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Abstract 

Alpine and sub-alpine regions were long considered free of Phytophthora species, especially 

Phytophthora cinnamomi due to restrictions on their growth from low temperatures. However, 

P. cinnamomi was isolated from a sub-alpine area ‘Barrington Tops National Park’ in the 

1990s. Subsequent Australia wide surveys detected 68 Phytophthora species in Australia. Of 

these, 33 Phytophthora species, including P. cinnamomi, were detected in the alpine and 

sub-alpine areas on Kosciuszko National Park (KNP) alone. This suggested that 

Phytophthora species had adapted to cold environments. This project investigated the ability 

of Phytophthora species to produce infective propagules (zoospores) and cause disease at 

increasingly lower temperatures. Phytophthora cinnamomi was selected as a ‘test’ species 

due to its national and international significance. Initially, preliminary surveys were conducted 

in the sub-alpine and alpine areas of KNP and Tasmania to obtain living Phytophthora 

isolates. The lower temperature limit for growth and sporulation of Mediterranean (one isolate 

was from a sub-alpine area) P. cinnamomi isolates was determined and phenotypic plasticity 

experiments were established in an attempt to ‘train’ them to produce infective propagules 

and cause disease at increasingly lower temperatures. Finally, the distribution patterns of 

Phytophthora and vascular plants species in relation to disturbance and elevation were 

determined across elevation gradients in KNP. Preliminary surveys resulted in the isolation of 

eight Phytophthora species, including two new species that were formally described. 

Phytophthora cinnamomi was shown to produce infective propagules at temperatures lower 

(7.5 °C) than originally established (10 °C), and in a shorter time compared to original 

isolates when ‘trained’ under cold conditions. This suggests that P. cinnamomi responds 

rapidly to selection pressure and adapts to new environments. Although P. cinnamomi 

produced infective propagules at 7.5 °C, the pathogen could not be isolated from plants 

grown at 7.5 °C after three months. Therefore, more work is required to establish disease 

development at 7.5 °C and below. Results of surveys along elevation gradients showed 

Phytophthora and vascular plant species exhibited a linearly monotonic decline with 

increasing elevation on roads, but not in native vegetation. However, the elevation range of 

Phytophthora species was higher than vascular plants on both roads and in native 

vegetation. Phytophthora species did not show any habitat preference and exhibited similar 

composition and frequency on roads and in native vegetation; vascular plants showed the 

opposite trend with greater frequency in native vegetation. This suggests that Phytophthora 

richness at the plot level mimics that of vascular plants. A changing climate may permit 

invasion by other Phytophthora species not yet present. 
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What is a mountain? 

A mountain is defined by a common ruggedness threshold (>200 m difference in elevation 

within a 2.5′ cell, 0.5′ resolution), arriving at 16.5 million km2 or 12.3% of all terrestrial land 

area outside Antarctica being mountains (Körner et al. 2011). Ruggedness here refers to the 

maximum elevational difference among nearby grid points. Calculations are based on the 

digital elevation model (DEM) used by WorldClim (Hijmans et al. 2005). Australian mountains 

are unusual as compared to the rest of the world’s mountains (Venn et al. 2017). The high 

mountains of Australia is comprised of approximately 11 700 km2, and are comparatively low 

compared to the rest of the world with Mt Kosciuszko at 2228 m the highest point on 

mainland Australia (Venn et al. 2017). There is no ‘nival zone’ (areas with permanent snow 

cover) in Australia except for sub-Antarctic Heard Island that supports glaciers (Venn et al. 

2017). The part above the treeline (treeless zone) is called the ‘alpine zone’. Globally, 

treeline is determined by seasonal mean ground temperature of approximately 6.7 °C 

(Körner & Paulsen 2004). In Tasmania, Australia, a mean air temperature of the warmest 

month of 10 °C determines the treeline (Venn et al. 2017). In Australia, ‘sub-alpine zone’ is 

defined by woodlands dominated by trees related to Eucalyptus pauciflora and treeless 

plains of valleys; and ‘montane zone’ as the part below that (Venn et al. 2017). Alpine and 

sub-alpine vegetation have steep environmental gradients and highly localised and 

specialised communities. In Australia, the Snowy Mountains of New South Wales (NSW) 

contain the largest area of alpine vegetation extended over 100 km2 (Venn et al. 2017). 

Species in mainland Australia and alpine and sub-alpine areas respond markedly differently 

to competing land uses and climate change (Venn et al. 2017), therefore higher elevations 

are ideal to study the impact of climate change on species distribution. Mountains also allow 

‘natural experiments’ due to sharp environmental gradients over short distances that test 

ecological theories and questions on adaptive evolution (Körner et al. 2011).  

The uniqueness of mountain ecosystems 

Globally, mountains provide critical ecosystem services such as fresh water, timber, 

medicinal plants, and recreational opportunities for surrounding lowland populations. 

Although mountains occupy only 12% of the land surface, their complex montage of 

microenvironments and ecoclines contribute to almost one quarter of global biodiversity 

(Körner et al., 2011). One fifth of the global area is mountains, which are inhabited by one 

fifth of the global population. Approximately one quarter of the global mountain areas are 

mountain forests (Körner 2004). It is therefore safe to conclude that water availability for half 

of the global population (Messerli et al. 2004), and safety and wellbeing of one fifth of the 
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population depend on the correct functioning of mountain ecosystems either directly or 

indirectly (Körner 2004, van den Bergh et al. 2018).  Water from mountain catchments is 

used for drinking, irrigation and electricity production.  

Half of the world’s biodiversity hotspots and one-third of all protected areas (88 World 

Heritage Natural Sites, and 40% of all UNESCO MAB (Man and the Biosphere Reserves) are 

located in mountains (Chape et al., 2008). For example, in Australia, the Kosciuszko National 

Park (KNP) alone contains about 1100 vascular native plant species, which represents one 

quarter of the flora in New South Wales in only 10% of its land area (Doherty et al. 2015). 

About 40% of these species are endemic to the Australian Alps bioregion. Globally, in true 

alpine zones (above the treeline) flora covers only 3% of the vegetated area, but contain 4% 

of all known plant species. Vegetation above the treeline is very diverse due to smaller size 

of species and often half of the vegetation of a large area can be in found in a few square 

meters of dense vegetation (Körner 2004). Therefore, alpine zones are relatively species 

rich, especially when measured at large scales (Körner 1995).  

Decline in species richness with altitude 

Biotic interactions and diversity within mountains decrease as the elevation increases 

because the life conditions become adverse with increasing elevation (Körner 2004, 

Alexander et al. 2017). This natural loss in diversity is even more evident and fairly regular 

above the treeline with an average loss of ca. 40 species of flowering plants per 100 meters 

of elevation (Korner 2002). In most cases animal species’ diversity also decreases with 

altitude, although the pattern of decline may vary from species to species. For example, 

beetles, moths and butterflies decline in number and diversity with altitude, but diptera may 

show higher diversity at higher elevations (Meyer & Thaler 1995). The possible causes of 

decline in species richness with altitude are mainly related to climatic and space and time 

limitations of evolution i.e. immigrant species need space to live and time to evolve or adapt 

(Körner 2003). Below is a breakdown of the major causes of decrease in species richness 

with altitude.  

Adaptation limits: Species found at higher altitudes are well adapted to colder conditions 

and have already reached their adaptation limit. In addition, no physiological or reproductive 

limits have been identified in alpine species compared to their lowland relatives that can 

force them to evolve, which limits the selection for successful evolution (Körner 2004). 

Space limitation: The decline in species number, especially flowering plants is directly 

proportional to the decline in land area at higher elevation. It is therefore possible that the 
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decrease in biodiversity across higher elevations has an evolutionary relationship with 

biogeography rather than climatic constraints (Körner 2004, Pauchard et al. 2009). 

Limited functional space: Limited functional space means isolation, which is caused by 

missing or restricted migration leading to reduced functional space and the species pool 

which mountain biota can tap (Körner 2003, Pauchard et al. 2009). 

Seasonal time constraints: Reduced season length for any season e.g. through influences 

like drought or extreme temperatures will reduce the time during which evolutionary 

processes can take place. Small organisms (e.g. soil microbes) may have several 

reproductive cycles at lower elevation, but only few at higher elevation leading to reduced 

chances of diversification (Körner 2003, Alexander et al. 2017). 

Geological time constraints: Chances of diversification at higher elevations are also reduced 

by momentary or sporadically interrupted evolutionary history, for example habitat 

destruction due to glacial cycles or fire (Hawkins 2004, Camac et al. 2017).  

Environmental filtering: Decline in species richness with increasing elevation is also due to 

progressive filtering out of species due to harsh climatic conditions along the elevation 

gradients. Anthropogenic activities can introduce organisms to cold environments but only 

those species survive and establish that are able to adapt to these extreme environments 

(Gerhardt & Collinge 2007, Alexander et al. 2011, Redondo et al. 2018). Although species 

richness can be reduced by processes like dispersal limitation or competitive exclusion, 

environmental filtering is more important in determining the pattern of species richness along 

an elevation gradients (Pauchard et al. 2009). The effect of environmental filtering will be 

evident if a species arrives at a certain location (i.e. there is no dispersal limitation), and its 

richness pattern is subsequently affected due to environmental conditions of an area in the 

absence of competitors; the latter can be validated by laboratory based measures of 

physiological tolerance (Kraft et al. 2015).  

Decreased anthropogenic disturbance 

Decreased introduction pathways result in reduced human related disturbance leading to low 

propagule pressure. This is especially true for non-native species because the impact of 

human related propagule pressure is stronger on non-native species than on native species 

(Marini et al. 2009). Decline in richness for non-native plant species along elevation gradients 

is especially pronounced along road corridors, as roads are the major pathways for dispersal 

of non-native species to higher elevation. This also explains the higher species richness of 
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non-native species on roads than in native vegetation. As area and temperature also 

decreases along elevation gradient, overall species richness (native and non-native) also 

decreases (Pauchard et al. 2009).  

The genus Phytophthora  

The name Phytophthora is derived from two Greek words, ‘Phyto’ means plant and ‘phthora’ 

means destroyer. Phytophthora spp. belong to the class Oomycetes that were traditionally 

placed in the kingdom Fungi but have now been placed in the kingdom Stramenopila 

together with diatoms and brown algae due to their structural, biochemical and genetic 

differences from true fungi (Irwin et al. 1995). They are commonly referred to as ‘water 

moulds’ as they require free water for sporulation and zoospores release (Erwin & Ribeiro 

1996). The genus Phytophthora has been divided into 12 phylogenetic clades, and 

comprises of more than 140 described species that can be pathogens or saprophytes (Jung 

et al. 2018).  

Distribution and origin  

The genus Phytophthora is distributed worldwide and can be found in terrestrial, aquatic and 

aerial environments (Brasier & Hansen 1992, Erwin & Ribeiro 1996). Phytophthora species 

occur in a variety of climatic zones from temperate to tropical, some have a very broad host 

range, and some can survive as biotroph, hemibiotrophs and nectrotrophs (Erwin & Ribeiro 

1996). Although their fossil record has remained inconsistent, the reports of fossils in the 

form of structurally preserved oogonium-antheridium complexes from Devonian and 

Carboniferous rocks demonstrate that they lived in plants as endophytes approximately 400 

million years ago (Krings et al. 2011).  

Anthropogenic related activities have resulted in the global movement of many Phytophthora 

species. The classical example is P. infestans, which has caused losses on potato and other 

solanaceous crops worldwide since the mid 19th century (Erwin & Ribeiro 1996). Other 

examples include, P. cinnamomi, which cause severe dieback in forest and heathlands in 

Western Australia (Shearer et al. 2004); P. ramorum, the cause of sudden oak and larch 

death in the USA and UK/Europe (Rizzo & Garbelotto 2003, Brasier & Webber 2010); P. 

palmivora causes disease in several hundred hosts, especially cocoa globally (Guest 2007); 

and species of the P. alni complex cause severe damage in the population of Alnus spp. 

across riverbank ecosystems in Europe (Jung & Blaschke 2004, Aguayo et al. 2014).  

In Australia, emphasis is mainly placed on P. cinnamomi and P. multivora due to their 

devastating impact on natural and managed ecosystems (Burgess et al. 2018, Hardham & 
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Blackman 2018). There are several other Phytophthora species in Australia’s natural 

ecosystems but there is limited information on their distribution and diversity (Dunstan et al. 

2016). Irwin et al. (1995) reported 22 Phytophthora species in Australia; most were 

associated with agricultural crops and nursery plants with the exception of P. cinnamomi. 

Since 1982, the Vegetation Health Service of the Department of Parks and Wildlife in 

Western Australia has been isolating Phytophthora species during routine sampling for P. 

cinnamomi management. About 10% of the recovered isolates were not P. cinnamomi and 

their subsequent molecular re-evaluation identified many new Phytophthora species 

(Burgess et al. 2009), and many are awaiting description (Burgess et al. 2017b). Many of the 

newly described species were only found in Australia expect P. multivora, which has global 

distribution (Burgess et al. 2017a). Twenty seven taxa have been identified in combination 

with subsequent surveys of waterways in native ecosystems (Hüberli et al. 2013). Eight 

Phytophthora species were identified in soil samples collected from south-east QLD and 

central NSW (Scarlett et al. 2015), and five Phytophthora species were recovered in soil and 

water samples collected from Victoria (Dunstan et al. 2016).    

Recently, Australia wide surveys were conducted to determine the diversity and distribution 

of Phytophthora species across Australia (Burgess et al. 2017b). A total of 68 species were 

detected in the study (Table 1.1). Of these, 33 Phytophthora species were detected in alpine 

and sub-alpine areas thought to be Phytophthora free (Podger et al. 1990, Brasier & Scott 

1994). Detailed information on their respective clades, first record in Australian databases, 

habitat, putative centre of origin, and environmental predictors across Australian range has 

been briefly described (Burgess et al. 2017a, Burgess et al. 2018). Therefore, they will not be 

discussed here.         
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Table 1.1 Records of 91 Phytophthora species and taxa and their distribution within Australian states; 
Queensland (QLD), New South Wales (NSW), Victoria (VIC), Tasmania (TAS), Western Australia (WA) 
investigated by Bugess et al. (2017). The Australian Plant Pest Database 
(http://www.planthealthaustralia.com.au) was the primary database used.  Additional records from 
other databases are acknowledged in footnotes. + indicates presence as recorded in databases, (+) 
indicates detection by metabarcoding. Species not detected by metabarcoding are shaded, while 
phylotypes detected only by metabarcoding are in bold. 

 Phytophthora 
species1 Clade2 First 

record3 
Habitat

4 
Statu

s5 QLD NSW6 VIC7 TAS WA8 SA
9 

1 P. cactorum7 1 1961 AH I + +(+) +(+) +(+) + + 

2 P. clandestina 1 1983 A I 
 

+ + 
 

+ + 

3 P. infestans 1 1909 A I + + + + 
 

+ 

4 P. nicotianae 1 1945 NAH I +(+) +(+) +(+) +(+) +(+) + 

5 P. AUS1A 1 
 

N N 
   

(+) (+)  

6 P. AUS1B 1 
 

N N 
 

(+) 
 

(+) 
 

 

7 P. AUS1C 2 
 

N N 
    

(+)  

8 P. capensis 
complex 2 

 
NH I 

 
(+) 

 
(+) (+)  

9 P. capsici 2 1988 A I + 
    

 

10 P. citricola complex 2 1971 AH I 
 

+(+) +(+) (+) +(+) + 

11 P. citrophthora 2 1919 AH I + + + 
 

+ + 

12 P. elongata 2 1989 N N 
 

(+) +(+) (+) +(+)  

13 P. frigida 2 2015 NH N 
 

+(+) 
  

(+)  

14 P. meadii 2 ? A I + 
    

 

15 P. multivesiculata 2 ? A I 
 

+ 
   

 

16 P. multivora 2 1979 NH I 
 

+(+) +(+) (+) +(+)  

17 P. plurivora complex 2 2009 NH I 
 

+(+) (+) (+) (+)  

18 P. AUS2A 2 
 

N N (+) (+) (+) (+) (+)  

21 P. arenaria 4 1986 N N 
 

(+) (+) (+) +(+)  

22 P. bisheria 2 2008 A I 
  

+ 
  

 

23 P. boodjera 4 2006 N N 
 

+(+) (+) (+) +(+)  

24 P. lichii 4 
 

A I (+) 
    

 

25 P. palmivora 4 1950 H I + +(+) 
 

(+) +(+)  

26 P. castaneae 5 2000 NH I +(+) (+) 
   

 

27 P. heveae 5 1975 H I (+) + 
   

 

28 P. amnicola 6 2009 N N 
 

(+) +(+) (+) +(+)  

29 P. asparagi 6 2007 A I 
  

+ (+) +(+)  

47 P. balyanboodja 6 2014 N N 
 

(+) 
  

+(+)  

30 P. bilorbang 6 2012 N I 
 

(+) (+) (+) +(+)  

31 P. chlamydospora 6 2009 N I (+) (+) + + +(+)  

 P. condilina 6 2008 N N     +  

http://www.planthealthaustralia.com.au/
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 Phytophthora 
species1 Clade2 First 

record3 
Habitat

4 
Statu

s5 QLD NSW6 VIC7 TAS WA8 SA
9 

 P. cooljarloo 6 1996 N N     +  

32 P. crassamura 6 1992 N I 
    

+(+)  

33 P. fluvialis 6 1994 N N 
  

(+) (+) +(+)  

34 P. gibbosa 6 2009 N N 
    

+  

35 P. gonapodyides 6 2000 N N + +(+) 
 

(+) 
 

 

36 P. gregata 6 1965 NH N 
 

+(+) + (+) +(+)  

37 P. inundata 6 1984 N I (+) (+) +(+) (+) +(+)  

 P. kwonganina 6 1993 N N     +  

38 P. litoralis 6 2007 N N (+) (+) (+) (+) +(+)  

39 P. megasperma 6 1953 NH I + + + + + + 

40 P. moyootj 6 2006 N N 
 

(+) (+) (+) +(+)  

 P. pseudorosacearum 6 1998 N N     +  

41 P. riparia 6 
 

N I 
 

(+) 
  

(+)  

42 P. rosacearum 6 1993 NH N? 
 

(+) 
 

(+) +(+)  

43 P. thermophila 6 1980 N N (+) (+) +(+) (+) +(+)  

44 P. AUS6A 6 
 

N N 
 

(+) 
  

(+)  

45 P. AUS6B 6 
 

N N 
    

(+)  

46 P. AUS6C 6 
 

N N 
   

(+) (+)  

48 P. sp. forestsoil 6 
 

N I 
  

(+) 
 

(+)  

49 P. sp. hungarica 6 
 

N I 
   

(+) 
 

 

50 P. sp. personii 6 2005 NH I 
 

+ + (+) +  

51 P. sp. paludosa 6 2011 N N   +    

52 P. sp. walnut 6 2015 NH I 
 

+(+) 
   

 

53 P. cambivora 7 1977 NH I + +(+) +(+) (+) +(+) + 

54 P. cinnamomi 7 1947 NH I +(+) +(+) +(+) +(+) +(+) + 

55 P. europaea 
complex 7 

 
N I 

 
(+) 

 
(+) 

 
 

56 P. fragariae 7 1982 A I 
 

+ + 
  

+ 

57 P. aff. melonis  7 
 

A I 
    

(+)  

58 P. niederhauserii 7 2002 NH I 
 

(+) +(+) (+) +(+)  

59 P. parvispora 7 2000 NH I (+) (+) (+) 
 

+(+)  

60 P. rubi 7 ? A I 
 

+ + 
  

+ 

61 P. sojae 7 1980 A I + + + 
  

 

62 P. vignae 7 1960 A I + + + 
  

 

64 P. brassicaceae 8 
 

A I 
  

(+) (+) 
 

 

65 P. cryptogea 8 1942 NAH N? + +(+) +(+) +(+) +(+) + 

66 P. drechsleri 8 1967 NAH I + + + + +(+)  

67 P. erythroseptica 8 1968 A I + + + + + + 
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 Phytophthora 
species1 Clade2 First 

record3 
Habitat

4 
Statu

s5 QLD NSW6 VIC7 TAS WA8 SA
9 

68 P. hibernalis 8 1929 A I 
 

+ 
  

+  

69 P. himalayensis 8 
 

N I 
   

(+) 
 

 

70 P. medicaginis 8 1971 A I + + + 
  

 

71 P. porri 8 1942 A I 
 

+ + 
 

+ + 

72 P. primulae 8 
 

A I 
   

(+) 
 

 

73 P. pseudocryptogea 8 1981 NH I 
 

+(+) +(+) (+) +(+)  

74 P. syringae 8 1979 N I 
 

+(+) +(+) (+) +(+)  

75 P. trifolii 8 
 

A I 
  

(+) 
  

 

76 P. sp kelmania 8 2010 A I 
 

+(+) 
  

+(+)  

77 P. AUS8A 8 
 

N N 
   

(+) (+)  

 P. aquimorbida 9 2018       +  

78 P. captiosa 9 2015 N N? 
    

+(+)  

79 P. constricta 9 1981 N N 
    

+(+)  

80 P. fallax 9 2008 N N 
 

(+) +(+) +(+) (+)  

81 P. insolita 9 2004 A I 
    

+  

82 P. 
macrochlamydospora 9 1984 NAH N +(+) +(+) 

   
 

83 P. richardiae 9 1960 A I 
 

+ 
   

 

84 P. sp. hennops 9 2012 N N?   +    

85 P. AUS9A 9 
 

N N 
 

(+) (+) (+) 
 

 

86 P. AUS9B 9 
 

N N 
  

(+) (+) 
 

 

87 P. AUS9C 9 
 

N N 
 

(+) 
  

(+)  

88 P. AUS9E 9 2012 N N 
   

(+) +(+)  

89 P. boehmeriae 10 1962 AH I + + + 
 

+  

90 P. gondwanense 10 2015 N N  +     

91 P. AUS10A 10 
 

N N (+) 
    

 

19 P. versiformis 11 2014 N N 
 

(+) (+) (+) +(+)  

20 P. AUS11A 11 
 

N N 
  

(+) 
 

(+)  

 Total no. species10     29 60 52 49 61 14 

 No. databases11     20 33 33 9 42 14 

 No. HTS12     13 43 32 44 50 na 

 No. Identical13     4 17 15 4 36 na 

1 Phytophthora species including several taxa with designated names that are not yet described.  
Potential new species as recognised by high throughput sequencing (HTS), are referred to as P. sp. 
nov followed by a code representing the clade number and a letter to distinguish new species in the 
same clade  
2 Phylogenetic Clade based on phylogeny of all known Phytophthora species (see Fig. 2) 
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3 Date of the first record within Australian databases.  ? denotes species reported within a database 
without a date attached to the record. Taxa without dates provided are those detected in the current 
HTS study. 
4 Known associations; A = annual crops H = perennial crops (including forestry), N = native 
ecosystems 

5 Known status of species I = introduced, N = native, N? = putatively native 

6 Additional species records for NSW were obtained from the CPSM, Royal Botanical Gardens and 
Scarlett et al. (2015). These identities have been confirmed by sequencing. 
7 Additional species for VIC recognised by Dunstan et al. (2016). These identities have been 
confirmed by sequencing. 
8 Additional species for WA come from VHS and CPSM collections. These identities have been 
confirmed by sequencing.  
9 No samples from South Australia were included in the metabarcoding study 
10 Total number of species/phylotypes from both databases and HTS 
11 Number of species known from Australian databases 
12 Number of phylotypes detected by HTS 
13 Number of species/phylotypes known both from databases and detection by HTS 

Phytophthora cinnamomi  

Phytophthora cinnamomi was first isolated from cinnamon (Cinnamomum burmannii) trees in 

Sumatra in 1922 (Rands 1922). Phytophthora cinnamomi has a worldwide distribution and 

has a host range approaching 5000 species (Cahill et al. 2008a, Jung et al. 2013). It has 

been detected in the 15 global biodiversity hotspots where ‘exceptional concentration of 

endemic species are undergoing exceptional loss of habitat’ (Myers et al. 2000). It is the only 

oomycete that is included in the top 100 of the world’s worst invasive alien species as 

identified by the Invasive Species Specialist Group (Lowe et al. 2000). Phytophthora 

cinnamomi can outcompete other pathogens due to its short lifecycle, as it may take only 

eight hours to complete its asexual life cycle under optimal conditions, which is considered 

as one of the fastest developmental processes among any biological system (Walker & van 

West 2007, Crone 2012). Phytophthora cinnamomi infections can cause decline in species 

richness and abundance leading to faunal habitat degradation and increased incidences of 

soil erosion (Newhook & Podger 1972, Garkaklis et al. 2004).  

The centre of origin of P. cinnamomi is still not clear, but theories on its centre of origin are 

based on two criteria: Firstly, genetic variability should be higher in the centre of origin than 

in areas where it has been introduced accidently (Vavilov’s rule), and secondly it should co-

evolve with the ecosystem without permanently altering it, implying that there should be 

tolerant and resistant vegetation in that ecosystem (Zentmyer 1980). However, there are 

some problems associated with this approach: it is difficult to obtain enough isolates to 
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determine genetic variability, resistant vegetation does not necessarily imply that a pathogen 

is indigenous to that area, and the flora might be susceptible but other interacting factors, 

such as suppressive soil might affect the actual disease potential of the pathogen (Zentmyer 

1980). Different scientists have proposed different centres of origin for species. These have 

included Taiwan and islands of South-East Asia (Crandall & Gravatt 1967, Zentmyer 1988, 

Chang et al. 1996), and New Guinea/Celebes (Shepherd 1975).  Arentz and Simpson (1986) 

and Arentz (2012) supported Shepherd’s hypothesis but also stressed that this was only true 

for the A1 mating type and not the A2 mating type, which they concluded was introduced 

post-European colonization in the 19th century. A recent study hypothesized that the A1 

mating type is Gondwanan in origin and it might have been present in New Guinea for about 

10 million years. It is speculated that the A1 mating type has recently changed to the A2 due 

to genetic transformation (Arentz 2017). 

Phytophthora cinnamomi in Australia 

When Rands (1922) first described P. cinnamomi from Sumatra, this pathogen was already 

widespread in Australia, although it had not yet been isolated (Newhook & Podger 1972). 

Ashby first recorded P. cinnamomi causing disease in pineapple in Queensland in 1930 

(Newhook & Podger 1972). First isolations from other parts of Australia were from New 

South Wales in 1948 (Fraser 1956); Western Australia in 1964 (Podger et al. 1965), Victoria 

in 1964 (Newhook & Podger 1972); Tasmania in 1965 (Newhook & Podger 1972); and 

South-Australia in 1969 (Davison 1970). 

Phytophthora cinnamomi is widely distributed in Australia and is present in all states and 

territories causing disease in a wide range of hosts (Irwin et al. 1995). Extensive damage is 

caused in horticultural plants (Zentmyer & Thorn 1967), in exotic conifers (Oxenham & Winks 

1963, Bertus 1968), in forests and heathlands of  Western Australia (Hüberli et al. 2002a, 

Shearer et al. 2007), Victoria, Tasmania and New South Wales (Pratt et al. 1973). The 

pathogen causes serious losses in many species of Proteaceae and Leguminosae as well as 

Rhododendron, Boronia, Eriostemon, Jacaranda, Eucalyptus, Thryptomene, Juglans, Olea, 

Passiflora, Prunus, Camellia, Erica, Calluna, and many conifer species (Bertus 1968, Jenkins 

1968, Dingley 1969, Newhook & Podger 1972). Of the 5710 described plant species in 

south-west Western Australia, 2284 are considered susceptible and 800 are highly 

susceptible to this pathogen (Shearer et al. 2004). 

There are only three clonal lineages of P. cinnamomi in Australia, which implies infrequent 

sexual reproduction in P. cinnamomi (Dobrowolski et al. 2003).  However, variation does 

occur in a single clonal lineage through mitotic recombination in the asexual phase (Hüberli 

et al. 2001, Dobrowolski et al. 2003). Therefore, P. cinnamomi has the capability to adapt to 
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new environmental conditions and cause disease in new hosts during its asexual phase 

(Hardham 2005). Detailed information about P. cinnamomi distribution, interactions with 

hosts, impacts on plant biodiversity in all Australian states, and horticultural impacts are 

adequately reviewed in (Newhook & Podger 1972, Cahill et al. 1993, Irwin et al. 1995, 

Hardham 2005, Cahill et al. 2008b, Hardham & Blackman 2018). Therefore, they will not be 

discussed here.  

The biology and life cycle of Phytophthora cinnamomi 

Just like other pathogens, disease development by P. cinnamomi requires the presence of 

the pathogen itself, a susceptible host, favourable environmental conditions and a sufficient 

period of time to allow disease development (Cahill et al. 2008b). Once the host is infected, 

P. cinnamomi produces mycelial strands that can grow within, or on the surface of host 

tissues (Fig. 1.1). These vegetative strands produce sporangia, which in turn release motile 

zoospores under warm, moist and aerobic conditions in stimulatory soil. Favourable soil 

temperature and pH for the production of sporangia is 25-30 °C and 5-6, respectively (Erwin 

& Ribeiro 1996). Even if conditions are conducive, certain stimulatory effects are required by 

P. cinnamomi to produce sporangia and release zoospores. These stimulatory effects are 

less understood but they are apparently influenced by soil type, soil micro-flora, and 

understory vegetation (Shearer & Tippett 1989). Sporangia release motile zoospores that 

can swim in free water towards hosts and cause infection. 

Phytophthora cinnamomi also produces spherical, oblong or irregular shaped asexual spores 

called chlamydospores with a diameter ranging from 8 to 15 µm, which develop terminally or 

intercalary (Erwin & Ribeiro 1996). These are the hyphal protuberances filled with cytoplasm 

that are delimited from the hypha by septa and secondary thickening of the wall. They can be 

borne singly, in chains interspersed with undifferentiated hyphal swellings, or in grape-like 

clusters (Hemmes & Wong 1975). Phytophthora cinnamomi tends to produce 

chlamydospores when conditions are less favourable. They can survive in soil or plant 

material and germinate to produce mycelia, sporangia and then zoospores on the onset of 

favourable conditions (McCarren et al. 2005). More recently, P. cinnamomi has been shown 

to produce stromata, thick walled chlamydospores and selfed oospores within roots of 

tolerant and susceptible plant species (Crone et al. 2013b, Jung et al. 2013). Phytophthora 

cinnamomi is also believed to survive in lignitubers for extended periods (Jung et al. 2013). 

Phytophthora cinnamomi can be homothallic, heterothallic or neuter (Erwin & Ribeiro 1996). 

Homothallic species can produce oospores in a single culture without needing the opposite 

mating type, whereas heterothallic species require two compatible mating type A1 and A2 to 

produce oospores. In Australia, the A2 mating type is more frequently isolated than the A1 
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(Weste & Marks 1987). There are no direct reports of sexual reproduction in the field about 

this pathogen in Australia, the lack of presence of two mating types was assumed to be the 

reason for this (Cahill 1998). But now we know that that sexual reproduction does not occur 

even when two mating types are brought together in the same soil (Dobrowolski et al. 2002, 

Dobrowolski et al. 2003). It has also been found that P. cinnamomi is able to produce selfed 

oospores in the absence of opposite mating types (Jayasekera et al. 2007, Crone et al. 

2013b, Jung et al. 2013). It has been also suggested that there is a recent change in mating 

type from A1 to A2 due to genetic transformation of A1 mating type (Arentz 2017). 

 

Figure 1.1 Diagram depicting life cycle of Phytophthora cinnamomi (Hardham 2005) 

The biflagellate, motile and short-lived zoospores are the main infective propagules of the 

pathogen lifecycle that can move towards hosts in response to chemotactic stimuli for a short 

distance (Cahill et al. 1996). Zoospores encyst on or near the host roots and form a 

germtube that penetrates the outer epidermal or cortical tissues and rapidly colonise root and 

lower stem resulting in the necrosis and subsequent rotting of root and lower stem (Cahill et 

al. 2008b). Root to root contact may also facilitate the spread of disease between adjacent 

plants (Cahill et al. 2008b), whereas the movement of infested soil or plant materials are 

responsible for the spread of the disease across countries (McDougall et al. 2003). 

Oospores, mycelia, stromata, lignitubers, and hyphal aggregations formed within host tissues 
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that are in various stages of decomposition can also be likely sources of inoculum (Crone et 

al. 2013b, Jung et al. 2013).  

Climate change and the distribution of pathogens  

Climate affects the dynamics of host-pathogen interactions and thus climate change will have 

a strong effect on both spread (Pearson & Dawson 2003), and behaviour of plant species 

and pathogens (Sturrock et al. 2011). The classic disease triangle shows the interaction of 

plant host, pathogen and environment in causing disease (Agrios 2005). Over time, climate 

change can shift an environment from disease suppressive to disease conducive or vice 

versa (Fuhrer 2003, Perkins et al. 2011). Therefore, diseases are good indicators of climate 

change (Garrett et al. 2009). Atmospheric temperature has risen due to the release of latent 

heat from condensation of moisture, a result of evaporations from warm oceans surfaces 

(Graham 1995). Mountain temperatures have also risen resulting in the rapid melting of 

glaciers on high tropical mountains (Thompson et al. 1995) and upward shift in the freezing 

height (Diaz & Graham 1996). 

Climate can affect pathogens either directly or indirectly. In the first case, pathogens can only 

cause diseases if their environmental requirements are met. For example, pathogens 

causing needle diseases are restricted by dry conditions. Therefore, their rates of 

reproduction, distribution and infection are greater in wet and moist conditions (Harvell et al. 

2002). In the second case, pathogens indirectly affected by climate have the tendency to 

infect hosts that are already stressed by environmental factors. In this scenario, factors that 

stress their hosts are often critical to the successful invasion by pathogens of their hosts. For 

example, an extended summer drought will increase the probability of infection by pathogens 

whose ability to infect increases with host stress, such as root pathogens, wound colonizers 

and latent colonizers of sapwood (Brasier & Scott 1994, Lonsdale & Gibbs 1996, Desprez-

Loustau et al. 2006).  Similarly climate change can affect inoculum dispersal directly through 

changes to wind and turbulence, and indirectly through impacts on crop growth, phenology 

and agronomic practices (Margosian et al. 2009). 

To date, many models have been developed to predict future distribution of perennial trees 

under changing climatic variables (Hamann & Wang 2006, Rehfeldt et al. 2006), but 

relatively a few have been developed to predict such distribution patterns for pathogens 

(Sturrock et al. 2011, Burgess et al. 2017a). The complex nature of interactions and 

feedback between climates, pathogens, and forest ecosystems make it nearly impossible to 

predict responses of specific pathogens to future climatic conditions at specific locations and 

times (Parker et al. 2000, Volney & Hirsch 2005). Similarly, it is also very difficult to illustrate 

the long term and progressive impacts of climate change on the dynamics of disease 
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epidemics (Jeger & Pautasso 2008). In order to accomplish this goal, long-term data must be 

available for both pathogens and the diseases they cause, which does not occur very often 

(Shaw et al. 2008).  

