

(Figure 6), have been suggested favourable for peptide interaction and subsequent fibril 

formation [74, 78]. Using these extensive benchmarking data on this peptide, we present a 

systematic study of the EMF effects on the structure, dynamics of the amyloidogenic apoC-

II(60-70). 

Figure 6: The apoC-II(60-70) peptide has been shown to adopt a β-hairpin conformation 

under fibril favouring conditions [52, 54, 57, 60, 76-83]. 
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1.8 Literature Review on Computational Modelling Studies of Biomolecule Responses to 

Electric Fields 

Tekieh et al [86] studied the effects of an EM field on voltage gated ion channels, as 

dysfunction in calcium ion channels can lead to diseases such as absence seizures, cerebellar 

ataxia, familial hemiplegic migraine, and many more. They found, that the ionic current of 

the ion channel changes under an EM field, suggesting that EM radiation can help ions to 

climb over barriers and enter ion channels more quickly, which as they stated could result in 

deleterious effects of seizures and migraines, however this could also indicate a possible 

medical application for ensuring the uptake of drugs into specific areas or tissues of the body, 

such as cancerous cells and tumours, and this lack of deeper investigation can end up fuelling 

even more fear of EM fields. 

Toschi et al. studied the interactions of β-amyloid (Aβ(1-40)) and applied electric field of 

varying strengths (0.1 – 1.0 V/nm) [87]. The simulation of applied electric field to the protein 

saw that the presence of external electric field was able to facilitate the process of α-helix 

conversion to random coil and/or β-secondary structures. When the field was turned off, they 

observed that the α-helix to β-sheet conversion would not revert and instead observed the 

formation of β-bridges, however due to the relatively short time scales of MD simulations 

they were not able to observe if there was any instances of β-sheets converting back into α-

helixes. Toschi et al. also only performed simulations where the electric field was present 

then turned off, meaning that we cannot know if the presence of a permanent electric field, or 

having the field switched on again would cause different results or affect the protein structure 

further. 

Marrachino et al. investigated the structural response of myoglobin to a static electric field 

and to a pulsed electric field of 8 ns at 0.1 and 1.0 V/nm [88]. They found that 1.0 V/nm 

fields caused the myoglobin to undergo a fast unfolding transition, characterised by an 

intense polarisation, which was the cause of the denaturation. The 0.1 V/nm field, on the 

other hand, still experienced a significant polarisation and affected the myoglobin dipole 

moment, but no denaturation was observed, indicating that minimum field strengths are 

needed to cause protein denaturation. Their simulations of pulsed electric fields also saw 

changes from their null field simulations however there is a lack of interpretation of these 

results within the article to be able to make any comments on them. 
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Comprehensive research by English et al. has been performed to simulate the effects of 

electric fields and EM fields on water [89-91], exploring how EM field affects the cohesion 

of water molecules [89, 90]. They were able to effectively simulate the effects of EM field on 

water molecules and show that a polarizable water model was more appropriate to use for 

accurate replication of EM field effects than a non-polarizable one. 

The team also explored the effects of EM fields on proteins, Specifically, the hen egg white 

lysozyme (HEWL) [14, 15, 92] was simulated under EMF of 50 to 500 GHz and 1.0 to 5.0 

V/nmrms, then compared to thermal effects on HEWL. Their study showed that 5.0 V/nmrms 

EM field caused denaturation to the protein greater than being exposed to 500 K. English et 

al. then went on to simulate HEWL under 2.45 GHz fields at various strengths (0.1 to 1.5 

V/nmrms). Under these field conditions they again saw significant changes in the protein’s 

secondary structure, with charged residues undergoing more localised motion. English et al. 

also noted that these secondary structure changes seemed to occur primarily due to the 

peptide dipole alignment with the applied external field.  

Human aquaporin (h-AQP) [93-95] are transmembrane proteins that form channels which 

conduct water and small uncharged molecules through them. English et al. simulated these 

protein channels under EM field to see how the presence of external fields (0.065 V/nmrms 

and 2.45 to 100 GHz) in the –z (pore axis) and –y (orthogonal to the pore axis) directions 

changed the flow of the channel [93] and found that applied EM field could disrupt the water 

dipole orientation, which in turn lowered the permeability of the membrane. A follow up 

simulation [94] of EM field and h-AQP was performed with 0.065 V/nmrms and 2.45 and 100 

GHz fields along the same directions as the previous work, and found that the dipole 

orientation of Histidine-201 residue in the selectivity filter which governs the dihedral angle, 

and thus influences water self-diffusion. A more recent study [95] on h-AQP under EM field 

was performed, using the same field strength as the last two studies, and a frequency range of 

2.45 to 500 GHz, but this time in the –z and +z directions, while the previous two studies 

only used the –z direction, and found that the application of EM field in the +z direction 

would cause the channel to open two areas of the pore that have been proposed as a two-stage 

filter, which may result in the pore malfunctioning and causing unseen health problems. 

English and Waldron also published a comprehensive review article on EM field effects on 

macromolecular systems covering a plethora of published articles that focussed on electric 

and EM field effects and the challenges that are still facing researchers to this day [7]. 
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Previously in our group, Budi et al. performed molecular dynamics studies on insulin chain-

B, and full insulin peptide, to investigate the effect of electric fields on protein conformation 

[2, 3, 96]. These studies used a range of strengths (0.01–1.0 V/nm) and frequencies (static, 

1.225, 2.45, 4.9 GHz). Their studies found that the application of a static electric field (1.0 

V/nm) to the insulin chain-B peptide was able to cause structural disruption, while the use of 

an oscillating field resulted in destabilisation at a lower field strength (0.5 V/nm). When they 

simulated the full insulin protein [3], Budi et al. found that the presence of chain-A 

strengthened the protein against thermal stresses, but the addition of extra protein dipoles 

meant that the protein was more susceptible to the external fields, which caused denaturation 

at a lower field strength, but with an increase in lag time, as the dipoles all attempted to align 

with the field independently. 

 

1.9.0 Research Goals 

The aim of this project is to use molecular dynamics techniques to investigate the effects of 

electric and EMF on the apoC-II(60-70) peptide derivative. The peptide behaviour exposed to 

fields of different strength and frequency are investigated. The specific research questions for 

the project are listed below: 

1. What are the magnetic field contributions in simulations of external electromagnetic 

field compared to electric field only simulations? 

2. Considering the current state of the art in the all atom simulations is to model proteins 

in solution for up to several microseconds, what is the lowest field strength which will 

affect the structural integrity of apoC-II (60-70) peptide within a microsecond time 

frame?  

3. How do different frequencies of EM fields (in the RF range) affect apoC-II(60-70) 

peptide structure and dynamics? 

4. Is there in fact a correlation between e/m field strength/frequency and protein 

response?  
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Chapter 2 

Theory of EMF Molecular 

Modelling 

2.1 Molecular Mechanics 

Molecular modelling is a collective term for theoretical methods and computational 

techniques that are applied to mimic or model the behaviour of molecules, ranging from 

small chemical systems to large biological molecules or material assemblies. While 

experiments are useful in determining many properties of different materials, they are still 

very limited in studying phenomena at atomic resolution within short time-scales at various 

environmental conditions. An advantage of computer simulations over traditional 

experimental methods is the ability to characterise the time evolution of a system under 

controlled conditions at atomistic detail. 

Today computer simulation techniques can be classified into several categories based on the 

studied system size and time-scale capabilities. The most accurate methods are based on 

Quantum Mechanics (QM), and comprise the ab-initio and Density Functional Theory (DFT) 

methods. Protein models are too large to be treated by these techniques as the properties of 

the system are calculated from first principles, i.e. considering the electronic structure, which 

is computationally prohibitive for proteins. A less expensive approach is offered by the semi-

empirical methods which allow for larger systems to be simulated at the electronic level, 

treating only the valence electrons explicitly and fitting several parameters to experimental 

data. However, the QM methods are mostly used for investigating processes which involve 

bond breaking and forming, electronic rearrangement, and force field parameterisation. 

Larger system sizes and longer simulation time scales can be investigated using the atomistic 

force field methods or molecular mechanics. The main concept behind this method is the 

Born-Oppenheimer approximation, which allows for the expression of the electronic 

movement to be separated from the Hamiltonian of the system, allowing the electronic and 
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the nuclear variables to be calculated separately. Molecular mechanics is used when physical 

interactions are considered (as opposed to chemical) and based upon a simpler model of 

interactions within a system with contributions such as stretching of bonds, the opening and 

closing of angles (angle bending) and rotations about single bond (torsions). This method can 

provide accurate calculation of physical phenomena such as protein dynamics, in a fraction of 

the computer time compared to ab-initio calculations. 

Furthermore, coarse-grained mechanics has the ability to simulate large complexes at 

timescales currently inaccessible to atomistic methods. These methods can also provide 

qualitatively accurate representation of the macroscopic states and some properties of a 

system over long time scales. In a coarse-grained model a small group of atoms is treated as a 

single interactive unit, or bead, where the dynamics of the system is governed by a very 

simple force field. There is an intrinsic difficulty in the parameterisation of coarse-grained 

force fields, related to the fact that complex and diverse interactions must be described by a 

small number of parameters. However, continued development and improvements of 

different coarse-grained models means this method has great potential for modelling large 

complex systems comparable with those found in experiments. 

 

2.2 Potential Energy Functions 

Fundamental to molecular mechanics simulation methods are the forces that govern the 

atomic motions and pair-wise atom-atom interactions. These forces are described by 

empirical or QM derived potential energy functions. The combination of the potential energy 

function with the geometric and energetic parameters used, yield what is known as a force 

field (FF). FF’s are usually developed in the context of a specific environment, such as 

biological milieu which includes water, ions, and macromolecules (proteins, lipids, and 

DNA). Many of these FF’s have been specifically developed to replicate experimental data 

associated with the behaviour of water in these biological environments. Several different 

types of water models exist, fitting into 3 groups, the simple rigid water models, flexible 

water models, and models that explicitly include the effects of polarisation. The simple rigid 

water models typically use between three and five interaction sites, TIP3P and SPC are 

commonly used 3 site models. FFs that have been developed to enable an accurate 

description of proteins in these explicitly solvated environments include the all-atom 
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CHARMM, AMBER FFs that were developed with the TIP3P water model and the all-atom 

OPLS-AA and united-atom GROMOS FFs, which were parameterised with the SPC water 

model. The all-atom FFs, as the name suggests, describe every atom explicitly, while the 

united-atom FFs treat hydrogens bonded to an aliphatic carbon as a single interaction site, 

which can reduce the computational cost of these simulations. 

The functional form of each force field contains energy terms describing the bonded (Ebonded) 

and nonbonded (Enonbonded) interactions between the atoms of a system. The terms 

representing bonded interactions account for the stretching of bonds, the bending of valence 

angles, and the change in the dihedrals produced by the rotation. 

        ∑         
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The nonbonded terms represent the electrostatic and van der Waals interactions. 
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The total potential energy function is in the form of: 

                          

where Ebonded is the contribution from the bonded interactions, Enonbonded is the contribution 

from the nonbonded interactions, to the total energy. 