Climate change and range expansion 

Climate change not only results in the introduction of novel pathogens into an area (Stenlid et 

al. 2011), but also helps in further establishment and spread of existing pathogens 

(Hannukkala 2011, Burgess et al. 2017a). Climate can restrict the growth and development 

of pathogens at higher altitudes. For example, susceptible plants in the alpine areas of 

Australian Alps can be asymptomatic hosts to Phytophthora species but disease outbreaks 

can only occur when the temperature is warm enough for disease expression (Burgess et al. 

2017b), which can have a huge impact on plant communities (Cahill et al. 2008a). Similarly, 

the range expansion and occurrence of plant communities at higher altitudes might also be 

restricted by plant pathogens (Brown & Vellend 2014). For example, Phytophthora 

cinnamomi, already present in the sub-alpine areas of Australia, might not only affect the 

existing vegetation but could also restrict the upward movement of exotic plants and other 

Phytophthora species from lower elevations (Burgess et al. 2017b). 

Low temperatures have been reported to affect the survival of some Phytophthora species 

such as, P. x alni, P. ramorum and P. cinnamomi (Podger et al. 1990, Ireland et al. 2013, 

Aguayo et al. 2014). However, in the last 60 years, changes in climatic conditions, such as 

higher mean winter temperatures, seasonal precipitation shifts from summer into winter, and 

an inclination towards heavy rainfall are favouring disease development by several 

Phytophthora species, such as P. cinnamomi and P. ramorum (Sturrock et al. 2011). 

CLIMEX models predict more widespread Phytophthora root rot disease in the UK and much 

of the Coastal Europe and a marked increase of the disease in temperate zones of the 

northern and southern hemispheres globally (Brasier & Scott 1994, Brasier 1996, Burgess et 

al. 2017a). Models projecting the impacts of temperature on the geographic range of P. 

cinnamomi suggest the range expansion of this pathogen in warming climates (Brasier & 

Scott 1994, Bergot et al. 2004, Burgess et al. 2017a).  

Many species living in the tropics have very narrow elevational ranges, and experience very 

little local environmental fluctuations (Janzen 1967, Ghalambor et al. 2006, Huey et al. 

2009). As regional temperature changes, these species may not able to survive unless they 

move towards higher elevations (Forero‐ Medina et al. 2011). Species may also move to 

elevations that are higher than those occupied by other species in order to fill gaps in their 

current distribution (Forero‐ Medina et al. 2011). Climate change has resulted in the change 

in timings of life cycles during the year (Root et al. 2005, Menzel et al. 2006, Rosenzweig et 



 16 

al. 2008, Thackeray et al. 2010), and range shifts towards higher latitudes and elevations of 

many species (Hickling et al. 2006, Thomas 2010). Using meta-analysis Chen et al. (2011) 

estimated that species have recently shifted to higher elevations at a median rate of 11.0 

meters per decade, and to higher latitudes at a median rate of 16.9 kilometres per decade. It 

has also been revealed that elevational and latitudinal shifts were significantly greater in 

studies dealing with high levels of warming (Chen et al. 2011). In the case of Swiss needle 

cast disease caused by Phaeocryptopus gaeumanii, a 0.2-0.4 °C increase in winter 

temperature and 0.7 - 1.5 cm increase in spring precipitation per decade since 1970 have led 

to increased severity and distribution of the disease in the Oregon Coast Range; and this is 

likely to increase even more due to a projected 0.4 °C increase in temperature per decade 

through to 2050 (Stone et al. 2008).  

A lag phase may occur in range shifts towards higher elevations if new suitable conditions 

may not be accessed easily. For example, suitable conditions maybe at some other 

mountain peaks, or may not be accessed easily due to topographic and microclimatic 

complexity of mountainous terrain, such as cooler locations on poleward facing slopes 

(Suggitt et al. 2011)]; or some other geological, climatic and ecological constraints (Pounds 

et al. 2006, Forero‐ Medina et al. 2011). It should be noted that individual species show 

variations in physiological responses to different climatic stresses. Therefore, these 

responses will combine with climatic extremes at different times of their life cycles for an 

unusual change to take place (Easterling et al. 2000). 

Phenotypic plasticity and range expansion 

Phenotypic plasticity is the capacity of organisms to express different phenotypes in 

response to changes in biotic or abiotic environments (Agrawal 2001). Evolutionary biologists 

have been working on the genetic basis of phenotypes, and earlier work was specifically 

focused on traits presumed to be unaffected by the environment because environmentally 

affected phenotypes were assumed to have no genetic basis (Agrawal 2001). But now it has 

been shown that phenotypic plasticity can be adaptive i.e. heritable (Dudley & Schmitt 1996, 

Kasuga et al. 2016). This is supported by Lamarck’s First Law, which states that organisms 

go through an adaptive change in response to environment, and such changes can be 

inherited (Lamarck 1809). Phenotypic plasticity occurs frequently in nature in response to 

environmental heterogeneity, and is often adaptive (Holeski et al. 2012). It has been shown 

that phenotypes induced by such environments have higher relative fitness than the 

alternative phenotypes (Schmitt et al. 1995), and the alternative (“wrong”) phenotype is not 

expressed in the changed/new environment (Dudley & Schmitt 1996).  
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Plasticity may lead to ecological success in novel habitats, and its ecological/evolutionary 

consequence depends on whether it evolves in response to certain environmental changes 

or as an overall strategy of organisms to change i.e. associative learning (Agrawal 2001). For 

most traits, the response is usually intermediate (Agrawal 2001). In any case, plasticity 

enhances ecological niche breadth because it allows organisms to express useful 

phenotypes in diverse environments (Bradshaw 1965).  When a certain trait is canalised (a 

lack of plasticity), it is well adapted to a certain environment, but when a trait is plastic, it is 

well adapted to many environments (Pigliucci 2001). According to the theoretical models for 

the evolution of adaptive phenotypic plasticity, selection will favour adaptive plasticity for 

given variations when (i) populations are exposed to different environments, (ii) environments 

produce reliable cues, (iii) selection favours varying phenotypes in each environment, and 

(iv) no individual phenotype shows superior fitness across all environments. Plasticity is 

necessary for organisms to persist in novel environments, and once established, heritable 

differences accumulate by natural selection and the initially achieved phenotypes become 

genetic (Baldwin 1896).  

The rate of adaptation to new environments is different, and it depends on the relative 

closeness of plastic phenotype to the desired trait in the novel environment (Price et al. 

2003). Populations stop adaptive genetic differentiation when phenotypic plasticity matches 

with the optimum phenotype in the new environment (Price et al. 2003). Phenotypic plasticity 

is a characteristic of certain traits in certain environments; therefore, it is incorrect to think of 

an organism or genotype as a whole to be more or less plastic than others. A certain 

genotype maybe plastic for specific traits in a particular environment and non-plastic for other 

specific traits in the same environment (Bradshaw 1965, Pigliucci 2001).  

An example of plasticity in Phytophthora is the production of autoinducer-2 by P. nicotianae.  

Autoinducer-2 facilitates interspecific communication among bacterial populations and its 

production had never been reported for Phytophthora species before. The frequent co-

isolation of bacteria with Phytophthora species suggest possible inter-communication 

between these organisms (Kong et al. 2010). Another example of phenotypic plasticity is the 

variation in virulence among U.S isolates of P. ramorum on different hosts (Rizzo et al. 

2005). Hüberli et al. (2001) examined variation among 73 P. cinnamomi isolates collected 

from E. marginata and Corymbia calophylla trees in the southwest of Western Australia and 

found a broad range of phenotypic and pathogenic differences, such as differential growth 

rate and colony morphology on potato dextrose agar at different temperatures, varied 

sporangial and gametangial morphology, and their ability to form lesions and cause death. 

Another example of plasticity in P. cinnamomi is the decreased sensitivity to the fungicide 

phosphite after its extended use in horticultural environments (Dobrowolski et al. 2008).      
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Range expansion of Phytophthora, in particular Phytophthora cinnamomi into 

colder environments: a changing environment, adaptation or both? 

Temperature directly affects the growth rate of P. cinnamomi in host tissues, the optimal 

temperature for growth is 28 °C (Zentmyer 1980, Grant & Byrt 1984). It has been shown that 

P. cinnamomi becomes inactive when temperature drops below 10 °C in soil (Weste & Marks 

1987), and no growth is shown on artificial media below 5 °C (McConnell & Balci 2015). 

Although many factors other than winter temperatures limit the canker development by P. 

cinnamomi, (for example, summer temperature, precipitations, and host susceptibility), they 

most likely act as secondarily modulating factors (Robin et al. 1992, Marçais et al. 1993). 

Delatour (1986) proposed the hypothesis that the range of ink disease in oaks in Europe 

caused by P. cinnamomi is seriously limited by lethal frosts, as the pathogen still had a 

restricted host range even after a century of its supposed introduction in France in 1860. 

Sub-alpine regions were considered free of disease caused by P. cinnamomi due to 

presumed restrictions on its growth from lower temperatures (Podger et al. 1990). However, 

P. cinnamomi was isolated from soil beneath dying Oxylobium arborescens (Mills 1999, 

McDougall et al. 2003) at the elevation of 1560 m at Barrington Tops, NSW Australia where 

mean maximum and minimum temperatures are likely to be 16 °C and 3 °C, respectively 

(Zoete 2000). As a result of this finding, Burgess et al. (2017b) sampled two Mountain 

Invasion Research Network (MIREN) transects in Kosciuszko National Park (KNP), six peaks 

in Tasmania and Mt Toolbranup in WA (110 individual samples), as well as over 500 

additional sites from across much of Australia. Many sites in NSW, VIC and Tasmania were 

above the tree line. Rather than using traditional baiting to isolate Phytophthora, DNA was 

extracted from these soils and subsequent amplicon pyrosequencing revealed 33 

Phytophthora species (including P. cinnamomi) in Kosciuszko National Park (KNP) as high 

as 2100 m asl (i.e. almost at the highest point of mainland Australia) in asymptomatic 

vegetation. The recovery of P. cambivora from Nematolepis ovatifolia a shrub endemic to 

sub-alpine and alpine areas of Snowy Mountains, Australia in 2014/015 further strengthened 

these observations. The detection of such a diverse Phytophthora community, including P. 

cinnamomi, at high elevations above the tree line was unexpected and suggests that either 

climatic condition have changed or the pathogen has adapted to colder environments. A 

caveat to the finding that certain Phytophthora species were widespread across elevation 

and disturbance is HTS techniques can detect DNA of species even if they have no longer 

persisted (Carini et al. 2017).  

Published distributions of P. cinnamomi have traditionally mapped observations of disease 

symptoms on susceptible plants. Also, vegetation surveys from the 1940s were conducted 
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under the assumption that the Snowy mountains were too cold for P. cinnamomi (Green 

2016). However, the findings of Crone et al. (2013a) have shown that the pathogen infects 

and survives on some native plant species without observable disease symptoms. The 

pathogen has also been shown to produce selfed oospores along with other survival 

structures, such as thick walled chlamydospores, stromata and lignitubers (Crone et al. 

2013b, Jung et al. 2013). Additionally, anthropogenic activities are known to have distributed 

this exotic pathogen widely since European colonization, for example through contaminated 

mud on vehicles and heavy machinery, road building and mining (Cahill et al. 2008a, 

Callaghan & Guest 2015).  The extent of the true distribution of P. cinnamomi may be 

seriously underestimated, as distribution is not always associated with disease. Phytophthora 

spp. are elusive pathogens; traditional plant pathology techniques such as plating infected 

material onto agar to isolation are generally ineffective (Hüberli et al. 2000).  

Range expansion of P. cinnamomi into cold environments is of great importance as this puts 

the pathogen into contact with new environments and hosts. Cold environment communities 

have very restricted climatic envelopes for their distribution, so that any stress, biotic or 

abiotic, can have devastating and irreversible consequences. If host susceptibility or 

pathogen virulence or aggressiveness is increased by climatic conditions, a disease outbreak 

or epidemic is likely to occur (Agrios 2005). Keeping in view the plastic nature of 

Phytophthora species and the possible climate change, it can be predicted that the pathogen 

is far more widely distributed than has been mapped based on symptoms, and is very likely 

to be present in the majority of sub-alpine areas.  
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We propose three overarching hypotheses to explain the occurrence of a Phytophthora 

community in colder environments (Fig. 2.1). 

1. The environmental conditions in alpine and sub-alpine areas at higher elevations are 

no longer unfavourable for survival of Phytophthora species,  

2. The Phytophthora community has adapted to alpine and sub-alpine areas at higher 

elevations and can now survive under colder conditions, and/or 

3. a combination of both.  

 

Figure 1.2 Three overarching hypotheses to explain Phytophthora occurrence into colder 
ecosystems.  

Thesis aims 

The aims of this thesis were to: 

1. Determine the best substrate (soil, soil roots, filters or baited roots) and isolation 

technique most suitable for determining Phytophthora community, which could be 

later on used for Phytophthora surveys in mountains, 

2. Survey alpine and sub-alpine areas to isolate/determine baseline Phytophthora 

species, and to confirm that species detected through high throughput sequencing 

previously were viable. 

3. Examine the adaptive capability of P. cinnamomi and its ability to cause disease in 

alpine and sub-alpine regions, and 

4. Update current understanding of Phytophthora diversity and distribution in mountain 

ecosystems, and to determine patterns of Phytophthora species richness in relation 

to elevation and disturbance and assess whether they are the same as for vascular 

plants.   
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Chapter 2: eDNA from roots: a robust tool for determining 
Phytophthora communities in natural ecosystems  
_________________________________________________ 
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Abstract   

Proper isolation and identification of Phytophthora species is critical due to their broad 

distribution and huge impact on natural ecosystems throughout the world. In this study, five 

different sites were sampled and seven methods were compared to determine the 

Phytophthora community. Three traditional isolation methods were conducted (1) soil baiting, 

(2) filtering of the bait water, and (3) isolation from field roots using Granny Smith apples. 

These were compared to four sources of eDNA used for metabarcoding using Phytophthora 

specific primers on (1) sieved field soil, (2) roots from field, (3) filtered baiting water, and (4) 

roots from bait plants grown in the glasshouse in soil collected from these sites. Six 

Phytophthora species each were recovered by soil baiting using bait leaves and from the 

filtered bait water. No Phytophthora species were recovered from Granny Smith apples. 

eDNA extracted from field roots detected the highest number of Phytophthora species (25). 

These were followed by direct DNA isolation from filters (24), isolation from roots from bait 

plants grown in the glasshouse (19), and DNA extraction from field soil (13). Therefore, roots 

were determined to be the best substrate for detecting Phytophthora communities using 

eDNA. 
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Introduction 

Phytophthora diseases cause significant losses to plants in agriculture, horticulture and 

natural ecosystems throughout the world. Many species, including Phytophthora cinnamomi 

one of the world’s most devastating invasive species, are also known for their huge impact 

on natural ecosystems. Phytophthora cinnamomi has a massive impact on the natural 

ecosystems in Australia, the Cape Province of South Africa, and the Iberian Peninsula in 

Europe (Burgess et al. 2017a) . Interest in Phytophthora diseases of natural ecosystems has 

increased since the emergence of P. ramorum as the causal agent of sudden oak death in 

California (Hansen et al. 2012). About 50 new species have been described since 2010; 

most of these species have been isolated from natural ecosystems, and very little is known 

about their distribution and impact on natural ecosystems (Burgess et al. 2017b). Proper 

detection and identification of Phytophthora species is of great importance for biosecurity and 

quarantine. The number of Phytophthora species has risen to over 150 and this number will 

likely increase due to extensive surveys of previously unexplored forest and river 

ecosystems.  

Non-selective media used for isolating true fungi are not suitable for Phytophthora species 

due to antagonism and rapid growth of secondary microorganisms, and slow revival of 

dormant Phytophthora survival structures, such as oospores and chlamydospores (Tsao 

1990a). The genus Phytophthora is difficult to isolate from infected plants and soil, but the 

efficiency of isolation has greatly increased by the use of baiting techniques and selective 

isolation media (Tsao 1990a). Eckert and Tsao (1962b) reported the first medium 3P 

(pimaricin-penicillin-polymyxin) for selective isolation of Phytophthora. Different media have 

been used for selective isolation of Phytophthora since then (see supplementary Table 2.S1), 

most recently used include NARH (Simamora et al. 2017), Phytophthora selective medium 

(PSM) of Burgess et al. (2008), and CMA-PARPBH (Pérez-Sierra et al. 2010).  

Phytophthora species are disseminated through soil, water and aerially (Erwin & Ribeiro 

1996), and can be isolated directly from plant tissues, such as leaves, roots, stem and twigs 

without any surface sterilization when infection is active by plating sections of an advancing 

lesion margin onto a selective medium (Streito et al. 2002).  However, the presence of 

Phytophthora is not always associated with visible symptoms and it can be recovered from 

symptomless plant tissues (Hüberli et al. 2000). The rate of success of isolation also 

depends on the pathogen’s activity, which varies between seasons. Autumn was found to be 

the best season for isolation of alder Phytophthora from plant tissues (Streito et al. 2002). 

Similarly, saprophytic microorganisms and antagonistic bacteria affect the efficiency of 

isolation (Hüberli et al. 2000, Streito et al. 2002, Jung & Blaschke 2004). Therefore, surface 
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sterilization with 70% ethanol followed by drying on paper towel prior to plating can increase 

chances of isolation (Martin et al. 2012). Finally, washing plant tissues to leach out phenolic 

compounds from plants like Eucalyptus and Alnus species prior to plating can increase 

isolation of Phytophthora species (Hüberli et al. 2000, Streito et al. 2002). 

Various traditional methods have been reported for the isolation of Phytophthora species 

from soils. Direct plating of soil onto selective media is not suitable for recovery of 

Phytophthora species, as there are few viable propagules per gram of soil and lots of 

contaminants (Hendrix & Kuhlman 1965). Soil baiting is more effective for isolation of 

Phytophthora species for a number of reasons. First, a large amount of soil can be tested, 

which increases chances of isolation when species are present at a low population density 

(Martin et al. 2012).  Secondly, it is more effective for isolation of homothallic species, which 

often survive as dormant oospores (Jeffers & Aldwinckle 1987). Species are more frequently 

isolated when soil is kept between 15 and 20 oC and the bait is not wounded, which 

discourages Pythium and bacterial colonization (Hwang et al. 2008, Ghimire et al. 2009). 

Leaf tissues are more commonly used as baits than fruits, but all leaf tissues are not equally 

attractive to multiple Phytophthora species. Young and succulent leaves of Camellia, 

Rhododendron, and Quercus spp., and Pimelea ferruginea and Eucalyptus sieberi 

cotyledons have been successfully used in recent years (Jung et al. 2000, McDougall et al. 

2002, Fichtner et al. 2007, Hwang et al. 2008).  

Currently, baits and filter-based approaches are mainly used to isolate Phytophthora species 

from water. A variety of plant baits (Klotz et al. 1959, McIntosh 1966, Erwin & Ribeiro 1996, 

Oudemans 1999, Hüberli et al. 2013, Dunstan et al. 2016) as well as filter membranes and 

filtering methods (MacDonald et al. 1994, Von Broembsen & Wilson 1998, Hong et al. 2002) 

have been used. However, not all membranes are equally efficient for recovery of diverse 

Phytophthora species. Hong et al. (2002) compared nine hydrophilic membranes for isolation 

of Pythiaceous species in water, and found Durapore5 and Millipore5 to be more efficient 

than other membranes. Filtration has been found to be more efficient for isolation of 

Phytophthora in water than baiting (Hwang et al. 2008).  

Fruit baits are also used for isolation of Phytophthora. These have included apple (Campbell 

1949, Newhook 1959), lemon (Klotz & DeWolfe 1958), avocado (Zentmyer et al. 1960), 

tomato (Reis et al. 2003), and pear and cucurbits (Gevens et al. 2007). Apples are usually 

not very effective for isolation of Phytophthora species from soil because saprophytic fungi, 

such as Mucor, Rhizopus and Penicillium species produce rapid soft rots, which inhibit the 

growth of Phytophthora (Chee & Newhook 1965b). Also, Trichoderma viride is commonly 

present in soil and causes a hard rot of apple. Although both may cause distinct isolatable 

rots in a single apple, it is more likely that T. viride will suppress growth of Phytophthora 
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(Chee & Newhook 1965b). Furthermore, Jeffers and Aldwinckle (1987) compared different 

baits, such as apple, pear, apple seedlings, cotyledons, and seedling leaf pieces, and found 

that apple and pear were not suitable for isolation of P. cactorum from naturally infested soil. 

However, pears have been reported as useful baits for isolation of P. cinnamomi from 

naturally infested soil (Greenhalgh 1978).  

Although these conventional methods are useful for the isolation of many Phytophthora 

species (Erwin & Ribeiro 1996, Drenth et al. 2006), it can be a laborious and difficult task.  

Additionally, it can be difficult to identify species based on morphology, especially now that 

so many new species have been described in the past 10 years. Some species, such as P. 

mirabilils, P. infestans, and P. ipomoeae have similar sporangia (semi-papillate and 

caducous) and oospore characteristics, and therefore, cannot be distinguished by 

morphology alone (Erwin & Ribeiro 1996, Flier et al. 2002).  Moreover, morphology of 

Phytophthora is plastic (Braiser 1992), and not all Phytophthora species can be cultured on 

agar media (Mircetich 1970). DNA based identification is a fast and reliable method for the 

identification of Phytophthora species (Martin et al. 2014) and has been used in numerous 

studies (Ristaino et al. 1998, Burgess et al. 2009, Oh et al. 2013, Català et al. 2015).  

The term environmental DNA (eDNA) refers to DNA isolated from environmental samples 

(e.g. air, soil and water) without first isolating any desired organism (Taberlet et al. 2012). 

This term was first used by Ogram et al. (1987) while isolating microbial DNA from a range of 

sediment types. It is composed of intracellular DNA from living cells and extracellular DNA 

from naturally lysed cells. High Throughput Sequencing (HTS) has made it possible to 

characterize microbial and fungal communities in eDNA without time consuming and 

expensive cloning (Sogin et al. 2006, Coince et al. 2013). Environmental substrates are 

usually easy to sample and can be collected by non-specialists (Lear et al. 2018). HTS is an 

effective tool for epidemiological studies when description of new or rare taxa is required 

(Vannini et al. 2013). Previous studies have mainly concentrated on detection of all 

organisms that can be present in environmental samples by targeting barcoding genes, such 

as ITS and 18S (Nakayama et al. 2013, Weber et al. 2013), but only a few have focused on 

targeting specific organisms (Bergmark et al. 2012, Li et al. 2013).  

Although the metabarcoding approach has greatly improved the detection of Phytophthora 

species in environmental samples (Vannini et al. 2013, Català et al. 2015, Prigigallo et al. 

2015, Català et al. 2016), none of the studies have been specifically targeted to determine 

the best substrate for isolation and detection of Phytophthora species. The current study 

compared traditional isolation methods to metabarcoding using Phytophthora specific 

primers on samples taken in natural environments.  
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Materials and Methods 

Sampling sites and sampling procedure 

Rhizosphere soil including roots was collected from five different urban parks in Perth; Bold 

Park, Kings Park, Attadale Foreshore, Manning Park, and Bibra Lake in the late (June) 

autumn (Table 2.1). At each site, a bulked soil sample was collected (3 kg comprised of 10 x 

300g sampled from ten different locations to a depth of 10-20 cm). Emphasis was placed on 

the collection of rhizosphere soil containing fine roots. The soil samples were placed into 

plastic bags and kept in an insulated box to protect samples from high temperature and 

direct sunlight and carried to the laboratory.  

In the laboratory, the samples were mixed thoroughly. Some fine roots were removed from 

the soil, rinsed with tap water to remove soil particles and chopped into 1-2 mm segments.  

Chopped roots (approximately 1000mg) were placed into three Eppendorf tubes and frozen 

at -20 oC until used for DNA extraction while others were used in apple baits. A sub-sample 

of soil (200g) was air dried for DNA extraction from soil, and three sub-samples of soil (each 

approx. 400g) were taken for traditional baiting. Finally, four subsamples of soil (approx. 

1500g) were used for growing Eucalyptus sieberi and Banksia attenuata seedlings in the 

glasshouse as susceptible living ‘baits’ for Phytophthora. 
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Table 2.1 Site location and host plants from which Phytophthora isolates were obtained  

Location Site key GPS location Vegetation type 

Bold Park 1 31°56'47.68"S 
115°46'41.96"E 

Mixed Eucalyptus 
gomphocephala and Banksia 
woodlands, with mixed Acacia 
rostellifera and Melaleuca 
acerosa understory  

Kings Park 2 31°57'50.08"S 
115°49'19.60"E 

Mixed Eucalyptus, Banksia and 
Xanthorrhoea preissii 
woodlands 

Attadale foreshore 3 32° 1'2.05"S 
115°47'52.85"E 

Mixed Eucalyptus marginata 
and Corymbia calophylla 
woodlands, with Banksia, 
Melaleuca, and Agonis 
flexuosa midstory, and 
Sporobolus virginicus open 
grassland 

Manning Park 4 32° 5'31.76"S 
115°45'58.49"E 

Mixed Eucalyptus 
gomphocephala and E. 
decipiens woodland, with 
Acacia, Melaleuca hugelii and 
M. acerosa understory  

Bibra Lake 5 32° 5'41.96"S 
115°49'14.33"E 

Mixed Eucalyptus woodland 
with Banksia attenuata, B. 
menziesii midstory and 
Melaleuca teretifolia and/or 
Astartea aff. fascicularis 
understory 

Traditional isolation from soil using bait leaves 

Soils from each sample were placed in 1.5 L rectangular polypropylene containers (167 mm  

× 108 mm). Each soil sample was replicated three times. Combined, the roots and soil 

occupied one-third of the container. The soil/root mix was then pre-moistened with distilled 

water overnight to stimulate pathogen activity. The next morning, the samples were flooded 

with distilled water in a 1:3 soil/water ratio and young leaves of Quercus ilex, Q. suber, 

Pimelea ferruginea, Poplar sp., Scholtzia involucrata, and Hedera helix were floated on the 

surface [Fig. 2.1a, c]. The containers were incubated at 20°C (±5°C) under ambient 

conditions.    

The baited leaves were observed for the appearance of lesions every 1-2 days for seven 

days. Leaves with brownish lesions were blotted dry on paper toweling, the lesions were cut 

into 2 × 2 mm pieces, and plated onto NARH (Simamora et al. 2017). The plates were 

incubated at 20°C (±5°C) in the dark and examined under 10X magnification for the 

presence of hyphae typical for Phytophthora. After 1-2 days, any Phytophthora-like cultures 
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were transferred onto fresh plates of NARH twice and finally transferred onto individual 

vegetable juice agar (V8A) plates [100 ml/L filtered vegetable juice (Campbells V8 vegetable 

juice; Campbell Grocery products Ltd., Norfolk, UK), 900 ml/L distilled water, 0.1 g/L CaCO3, 

pH adjusted to 7 and 17 g Grade A Agar (Becton, Dickenson and Company, Sparks, MD, 

USA]. After seven days, the soil was allowed to air dry and then baiting was repeated 

(double baiting) to increase isolation (Jeffers & Aldwinckle 1987, Davison & Tay 2005).  

 Isolation from filtered bait water 

Filtration was performed with a filtering funnel (Nihon Millipore K.K, Tokyo-Japan) and a 

glass flask connected to a vacuum pump [Fig. 2.1d]. Between samples, plastic containers 

(funnel, porous plate, rubber bung) and a glass flask were placed in a detergent Pyroneg 

(L88Z, Diversey) and then washed in a separate container containing water, sterilised with 

4% sodium hypochlorite for a minute, and then finally placed in a separate container 

containing water for approximately five minutes before handling another bait sample. 

Approximately, 250 mL of bait water was filtered from each ‘bait tray’ each time after finishing 

baiting (on day 7) through a 47 mm circular filter paper with 5 µm pore size UltraSepTM 

Polyetherasulfone (GVS Life Sciences, Sanford-USA). Three filters were collected for each 

sample.  Finally, tap water was passed through a fresh filter as a filter control. Each filter was 

cut into two halves. Half of each filter was placed topside down onto the surface of NARH 

medium.  After 12 hours, the filter was removed and colonies were transferred to fresh NARH 

plates (5-6 sub-cultures per plate). Phytophthora like cultures were transferred onto V8A 

plates after 2-3 days. Soil used in each ‘bait tray’ was allowed to air dry and the same 

procedure was repeated for filtered bait water from the second round of baiting (double 

baiting).  

Isolation using Granny Smith apple baits 

Granny Smith apples were used as baits for roots from the field sites. Briefly, two holes 

(about 10 mm width) were made with a sterile scalpel on opposite sides of each apple; the 

column was taken out and chopped fine roots were placed into each hole and blocked with 

the removed apple column and sealed with glad-wrap (plastic film) [Fig. 2.1e]. Each apple 

was kept for 5-7 days in a separate zip-lock bag (Sandvik, Australia) at 20 ± 5 °C and brown 

discoloured lesions around holes were plated onto NARH. 
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Bait plants in glasshouse 

Seed of B. attenuata was grown in sterilized sand for two weeks and transplanted to free-

draining pots (18 x 6.5 cm L x W) containing soil collected from each site and placed into an 

evaporatively cooled glasshouse. E. sieberi seed was then directly germinated in the same 

pots and watered daily (Fig. 2.1f). There were four replicate pots for each site. Seedlings 

showing disease symptoms while growing were cut into 1-2 cm segments and plated onto 

NARH. After 2-3 days, any Phytophthora-like cultures were transferred onto individual V8A 

plates. After nine weeks, the E. sieberi and B. attenuata seedlings were harvested by 

severing shoots from roots. Roots were carefully washed over a 1-mm sieve immediately 

after harvesting to remove soil particles and stored in collection tubes in triplicates at -20 oC 

for DNA extraction.  

Morphological and molecular identification of isolates 

Living isolates were maintained on V8A. Isolates were divided into morphotypes based on 

their gross colony morphology and hyphal characteristics examined at 10x magnification 

under a light microscope. Finally, two to three isolates from each morphotype were selected 

for sequence-based identification using the ITS gene region. ITS sequence data were 

obtained for all isolates, and their identity was confirmed by conducting BLAST search in 

GenBank (www.ncbi.nlm.nih.gov/genbank/). 

  

http://www.ncbi.nlm.nih.gov/genbank/)
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Figure. 2.1 Techniques for isolating Phytophthora from soil and root samples; (a) a typical soil sample 
in a baiting tray; (b) fine roots collected from soil for eDNA extraction and placement into Granny 
Smith apples; (c) traditional baiting assay from a soil and root samples; (d) filtration apparatus for 
filtering bait water; (e) isolation from field roots using Granny Smith apples; and (f) isolation from 
field soil using bait plants (Banksia attenuata and Eucalyptus sieberi) grown in the glasshouse. 

DNA extraction 

DNA was extracted in triplicate from (i) fine roots collected from field soil samples using the 

PowerPlant® DNA isolation kit following the manufacturer’s instructions; (ii) the air-dried soil 

sample was sieved and 100g of this soil was crushed to a fine powder using the TissueLyser 

LT (Qiagen, Haan, Germany) and DNA was extracted using the Mo Bio PowerSoil® DNA 

isolation kit following the manufacturer’s instructions except for the first step the buffer from 

the kit was replaced with 1 ml of saturated phosphate buffer (Na2PO 4; 0.12 M; pH 8) to the 

samples (500 mg) to maximize extracellular DNA isolation (Taberlet et al. 2012); (iii) the 

remaining two halves of filters from the first and second round of filtered bait water using 
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PowerSoil® DNA isolation kit (filter halves obtained from the first and second round were 

bulked to reduce the cost), and (iv) fine roots recovered from glasshouse bait plants using 

the PowerPlant® DNA isolation kit. Extreme care was taken to avoid any possible 

contamination during extraction and extraction controls were also included. 

Amplicon pyrosequencing and clustering 

Amplicon libraries for ITS gene region were created using the Phytophthora-specific primers 

(Scibetta et al. 2012) and Promega GoTaq Host Start Polymerase using a nested PCR 

approach as optimised by (Burgess et al. 2017b). Negative controls were included each time 

a PCR reaction was setup, and carried forward to the second round in the same manner as 

for the samples. PCR products were cleaned twice with AMPure XP Beads (Beckman 

Coulter Genomics) following the Short Fragment removal protocol according to 

manufacturer’s instructions. After purification, the PCR products were visualized on agarose 

gels and then pooled (based on the band intensity) to standardise each sample’s DNA 

contribution to pooled samples. The final pooling was diluted to 1/5000 of the original 

concentration, and 50 µl of the dilution was again cleaned with AMPure XP Beads. DNA was 

quantified as described previously (Burgess et al. 2017b). The emulsion PCR reactions were 

carried out according to the Roche GS Junior emPCR Amplification Method Manual Lib-L 

(March 2012). The libraries were sequenced using Junior Genome Sequencer plates (454 

Life Sciences/Roche Applied Biosystems, Nutley, NJ, USA). Bioinformatics was conducted in 

GENEIOUS version R9 (http://www.geneious.com/). Reads were then clustered into 

molecular operational taxonomic units (MOTU) based on 99% sequence similarity, which 

allows identification of closely related species. Identities were assigned to MOTUs after 

phylogenetic analysis against a dataset containing verified sequences of all known 

Phytophthora species. These identities are considered phylotypes acknowledging that this is 

based on sequence data rather than a living isolate. Chimeras were discarded after making 

alignments of consensus MOTUs for each barcode. Identities were assigned to phylotypes 

as described by (Burgess et al. 2017b).  

Data processing and statistical analysis 

One-way Analysis of Variance (ANOVA) test was used to determine the differences in the 

number of unique Phytophthora species isolated and detected by the different techniques. 

Additionally, a Welch’s T-test (Welch 1951) was used to compare the number of unique 

Phytophthora species recovered by traditional isolations and metabarcoding. Assumptions of 

normality were assessed using the Shapiro-Wilk test and observation frequency histograms. 

Both the Levene’s and Bartlett’s tests of homogeneous variance were undertaken before the 
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analysis. Three of the six detection methods were not normally distributed. An ANOVA was 

performed as distribution were not similar and the test was robust enough to handle 

violations of normality assumption (Schmider et al. 2010). After performing the ANOVA, a 

Tukey HSD post hoc test was conducted when the predictive variable was significant. All 

analyses were performed in R (R Core Team 2015)(Anonymous) using the “stats”, 

“graphics”, and “car” (John & Sanford 2011) packages. Diversity indices were calculated for 

metabarcoding techniques using the R package “vegan” (Oksanen et al. 2017).  

It should be noted that the Granny Smith apple technique (in which no Phytophthora was 

recovered), and failed PCR runs from two sites (2 and 3) in case of field roots eDNA were 

excluded from the analysis because no amplifications were achieved for these sites.  

Results 

Traditional isolation from soil using bait leaves 

All baits developed brownish necrotic lesions within 2-4 days. However, Phytophthora 

species could only be recovered from sites 3, 4 and 5. These included P. thermophila, P. 

rosacearum, P. ‘oreophila’, P. amnicola, P. multivora and P. inundata (Table 2.1, 

supplementary Table S2.2). Pythium species were also readily isolated from all sites.  

Isolation from filtered bait water 

No Phytophthora species were recovered from sites 1, 2 and 4. Species recovered from the 

other two sites included P. amnicola, P. thermophila, P. multivora, P. rosacearum, P. 

‘oreophila’, and P. gregata (Table 2.1, supplementary Table S2.2).  

Isolation using Granny Smith apple baits 

No Phytophthora species were recovered by using this technique. However, a few 

unidentified Pythium (data not shown) isolates were recovered.  

Phytophthora species detected from eDNA  

All the soil, filters and glasshouse root samples, and nine of 15 extractions from field roots 

from five sites yielded PCR products. Across all runs, a total of 81 324 quality reads were 

produced from samples that yielded PCR products. Across all sites, 30 phylotypes 

corresponding to 25 known species, three designated but undescribed species and two 

potentially new species were obtained. Some closely related species relevant to this study 

cannot be separated based solely on ITS1 (Fig. 2.S1): (i) P. citrophthora and P. terminalis, 
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(ii) P. capsici and P. glovera, (iii) P. arenaria, P. boodjera and P. alticola, and (iv) P. 

versiformis, P. quercina and P. castenatorum. With the exception of P. arenaria and P. 

boodjera which are both found in Australia, for the other groups only the first named species 

in known in Australia.   

There were 25 phylotypes from field roots, 24 from filters, 19 from glasshouse bait roots, and 

12 from soil (Table 2.2, supplementary Table S2.4). The three most abundant phylotypes 

were P. multivora (66.73 %), followed by P. pseudocryptogea (12.69 %) and P. amnicola 

(3.38 %) (see supplementary Table S2.3). Diversity indices were calculated to determine 

species richness and diversity. According to all the alpha diversity indices (α, αSI, αS) 

(Simpson 1949), higher diversity in detections was displayed in the field roots eDNA having 

had the most diverse Phytophthora community than other substrates (Table 2.3).  According 

to multiplicative beta diversity (βγ/α), higher novelty in detection was displayed in filters’ eDNA 

than any other substrate. Finally, Bray-Curtis dissimilarity index (Bray & Curtis 1957) showed 

that Phytophthora species detected in field roots eDNA in different sites were more dissimilar 

than other substrates (Table 2.3).  

Soil: Thirteen phylotypes were detected by metabarcoding; Phytophthora AUS 1D, P. 

multivora, P. amnicola, P. inundata, P. versiformis, P. constricta, P. rosacearum, P. 

‘oreophila’, P. kwongonina, P. thermophila, P. cinnamomi, P. melonis, and P. 

pseudocryptogea (Table 2.2). Species distribution varied across sites with P. multivora and 

P. pseudocryptogea were detected in all sites, P. AUS 1D was detected in four sites, and P. 

thermophila were detected in three sites, P. versiformis, P. amnicola, P. ‘oreophila’, P. 

rosacearum, and P. inundata were detected in two sites, and P. kwongonina, P. cinnamomi, 

P. melonis and P. constricta were detected at only one site (Table S2.4).  

Field roots: A total of 25 phylotypes were detected in field roots by metabarcoding: P. 

nicotianae, P. AUS 1D, P. capensis, P. elongata, P. multivora, P. pachypleura, P. ‘acacia’, P. 

citrophthora, P. AUS 2C, P. amnicola, P. fluvialis, P. gregata, P. inundata, P. litoralis, P. 

moyootj, P. rosacearum, P. ‘oreophila’, P. kwongonina, P. thermophila, P. pseudocryptogea, 

P. versiformis, P. arenaria, P. cinnamomi, P. ‘kelmania’ and P. constricta (Table 2.2). 

Species distribution was uneven across sites; P. nicotianeae, P. AUS 1D, P. multivora, P. 

amnicola, P. ‘oreophila’, P. thermophila, P. cinnamomi, P. pseudocryptogea, and P. 

constricta were detected in three sites, P. citrophthora, P. inundata, P. rosacearum, and P. 

kwongonina were detected in two sites, and P. capensis, P. elongata, P. pachypleura, P. 

‘acacia’, P. AUS 2C, P. arenaria, P. fluvialis, P. gregata, P. litoralis, P. moyootj, P. ‘kelmania’, 

and P. versiformis were detected at only one site (Table S2.4).  
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Filtered bait water: A total of 24 phylotypes were detected by metabarcoding: P. nicotianae, 

P. AUS 1D, P. capensis, P. capsici, P. elongata, P. frigida, P. multivora, P. pachypleura, P. 

citrophthora, P. arenaria, P. palmivora, P. amnicola, P. gregata, P. inundata, P. moyootj, P. 

‘oreophila’, P. rosacearum, P. kwongonina, P. thermophila, P. cambivora, P. cinnamomi, P. 

pseudocryptogea, P. constricta and P. versiformis (Table 2.2). The occurrence of phylotypes 

also varied across sites; P. multivora, P. amnicola, P. ‘oreophila’, P. kwongonina, P. 

thermophila and P. pseudocryptogea were detected in five sites; P. inundata was detected in 

four sites; P. nicotianae was detected in three sites; P. AUS 1D, P. cinnamomi, and P. 

constricta was detected in two sites, and P. capensis, P. capsici, P. elongata, P. frigida, P. 

pachypleura, P. citrophthora, P. arenaria, P. palmivora, P. gregata, P. moyootj, P. 

rosacearum, P. cambivora and P. versiformis were detected in only one site (Table S2.4).   

Glasshouse bait roots: Nineteen phylotypes were detected by metabarcoding; P. nicotianae, 

P. AUS 1D, P. capensis, P. multivora, P. capsici, P. ‘acacia’, P. citrophthora, P. versiformis, 

P. arenaria, P. amnicola, P. inundata, P. rosacearum, P. kwongonina, P. thermophila, P. 

‘oreophila’, P. cinnamomi, P. pseudocryptogea, P. frigida and P. constricta (Table 2.2). 

Considerable differences were observed in species distribution across sites. P. nicotianae, P. 

multivora, P. amnicola, P. ‘oreophila’, P. thermophila, P. cinnamomi and P. pseudocryptogea 

were detected in all five sites; P. inundata was detected in four sites; P. capensis, P. 

citrophthora, P. arenaria, P. kwongonina, and P. constricta were detected in three sites; P. 

AUS 1D and P. rosacearum were detected in two sites, and P. capsici, P. frigida, P. ‘acacia’ 

and P. versiformis were detected in only one site (Table S2.4). 

Comparison of traditional isolations to metabarcoding  

Significant differences were observed between traditional isolations and metabarcoding 

techniques tested for the isolation and detection of Phytophthora t(23.0.16) = 6. 827, p = 

0.000). Significantly more Phytophthora were detected by molecular techniques (10. 88 

average) compared with traditional (1.4 average). Differences among the analysed 

substrates used for metabarcoding studies were also significant [F(5,22) = 10.34, p = 0.000). 

Of the 30 Phytophthora phylotypes detected in this study, all were recovered in eDNA from a 

variety of sources and only seven of these were recovered by traditional methods (traditional 

isolation using bait leaves and filtered bait water). The highest number of Phytophthora 

species was detected in field soil roots eDNA (25); the lowest numbers were detected with 

traditional isolation using bait leaves and filtered bait water (6 Phytophthora species each), 

while no Phytophthora species were detected in Granny Smith apple baits (Table 2.2).  
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Certain Phytophthora species were detected by all techniques tested in this study except 

Granny Smith apples. For example, P. multivora, P. amnicola, P. inundata, P. ‘oreophila’, P. 

rosacearum, and P. thermophila. However, P. AUS 1D, P. kwongonina, P. cinnamomi, P. 

pseudocryptogea, P. constricta, and P. versiformis were detected from all sources of eDNA 

(soil, filters, roots from field, and bait plants in the glasshouse), but these were not recovered 

by traditional isolations (baiting, and filtered bait water and Granny Smith apple baits). 

Certain Phytophthora species were only detected with one technique (Table 2.2). For 

example, P. melonis was detected from field soil eDNA; P. palmivora and P. cambivora were 

detected from filters’ eDNA, and P. AUS 2C, P. fluvialis, P. litoralis, and P. ‘kelmania’ were 

detected from field soil roots eDNA only (Table 2.2). 

Table 2.2 Number of sites (from total of 5) from which each Phytophthora species was (A) isolated 
using traditional techniques, or (B) detected by metabarcoding  

Species 

  (A) Isolations (B) Metabarcoding 

Clade Baiting Filters Apple Soil Filters Field1 
roots 

Glasshouse 
bait roots 

P. nicotianeae 1       
 

3 3 5 
P. AUS 1D 1       4 2 3 2 
P. capensis 2       

 
1 1 3 

P. capsici  2       
 

1 
 

1 
P. elongata 2       

 
1 1 

 P. frigida 2       
 

1 
 

1 
P. multivora 2 2 1   5 5 3 5 
P. pachypleura 2       

 
1 1 

 P. ‘acacia’ 2       
  

1 1 
P. citrophthora 2       

 
1 2 3 

P. AUS 2C 2       
  

1 
 P. arenaria  4       

 
1 1 3 

P. palmivora 4       
 

1 
  P. amnicola 6 1 1   2 5 3 5 

P. fluvialis 6       
  

1 
 P. gregata  6   1   

 
1 1 

 P. inundata 6 1     2 4 2 4 
P. litoralis 6       

  
1 

 P. moyootj 6       
 

1 1 
 P. ‘oreophila’ 6 1 1   2 5 3 5 

P. rosacearum 6 2 2   2 1 2 2 
P. kwongonina 6       1 5 2 3 
P. thermophila 6 1 1   3 5 3 5 
P. cambivora 7       

 
1 

  P. cinnamomi 7       1 2 3 5 
P. melonis 7       1 

   P. psuedocryptogea 8       5 5 3 5 
P. ‘kelmania’ 8       

  
1 

 P. constricta 9       1 2 3 3 
P. versiformis 11       2 1 1 1 
Total no. of species   6 6 0 13 24 25 19 

1 amplification was only achieved for 3 of the 5 sites 
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Table 2.3 The table below displays gamma, alpha and beta diversity indices. Indices that account for 
species abundance (αSW, αS, βBC,) were calculated with the number of reads. Symbols:  γ represent 
gamma diversity; symbol α represent species richness; αSI means Shannon Index (Shannon, 1948); αS, 
mean Simpson diversity (Simpson, 1949); βγ/α, multiplicative beta diversity; βBC means Bray-Curtis 
dissimilarity (Bray and Curtis, 1957).   

Metabarcoding 
substrate 

 Number of 
sites of sites 
in which 
Phytophthora 
species were 
detected 

Gamma Alpha       Beta 

γ α αSI αS βγ/α βBC 

Soil 5 13 6.20 0.50 0.24 2.10 0.50 

Filters 5 24 11.2 0.81 0.38 2.14 0.53 

Roots 3 25 15.67 1.71 0.72 1.59 0.75 

Glasshouse 
roots 5 19 12.4 1.44 0.61 1.53 0.49 

DISCUSSION  

This study provides a comparison of traditional isolation methods to metabarcoding, and for 

the first time, an evaluation of different substrates used for isolation and detection of 

Phytophthora species was conducted. This research will have a great impact on 

Phytophthora diagnostics and its isolation and detection in natural ecosystems and is 

particularly relevant to studies of other root infecting organisms. Different techniques and 

substrates used for the isolation and detection of Phytophthora species showed variable 

results. Of the 30 Phytophthora phylotypes detected in this study, all were identified in eDNA 

from a variety of sources and only seven of these were recovered by traditional methods. We 

were also able to recognize two potentially new phylotypes, both of which had been detected 

in Australia previously (Burgess et al. 2017b).  

Traditional techniques tested for isolation of Phytophthora species showed variable results. 

One interesting finding is that one additional species, P. gregata, was recovered from filtered 

bait water compared to traditional isolation from soil using bait leaves. This result further 

confirms the association between Phytophthora species and the type of bait leaves used 

(Erwin & Ribeiro 1996). It also supports the idea of using multiple bait leaves to avoid host 

preference and competition for food among Phytophthora species (Scibetta et al. 2012). 

Scholtzia involucrata (spiked scholtzia) and Pimelea ferruginea (rice flower) were found to be 

more successful in isolation of Phytophthora species in the current study; P. ferruginea has 

been successfully used in previous research (McDougall et al. 2002). Further work is 

suggested to establish the relationship between Phytophthora species and different baits. 

Moreover, inoculum level varies between seasons; therefore baiting assays need to be 

conducted at different times of the year to get a good picture of Phytophthora species 
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present (Balci & Halmschlager 2003). Also, the successful recovery of Phytophthora species 

in about one third of the resampled sites by Balci et al. (2007) emphasizes the need for 

sampling throughout the year to avoid false negative results on sites. No Phytophthora 

species were isolated from field soil roots using apple baits. Although there had been some 

previous reports on successful isolation of Phytophthora cinnamomi from soil using fruit baits 

(Greenhalgh 1978), no Phytophthora species were recovered from field soil roots using apple 

as a bait, this was also the case for Aghighi (2013).  

Although one additional Phytophthora species were recovered in filtered bait water (P. 

gregata that was not recovered with traditional baiting), no Phytophthora species were 

recovered from site 4 using this technique. This was surprising because Phytophthora 

species were recovered from this site by traditional baiting and one would expect zoospores 

to be picked up on the filters as water was filtered from the same ‘bait trays’. This result may 

be explained by the fact that colonies are difficult to purify in case of filtering method because 

colonies are concentrated in the area where membrane is placed (Hong et al. 2002). A single 

filter was used to filter bait water from each ‘bait tray’ in the current study. It has been shown 

that the density of Phytophthora propagules (cfu/L) from a single filter decreases with the 

increase in the amount of water filtered because multiple fast-growing Phytophthora and 

Pythium species interfere with the identification and growth of slow growing colonies (Reeser 

et al. 2011). Therefore, the amount of water to be filtered should be divided onto several 

filters to accurately measure Phytophthora diversity (Reeser et al. 2011).  

The metabarcoding results were also variable. Among the different sources of eDNA tested 

for metabarcoding, the lowest number (13) of Phytophthora phylotypes was detected from 

field soil eDNA. It is believed that the lower detection of Phytophthora from soil eDNA can be 

due to the presence of humic acid inhibitors and high DNA degradation (Català et al. 2015).  

The humic acid inhibitors’ interpretation is not valid for the current study as we used the Mo 

Bio PowerSoil® DNA isolation kit, which efficiently removes humic acid and other inhibitors. 

(Anonymous , Lear et al. 2018) reviewed practices for the extraction, storage and 

amplification of environmental samples for a wide range of taxa from 2010 to 2015 and found 

that Mo Bio PowerSoil and PowerMax Soil DNA isolation kits (now rebranded as DNeasy 

PowerSoil and DNeasy PowerMax by Qiagen, Carlsbad, USA) were used in almost all of the 

studies dealing with the detections from soil or sediment material; and has been 

recommended by a number of international standards consortia following comparisons with 

many other methods (Gilbert et al. 2014). Therefore, a more likely explanation for the low 

detections from soil is that because Phytophthora species mainly live as parasites in plants, 

and survive as resting structures (mainly oospores and chlamydospores) and mycelium in 

soil. There is a higher chance of degradation in soil as these survival structures are more 
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exposed to environmental extremes compared to roots where they are protected by thick 

layers of host tissues. Phytophthora species are known to respond differently to 

environmental extremes even in different parts of a single plant. For example, P. cinnamomi 

is more vulnerable to temperature extremes in bark tissues rather than in root tissues deep 

under soil (Marçais et al. 1996). 

Determining fungal diversity in soil eDNA has always been a challenge and several 

techniques have been used to improve the amount of DNA extracted with sufficient purity. 

For example, liquid nitrogen and phenol/chloroform in combination with powdered skim milk 

was used to reduce PCR inhibitors in case of Fusarium oxysporum f. sp ciceris (García-

Pedrajas et al. 1999). Okubara et al. (2007) used pressure cycling technology (samples are 

subjected to alternate cycles of high and ambient pressure), rather than mechanical 

disruption for detecting Rhizoctonia and Pythium species from soil. Probably the most 

common approach used to reduce the amount of inhibitors is the dilution of DNA extract. 

Although this often results in the amplification, it is not very useful to detect low levels of 

pathogen inoculum (Bilodeau et al. 2012). Alternatively, aluminum sulphate (Dong et al. 

2006) and Sephadex column (Tsai & Olson 1992) can be used to reduce humic substances. 

Humic acid substances can also be reduced by supplementing PCR mixtures with adjuvants, 

such as BSA (Lear et al. 2018). It is advisable to get an accurate estimation of consistency of 

results between replicates to get accurate results because inoculum is not always uniformly 

distributed in soil. Three to four replications for each extraction with sample tubes holding a 

total volume of 0.5 g of soil each has been reported to provide sufficient consistency in 

replicate results without increasing cost (Bilodeau et al. 2012). Further work is suggested to 

evaluate different soil DNA extraction techniques and optimization of sensitivity of detections 

from soil.   

In comparison to field soil eDNA, 24 Phytophthora phylotypes were detected in eDNA from 

filters (extracted onto filters by filtered bait water). This result maybe explained by the fact 

that a large amount of soil (approx. 400g) was used in filtered bait water, whereas only 50 

mg soil was used for pyrosequencing analysis of soil eDNA.  

The highest number (25) of Phytophthora phylotypes was detected in the eDNA of fine roots 

collected from field soil. These results are contrary to the hypothesis proposed by Coince et 

al. (2013), that high-throughput sequencing can rule out the niche differentiation between fine 

roots and soil, and can detect most oomycete and fungal MOTUs present in fine roots in soil 

as well. Prigigallo et al. (2015) detected three additional Phytophthora species out of nine 

species belonging to definite taxonomic groups in soil rather than roots. Landeweert et al. 

(2005) determined the diversity of an active ectomycorrhizal fungal community in root tips 

and total soil DNA, and did not detect a single fungal species in root tips that was not present 
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in soil. However, Dickie et al. (2002) found that mycorrhizal fungi obtained from fine roots can 

be different from those obtained from soil. Our research matches these latter findings as 15 

additional Phytophthora species not found in the soil were detected in fine roots, which raise 

the possibility of using fine roots as an effective substitute for other substrates for 

metabarcoding studies. An issue with the detection directly from soil could be that the DNA 

extracted could be from dead organisms (Nocker et al. 2006).  Roots act as a biological filter; 

if an organism is present in the roots it must have been alive to get there.  However, we did 

only detect Phytophthora in three of the five root samples, which could be somehow linked to 

the type of roots collected and the relatively small sample size (as inoculum is not uniformly 

dispersed).  More work needs to be done to optimize this methodology. 

Nineteen Phytophthora phylotypes were detected in the roots of bait plants grown in the 

glasshouse. These results are consistent with those of McDougall et al. (2002), who detected 

P. cinnamomi in twice as many areas and five times as many samples with in situ baiting 

with Banksia grandis than ex situ soil and root baiting. A possible explanation for this might 

be that bait leaves used in traditional isolation from soil were not as attractive to 

Phytophthora as the roots of bait plants grown in the glasshouse. Another possible 

explanation for this could be that Phytophthora survival structures (oospores and 

chlamydospores) were dormant and the traditional baiting technique was unable to break 

their dormancy, even after double baiting (Balci et al. 2007). Similarly, antagonistic 

microorganisms could have suppressed the growth and germination of these viable 

propagules during traditional baiting (Balci & Halmschlager 2003), while living roots in soil 

stimulated their growth and germination. Furthermore, air-drying followed by remoistening 

and incubation up to three days might be required for recovery of some Phytophthora 

species (e.g. P. cactorum). In a study by Jeffers and Aldwinckle (1987) recovery occurred in 

100% of replicate subsamples when subsamples were remoistened and incubated for three 

days before flooding, but only in 17 and 72% of sub-samples when remoistened and 

incubated for 1 and 2 days, respectively before flooding.  

Baiting is a complicated process that shows variable results in soils with different 

physiochemical and biological characteristics (Williams et al. 2009). Chemical composition of 

the soil can affect zoospore release and hence subsequent bait infection. It has been shown 

that the use of soil with high levels of N, P, K and organic matter resulted in the increased 

levels of zoospore production (Broadbent & Baker 1974, Shearer 2003). Messenger et al. 

(2000) showed that high calcium levels were necessary for zoospore production. Duncan 

(1976) reported that one germinating oospore (producing a sporangium, which then 

produces 8-14 zoospores) of P. fragariae was able to cause detectable infection in a 

strawberry bait plant under optimum conditions, especially when zoospores were produced 
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close to the roots and not at the soil surface. The quality of water used can also affect baiting 

as zoospores show sensitivity to toxic ions present in the un-purified water (Tsao 1983). 

Gerrettson-Cornell, quoted in Tsao (1983), found that the frequency of isolation of P. 

cinnamomi was 94, 32 and 0%, respectively when glass de-ionized water, deionized water, 

and de-ionized water from a metal still was used. Lastly, the rate of positive detection of 

Phytophthora by baiting is usually very low (0.4 to 10%) in Western Australian soil (Podger 

1978, Blowes 1980) compared to New South Wales and Queensland (27 to 58%) (Blowes 

1980, Pryce et al. 2002). It is not clear whether the reason for this difference in recovery is 

due to difference in soil composition or different climates (O’Brien et al. 2009).  

In conclusion, all the techniques tested for the isolation and detection of Phytophthora 

species showed variable results. Although traditional baiting assays are important for 

obtaining living isolates, they do not represent the actual Phytophthora community present in 

a location. High-throughput amplicon pyrosequencing of eDNA detected the highest number 

of Phytophthora, therefore it is a very useful tool for assessing Phytophthora diversity in 

environmental samples. The ITS region can fail to discriminate some species complexes 

(Català et al. 2015, Burgess et al. 2017b). However, clustering at 99 % of similarity or above 

may help in differentiating closely related species (clustering was done at 99% sequence 

similarity level in the present study). Català et al. (2015) obtained 20 % more differentiation 

of closely related species by including a control species mixture and clustering at 99% 

threshold. Despite these shortcomings, ITS is still very useful to differentiate known species 

and identify new ones. ITS is the main locus for molecular identification due its easy 

amplification for most species (Ristaino et al. 1998), availability of large sequence data 

deposited in GenBank, its importance in phylogenetic analysis (Grünwald et al. 2011), and 

more commonly the targeted region for fungal analysis than other gene regions (Lear et al. 

2018). As the highest number of Phytophthora species were detected in field roots eDNA, it 

could be substituted for other substrates to assess Phytophthora diversity in environmental 

samples. Finally, certain Phytophthora could be only detected by one method; therefore a 

combination of these techniques may be necessary to accurately assess the presence or 

absence of Phytophthora species. 
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Chapter 3: Phytophthora species isolated from alpine and sub-
alpine regions of Australia, including the description of two new 
species; Phytophthora cacuminis sp. nov and Phytophthora 
oreophila sp. nov  
_________________________________________________ 
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Abstract 

Plant deaths had been observed in the sub-alpine and alpine areas of Australia. Although no 

detailed aetiology was established, patches of dying vegetation and progressive thinning of 

canopy suggested the involvement of root pathogens. Therefore, surveys were conducted in 

alpine and sub-alpine regions of New South Wales and Tasmania to determine if 

Phytophthora species were involved. Baiting of roots and associated rhizosphere soil 

resulted in the isolation of eight Phytophthora species; Phytophthora cactorum, Phytophthora 

cryptogea, Phytophthora fallax, Phytophthora gonapodyides, Phytophthora gregata, 

Phytophthora pseudocryptogea, and two new species, Phytophthora cacuminis sp. nov and 

Phytophthora oreophila sp. nov, described here. The new species P. cacuminis sp. nov is 

closely related to P. fallax, and was isolated from asymptomatic Eucalyptus coccifera and 

species from the family Proteaceae in Mount Field NP in Tasmania. The other new species, 

P. oreophila sp. nov, was isolated from a disturbed alpine herbfield in Kosciuzsko National 

Park. New species low cardinal temperature for growth suggests that they have well adapted 

to survive under these conditions, and should be regarded as potential threats to the diverse 

flora of sub-alpine/alpine ecosystems. Phytophthora gregata and P. cryptogea have already 

been implicated in poor plant health. Of the eight species recovered, the native or introduced 

status of the two new species and P. gregata is not clear, P. fallax is considered to be native 

while the remainder are thought to have been introduced. Tests on a range of alpine / 

subalpine plant species are now needed to determine their pathogenicity, host range and 

invasive potential. 
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Introduction  

Mountains have been recognised as one of the world’s richest biodiversity hotspots. 

Although mountains occupy about 12 % of the land surface, their complex mosaic of 

microenvironments and ecoclines support almost one quarter of its biodiversity (Körner et al. 

2011). The sub-alpine zone alone occupies only 3 % of the global area, yet supports around 

10,000 vascular plant species, most of which are endemic to mountains (Körner 2004). In 

Australia, Kosciuszko National Park (KNP) alone contains about 1100 vascular native plant 

species, which represents one quarter of the New South Wales (NSW) flora in only 10 % of 

its land area (Doherty et al. 2015). Due to the steep environmental gradients over small 

spatial scales, mountainous regions are useful model systems for understanding ecological 

and evolutionary processes associated with biological invasions (Pauchard et al. 2016, 

Petitpierre et al. 2016). Any stress, biotic or abiotic, can have devastating and irreversible 

consequences on the distribution of species due to its very restricted climatic envelope.  

Plants deaths had been observed in sub-alpine areas of Australia leading to concerns among 

land managers. Although no comprehensive aetiology had been established due to the 

assumption that lower temperatures in sub-alpine areas restricts the growth of Phytophthora 

species, such as Phytophthora cinnamomi (Podger et al. 1990), the progressive thinning of 

canopy and patches of dying vegetation in Barrington Tops National Park of KNP in the 

1990’s suggested the involvement of root pathogens. This assumption was confirmed when 

P. cinnamomi was isolated from dying Oxylobium arborescens and associated rhizosphere 

soil at Barrrington Tops National Park at an elevation of 1560 m above sea level (asl) (Mills 

1999, McDougall et al. 2003). Barrington Tops is a sub-alpine area with annual mean 

temperature 9.5 °C (extracted from downscaled 30 arc second resolution Worldclim layers) 

(Hijmans et al. 2005), with mean maximum and minimum temperatures of 16 °C and 3 °C, 

respectively at the highest altitude (Zoete 2000). 

In 2013, surveys were conducted in sub-alpine areas of Tasmania (TAS), KNP and Mt 

Toolbranup in Western Australia (WA) (Burgess et al. 2017b). Using high throughput 

sequencing (HTS), 33 Phytophthora species were detected in KNP, including P. cinnamomi 

that was detected at an elevation of 2100 m asl (almost at the highest point of mainland 

Australia) in asymptomatic vegetation, and in lower elevation ecosystems thought to be non-

conducive, such as tall forests with deep loam soil. The detection of such a diverse 

Phytophthora community at such higher elevations was unexpected, as Phytophthora 

diseases are usually not associated with higher altitudes and cold climate vegetation 

(McDougall et al. 2003). The annual mean temperature in the sub-alpine area (Charlottes 

Pass; elevation 1757 m asl) of KNP is approximately 3.4°C (Barrows et al. 2001, Edmonds et 
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al. 2006). At Kiandra in KNP (1395 m asl) it is recorded as 6.8 °C, and for Kosciuszko Hotel 

(1530 m asl) it is 6.1 °C (Costin 1954). Temperature at higher elevations would be even 

lower. These temperatures (except for Barrington Tops) are much lower than the mean 

annual temperature limit of 7.5 °C predicted for disease expression by P. cinnamomi (Podger 

et al. 1990).  

A recent CLIMEX model predicted increased climate suitability for the growth of P. 

cinnamomi in most sub-alpine areas under present environmental conditions and increased 

suitability for the growth and survival of the pathogen under changing climatic variables 

(higher mean winter temperatures, seasonal precipitation shifts from summer into winter, and 

global warming) (Burgess et al. 2017a). This model supersedes the previous models that had 

only mapped the presence of the pathogen based on disease symptoms on susceptible 

plants, not on its survival, growth and lifecycle. The presence of a pathogen does not 

automatically lead to infection and disease rather the following conditions must be satisfied 

(i) a virulent pathogen, (ii) susceptible host(s), (iii) favourable environmental conditions, and 

(iv) favourable conditions for long enough for a pathogen to cause disease, and host(s) to 

express symptoms.  

Although many Phytophthora species were detected in alpine and sub-alpine areas through 

HTS in 2013, they were not proof of living organisms, as HTS can detect DNA from dead 

organisms. The current study was conducted to systematically survey sub-alpine and alpine 

areas to isolate living Phytophthora species to determine baseline Phytophthora species in 

these areas.  

Materials and methods 

Samples collection and isolation  

Rhizosphere soil and associated roots were collected from asymptomatic vegetation within 5 

m of roads and track edges in the sub-alpine and alpine areas of NSW (KNP) in spring 

2015/16, and asymptomatic vegetation in sub-alpine areas in TAS adjacent to walking tracks 

in May 2016. Special emphasis was placed on collecting rhizosphere soil including roots. 

The soil samples were placed into zip-lock plastic bags and kept in an insulated box to 

protect samples from high temperature and direct sunlight. In the laboratory, about 300 g of 

each soil sample was baited with juvenile leaves of Quercus ilex, Q. suber, Pimelea 

ferruginea, Poplar sp., Scholtzia involucrata, Hedera helix (Ivy), and Hibbertia scandens. The 

baited leaves were observed daily for a week. Leaves with brownish lesions were blotted dry 

on paper towelling, cut into 3 × 3 mm pieces, and plated onto modified NARH (Simamora et 

al. 2017). Plates were observed microscopically and any Phytophthora-like cultures were 
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transferred to vegetable juice agar V8A plates [100 ml/L filtered vegetable juice (Campbells 

V8 vegetable juice; Campbell Grocery products Ltd., Norfolk, UK), 900 ml/L distilled water, 

0.1 g/L CaCo3, pH adjusted to 7, and 17 g Grade A Agar (Becton, Dickenson and Company, 

Sparks, MD, USA]. After a week, the soil was allowed to air dry and re-baited (double baiting) 

to increase isolation (Jeffers & Aldwinckle 1987).  

DNA isolation, amplification and sequencing 

All the isolates were grown on half strength potato dextrose agar (PDA; Becton, Dickinson 

and Company, Sparks, USA, 19.5 g PDA, 7.5 g of agar and 1 L distilled water) for 7 days. 

Mycelia was harvested by scraping the agar surface with a sterile blade and placed it in a 1.5 

ml sterile eppendorf® tubes. The mycelium was ground to a fine powder and genomic DNA 

was extracted using ZR Fungal/Bacterial DNA MiniprepTM (Zymo Research, Irvine, 

California). The region spanning the internal transcribed spacer (ITS) region of the ribosomal 

DNA was amplified using the primers DC6 (Cooke et al. 2000) and ITS-4 (White et al. 1990). 

The mitochondrial gene cox1 (COX) was amplified with primers FM84 and FM83 (Martin & 

Tooley 2003). Heat shock protein 90 (HSP) was amplified with primers HSP 90-Fint and 

HSP-90 R1 (Blair et al. 2008). ß- tubulin (TUB) was amplified with primers BTF1A and BTR1 

(Kroon et al. 2004). NADH dehydrogenase subunit 1 was amplified with NADH-F1 and 

NADH-R1 primers according to Kroon et al. (2004).  

Templates were sequenced in both directions with primers used in amplification for all gene 

regions. The clean up of PCR products and sequencing were performed as described by 

Sakalidis et al. (2011). All sequences derived in this study were deposited in GenBank and 

their accession numbers are given in Table 3.1. Cultures were maintained under long-term 

storage in water at CPSM (Centre for Phytophthora Science & Management), Murdoch 

University following identity confirmation through sequencing.  

Phylogenetic analysis 

The data set comprised of sequences of the new species P. ‘cacuminis’, P. ‘oreophila’, and 

those of closely related species in (Fig. 3.2), which were manually edited and compiled in 

Geneious v. R10 (http://www.geneious.com/). Parsimony analysis was performed in PAUP 

(Phylogenetic Analysis Using Parsimony) (Swofford 2003), and Bayesian analysis with 

MrBayes (Ronquist et al. 2012) as plugins within Geneious software. Bayesian analyses 

were performed with applying a general time reversible (GTR) substitution model with 

inverse gamma (I). Alignment files and trees can be viewed on TreeBase 

(https://treebase.org/).   

http://www.geneious.com/
https://treebase.org/
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Cultural characteristics  

Isolates were grown on V8A for seven days in the dark at 20 ˚C. Circular inoculum plugs 

were cut with a sterile cork borer (5 mm in diameter) from the colony edges and placed 

centrally in 90 mm Petri dishes of the test media. Colony growth patterns were described 

from 7-day-old cultures grown at 20 ˚C in the dark on V8A, 2 % malt extract agar (MEA; 20 g 

malt extract, 17 g agar and 1 L distilled water), carrot agar (CA; 0.1 L filtered carrot juice, 17 

g agar and 0.9 L distilled water), and half-strength PDA for all species except P. fallax and P. 

‘cacuminis’. Colony growth patterns were described after 18 days for P. ‘cacuminis’ and P. 

fallax due to their very slow growth. Colony growth patterns were described according to 

Erwin and Ribeiro (1996). For temperature-growth relationship, 5 mm diameter agar plugs of 

all isolates were placed centrally onto V8A and incubated at 20 ˚C for 20 hours to stimulate 

growth. The margins were marked and the isolates were then moved to incubators set at 

temperatures of 4, 10, 15, 20, 25, 30, 32.5, 35, and 37.5 ˚C. Plates were observed daily to 

make sure colonies did not reach the edges; radial growth rate was measured after 7 days 

for P. ‘oreophila’ and after 24 days for P. ‘cacuminis’ and P. fallax. Plates showing no growth 

at higher temperatures were returned to 20 ˚C to determine their viability.  

Morphology of sexual and asexual structures 

Isolates were grown on V8A for seven days and 3-4 agar plugs (5 mm diameter) were taken 

from the edges and placed in sterile empty Petri dishes. Each Petri dish was flooded with 

10% clarified V8 broth (Erwin & Ribeiro 1996) until the broth was just above the surface of 

the agar plugs, and kept in an incubator set at 20 ˚C to stimulate mycelial growth overnight. 

The following day, plates were flooded with deionized water. This water was decanted and 

replaced twice (after 4 and 6 h). In the final change, 7–10 drops of non-sterile pine (Pinus 

radiata) bark extract were added to the water in each plate. The pine bark extract was made 

by suspending 100 g of pine bark potting mixture in 1 L distilled water, and incubated 

overnight. After 18-22 h, dimensions and characteristic features of 50 mature sporangia, 

selected at random, were measured at 40x in a BX51 Olympus microscope for each isolate.   