The first term in the equation describes the stretching of bonds summed over all bonded pairs, 

where each bonded pair is represented by a Hooke’s law formula.    and    are the 

parameters describing the stiffness and reference bond length respectively, and b represents 

the interaction distance between atom pairs. The second term is also represented by a triplet 

of bonded atoms. Similar to the bonded term,    and    are the parameters describing the 

stiffness and reference angle position, respectively, while   represents the angle formed by 

the three consecutively bonded atoms. The final term describes the change in the dihedral 

produced by the rotation around the central bond of any four consecutively bonded atoms; 

these rotations are a periodic function described by the cosine function.   ,  , and   

represent the barrier height for the rotation around the central bond, the periodicity, and the 

phase respectively. 
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The nonbonded potential energy equation, describes the intermolecular or nonbonded 

interactions. Generally, nonbonded interactions between atoms are calculated between atoms 

in separate molecules or between atoms separated by three or more bonds in the same 

molecule. The first part of the equation is the van der Waals term, described by the Lennard-

Jones equation, which models the attractive dispersion and repulsive interactions. The     

parameter is the well depth of the interaction between atoms   and  ,     is the distance 

between the two interacting atoms,   parameter defines the separation for which the Lennard-

Jones energy is zero for the combination of atoms   and  , which is also known as the 

collision diameter. The second part of the nonbonded energy equation models the 

electrostatic interactions between the nonbonded pairs of atoms. The electrostatic interactions 

are based on Coulomb’s law, where the product of the particle charges of the atoms   and  , 

that is    and   , divided by the separation distance of the two atoms and the dielectric 

properties of the medium    results in the electrostatic contribution to the nonbonded energy. 

The partial charges on these atoms are noninteger values that are selected to represent the 

overall charge distribution of a molecule. The sum of the partial charges in a molecule must 

equal the molecules’ net formal charge. While the previous applies generally to all FF’s there 

are some variations that are important to consider. One important difference between FF’s is 

the variable of “improper” dihedrals, which can be applied to maintain chirality or planarity 

at an atom centre bonded to three other atoms, an example is for cyclic molecules like 

benzene. The CHARMM and GROMOS FF’s add a separate term for improper dihedral 

energy that has a quadratic dependence on the value of the improper dihedral, similar to the 

terms for bonds and angles. The additional separate term is important for the united-atom 

GROMOS FF, as it does not include particle positions for the hydrogen atoms bonded to 

aliphatic carbons, the improper dihedral term serves to preserve chirality at these carbon 

centres. 

The energy functions discussed above are not of any value if they are not accompanied with a 

set of parameters that describe the energetic and geometric properties of the interacting 

particles. The optimisation of force field parameters involves adjusting the parameter values 

so the force field is able to reproduce experimental data. This may include the use of 

experimental spectroscopic, thermodynamic, and crystallographic data as well as data 

computed using quantum mechanics methods. Typical examples of experimental data used 

for parameterisation of a force field or the consequent refinement are: vibrational spectra, 

densities, solvation free energies, electron, or X-ray diffraction structures, and relative 
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conformational energies and barrier heights. The most commonly used force fields are the 

AMBER, CHARMM, OPLS-AA, and GROMOS force fields, each based on a different type 

of experimental data, although there is some overlap. The parameters for these force fields 

were extensively optimised with particular emphasis on the treatment of proteins.  

An essential aspect of the use of a force field for biomolecular simulations is the accurate 

treatment of the condensed aqueous environment. When selecting a water model to use for a 

particular study, the most important consideration is its compatibility with the biomolecular 

force-field used. The reason for this is that most force fields have been developed in 

conjunction with a specific water model. For example, AMBER, CHARMM and OPLS have 

been developed with the TIP3P water model, OPLS also with TIP4P while GROMOS with 

SPC and F3C models. The most commonly used water models are TIP3P and SPC models.  

For the studies in this thesis, the GROMOS force field parameter set 43A1 and SPC water 

model were used which emulated the structural features of the protein of interest as seen in 

experiments [52, 78, 80]. 

 

2.3 Molecular Dynamics 

The molecular dynamics simulation technique is one of the most important and widely used 

method for studying the structural time evolution of many particle systems at atomic detail. 

The first molecular dynamics application was performed by Alder and Wainright [97, 98] on 

a system of hard spheres, as a model for atomic-scale systems. This was the first application 

of molecular dynamics and since then it has been applied in a variety of systems, including 

polymers, nano-materials and different biological composites of various size. A 

comprehensive review on some of the application of molecular dynamics can be found in 

reference [99]. 

 

2.3.1 Equations of Motion 

The molecular dynamics simulation method is based on Newton’s law of motion, F = ma. By 

solving the differential equations embodied in Newton’s second law, we are able to obtain a 
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trajectory that describes the positions, velocities and accelerations of the particles as they 

progress over time. 

    
  

  
 

  

  
  

    
   

 

The force    acting on the particles in the system is derived from the potential energy        

which is defined by the selected force field, where                  represents the 

complete set of 3N atomic coordinates. Even though the equation is simplistic in its form, 

there is no analytical solution to the equation of motion for systems of more than two 

particles, so it must be solved numerically. Numerous algorithms have been developed for 

solving these equations, and most are derived from the widely used Verlet algorithm [100], 

with variations including the leap-frog algorithm [101], velocity Verlet [102] and Beeman’s 

algorithm [103]. All algorithms assume that the positions and dynamic properties can be 

approximated as Taylor series expansions.  

 

2.3.2 Periodic Boundary Conditions 

One of the limitations of computational methods is the inability to effectively simulate large 

systems over long periods of time, although sometimes this is necessary depending on the 

problem to be investigated. The correct treatment of boundaries and border effects is crucial 

to simulation methods because it enables “macroscopic” properties to be calculated from 

simulations using a relatively small number of particles. The traditional way to minimise the 

edge effects in a finite system is to apply periodic boundary conditions in such a way that the 

particles experience forces as if they were in bulk fluid. The atoms of the system to be 

simulated are placed into a space-filling box, which is surrounded by translated copies of 

itself. In the two-dimensional example each box is surrounded by 8 neighbours; while in 

three dimensions each box would have 26 nearest neighbours. The coordinates of the articles 

in the image boxes can be computed by adding or subtracting integral multiples of the box 

sides. If a particle leaves the box during the simulations, it will be replaced by an image 

particle that enters from the opposite side. The number of particles within the central box thus 

remains constant. 
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Depending on the system to be examined, there are several space-filling type boxes that may 

be more computationally efficient for running molecular dynamics calculations. There is the 

cubic unit cell, rhombic dodecahedron, truncated octahedrons, and the most general space-

filling shape, the triclinic unit-cell [104]. A typical triclinic simulation box containing a 

model protein in explicit solvent is presented in Figure 7. 

 

2.3.3 Neighbour search and nonbonded interactions 

The most time consuming part of a molecular dynamics simulation is the calculation of the 

nonbonded energies and forces, also known as the long-range electrostatic and Lennard-Jones 

effects. The most popular approach to deal with the nonbonded interactions is to apply the 

minimum image convention [105] where the nearest image of each particle is considered for 

calculation of the short-range nonbonded interaction terms. Another approach is to implement 

the nonbonded cutoff or potential truncation method. When a cutoff is employed, the 

interactions between all pairs of atoms that are further apart than the cutoff value are set to 

zero. This is because the greatest contribution to the potential and forces comes from the 

neighbouring particles, therefore only the closest image is taken into account. The potential 

truncation method introduces a small perturbation to the potential and force calculations, 

rendering it not accurate enough for calculations of long-range electrostatic interactions, and 

Figure 7: Three-dimensional representation of a typical 

simulation box with solvent and protein model shown 

explicitly. 
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can become computationally expensive as the system size increases. To lessen the 

computational burden, various truncation schemes have been developed whereby nonbonded 

interactions beyond a cutoff distance are ignored, and a smoothing function is typically 

applied to ensure continuity in the forces [106]. Such procedures imply severe 

approximations in the case of electrostatic interactions with energy decaying as     ⁄ . As a 

result, these interactions continue to make a substantial contribution to the total system 

energy beyond the typical cutoff length of approximately 10 Å. When periodic boundary 

conditions are being used the cutoff should not be so large that a particle sees its own image 

or the same molecule twice. This has the effect of limiting the cutoff to no more than half the 

length of the cell when simulating atomic fluids. 

The introduction of Ewald sums [107] into biomolecular simulations under periodic boundary 

conditions has solved some of the problems associated with cutoff methods. The system is 

treated as being infinitely periodic, and interaction energies and forces beyond the cutoff 

length are calculated using the Ewald algorithm. This method works in reciprocal space, 

instead of being calculated directly using Coulomb’s law. Although the original Ewald 

formalism is computationally expensive, recent developments based on grid-based treatments 

of reciprocal space, including Particle-Mesh Ewald (PME) methods [108], allow for the 

rigorous treatment of long-range electrostatics in a computationally efficient manner [109, 

110]. 

 

2.3.4 Thermodynamic Ensembles 

The simplest MD simulation of a system under periodic boundary conditions is evolved 

under constant energy and constant volume conditions (NVE). Although thermodynamic 

results can be transformed between ensembles, this is strictly only possible in the limit of 

infinite system size, also known as “the thermodynamic limit”. It may therefore be desired to 

perform the simulation in a different ensemble, such as the canonical ensemble (NVT) and 

isothermal-isobaric ensemble (NPT). Additionally, many experimental measurements are 

made in environments of constant temperature and pressure, and so simulations in the 

isothermal-isobaric (NPT) ensemble are more directly relevant to experimental data. 
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2.3.5 Temperature Coupling 

For several reasons such as solute drift during equilibration, drift as a result of force 

truncation, and integration errors, heating due to external or frictional forces, it is necessary 

to control the temperature of a system. The weak coupling scheme of Berendsen [111] and 

the extended-ensemble Nosé-Hoover scheme [112, 113] are the two most widely used 

temperature coupling methods. 

The Berendsen temperature coupling algorithm mimics weak coupling with first-order 

kinetics to an external heat bath with a given temperature   . The effect of this algorithm is 

that a deviation of the system temperature from    is slowly corrected according to  

  

  
 

    

 
 

which means that a temperature deviation decays exponentially with a time constant τ. This 

method of coupling has the advantage that the strength of the coupling can be varied and 

adapted depending on the simulation requirements. For example, for equilibration purposes 

the coupling time can be set quite short (e.g. 0.01 ps), with minimum influence on the 

system’s dynamics. The heat flow into or out of the system is effected by scaling the 

velocities of each particle every step with a time-dependent factor λ, given by 

  [  
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 (  
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  }]

 
 ⁄

 

The    is close to, but not exactly equal to the time constant   of the temperature coupling. 

This is because the kinetic energy change caused by scaling the velocities is partially 

redistributed between the kinetic and potential energy, and hence the change in temperature is 

less than the scaling energy. In practice, the scaling factor   will always be closer to 1. The 

Berendsen weak coupling algorithm is extremely efficient for relaxing a system at a target 

temperature. 

A method which gives correct description for canonical ensemble simulations is the 

extended-ensemble approach first proposed by Nosé [112] and later modified by Hoover , 

now known as the Nosé-Hoover temperature coupling algorithm. In this method, the system 

Hamiltonian is extended by introducing a thermal reservoir and a friction term in the 
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equations of motion. The friction force is proportional to the product of each particle’s 

velocity and friction parameter ξ. This friction parameter, or ‘heat-bath’ variable, is an 

independent dynamics quantity with its own equation of motion, where the time derivative is 

calculated from the difference between the current kinetic energy and the reference 

temperature. In Hoover’s formulation, the particles’ equations of motion from the equation 

are replaced by  

    
   

 
  

  
  

   
  

 

Where the equation of motion for the motion for the heat bath parameter ξ is given by 

  

  
 

 

 
       

In the equation above,    denotes the reference temperature, while   is the current 

instantaneous temperature of the system, and   determines the strength of the coupling. 

Overall it is important to keep in mind the difference between the weak coupling scheme of 

Berendsen and the Nosé-Hoover algorithm. When applying the weak coupling scheme a 

strongly damped exponential relaxation is obtained, while the Nosé-Hoover approach 

produces an oscillatory relaxation. This means that the actual time it will take to relax the 

system with Nosé-Hoover coupling could be several times longer than the period of 

oscillations selected, which is important to note in the set-up stage of molecular dynamics 

simulations. 