Phytophthora ‘oreophila’ was homothallic. Phytophthora ‘cacuminis’ was crossed with A1 and 

A2 mating types of two different species (P. nicotianae and P. cryptogea), but no oospore 

formation was observed. After four weeks, dimensions and characteristics of 50 randomly 

selected mature oogonia and oospores were measured at 40x for P. ‘oreophila’. The oospore 

wall index was calculated as described by Dick (1990).  
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Results 

Phytophthora species isolated from sub-alpine and alpine areas  

Eight Phytophthora species were recovered from 11 (46 %) of the 24 soil samples tested. 

Thirty-two isolates corresponding to three species (Phytophthora ‘cacuminis’, Phytophthora 

fallax and Phytophthora gregata) were recovered from baiting the six samples collected from 

asymptomatic vegetation adjacent to walking tracks in TAS, and 57 isolates corresponding to 

six species (Phytophthora cactorum, Phytophthora gonapodyides, Phytophthora 

pseudocryptogea, Phytophthora cryptogea, Phytophthora gregata and Phytophthora 

‘oreophila’) were recovered from baiting 18 samples collected from asymptomatic vegetation 

within 5 m of roads and track edges in NSW (Table 3.2). Isolates of all Phytophthora species 

with their closest relatives, considered in this study, and locations of isolation and altitude are 

listed in (Table 3.1, Supplementary Table 3.1). Of the six Phytophthora species recovered 

from KNP, four species; P. cactorum, P. gonapodyides, P. pseudocryptogea, and P. 

‘oreophila’ were isolated from this region for the first time through baiting. The most 

frequently isolated species in KNP from all sites were P. cactorum and P. gregata. 

Phytophthora cryptogea was isolated from the alpine area at the summit of Mt Kosciuszko 

(2228 m asl). This is also the first record on the recovery of living isolates of P. fallax and P. 

‘cacuminis’ in TAS. The most frequently isolated species in TAS was P. gregata, and it was 

the only species isolated in both states. It has also been implicated in Pimelea bracteatea 

dieback in Rocky Plains in KNP (Fig. 3.1)  

 

Figure. 3.1 Dieback disease symptoms on Pimelea bracteatea caused by Phytophthora gregata in 
Kosciuszko National Park. (A) healthy plants; (B) severe dieback and thinning leading to loss of aerial 
canopy giving the plants ‘sticks’ like appearance; and (C) root collar showing necrotic lesions resulting 
in the death of aerial stem. 
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Table 3.1 Identity, date and location of isolation, host information and GenBank accession numbers for isolates of Phytophthora species considered in this study. Shaded 
rows represent isolates that were recovered in this study. Additional information for isolates can be found in Table S1. 
 

Isolate  Organism Location  Vegetation Date 
GenBank Accession number 

ITS TUB HSP Cox NADH 
QLD13E Phytophthora sp. Australia, QLDa, Koombooloomba Tropical rain forest 2013 MG542958 MG543047 MG543034 MG543012 MG543024 
U40 P. cacuminis Australia, TASa, Mt Field NPb Eucalyptus coccifera 2016 MG542997 MG543045 MG543032 MG543010 MG543019 
U41 P. cacuminis Australia, TAS, Mt Field NP Eucalyptus coccifera 2016 MG542998 MG543046 MG543033 MG543011 MG543020 
U11 P. oreophila Australia, NSWa, Merritts Creek Disturbed alpine herbfield 2016 MG542976 MG543037 MG543025 MG543002 MG543013 
VHS26182 Phytophthora sp. Australia, WA, Fitzgerald River NP Kwongan heathland 2006 MG543000     
TAS34  P. cactorum Australia, TAS, Pine Lake Athrotaxis selaginoides 2013 MG542959     
U1 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 MG542966     
U2 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 MG542967     
U3 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 MG542968     
U4 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 MG542969     
U5 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 MG542970     
U6 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 MG542971     
U7 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 MG542972     
U8 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 MG542973     
W1846 P. cambivora Australia, NSW, Charlottes Pass Nematolepis ovatifolia 2014 MG543001     
TAS188 P. cinnamomi Australia, TAS, Condominium Creek Riparian rain forest 2013 MG542963     
VHS16127 P. constricta Australia, WA, Fitzgerald River NP Kwongan heathland 2006 HQ013224     
VHS16130 P. constricta Australia, WA, Fitzgerald River NP Kwongan heathland 2006 HQ01327     
U21 P. cryptogea Australia, NSW, Mt Kosciuszko Walking track edge in alpine heath 2016 MG542983     
U22 P. cryptogea Australia, NSW, Mt Kosciuszko Walking track edge in alpine heath 2016 MG542984     
TAS126  P. elongata Australia, TAS, Mt Field NP Riparian rain forest 2013 MG542960     
U34 P. fallax Australia, TAS, Hartz Mountain NP Melaleuca 2016 MG542991 MG543043 MG543030 MG543008 MG543017 
U35 P. fallax Australia, TAS, Hartz Mountain NP Alpine heath 2016 MG542992 MG543044 MG543031 MG543009 MG543018 
U36 P. fallax Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 MG542993     
U37 P. fallax Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 MG542994     
U14 P. gonapodyides Australia, NSW, Smiggins Hole Road edge in subalpine heath 2016 MG542979 MG543038 MG543026 MG543003 MG543014 
U15 P. gonapodyides Australia, NSW, Kosciuszko Road Disturbed alpine herbfield 2016 MG542980 MG543039 MG543027 MG543004 MG543015 
TAS206 P. gregata Australia, TAS, Pine Lake Moorland 2013 MG542964     
TAS207 P. gregata Australia, TAS, Pine Lake Moorland 2013 MG542965     
U9 P. gregata Australia, NSW, Pipers Gap Road edge in subalpine heath 2016 MG542974     
U10 P. gregata Australia, NSW, Pipers Gap Road edge in subalpine heath 2016 MG542975     
U12 P. gregata Australia, NSW, Perisher Disturbed subalpine wetland 2016 MG542977     
U13 P. gregata Australia, NSW, Perisher Disturbed subalpine wetland 2016 MG542978     
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Isolate  Organism Location  Vegetation Date 
GenBank Accession number 

ITS TUB HSP Cox NADH 
U18 P. gregata Australia, NSW, Pipers Gap Road edge in subalpine heath 2016 MG542981     
U32 P. gregata Australia, NSW, Perisher Disturbed subalpine wetland 2016 MG542989     
U38 P. gregata Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 MG542995     
U39 P. gregata Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 MG542996     
U42 P. gregata Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 MG542999     
CBS139749 P. pseudocryptogea Australia, WA, Fitzgerald River NP Isopogon buxifolius 2006 KP288376 KP288392 KP288426 KP288342 KP288360 
VHS5380 P. pseudocryptogea Australia, WA, Fitzgerald River NP Xanthorrhoea preissii 1992 KP288374 KP288390 KP288424 KP288340 KP288358 
TAS143  P. pseudocryptogea  Australia, TAS, Steppes Woodland 2013 MG542962     
U20 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 MG542982     
U23 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 MG542985     
U24 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 MG542986     
U30 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 MG542987     
U31 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 MG542988     
U33 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 MG542990     
CBS119107  P. captiosa New Zealand, Rotoehu Forest Eucalyptus saligna 1995 DQ297402     
NZFS310.35 P. captiosa New Zealand, Rotoehu Forest Eucalyptus saligna 1998 DQ297405     
MUCC761 P. gonapodyides Australia, VICa, Toolangi North Eucalyptus oblique forest 2008 HQ012937 JN547598 HQ012896 HQ012850 JN547686 
CBS127954 P. thermophila Australia, WA, Dwellingup Eucalyptus marginata 2004 EU301155 JN547613  HQ012916 HQ012872 JN547700 
TP13.29 P. versiformis Australia, WA, Naturaliste Corymbia calophylla 2013 KX011277 KX011318 KX011254 KX011220 KX011299 
CBS 142005 P. versiformis Australia, WA, Williams Corymbia calophylla 2013 KX011279 KX011321 KX011256 KX011222 KX011302 
HAS2313 P. cooljarloo Australia, WA, Cooljarloo Swamp native vegetation 1996 HQ012961 MF326817 HQ012929 HQ012885 MF326911 
VHS24266 P. pseudorosacearum Australia, WA, Albany Xanthorrhoea platyphylla 2010 JN547637 MF326826 MF326877 MF326857 MF326909 
OSU55 P. rosacearum USA, Maryland Prunus armeniaca  KJ372271 MF326833 MF326882 MF326854 MF326902 
VHS29592 P. pseudorosacearum Australia, WA, Jarrahdale Persoonia longifolia 2013 KJ372267 MF326827 MF326878 MF326858 MF326907 
VHS23298 P. kwongonina Australia, WA, Bunbury Banksia grandis 2010 JN547636 MF326824 MF326876 MF326847 MF326914 
TAS35 P. gonapodyides Australia, Tas, Houn River Native vegetation 2009 JN547620 JN547642 MG543031 JN547581 JN547669 
IMI389735 P. taxon walnut USA, California, Merced County Juglans hindsii 1988 AF541910     
CLJ0100 P. cooljarloo Australia, WA, Cooljarloo Hibbertia sp 2008 HQ012957 MF326816 HQ012925 HQ012881 MF326910 
CBS124696 P. rosacearum USA, California   EU925376     
P10725 P. fallax New Zealand Eucalyptus fastigata 2004 HQ261557     
CBS125801 P. constricta Australia, WA, Fitzgerald River NP Kwongon heathland  2006 HQ013225     
NZFS310.25 P. captiosa New Zealand, Rotoehu Forest Eucalyptus saligna 1998      
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Phylogenetic analysis 

The alignments for TUB, HSP, ITS, COX and NADH consisted of 1178, 936, 846,1236 and 837 

characters, respectively. Trees for the individual datasets produced similar topology (TreeBASE 22955) 

and the nuclear and mitochondrial gene regions were combined separately for the analyses presented 

here.  

Support for terminal clades and their clustering was equivalent in both analyses and the Bayesian 

analysis is presented here (Fig. 3.2). All species reside in highly supported terminal clusters. 

Phytophthora ‘oreophila’ resides in clade 6a and is related to P. rosacearum and P. pseudorosacearum, 

but differs from them across the gene regions sequenced here by 39 and 64 polymorphisms, 

respectively. Phytophthora ‘cacuminis’ resides in clade 9 and is closely related to the known eucalypt 

pathogens P. fallax and P. captiosa, although it differs from them by 75 and 116 fixed polymosphisms, 

respectively 

 

Fig. 3.2. Bayesian trees of (A) concatenated nuclear regions and (B) concatenated mitochondrial regions showing 
the phylogenetic position of P. oreophila (orange) and P. cacuminis (blue) in relation to related species. Bayesian 
posterior probabilities are listed above the branches.

https://treebase.org/treebase-web/user/citationForm.html
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Phytophthora oreophila I. Khaliq and T.I Burgess, sp. nov. 

Mycobank MB825232 

(Figs. 3.3 and 3.5) 

Etymology: ‘oreos’ refers to a Greek word for a mountain and ‘phila’ means loving. The name is given to 

the species due to its mountainous origin, and its ability to grow at extremely low temperatures (less than 

4 °C). 

Type: Australia: New South Wales, Merritts Creek; by baiting rhizosphere soil and associated roots 

collected from a disturbed alpine herbfield, January 2016. Collected by Keith McDougall (Office of 

Environment and Heritage, PO Box 733, Queanbeyan NSW 2620). Holotype MURU 483 (dried culture 

on V8A, Herbarium of Murdoch University, Western Australia), cultures ex-type U11. ITS, cox1, NADH, 

HSP90 and β tubulin sequence GenBank numbers are MG542976, MG543002, MG543013, MG543025, 

and MG543037, respectively.  

Original Description:  Sporangia were exclusively non-papillate, persistent and frequently produced in 

non-sterile pine bark extract. They were borne terminally on simple sporangiophores rarely with globose 

swellings (2%) produced near the base of sporangia (Fig. 3.3G). Although predominantly ovoid (80%, 

Fig. 3.3A, B, F, H, I), a few ellipsoid (12%, Fig. 3.3C-E, G), and distorted shaped (8%, Fig. 3.3J) 

sporangia were also observed. Sporangia averaged 40.9 x 26.7 µm, ranged 19.9 X 59.9 – 13.4 x 38.5 

µm, exit pores 12.8 µm in diameter, and length: breadth ratio was 1.5 (Table 3.1). Sporangia proliferated 

internally in both an extended (Fig. 3.3H) and a nested way (Fig. 3.3I, K). Intercalary hyphal swellings 

with radiating hyphae formed occasionally in non-sterile pine bark extract (Fig. 3.3 L, M). Zoospore cysts 

were spherical with average diameter 9.7 µm (Table 3.1). 

Phytophthora oreophila is homothallic, readily produces oogonia, oospores and antheridia in single 

culture on CA, MEA and V8A.  Time to oospore maturity was between 25 to 30 days. Oogonia averaged 

36.8 µm in diameter ranging from 29.3 to 48.1 µm (Table 3.1). Plerotic oospores containing ooplasts 

when semi-mature to mature (Fig. 3.3 O-R). Oospores averaged 33.8 µm in diameter ranging from 26.8 

to 42 µm. Oospore walls were relatively thick (2.2 µm) (Fig. 3.3 N-V), and oospore wall index was 0.34 

µm (Table 3.1). Paragynous antheridia (Fig. 3.3 N-R, U, V) averaged 10.9 x 10.6 µm in diameter often 

(16 %) with multiple antheridium (Fig. 3.3 O, P, Q, V). Most of the oospores (90%) observed aborted 

after wall formation (Fig. 3.3 S-V).  

Cultures: Phytophthora oreophila produced a slightly petaloid growth pattern on CA, petaloid growth 

pattern on V8A and MEA, and rosaceous growth pattern on PDA (Fig. 3.5). The colony morphology of P. 

oreophila was clearly distinguishable from P. rosacearum as the latter produced uniform colonies on 

V8A and MEA compared to the petaloid growth pattern of P. oreophila. Optimum temperature for the 

growth on V8A was 20 °C, and the average growth rate was 4.92 mm day-1 at this temperature. The 

maximum temperature for growth was 32.5 °C, and the lethal temperature for growth was recorded as 

35°C (Table 3.1).  
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Diagnosis: Phytophthora oreophila is closely related to P. rosacearum and P. pseudorosacearum but 

there are several differences; (1) P. oreophila has lower minimum, optimal and maximum temperatures 

for growth (Table 3.1, Fig. 3.6); (2) P. oreophila grows faster than related species at temperatures less 

than 20 °C (Fig. 3.6); (3) colony morphologies also differ on V8A and MEA, as P. oreophila produced a 

petaloid growth pattern compared to uniform colony growth by P. rosacearum, and P. 

pseudorosacearum (Fig. 3.5); and (4) P. oreophila has smaller sporangia and slightly larger oogonia and 

oospores (Table 3.1)   

 

Figure 3.3. Persistent non-papillate sporangia of P. oreophila formed on V8A flooded with pine bark extract; ovoid 
(A, B, F, H, I), ellipsoid (C-E, G), and distorted (J). Internal proliferations in a nested (I, K) and an extended way (H) 
were observed. Intercalary hyphal swellings (L,M). Swollen sporangiophore (G) rarely observed. Sporangiophores 
were occasionally twisted (F, I). Oogonia formed on solid media; globose oogonia with smooth margins that 
turned pale brown (N-R) on maturity, with plerotic oospores (N-R) and paragynous antheridia (N-R, U, V). 
Oospore with more than one antheridium was occasionally observed (O, P, Q, V). Oospores often abort after wall 
formation (S-V). Oospores rarely surrounded by hyphal coil (R). Scale bar = 25 µm 
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Table 3.3. Comparison of morphological characters and dimensions, and temperature-growth relations of P. rosacearum, P. pseudorosacearum, P. oreophila, P. fallax 
and P. cacuminis. All measurements are in µm 

Species P. rosacearum  P. pseudorosacearum P. oreophila P. fallax P. cacuminis 
no of isolates 6 3 1 9 2 
sporangia      

LxB mean ± SD 46.4 ± 8.7 x 28.7 ± 4.8 52.7 ± 10.0 x 34.1 ± 5.6 40.9 ± 10.3 x ± 26.7 ± 6.08 55.5 ± 5 x 32 ± 3 27.4 ± 5.9 x 22.4 ± 4.42 
Total Range  22.5 – 73.4 x 16.7 – 40.1 32.7 - 59.3 x 19.4 - 38.3 19.98 - 59.99 x 13.4 – 38.5 50.5 – 61.5 x 28 - 34 14.5 – 40.2 x 10.8 – 37.3 

Range of isolates means  43.7 - 47.9 x 23.7 - 31.9 49.4 - 56.0 x 30.7 - 37.8 naa ndb 27.4 – 22.4 x 27.4 – 22.4 

L/B ratio (range) 1.63 ± 0.25 (1.05 - 2.36) 1.57 ± 0.31 (1.02 - 2.48) 1.54 ± 0.2 (0.79 - 2.35) 1.7 1.22 ± 0.13 (0.76 – 1.57) 

Features Terminal, persistent,  
non papillate 

Terminal, persistent,  
non papillate 

Terminal, persistent,  
non papillate 

Terminal, persistent,  
non papillate 

Terminal, persistent,  
non papillate 

Sporangiophores Simple Simple Simple Simple Simple, but frequently slightly 
twisted and narrowed  

Shapes 

ovoid 56%  
ellipsoid ovoid 29% 
broad ovoid 2% 
ellipsoid 10% 
limonoform 2% 

ovoid 55%,  
elongated ovoid 30%, 
lemoniform 5%  
ellipsoid 5%  
broad ovoid 5% 

ovoid 80%,  
ellipsoid 12% 
distorted 8% 
 

Obpyriform to distorted, often 
with a distinctive elongated 
neck and conspicuous basal 
plugs, hyphal projections at 
apex 

ovoid 90%,  
globose 6%  
lemoniform 4%  

Proliferation Internal, both nested and 
extended 

Internal, both nested and 
extended 

Internal, both nested and 
extended 

Internal, both nested and 
extended 

Internal, both nested and 
extended 

Exit pores      
Width (range) 12.6 ± 2.8 (5. 7- 18.6) 14.9 ± 2.7 (8.8 - 20.2) 12.84 ± 4.13 (5.88 – 19.83) nd 9.88 ± 1.2 (7.4 – 11.6) 

Zoospore cysts 11.9 ± 1.2 (9.6 – 16.0) 11.6 ± 1.8 (8.0 - 19.9) 9.70 ± 2.87 (6.11 – 13.13) nd 10.68 ± 2.69 (8 - 15.69) 
Chlamydospores Absent present present present present  

Diameter (range)  28.4 ± 5.3 (20.1 - 42.7)  12 – 26  30.2 ± 2.6 
Hyphal swellings present present present absent absent 

Features predominantly spherical and 
intercalary with radiating hyphae 

predominantly spherical and 
intercalary with radiating 
hyphae 

predominantly spherical and 
intercalary with radiating 
hyphae 

nd absent 

Mean diam 17.6 ± 5.7 (9.0 - 27.8) 17.8 ± 6.0 (6.1 - 30.9) 20.7 ± 5.6 (10.9 – 31.2)  18.13 
Breeding system Homothallic Homothallic Homothallic Homothallic Sterile in culture 
Oogonia      

Features slightly wavy walls wavy walls, sometimes with a 
slightly tapering base 

spherical, pale brown on 
maturity 

spherical, pale brown on 
maturity   

Mean diam  36.1± 3.9 (23.8 - 47.3) 35.8 ± 4.9 (23.8 - 49.0) 36.8 ± 4.8 (29.3 – 48.1) 33.5 ± 3   
Range of isolates means  32.6 - 38.8 33.1 - 37.4 na 30 – 39  
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Species P. rosacearum  P. pseudorosacearum P. oreophila P. fallax P. cacuminis 
Oospores      

Features  Slightly aplerotic, pale on 
maturity  

aplerotic, slightly golden on 
maturity and often slightly 
eccentric 

plerotic, pale on maturity Initially plerotic, become 
aplerotic with age   

Abortion  59% 20% 90% nd  
Mean diam  31.2 ± 3.4 (20.3 - 41.0) 30.8 ± 3.3 (22.3 - 38.1) 33.8 ± 4.49 (26.8 - 42) 31.5 ± 2.5  
Range of isolates means 28.4 - 35.4 29.5 - 31.8 na 29 – 35  
Wall diameter  2.05 ± 0.47 2.46 ± 0.47 2.23 ± 0.86 2 ± 0.5  
Oospore wall index 0.34 ± 0.06 0.41 ± 0.06 0.34 ± 0.11 nd  
Antheridia      

Features 

Paragynous round-club shaped, 
predominantly adjacent to 
oogonial stalk, very few 
amphigynous in some isolates 

Paragynous round-club 
shaped, predominantly 
adjacent to oogonial stalk 

Paragynous round-club 
shaped, often with multiple 
antheridium 

Paragynous (globose), 
amphigynous (cylindrical and 
single celled), attached near 
stalk  

 

LxB mean 12.9 ± 2.5 x 9.4 ± 2.1 13.8 ± 3.9 x 11.4 ± 3.2 10.9 ± 2.8 x 10.6 ± 14.7 18.5 ± 4 x 14 ± 1  
LxB range 7.5 – 19.2 x 4.7 - 13.9 6.1 - 26.6 x5.5 - 22.1 5.65 – 16.9 x 3.7 – 11.9 nd   

Growth Characteristics      
Max temp (oC) 37.5 37.5 32.5 30 25 
Opt temp (oC) 25-30 30 20 20 20 
Min temp (oC) 4 4 <4 2 4 
Lethal temp (oC) >37.5 >37.5 35 >30<32.5 >25<30 
Growth rate on V8A at 
optimum (mm day-1) 5.94 ± 0.1 5.2 ± 0.40 4.9 ± 0.06 0.83 1.24 ± 0.02 
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Table 3.2. Number of isolates of each Phytophthora species recovered through baiting in Kosciuszko 
National Park and Tasmania. 
 

Phytophthora 
species  Clade 

Number of isolates 
recovered 

NSW (KNP) TAS 
P. cactorum                               1 24   
P. gregata                                  6 15 16 
P. pseudocryptogea                  8 8   
P. cryptogea                              8 5   
P. fallax                                     9  14 
P. gonapodyides                       6 4   
P. cacuminis                             9  2 
P. oreophila                              6a 1   
Total   57 32 

 

Phytophthora cacuminis I. Khaliq and T.I Burgess, sp. nov 

MycoBank MB825231 

(Figs. 3.4-5) 

Etymology: The species name cacuminis is derived from a Latin word ‘cacumen’ for a ‘peak’. 

The name is given to the species based on its isolation from a peak in Tasmania 

Type: Australia: south Australia: Tasmania, Mount Field NP, from asymptomatic vegetation 

(Eucalyptus coccifera and species in Proteaceae ), May 2016, collected by Treena Burgess, 

holotype MURU 482 (dried culture on V8A, Herbarium of Murdoch University, Western 

Australia), cultures ex-type U40. ITS, cox1, NADH, HSP90 and β tubulin sequence GenBank 

numbers are MG542998, MG543011, MG543020, MG543033, and MG543046, respectively.  

Original Description: Exclusively non-papillate, terminal, persistent and predominately ovoid 

sporangia (90%, Fig. 3.4A-D, F, G, I, J), but a few globose sporangia (6%, Fig. 3.4H) and 

lemoniform (4%, Fig. 3.4E) sporangium were also observed. Sporangia averaged 27.4 x 22.4 

µm in diameter ranging from 14.5 x 40.2 to 10.8 x 37.3 µm (Table 3.3). Internal proliferations 

both in a nested (Fig. 3.4F, H, I, J) and extended (Fig. 3.4G) way were observed. Exit pores 

diameter averaged 9.9 µm in diameter. Sporangiophores were mostly slightly twisted and 

narrowed (Fig. 3.4 A-C, E-I). Zoospore cysts were spherical with average diameter 10.7 µm. 

Chlamydospores were present (Fig. 3.4 K,L), with average diameter 30.2 µm (Table 3.3). No 

hyphal swellings were observed.   

Phytophthora cacuminis isolates were sterile in culture; no oogonia or oospores were formed 

when isolates were crossed with A1 and A2 mating type isolates of two different species (P. 

nicotianae and P. cryptogea). 
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Figure 3.4. Persistent non-papillate sporangia of P. cacuminis formed on V8A flooded with pine bark 
extract; predominantly ovoid (A-D, F, G, I, J) with internal proliferations in a nested (F, H, I, J) or an 
extended way (G). Lemoniform (E) and globose (H) sporangia were also observed. Chlamydospores were 
frequently observed (K, L). Sporangiophores frequently slightly twisted and/or narrowed (A-C, E-I). Scale 
bar = 25 µm 

Cultures:  All isolates produced colonies with distinctive growth patterns on different media (Fig. 

3.5). Colonies had a halo of submerged hyphae on CA, plumose growth pattern on V8A, uniform 

growth on MEA and dense growth on half PDA. The colony morphology of P. cacuminis was 

clearly distinguishable from P. fallax on V8A as the former produced plumose growth pattern on 

V8A compared to uniform growth pattern of P. fallax. The optimum temperature for growth on V8A 

was 20 °C with a growth rate of 1.2 mm/day. The maximum temperature for growth was recorded 

as 25 °C (Table 3.3). No growth occurred at 30 °C, and this temperature was found to be lethal as 

isolates did not resume growth when subsequently incubated at 20 °C.  Phytophthora fallax was 

markedly slower growing than P. cacuminis (Table 3.3, Fig. 3.6). 

Diagnosis: Phytophthora cacuminis is closely related to P. fallax but it distinguishable from P. fallax 

in many ways; (1) P. cacuminis is sterile in culture compared to the homothallic nature of P. fallax; 

(2) Phytophthora cacuminis produces on average smaller sporangia; (3) sporangiophores are 

frequently slightly twisted and narrowed, similar to P. constricta, a closely related species in the 

same clade.  It had been suggested by (Jung et al. 2011) that P. constricta was in the process of 

becoming caducous because of this feature; (4) colony morphologies also differ, as P. cacuminis 

produces a plumose growth pattern on V8A, while P. fallax has a uniform growth pattern on the 

same medium; and (5) maximum temperature for growth for P. cacuminis is 25 °C, and for P. fallax 

is 30 °C. The later has also markedly slower growth rate than P. cacuminis (Fig. 3.6): 30 °C was 

found to be lethal for P. cacuminis, but not for P. fallax.  
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Figure 3.5 Colony morphology (top to bottom) of isolates P. cacuminis, P. fallax, P. oreophila, and P. 
rosacearum on CA, V8A, MEA and half strength PDA (left to right)
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Figure 3.6 Average growth rate (mm day-1) of P. cacuminis, P. fallax, P. oreophila, P. 
pseudorosacearum and P. rosacearum on V8A across the temperature range from 4 - 37.5 °C.   

Discussion 

Eight Phytophthora species from phylogenetic clades 1, 6, 8 and 9 were recovered from 

alpine and sub-alpine areas of NSW and TAS by baiting rhizosphere soil and associated 

roots; two of these were new species. This is the first record on the recovery Phytophthora 

cactorum, Phytophthora gonapodyides, Phytophthora pseudocryptogea, and Phytophthora 

oreophila in KNP, and for Phytophthora fallax, and Phytophthora cacuminis in TAS. The 

other species have been recorded before, but this is the first time that any species, in this 

case Phytophthora cryptogea, has been recovered from the summit of Mt Kosciuszko- the 

highest point on mainland Australia (2228 m asl). 

Phytophthora gregata was one of the most frequently isolated species. Phytophthora gregata 

belongs to phylogenetic clade 6 and has been previously isolated from natural vegetation in 

WA, and formally described by Jung et al. (2011). It had been referred to as P. taxon 

raspberry previously (Brasier et al. 2003, Jung et al. 2011). This species was also recovered 

from soil and water samples (Dunstan et al. 2016), and raspberry roots (Brasier et al. 2003) 

in Victoria, Pine Lake in TAS (Brasier et al. 2003, Jung et al. 2011), China (Huai et al. 2013), 

the US (Aram 2017), and Sweden and France (Brasier et al. 2003, Redondo et al. 2018). It 

was also detected in KNP and TAS in 2013 using HTS (Burgess et al. 2017b). Phytophthora 

gregata, along with P. cryptogea, is implicated in the widespread death of the endemic shrub 
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Pimelea bracteata in wetlands and riparian vegetation in northern KNP and surrounding 

areas. Plants at all growth stages are affected and there is very little or no regeneration 

(McDougall et al. 2018- unpublished). Phytophthora gregata has been shown to significantly 

reduce shoot/and or root growth of Eucalpytus marginata, Corymbia calophylla, Banksia 

occidentalis, B. litoralis, and Lambertia infermis in recent pathogenicity trials, although it did 

not kill them (Belhaj et al.). It is not known if this species is native or introduced to Australia, 

however its widespread occurrence in Europe in cooler climates suggests it is probably 

introduced.  

Phytophthora cactorum was the other most frequently isolated species; it is a species in 

phylogenetic clade 1, has a broad host range affecting 150 plant species (Nienhaus 1960), 

and causes diseases from topical to temperate climates (Rytkönen et al. 2008, Liu et al. 

2018). It has been isolated in agricultural systems in much of temperate eastern Australia, 

and was also detected in KNP and TAS using HTS (Burgess et al. 2017b). Although it has 

not been associated with a disease in the sub-alpine areas in Australia so far, it should be 

regarded as a serious threat due to its capability to cause disease at relatively low 

temperatures, and in many hosts. Liu et al. (2018) studied the effect of temperature on 

infection and development of fruit rot caused by P. cactorum and observed that young apple 

fruits inoculated with zoospores of P. cactorum developed visible lesions from 10-30 °C, with 

optimum temperature being 23.5 °C. Similarly, incidence and severity of P. cactorum 

increased with increased wetness duration (1-12 hours) over a temperature range of 10-30 

°C on pears, and 7 – 10 °C on apples under controlled environmental conditions (Grove & 

Boal 1991). Phytophthora cactorum has been reported to readily form chlamydospores in 

V8A juice broth and mycelial mats buried in pasturized soil at 4 °C after 20 days of incubation 

(Darmono & Parke 1990). Chlamydospores had high (60-80%) germination rates even after 

incubating at -23 °C for 24 hours (Darmono & Parke 1990). It is considered to have been 

introduced to lowlands in Australia and then spread to mountain ecosystems by human 

activities (Burgess et al. 2017b).  

Phytophthora fallax belongs to phylogenetic clade 9, and was first described on Eucalyptus, 

causing leaf spots, petiole, twigs and small branches infection in New Zealand (Dick et al. 

2006). It has previously been recovered in Eucalyptus regnans forests in Victoria 

(Cunnington et al. 2010, Dunstan et al. 2016), and in sub-alpine areas using HTS (Burgess 

et al. 2017b). Dick et al. (2006) evaluated its temperature-growth relationships when 

describing this species and suggested that it had adapted to colder temperatures due to its 

low cardinal temperatures. To date, no disease has been associated with this species in 

Australia.  The reason could be the nature of the lesions they cause, which usually have no 

distinctive patterns (Dick et al. 2006). Another reason could be its mode of infection. It has 
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been observed to cause disease only in the inaccessible crown of trees, 6-20 m high, with an 

unknown mode of dispersal (Dick et al. 2006). Therefore, it is difficult to observe symptoms 

from the ground. Finally, due to its affinity to lower temperatures, it is also possible that P. 

fallax may have been living in the alpine and sub-alpine regions for a long time, and may 

have co-evolved in these ecosystems attaining an equilibrium and is, therefore, not causing 

any observable symptoms. This species appears to be native to Australia’s mountain 

ecosystems due to its adaptability to these colder ecosystems and its growth and survival at 

relatively lower temperatures.   

Phytophthora gonapodyides belongs to phylogenetic clade 6 and was first described from 

submerged fruits and twigs in Denmark by Petersen (1909). It has a worldwide distribution in 

all climates except the tropics (Zeng et al. 2009), and is ubiquitous in aquatic ecosystems in 

northwestern USA and Europe (Jung et al. 1996, Brasier et al. 2003, Reeser et al. 2011). It 

has been found in Denmark, New Zealand, Chile, Australia, UK, USA, France, and 

Czechoslovakia infecting minor roots and small seedlings of a limited number of hosts, such 

as Tsuga, Pseudotsuga, Rhododendron and Hebe (Brasier et al. 1993, Erwin & Ribeiro 

1996, Brasier et al. 2003). In Australia, it has been isolated from native vegetation in Pine 

Lake in TAS (Brasier et al. 2003), and from soil baiting in Victoria (Dunstan et al. 2016). It 

has also been detected in KNP through HTS (Burgess et al. 2017b). Phytophthora 

gonapodyides has higher maximum (up to 38 °C) and lower minimum temperatures (3 °C) 

for growth (Brasier et al. 2003, Nechwatal et al. 2013). Its isolation from colder environments 

or even arctic alpine environments, and its relatively higher optimum (up to 33 °C) and 

maximum temperature (up to 38 °C) for growth is rather contrasting/surprising. A possible 

explanation for still remaining as a ‘high temperature taxon’ could be its physiological 

adaptation to certain aspects of its ecology, such as litter breakdown, rather than climatic 

adaption (Brasier et al. 2003). Further research is recommended to investigate its survival 

strategies at these higher altitudes considering it does not produce chlamydospores. The 

origin of this species is uncertain due to its wide distribution due to anthropogenic activities 

(Jung et al. 2011). It has perhaps been introduced to Australia’s lowland ecosystems, and 

from these to mountain ecosystems.   

Phytophthora cryptogea belongs to phylogenetic clade 8, and was first described from foot 

root of tomato in 1919 (Pethybridge & Lafferty 1919). This species has been associated with 

Rubus anglocandicans decline in WA (Aghighi et al. 2016), and had also been isolated from 

aquatic ecosystems in WA (Hüberli et al. 2013). Phytophthora cryptogea has been reported 

to cause a collar rot in Pimelea bracteata in south-eastern NSW (Bago State Forest; 

McDougall et al. 2018- unpublished). Phytophthora pseudocryptogea also belongs to 

phylogenetic clade 8 and was formally described in 2015; it was given the name 
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pseudocryptogea based on its physiological and morphological resemblance to P. cryptogea 

(Safaiefarahani et al. 2015). Recent pathogenicity trials have shown that this species is not 

pathogenic on Corymbia calophylla (Croeser et al. 2018), and it has not been associated with 

a disease in KNP. This is the first record on the recovery of living isolates of P. 

pseudocryptogea in KNP, although it had been detected in TAS through HTS (Burgess et al. 

2017b).  

In vitro, both P. cryptogea and P. pseudocrytogea have high optimum (25 °C) and maximum 

temperatures (33 °C for P. cryptogea and 35 °C for P. pseudocryptogea ) for growth 

(Safaiefarahani et al. 2015).  On the other hand, their minimum temperature for growth is 

also very low (3 °C) (Safaiefarahani et al. 2015). This shows that these pathogens have the 

ability to grow at both low and high temperatures. Therefore, they have the capability to 

cause disease both in tropical and temperate climates. Their centre of origin is unknown, but 

it is believed that anthropogenic activities associated with nurseries, horticulture, and 

agriculture dispersed these pathogens globally (Brasier 2008, Stukenbrock & McDonald 

2008). These invasive species were probably introduced to Australia’s lowland ecosystems 

and then spread to mountains. It is interesting that P. cryptogea was isolated at these higher 

altitudes, and not P. pseudocryptogea, because the most frequently isolated species in the 

‘cryptogea’ complex in lowlands in Australia is P. pseudocryptogea (CPSM unpublished 

data).  