 

2.3.6 Pressure Coupling 

With similar reasoning to that behind the need for temperature coupling, a system can also be 

coupled to a pressure bath to give the correct representation of a molecular system. The two 

most widely used methods are the Berendsen algorithm [111] and the extended-ensemble 

Parrinello-Rahman approach [114]. A key advantage of these methods is that they can be 

combined with any of the temperature coupling methods described previously. 
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The Berendsen pressure coupling algorithm rescales the coordinates and box vector every 

step with a matrix  , which has the effect of a first-order kinetic relaxation of the pressure 

towards a given reference pressure   : 

  

  
 

    

  
 

The scaling matrix   is given by 

        
  

   
   [           ] 

The β value in the equation represents the isothermal compressibility of the system, where for 

water at 1 atm and 300 K,            bar
-1

. Most other liquids have similar 

compressibility values. In the Berendsen algorithm the velocities of the system are neither 

scaled nor rotated. 

For correct calculation of thermodynamic properties the fluctuations in pressure or volume 

are important, so it is advisable these are correctly represented in the ensemble simulated. 

This can be achieved using the Parrinello-Rahman approach, which is similar in form to the 

Nosé-Hoover temperature coupling method. With the Parrinello-Rahman barostat, the box 

vectors are represented by the matrix b. 

   

   
                  

The volume of the box is denoted V, and W is a matrix parameter that determines the strength 

of the coupling. The matrices   and      are the current and reference pressures, respectively. 

The equations of motion are also changed, just as for the Nosé-Hoover temperature coupling. 
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Overall, by implementing the Parrinello-Rahman barostat in combination with the Nosé-

Hoover thermostat an accurate isothermal-isobaric ensemble can be generated. Similar to the 

Nosé-Hoover thermostat, Parrinello-Rahman coupling gives oscillations of the unit-cell 

vectors. Berendsen coupling on the other hand, has the advantage that the fast kinetics of the 
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system will be unaffected and the disadvantage that it is unknown if the desired ensemble 

will be generated. 

 

2.3.7 Bond Constraint Algorithms 

As previously discussed, one of the most demanding aspects of a simulation is the 

computation of nonbonded interactions because for some large systems, millions of pairs 

have to be evaluated for each time step. One way to enhance computational efficiency is by 

extending the time step used for each calculation. However, this will introduce systematic 

errors, as the shortest timescale in biological simulations are the hydrogen bond vibrations at 

1 fs. Fortunately, in most simulations the bond vibrations are not of interest per se, and can be 

removed entirely by introducing bond constraint algorithms such as SHAKE [115] or LINCS 

[116]. Constraints make it possible to extend time steps to 2 fs. 

The most widely used algorithm for large molecules is SHAKE, in which the bonds and 

angles are reset to prescribed values by moving the bonded particles parallel to the old bond 

directions. SHAKE is an iterative method, where all the bonds are reset sequentially to the 

correct length. Because the bonds are coupled, this procedure has to be repeated until the 

desired accuracy is reached. SHAKE is simple, and numerically stable since it resets all 

constraints within a prescribed tolerance; however this method has the drawback that 

solutions may not be found when displacements are large. This is due to the coupled bonds 

being handled one by one, thus correcting one bond may tilt a coupled bond so far that the 

method does not converge. 

A fast, reliable Linear Constraint Solver (LINCS) algorithm for molecular simulations was 

developed by Hess et al. where the constraints themselves are explicitly reset instead of the 

derivatives of the constraints [116]. The derivation of the algorithm is presented in terms of 

matrices; however no matrix multiplications are needed, making the method applicable to 

very large molecules. Although the LINCS algorithm shows the same accuracy as SHAKE, it 

is three to four times faster [116]. 
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2.4 Non-Equillibrium Molecular Dynamics 

The application of external perturbations to classically-propagated systems interacting with 

force fields represents, also referred to as Non-Equillibrium Molecular Dynamics (NEMD), 

has had a broad and rich history in MD. If explicit point charges at sites are missing, it will 

not be possible for the field to couple with the system, unless explicit dipoles are put in place 

on some or all particles, using the dipole formulation of electrostatics [117]. Although a more 

general discussion of NEMD is beyond the scope of this thesis, the general concept is to 

apply a forcing function to the system Hamiltonian 

                                   (1) 

or, equivalently, the equations of motion, 

   ̈                      where        
         (2) 

                  and                          (3) 

Earlier attempts in NEMD were motivated by the desire to estimate transport coefficients, 

given that the use of linear-response theory or time-correlation functions can be subject to 

statistical error; these have included shear flow, heat and mass flow, as discussed in more 

detail by Evans and Morriss [118, 119] and Hanley [120]. The intellectual foundation of the 

type of external electric-field forces applied to point charges (cf. eqn (2) and (3)) dates back 

40 years to 1975 in Ciccotti and Jacucci’s seminal study [121], wherein an external force was 

applied to charged Lennard-Jones particles under periodic boundary conditions (PBC) to 

induce translational motion and record steady-state drift velocities. In a subsequent visionary 

article, Ciccotti et al. then performed NEMD using a Hamiltonian perturbation similar to eqn 

(1) (with resultant E forces as in eqn (1) and (3)), except with the result of induced 

translational motion of oppositely-charged ions in a binary electrolyte solution in opposing 

directions [122]; this field form also allowed for time-dependence [122], ‘paving the way’ for 

future work in alternating electric and EM fields. Heyes and Clarke also applied static fields 

to KCl electrolytes in contact with rigid surfaces via MD in 1981 [123], noting charge 

separation. These early studies were the first de facto ones with external electric fields 

applied, albeit to induce translational motion in explicitly-charged particles (with no dipoles). 
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2.4.1 Electromagnetic Field Modelling Studies 

In 1982–1983, Evans [124-128], and Evans and Powles [129], were the first to report the 

application of electric fields to  model dipolar liquids under PBC (with each overall particle 

or molecule being electroneutral but explicitly dipolar), rather than as explicitly charged 

overall [121, 122]; Evans and Powles considered the example of a diatomic, hydrogen 

chloride, with individual atomic point charges [129] heralding the first example of combined 

explicit rotational and translational motion in an external electric field. These studies [124-

129] were for pure electric fields, primarily static in nature, although also discussing 

alternating (similar to E in eqn (3)) [126, 127] and this field coupling (along the lines of eqn 

(1)–(3)) induces rotational motion directly via an applied (formal or de facto) torque [124-

129], albeit roto-translational coupling will serve inevitably to induce some degree of 

‘secondary’ translational diffusive motion. The transient and steady-state dipolar response, 

inter alia, was studied [124-129]. Building on the foundations of time-varying fields of 

Ciccotti et al. in the late-1970s [122] and Evans in the early- to mid- 1980s [126, 127] Zhu et 

al. made impressive advances in 1988-1991 in modelling constant-amplitude laser fields on 

bulk water via NEMD (using either a sine- or cosine-wave variant of eqn (2) and (3), without 

the magnetic component), studying both structural and dynamical properties [130-132]. In 

2004, Ohkubo et al. discussed subsequently NEMD of an aqueous solution of pyrimidine by 

modelling a laser field as a pure alternating electric field (cf. E in eqn (3)) [133], studying 

field-induced pyrimidine alignment. In 2002-2003, NEMD simulation was used to study 

time-dependent response of salts and ionic liquids to alternating pure electric fields, in the 

microwave frequency range by Tang et al. [134] and Petravic and Delhommelle [135]. The 

first reported case of application of an external EM field to NEMD was by Evans in 1991 

[136], who studied magnetisation, finding a characteristic dependence thereof on frequency; 

it was suggested that this can be used in principle for (non-linear) spectroscopy for a range of 

materials. In that study [136], as well as [128], Evans discussed dispersion induced 

anisotropy in orientation in liquids due to non-resonant laser fields, whose high strength leads 

to non-linear response. In 2003–2004, English and MacElroy reported microwave- and 

infrared-range EM fields applied in NEMD of heating in water (without any thermostat), [90] 

dipolar response and diffusion enhancement [89] and retarding crystallisation kinetics of 

clathrate hydrates [137]. 
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2.5 Computational Approach   

In this thesis, the general computational approach applied to investigate the effects of static 

(Chapter 3) and oscillating electric fields (Chapter 4) is described below. Specific 

information relevant to individual study are described in detail in the respective chapters. The 

protein model for all of our simulations was the apoC-II derived peptide apoC-II(60-70) 

(60MSTYTGIFTDQ70)[83]. Different starting conformations and arrangements of the 

peptide were investigated, detailed in the individual results chapters. 

Explicit solvent MD simulations were conducted using the GROMACS 3.3 

(www.gromacs.org) simulations package. The interatomic interactions were treated using the 

GROMOS force field parameter set 43A1 and the SPC water model. Long-range electrostatic 

interactions were evaluated using the Particle-Mesh Ewald (PME) method with a cutoff of 10 

Å and a spacing of 1.2 Å for the FFT (fast Fourier transform) grid. The short-range neighbour 

list was cutoff at 10 Å. The peptide monomer was enclosed in a periodic cubic box 

sufficiently large to avoid significant cross-cell interactions with a minimum distance 

between the solute and the edges of the box of 12 Å. The simulation box was solvated with 

~4080 SPC water molecules, corresponding to water density ~1.0 g/cm
3
. The apoC-II(60-70) 

charge of -1 was compensated by adding Na+ counterion to ensure a neutral simulation cell. 

The MD simulations were conducted in the constant particle number, pressure, and 

temperature (NPT) ensemble with the target temperature and pressure maintained using the 

Berendsen [111]  thermostat and barostat. The solvent and protein were coupled separately to 

a temperature bath at 300 K with a temperature coupling constant of 0.1 ps. Constant pressure 

of 1 bar was maintained uniformly in the system with a pressure-coupling constant of 1.0 ps. 

The fast degrees of freedom were neglected in our simulations and all-bond lengths were 

constrained using the LINCS algorithm [116], which enabled an integration time step of 2 fs 

to be used. The whole system was initially energy-minimised to remove steric clashes, using 

the steepest descent approach. 

Here, the non-equilibrium molecular dynamics included an external electric or EM force. The 

theoretical background and application of the external electric and EM field in computational 

simulations are described in detail in the previous section and a recent review [7]. In 

summary, for the electric- (E) field simulations, the             force is applied to each 

partial charge  , with charge value   . Newton’s equation of motion then becomes    ̈  

http://www.gromacs.org/
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f         where the force f  is due to the classical molecular mechanics interatomic 

interactions (force field) between all the particles, and the electric-field vector E    remains 

constant (i.e., formally a statically applied, time-independent field). For external EM field 

conditions, Newton’s second law becomes    ̈   f    E         B   , where the 

force f  is due to force field interactions between all the particles, and    is the velocity of the 

individual particle. The electric- (E) and magnetic- (B) field strengths are related by 
    

    
  , 

where c is the speed of light. The individual forces act along the mutually orthogonal z- and 

y- directions respectively, represented as                            and      

                     , resulting in the plane of polarisation being in the x-z plane [89, 

90]. 

Analysis of the trajectories, including Radius of gyration and N-C terminal distance, was 

performed with the Gromacs analysis tools, while visualisation of system geometries and 

interactions was achieved using Visual Molecular Dynamics (VMD) environment [138]. The 

total dipole moment of the protein was determined using      ∑        
 
   , where qi is the 

charge on atom i, ri is the position of atom i with respect to the centre of mass of the protein, 

and N is the number of protein atoms. The autocorrelation function      〈         〉 

〈     〉 of the total dipole moment M(t) was used to provide insight into the dynamics and 

interrelation of the peptide dipole moment relative to the field over time. 
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Chapter 3 

Effects of (static) 

electromagnetic fields on the 

structure and dynamics of 

apoC-II(60-70) peptide 

3.1 Introduction 

As described in detail in Chapter 1 the consequences of exposure of basic biological systems, 

including water, proteins, DNA, cell membranes, and entire cells, to EM radiation in the RF 

range have been a subject of intensive debate [1-8, 139]. It has become evident that the 

interaction between a molecular system and external EM field can give rise to a variety of 

unusual phenomena that can affect the cohesion and kinetics of matter over multiple length 

and time scales. Specifically to proteins, the mechanisms of non-thermal EM field effects are 

not well understood; however, it is believed that fields of specific frequency and strength can 

cause structural changes which can alter their conformation and, ultimately, their function 

[13, 14, 16-18, 140]. Changes in conformation can lead to misfolding and aggregation of 

proteins into insoluble aggregates or amyloid fibrils, which have been linked to debilitating 

diseases, such as atherosclerosis, Alzheimer’s, Parkinson’s, and others [2, 141]. Chapter 1 

summarises the studies investigating EM field effects on proteins which have shown quite 

surprising and contradictory results. Some have suggested reversible changes in protein 

activity [5], while others have shown different field strengths and frequencies to cause 

opposite effects, from denaturation [3, 20, 140] to “freezing” of certain conformational states 

due to dipole alignment along the field direction [2, 3]. Therefore, these effects can contribute 

to the loss of native protein conformations and promote the development of amyloid fibrils 

[87, 141, 142]. In contrast, recent work has suggested that high-frequency RF fields are 

capable of destroying amyloid fibrils in Alzheimer’s patients [143]. As stated in Chapter 1, 
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these contradicting results are indicative of a gap in our knowledge of RF biophysics and 

further studies may reveal novel applications of RF fields that could include treatment of 

diseases. 

Computer modelling provides a unique opportunity to apply a systematic approach to better 

understand and quantify the immediate response mechanisms of biological molecules to EM 

radiation and monitor their dynamics at all-atom detail with femtosecond time step 

resolution, which is not currently accessible to experiments. In the present work, in contrast 

to most previous published papers in this area, wherein only electric-field (E) forces were 

taken into consideration, we include the explicit magnetic force (B) in a direction 

perpendicular to the electric field, which enables us to study the comprehensive effects of 

electromagnetic radiation. Although the electric-field strength is orders of magnitude greater 

than that of the magnetic component, the cumulative nonthermal effects of electric field 

versus EM fields on proteins have not been explored previously and present a computational 

challenge. The choice of field types investigated here (EM vs electric field) was motivated by 

the need to reveal systematically any role of the magnetic Lorentz-force contribution to the 

structure and dynamics of EM field-exposed biomolecules in physiologically relevant 

(aqueous) environments, in atomistic detail. 

 

3.2 Computational Details  

Non-equilibrium (electric-/EM field-applied) simulations were performed, starting from the 

wild-type apoC-II(60-70) structure (Figure 8) from different initial orientations with respect 

to the field direction and velocities (6 simulations per system/condition). For comparison and 

validation of our previous results [78, 144], equilibrium (zero-field, or ambient) simulations 

were also repeated starting from the same 6 starting orientations. Upon completion, the 

simulations were amalgamated in a single (ensemble) trajectory per field strength for 

analysis. The field strengths ranged from 0.7V/nm to 7x10
-6

 V/nm, and a total ~45 μs of data 

were collected for analysis. To compare and contrast the magnetic contributions, we mimic 

an application of a very-low frequency (long-wavelength) EM field, as opposed to an 

alternating electric field, and static electric field simulations of microsecond duration [7]. A 

“static” EMF over this simulation duration is equivalent to a formal EM field with frequency 

in the ~10-50 kHz range, in terms of cos ωt “decaying” from 1 to ~0.5 (or more) over the 
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individual simulation’s duration. It should be noted that the larger of the field strengths 

applied in this study are several orders of magnitude larger than those applied typically, either 

experimentally or industrially. Previous simulation studies have shown it is necessary to use 

field strengths of the order of 1 V/nm to observe tangible effects within the limited time 

scales amenable to simulation [7, 14, 140]. With this in mind, this work provides a systematic 

comparison of electric versus EM field simulations in the intermediate to low strength range 

(i.e., 0.7 to 7x10
-6

 V/nm) over microsecond time scales, which has not been reported 

previously. However, the simulations at the very low field strengths <7x10
-4

 V/nm showed no 

tangible differences vis-à-vis the zero-field case over the time scales considered and were not 

investigated further. 

The evolution of each system was monitored and most frequently sampled conformations 

were classified using the single-linkage clustering algorithm [145]. In this “bottom-up” 

geometric clustering approach, a structure is assigned to a cluster when its root mean square 

deviation (RMSD) is below a predefined cutoff. The appropriate cut-off value was identified 

by repeating the clustering analysis for a range of RMSD values in the ambient (zero-field) 

simulations until the top 3 most populated clusters comprised over 50% of structures used for 

the clustering analysis. An all-atom RMSD cutoff of 0.18 nm was found appropriate and was 

applied to all ensemble trajectories to identify the structural differences between the ambient 

and in-field simulations. Visualisation of system geometries, interactions, and dipole 

orientation was achieved using the Visual Molecular Dynamics (VMD) environment [138]. 

The total dipole moment of the protein was determined as M    ∑   r    
N
   , where    is 

the charge on atom  , r  is the position of atom   with respect to the centre of mass of the 

protein, and   is the number of protein atoms. The autocorrelation function      

Figure 8: ApoC-II(60-70) wildtype peptide monomer (PDB code 1SOH) 
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〈M    M   〉 〈M    〉 of the total dipole moment   was used to provide insight into the 

dynamics and interrelation of the peptide dipole moment relative to the field intensity over 

time. 

 

3.3 Results and Discussion 

Extensive MD simulations in explicit solvent were performed to explore the structural 

behaviour and dynamics of the amyloidogenic apoC-II(60-70) peptide in ambient and applied 

external-field conditions, including EM field and electric field of different strengths. The 

water structure and mechanisms of interactions for each field condition were also examined. 

Clustering analysis using the linkage technique was performed to identify the preferred 

structures for the most frequently sampled conformations for each system. A structure was 

assigned when its all-atom RMSD was less than 0.18nm relative to all members of that 

cluster. The total number of clusters obtained and the population of the most frequently 

sampled structure for each field strength are shown in Figure 9. 
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Figure 9: Schematic diagram showing the total number of clusters (represented 

by the centre of each circle relative to the y-axis) sampled at different field 

strengths for the (a) EM field and (b) electric field simulations. Each field 

strength (V/nm) is represented by colour; 0.0007 (grey), 0.007 (blue), 0.04 

(green), 0.07 (yellow), 0.4 (orange), and 0.7 V/nm (red). The ambient (field-free) 

MD results are also shown for comparison (black). The circle size (to scale) 

represents the population of the most persistent cluster. Representative structures 

of the most populated clusters are shown as insets. 
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The cluster analysis of the ambient (field-free) ensemble trajectory identified three highly 

sampled clusters (with populations >10%), with the most-populated clusters comprising 44% 

of all MD-sampled structures. Despite the more substantial sampling than previously reported 

[78, 144], the typical representative apoC-II(60-70) structure of the highest populated cluster 

was a β-hairpin conformation, deemed as an intermediate state for fibril formation in our 

earlier work [144]. Cluster analysis results from the EM field and electric field simulations 

exhibited similar trends, in terms of the total number of clusters explored per field strength, in 

spite of some differences in structure and cluster populations. The simulations of low field 

strengths (<0.007 V/nm) showed clusters with predominantly β-hairpin conformations, 

although the EM field simulations produced more populated clusters (71% and 57% for 

0.0007 and 0.007 V/nm, respectively), compared to the electric field simulations (45% and 

46%, for the same field strengths), which had similar populations to the ambient system. 

This suggests that the EM field may possess the ability to stabilise (or “trap”) the peptide in 

certain conformations; however, rationalisation of this observation requires further insight 

into the mechanisms of EM field interactions with the peptide (discussed later). As the field 

strength increased, the effects of the field on the peptide conformation became more 

apparent. The peptide became more dynamic and sampled a large number of clusters, where 

the most populated clusters compromised 25% (0.04 V/nm) and 37% (0.07 V/nm) of 

structures from the EM field simulations, and 27% (0.04 V/nm) and 15% (0.07 V/nm) from 

the electric field simulations. In this medium field strength range (0.04-0.07 V/nm), the most 

populated clusters from the EM field simulations consisted predominantly of twisted 

conformations, wherein the peptide retained the loop region at Gly65, and the N- and C-

termini are separated, while the electric field simulations exhibited structures with β-hairpin-

like conformations. Such increased peptide mobility and conformations devoid of β-hairpin 

elements were determined previously to correspond to typical fibril-inhibiting characteristics 

of apoC-II peptide [78, 144]. The difference in cluster populations and structures sampled 

across all EM field strengths and compared to electric field simulations suggests that the 

magnetic contribution in EM field simulations may be small, but non-negligible; however, 

the observed effects arising as a consequence of limited conformational sampling can also not 

be disregarded. As expected, the higher-strength EM and electric field (>0.3 V/nm) had the 

most significant effect on the peptide conformations. The peptide adopted mostly extended 

structures, for which the whole peptide dipole aligned along the applied field direction for 

over 94% of the MD trajectory. Similar dipolar alignment and enhanced conformation-
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sampling kinetics have been observed for alanine peptides, and clusters thereof, as a function 

of EM field strength [146]. 

To obtain further insight into the conformational landscape induced by each field type and 

strength, a free-energy map (FEM) of the peptide’s radius of gyration (Rg) was determined, as 

a function of N-C terminal distance. The free energy was calculated using -kBT        , 

where    is Boltzmann’s constant, T is temperature, and Ni is the total number of structures 

contained within a cluster i of the two properties. The most frequently visited regions at each 

field strength were identified by calculating the average of each property from the structures 

contained within the most populated cluster of each EM/electric field ensemble simulation. 

The ambient (zero-field) simulations exhibited a single energy well populated by structures 

predominantly in a β-hairpin conformation, with an average terminal distance of 0.41 ± 0.06 

nm and Rg of 0.61 ± 0.02 nm, as seen from the clustering analysis. The inherent flexibility of 

the peptide is demonstrated by the evident smearing of the FEM showing regions of higher 

energy, i.e., less-populated states of larger Rg and terminal separation. In contrast, the 

applied-field simulations identified two low-energy valleys connected by less populated 

transitions states. The high-field strengths (>0.3 V/nm) induced elongation of the peptide 

conformation, where both EM and electric field simulations sampled similar regions on the 

FEM with ~3.5 nm average N-C terminal distance separation and ~1.09 nm, average Rg. In 

the medium-strength field range (0.04-0.07 V/nm), we observed diverse conformations, 

which provide the transitional pathway between the elongated (high-field) and compact (low-

field) peptide states. Here, we also observe some differences between the EM- and electric 

field-sampled structures. Specifically, the electric field simulations exhibit a broader 

transition pathway between the two low energy states, indicating external electric fields of 

0.04-0.07 V/nm strength induce significant structural dynamics in the apoC-II(60-70) 

peptide, preventing it from stabilising in a particular conformation, as evidenced by the large 

number of clusters obtained in our cluster analysis (vide supra). The broad landscape sampled 

for these field strengths, together with the contributions of individual simulations to the 

overall FEM. In contrast, the EM field simulations exhibited narrower transitional pathways, 

confirming our initial observation that the applied EM field was able to stabilise, or trap, 

certain conformations of the peptide. This is demonstrated here by the highly populated 

cluster (37%) observed in the 0.07 V/nm EM field that features structures with average N-C 

terminal separation of 1.86 ± 0.15 nm, compared to electric field simulations where the most 

significant cluster had only 15% and structures with terminal separations of 0.64 ± 0.13 nm. 