The two new Phytophthora species, P. cacuminis and P. oreophila described here have not 

been isolated anywhere in the world before. Therefore, it is not clear whether they are native 

to Australia or introduced. Nonetheless, their temperature growth-relationships suggests that 

these species are well adapted to these colder conditions. Phytophthora oreophila has a 

higher growth rate at temperatures less than 20 °C, and has a much lower optimal 

temperature than related species, P. rosacearum, pseudorosacearum, P. kwongonina, and 

P. cooljarloo and is the only species to have been isolated from cold environments. 

Additionally, P. oreophila exhibit prolific growth at temperatures less than 4 °C. Phytophthora 

cacuminis is closely related to P. fallax and P. constricta, and all of them have low optimum 

and minimum temperature for growth. P. fallax and P. cacuminis have been isolated from 

mountains, but P. constricta has only been isolated from lowlands.  

Although P. cacuminis failed to produce oospores, its low cardinal temperatures and the 

ability to produce chlamydospores suggest that this species is well adapted to colder 

environments. The establishment of Phytophthora species in colder environments is mainly 

determined by low cardinal temperatures for growth and asexual structures rather than the 

ability to produce sexual structures (Redondo et al. 2018). Further research is recommended 
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to understand their distribution, ecology, host-pathogen interactions, and to determine 

centres of origin of these new species.   

Whilst the incidence of Phytophthora diseases is well documented in horticultural 

environments, ornamental plants grown in nurseries, and other lowland ecosystems 

(Henricot et al. 2014, Català et al. 2015, Jung et al. 2016), sub-alpine regions have received 

little attention. In our literature searches, there appear to be a very few records on the 

occurrence of Phytophthora species in the sub-alpine ecosystems (Newby 2014, Scarlett et 

al. 2015, Green 2016). This is due to the presumed assumption that lower temperatures 

restrict the growth and sporulation of Phytophthora and are not conducive to disease 

expression (Chee & Newhook 1965a, Shepherd & Pratt 1974, Phillips & Weste 1985, 

Shearer et al. 1987, Podger et al. 1990, Shelley et al. 2017, Rafiei et al. 2018). As such, the 

recovery of such a diverse Phytophthora community in sub-alpine and alpine areas 

previously thought to be pathogen-free leads to many concerns, and raises questions about 

their introduction, survival and subsequent dispersal, as they could potentially have a 

devastating effect on the rare and threatened species in these ecosystems.  

Anthropogenic activities are known to have distributed Phytophthora species widely since 

European colonization, for example through contaminated mud on vehicles, road building 

and mining, replanting using infected seedlings because of poor hygiene, bushwalkers, feral 

horses and apiarists (Brasier 2008, Cahill et al. 2008a, Callaghan & Guest 2015). Once 

introduced, Phytophthora species are dispersed by root to root contact between adjacent 

plants (Shearer et al. 2010), and movement of infested soil attached to visitor’s boots, 

bicycles, management vehicles tires and feral horses (McDougall et al. 2003). Self sexual 

reproduction and parasexuality (Desprez-Loustau et al. 2007), phenotypic plasticity (Mariette 

et al. 2016), evolutionary potential (McDonald & Linde 2002), survival in host tissues in deep 

soil layers (Marçais et al. 1996), and the ability to form asexual survival structures and low 

cardinal temperature for growth can assist Phytophthora species to survive/invade extreme 

environments (Crone et al. 2013b, Redondo et al. 2018) 

Thee recovery of apparently introduced (invasive) species P. cactorum, P. gonapodyides, P. 

cryptogea and P. pseudocryptogea surviving in these sub-alpine environments is of great 

concern. The involvement of P. cryptogea and the P. gregata in the decline of Pimelea 

bracteata in Bago State Forest at an elevation of 1160 m asl, and Kellys Plains in KNP at an 

elevation of 1270 m asl, respectively shows that Phytophthora species present in the sub-

alpine ecosystems have the potential to cause disease. While the other species have not 

been associated with a disease, it does not necessarily mean they are not causing disease 

because no studies or surveys have been conducted on these pathogens in relation to 

diseases/hosts in these areas. Also, Phytophthora species have been known to live in plants 



 59 

as biotrophs without causing observable disease symptoms (Crone et al. 2013a, Crone et al. 

2013b). Therefore, asymptomatic areas where Phytophthora species have been 

detected/isolated should be explored more for soil suppression, host resistance and 

asymptomatic presence of Phytophthora species. Further work is required to determine the 

susceptibility of sub-alpine flora to a range of Phytophthora species. Glasshouse trials have 

recently tested the susceptibility of nine KNP sub-alpine shrub species to P. cinnamomi and 

P. cambivora, and found that one species Phebalium squamulosum was especially 

susceptible to both pathogens (Rigg et al. 2018). This is particularly important when 

temperature is rising globally, which will shift the climatic range of Phytophthora species and 

other pathogens, and render some host species more susceptible to disease. 

In conclusion, the occurrence of such a diverse Phytophthora community in alpine and sub-

alpine ecosystems, previously considered not suitable for Phytophthora indicate that alpine 

and sub-alpine areas of KNP are at risk. It is now important to restrict its further spread to 

protect the diverse and unique flora in alpine/sub-alpine ecosystem. Road closure is the best 

management strategy to reduce the spread of invasive pathogens. In areas where road 

closure is not possible, roads should be engineered in a way to stop the flow of water from 

roads to adjacent areas and/or reduce the chances of infested soil uptake by vehicle from 

wet areas (Colquhoun & Hardy 2000, Hansen et al. 2000).  Besides landscape features, the 

inclusion of non-host and resistant vegetation can also reduce the dispersal of the pathogens 

(Holdenrieder et al. 2004). Visitors and staff need to be educated on hygiene and the 

potential spread of these pathogens via vehicles, cycling and walking. Overall, strict 

measures need to be taken to decrease introduction pathways, human land use, and habitat 

disturbance to reduce the spread of pathogens into colder environments.  
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Abstract 

Phytophthora cinnamomi has recently been found in highly diverse and fragile alpine/sub-

alpine environments previously considered pathogen and disease free due to low 

temperatures.  We investigated the ability of P. cinnamomi to adapt to cold and cause 

disease in the laboratory under conditions comparable to alpine/sub-alpine environments. 

Initially, the ability of P. cinnamomi isolates to grow and sporulate at 10°C was demonstrated 

(2 °C lower than previously thought possible). The phenotypic plasticity of isolates was then 

explored in planta in three successive experiments comparing cold (8, 9, 7.5°C) and ambient 

conditions. Isolates grown under cold conditions produced sporangia and released 

zoospores (infective propagules) at 7.5°C, even lower than originally considered possible.  

No changes were observed for isolates grown under glasshouse conditions. Although P. 

cinnamomi isolates could produce infective propagules at 7.5 °C in vitro, they could not be 

recovered from plants grown at this temperature after three months.  
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Introduction 

Phytophthora cinnamomi is one of the world’s most devastating plant pathogens. It is the 

only oomycete, and one of the only three plant pathogens listed as one of the 100 worst 

invasive alien plant pathogens in The Global Invasive Species Database (Lowe et al. 2000, 

Burgess et al. 2017a). Sub-alpine regions were long considered free of P. cinnamomi 

because harsh environmental conditions were thought to limit its survival. Podger et al. 

(1990) modeled damage caused by P. cinnamomi in Tasmania and hypothesized that it is 

unlikely to cause disease in areas where annual mean temperature is less than 7.5 ˚C. 

Phytophthora cinnamomi becomes inactive when temperature drops below 10 °C (Weste & 

Marks 1987) in soil, and no growth is shown on artificial media below 5 °C (McConnell & 

Balci 2015). However, P. cinnamomi was isolated at an elevation of 1560 masl (metres 

above sea level) at Barrington Tops National Park from dying Oxylobium arborescens and 

associated rhizosphere soil (Mills 1999, McDougall et al. 2003), where average annual 

maximum and minimum temperatures are 16 °C and 3 °C, respectively (Zoete 2000).  

In 2013, 640 soil samples were obtained from across Australia, including 110 samples from 

above the tree line in sub-alpine regions of Tasmania, (TAS) Victoria (VIC) and New South 

Wales (NSW). Rather than traditional baiting, DNA was extracted from these soils, and 

subsequent high through-put sequencing (HTS) detected 68 Phytophthora species (Burgess 

et al. 2017b). Phytophthora cinnamomi was detected up to 2100 (i.e. almost at the highest 

point of mainland Australia), 580 and 1433 masl in NSW, VIC and TAS, respectively. The 

previous distribution model using 7.5 °C as the lowest temperature limit for P. cinnamomi 

predicted these areas to be pathogen free (Podger et al. 1990); however, detailed data for 

the distribution of P. cinnamomi across a latitudinal gradient in North America (Thompson et 

al. 2014) was used to recalibrate the cold stress and a new model was generated (Burgess 

et al. 2017a). This new model predicted the climate to be suitable for the growth of P. 

cinnamomi in most sub-alpine regions of the world under the present environmental 

conditions and increased suitability/range expansion under expected climatic change (higher 

mean winter temperatures, seasonal precipitation shifts from summer into winter, global 

warming). Although the model provides an excellent projection of the pathogen distribution, it 

does not explain disease development in the presence of susceptible hosts because the 

presence of a pathogen does not automatically lead to disease development. Disease occurs 

due to complex interactions between a virulent pathogen, a susceptible host(s) and an 

environment favorable for long enough for the pathogen to cause a disease. Although P. 

cinnamomi was detected in the sub-alpine/alpine areas, it is not proof of a living organism as 

HTS can detect (e)DNA even if an organism is dead.  
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Published distributions of P. cinnamomi have been traditionally mapped based on 

observations of disease symptoms on susceptible plants. However, the pathogen infects and 

survives on some native plant species without causing observable disease symptoms (Crone 

et al. (2013a). The pathogen can also produce selfed oospores along with other survival 

structures, such as thick walled chlamydospores, stromata and lignitubers (Crone et al. 

2013b, Jung et al. 2013), thus able to survive in harsh climatic conditions. Additionally, 

anthropogenic activities are known to have distributed this exotic pathogen across most of 

the high rainfall areas of Australia widely since European colonization, for example through 

contaminated mud on vehicles and heavy machinery, road building and mining (Cahill et al. 

2008a, Callaghan & Guest 2015). Therefore, the extent of the true distribution of P. 

cinnamomi may be seriously underestimated, as distribution is not always associated with 

disease. Vegetation surveys since the 1940s were conducted under the assumption that the 

Snowy Mountains were too cold for P. cinnamomi (Green 2016). This background 

assumption does not consider its phenotypic plasticity.  

Phenotypic plasticity is the ability of organisms to express different phenotypes in response 

to changes in living or non-living environments. Such changes occur frequently in nature in 

response to heterogenic environments and can be inherited (Holeski et al. 2012, Kasuga et 

al. 2012). Plasticity is essential for organisms to survive in novel habitats, and once 

established, all the heritable differences are accumulated by natural selection and the 

phenotypes achieved become genetic (adaptive) (Baldwin 1896). However, the rate of 

adaption is different depending on the relative closeness of a phenotype to the desired trait in 

a novel environment (Price et al. 2003, Garbelotto et al. 2015). When the phenotype matches 

with the optimum phenotype in a novel environment, adaptive genetic differentiation stops 

(Price et al. 2003). The recent detection of P. cinnamomi at alpine/sub-alpine regions shows 

that the pathogen could be exhibiting adaptive phenotypic plasticity.  

In Australia, there are hosts susceptible to P. cinnamomi above the tree line in alpine and 

sub-alpine regions (Rigg et al. 2018). Thus, in order to get disease, a warming climate must 

be present, which is predicted by the model of Burgess et al. (2017a), and/or the pathogen 

has adapted to colder environments as indicated by its detection from sub-alpine and alpine 

areas in Australia. Therefore, the current study asked the following questions: can individual 

P. cinnamomi isolates be ‘trained’ under cold conditions to (1) grow, produce sporangia and 

release infective propagules (zoospores) at temperatures lower than they were originally 

capable of, and (2) infect and cause disease at temperatures lower than they were originally 

capable of? 
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Materials and methods  

Isolates and media  

A total of 30 Phytophthora cinnamomi isolates were used. Of these, 22 isolates were from 

the culture collection of Hüberli et al. (2000), seven isolates were originally isolated from 

Queensland, and the remaining isolate was isolated from a sub-alpine area in Tasmania. 

Details of location and substrates of isolation of all isolates used in the study are given in 

Table 4.1.   

Table 4.1. Host and location detail of Phytophthora cinnamomi isolates studied  

Isolate code  Substrate Location 

MP62 Eucalyptus marginata Jarrahdale, WA 
MP80 Eucalyptus calophylla tap root Jarrahdale, WA 
MP84 Eucalyptus calophylla lignotuber Jarrahdale, WA 
MP88 Eucalyptus calophylla lignotuber Jarrahdale, WA 
MP89 Eucalyptus calophylla root Jarrahdale, WA 
MP114 Eucalyptus calophylla lignotuber Willowdale, WA 
MP119 Eucalyptus calophylla lignotuber Willowdale, WA 
MP126 Eucalyptus marginata Huntly, WA 
MP129 Eucalyptus marginata Jarrahdale, WA 
MP133 Avocado Gatton, QLD 
MP94-05 Eucalyptus marginata collar Willowdale, WA 
MP94-09 Eucalyptus marginata collar & root  Willowdale, WA 
MP94-10 Eucalyptus marginata collar & root  Willowdale, WA 
MP94-11 Eucalyptus marginata root  Willowdale, WA 
MP94-12 Eucalyptus marginata collar & root  Willowdale, WA 
MP94-15 Eucalyptus marginata lateral root  Willowdale, WA 
MP94-18 Eucalyptus calophylla  Willowdale, WA 
MP94-20 Eucalyptus marginata Willowdale, WA 
MP94-27 Eucalyptus marginata collar & stem  Willowdale, WA 
MP94-33 Eucalyptus calophylla lignotuber Willowdale, WA 
MP94-39 Eucalyptus marginata collar Willowdale, WA 
MP94-48 Eucalyptus marginata Willowdale, WA 
MP94-49 Eucalyptus marginata Willowdale, WA 
MUCC813 Native Forest Mount Lewis Road, QLD 
MUCC814 Native Forest Mount Lewis Road, QLD 
MUCC815 Native Forest Mount Lewis Road, QLD 
MUCC816 Native Forest Shoteel Creek, QLD 
MUCC817 Native Forest Tully Falls, QLD 
MUCC818 Rainforest Tully Falls, QLD 
TAS188 Riparian rain forest Condominium Creek, TAS 
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All isolates were passaged through Granny Smith apples to ensure they were at the same 

physiological stage. Briefly, two holes were made with a sterile scalpel of about 15 x 15 mm 

in each apple. The cores were removed and a 10 mm2 colonized agar plug was placed into 

each hole; the cores were replaced and sealed with Glad® wrap (a plastic film). Each apple 

was kept for 2-3 days in a separate zip-lock bag (Sandvik, Australia) at 24 °C (±1°C) and 

tissues from the edge of brown discoloured lesions were plated onto modified Phytophthora 

selective medium ‘NARH’ (Simamora et al. 2017). The plates were incubated at 24 °C (±1°C) 

and examined under 10x magnification for the presence of characteristics typical for P. 

cinnamomi, specifically coralloid hyphae, pronounced hyphal swellings, and clusters of 

chlamydospores (Erwin & Ribeiro 1996). When confirmed, cultures were transferred onto 

individual vegetable juice agar (V8A) plates [100 ml/L filtered vegetable juice (Campbells V8 

vegetable juice; Campbell Grocery products Ltd., Norfolk, UK), 900 ml/L distilled water, 0.1 

g/L CaCo3, pH adjusted to 7, and 17 g Grade A Agar (Becton, Dickenson and Company, 

Sparks, MD, USA) after sub-culturing onto NARH twice. The isolates were maintained at 24 

°C (±1°C) on V8A for the entire experiment with regular sub-culturing.  

Effect of temperature on radial growth  

For growth rate studies, all 30 isolates were grown on V8A for four days at 24 °C (±1°C). 

Inoculum disks of 5 mm diameter were then cut from the margins of actively growing 4-day-

old cultures in triplicates and inoculated centrally onto fresh V8A plates with mycelium placed 

face down. Plates were incubated at 24 °C (±1°C) for 24 hours to stimulate growth, colony 

margins were marked, and three replicate plates for each isolate were transferred to 

individual incubators set at 4, 7.5, 10, 15, 20, 25, 30, 35 and 37.5 °C in the dark. Incubators 

could fluctuate in temperature by ±1°C. Colony diameters were checked daily until the 

mycelial colony was about to reach the plate margins. Colony diameter at all temperatures 

was measured at two perpendicular points on each Petri dish. Radial growth was determined 

by averaging the two measurements per Petri dish and then the diameter of the agar disk 

used at the start of the trial was subtracted. Growth rates were calculated by dividing the 

radial growth rates on day 4, since the colonies reached the plate margins at day 4 at the 

optimum temperature. Plates showing no growth at higher and lower temperature were 

returned to 20 ˚C to check if the temperatures were lethal.  

Method of sporangia production and subsequent count  

The isolates were grown on V8A agar for 4 days at 24 °C (±1 °C). About 3-4 agar plugs (5 

mm diameter) were then cut from the growing edge of the colony in triplicates from each 

isolate and transferred to sterile empty Petri dishes.  Each Petri dish was flooded with 10% 
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clarified V8 broth (Erwin & Ribeiro 1996) until the broth was just above the surface of the 

agar plugs and all the plates were then directly transferred to incubators set at 4, 7.5, 10, 

12.5, 15, 20, 25, 30, 32.5, 35 and 37.5 °C. The plates were incubated for 2-3 days at the 

higher temperatures (20, 25, 30, 32.5, 35 and 37.5 °C), a week at 15 °C and up to two weeks 

at lower temperatures (4, 7.5, 10 and 12.5 °C), to allow sufficient mycelium to be produced. 

The cultures were then rinsed thrice with deionised water, soaking for one hour for each 

rinse. Finally, all the cultures were flooded with 10% non-sterile pine (Pinus radiata) bark 

extract (100 g of pine bark potting mix in 1 L water, and left overnight) and incubated under 

light to encourage sporangia production. The number of intact and empty sporangia were 

counted in three fields of view at 20 and 25 °C and in six fields of view at all other 

temperatures at 10x magnification after 18-22 hours at higher temperatures (32.5, 35 and 

37.5 °C), 24-48 hours at medium temperatures (20, 25 and 30 °C), 10 days at 15 °C, 15-20 

days at 12.5 °C, and 20-24 days at 7.5 and 10 °C. Isolates kept at 4 °C were observed every 

week for eight weeks for sporangia production and zoospore release. 

Effect of temperature on sporulation and zoospore release  

From 30 isolates used in the radial growth trial, nine isolates (Fig. 4.1) were selected based 

on their growth rates at different cardinal temperatures to establish their temperature profile 

for sporulation and zoospore release. Their ability to produce sporangia and release 

zoospores was determined at 4, 7.5, 10, 12.5, 15, 20, 25, 30, 32.5, 35 and 37.5 °C. The 

number of intact and empty sporangia were counted as described above. The experiment 

was repeated to confirm the observations. Isolates showing differential sporulation and 

zoospore release were selected from this sporulation experiment for three successive 

experiments (below) each conducted over a six-month period in an attempt to ‘train’ isolates 

to grow faster, and sporulate and release zoospores at temperatures lower than originally 

established.  

Phenotypic plasticity experiment 1  

The inoculum was prepared by using vermiculite (1 L), millet (Panicum miliaceaum) seeds 

(10 g), and V8 broth (600 mL) as described by Simamora et al. (2016).  The amount of 

inoculum used in all trials was 1% of the weight of the sand in pots. 

An experiment was established with four isolates (MP94-48-0, TAS188-0, MP119-0 and 

MP114-0, where ‘0’ designates original isolates) to establish the lower temperature limit (in 

planta) for these isolates inoculated on Oxylobium ellipticum seedlings and placed in a 

growth chamber set at 8 °C. Additionally, O. ellipticum seedlings were inoculated with MP94-
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48-0 as an inoculum control and placed in an evaporatively cooled glasshouse at 25 (±5 °C). 

Each isolate was replicated three times. Briefly, the sand was first steam sterilised in hessian 

bags in an aluminium container for two hours at 98 °C. Seed trays (Punnets, Garden City 

Plastics, 90 mL) were also steam sterilised. Oxylobium ellipticum seedlings were germinated 

in sterilised river sand under glasshouse conditions. Plants were watered with deionised 

water and fertilised with soluble fertiliser Thrive® (Yates Company) when required at the 

recommended rates. Three months after sowing, the individual seedlings were pricked out 

into three 10 cell (to be placed in a growth chamber set at 8 °C) and one 10 cell punnet (to 

be placed in the glasshouse) (Punnets, Garden City Plastics, 90 mL) also contained 

sterilised sand.  Three seedlings were placed in a 10 cell punnet and 12 seedlings were 

placed at random in the three 10 cell punnets leaving one empty cell between seedlings. 

When placing the seedlings into the punnets, a sterile 10 mL diameter plastic tube was also 

inserted into the sand in each cell for introducing inoculum later, without causing damage to 

the roots. Ten days after transplanting the seedlings to the punnets, seedlings in the three 10 

cell punnet (to be transferred to the growth chamber) were inoculated with the four P. 

cinnamomi isolates by removing the plastic tubes from each cell and placing 1 g (1% of the 

weight of the sand) inoculum into each hole. The other punnet (to be kept in the glasshouse) 

was inoculated with MP94-48-0 in the same manner. The holes were then filled with sand. 

The punnets were then flooded with deionised water overnight to stimulate sporangia 

production and subsequent zoospore release and host infection by zoospores.  

Disease progression was recorded over time and the time to seedling death was also 

recorded. Re-isolations were made from dying plants during growth on modified NARH to 

confirm Koch’s postulates. Three months after inoculation, the remaining seedlings were 

gently removed from the punnets and sand was gently rinsed with tap water. Roots and 

shoots were cut into 2 x 2 cm segments, blotted dry on paper towels and plated onto 

modified NARH. Phytophthora cinnamomi was recovered only from plants inoculated with 

TAS188-0 at 8 °C.  This isolate is henceforth known as TAS188-1. Isolate MP94-48-0 was 

also recovered from the seedlings grown in the glasshouse at ambient temperature 

(henceforth known as MP94-48-1). TAS188-1 was stored on V8 agar at 12.5 °C to make 

sure it stays at low temperature at all times and MP94-48-1 was stored in a controlled 

temperature room (24 °C ±1 °C). Radial growth rates on agar, and number of intact and 

empty sporangia for these two and original isolates were determined across the same 

temperature range as described above. These characteristics were compared to the original 

isolates to see if there was any change in the number of days radial growth took to reach the 

plate edge, or the number of days it took to sporulate and release zoospores, and shift in 

temperature range in the case of sporulation.  
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Phenotypic plasticity experiment 2 

Five isolates were used in this experiment. Of these, two isolates (TAS188-1 and MP94-48-

1) were recovered in phenotypic plasticity experiment 1; and three isolates (TAS188-0, 

MP80-0 and MP89-0) were selected from the original sporulation experiment based on their 

different growth characteristics at different temperatures in an attempt to ‘train’ them to grow 

faster, and to sporulate and release zoospores at temperatures lower than originally 

established. 

Zoospores and mycelial plugs were used as an inoculum source instead of vermiculite, as 

only one of the four isolates was recovered by using vermiculite inoculum. For the zoospore 

inoculum, isolates were grown on V8A agar for 4 days at 24 °C (±1 °C) and sporangia were 

produced as described above. The cultures were then cold shocked at 4 °C for 30 minutes to 

encourage zoospore release. The cultures were left at room temperature for one hour 

following cold shock to ensure maximum zoospore release. The concentration of zoospores 

in the suspension was calculated by placing 10 x 2 µL drops of encysted zoospore 

suspension on a slide and counting zoospores present at 10x magnification. The suspension 

was diluted with deionized water to a zoospore concentration of approximately 1 x 105/mL. 

For the mycelial inoculum, all isolates were grown on V8A for 4 days and small agar plugs (5 

mm diameter) were taken from the growing edge of the colonies to inoculate plants.  

Oxylobium ellipticum seedlings were germinated in sterilised river sand under glasshouse 

conditions. The sand and punnets were steam sterilised as described above. Three months 

after sowing, the individual seedlings were pricked out into six punnets each consisted of six 

cells containing sterilised sand. When planting the seedlings, two sterile 10 mL diameter 

plastic tubes were also inserted on either side of the seedling into the sand in each cell, one 

for placing the P. cinnamomi colonised agar plug and the other for introducing the zoospores.  

After 10 days of acclimatisation, the seedlings were watered thoroughly and immediately 

inoculated with the five P. cinnamomi isolates by removing the plastic tubes from each cell 

and placing a 5 mm diameter colonised agar inoculum into one hole and pouring 1 x 105/mL 

zoospores suspension into the other hole. One seedling in each punnet was left as a non-

inoculated control. The holes were then filled with sand. The punnets were immediately 

flooded overnight with deionised water to stimulate sporangia production and provide a moist 

environment for the zoospores to infect the host. After flooding overnight, one set of plants (6 

punnets) was transferred to a growth chamber set at 9 °C. The other set of plants (6 

punnets) was left in an evaporatively cooled glasshouse at ambient temperature 25 (±5 °C) 

for comparison to ensure changes in growth characteristics or sporulation are due to 

exposure to cold temperatures, not due to a host effect. All punnets were randomised weekly 
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and flooded every fortnight until harvested. Plants were watered with deionised water and 

fertilised with soluble fertiliser Thrive® (Yates Company) when required at recommended 

rates. 

Disease progression was recorded over time and the time to seedling death was also 

recorded. Re-isolations were made from dying plants and plated on NARH to confirm Koch’s 

postulates. After identity confirmation, the re-isolated P. cinnamomi isolates grown at 9 °C in 

planta were stored at 12.5 °C on V8A, and the others grown at ambient temperature were 

stored in a controlled temperature room (24 °C ±1) on V8A. Three months after inoculation, 

surviving seedlings were harvested, and re-isolations were made from 2 x 2 mm surface 

sterilised root and collar tissues on NARH. Roots were cleared and stained using the method 

described by Brundrett et al. (1996). Briefly, for clearing, small roots were flooded in 10% 

KOH overnight and rinsed with de-ionised water. For staining, roots were immersed in 

lactoglycerol trypan blue (88% lactic acid, glycerol and distilled water (1:1:1 + 0.05% w/v 

trypan blue). The roots were de-stained for 12 h using lactoglycerol (1:1 of 88% lactic acid, 

glycerol). The same solution was used for root storage. Sections of fine roots were place on 

slides, covered with lactoglycerol and gently squeezed with a cover slip. Slides were 

examined for morphological structures typical of P. cinnamomi at 40x under a BX51 Olympus 

microscope. Growth rate, numbers of intact and empty sporangia were determined across 

the same temperature range as described above. The radial growth rate and sporulation 

experiments were repeated for lower temperatures (7.5, 10 and 12.5 °C) to confirm the 

observations.  

Phenotypic plasticity experiment 3 

Phenotypic plasticity experiment 3 was identical to phenotypic plasticity experiment 2 except 

temperature in the growth chamber was dropped from 9 ˚C to 7.5 ˚C.  

Data analysis 

For radial growth rate experiment, one-way ANOVA was performed in Microsoft Excel to 

analyse the effect of different temperatures on radial growth rates of different P. cinnamomi 

isolates. The means of different treatments were compared using Tukey’s test. 
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Results 

Effect of temperature on radial growth  

All 30 isolates showed different growth rates at different temperatures. The isolate MP89 

grew faster (mean 3.64 mm day-1) than all other isolates except MP84 (mean 3.37 mm day-

1). The isolates MP89 had significantly (p <0.05) higher growth rate than all other isolates, 

while MUCC815 was the only isolate to show significantly slower growth rate (1.46 mm day-1) 

at all temperatures than all other isolates (Table 4.S1). The optimum temperature for growth 

for all isolates, except MP114, was observed over a temperature range of 25-30 ˚C. The 

optimum growth temperature for 19 of 30 isolates on V8A was found to be 30 ˚C, while 10 of 

the 30 isolates exhibited an optimum growth at 25 ˚C. Whilst, MP114 exhibited an optimal 

growth at 20 ˚C. All isolates exhibited significantly (p < 0.05) slower growth rates at 4, 7. 5 

and 35 ˚C, and a rapid increase in growth almost in a linear fashion was observed from 10-

30 ˚C. A rapid decline in growth rate for all isolates was observed at temperatures greater 

than 30 ˚C. The radial growth rate of all 30 isolates is shown in Table 4.S1, Fig. 4.S1.   

Effect of temperature on sporulation and zoospore release  

The temperature range for sporulation and zoospore release was narrower than the range 

over which it grew on V8A. Sporangia production and zoospore release were observed 

between 10-30 ˚C in the non-sterile pine bark extract (Fig. 4.1). Sporulation was prolific 

between 25 and 30 ˚C; however, one isolate (MUCC815) only produced sporangia at 20 and 

25 ˚C. The highest number of sporangia mm-2 was produced at 25 ˚C for all nine isolates 

tested. Similarly, the optimum temperature for zoospore release mm-2 was 25 ˚C for seven of 

the nine isolates. The optimum temperature for zoospore release for the remaining two 

isolates (MP89 and MP84) was 30 ˚C. Similar to radial growth, the number of sporangia 

produced increased rapidly in a linear fashion from 10-30 ˚C. A few aborted sporangia with 

shrunken cytoplasm were observed at 32.5 ˚C. Sporangia production was infrequent at 10 

and 12.5 ˚C and zoospore release was limited at temperatures less than 15 ˚C. Additionally, 

the rate of sporulation and zoospore release was much slower at 10 and 12.5 ˚C, as they 

were observed after 20-24 days compared to 24-48 hours at the optimum temperatures. 

Sporulation and zoospore release/sporangium at lower temperature increased with 

increasing incubation period in both V8A and pine bark extract. Mean radial growth rates, 

number of sporangia produced and number of empty sporangia (indicating zoospore release) 

for the nine P. cinnamomi isolates at different temperatures are shown in Fig. 4.1.  
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Figure 4.1. Mean radial growth rate (mm day-1), number of intact and empty (indicative of zoospore 
release) sporangia (mm-2) for nine P. cinnamomi isolates at different temperatures.  

Phenotypic plasticity experiment 1   

In the phenotypic plasticity experiment 1, disease symptoms started to appear on seedlings 

grown in the glasshouse two weeks after inoculation. Some seedlings died during the trial 

and isolate MP94-48, inoculated onto seedlings as an inoculum control, was recovered 

(henceforth referred to as MP94-48-1). In contrast to seedlings grown in the glasshouse, no 

visual increase in height was observed for seedlings grown in the growth chamber. Lower 

leaves developed chlorotic lesions 32 days after inoculation, which later became necrotic and 

some seedlings died possibly due to cold stress. Also, seedling roots had less roots mass 

and were shorter. Of the four isolates inoculated on seedlings grown in the growth chamber 



 73 

at 8 ˚C, only one isolate TAS188-0 (henceforth referred to as TAS188-1) was recovered at 

harvest.  

The recovered isolates (from glasshouse and growth chamber) grew faster and took three 

days to reach plate edges as compared to four days by taken by original isolates at optimum 

temperature (25 ˚C), which was probably due to host effect. Temperature range for 

sporulation (10-30 ˚C) was similar to the original isolates. In summary, no phenotypic 

plasticity features were observed in phenotypic plasticity experiment 1 (Fig 4.2). 

 

Figure 4.2. Comparison of mean radial growth rates (mm day-1) and numbers of intact and empty 
(indicative of zoospore release) sporangia (mm-2) for the isolate TAS-188, where orange lines indicate 
original isolates (TAS188-0) and blue lines indicate the isolate (TAS188-1) recovered from plants 
grown in the growth chamber at 8 ˚C for three months. Bars = SE 

Phenotypic plasticity experiment 2   

In the phenotypic plasticity experiment 2, all five isolates were recovered from seedlings 

grown in the growth chamber at 9 ˚C along with all the five isolates inoculated on seedlings 

grown in the glasshouse at ambient temperature 25 ˚C (±5 °C). Seedlings grown in the 

glasshouse became chlorotic two weeks after inoculation and later died. Some seedlings 

died due to collar rot. Seedlings grown at 9 ˚C exhibited stunted growth as compared to the 

seedlings grown in the glasshouse. Lower leaves developed chlorotic lesions 25 days after 

inoculation, which later became necrotic and a few seedlings died due to collar rot. Root 

systems of seedlings grown in the glasshouse were healthier and larger than of seedlings 

grown in the growth chamber at 9 ˚C. Isolates were recovered from dead and surviving 

seedling on NARH. No considerable variation in growth rate was observed between isolates 

recovered from the growth chamber and glasshouse.  

A range shift in sporulation was observed for three isolates (TAS188-1, TAS188-2 and 

MP80) recovered from seedlings grown in the growth chamber at 9 ˚C, as they were able to 
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sporulate and release zoospores at 7. 5 ˚C (Fig. 4.3); compared to the original isolates where 

the lowest temperature they were able to sporulate and release zoospores at was 10 ˚C (Fig. 

4.1). Additionally, these isolates took only 15 days to produce sporangia at 7.5 ˚C compared 

to 20-24 days at 10 ˚C for the original isolates (Table 4.2).  However, two of the five isolates 

recovered from the growth chamber did not produce at 7.5 ˚C (Fig. 4.S2). No viable 

sporangia or zoospore release were observed at 7.5 ˚C for isolates recovered from seedlings 

grown in the glasshouse (Fig. 4.3).  

 

Figure 4.3. Comparison of mean number of intact and empty (indicative of zoospore release) 
sporangia (mm-2) between isolates recovered from plants grown in the glasshouse (orange) at 
ambient temperature and those recovered from plants grown in the growth chamber at 9 ˚C (blue) 
for three months. Bars = SE  
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Phenotypic plasticity experiment 3  

In the phenotypic plasticity experiment 3, no isolates of P. cinnamomi were recovered from 

seedlings grown in the growth chamber set at 7.5 ˚C. Seedlings growing in the glasshouse 

showed severe disease symptoms and had been killed by P. cinnamomi.  

Table 4.2. Incubation period in non-sterile potting mix extract required by P. cinnamomi to produce 
sporangia at different temperatures in each phenotypic plasticity experiment. No isolates were 
recovered from seedlings grown in the chamber at 7.5 ˚C in phenotypic plasticity experiment 3. 