41 

 

The distinct structural preference induced by the 0.07 V/nm EM field simulations is 

demonstrated by the presence of two “hot spots” along the transition pathway (~3 nm N-C 

distance/~0.97 nm Rg and ~1.8 nm N-C distance/~0.61 nm Rg). At the low field strengths 

(<0.007 V/nm), the peptide sampled the same region on the FEM as in the ambient 

simulations, populated by β-hairpin structures with average terminal separations of ~0.45 ± 

0.08 nm and 0.44 ± 0.07 for the EM and electric field simulations, respectively. Similar to the 

medium field strength, the EM field simulations exhibited significantly more stable clusters 

compared to the electric field and ambient simulations, although with similar structural 

features. 

 

3.3.1 Aromatic Angle Distribution 

Hydrophobic interactions, especially those between aromatic side-chains, have been shown to 

play an important role in the structure and function of proteins, and, more recently, in the 

formation and stabilisation of amyloid fibrils. In our previous work, we have established that 

the two aromatic rings (Tyr63 and Phe67) present in the apoC-II(60-70) peptide play a crucial 

role in the peptide’s mechanism of aggregation [144]. Importantly, we found that there are 

distinct differences in the aromatic side-chain orientations between fibril-forming and fibril-

inhibiting states of the peptide. We identified that under fibril-inhibiting conditions, the 

aromatic rings adopt conformations where Tyr63 and Phe67Ile are on the same side of apoC-

II(60-70) peptide, whereas structures obtained under fibril-favouring conditions have 

aromatic rings on the opposing sides, thus enabling the π-π stacking interactions between the 

neighbouring peptides leading to the fibril growth [78, 82, 144]. Here, the relative 

orientations Tyr63 and Phe67 in apoC-II(60-70) under EM and electric field exposure were 

determined by calculating the average angle between the Cα-Cγ vector of Tyr63 and the Cα-

Cγ vector of Phe67. 
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Figure 10: Free energy map (FEM) as a function of the 

radius of gyration (x-axis) and N-C terminal distance (y-

axis) of the apoC-II(60-70) peptide under (a) ambient, (b) 

EM, and (c) electric field conditions. The location of the 

most-populated cluster on the FEM from the ambient 

simulation is labelled with symbol (⇧). The most-

populated cluster from each simulation of varying field 

strength is identified by a number: (1) 0.7 V/nm, (2) 0.385 

V/nm, (3) 0.07 V/nm, (4) 0.0385 V/nm, (5) 0.007 V/nm, 

(6) 0.0007 V/nm, where the EM field simulations are 

labelled with unprimed and electric field simulations with 

primed numbers. 
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Figure 10 shows the percentage of sampled structures with respect to the relative orientation 

of the aromatic rings of the peptide in the two most-populated clusters identified in each 

simulation. A total of 40 bins were used over the range 0°-180°. Angles <90° indicate that 

both rings are on one side of the peptide, while angles >90° indicate that the rings are on the 

opposite sides. The results from the high-strength applied-field simulations (>0.3 V/nm) 

showed structures with a broad distribution of the angles between the aromatic pairs, as 

expected due to the elongated conformations sampled at this level of exposure. The 0.07 

V/nm trajectories showed peptide preference for angles between the aromatic rings of less 

than 90°, with peaks seen at 30° and 50° for the EM and electric field simulations, 

respectively. This suggests that apoC-II(60-70) adopts fibril-inhibiting structures at this 

“intermediate” field range strength. As the applied field strength approaches the lower field 

range, there is an evident shift in the in the aromatic-angle orientation preference to the 

opposite peptide faces. The results for the most populated cluster showed that in the EM and 

electric field and <0.04 V/nm strengths, apoC-II(60-70) prefers a relative aromatic ring 

orientation angles larger than 90°, with peaks seen at ~140°, despite the differences in 

structural stability between the different field types and strengths. This behaviour is similar to 

the structures sampled in ambient conditions and suggests that low-strength fields induce 

fibril-forming characteristics of the apoC-II(60-70) peptide. The diverse aromatic angles 

observed from the EM field compared to the electric field simulations suggest that although 

the two different fields cause the peptide to adopt similar structures, the EM field has a more 

evident effect on the orientation and dynamics of the aromatic residues. Figure 11 also shows 

a shift in aromatic angle preference between the highest and second most populated cluster 

for most field strengths except the EM field of 0.07 V/nm, which retained the orientation 

angles at <90° and 0.007 V/nm, which showed more frequent occurrence of structures with 

aromatic side-chains on opposite face of the peptide. This highlights further that the EM field 

simulations sampled two different conformational energy states, confirming the clustering 

and FEM analyses discussed previously. 
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3.3.2 Peptide and water dipole orientation 

The applied EM and electric field external fields have a direct effect on the molecule’s dipole 

moment, which contributes to the transitional and rotational motion exhibited by the protein 

and water. The dipole moment of the starting (native) structure of apoC-II(60-70) peptide is 

~129 D. In the presence of high field strengths (0.7 V/nm), the resultant elongated 

conformation of the peptide exhibited a dipole moment of ~254 D. In contrast, a decrease in 

the field strength resulted in a reduction of the dipole moment as the peptide was able to 

adopt the inherent β-hairpin-like structures. At 0.0007 V/nm, the β-hairpin conformations of 

apoC-II(60-70) had a dipole moment of ~53 D, similar to the dipole moment of ~56 D 

Figure 11: Distribution of aromatic-ring orientation in apoC-II(60-70) peptide under (a) EM field and 

(b) electric field exposure. Histograms of the relative aromatic ring orientation (x-axis) of residues 

Tyr63 and Phe67 in two most populated clusters (labelled as 1 and 2) for each field strength (y-axis). 

Typical structures illustrating the most frequently sampled relative ring orientations of apoC-II 

peptide are represented as insets. 
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calculated under ambient (zero-field) conditions. Figure 12 shows the peptide dipole 

autocorrelation function, as well as the water dipole-moment order parameters (with respect 

to the z-axis, along which the electric-field component is applied), providing insight into the 

dynamics and interrelation of the peptide/water dipole moment relative to the field strength 

over time. Peptide- and water-dipole orientations in the low- and high-strength fields are also 

illustrated by representative snapshots from the simulations. The results of both field types 

demonstrate that the peptide dipole moment is highly correlated for high field strengths (>0.3 

V/nm), revealing the persistent alignment of the peptide dipole with the applied field. As the 

field strength is decreased to ~0.03 V/nm, there is also a gradual decrease in the dipole 

correlation. The low-field strengths (<0.007 V/nm) exhibit no correlation of the peptide 

dipole moment, in line with the field-free (ambient) simulations where the field had no effect 

on the peptide dipole moment. Similarly, the water dipole experiences a reduction in order 

and alignment as the field strength is reduced, and at the extremely low field strengths it 

adopts the characteristics of bulk water. This is in line with previous observations of EM field 

effects on water molecules in the immediate environment (solvation layer) of hen egg white 

lysozyme [140], as well as for studies of bulk water [89]. There was no noticeable difference 

in the peptide and water dipole moment structuring between the applied EM and electric 

field. Overall, the dipole analysis showed that field strengths higher than 0.007 V/nm are 

required for the system to experience any noticeable effects on dipole orientations. 
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Figure 12: Peptide dipole autocorrelation function with water (a) and water dipole-moment order 

parameter (b) shown for EM and electric field simulations (solid vs. dotted lines, respectively). 

Representative structures are depicted for the peptide and the hydration layers of the systems exposed 

to (c) 0.7 V/nm and (d) 0.0007 V/nm fields. The peptide and water dipole moments are shown as 

yellow and green arrows, respectively. The direction of the applied fields E (electric) and B 

(magnetic) is shown by arrows. 
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3.3.3 Peptide-water interactions 

It is also important to understand the peptide interactions with water when exposed to 

different field types and strengths. Peptide-water interactions and structuring of water around 

the peptide play a significant role in peptide’s conformation, dynamics, and, ultimately, 

function. Specific interactions between the apoC-II(60-70) peptide and solvent were 

evaluated by calculating the radial distribution functions (RDFs) over the equilibrium stage of 

the simulations (cf. Figure 13). The RDFs between apoC-II peptide and water exhibit three 

distinct peaks: the first two at ~0.18 and ~0.30 nm indicated hydrogen bonding between 

water and the peptide, leading to formation of the first hydration shell, and the second at 

~0.45 nm, suggesting a second hydration shell. The sharp water-peptide peaks indicate a 

persistent structuring of water around the peptide, with a decrease in water packing as the 

field strength decreases. This suggests that the peptide is more solvated at the higher field 

strengths, in the sense of a greater local density of water in the immediate solvation layers. 

Indeed, this effect is much influenced by its then-preferred (dipole-) extended conformations, 

causing the exposure of all residues, including hydrophobic residues. In contrast, the low-

strength fields allow the peptide to fold, or “coil”, into its inherent β-hairpin conformation, 

where it becomes less solvent exposed. There are no obvious differences between the 

peptide-water RDF profiles from the EM and electric field simulations except for at 0.07 

V/nm, where we observe a minor disparity. This suggests that the contributions of the 

magnetic forces in the EM field simulation have a negligible effect on the local structuring of 

water in the solvation layer. 

Figure 13: Peptide-water interactions represented by radial distribution functions of (a) peptide 

(NHO)-water (H) and (b) peptide (NHO)-water (O). The RDFs from EM field simulations are shown 

in bold lines, and electric field simulations in dashed lines. The line colour is representative of the 

field strength: 0.7 V/nm (red), 0.385 V/nm (orange), 0.07 V/nm (yellow), 0.0385 V/nm (green), 0.007 

V/nm (purple), 0.0007 V/nm (grey), and ambient (black). 
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3.4 Conclusion 

In this Chapter we employed all-atom non-equilibrium dynamics simulations to study the 

response mechanisms of the amyloidogenic apoC-II(60-70) peptide in aqueous solution to 

external electromagnetic and electric fields of different strengths. Our results showed that the 

peptide (and water) behaviour is strongly influenced by the field strength. High field 

strengths (>0.04 V/nm) caused the peptide to elongate and be devoid of its inherent β-hairpin 

structure, which is attributable overwhelmingly to the dipole-alignment effects of the electric-

field component. In the “intermediate” field strength range, between 0.04 and 0.07 V/nm, the 

simulations showed intriguing behaviour by the apoC-II(60-70) peptide, where some 

differences between the EM- and electric field-induced structures became apparent. The 

peptide was significantly more dynamic in this field range, and in the EM field simulations, 

in particular, adopted conformational characteristics typical for its fibril-inhibiting behaviour, 

in that well-separated N- and C-termini are prominent, together with the aromatic-ring 

location’s preference for the same face of the peptide. The simulations also revealed 

differences between the EM and electric field effects on the peptide free-energy landscape, 

especially whilst transitioning between respective high- and low-strength fields. Specifically, 

the EM field was able to constrain or “trap” the peptide in a twisted (non-β-hairpin like) 

conformation and limit the available conformational space, in contrast to the electric field 

simulations where the peptide was found to be more dynamic and adopted predominantly β-

hairpin-like structures. The low-strength simulations (<0.007 V/nm) produced stable β-

hairpin peptide conformations, similar to those seen in ambient conditions. The aromatic 

Tyr63/Phe67 pair showed preference for the opposite faces of the peptide, suggesting a fibril-

forming peptide capacity at such conditions. It has to be noted that despite our extensive 

simulation times and relatively thorough sampling, it remains an open question whether the 

nuances in the peptide’s conformational preferences observed between the electric and EM 

field are indeed caused by the additional magnetic force or are caused by the finite nature of 

the simulations, at least until it becomes possible to identify such atomic-level quirks 

experimentally. Our theoretical analysis of the peptide and water dipole moments, including 

the structuring of water around the peptide as a function of the field strength, demonstrated 

that at least a 0.007 V/nm field is required for any field effects to be observed. Most 

importantly, our study suggests that EM field could be considered for designing alternative 

treatments of amyloid diseases due to its inhibiting effect on the amyloidogenic peptide 

conformations for the intermediate strength, whilst the very high- and low-field strengths 
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stabilising amyloid favourable peptide conformations could be employed for engineering 

well-ordered peptide assemblies for other applications. 
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Chapter 4 

Conformational response of an 

amyloidogenic peptide to 

oscillating electromagnetic 

fields: Effects of the field 

frequency and strength 

4.1 Introduction 

While studies of static electric field effects can be quite useful, as demonstrated in Chapter 3, 

fields emitted by the ubiquitous radio frequency EM devices are oscillating with continuously 

alternating strength and a frequency specific sinusoidal modulation. This requires a multi-

parametric approach to accurately elucidate the effects of EM field exposure from RF 

devices. The effects of oscillating EM and electric fields on biological systems and responses 

have been previously investigated using computer simulations, although at higher field 

strengths and shorter timescales than those presented here. For example, Budi et al. studied 

the influences of oscillating electric fields of varying frequency (1.225, 2.45 and 4.9 GHz) 

and strength (0.01 to 1.0 V/nm) on the structure of the insulin chain B peptide and complete 

insulin monomer [2, 3, 96, 147]. Their results showed that a 2.45 GHz oscillating field can 

cause protein denaturation at lower field strengths compared to static fields of the same 

effective strength, where the latter were seen to have a stabilising effect on the helical regions 

of the protein. Interestingly, the low strength fields of the lower 1.225 GHz and higher 4.9 

GHz frequencies induced similar behaviour in the peptide to that of the oscillating field of 

2.45 GHz frequency. This suggested that the oscillatory nature of the electric field has a more 

destabilising effect on the protein structure relative to the static fields of the same effective 

strength. At higher frequencies, the high rate of the field direction change was suggested to 
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accelerate the destabilization of the peptide structure, as the peptide was exposed to more 

instantaneous changes of the electric field strengths. Simulations on the complete insulin 

monomer [3], showed increased stability under ambient and thermal conditions due to the 

stabilising effect of chain-A compared to the isolated chain B. The exposure to an oscillating 

field resulted in reduced conformational change of the monomer as all three helical regions 

tried to align with respect to the applied field which was energetically more demanding, and 

the protein response was ultimately determined by the applied frequency. The 1.225 and 2.45 

GHz fields were able to induce the loss of secondary structure, while the 4.9 GHz field had 

no effect, possibly due to the oscillations of the field being too rapid for the protein to be able 

to follow and result in stable conformational changes. 

In a similar study, English et al. examined the effects of EM fields of high strength (1.0-5.0 

V/nm) and frequency (50-500 GHz) on the structure and dynamics of hen egg-white 

lysozyme (HEWL) protein and compared it to protein behaviour at elevated (400 and 500 K) 

temperatures conditions [14]. They observed the application of fields greater than 5.0 

V/nmrms led to more extensive protein unfolding than the very high temperature of 500 K. 

The authors also investigated the effects of microwave frequencies (2.45 GHz) and lower 

field strengths (0.1 to 1.5 V/nmrms) on the same protein [15]. Under these conditions, they 

noted significant non-thermal effects occurring at field strengths above 0.1 V/nm, which 

included marked changes in the protein’s secondary structure relative to ambient conditions. 

The majority of structural changes were found to take place instantaneously (within the first 

0.2 ns of field exposure), due to the rearrangement of hydrogen bonds, while charged 

residues were found to undergo more localised motions, especially in solvent exposed regions 

that were adjacent to the active site, leading to greater hydrogen bond disruption. A separate 

study also looked at the effects of static [148] and oscillating fields [149] on the chignolin 

peptide to investigate the effects of static fields of 0.1 and 1.0 V/nm field strengths, and 

oscillating fields of 0.30 and 111 GHz at 1.0 V/nm.  Low frequency, or static electric fields of 

high strength were capable of distorting the peptide’s structure, while high frequency fields 

did not induce conformational changes. It is evident from the presented works that the nature 

of the interactions between oscillating fields and proteins is strongly dependent on the protein 

sequence, field conditions and simulation time scales. In order to gain further insight into the 

protein response to EM radiation it is necessary to systematically examine the behaviour of 

proteins and their solution environment under various EM field exposure conditions in 

atomistic detail while benchmarking it to the protein behaviour under ambient conditions. 
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Here, we extend our previous work on static EM field effects [83] into investigating the role 

of frequencies in the range of radio-frequency (1.0 and 2.5 GHz) and high frequency (5.0 

GHz) commensurate with the upcoming rollout of 5G telecommunication networks, on the 

apoC-II(60-70) peptide conformation and dynamics for which we have accumulated ample 

benchmarking data for comparison [52, 60, 76-78, 82, 83]. Using these data and following 

from our recent study of the static field effects [83] on this peptide, we present a systematic 

study of the EM frequency effects on the structure, dynamics of the amyloidogenic apoC-

II(60-70). 

 

4.2 Computational Details 

In this chapter we used two different starting structures of the apoC-II(60-70) peptide (wild-

type and ß-hairpin) to alleviate any conformational “bias” of the initial structure and increase 

the conformational sampling (Figure 14). The native conformation of monomeric apoC-II(60-

70) (
60

MSTYTGIFTDQ
70

) was extracted from the NMR structure of human apoC-II (PDB 

code 1SOH), while the hairpin conformation was taken from stable clusters formed in static 

field simulations presented in Chapter 3, also deemed as most stable solution structure under 

ambient conditions [83]. 

Non-equilibrium simulations were performed from the two different starting structures (wild-

type and β-hairpin) and two different starting orientations to reduce any initial structural bias 

and enhance the conformational sampling. Field frequencies of 1.0, 2.5 and 5 GHz were 

simulated at different field strengths. The effective RMS field strengths investigated, 

      
    

√ 
 , were commensurate to those applied in our recent study on static fields [83], 

Figure 14: ApoC-II(60-70) peptide monomers, wildtype (left), and hairpin (right) 

conformations. 
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with the following peak (and respective RMS) field strengths; 0.9899 V/nm (0.7 V/nmrms), 

0.09899 V/nm (0.07 V/nmrms), 0.0544 V/nm (0.0385 V/nmrms), 0.009899 V/nm (0.007 

V/nmrms), 0.0009899 V/nm (0.0007 V/nmrms). Each structure/orientation system was 

simulated for 200 ns (except for the 0.7 V/nmrms simulations), resulting in a total of 400 ns 

per structure for each field strength/frequency combination. The individual structure and field 

condition simulation times are listed in Table 2. Close analysis of the individual structure 

trajectories showed that the simulations had equilibrated within 150 ns. The last 50 ns of 

simulation were taken from each equilibrated trajectory (for each field strength/frequency 

combination) and were amalgamated into a single (ensemble) trajectory of 200 ns for 

analysis. For comparison to the ambient and static field conditions, the same analysis 

approach was repeated on the previously collected data [83]. 

Table 2: Simulation times (ns) of ApoC-II(60-70) under oscillating fields at various field strengths 

 

 

 

 

 

 

 

The evolution of each system was monitored and the most frequently sampled conformations 

were classified using the GROMOS clustering algorithm [150]. The GROMOS clustering 

method produces a series of non-overlapping clusters, where the structure with the highest 

number of neighbours is taken as the centre of a cluster, which is formed together with its 

neighbours to create the (first) cluster, and then removed from the pool of structures. The 

process is repeated for all structures in the trajectories. Structures were assigned to a cluster 

by calculating the all-atom RMSD with a cut-off of 0.22 nm. The appropriate cut-off was 

determined by performing clustering analysis using different cut-offs initially on the 0.0007 

V/nm/1.0 GHz ensemble trajectory, until the top 3 clusters comprised over 50% of the 

simulated structures. Radius of gyration and N-C terminal distance analysis was performed 

with the Gromacs analysis tools, while visualisation of system geometries and interactions 

  1.0 GHz 2.5 GHz 5.0 GHz 

0.0007 V/nm 2750 2750 800 

0.007 V/nm 800 800 800 

0.0385 V/nm 800 800 800 

0.07 V/nm 800 800 800 

0.7 V/nm 600 200 200 
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was achieved using Visual Molecular Dynamics (VMD) environment. The total dipole 

moment of the protein was determined using      ∑        
 
   , where qi is the charge on 

atom i, ri is the position of atom i with respect to the centre of mass of the protein, and N is 

the number of protein atoms. The autocorrelation function      〈         〉 〈     〉 

of the total dipole moment M(t) was used to provide insight into the dynamics and 

interrelation of the peptide dipole moment relative to the field over time. 

 

4.3 Results 

Extensive all-atom MD simulations were performed to investigate the effect of oscillating 

EM fields of different field frequencies and strengths on the conformational response 

mechanisms of the amyloidogenic peptide apoC-II(60-70). The effects of the EM field 

parameters on the peptide secondary structure, size, relative residue orientation, solvent 

structure and dynamics as well as the molecular mechanisms driving these responses were 

investigated.  

 

Peptide structure and dynamics  

The most stable (frequently sampled) conformations of each ensemble trajectory were 

determined by clustering analysis using the GROMOS method with an all-atom RMSD cut-

off of 0.22 nm. The total number of clusters sampled along with the representative structure 

and population of the most favourable conformation are shown as insets in Figure 15. 

Clustering analysis was also performed on the previously reported ambient and static field 

simulations [83] using the same GROMOS clustering method for comparison. The results 

showed substantial structural and dynamic differences in the peptide under the static and 

oscillating field conditions, in line with other theoretical studies [2], [149]. 

The most immediate influence of the frequency was observed in the simulations at high field 

strength (0.7 V/nmrms). There was ~15-28-fold increase in the total number of clusters 

sampled as the field frequency increased from 1 to 5 GHz, albeit the clusters had very low 

population. The peptide was seen to continuously alternate between extended and collapsed 

(β-hairpin-like) conformations due to the strong peptide dipole alignment along the field 
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direction at the peak strengths. This suggests that the peptide experienced quasi-instantaneous 

response to the highest strength oscillating EM field for the entire studied frequency range 

which culminated in the increased peptide dynamics relative to its native behaviour (see 

movie in Supporting Information).  

The simulations at intermediate field strengths (0.07-0.0385 V/nmrms) exhibited an overall 

lower number of total clusters sampled at all frequencies, compared to the static field 

simulations with the same effective field strength. The low to intermediate frequency (1.0 to 

2.5 GHz) simulations showed more highly populated (stable) clusters of structures with 

similar β-hairpin-like conformation, relative to the lower strength static field and ambient 

simulations. This suggests the EM fields with intermediate field strengths and RF frequencies 

have the ability to stabilise (or “kinetically trap”) the peptide in specific conformations. This 

is most evident in the 2.5 GHz simulations, suggesting that this combination of the EM field 

parameters has the field strength sufficient to induce conformational changes but at the same 

time it allows adequate time for the peptide to adopt a more thermodynamically stable 

conformation due to the reversal of the field direction. This is in contrast to the static field 

results where the continuous and unidirectional force caused the peptide to adopt a 

thermodynamically unfavourable non-native conformation. The high 5.0 GHz frequency 

simulations at the intermediate field strengths exhibited similar clustering results to the 

ambient and static field simulations of lower (< 0.007 V/nmrms) field strength.  