  Number of days to produce sporangia 
Temperature 

(°C) Original 
experiment 

Phenotypic plasticity 
 experiment 1 

Phenotypic plasticity 
 experiment 2 

7.5   
 

15 
10 20-24 20-24 18-20 

12.5 15-20 15-20 15-18 
15 10-15 10-15 10 
20 1-2 1-2 1-2 
25 1-2 1-2 1-2 
30 1-2 1-2 1-2 

 

Discussion  

In response to cold condition comparable to that in alpine/sub-alpine environments, three of 

the five Phytophthora cinnamomi isolates evaluated exhibited phenotypic plasticity and were 

able to produce sporangia and release zoospores at lower temperature than they were 

originally capable of. Although P. cinnamomi isolates could produce infective propagules at 

7.5 °C in vitro, they could not be recovered from plants grown at this temperature after three 

months.  

Effect of temperature on radial growth  

The optimum temperature for growth rate for 29 of 30 P. cinnamomi isolates on V8A was 

observed over a range of 25-30 ˚C. Only one isolate exhibited optimum growth at 20 ˚C and 

no growth was observed outside 5-35 ˚C. These results agree with those obtained by 

Shepherd et al. (1974) for 50 Australian P. cinnamomi isolates using the same medium. 

Similar results were obtained by Phillips and Weste (1985) using PDA. In contrast to original 

isolates, the recovered isolates from the growth chamber and glasshouse exhibited faster 

growth rate in the present study. The radial growth rates are not directly comparable because 

the recovered isolates took three days to reach plate margins as compared to four days 

taken by original isolates. This can probably be attributed to host effect, as the original 



 76 

isolates were stored on agar for a long time; host infection enhanced their pathogenicity and 

growth rate. There is discrepancy in the literature regarding differentiating P. cinnamomi 

based on growth rates. Temperature characteristics show little variation after subculturing for 

a long period, and isolates of the same species collected from different hosts and origins do 

not exhibit much variation in response to different temperatures (Leonian 1925, Tucker 1931, 

Chee & Newhook 1965a, Zentmyer et al. 1976). In contrast, considerable variation was 

observed among isolates of the same species from different (White 1937, cited in Shepherd 

and Pratt 1974) and both the same and different geographic origins (Shepherd & Pratt 1974).  

Effect of temperature on sporulation and zoospore release  

Sporangia production was observed over a range of temperatures from 10-30 ˚C in the initial 

sporulation experiment. Unlike the radial growth on agar, no sporangia production was 

observed over 30 ˚C. This result supports the findings of Chee and Newhook (1965a) who 

showed that temperature range for sporangia production was narrower than the range at 

which mycelium grew. No relationship was found between the optimum temperature for 

sporulation/zoospore release, and geographical origin of the isolates, which is in line with the 

findings of previous studies (Chee & Newhook 1965b, Halsall & Williams 1984). The 

optimum temperature for sporangia production and zoospore release was observed at 25 ˚C, 

suggesting that pathogen will probably be more virulent at this temperature. No viable 

sporangia were observed over 30 ˚C. The pathogen produced a few sporangia at 32.5 ˚C, 

but these were aborted due to the higher temperature.  

The lower temperature limit for sporangia production by P. cinnamomi was found to be 12 ˚C 

by reviewing the literature (Chee & Newhook 1965a, Nesbitt et al. 1979, Shearer 2014). 

However, seven of nine isolates produced sporangia at 10 ˚C, prior to the phenotypic 

plasticity experiments, in the current study. This difference between this study and the 

previous ones could be due to increased incubation period (two weeks) in V8A broth to allow 

sufficient mycelium development, and in pine bark extract (20-24 days) to allow sufficient 

time for sporangia induction by pine bark and associated microflora at lower temperatures 

7.5, 10 and 12.5 ˚C. Whereas, Chee and Newhook (1965a) incubated mats of aerial 

mycelium for just 48 hours, while Nesbitt et al. (1979) did not specify any incubation period. 

Incubation period has been reported to markedly affect the rate of sporangia production. The 

number of sporangia significantly increased after a 12 day incubation period compared to a 2 

day incubation period (Shearer 2014).   
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Phenotypic plasticity in relation to sporulation, zoospore release and disease  

A range shift in sporulation temperature from 10-30 ˚C to 7.5 to 30 ˚C was observed in the 

phenotypic plasticity experiment 2 for three (TAS188-1, TAS188-2 and MP80) of the five P. 

cinnamomi isolates grown in the growth chamber for three months at 9 ˚C. Also, a shorter 

incubation period was required (15 days) to produce sporangia at this temperature compared 

to the 20-24 days required for sporulation to occur at 10 ˚C in the initial experiment. This 

implies that P. cinnamomi is exhibiting phenotypic plasticity and producing sporangia and 

releasing zoospores at temperatures lower than it was originally capable of, and in a shorter 

period when ‘trained’ under cold conditions. This also suggests that P. cinnamomi has a 

plastic genotype and is able to persist in a broad range of environmental conditions. 

Phenotypic plasticity is a very common and efficient mechanism organisms use to adapt to 

changing climatic variables, such as a change in temperature (Via & Lande 1985, Laine 

2008). A number of studies have demonstrated phenotypic plasticity in Phytophthora 

species. An example is the decreased sensitivity to a fungicide phosphite after its prolonged 

use in an horticultural environment (Dobrowolski et al. 2008). Hüberli et al. (2001) examined 

variation among 73 P. cinnamomi isolates collected from E. marginata and Corymbia 

calophylla trees in the southwest of Western Australia and found a broad range of phenotypic 

and pathogenic differences between them. Similarly, a significant variation in virulence was 

found among P. ramorum isolates when inoculated on different hosts, which indicates high 

levels of phenotypic plasticity (Rizzo et al. 2005, Kasuga et al. 2016). Mariette et al. (2016) 

tested the performance of P. infestans isolates (within a single clonal lineage) collected from 

different geographic origins across a range of temperatures and observed that isolates 

collected from colder climates performed better (produced more sporangia) at lower 

temperatures, than those collected from Mediterranean environments.  

In addition to Phytophthora, the role of phenotypic plasticity in thermal adaptation has been 

examined in several true fungi (Zhan & Mcdonald 2011, Stefansson et al. 2013). Phenotypic 

plasticity can also enable pathogens to infect different hosts closely related to their ancestral 

hosts, although the infection could be mild at first (De Vienne et al. 2009). Phenotypic 

plasticity contributes to the success of invasiveness of species (Davidson et al. 2011). The 

theory is based on the assumptions that (i) invasive species come to a new area with a few 

members (usually with relatively low genetic diversity) and experience a different 

environment in which they evolved. Phenotypic plasticity will help these species in coping 

and establishing in the new environment (Schlichting & Levin 1986), and (ii) phenotypic 

plasticity will assist in taking benefit of environmental fluctuations, thus helping in the 

establishment of the species in a novel environment (van Kleunen & Richardson 2007). An 
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example is the invasion of semi arid areas by pathogens, including P. infestans where they 

were hardly expected to survive (Bashi & Rotem 1974).  

Until recently, the literature on the invasive potential of plant pathogens has mainly focused 

the qualitative traits related to their successful infection, such as the presence/absence of 

compatible resistance and virulence genes in hosts and pathogens (Garbelotto et al. 2015). 

This resulted in the excessive usage of “lack of co-evolution” hypothesis to interpret the 

invasive potential of plant pathogens, which further led to fewer studies on infection 

capability, latent period, sporulation rate and spore size (Lannou 2012). Traits related to 

enhanced transmission, such as enhanced spore production and small spore size have been 

reported to be favoured over traits associated with increased virulence and competitive ability 

for successful invasions, as increased virulence results in hosts’ death and complete arrest 

of sporulation (Garbelotto et al. 2015). Analysis of gene expression on dead and living 

tissues has revealed a trade off between parasitism and saprotrophic wood decay. While 

living on host tissues, gene expression favour more toxin production, protection against plant 

defences and managing abiotic stresses at the expense of carbohydrate decomposition and 

membrane transport capacity, indicating that pathogens do not use their full capacity for 

energy acquisition during saprophytic growth and rather keep a full arsenal of wood 

degrading enzymes (Olson et al. 2012). 

Phytophthora species richness decreases with increasing elevation due to harsh climatic 

conditions (Redondo et al. 2018). Phytophthora species can be introduced to cold 

environments due to human related activities but only those manage to establish and spread 

which have a plastic genotype and can adapt to cold conditions, the rest are progressively 

filtered out along the elevation gradients (Redondo et al. 2018). Due to the isolation and 

detection of P. cinnamomi in alpine and sub-alpine environments (Mills 1999, McDougall et 

al. 2003, Burgess et al. 2017b) once considered pathogen free due to cold temperature 

(Podger et al. 1990), we hypothesize that the pathogen has adapted to cold environments. 

Our findings in the laboratory further confirm this observation; P. cinnamomi has a plastic 

genotype that responds rapidly to selection pressure and adapts to new environments. 

Therefore, models for P. cinnamomi distribution solely based on cardinal temperatures for 

growth have limited value, and need to be modified owing to the plastic genotype of the 

pathogen. This also suggests the need of taking preventive measures to stop further spread 

and establishment of the pathogen into sub-alpine and alpine areas.  

Although P. cinnamomi produced infective propagules (zoospores) at 7.5 ˚C in pine bark 

extract in phenotypic plasticity experiment 2, the pathogen was not recovered from 

inoculated plants grown at this temperature after three months in phenotypic plasticity 
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experiment 3. It is not clear whether the pathogen was unable to infect the host at this 

temperature, or it could not withstand cold conditions for three months. There are 

discrepancies in the literature about the minimum, optimum and maximum temperature 

required by P. cinnamomi for host infection and survival under harsh conditions. For 

example, Shearer et al. (1987) reported the minimum, optimum and maximum temperature 

for P. cinnamomi, in roots of Banksia grandis and Eucalyptus marginata, to be 5, 29 and 34 

˚C, respectively. However, these temperature limits cannot be generalized because they vary 

with different media and substrates (Shearer et al. 1987). Whilst, Halsall and Williams (1984) 

showed that zoospores were formed, attracted to hosts (Eucalyptus pilularis and E. 

maculata) chemotactically, and infected them at temperatures as low as 6 ˚C. Although 

infection was slow and no symptoms were observed at 6 ˚C, P. cinnamomi was recovered 

from washed roots 6-8 weeks after inoculation. A significant reduction in growth was 

observed at temperatures as low as 10 ˚C (Halsall & Williams 1984). The authors further 

concluded that although little infection can occur at 6 ˚C, the pathogen is not pathogenic 

below 10 ˚C.  

Pryce et al. (2002) found that there was no significant difference in the rate of isolation of P. 

cinnamomi in diseased and asymptomatic sites in the north Queensland. Phytophthora 

cinnamomi isolation from asymptomatic sites suggest that the environment at these locations 

is suitable for the pathogen but not for disease expression. This further suggests that, P. 

cinnamomi could be infecting plants in the alpine/sub-alpine areas asymptomatically under 

the current environmental conditions, and symptom expression may occur when temperature 

become warmer. This is further supported by the findings of Kliejunas and Nagata (1979) 

who assessed soil from three ohia forest sites in Hawaii for population levels of P. cinnamomi 

over an 8-13 month period, and found that the pathogen was either undetectable or its 

population was at the lowest during winter when soil temperature was near 10 ˚C; the 

detection rate increased with increasing temperature. Phytophthora cinnamomi has also 

been observed to infect plants asymptomatically even in a highly susceptible Mediterranean 

climate (Crone et al. 2013a, Crone et al. 2013b). Such behaviour makes the detection and 

management of P. cinnamomi very difficult (Newby 2014).  

There could be several other reasons for the lack of disease expression in alpine/sub-alpine 

areas in NSW, including greater host resistance of local endemic flora to P. cinnamomi as 

demonstrated by McCredie et al. (1985). Phytophthora cinnamomi is known to have patchy 

distribution in soil (McDougall et al. 2003), therefore susceptible hosts may escape infection. 

Antagonism and competition between P. cinnamomi and other soil microorganisms is also 

known to affect the distribution (Broadbent & Baker 1974, Weste & Vithanage 1978) as well 

as disease expression (Broadbent & Baker 1974, Marks & Smith 1981) by P. cinnamomi. 
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Perhaps the most likely explanation for the lack of disease expression is related to climate. 

Temperature and moisture are the major limiting factors for the growth and development of 

P. cinnamomi, so if there is sufficient moisture availability, temperature will be the major 

important restrictive factor (Thompson et al. 2012). There is sufficient moisture availability in 

the sub-alpine/alpine areas, but temperatures at higher elevations (especially above 1400 

masl) are likely to be too cold for P. cinnamomi disease expression.  

Although conditions could be too cold for disease expression in sub-alpine regions, the 

pathogen is still able to survive.  Phytophthora cinnamomi mainly infects roots (hence 

protected by host tissues) deep under soil layers where temperature seldom reaches less 

than 10 ˚C (Van Steekelenburg 1973, Marçais et al. 1996). This idea can be supported by 

the fact that P. cambivora, the species associated with the decline of Nematolepis ovatifolia 

in KNP, has proven difficult to isolate from rhizosphere soil, suggesting the soil is not 

favourable for the pathogen’s survival structures at the higher elevations and the pathogen 

may only survive inside host tissues and spread through root-to-root contact rather than 

through soil via zoospores (Ristaino & Gumpertz 2000, Green 2016). Phytophthora 

cinnamomi has also been known to produce survival structures capable of withstanding 

unfavourable conditions (dry, hot and cold) for several years due to the chemical composition 

and thickness of their walls (Jung et al. 1999, Crone et al. 2013b, Jung et al. 2013).  

Our finding that P. cinnamomi can exhibit plasticity and produce sporangia and release 

infective propagules at temperatures lower than originally thought possible (and in a shorter 

period) when ‘trained’ under cold conditions, and its isolation and detection at higher 

elevations previously considered pathogen free has significant ecological implications. 

Sub/alpine areas of KNP are at risk due to the presence of the pathogen and susceptible 

hosts. It is now important to restrict its further spread to protect the diverse and unique flora 

in alpine/sub-alpine ecosystems. As described above, the reasons for the lack of disease 

expression appear complex and need further investigation. The areas where P. cinnamomi 

has been detected should be explored more for soil suppression, host resistance and 

asymptomatic presence of P. cinnamomi. In vitro trials need to be conducted to investigate 

the interplay between different hosts, soil type, and low temperatures on disease expression. 

Pathogenicity trials should be set up with cold climate vegetation in the sub-alpine and alpine 

areas during different seasons without manipulating environmental conditions to get a real 

insight into host-pathogen interactions. In addition, in vitro trials need to be established at 

different temperatures to predict the pathogen behaviour under the changing climate. Only 

one isolate was from a sub-alpine area in the current study. Future studies should include 

multiple isolates from alpine/sub-alpine and Mediterranean environments i.e. demographic 

plasticity (Garbelotto et al. 2015), and compare growth rates x temperature, sporulation x 
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temperatures, spore size and pathogenicity of these isolates to get real insights on the 

pathogen adaption to colder environments.  
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Chapter 5: Comparison of distribution of Phytophthora and vascular 
plant species along a steep elevation gradient 
_________________________________________________ 
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Abstract 

This study was conducted to compare how Phytophthora and vascular plant species’ richness, 

composition and distribution vary along a steep elevation gradient. Phytophthora and vascular 

plant species were recorded over a wide range of elevation gradient (410-2125 m) in two 2 x 50 

m2 plots at each sampling point, one plot parallel to the road edge, and the other perpendicular 

to the road plot. Phytophthora and vascular plant species exhibited a linearly monotonic decline 

with increasing elevation on roads, but not in native vegetation. However, the elevation range 

of Phytophthora species was greater than vascular plants on both roads and in native 

vegetation. Phytophthora species exhibited similar composition and frequency on roads and in 

native vegetation, whilst vascular plants had greater frequency in native vegetation. Many 

Phytophthora species, including five regarded as non-native, are widespread in our study area 

(Kosciuszko National Park) but their richness at the plot level mimics that of vascular plants. 

The occurrence of a diverse Phytophthora community, which includes non-native species, is 

likely to affect resident vascular plant species, many of which are endemic to mountain 

environments; a changing climate may permit invasions by other Phytophthora species not yet 

present.  
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Introduction  

Non-native plant species’ richness within mountains usually decreases as elevation increases, 

and as such higher elevations are considered resistant to invasion. This decline along elevation 

gradients is typically continuous (Becker et al. 2005) in temperate areas or hump shaped 

(Arévalo et al. 2005) in tropical areas. The reasons for this decline are mainly related to harsh 

climatic conditions, decreased anthropogenic disturbance resulting in low propagule pressure, 

and lack of pre-adaptation and plasticity in non-native species (Pauchard et al. 2009, Alexander 

et al. 2011, Seipel et al. 2012). As roads are the primary reason for the introduction of non-

native plant species, this pattern is especially pronounced along road corridors (Seipel et al. 

2012). Conversely, changes in native plant species’ richness vary with increasing elevation, 

and are scale-dependent (Nogués-Bravo et al. 2008); but typicaly hump-shaped patterns are 

observed in tropical areas (Kessler et al. 2011), and both continuous and hump-shaped 

patterns are observed in temperate areas (Grytnes & Vetaas 2002, Grytnes et al. 2006, Kluge 

et al. 2006, Nogués-Bravo et al. 2008).  

While there is plant species movement from low elevations to high elevations along roads in 

mountains, there does not appear to be much exchange of species between roads and 

adjoining native vegetation (Seipel et al. 2012). The reasons could be different introduction 

history, intentional sowing of certain vegetation along roads, and increased competition from 

native vegetation (Seipel et al. 2012). For example, species richness 75 m away from roads 

was lower and independent of species richness along roads in the Australian Alps (Seipel et al. 

2012). Additionally, species turnover is typically greater in native vegetation (Sandoya et al. 

2017), and non-native plant species tend to be restricted to roads due to human related 

propagules pressure and exploitation of resources not fully utilized by native vegetation 

(Pauchard et al. 2009). Non-native plant species capable of establishing away from roads in 

native vegetation tend to prefer moist and shady habitat as opposed to the non-native species 

established on roads, which prefer open and well-drained habitat (Forman & Alexander 1998, 

McDougall et al. 2018).  

Pathogens belonging to the genus Phytophthora cause significant losses to plants in 

agriculture, horticulture and natural ecosystems throughout the world. Globally, more than 66% 

of all fine root diseases and more than 90% of all collar rots of woody plants are caused by 

Phytophthora species (Tsao 1990b). Despite this, studies on ecological filtering for 

Phytophthora species are rare and with the exception of a few Phytophthora species that cause 

emerging diseases in natural (e.g., Phytophthora cinnamomi and P. ramorum) or agricultural 

(e.g., P. infestans) ecosystems, their ecological impacts have not yet been established 

adequately (Redondo et al. 2015, Redondo et al. 2018). Unlike vascular plants, Phytophthora 
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species are difficult to detect unless special cultural or molecular techniques are used (Jung et 

al. 2018, Khaliq et al. 2018b), and their native range often remains unknown even if they are 

novel and are causing major ecological impacts (Rizzo 2005).  

Phytophthora species can be highly invasive and can destabilize whole ecosystems once 

introduced into host-pathogen non-coevolved ecosystems (Jung et al. 2016). Anthropogenic 

activities can introduce Phytophthora species into colder environments, but only ecologically 

compatible species will be able to survive and establish due to climate filtering (Redondo et al. 

2015). Only a few small-scale studies have been conducted on Phytophthora in temperate 

mountain ecosystems (McDougall et al. 2003, Green 2016), but they do not represent the 

complex Phytophthora diversity, or their variation in relation to elevation and disturbance 

gradients. No studies have been conducted globally to compare the distribution patterns of 

Phytophthora and vascular plant species along elevation and disturbance gradients in a 

temperate mountain. This is particularly important when temperature is rising globally and 

expanding the range of Phytophthora species, which may render some host species more 

susceptible to disease (Sturrock et al. 2011).  

The aim of the current study was to combine high throughput sequencing (HTS) with the 

traditional Phytophthora isolation method ‘baiting’ to determine whether patterns of 

Phytophthora species richness, composition and distribution in relation to elevation and 

disturbance are the same as for vascular plants. The patterns of species richness, composition 

and disturbance were determined for all (i.e. native and non-native) vascular plants and 

Phytophthora species due to lack of knowledge on the native or non-native origin of 

Phytophthora species. 

Methods 

Study area description 

The study was conducted in the Kosciuszko National Park (KNP), New South Wales (NSW). 

The area of KNP comprises of approximately 790,000 hectares and most is subjected to 

severe winter weather from mid-May to mid-August (Jenkins & Morris 2003). The average 

rainfall ranges from 558 to 2343 mm and the mean daily temperatures in summer ranges from 

2.4 to 29.7 ˚C and in winter from -5.6 to 11.1 ˚C (Bureau of Meteorology 1975). The alpine area 

around Mt Kosciuszko consists of 100 km2 of true alpine vegetation starting from the treeline at 

approximately 1830 m to the top of Mt Kosciuszko at 2125 m (Costin et al. 2000).  
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Survey design and sampling 

For vascular plants, sampling followed the protocol developed by the Mountain Invasion 

Research Network (Seipel et al. 2012). For the purposes of the current study, only selected 

elements of the protocol were used as follows. Three roads were selected for sampling in the 

KNP (Seipel et al. 2012). The roads extended over a wide range of elevation gradients (410-

2125 m above sea level). The bottom of each road was the National Park boundary and the top 

of the roads was the highest point of the roads. Each road was divided into 19 equally spaced 

parts using Geographic Information System (GIS), giving 20 sampling points per road 

(Appendix S1). Sampling locations were pre-determined and located using a global positioning 

system (GPS) and photos of the sites. Sample locations were allotted numbers from lowest (1) 

to highest (20) based on elevation. Each transect consisted of two 2 x 50 m2 plots, one plot 

parallel to the road edge (the road plot), and one plot perpendicular to the road plot (50-100 m 

from the road), together forming a “T”. In all cases, the road plot was highly disturbed and 

modified by road construction and maintenance, while the perpendicular plot was dominated by 

native vegetation with little evidence of disturbance, apart from native animal digging and fire in 

a few plots. All vascular plant species1 were recorded in each plot.   

For Phytophthora species, rhizosphere soil samples including fine roots were collected in each 

sample plot for baiting and HTS. Soil was collected from the native vegetation plots first to 

avoid the accidental introduction of Phytophthora species from road plot to native vegetation 

plots. Briefly, a bulked rhizosphere soil sample was collected from five different places 

(approximately 10-15 m apart) and mixed thoroughly in a tray. Emphasis was placed on the 

collection of fine roots. This sample was then processed in two ways: firstly, approximately 20 g 

of fine roots were removed from the soil and placed in a small zip lock bag for environmental 

DNA (eDNA) extraction; secondly, about 300 g of soil was placed in a large zip lock bag for 

traditional baiting. The excess dirt from the tray was removed with a brush and then thoroughly 

cleaned using methylated spirit and paper towels. The same sampling procedure was repeated 

for sampling from the disturbed/roads plot. The soil samples were kept in an insulated icebox to 

protect samples from high temperatures and direct sunlight and carried to the laboratory.  

In the laboratory, root samples were rinsed with tap water to remove soil particles and chopped 

into 1-2 mm segments.  Chopped roots (approximately 5 g) were placed into three Eppendorf 

tubes and frozen at -20 ˚C until used for DNA extraction while soil samples were used for 

traditional baiting. Roots were chosen as a substrate for the HTS based on the findings of 

Khaliq et al. (2018b).  

                                                   
1 Data for vascular plants was collected by Mountain Invasion Research Network (MIREN) 
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Baiting  

Rhizosphere soil was baited with young leaves of Rhododendron spp., Quercus ilex, Q. suber, 

Pimelea ferruginea, Poplar sp., Scholtzia involucrata, and Hedera helix as described by Khaliq 

et al. (2018b). Baits developing necrotic lesions were plated directly onto a Phytophthora 

selective medium NARH (Simamora et al. 2017), and any Phytophthora like colonies (Erwin & 

Ribeiro 1996) were transferred onto individual vegetable juice agar (V8A) plates [100 ml/L 

filtered vegetable juice (Campbells V8 vegetable juice; Campbell Grocery products Ltd., 

Norfolk, UK), 900 ml/L distilled water, 0.1 g/L CaCo3, pH adjusted to 7 and 17 g Grade A Agar 

(Becton, Dickenson and Company, Sparks, MD, USA] after subculturing on NARH twice. 

Isolates were divided into morphotypes based on their gross colony morphology and hyphal 

characteristics examined at 10x magnification under a light microscope. Finally, two to three 

isolates from each morphotype were selected and genomic DNA was extracted using ZR 

Fungal/Bacterial DNA MiniprepTM (Zymo Research, Irvine, California). The region spanning the 

internal transcribed spacer (ITS) region of the ribosomal DNA was amplified using the primers 

DC6 (Cooke et al. 2000) and ITS-4 (White et al. 1990), and sequences were compared with 

those of Phytophthora by conducting BLAST search in GenBank 

(www.ncbi.nlm.nih.gov/genbank/).  

DNA extraction and amplicon sequencing 

DNA was extracted from fine roots using the Mo Bio PowerPlant® DNA isolation kit (Carlsbad, 

CA) following the manufacturer’s instructions except for the first step where the buffer from the 

kit was replaced with 1 ml of saturated phosphate buffer (Na2PO4; 0.12 M; pH 8) to the roots 

(500 mg) to maximize extracellular DNA extraction (Taberlet et al. 2012). Final elutions were 

done in 60 µL of TE buffer. Extractions and PCRs were carried out in a separate laboratory 

using equipment that had never been used for Phytophthora, and extreme care was taken to 

avoid cross contamination between samples. All genomic DNA was frozen at - 80 ˚C until 

sequencing preparation. 

ITS 18s rRNA gene sequences (~250 bp) were amplified by a nested PCR approach using 

primary Phytophthora-specific primers 18h2f and 5.8RBis in the first round, and nested primers 

ITS6 and 5.8S-IR (Català et al. 2015) in the second round with Illumina MiSeq adapter 

sequences attached to the 5’ end, as per standard protocols for the MiSeq platform (Illumina 

Demonstrated Protocols: Metagenomic Sequencing Library Preparation). The PCRs were 

performed in 25 μl volume tubes containing 12.5 μl of PCR buffer KAPA HiFi HotStart 

ReadyMix (KAPA Biosystems), 8 μl of PCR grade water, 1 μM of each primer and 2.5 μl of 

genomic DNA (first round) or 1 μl of the PCR product (second round). No-template negative 
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PCR controls were included each time a PCR reaction was set up and carried forward to the 

second round in the same manner as for the samples. PCR cycling conditions were 94 °C for 

2 min, 30 cycles of 95 °C for 20 s, 60 °C for 25 s and 72 °C for 1 min before a final 72 °C for 

7 min and holding at 4 °C. If a band was visualised in the negative PCR controls, the products 

were discarded. First round PCR was conducted in duplicate and second round RCR products 

were combined based on intensity of bands on 2% agarose gels.  

All PCR products were purified with Agencourt AMPure XP magnetic beads (Beckman Coulter) 

as described in the Illumina protocol. All the samples were then uniquely barcoded and 

prepared for sequencing according to Illumina recommended protocol (Illumina Demonstrated 

Protocols: Metagenomic Sequencing Library Preparation), and sequenced on an Illumina 

Miseq using 500-cycle V2 chemistry (250 bp paired-end reads), following the manufacturer’s 

recommendation.  

Bioinformatics analysis  

Paired end reads were received in FASTQ format from the sequencing centre. Reads were 

imported to Geneious ver. R10 (https://www.geneious.com/); reads that did not have perfect 

primer sequences (no mismatches allowed) were removed from the dataset, and primer 

sequences and distal bases were trimmed from the 5’ and 3’ ends of the reads.  Paired end 

reads were then merged using USEARCH v10.0.240 (Edgar 2010). The reads were then 

quality filtered (sequences with >1% expected errors were excluded from the dataset), de-

replicated, and singletons were discarded using USEARCH v10.0.240. After chimera filtering 

was carried out, the reads were clustered into zero radius operational taxonomic units (OTUs) 

i.e. ZOTUs with the UNOISE (de-noising) algorithm (Edgar & Flyvbjerg 2015). The original raw 

paired end reads were aligned to the high quality ZOTUs representative set with USEARCH 

v10.0.240 to assign a ZOTU to each sequence and a ZOTU table was created. From this point, 

the sequences were processed within Geneious in order to use phylogeny to assign species 

names. Consensus sequences were aligned using MAFFT alignment within Geneious with 

default parameters. Identities were first assigned to ZOTUs by conducting an internal blast 

search against a customised reference database. The reference database consists of ITS1 

sequence of 300 Phytophthora species, undescribed (but designated) taxa and Phytophthora 

phylotypes recognised through metabarcoding from global studies. After that, all ZOTUs were 

then separated into clades and phylogenetic analyses were conducted using Geneious tree 

builder using verified sequences of all known Phytophthora species (Fig. S5.1). These final 

identities are considered to be phylotypes, acknowledging that their identity is based on 

sequence data rather than a living isolate. A phylotype was considered to represent a putative 

new species if it did not match any known species in the phylogenetic analysis. These 

https://www.geneious.com/
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phylotypes were named with a number representing the phylogenetic clade and a letter to 

distinguish between putative new phylotypes in the same clade. New phylotypes belonging to 

unknown clades were allocated in clade(s) ‘X’. For phylotypes that did not match any species in 

the curated database, BLASTn (GenBank database) searches were conducted to assign 

identities if possible.  

Statistical analysis 

1) Is there an effect of disturbance and elevation on species richness? 

The influence of disturbance (as a factor: either roads or native vegetation) and elevation (m) 

and their interaction on species richness i.e. number of species / sample plot of a) 

Phytophthora species, and b) vascular plant species was investigated by fitting generalised 

linear models (Poisson family with a log link function). First and second order polynomial terms 

of elevation were included to determine whether patterns were monotonic or hump-shaped. 

Analyses were performed using the stats package in R (R Development Core Team 2014). 

The relationship between Phytophthora and vascular plant species richness (at the plot scale) 

was investigated by fitting a generalised linear model (Poisson family with a log link function).  

2) Is there an effect of disturbance and elevation on species composition? 

The influence of disturbance and elevation on species composition was investigated using 

distance based linear models in the Permanova+ add-in to Primer v6 (Anderson et al. 2008; 

Clarke and Gorley 2006). Plots with one or fewer species were removed from the Phytophthora 

species matrix (this was not the case for vascular plants, as they were more in number). 

Resemblance matrices were then created using the Bray Curtis metric for Phytophthora and 

vascular plant species separately. Distance based linear models were fitted for two predictor 

variables: elevation (m) and disturbance (roads = 1, native vegetation = 0) and an adjusted R2 

was calculated. The matrices were plotted using principal coordinates in Permanova+; vectors 

for elevation and disturbance were overlayed on the plots. 

3) Is there an effect of disturbance and elevation on species distribution? 

The distributions of Phytophthora and vascular plant species in relation to disturbance were 

investigated by calculating the Pearson's product-moment correlation between the frequency of 

occurrences on roads and in native vegetation. A strong correlation would suggest there is little 

effect of disturbance on species distribution. The distributions of Phytophthora and vascular 

plant species in relation to elevation were investigated by determining the elevation range of all 
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species with 5 or more records in either native vegetation or on roads. The significance of the 

difference in mean range between Phytophthora species and vascular plant species was 

determined by analysis of variance. Tukey’s HSD test was used to perform multiple pairwise-

comparisons between the means of groups (Phytophthora and vascular species x roads and 

native vegetation plots). 

Results 

Bioinformatics analysis 

Eighty-two of 118 extractions from 59 sites (two extractions per site; one from road and the 

other from native vegetation) yielded PCR products. Across all runs, a total of 5 092 729 reads 

were obtained from samples that yielded PCR products. On average, 48.2% of the reads 

corresponded to the genus Phytophthora and the remaining were attributed to other 

oomycetes, including Halophytophthora, Peronospora, Pythium or Phytopythium; unidentified 

oomycetes and Lagena species that were excluded from further analysis (Table S5.1).  

Total species richness  

Across all sites, 25 Phytophthora species corresponding to 14 known species and 11 

potentially new phylotypes were detected (Table S5.2). Of the 25 Phytophthora species/ 

phylotypes detected in this study, 18 phylotypes were detected by HTS and 9 species were 

recovered by traditional baiting, while two species (P. elongata and P. pseudocryptogea) were 

detected by both techniques. The Phytophthora species resided in clades 1, 2, 4, 6, 7, 8, 9, 10, 

11 and unknown clade(s) (X). Phytophthora distribution was uneven across clades. The highest 

number of Phytophthora species were detected in clade 1 (7 species), followed by unknown 

clade(s) (4 species), clades 2 and 6 (3 species), clades 8 and 9 (2 species), and one 

Phytophthora species was detected in each of clades 4, 7, 10 and 11. 

In road plots, 24 species of Phytophthora and 341 species of vascular plants were recorded. In 

the adjoining native vegetation plots, 22 species of Phytophthora and 458 species of vascular 

plants were recorded. The mean number of Phytophthora species in native vegetation plots 

was 4.2 ± 0.4, and was not significantly different from that in road plots (4.6 ± 0.4) as 

determined by a paired t-test (t = -0.66, P > 0.05). The mean number of vascular plant species 

in native vegetation plots was 35.9 ± 1.3, was significantly greater than that in roads plots (32.4 

± 1.4) as determined by a paired t-test (t = -2.09, P < 0.05). 
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1) Is there an effect of disturbance and elevation on species richness? 

There was an effect of disturbance on species richness for both Phytophthora species (P < 

0.01) and vascular plant species (P < 0.001) but no effect of elevation. There was a significant 

interaction between disturbance and elevation for both Phytophthora species (P < 0.01) and 

vascular plant species (P < 0.001; Table S5.3). In post hoc generalised linear models of 

species richness and elevation fitted for each disturbance type, there was a significant decline 

in species richness with increasing elevation for Phytophthora species (z = -3.33, P < 0.001) 

and vascular plant species (z = -7.71, P < 0.001) on roads but no significant (P > 0.05) effect in 

native vegetation (Fig. 5.1). The second order polynomial model of elevation was not supported 

for vascular plant species. For Phytophthora species richness, the second order polynomial 

model was significant (P < 0.05) but not as well supported as the first order polynomial model 

(P < 0.001). That is, there is little support for a hump shaped relationship between elevation 

and species richness for either Phytophthora or vascular plant species. 
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Figure 5.1 Comparison between Phytophthora and vascular plant species richness and elevation on 
roads and in native vegetation (significant for roads only, P < 0.001). The least squares regression lines 
and 95% confidence intervals (grey ribbons) are show
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The generalised linear model fitted for the relationship between Phytophthora and vascular 

plant species richness was weakly significant (z = 2.16, P < 0.05; Fig. 5.2). 

 

 

 

 

 

 

 

 

 

Fig. 5.2 The relationship between Phytophthora and vascular plant species richness as fitted with a 
generalised linear model (z = 2.16, P < 0.05). The least squares regression line and 95% confidence 
interval (grey ribbons) is shown 

2) Is there an effect of disturbance and elevation on species composition? 

Species composition changed significantly (P < 0.01) with elevation for both Phytophthora 

and vascular plant species. There was, however, only a significant (P < 0.01) difference in 

composition between roads and native vegetation for vascular plant species (Fig. 5.3). The 

model for Phytophthora explained 11% of total variation in species composition while the 

model for vascular plants explained 21% of variation. 
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Figure 5.3 Principal co-ordinates plot of a) Phytophthora and b) vascular plant species composition 
with the vectors of environmental variables (elevation and disturbance) shown. Elevation explained a 
significant amount of variation in both Phytophthora and vascular plant species composition, whilst 
disturbance explained a significant amount of variation only for vascular plants. 
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3) Is there an effect of disturbance and elevation on species distribution? 

The frequency of Phytophthora species on roads was highly significantly (r2 = 0.75, P < 0.001) 

correlated with the frequency of Phytophthora species in native vegetation, while the frequency 

of vascular plant species was weakly significantly (r2 = 0.03, P < 0.05) correlated with the 

frequency of vascular plant species in native vegetation. As with the relationship between 

disturbance and Phytophthora species composition (i.e. the assemblages of species), 

disturbance has no apparent effect on overall Phytophthora species distribution. Conversely, 

many vascular plant species were found mostly on either roads or in native vegetation (Fig. 5.4). 

 
Figure 5.4 Scatterplot of species frequencies on roads and native vegetation for a) Phytophthora and b) 
vascular plants. The least squares regression lines have been added. The graphs show that a particular 
Phytophthora species is found as often on roads as in native vegetation but most native species are likely 
to be found mostly in native vegetation. 

Elevation range differed significantly (F = 19.9, P < 0.001) between categories of species x 

disturbance type (i.e. Phytophthora on roads, Phytophthora in native vegetation, vascular 

species on roads and vascular species in native vegetation). Using Tukey’s HSD test of multiple 

comparisons of means, there was a significant (P < 0.001) difference between species 

categories (i.e. the mean elevation range of Phytophthora species was greater than the mean 

elevation range of vascular plants), but not between disturbance types (P > 0.05; Fig. 5.5). Most 

Phytophthora species occurred throughout much of the elevation range of the sample plots 

(minimum = 410 m, maximum = 2125 m, range = 1715 m). Despite that, some species were 

more frequently found at particular elevations (e.g. P. arenaria at low elevation, P. AUS XD at 

mid elevations and P. AUS 8E and P. europea at high elevations; Fig. 5.6).
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Figure 5.5 Boxplots of elevation range (m) for Phytophthora and vascular plant species on roads and 
in native vegetation. Phytophthora species had a significantly (P < 0.001) greater elevation range 
than vascular plants on both roads and in native vegetation. There was no significant (P > 0.05) 
difference in elevation range between native vegetation and roads for either species group. The line 
in the middle of each boxplot is the median, the box limits are the quartiles (25 and 75%) and the 
dots are outlying points  

 

Fig. 5.6 Violin plots of Phytophthora species with 14 or more occurrences in total (roads and native 
vegetation plots) across different elevations. The width of the column is related to frequency of 
occurrence at that elevation
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Discussion  

Is there an effect of disturbance and elevation on species richness? 

There was a significant decline in species richness of both vascular plants and Phytophthora 

species with increasing elevation on roads, but not in native vegetation. For vascular plants, 

this is not surprising as roads are generally invaded by non-native species for which species 

richness at higher elevations is strongly hampered by climatic harshness and decreasing 

human related propagule pressure (Grytnes & Vetaas 2002, Alexander et al. 2011, Kessler 

et al. 2011). Harsh climatic conditions and decreased human related propagule pressure with 

increasing elevation also act as a filter for Phytophthora species richness (Redondo et al. 

2018), although their native and non-native origin often remain uncertain (Rizzo 2005).  

Non-native plant species with broader climatic amplitude can establish at higher elevations, 

the rest are progressively filtered out with increasing elevation (Alexander et al. 2011). In the 

Australian Alps, non-native plant species introduced to sub-alpine regions, especially due to 

anthropogenic disturbance, were able to germinate and grow, but were unable to reproduce 

due to climatic harshness (Mallen-Cooper 1990). Similar to vascular plants, only newly 

introduced Phytophthora species with the ability to overcome harsh climatic conditions 

manage to survive and spread in colder ecosystems; the rest are progressively filtered out 

with increasing elevation. Their ability to overcome harsh climatic conditions is mainly 

associated with their ability to form asexual survival structures and lower cardinal 

temperatures for growth (Redondo et al. 2018).  

No decline in species richness of vascular plants and Phytophthora species was observed 

with increasing elevation in native vegetation plots. In the case of vascular plants, the 

difference in richness patterns is probably attributable to the greater proportion of non-native 

species occurring on roads. When road habitat is created, it is largely bare and 

establishment by non-native plants relies largely on dispersal of propagules from lowlands 

(Alexander et al. 2011). Time (the time taken for dispersal from lowland to mountain tops) 

and climate tend to favour higher species richness at low elevation and a decline in species 

richness with increasing elevation. This slower colonisation by plants at high elevations on 

roads may in turn have resulted in lower Phytophthora species richness. Recolonisation of 

roads by Phytophthora species directly relies on the colonisation of roads by plant species as 

Phytophthora species are poor saprophytes (Erwin & Ribeiro 1996), and are unlikely to 

survive in soil without a host(s) at higher elevations in temperate climates (Van 

Steekelenburg 1973, Marçais et al. 1996, Green 2016). This suggests that the richness of 

Phytophthora species mimics the richness of their hosts.   
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Is there an effect of disturbance and elevation on species composition? 

Vascular plants and Phytophthora species composition changed significantly with increasing 

elevation. This can be mainly related to climate harshness and decreasing anthropogenic 

disturbance with increasing elevation, which has widely been studied before (Alexander et al. 

2011, Seipel et al. 2012, Redondo et al. 2015, Redondo et al. 2018). In the case of vascular 

plants, a significant difference in species composition was found on roads and within native 

vegetation. This is principally related to the low richness of non-native plants in native 

vegetation, which can be attributed to different environmental conditions (microclimate) on 

roads, landscape barriers, seed morphological characteristics, different introduction history, 

decreased human related land use in native vegetation, dense vegetation resulting in an 

increased habitat resistance in native vegetation, and lack of plasticity in non-native species 

(Parendes & Jones 2000, Petryna et al. 2002, Hansen & Clevenger 2005, Delgado et al. 

2007, Alexander et al. 2009, Seipel et al. 2012).  

In contrast to vascular plants, no significant difference in Phytophthora species composition 

was found between the road and native vegetation plots suggesting an efficient dispersal of 

Phytophthora propagules. This efficient dispersal is mainly related to the relatively short 

lifecycle of Phytophthora species. Also, each propagule of Phytophthora species have the 

ability to infect and rapidly propagate compared to vascular plants that are mainly dispersed 

through seeds. The seeds are non-motile and above ground, so they need to be blown or 

carried by vectors. After dispersal, they typically need bare ground to germinate and have to 

compete with other plants for light, water and nutrients. In contrast, we believe Phytophthora 

species detected in the current study are soil borne. Therefore, they could be easily 

dispersed by root to root contact and water and animal mediated soil movement (Hansen et 

al. 2000, Jules et al. 2002). Phytophthora propagules could also be easily washed down from 

road into native vegetation plots, as many native vegetation plots were located below the 

roads.  

Is there an effect of disturbance and elevation on species distribution?   

Phytophthora species had broader ecological niches along the elevation gradient than 

vascular plants and many species were recorded from the bottom to the top of the mountain. 

Self-sexual reproduction by homothallic species and parasexuality has enabled Phytophthora 

species to establish and persist in novel environments in spite of limited genetic variation 

(Desprez-Loustau et al. 2007). Evolutionary potential (McDonald & Linde 2002), survival 

under deep soil layers in plant tissues (Marçais et al. 1996), the ability to produce resistant 
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structures (Crone et al. 2013b, Jung et al. 2013) and phenotypic plasticity (Chapter 04 in this 

thesis) can further assist in their persistence and establishment in novel environments.  

Although most Phytophthora species occurred throughout much of the elevation range of the 

sample plots, some species were more frequently found at particular elevations, which could 

be related to a preference for specific hosts.  A caveat to the finding that certain 

Phytophthora species were widespread across elevation and disturbance is HTS techniques 

can detect DNA of species even if they have no longer persisted (Carini et al. 2017). No 

living Phytophthora species were recovered using traditional baiting above 1750 m. The 

elevation range for survival and reproduction may therefore be narrower for the species 

detected through HTS but, at times, they may have occupied a broad elevation range. 

However, there is a strong probability that species detected through HTS were alive at the 

time of detection, as they were detected in roots, not in soil. Roots act as a biological filter; if 

an organism is detected in the roots, it must have been alive to get there (Khaliq et al. 

2018b). Vascular plants had a narrower elevational range than Phytophthora species. For 

native plant species, this probably reflects millennia of selection and specialisation, with 

many species now restricted to particular biomes. The alpine area of KNP for instance, has a 

large number of local endemics (Costin et al. 2000). For non-native species, climate filtering 

has been shown to limit elevational distribution of species that are mainly climate generalists. 

With time, many non-native plants may have much broader distributions like most of the 

Phytophthora species.  

Disturbance had no apparent effect on overall Phytophthora species distribution suggesting 

wider ecological niches of these species. Factors responsible for similar Phytophthora 

species composition on roads and within native vegetation seem to be responsible for the 

similar frequency of Phytophthora species on roads and within native vegetation. Conversely, 

disturbance had a significant effect on vascular plants distribution i.e. many vascular plant 

species were found mostly on either roads or in native vegetation. The reasons for this lack 

of colonisation of plants between roads and native vegetation have been described above 

(species composition section).  

Implications for nature conservation 

Phytophthora cinnamomi, a non-native pathogen known to cause widespread damage to 

native vegetation in lowland Australia (Cahill et al. 2008a), was not detected in the current 

study and has not been isolated in KNP using traditional baiting techniques. Disease caused 

by P. cinnamomi has been estimated to occur only in areas with a mean annual temperature 

> 7.5°C (Podger et al. 1990). Phytophthora cinnamomi dieback is currently below about 1300 

m elevation but could rise to as high as 1820 m by 2070 under climate projections (Rigg et 
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al. 2018), encompassing almost the entire park. This is particularly important when seven of 

nine alpine and subalpine species recently tested from KNP were susceptible to infection by 

P. cinnamomi, and one of those (Phebalium squamulosum) was highly susceptible (Rigg et 

al. 2018). At least five of the species detected in this study are believed to be non-native 

(Burgess et al. 2017b, Burgess et al. 2018). The occurrence of non-native Phytophthora 

species in both road and native vegetation plots suggests that non-native species capable of 

surviving in mountain conditions spread rapidly once introduced. It is highly likely that some 

native plant species in KNP will be affected by non-native Phytophthora species. For 

example, Phytophthora gregata and P. cryptogea have recently been found to cause severe 

damage in populations of a native shrub ‘Pimelea bracteata’ in KNP (Khaliq et al. 2018a). 

Although seven of the 25 Phytophthora species detected in the current study were regarded 

as native to Australia by Burgess et al. (2017b), they may not be native to KNP, or other 

stresses on native vegetation may increase their effect on native hosts. Eighteen of the 25 

species detected in the current study have unknown origin, but it is likely that some of them 

could be non-native. 

In conclusion, vigilance for the appearance of disease and monitoring of Phytophthora 

distribution will be essential for the long-term protection of the KNP native flora. Vehicle 

hygiene is impractical in catchments traversed by high volume public roads but is paramount 

in remote areas accessible only to management vehicles. Therefore, boot cleaning for 

bushwalkers and tyre cleaning for mountain bike riders may be worthwhile in those areas, 

but dispersal by native and non-native herbivores may undermine efforts to protect native 

vegetation. Ultimately, protection of highly susceptible species (by phosphite application or 

ex situ conservation) may be required. Globally, understanding the interaction between 

Phytophthora and vascular plant species in other temperate areas of the world will play a 

major role in conserving the rare and vulnerable alpine and sub-alpine flora under the 

increasing threat of Phytophthora invasion due to projected climate change and human 

related activities.  
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Overview of the study 

This study is the first to investigate the ability of Phytophthora cinnamomi to exhibit plasticity 

to colder environments. No research has been conducted in Australia or worldwide around 

this theme on P. cinnamomi. I was able to demonstrate that isolates originally from 

Mediterranean, and temperate environments can exhibit phenotypic plasticity and produce 

sporangia and release zoospores at temperatures lower than originally established, and in a 

shorter period when ‘trained’ under cold conditions. My research also looked into the extent 

of invasion of the alpine, and sub-alpine ecosystems by other Phytophthora species and 

created baseline knowledge on Phytophthora diversity in these ecosystems. This study is 

also the first to compare the distribution pattern of Phytophthora species and vascular plants 

in relation to elevation and disturbance gradients in Australia.  

Phytophthora cinnamomi has a worldwide distribution and causes diseases in agricultural, 

horticultural and natural ecosystems. However, it has never been regarded as a pathogen of 

colder environments due to the assumption that lower temperatures limit the growth and 

survival of the pathogen (Shearer et al. 1987, Podger et al. 1990). My finding that the 

pathogen can exhibit phenotypic plasticity and produce sporangia and release zoospores in 

cold environments has major ecological and management implications in terms of restricting 

its introduction and subsequent spread in mountain ecosystems to protect the diverse and 

threatened flora, and in turn fauna. My findings can be used to update the current species 

distribution models. For example, Burgess et al. 2017 used 9 ˚C as the lower temperature 

limit for sporangia production by P. cinnamomi, but based on my data the pathogen can 

produce sporangia at 7.5 ˚C. This would change the cold limits in the model and thus extend 

areas of suitability for growth of P. cinnamomi into colder areas in the northern hemisphere 

and up higher elevations in mountainous regions. The data for the biology and physiology of 

P. cinnamomi used by previous models is based on the earlier studies of Zentmyer (1980), 

which need to be updated owing to the plastic nature of P. cinnamomi. My findings can also 

be used by land managers and policy makers to protect areas at risk, and prevent spread 

into areas that might be kept pathogen-free, which is discussed below under ‘Future risks’. 

An overview of the thesis is now provided.  

A preliminary experiment comparing metabarcoding with traditional isolation techniques 

revealed metabarcoding to be more effective in determining Phytophthora diversity in natural 

ecosystems; and eDNA extracted from field roots was found to be the best substrate for 

metabarcoding studies (Chapter 2). However, amplifications were achieved for only three of 

the five sites investigated, which could be linked to the type of roots collected and the 

relatively small sample size (as inoculum is not uniformly dispersed). More work is required 
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to optimize this methodology. Also, certain Phytophthora species were detected by only one 

technique; therefore, a combination of techniques should be used to get an accurate image 

of Phytophthora diversity in an area. Preliminary surveys conducted in the sub-alpine and 

alpine areas of areas of New South Wales (NSW) and Tasmania (TAS) to determine 

baseline Phytophthora species, and to confirm that Phytophthora species detected by a 

previous study resulted in the isolation of eight Phytophthora species, including two new 

species; P. oreophila sp. nov and P. cacuminis sp. nov that were formally described (Chapter 

3).  

The occurrence of a diverse Phytophthora community in sub-alpine and alpine ecosystems 

previously thought to be ‘pathogen-free’ (Podger et al. 1990) was surprising and suggested 

that Phytophthora species had adapted to cold conditions. Alternatively, they have always 

been present, or present for a long time but no one had looked in detail for Phytophthora 

species at these altitudes. Extended experiments were established (Chapter 4) to test the 

first theory. Phytophthora cinnamomi was selected as a ‘test’ species because of its national 

and international significance. Phytophthora cinnamomi produced sporangia and released 

zoospores at 7.5 °C lower than originally (10 °C) established in a shorter period when 

‘trained’ under cold conditions.  Phytophthora cinnamomi was ‘trained’ under cold conditions 

in an inoculated host i.e. Oxylobium ellipticum rather than in the form of mycelium to enhance 

the pathogen’s physiological response to changing temperatures in the presence of a plant. 

These findings show that P. cinnamomi responds rapidly to selection pressure and can adapt 

to new environments.  

Although it was established that P. cinnamomi has the ability to adapt to colder conditions, 

and it had been isolated/detected in the sub-alpine and alpine areas previously (McDougall 

et al. 2003, Burgess et al. 2017b), the pathogen was not detected in the sub-alpine and 

alpine areas in the current study. This could be explained by the fact that P. cinnamomi 

typically has patchy distribution in the soil (Weste & Taylor 1971, Weste & Kennedy 1997, 

Brown et al. 2002, Pryce et al. 2002, McDougall et al. 2003); therefore, it could have been 

missed easily by sampling (also potential hosts may have escaped infection). The reason for 

the patchy distribution of P. cinnamomi is not clear, but it is likely related to hosts, availability 

of soil water, soil texture, organic matter and soil microbes (Newby 2014). Antagonism and 

competition from soil microbes are known to effect the distribution and disease expression by 

P. cinnamomi (Broadbent & Baker 1974). Alternatively, P. cinnamomi detected in the sub-

alpine and alpine areas by Burgess et al. (2017b) could be dead, as in the current study the 

emphasis was on collecting roots and not rhizosphere soil as done by Burgess et al. (2017b). 

It has been shown that P. cinnamomi is unlikely to survive in temperate areas in soil due to 

harsh climatic conditions, and it mainly survives in host tissues (Van Steekelenburg 1973). 
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Phytophthora cinnamomi isolates were ‘trained’ over time to make them produce sporangia 

and release zoospores at temperatures lower than originally thought possible. This suggests 

P. cinnamomi isolates introduced into higher elevation may not be able to sporulate 

immediately, but rather adapt to these conditions before it is able to sporulate.     

Detailed surveys were conducted to determine the distribution pattern of Phytophthora 

species and vascular plants in relation to disturbance and elevation along elevation gradients 

in KNP (Chapter 5). Species richness of both Phytophthora and vascular plants decreased 

with increasing elevation on roads but not in native vegetation (100 m away from roads); and 

the elevation range of Phytophthora species was higher than vascular plants both on roads 

and within native vegetation. Species composition changed significantly for both 

Phytophthora and vascular plants with elevation, however the effect of disturbance on 

species composition was only significant for vascular plants. In contrast to vascular plants, 

Phytophthora species exhibited similar composition on roads and native vegetation. This 

suggests that the distribution of Phytophthora and vascular plant species is more related to 

climate filtering than to human activities in a temperate mountain.  

Apart from the involvement of P. gregata and P. cryptogea in Pimelea bracteata dieback in 

KNP, the eight Phytophthora species had not been associated with a disease. In fact, the 

Phytophthora species were isolated underneath healthy vegetation. There are several 

reasons for the lack of disease expression. Phytophthora cinnamomi can live in plants as a 

biotroph without killing them (Crone et al. 2013a, Crone et al. 2013b). Host resistance can 

also suppress disease, which is recognised in some NSW Banksia species (McCredie et al. 

1985). Since the composition of Phytophthora species was the same on roads and within 

native vegetation, it is possible that these species have been established for decades and 

have attained equilibrium with the ecosystem. It is also possible that Phytophthora species 

are surviving in plants asymptomatically. It has been shown that Phytophthora species can 

infect plants without causing observable symptoms (Hüberli et al. 2000, Crone et al. 2013a). 

In a random survey in north Queensland, there was no significant difference in the rate of 

isolation of P. cinnamomi from symptomatic and asymptomatic vegetation (Pryce et al. 

2002). Such behaviour in infected hosts accompanied by cold conditions will make the 

isolation and management of P. cinnamomi very difficult (Newby 2014). This also suggests 

that environment is favourable for the pathogen, but not for disease expression (Pryce et al. 

2002). In such a case, a disease outbreak is likely to occur under the expected climate 

change (Burgess et al. 2017a). The wide distribution across elevation gradients, higher 

elevation range and similar composition on roads and native vegetation also suggest that the 

survival and continued spread of existing Phytophthora species is more dependent on 
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climatic and topographic factors than anthropogenic disturbance. Anthropogenic introduction 

of new species may however pose a significant risk.  

Anthropogenic introductions and subsequent invasion can be divided into a series of stages 

(Blackburn et al. 2011). Following Blackburn’s definition of invasive species, only those non-

native Phytophthora species can be considered invasive that are able to establish and 

spread across a range of habitats regardless of their impact. At each stage there are different 

barriers that needed to be overcome in order to establish and spread into new environments 

and become invasive (Fig. 6.1). These barriers, for example barrier for survival and 

introduction can affect the life cycle of the invader and can be used to study the 

characteristics of a location, such as climatic factors and hosts, which in turn can be used to 

investigate the impact of environmental filtering on Phytophthora species once they are 

introduced into a new area. The main barriers for Phytophthora species could be the 

absence of susceptible hosts or harsh climatic conditions (Ireland et al. 2013, Burgess et al. 

2017a).       

 

Figure. 6.1 The proposed unified framework for biological invasions by Blackburn et al. (2011). 
Species are classified based on where in the invasion process they have reached along with different 
management practices that can be adapted at different stages of invasion. Species are not dispersed 
beyond their native ranges (A), species are dispersed beyond their native range and are either 
restricted in captivity or quarantine (B1), or in cultivation i.e. species are cultivated but explicit 
measures are taken to prevent dispersal (B2), species are transported beyond their native ranges and 
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are directly released into new environments (B3), species are released into the wild i.e. outside of 
captivity or cultivation and are either incapable of surviving for extended periods (C0), or capable of 
surviving but unable to reproduce (C1), reproduction is occurring but population is not self-sustaining 
(C2), reproduction is occurring but population self-sustaining (C3), self-sustained population is 
surviving at a significant distance from the initial point of introduction (D1), self-sustained population 
is surviving and reproducing at a significant distance from the initial point of introduction (D2), 
species become fully invasive and disperse, survive and reproduce across a different range of 
habitats (E).   

Future directions/research 

Best methodology for determining Phytophthora diversity      

 eDNA extracted from field roots was found to be the best substrate for metabarcoding 

studies (Chapter 2). However, amplifications were achieved for only three of the five sites 

investigated, which could be linked to the type of roots collected and the relatively small 

sample size (as inoculum is not uniformly dispersed). More work is required to optimize this 

methodology. Also, certain Phytophthora species were detected by only one technique, 

therefore a combination of techniques maybe used to accurately assess Phytophthora 

diversity in a certain area.   

Determination of lower temperatures for infection      

Although P. cinnamomi produced sporangia and released infective propagules (zoospores) 

at 7.5 ˚C in non-sterile pine bark extract, the pathogen could not be isolated from plants 

grown at 7.5 ˚C three months after inoculation. It is not clear whether the pathogen failed to 

cause infection at this temperature or it could not withstand lower temperature for three 

months. More work is needed to establish the lower temperature limit for infection and 

disease development by P. cinnamomi. For this purpose, growth chambers need to be set at 

temperatures from 1 to 8 ˚C with 14 h day length (5 am-7 pm). Temperatures need to be 

incrementally changed (for plants grown at each temperature) with the minimum temperature 

being maintained for four hours during the night (2 am-6 am) and the maximum for four hours 

during the day (1 pm-5 pm) to mimic sub-alpine conditions. Plants should be inoculated with 

P. cinnamomi and healthy plants should be placed alongside inoculated ones to see if the 

pathogen can infect/transfer to healthy plants (through root to root contact or zoospore 

infection). Punnets should be flooded every fortnight and re-isolations should be made from 

inoculated and non-inoculated plants 90 days (to allow sufficient time for training) after 

inoculation to confirm Koch’s postulates. Flood water should also be baited at 1-8 ˚C to 

check if zoospores are produced and baits are infected. The ability of recovered isolates to 
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produce sporangia and release zoospores should be determined at temperatures 7.5 ˚C and 

below. Other Phytophthora species and hybrids should also be included in the trial.   

A relatively faster way to establish if P. cinnamomi can infect at lower temperatures is to do 

traditional baiting at lower temperatures (8 ˚C and below), with non-inoculation controls 

(water with floated bait leaves) to make sure that baits are not already infected by P. 

cinnamomi. Similarly, bait trays need to be incubated at room temperature as positive 

controls to test the viability of inoculum. Phytophthora cinnamomi isolates could be grown in 

sterilised parboiled rice as an inoculum source. Other more natural source of inoculum could 

be P. cinnamomi infected host tissues. The recovered isolates could be re-baited at 

increasingly lower temperatures to observe whether baits are infected at these temperatures. 

The ability of recovered isolates to produce sporangia and release zoospores should be 

determined at temperatures 7.5 ˚C and below. Other Phytophthora species and hybrids 

should also be included in the trial.   

The reasons for the lack of disease expression in areas from where Phytophthora species 

have been isolated should be explored in detail. The role of soil suppression, cold climate 

vegetation resistance against Phytophthora species, biotrophic behaviour of Phytophthora 

species, and the interaction between different moisture levels and temperatures on disease 

expression of Phytophthora species should be investigated in detail both in vivo and in vitro.  

Phenotypic plasticity experiments- a step further 

Initially, the lower temperature limit (10 ˚C) for the production of sporangia and zoospore 

release by P. cinnamomi was determined and then phenotypic plasticity experiments were 

carried out at increasingly lower temperatures (9, 8, 7.5 ˚C) to explain the range expansion of 

P. cinnamomi to sub-alpine and alpine regions. The same experiments can be carried out at 

higher temperatures to demonstrate that P. cinnamomi has a plastic genotype. The highest 

at which P. cinnamomi produced sporangia and released zoospores was 30 ˚C; therefore, 

phenotypic plasticity trials need to be established (in planta) at 32.5 ˚C and higher to 

determine whether the pathogen could be ‘trained’ to produce sporangia at temperatures 

greater than 30 ˚C. Similarly, phenotypic plasticity experiments can be conducted with non-

hosts, resistant hosts or hosts closely related to susceptible hosts to determine if the 

pathogen could exhibit plasticity and infect non-hosts/resistant hosts. This will further support 

the hypothesis that P. cinnamomi has a plastic genotype that responds rapidly to selection 

pressure and adapts to new environments and hosts. Other Phytophthora species and 

hybrids should also be included in the trial.  
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Future risks 

Climate change/changing environment  

Climate change is a major threat to the diverse flora in mountain ecosystems. Warming 

temperatures not only facilitate the invasion of colder environments, but also affect plants’ 

resistance to pathogens. Hüberli et al. (2002b) studied the effect of temperature changes on 

E. marginata clonal lines inoculated with P. cinnamomi and found that temperatures of 25-30 

˚C dramatically decreased resistance of all clonal lines. Increased species invasions of 

higher elevations due to shift in global temperature is well known (Sturrock et al. 2011). The 

finding that increased temperature can affect host resistance to pathogens is yet another 

issue making climate change an important threat to the unique biodiversity of colder 

environments. Theoretically, global warming led to increased oak decline caused by P. 

cinnamomi in Europe (Brasier & Scott 1994). A CLIMEX model extended this theory to the 

rest of the world and predicted an increase in activity of P. cinnamomi in the colder regions of 

the world (Burgess et al. 2017a).   

It is impossible to exactly predict the weather conditions over the next 50 or 100 years, but 

certain approaches can be used to push the limits of host plants to pathogen invasion. These 

include analysis of resistance of cold climate vegetation to Phytophthora species in 

controlled environments against a range of temperatures. For this purpose, one set of plants 

could be grown at temperatures ranging 7.5 to 15 ˚C and another set of plants could be 

grown at temperatures ranging 25-30 ˚C to establish temperature by host-pathogen 

interactions. Field trials should be set up in the sub-alpine and alpine areas and monitored 

over time across different seasons without manipulating environmental conditions to get a 

real insight into host-pathogen interactions. Transparent plastic structures need to be 

installed in asymptomatic areas where the Phytophthora species have been detected to see 

if disease expression occurs. These structures should be built in such a way that they ensure 

water incursion under them is limited and that they heat up the area covered.  This will in turn 

provide favourable conditions for disease expression by Phytophthora species i.e. create 

warmer and drought stressed conditions. Increased understanding of plant pathogen 

interactions will not only answer questions on cold climate vegetation resistance to 

Phytophthora species, but will also improve distribution models which consider only 

environmental covariates, such as weather for mapping spatial distribution of P. cinnamomi, 

for example (Bishop et al. 2016). Models predicting the impact of climate change on 

Phytophthora dieback need to consider the varying distribution of hosts and non-uniform 

changes in the local climate for predicted for NSW 

(https://www.environment.nsw.gov.au/research-and-publications/publications-search/greater-

https://www.environment.nsw.gov.au/research-and-publications/publications-search/greater-blue-mountains-world-heritage-area-strategic-plan
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blue-mountains-world-heritage-area-strategic-plan). Global warming not only affects host 

resistance against pathogens, but also negatively affects the efficacy of control treatments, 

such as fungicides (Coakley et al. 1999). For example, elevated atmospheric carbon dioxide 

level could result in thickened epicuticular wax layer, which could reduce uptake of systemic 

fungicides, such as phosphite (Hüberli 2001). Little is known about the effect of temperature 

(both higher and lower) on phosphite and its ability to control Phytophthora in planta. Further 

research in this regard is suggested to get an understanding of the effect of temperature on 

phosphite and host-pathogen interactions. For this purpose, one set of plants could be grown 

at temperatures ranging from 7.5 to 15 ˚C and other set of plants could be grown at 

temperatures ranging 25-30 ˚C to determine phosphite by host-pathogen interactions. 

Other invasive Phytophthora species  

Initially, much emphasis was placed on P. cinnamomi as the main Phytophthora pathogen in 

the current study because of its catastrophic effects on vegetation in Mediterranean climates. 

Therefore, its range expansion to mountain ecosystems was a real concern. For this reason, 

P. cinnamomi was used as the model organism in the phenotypic plasticity experiments. 

However, as outlined in Chapters 2 and 4, the recovery of other apparently introduced 

(invasive) Phytophthora species (P. cactorum, P. gonapodyides, P. cryptogea and P. 

pseudocryptogea) in sub-alpine and alpine environments is of great concern. Therefore, it is 

important to look for other Phytophthora species that may cause diseases in mountain 

ecosystems either alone or in combination with P. cinnamomi. Although Phytophthora 

species had previously been overlooked and were not considered as a potential threat to the 

Australian sub-alpine and alpine ecosystems, some have since been shown to cause 

disease in the sub-alpine flora. For example, P. cryptogea and P. gregata are a serious 

problem in Pimelea bracteata populations in the Northern KNP and wetlands in surrounding 

areas. Plants at all growth stages are affected and there is very little or no regeneration 

(McDougall et al. unpublished). Phytophthora cryptogea and P. gregata have a wide host 

range, therefore other KNP vegetation is at risk.  

The involvement of P. gregata and P. cryptogea in the decline of P. bracteata shows that 

Phytophthora species already present in the sub-alpine ecosystems have the potential to 

cause disease. Therefore, work is required to determine the susceptibility of sub-alpine flora 

to a range of Phytophthora species, not just P. cinnamomi. Little is known about the 

response of sub-alpine flora to invasive Phytophthora species. This is particularly important 

when temperature is rising globally, which may render some host species more susceptible 

to diseases caused by Phytophthora and other pathogens. Detailed surveys need to be 

conducted to investigate Phytophthora dieback in these areas. 

https://www.environment.nsw.gov.au/research-and-publications/publications-search/greater-blue-mountains-world-heritage-area-strategic-plan
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Recreation and tourism  

Nature-based tourism and recreational activities in protected areas are increasing throughout 

the world, including Australia, leading to catastrophic impacts on soil properties and diverse 

and threatened flora (Newsome et al. 2012). A study comparing the vegetation type and soil 

properties on roads and 10 m into the forest in the sub-alpine areas of KNP revealed that soil 

alongside roads had significantly lower levels of humus, higher levels of gravel and sand, 

fewer nutrients and lower pH and electrical conductivity than soil 10 m into the forest. 

Roadsides had 28% weed and bare cover compared to 2% bare ground and 6% weed cover 

10 m into the forest (Johnston & Johnston 2004). Tourism leads to the introduction and 

spread of weeds and pathogens, vegetation trampling, fire scars, littering, soil and water 

nutrients manipulation, and illegal collection of rare and threatened plants (Willard & Marr 

1970, McDougall et al. 2003). Management practices to reduce losses from tourism should 

include hardening of walkways with pathogen-free gravel, elevated wood or metal walkways 

to reduce contact of visitors with the flora and limit trampling, and pavers along with 

controlled drainage systems (Good & Grenier 1994). These management practices are 

expensive and more than Aus$420,000 were spent on the rehabilitation of the summit of Mt 

Kosciuszko and surrounding area (NPWS 1997). Although KNP flora is of national and 

international significance, very limited research has been carried out to determine the direct 

and indirect impacts of tourism. Therefore, future research should be directed to investigate 

the impacts of tourism in this area (Pickering & Hill 2007).      

Management strategies   

An integrative research and management approach needs to be undertaken to stop the 

introduction of new species and reduce the spread and impact of the existing Phytophthora 

community in KNP. These include strictly monitored quarantine procedures, the use of 

conventional hygiene measures (for example, foot scrubbing stations at track heads, vehicle 

wash down, signage for visitors, and training of staff members), determination of 

susceptibility of sub-alpine flora to Phytophthora species, the inclusion of non-host and 

resistant vegetation to reduce the spread, re-routing walk tracks to low risk areas, or closing 

walk trails during periods of high rainfall to prevent further spread via vehicles, cycling and 

foot walking. Remote sensing tools (e.g. multi and hyperspectral imagery through satellite, 

fixed wing aircraft and unmanned aerial vehicles) should be regularly used to detect early 

changes in vegetation health, especially susceptible species.  