Interestingly, at the low field strength (< 0.007 V/nmrms) the peptide produced the lowest total 

number of clusters sampled across the 1.0-2.5 GHz frequencies, compared to the static field 

and ambient simulations. This suggests that these RF frequencies combined with the low field 

strength appear to have the ability to trap the peptide in specific conformations, resulting in 

reduced peptide dynamics. Here, the field strengths are seemingly insufficient to have a 

significant effect on changing the peptide conformation, while the relatively (un)frequent 

change in field direction has a restraining (trapping) effect on the peptide dynamics. A more 

accurate rationalisation of this observation requires further insight into the mechanisms of 

EM field interactions with the peptide (discussed later). In contrast, the 5.0 GHz simulations 

revealed native-like sampling statistics (clustering) of the peptide structures similar to the 

ambient and low strength static field conditions. This suggests that the high oscillation 

frequency EM field does not appear to affect the inherent peptide dynamics.  
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While clustering analysis provides an overall insight into the relative stability and dynamics 

of the peptides, a more detailed structural analysis is needed to determine the effect of EM 

frequency on the conformational landscape of the peptide. To achieve that the free energy 

maps (FEM) of the peptide’s radius of gyration (Rg) as a function of the N-C terminal 

distance were constructed (Figure 15). 
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Figure 15: Free Energy Map (FEM) of the radius of gyration (Rg) vs N-C terminal distance determined for 

each ensemble trajectory of a) ambient; and static and oscillating (1.0-5.0 GHz) EM fields of b) 0.7 V/nmrms, 

c) 0.07 V/nmrms, d) 0.0385 V/nmrms, e) 0.007 V/nmrms, f) 0.0007 V/nmrms. The total number of clusters 

along with the percentage population of the most populated cluster identified and its structure are shown as 

insets. The average N-C distance and Rg of the structures belonging to the most populated cluster are also 

shown and identified on the FEM with an arrow on the FEM. 
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The free energy was calculated using –kBT log(N), where –kB is Boltzmann’s constant, T is 

temperature, and Ni is the total number of structures contained within a cluster i of the two 

properties measured on all structures within the ensemble trajectory for each field condition. 

Furthermore, the most visited region on the FEM was determined by calculating the average 

of each property from the structures contained within the most populated cluster of each EM 

field ensemble simulation, shown as insets in Figure 15.  

The results from our recent static field simulations [83] showed that the high strength field 

(0.7 V/nmrms) produces a distinct energy well or a “hot-spot”, centred around ~3.5 nm N-C 

terminal distance separation and ~1.1 Rg, illustrating the peptides conformation is elongated. 

The unidirectional nature of the field along with the high strength, prevent the peptide from 

relaxing and adopting more compact native-like conformations. While the oscillatory nature 

of the fields of different frequencies and at high field strength provides an opportunity for the 

peptide to experience the condition of reduced or no external force, albeit for a short time. 

Figure 15 shows the gradual extension of the FEM highly populated region of elongated 

conformations towards the area of more compact, β-hairpin-like structures, as the field 

frequency is increased to 1 and 2.5 GHz. This suggests that the low to intermediate field 

frequencies provide sufficient time for the peptide to experience a change in conformation. In 

contrast, the 5 GHz simulations did not produce a recognisable “hot-spot” on the FEM, 

suggesting the peptide experiences continuous conformational changes, as the clustering 

analysis demonstrated. This result suggests that the field’s high strength and frequency 

prevent the peptide from adopting specific conformation, in polar contrast to the results seen 

for the static or lower frequency simulations.   

The static field simulations at intermediate field strengths (0.07-0.0385 V/nmrms) exhibited 

more compact structures (N-C dist: 1.95 and 0.98 nm; Rg: 0.62 and 0.57 nm, respectively), 

however regions of elongated structures were also explored, as the FEM in Figure 15c,d 

shows. The introduction of frequency at these field strengths completely changed the 

conformational landscape explored by the peptide. The low (1.0 GHz) and the intermediate 

(2.5 GHz) frequencies specifically, confined the peptide to more compact β-hairpin 

conformations (0.0385 V/nmrms N-C dist: 0.43 and 0.45 nm; Rg: 0.62 and 0.61 nm, 

respectively), while elongated structures were barely visited. Such kinetic-trapping could 

stimulate peptide self-assembly and promote the development of amyloid fibrils by apoC-

II(60-70) peptide, as the β-hairpin arrangement was identified to be an intermediate state on-

route for fibril formation [144]. The 5 GHz simulations, in contrast to the lower frequencies, 
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sampled structures with a more elongated conformation, demonstrated by the spreading of the 

FEM into higher N-C distance/Rg regions (N-C dist: 0.51 nm; Rg: 0.59 nm). The increased 

peptide dynamics due to the high field frequency can potentially prevent the formation of 

fibril-promoting states and in-turn inhibit or slow down the fibril-forming process.  

The static low field strength (< 0.007 V/nmrms) simulations produced mostly compact β-

hairpin conformations (N-C dist: 0.48 and 0.49 nm; Rg: 0.58 and 0.57 nm, respectively), 

however the FEM showed also some exploration of more elongated structures, which is more 

evident in the 0.007 V/nmrms simulations. The introduction of the oscillating fields 

completely abolished the exploration of these elongated states, and there is evident 

prevalence of more compact structures. The simulations at the three different frequencies 

sampled structures with similar conformational properties (0.0007 V/nmrms N-C dist: 0.46, 

0.43 and 0.47 nm; Rg: 0.62, 0.61 and 0.57 nm, for the 1, 2.5 and 5 GHz simulations, 

respectively). These results show that low strength fields of different (low, intermediate and 

high) frequencies have a negligible effect on the peptide conformation. Similarly, to the low 

strength static field simulations, the alternating field simulations also produced structures 

with fibril-forming conformations, as seen in Figure 15f.  

 

Aromatic angles orientation 

Hydrophobic interactions, specifically between aromatic side-chains, have an important role 

in the structure and function of proteins, as well as the formation and stabilisation of amyloid 

fibrils [78, 83]. In our previous studies we have shown that the two aromatic rings present in 

apoC-II(60-70) peptide, in particular, their orientation relative to the peptide “face” have a 

critical role in the peptide’s mechanisms of aggregation [144]. Under fibril-inhibiting 

conditions, the aromatic rings are facing the same face of the peptide with relative angles < 

90°, while under fibril-favouring conditions the relative angles between the aromatic residues 

are > 90°, which supports the formation of π-stack interactions with neighbouring peptides 

[76, 82, 144]. The EM forces can also affect the relative distribution of angles between the 

two aromatic rings, as demonstrated in our recent work [83]. Here to investigate the potential 

role of the field frequency on the peptide’s aromatic side-chain characteristics (fibril-

forming/inhibiting), the relative orientations of Tyr63 and Phe67 in apoC-II(60-70) was 

determined by calculating the average angle between the Cα-Cγ vector of Tyr63 and the Cα-
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Cγ of Phe67. Figure 16 shows the population of structures (as percentage) with respect to the 

relative orientation (as angle) of the peptide’s aromatic rings. A total of 40 bins were used 

over the range 0°–180°, with each data point corresponding to an angle interval of 4.5°.  

Figure 16: Histograms of the relative angle between Tyr63 and Phe67 (x-axis) over the 

concatenated trajectory of a) 1.0, b) 2.5 and c) 5.0 GHz simulations for each field strength. For 

comparison, the results from the ambient simulation is shown in black. Exemplar structures 

(secondary structure coloured in blue) and the relative aromatic side-chain arrangement (liquorice, 

red) a) fibril-inhibiting (0.007 V/nmrms), b) fibril-forming (0.0007 V/nmrms) and c) fibril-forming 

(0.7 V/nmrms) are shown as insets. 
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The results from the high strength field simulations exhibited a broad distribution of aromatic 

angles across all frequencies investigated, similar to those seen from the study on static fields 

[83]. The increased conformational dynamics due to the alternating fields prevented the 

peptide from adopting a stable (or preferred) aromatic arrangement. The 1 GHz oscillating 

EM fields of intermediate strength (0.07 and 0.0385 V/nmrms) produced structures with 

aromatic residues present on the same face (85.5° and 90°, respectively) and opposite face 

(135° and 139.5°, respectively) of the peptide, identified by two distinct aromatic angle peaks 

in Figure 16a. The results are comparable to the static field simulations of the same field 

strengths where the peptide exhibited both fibril-favouring and fibril-inhibiting aromatic 

angle characteristics [83]. Interestingly, as the field frequency is increased to 2.5 and 5 GHz, 

there is a gradual shift for aromatic angle preference for the opposite face of the peptide (135-

144°) at both field strengths. As seen from the FEMs in Figure 16, the low and intermediate 

frequencies have the ability to trap the peptide in specific conformations, and the aromatic 

angle results demonstrate that these conformations can have both fibril-forming or fibril-

inhibiting characteristics. While the high frequency simulations produced slightly broader 

peaks compared to the 2.5 GHz fields due to the increased peptide dynamics, demonstrated 

earlier.  

The low field strength (0.007-0.0007 V/nmrms) simulations of all three frequencies produced 

structures with aromatic residues present on both faces of the peptide, in agreement with the 

static field and ambient results. This suggests the peptides exhibit fibril-favouring elements at 

low field strengths despite the modulation of the external force. Interestingly, the aromatic 

angle peaks for the 2.5 GHz low field strength simulations were also much narrower 

compared to the 1 and 5 GHz angle distributions at the low and intermediate field strengths, 

confirming the kinetic “trapping” ability of this microwave frequency. 

 

Peptide dipole moment orientation  

It is well known that applied fields have a direct effect on the molecules dipole moments. The 

applied field must be of specific strength to induce translational and/or rotational motion of 

the molecule in order to align itself along the applied field direction, as seen in our previous 

works [83] and others [90, 140]. This is highly dependent on the size and atomic charge 

distribution of the molecule itself. To determine the interrelation of the peptide dipole 
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moment and applied oscillating fields, the dipole autocorrelation function was calculated for 

each field strength/frequency condition and compared to the ambient and static field results 

(Figure 17). Our previous study showed that static field of high field strength (> 0.3 V/nmrms) 

was sufficient to obtain complete alignment of the apoC-II(60-70) peptide dipole moment 

along the direction of the applied field [83]. There was an evident reduction in alignment 

correlation as the field strength was decreased down to 0.007 V/nmrms field strength where 

there was no correlation between the field and the peptide dipole moment. Our simulations 

showed that field frequency has a strong effect on the peptide dipole association with the 

applied field. Highest correlation with the applied sinusoidal field was observed for the high 

field strength simulations (0.7 V/nmrms) at all three frequencies. The 1 GHz simulations 

exhibited similar results to those of the static field, where the intermediate field strength also 

exhibited some alignment with the peptide dipole, albeit being significantly smaller compared 

to the high field strength simulation. In contrast, the 2.5 GHz simulations showed a barely 

noticeable correlation at intermediate field strengths, while the 5 GHz simulations showed no 

correlation at field strengths less than 0.07 V/nmrms. 
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(a) 

(b) 

(c) 

Figure 17: Peptide dipole autocorrelation function for each effective field 

strength at (a) 1 GHz, (b) 2.5 GHz and (c) 5.0 GHz frequency. 
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Peptide - water interactions 

Water structuring and peptide-water interactions have an important role in the conformations 

peptides adopt, their dynamics, and most importantly, function. The specific peptide-solvent 

interactions were evaluated by radial distribution functions (RDF) over the equilibrium stage 

of each trajectory (Figure 18). The oscillating field simulations showed similar water 

structuring to that exhibited by the static field simulations [83], where three distinct hydration 

peaks were identified, the first two forming the first hydration shell (~0.185 and ~0.30 nm) 

indicating hydrogen bonding between the peptide and water, and the second hydration shell at 

~0.45 nm. The most notable difference in the local density of water due to the applied field 

frequency can be seen at the high field strength simulations. Compared to the static field 

simulations [83], a small decrease in water packing can be observed with increasing field 

frequency, caused by the continuous change in conformation and the formation of compact β-

hairpin-like structures (Figure 18c,d). At intermediate (0.07-0.0385 V/nmrms) and low field 

strengths (0.007-0.0007 V/nmrms) the presence of the oscillating field does not have any 

effect on the water packing, regardless of the field frequency applied. This is due to the 

peptide being trapped in β-hairpin and β-hairpin-like conformations that are less solvated 

than the conformations explored at high field strengths, as is seen in our previous static field 

simulations. 
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(a) 

(b) 

 

Figure 18: Peptide-water interactions represented by radial distribution functions of (a) 

peptide (NHO)-water (H) and (b) peptide (NHO)-water (O). The RDFs for 1.0 GHz are 

shown as solid lines, 2.5 GHz as dashes, and 5.0 GHz as dots. Line colour to represent field 

strength: 0.7 V/nmrms (red), 0.07 V/nmrms (yellow), 0.0385 V/nmrms (green), 0.007 V/nmrms 

(blue), 0.0007 V/nmrms (grey), ambient (black). 
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Conclusion 

All-atom non-equilibrium molecular dynamics simulations were performed to investigate the 

amyloidogenic apoC-II(60-70) peptide response to oscillating EM fields of different 

frequency and strength. Our results showed that the applied oscillating fields induced unique 

peptide conformations with different fibril-forming propensities that are dependent on the 

field characteristics. The exposure of apoC-II(60-70) to alternating high strength fields (0.7 

V/nmrms) of 1.0 to 5 GHz frequency promoted a significant increase in the peptide dynamics, 

compared to the static field simulations [83]. This suggested there is an immediate 

conformational response to the applied field direction and strength. Specifically, the 1 and 2.5 

GHz simulations exhibited some conformation preference, as indicated by frequently 

explored regions or free-energy map “hot-spots” with similar N-C terminal spacing and 

radius of gyration, the 5 GHz simulations sampled wider-conformational space due to the 

faster oscillations. In contrast, the intermediate field strength (0.07-0.0385 V/nmrms) 

simulation of 1.0 and 2.5 GHz frequency were able to restrain or kinetically trap the peptide 

in specific conformations, demonstrated by the higher conformational stability and lower 

number of clusters explored by these trajectories compared to the static field simulation at the 

same effective strength. Although, the structures sampled from the different frequency 

simulations were very similar, i.e. β-hairpin-like, they exhibited different fibril-forming 

characteristics. The 1.0 GHz simulations explored structures with aromatic rings on the same 

as well as both sides of the peptide, indicating structures with fibril-forming and/or fibril-

inhibiting propensities, while the 2.5 GHz simulations showed preference for the fibril-

forming arrangement of the aromatic rings. The results suggest that the “trapping” ability of 

the 1.0 and especially 2.5 GHz fields of intermediate strength can have a binary effect on 

fibril formation of apoC-II(60-70) peptide. In contrast to the lower frequency results, the 5 

GHz simulations showed increased peptide dynamics, more extended structures and aromatic 

side-chain arrangements on the opposite face of the peptide, similar to those seen in the 

ambient simulations. This suggests the field oscillations or change in field direction is so 

frequent that it prevents the peptide from being restrained in a particular conformation or 

aromatic arrangement. Interestingly, the low strength fields (0.007-0.0007 V/nmrms) at all 

frequencies exhibited amyloid-prone hairpin conformations similar to those seen in the 

ambient and static field simulations of the same effective strength. This result is in line with 

peptide dipole-field interrelation analysis, which showed complete loss of peptide dipole-

field correlation at field strengths lower than 0.04 V/nm. The highest correlations were 
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evident for high strength (0.7 V/nmrms) and the low frequency (1.0 GHz) simulations. The 

peptide dipole-field correlation dissipated significantly as the frequency was increased to 2.5 

and 5 GHz. While the water structuring in the close proximity of the peptide was similar to 

those observed under static fields, i.e. formation of 2 hydration shells; higher water density 

(increased solvation) was observed high strength/low frequency simulations due to the 

continuous transitions between elongated and compact states, compared to the lower 

frequency simulation which explored more compact (less solvated) states. Overall, our results 

showed that peptides exhibit a strong conformational dependence on the applied field 

strength and frequency. Specific field parameter combinations can be designed to produce 

peptides with structural characteristics that can prevent or inhibit their self-assembly, which 

can be used as an alternative method for the prevention or treatment of amyloid fibrils. At the 

same time, field parameters can be chosen to promote the growth of well-ordered peptide 

assemblies for the development of biocompatible nanomaterials.      
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Chapter 5 

Conclusions 

EM fields have become a ubiquitous part of modern day life and the interactions between 

these fields and human biology needs to be researched to ensure that there aren’t any 

deleterious effects being experienced by humanity. Current research is divided on the 

potential health effects, beneficial or detrimental of EM field exposure, with some researchers 

claiming an increase in cancer and glioma occurrence, while other researchers are 

investigating its uses in wound healing and treatment for/prevention against Alzheimer’s 

plaques. In this thesis, the effects of EM field on the apoC-II(60-70) peptide monomer 

derivative was modelled under EM field at various strengths and frequencies to observe the 

atomistic effects of the various fields on the peptide response in an aqueous environment. 

The static field simulation studies presented in Chapter 3 showed that the field strength has a 

significant effect on the peptide conformation and dynamics. High field strengths caused the 

peptide to elongate along the external field and lose its inherent β-hairpin structure, due to the 

dipole alignment effects of the electric field component.  In the “intermediate” field strength 

range the simulations showed intriguing behaviour by the apoC-II(60-70) peptide, where 

some differences between the EM- and electric field-induced structures became more 

apparent. The peptide was significantly more dynamic in this field range, and in the EM field 

simulations, adopted conformational characteristics typical for its fibril-inhibiting behaviour, 

well-separated N- and C-termini are prominent and aromatic-ring locations having a 

preference for the same face of the peptide. Differences could also be seen between EM and 

electric field effects on the peptide free-energy landscape, with EM field being able to trap 

the peptide in twisted (non-β-hairpin like) conformations and limit conformational space, in 

contrast to the simulations where the peptide was found to be more dynamic and adopted 

predominantly β-hairpin-like structures. The low-strength simulations produced stable β-

hairpin peptide conformations similar to ambient conditions, as the aromatic Tyr63/Phe67 

pair showed preference for the opposite faces of the peptide, suggesting a fibril-forming 

peptide capacity at such conditions. 
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Despite the extensive simulation times and relatively thorough sampling, the question 

remains as to whether the nuances observed in the peptide’s conformational preferences 

between electric and EM field was in fact caused by the additional magnetic force, or by the 

finite nature of the simulations. Analysis of the peptide and water dipoles was able to show 

that field strength of at least 0.007 V/nm was necessary to observe any field effects. Most 

importantly, the results suggests that EM field could be considered for designing alternative 

treatments of amyloid diseases due to its inhibiting effect on the amyloidogenic peptide 

conformations for the intermediate strength, whilst the very high- and low-field strengths 

stabilising amyloid favourable peptide conformations could be employed for engineering 

well-ordered peptide assemblies for other applications. 

Chapter 4 results showed that the application of oscillating fields induced unique peptide 

conformations with different fibril-forming propensities dependent on the field 

characteristics. The exposure of apoC-II(60-70) to alternating high strength fields (0.7 

V/nmrms) of 1.0 to 5 GHz frequency promoted a significant increase in the peptide dynamics, 

when compared to the static field simulations in Chapter 3, suggesting that there is an 

immediate conformational response to the applied field direction and strength. Specifically, 

the 1 and 2.5 GHz simulations exhibited some conformation preference, indicated by frequent 

free-energy map “hot-spots” with similar N-C terminal spacing and radius of gyration. The 5 

GHz simulations sampled a wider-conformational space due to the faster oscillations. 

The intermediate field strength simulation of 1.0 and 2.5 GHz frequency were able to 

kinetically trap the peptide in specific conformations, demonstrated by the higher 

conformational stability and lower number of clusters explored by these trajectories 

compared to the previous static field simulation at the same effective strength. Although, the 

structures sampled from the different frequency simulations were very similar (β-hairpin-like) 

they exhibited different fibril-forming characteristics, with 1.0 GHz simulations exploring 

structures with aromatic rings on the same and opposing sides of the peptide, indicating 

structures with fibril-forming and/or fibril-inhibiting propensities, while the 2.5 GHz 

simulations showed preference for the fibril-forming arrangement of the aromatic rings. The 

results suggest that the “trapping” ability of the 1.0 and especially 2.5 GHz fields of 

intermediate strength can have a binary effect on fibril formation of apoC-II(60-70) peptide. 

In contrast, the 5 GHz simulations showed increased peptide dynamics, more extended 

structures and aromatic side-chain arrangements on the opposite face of the peptide, similar 

to those seen in the ambient simulations. This suggests the field oscillations or change in field 
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direction is so frequent that it prevents the peptide from being restrained in a particular 

conformation or aromatic arrangement. 

Interestingly, the low strength fields (0.007-0.0007 V/nmrms) at all frequencies exhibited 

amyloid-prone hairpin conformations similar to those seen in the ambient and static field 

simulations of the same effective strength. This result is in line with peptide dipole-field 

interrelation analysis, which showed complete loss of peptide dipole-field correlation at field 

strengths lower than 0.04 V/nm. The highest correlations were evident for high strength (0.7 

V/nmrms) and the low frequency (1.0 GHz) simulations. The peptide dipole-field correlation 

dissipated significantly as the frequency was increased to 2.5 and 5 GHz. While the water 

structuring in the close proximity of the peptide was similar to those observed under static 

fields, i.e. formation of 2 hydration shells; higher water density (increased solvation) was 

observed high strength/low frequency simulations due to the continuous transitions between 

elongated and compact states, compared to the lower frequency simulation which explored 

more compact (less solvated) states. 

Overall, the results from chapter 4 showed that peptides exhibit a strong conformational 

dependence on the applied field strength and frequency. With this knowledge it could become 

possible for future researchers to investigate the possibility of being able to craft protein 

assemblies for medicinal purposes, such as biocompatible nanomaterials, or to make proteins 

designed to inhibit the formation of amyloid fibrils. Another use for the tuning of EM fields 

could result in finding parameters that can be used to treat amyloid diseases through 

disruption of plaques with non-invasive methods. 

Future investigation of protein fibrils and amyloidogenic proteins will involve the combined 

efforts of theoretical and experimental collaborators. Further study of the effects of proteins 

may be investigating fibril formation rates through sedimentation analysis and then these 

structures being exposed to EM fields and characterised using real time autofluorescence and 

Circular Dichroism spectroscopy. These techniques will provide quantitative information on 

the shear rates and solution conformation of peptide/aggregates under the influence of 

different fields and intensities, which can be compared to the modelling results presented 

here. 

The aims of this thesis was to study and elucidate the effects of EM fields on the apoC-II(60-

70) peptide derivative to be able to provide a stepping stone of fundamental research into 
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furthering theoretical and experimental studies of EM fields so that new (smart) technology 

and medical uses of EM fields can be developed with greater understanding. 
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