In conclusion, this study has shown alpine and sub-alpine ecosystems to be at risk from a 

range of Phytophthora species, including P. cinnamomi. As described above, reasons for the 
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lack of disease expression in areas where Phytophthora species have been 

isolated/detected appear complex and need further investigation. Kosciuszko National Park 

heathlands contain species from many families that are very susceptible to Phytophthora 

infection in other areas in Australia; these include Proteaceae, Xanth orrhoeaceae and 

Fabaceae (Newhook & Podger 1972, Podger 1972). Pimelea bracteata already infected with 

Phytophthora species should possibly be eradicated to stop further spread. If eradication is 

not practical, they should not be used in other areas for re-vegetation to and should be 

treated with systemic fungicides, such as phosphite. Further work is suggested to establish 

the efficacy of phosphite against Phytophthora species including P. cinnamomi, especially 

those isolated from these environments. Also, further work is required to determine the 

persistence, concentration (amount) and appropriate time (season) of application of 

phosphite in these areas. Also, the efficacy of Phytophthora should be tested against a range 

of Phytophthora species to determine its efficacy, as this information is not known. Since no 

attempts have been made to determine Phytophthora dieback in these ecosystems, detailed 

surveys should be conducted to investigate Phytophthora infestation in these areas.   
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Supplementary material for Chapter 2 
 
 
Table S2.1 Selective media used for isolation of Phytophthora species. Ingredients are given to make the final 
volume one liter  

Isolation Medium Ingredients (μg/mL = mg/L = ppm) Reference 

3-P Medium Difco cornmeal agar 17 g (Eckert & Tsao 1960, 
Eckert & Tsao 1962a) 

 Pimaracin 100 ppm1  
 Penicillin 50 ppm  
 Polymyxin 50 ppm  P10VP Difco cornmeal agar 17 g (Tsao & Ocana 1969) 

 Pimaracin 10 ppm  
 Vancomycin 200 ppm  
 Pentachloronitrobenzene 100 ppm  Media utilizing Hymexazol Potato-dextrose agar (1 % agar)  (Masago et al. 1977) 

 Benomyl 10 ppm  
 Pentachloronitrobenzene 25 ppm  
 Nystatin 25 ppm  
 Ampicillin 500 ppm  
 Rifampicin 10 ppm  
 Hymexazol 25-50 ppm  
P10ARP Difco cornmeal agar 17 g (Kannwischer & Mitchell 

1978) 

 Pimaracin 10 ppm  
 Ampicillin 250 ppm  
 Rifampicin 10 ppm  
 Pentachloronitrobenzene 100 ppm  P5ARP Difco cornmeal agar 17 g (Jeffers & Martin 1986) 

 Pimaracin 5 ppm  
 Ampicillin 250 ppm  
 Rifampicin 10 ppm  
 Pentachloronitrobenzene 100 ppm  Media utilizing Benomyl Agar 20 g (Sneh & Katz 1988) 

 Benomyl 25 ppm  
 Pentachloronitrobenzene 30 ppm  
 Penicillin 60 ppm  
 Chloramphenicol 30 ppm  
 Polymyxin 50 ppm  
 Hymexazol 25 ppm  Media utilizing Benomyl Benomyl 10 ppm (George & Milholland 1986) 

 Pimaracin 10 ppm  
 Rifampicin 10 ppm  
 Hymexazol 50 ppm  Media utilizing Benomyl Benomyl 25 ppm (Papavizas et al. 1981) 

 Pimaracin 5 ppm  
 Vancomycin 200 ppm  
 Penicillin 100 ppm  
 Pentachloronitrobenzene 100 ppm  
 Hymexazol 20 ppm  
Media utilizing Benomyl Benomyl 15 ppm (Ponchet et al. 1972, Ricci 

1972) 

 Penicillin G 250 ppm  
 Polymyxin B 250 ppm  
 Pentachloronitrobenzene 100 ppm  Media utilizing Benomyl Benlate 20 ppm (Bisht & Nene 1988) 

 Hymexazol 20 ppm  
 Mycostatin 10 ppm  
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 Pentachloronitrobenzene 20 ppm  
 Pimaracin 5 ppm  
 Vancomycin 200 ppm  
 Rifampicin 10 ppm  
Media utilizing 
Cholaramphenicol (PBNC) A weak V8 juice 40 mL (Schmitthenner 1973) 

 CaCO3 0.6 g  
 Yeast extract 0.2 g  
 Sucrose 1 g  

 
Cholestrol N, N-dimethyl formadide  (0.01 g in2 
mL)  

 Agar 20 g  
 Benlate (50 % benomyl) 20 ppm  
 Pentachloronitrobenzene 27 ppm  
 Neomycin sulfate 100 ppm  
 Chloramphenicol 10 ppm  PCH KH2PO4 1.0 g (Shew & Benson 1982) 

 MgSO4.7H20 0.5 g  
 CaCl2.2H20 0.01 g  
 FeSO4.7H20 0.02 g  
 Thiamine HCl 0.001 g  
 KCl 0.5 g  
 Yeast extract 0.3 g  
 NaNO3 1.0 g  
 Agar 20 g  
 Dextrose 15 ppm  
 Pentachloronitrobenzene 35 ppm  
 Chloramphenicol (10 ppm in 2 mL of ethanol)  
 Hymexazol 50 ppm  
 Pimaracin 5 ppm  NARPH Cornmeal agar 17 g (Hüberli et al. 2000) 

 Nystatin 1 mL  
 Ampicillin 100 ppm  
 Rifampicin 10 ppm  
 Pentachloronitrobenzene 100 ppm  
 Hymexazol 50 ppm  Phytophthora Selective 
Medium (PSM) Agar 8 g (Burgess et al. 2008) 

 Carrot puree 20 mL  
 Potato puree 80 mL  
 Hymexazol 3.7 mL of stock solution in water  
 Pimaracin 400 µl  
 Penicillin 200 ppm  CMA-PARBH Difco cornmeal agar 17 g (Pérez-Sierra et al. 2010) 

 Pimaracin 5 ppm  
 Ampicillin 250 ppm  
 Rifampicin 10 ppm  
 Pentachloronitrobenzene 100 ppm  
 Benomyl 0.02 g    Hymexazol 0.069 g   
NARH Cornmeal agar 17 g Simamora et al. (2017) 
 Nystatin 1 mL  
 Ampicillin 100 ppm  
 Rifampicin 10 ppm  
 Hymexazol 50 ppm  
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Table S2.2 Number of isolates of each Phytophthora species recovered from each site using soil baiting and 
filtering.  No isolates were obtained using the apple baiting method 

Species Clade Soil baiting Filters 
1 2 3 4 5 1 2 3 4 5 

P. multivora 2   
 

1 40   
  

6 
  P. amnicola 6   

   
8 

    
15 

P. gregata  6   
   

  
    

1 
P. inundata 6   

   
30 

     P. 'oreophila' 6   
   

13 
    

6 
P. rosacearum 6   

 
1 

 
24 

  
1 

 
5 

P. thermophila 6   
   

16 
    

39 

 
    

   
  

     Total       2 40 91     7   66 
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Table S2.3 Proportion of total reads of each Phytophthora species detected 

Species Clade % reads 
P. multivora 2 66.73 
P. psuedocryptogea 8 12.69 
P. amnicola 6 3.38 
P. thermophila 6 2.95 
P. AUS 1D 1 2.57 
P. rosacearum 6 2.35 
P. nicotianeae 1 2.03 
P. 'oreophila' 6 1.43 
P. cinnamomi 7 1.37 
P. kwongonina 6 0.68 
P. ‘kelmania’ 8 0.66 
P. capensis 2 0.66 
P. arenaria complex 4 0.45 
P. constricta 9 0.44 
P. versiformis 11 0.44 
P. inundata 6 0.44 
P. melonis 7 0.21 
P. citrophthora 2 0.17 
P. gregata  6 0.11 
P. moyootj 6 0.08 
P. ‘acacia’ 2 0.05 
P. elongata 2 0.04 
P. frigida 2 0.03 
P. pachypleura 2 0.03 
P. palmivora 4 0.02 
P. AUS 2C 2 0.02 
P. capsici  2 0.02 
P. fluvialis 6 0.02 
P. litoralis 6 0.01 
P. cambivora 7 0.004 
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Table S2.4 Phytophthora species detected from each site from each substrate by metabarcoding. Rows that are 
shaded indicate species that were isolated using standard isolation techniques.  

Species Clade Soil Filters Field roots Glasshouse roots 
1 2 3 4 5 1 2 3 4 5 1 4 5 1 2 3 4 5 

P. nicotianeae 1             + +   + + + + + + + + + 
P. AUS1D 1 + + + 

 
+ + + 

  
  + + +   

  
+ + 

P. capensis 2   
   

    
 

+ 
 

    + 
 

+ + + 
  P. capsici  2   

   
    

 
+ 

 
    

  
  

   
+ 

P. elongata 2   
   

    
 

+ 
 

    + 
 

  
    P. frigida 2   

   
    

 
+ 

 
    

  
  

   
+ 

P. multivora 2 + + + + + + + + + + + + + + + + + + 
P. pachypleura 2   

   
    

 
+ 

 
    + 

 
  

    P. ‘acacia’ 2   
   

    
   

    + 
 

  + 
   P. citrophthora 2   

   
    

 
+ 

 
    + +   + + 

 
+ 

P. AUS2C 2   
   

    
   

    + 
 

  
    P. arenaria complex 4   

   
    

 
+ 

 
    + 

 
+ + + 

  P. palmivora 4   
   

    
 

+ 
 

    
  

  
    P. amnicola 6 +     +   + + + + + + + + + + + + + 

P. fluvialis 6   
   

    
   

    + 
 

  
    P. gregata  6   

   
    

   
+   + 

 
  

    P. inundata 6   +     +   + + + + + +     + + + + 
P. litoralis 6   

   
    

   
    + 

 
  

    P. moyootj 6   
   

    
   

+   + 
 

  
    P.’ oreophila’ 6 +   +     + + + + + + + + + + + + + 

P. rosacearum 6   +   +       +     + +     + +     
P. kwongonina 6 + 

   
  + + + + +   + +   + + + 

 P. thermophila 6 + +     + + + + + + + + + + + + + + 
P. cambivora 7   

   
    

 
+ 

 
    

  
  

    P. cinnamomi 7   
 

+ 
 

    + + 
 

  + + + + + + + + 
P. melonis 7   

 
+ 

 
    

   
    

  
  

    P. psuedocryptogea 8 + + + + + + + + + + + + + + + + + + 
P. ‘kelmania’ 8   

   
    

   
    + 

 
  

    P. constricta 9   
  

+     
 

+ +   + + +   + + 
 

+ 
P. versiformis 11 + 

 
+ 

 
    

 
+ 

 
    + 

 
  + 

   
      

  
    

  
        Total   8 6 7 5 5 7 10 21 8 10 11 25 11 9 16 14 10 13 
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Figure S2.1 Phylogenetic comparisons of MOTUs detected in the current study within Clades 1, 2, 4 and 11 and all 
closely related known Phytophthora species and taxa species based on ITS1 gene region. The darker the 
background colour, the more common the species. MOTUs were assigned to new phylotypes if they did not 
match any known Phytophthora species. The ITS1 gene region ranges in size from 150-250 bp and is highly 
variable. However, some species cannot be separated based on ITS1 alone. Such species relevant to this study 
are designated i to iv. 
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Figure S2.2 Phylogenetic comparisons of MOTUs from Clades 6-9 detected in the current study within Clades 1-5 
and all closely related known Phytophthora species and taxa species based on ITS1 gene region. The darker the 
background colour, the more common the species
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Supplementary material for Chapter 3 
 
 
Table S3.1. Location, including altitude, and host association of isolates considered in this study. Shaded rows represent isolates that were recovered in this study. The 
remaining isolates were included in the phylogenetic analysis.  

Isolate  Organism Location  Vegetation Date Latitude Longitude Altitude (m) 

QLD13E Phytophthora sp. Australia, QLDa, Koombooloomba Tropical rain forest 2013 17°49'52.00"S 145°35'43.01"E 735 

U40 P. cacuminis Australia, TASa, Mt Field NPb Eucalyptus coccifera 2016 42°40'49.00"S 146°35'26.09"E 735 

U41 P. cacuminis Australia, TAS, Mt Field NP Eucalyptus coccifera 2016 42°40'50.28"S 146°35'20.63"E 1434 

U11 P. oreophila Australia, NSWa, Merritts Creek Disturbed alpine herbfield 2016 36°27'28.80"S 148°18'10.80"E 1830 

VHS26182 Phytophthora sp. Australia, WA, Fitzgerald River NP Kwongan heathland 2006 33°53'11.09"N 119°53'06.88"E 44 

TAS34  P. cactorum Australia, TAS, Pine Lake Athrotaxis selaginoides 2013 41°44'34.60"S 146°42'32.34"E 1207 

U1 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 36°27'28.80"S 148°18'10.80"E 1830 

U2 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 36°27'28.80"S 148°18'10.80"E 1830 

U3 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 36°27'28.80"S 148°18'10.80"E 1830 

U4 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 36°26'02.90"S 148°19'46.83"E 1830 

U5 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 36°26'02.90"S 148°19'46.83"E 1830 

U6 P. cactorum Australia, NSW, Merritts Creek Disturbed alpine herbfield 2016 36°27'28.80"S 148°18'10.80"E 1830 

U7 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 36°26'02.90"S 148°19'46.83"E 1830 

U8 P. cactorum Australia, NSW, Charlottes Pass Eucalyptus niphophila 2016 36°26'02.90"S 148°19'46.83"E 1830 

W1846 P. cambivora Australia, NSW, Charlottes Pass Nematolepis ovatifolia 2014 36°26'02.90"S 148°19'46.83"E 1830 

TAS188 P. cinnamomi Australia, TAS, Condominium Creek Riparian rain forest 2013 42°57'35.26"S 146°21'41.21"E 350 

VHS16127 P. constricta Australia, WA, Fitzgerald River NP Kwongan heathland 2006 33°53'20.54"N 119°53'01.75"E 44 

VHS16130 P. constricta Australia, WA, Fitzgerald River NP Kwongan heathland 2006 33°53'20.54"N 119°53'01.75"E 44 

U21 P. cryptogea Australia, NSW, Mt Kosciuszko Walking track edge in alpine heath 2016 36°27'21.6"S 148°15'50.40"E 2228 

U22 P. cryptogea Australia, NSW, Mt Kosciuszko Walking track edge in alpine heath 2016 36°27'21.6"S 148°15'50.40"E 2228 

TAS126  P. elongata Australia, TAS, Mt Field NP Riparian rain forest 2013 42°40'54.12"S 146°38'49.2E 1029 

U34 P. fallax Australia, TAS, Hartz Mountain NP Melaleuca 2016 43°13'13.70"S 146°46'18.98"E 1254 

U35 P. fallax Australia, TAS, Hartz Mountain NP Alpine heath 2016 43°13'26.39"S 146°46'12.08"E 1254 

U36 P. fallax Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 43°13'13.70"S 146°46'18.98"E 1254 

U37 P. fallax Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 43°13'13.70"S 146°46'18.98"E 1254 

U14 P. gonapodyides Australia, NSW, Smiggins Hole Road edge in subalpine heath 2016 36°23'38.40"S 148°25'40.8"E 1660 

U15 P. gonapodyides Australia, NSW, Kosciuszko Road Disturbed alpine herbfield 2016 36°27'14.40"S 148°18'10.80"E 1870 
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Isolate  Organism Location  Vegetation Date Latitude Longitude Altitude (m) 

TAS206 P. gregata Australia, TAS, Pine Lake Moorland 2013 41°44'36.24"S 146°42'42.84"E 1200 

TAS207 P. gregata Australia, TAS, Pine Lake Moorland 2013 41°44'36.24"S 146°42'42.84"E 1200 

U9 P. gregata Australia, NSW, Pipers Gap Road edge in subalpine heath 2016 36°24'00.00"S 148°25'08.40"E 1740 

U10 P. gregata Australia, NSW, Pipers Gap Road edge in subalpine heath 2016 36°24'00.00"S 148°25'08.40"E 1740 

U12 P. gregata Australia, NSW, Perisher Disturbed subalpine wetland 2016 36°24'10.8"S 148°25'01.2"E 1730 

U13 P. gregata Australia, NSW, Perisher Disturbed subalpine wetland 2016 36°24'10.8"S 148°25'01.2"E 1730 

U18 P. gregata Australia, NSW, Pipers Gap Road edge in subalpine heath 2016 36°24'00.00"S 148°25'08.40"E 1740 

U32 P. gregata Australia, NSW, Perisher Disturbed subalpine wetland 2016 36°24'10.8"S 148°25'01.2"E 1730 

U38 P. gregata Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 43°13'26.39"S 146°46'12.08"E 1254 

U39 P. gregata Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 43°13'26.39"S 146°46'12.08"E 1254 

U42 P. gregata Australia, TAS, Hartz Mountain NP Melaleuca sp. 2016 43°13'13.70"S 146°46'18.98"E 1254 

TAS143  P. pseudocryptogea  Australia, TAS, Steppes Woodland 2013 42°07'43.32"S 146°58'17.76"E 797 

U20 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 36°19'22.80"S 148°28'40.80"E 1275 

U23 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 36°19'22.80"S 148°28'40.80"E 1275 

U24 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 36°19'22.80"S 148°28'40.80"E 1275 

U30 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 36°19'22.80"S 148°28'40.80"E 1275 

U31 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 36°19'22.80"S 148°28'40.80"E 1275 

U33 P. pseudocryptogea  Australia, NSW, Island Bend Highly modified montane forest 2016 36°19'22.80"S 148°28'40.80"E 1275 

CBS119107  P. captiosa New Zealand, Rotoehu Forest Eucalyptus saligna 1995 38°01'12.45"S 176°31'56.97"E 292 

NZFS310.35 P. captiosa New Zealand, Rotoehu Forest Eucalyptus saligna 1998 38°01'12.45"S 176°31'56.97"E 292 

MUCC761 P. gonapodyides Australia, VICa, Toolangi North Eucalyptus oblique forest 2008 37°32'19.30''S 145°31'12.88''E 741 

CBS127954 P. thermophila Australia, WA, Dwellingup Eucalyptus marginata 2004 32°44'09.61"S 116°03'09.34"E 237 

TP13.29 P. versiformis Australia, WA, Naturaliste Corymbia calophylla 2013 33°37'51.96"S 115°03'27.79"E 94 

CBS 142005 P. versiformis Australia, WA, Williams Corymbia calophylla 2013 33°02'00"S 116°53'00.00"E 289 

HAS2313 P. cooljarloo Australia, WA, Cooljarloo Swamp native vegetation 1996 30°42’27.28’’S 115°23’12.30”E 72 

VHS24266 P. pseudorosacearum Australia, WA, Albany Xanthorrhoea platyphylla 2010 35°01’44”S 117°54’49”E 103 

OSU55 P. rosacearum USA, Maryland Prunus armeniaca     

VHS29592 P. pseudorosacearum Australia, WA, Jarrahdale Persoonia longifolia 2013 32°19’21.37”S 116°01’30.48”E 142 

VHS23298 P. kwongonina Australia, WA, Bunbury Banksia grandis 2010 33°19’32.29”S 115°38’22.74”E 10 

TAS35 P. gonapodyides Australia, TAS, Houn River Native vegetation 2009 43°08’22.88”S 146°42’53.12E 134 

IMI389735 P. taxon walnut USA, California, Merced County Juglans hindsii 1988 37°12’03.52”N 120°42’43.21”S 30 

CBS124696 P. rosacearum USA, California      

P10725 P. fallax New Zealand Eucalyptus fastigata     
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Isolate  Organism Location  Vegetation Date Latitude Longitude Altitude (m) 

CBS139749 P. pseudocryptogea Australia, WA, Fitzgerald River NP Isopogon buxifolius 2006 33°53'20.54"N 119°53'01.75"E 44 

VHS5380 P. pseudocryptogea Australia, WA, Fitzgerald River NP Xanthorrhoea preissii 1992 33°53'20.54"N 119°53'01.75"E 44 

CBS125801 P. constricta Australia, WA, Fitzgerald River NP Kwongon heathland  2006 33°53'20.54"N 119°53'01.75"E 44 

CLJ0100 P. cooljarloo Australia, WA, Cooljarloo Hibbertia sp. 2008 30°42’27.28’’S 115°23’12.30”E 72 

NZFS310.25 P. captiosa New Zealand, Rotoehu Forest Eucalyptus saligna 1998 38°01'12.45"S 176°31'56.97"E 292 
a QLD = Queensland, TAS = Tasmania, VIC = Victoria, NSW = New South Wales   
b NP = National Park 
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Supplementary material for Chapter 4 
 

Table S4.1 Comparison of mean radial growth rates (mm day-1) of all 30 isolates from slowest to fastest. 
Isolates with different letters indicate significantly (p <0.05) different growth  

Isolate Mean   Rank 
MUCC815  1.46a 

 
1 

MP94-05 1.99b 
 

2 
MP126 2.01b 

 
3 

MP94-18 2.01b 
 

4 
MP114 2.06bc 

 
5 

MP94-15 2.09bc 
 

6 
MP133 2.09bc 

 
7 

MP62 2.09bcd 
 

8 
MP94-09 2.14bcd 

 
9 

MP94-27 2.15bcd 
 

10 
MP129 2.22bcde 

 
11 

MUCC817  2.23bcde 
 

12 
MP94-33 2.23bcde 

 
13 

MUCC813 2.25bcde 
 

14 
MUCC814 2.30cde 

 
15 

MP94-10 2.35def 
 

16 
MP94-49 2.39def 

 
17 

MP94-39 2.47ef 
 

18 
TAS188 2.60fg 

 
19 

MP94-12 2.64fg 
 

20 
MP94-20 2.77gh 

 
21 

MP88 2.79gh 
 

22 
MUCC818 2.82ghi 

 
23 

MP94-11 2.94hij 
 

24 
MUCC816 3.07ijk 

 
25 

MP94-48 3.16jkl 
 

26 
MP119 3.18jkl 

 
27 

MP80 3.30kl 
 

28 
MP84 3.37lm 

 
29 

MP89 3.64m 
 

30 
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Figure S4.1 Average growth rate (mm day-1) of 30 P. cinnamomi isolates on V8A across the temperature 
range from 4 - 37.5 °C. The isolates were divided into five profiles A, B, C, D and E (top to bottom) based on 
their differential growth rates. Profile A (MUCC813- MP80), profile B (MUCC816- MP89), profile C (MP114), 
profile D (MP94-05, MP94-27), and profile E (MUCC815)
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Figure S4.2 Comparison of mean number of intact and empty (indicative of zoospore release) sporangia 
(mm-2) between isolates recovered from plants grown in the glasshouse (orange) at ambient temperature 
and those recovered from plants grown in the growth chamber at 9 ˚C (blue) for three months. Bars = SE  
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Supplementary material for Chapter 5 
 

Table S5.1 Proportion of total reads of each Phytophthora species and other organisms detected  

Organisms Clade % reads 
Phytophthora versiformis 11 19.90 
Phytophthora AUS XA X 5.55 
Phytophthora AUS 1B 1 3.96 
Phytophthora EXP XB X 3.58 
Phytophthora AUS 1A 1 2.89 
Phytophthora AUS 1F 1 2.09 
Phytophthora elongata 2 1.92 
Pythium rostratum 

 
1.33 

Phytophthora AUS XB X 1.32 
Phytophthora AUS 8E 8 1.30 
Phytophthora iranica 1 1.22 
Phytophthora europea 7 1.22 
Unidentified oomycete 2 

 
1.20 

Phytophthora AUS 9B 9 1.19 
Pythium attrantheridium 

 
1.16 

Phytophthora AUS XD X 0.93 
Unidentified oomycete 1 

 
0.83 

Phytophthora arenaria 4 0.46 
Phytophthora AUS 1E 1 0.44 
Phytopythium citrinum 

 
0.23 

Pythium rostratifingens 
 

0.08 
Lagena sp. 

 
0.06 

Phytophthora pachypleura 2 0.04 
Phytophthora pseudocryptogea 8 0.02 
Pythium segnitium 

 
0.01 

Phytophthora AUS 1G 1 0.01 
Non-oomycete     48.28 



 127 

Table S5.2 Phytophthora species detected along an elevation gradient in Kosciuszko National Park. Shaded 
rows represent species isolated obtained by traditional (non-molecular) isolation methods. Only two 
Phytophthora species (P. elongata and P. pseudocryptogea) were detected with both high-throughput 
sequencing and traditional baiting. 

Species name Clade 
Phytophthora AUS 1A 1 
Phytophthora AUS 1B 1 
Phytophthora AUS 1F 1 
Phytophthora AUS 1G 1 
Phytophthora AUS 1E 1 
Phytophthora iranica 1 
Phytophthora cactorum 1 
Phytophthora elongata 2 
Phytophthora pachypleura 2 
Phytophthora multivora 2 
Phytophthora arenaria 4 
Phytophthora gregata 6 
Phytophthora thermophila 6 
Phytophthora chlamydospora 6 
Phytophthora europea 7 
Phytophthora AUS 8E 8 
Phytophthora pseudocryptogea 8 
Phytophthora AUS 9B 9 
Phytophthora fallax 9 
Phytophthora gondwanense 10 
Phytophthora versiformis 11 
Phytophthora AUS XA X 
Phytophthora AUS XB X 
Phytophthora AUS XD X 
Phytophthora EXP XB X 
Total 25 
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Table S5.3 Estimates, standard error, z value and probability (** P < 0.01; *** P < 0.001) for the models 
fitted for Phytophthora and vascular plant species richness in relation to disturbance (factor: roads or 
native vegetation) and elevation (m). 
 
  Estimate Std. Error z value P(>|z|) 

Phytophthora species    
(Intercept) 0.99 0.35 2.79 ** 
Elevation (m) 0.01 0.01 1.27 n.s. 
Disturbance (roads / native) 1.54 0.48 3.25 ** 
Interaction (elevation*disturbance) -0.04 0.01 -3.12 ** 
Vascular plant species     
(Intercept) 3.77 0.12 31.74 *** 
Elevation (m) -0.01 0 -1.86 n.s. 
Disturbance (roads / native) 0.61 0.17 3.59 *** 
Interaction (elevation*disturbance) -0.02 0.01 -4.29 *** 
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Figure S5.1 Phylogenetic comparisons of Phytophthora species detected in the current study (blue) with all 
closely related known Phytophthora species and taxa species based on ITS1 gene region. Code ‘MIK’ 
represents Phylotypes and codes ‘U’ and ‘IK’ represent isolations. Bayesian posterior probabilities are listed 
above the branches.  
  



 130 

References 

Aghighi S (2013) The etiology and epidemiology of European Blackberry (Rubus 
anglocandicans) decline in the South-West of Western Australia. PhD.Thesis. 
Murdoch University, Australia  

Aghighi S, Burgess T, Scott J, Calver M, Hardy GSJ (2016) Isolation and pathogenicity of 
Phytophthora species from declining Rubus anglocandicans. Plant Pathology 65: 
451-461. 

Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. 
Science 294: 321-326. 

Agrios G (2005) Plant Pathology. Elsevier academic press, San Diego, CA. 
Aguayo J, Elegbede F, Husson C, Saintonge FX, Marçais B (2014) Modeling climate 

impact on an emerging disease, the Phytophthora alni‐induced alder decline. 
Global Change Biology 20: 3209-3221. 

Alexander JM, Chalmandrier L, Lenoir J, Burgess TI, Essl F, Haider S, Kueffer C, 
McDougall K, Milbau A, Nuñez MA (2017) Lags in the response of mountain plant 
communities to climate change. Global Change Biology 24: 563–579. 

Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Arévalo J, 
Cavieres L, Dietz H, Jakobs G (2011) Assembly of nonnative floras along 
elevational gradients explained by directional ecological filtering. Proceedings of the 
National Academy of Sciences 108: 656-661. 

Alexander JM, Naylor B, Poll M, Edwards PJ, Dietz H (2009) Plant invasions along 
mountain roads: the altitudinal amplitude of alien Asteraceae forbs in their native 
and introduced ranges. Ecography 32: 334-344. 

Anonymous Commonwealth of Australia (1992) 'Endangered Species Protection Act.' 
(Commonwealth Government Printer: Canberra). 

Anonymous R Core Team: a language and environment for statistical computing, 2015 
Vienna (Austria): R Foundation for statistical computing(ed^eds). 

Aram K (2017) The Ecology of Phytophthora ramorum and Resident Phytophthora in 
California Streams. PhD thesis, Deparment of Plant Pathology, University of 
California, Davis, USA. 

Arentz F (2012) Variation in Phytophthora: a key to historical pathways? Proceedings of 
sixth IUFRO Meeting Working Party  7-02-09 "Phytophthora in Forests and Natural 
Ecosystems". Cardoba, Spain. pp. 91-94. 

Arentz F (2017) Phytophthora cinnamomi A1: An ancient resident of New Guinea and 
Australia of Gondwanan origin? Forest Pathology 47: doi e12342. 

Arentz F, Simpson J (1986) Distribution of Phytophthora cinnamomi in Papua New Guinea 
and notes on its origin. Transactions of the British Mycological Society 87: 289-295. 

Arévalo JR, Delgado JD, Otto R, Naranjo A, Salas M, Fernández-Palacios JM (2005) 
Distribution of alien vs. native plant species in roadside communities along an 
altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspectives in 
Plant Ecology, Evolution and Systematics 7: 185-202. 

Balci Y, Balci S, Eggers J, MacDonald W, Juzwik J, Long R, Gottschalk K (2007) 
Phytophthora spp. associated with forest soils in eastern and north-central US oak 
ecosystems. Plant Disease 91: 705-710. 



 131 

Balci Y, Halmschlager E (2003) Phytophthora species in oak ecosystems in Turkey and 
their association with declining oak trees. Plant Pathology 52: 694-702. 

Baldwin JM (1896) A new factor in evolution. The American Naturalist 30: 441-451. 
Barrows TT, Stone JO, Fifield LK, Cresswell RG (2001) Late Pleistocene glaciation of the 

Kosciuszko massif, snowy mountains, Australia. Quaternary Research 55: 179-189. 
Bashi E, Rotem J (1974) Adaptation of four pathogens to semi-arid habitats as conditioned 

by penetration rate and germinating spore survival. Phytopathology 64: 1035-1039. 
Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of 

alien plant species in the Swiss Alps. Perspectives in Plant Ecology, Evolution and 
Systematics 7: 173-183. 

Belhaj R, McComb J, Burgess T, Hardy GSJ (2018) Pathogenicity of 21 newly described 
Phytophthora species against seven Western Australian native plant species. Plant 
Pathology 67: 1140–1149  

Bergmark L, Poulsen PHB, Al-Soud WA, Norman A, Hansen LH, Sørensen SJ (2012) 
Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for 
detection of these genera in soil using 454 pyrosequencing. FEMS Microbiology 
Letters 333: 77-84. 

Bergot M, Cloppet E, Pérarnaud V, Déqué M, Marçais B, Desprez‐Loustau ML (2004) 
Simulation of potential range expansion of oak disease caused by Phytophthora 
cinnamomi under climate change. Global Change Biology 10: 1539-1552. 

Bertus A (1968) Phytophthora cinnamomi Rands on conifers in New South Wales. 
Agricultural Gazette New South Wales 79: 751-754. 

Bilodeau GJ, Koike ST, Uribe P, Martin FN (2012) Development of an assay for rapid 
detection and quantification of Verticillium dahliae in soil. Phytopathology 102: 331-
343. 

Bishop T, Daniel R, Guest D, Nelson M, Chang C (2016) A digital soil map of 
Phytophthora cinnamomi in the Gondwana Rainforests of eastern Australia. In:  
Digital soil assessment and beyond: (B Minasny, B Malone, A McBratney, eds): 65-
68. CRC Press, Sydney, Australia. 

Bisht V, Nene Y (1988) A selective medium for Phytophthora drechsleri f. sp. cajani 
causing pigeonpea blight. International Pigeonpea Newsletter 8: 12-13. 

Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JR, 
Richardson DM (2011) A proposed unified framework for biological invasions. 
Trends in Ecology & Evolution 26: 333-339. 

Blair JE, Coffey MD, Park S-Y, Geiser DM, Kang S (2008) A multi-locus phylogeny for 
Phytophthora utilizing markers derived from complete genome sequences. Fungal 
Genetics and Biology 45: 266-277. 

Blowes WM (1980) A comparison of the occurrence, sporulation and survival of 
Phytophthora cinnamoni rands in soils supporting native forest in south-eastern 
New South Wales and south-western Western Australia. PhD. Thesis. Australian 
National University, Australia  

Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Advances 
in Genetics 13: 115-155. 

Braiser C (1992) Evolutionary biology of Phytophthora. I. Genetic system, sexuality and 
the generation of variation. Annual Review of Phytopathology 30: 153-171. 



 132 

Brasier C (2008) The biosecurity threat to the UK and global environment from 
international trade in plants. Plant Pathology 57: 792-808. 

Brasier C, Hamm P, Hansen E (1993) Cultural characters, protein patterns and unusual 
mating behaviour of Phytophthora gonapodyides isolates from Britain and North 
America. Mycological Research 97: 1287-1298. 

Brasier C, Hansen E (1992) Evolutionary biology of Phytophthora Part II: Phylogeny, 
speciation, and population structure. Annual Review of Phytopathology 30: 173-
200. 

Brasier C, Webber J (2010) Plant pathology: sudden larch death. Nature 466: 824-825. 
Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. 

Environmental constraints including climate change. Annales des Sciences 
Forestieres 53: 347-358. 

Brasier CM, Cooke DE, Duncan JM, Hansen EM (2003) Multiple new phenotypic taxa from 
trees and riparian ecosystems in Phytophthora gonapodyides–P. megasperma ITS 
Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile. 
Mycological Research 107: 277-290. 

Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical 
assessment with special reference to the activity of Phytophthora cinnamomi. 
EPPO Bulletin 24: 221-232. 

Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern 
Wisconsin. Ecological monographs 27: 325-349. 

Broadbent P, Baker KF (1974) Behaviour of Phytophthora cinnamomi in soils suppressive 
and conducive to root rot. Australian Journal of Agricultural Research 25: 121-137. 

Brown CD, Vellend M (2014) Non-climatic constraints on upper elevational plant range 
expansion under climate change. Proceedings of the Royal Society of London B: 
Biological Sciences 281: 20141779. 

Brown M, Balmer J, Podger F (2002) Vegetation change over twenty years at Bathurst 
Harbour, Tasmania. Australian Journal of Botany 50: 499-510. 

Brundrett M, Bougher N, Dell B, Grove T (1996) Working with mycorrhizas in forestry and 
agriculture. Australian Centre for International Agricultural Research, Caberra. 

Burgess LW, Knight TE, Tesoriero L, Phan HT (2008) Diagnostic manual for plant 
diseases in Vietnam. ACIAR Monograph 129. In:   eds): 210. ACIAR, Canberra. 

Burgess T, McDougall K, Scott P, Hardy G, Garnas J (2018) Predictors of Phytophthora 
diversity and community composition in natural areas across diverse Australian 
ecoregions. Ecography doi: https://doi.org/10.1111/ecog.03904. 

Burgess TI, Scott JK, Mcdougall KL, Stukely MJ, Crane C, Dunstan WA, Brigg F, Andjic V, 
White D, Rudman T, Arentz F, Ota N, Hardy GESJ (2017a) Current and projected 
global distribution of Phytophthora cinnamomi, one of the world's worst plant 
pathogens. Global Change Biology 23: 1661-1674. 

Burgess TI, Webster JL, Ciampini JA, White D, Hardy GES, Stukely MJ (2009) Re-
evaluation of Phytophthora species isolated during 30 years of vegetation health 
surveys in Western Australia using molecular techniques. Plant Disease 93: 215-
223. 

Burgess TI, White D, McDougall KM, Garnas J, Dunstan WA, Català S, Carnegie AJ, 
Worboys S, Cahill D, Vettraino A-M, Stukely MJ, Liew EC, Paap T, Bose T, 

https://doi.org/10.1111/ecog.03904


 133 

Milgliorini D, Williams B, Brigg F, Crane C, Rudman T, Hardy GESJ (2017b) 
Distribution and diversity of Phytophthora across Australia. Pacific Conservation 
Biology 23: 150-162. 

Cahill D (1998) General biology and ecology of Phytophthora with special reference to 
Phytophthora cinnamomi. In. In:  Patch deaths in tropical Queensland forests: 
association and impact of Phytophthora cinnamomi and other soilborne 
pathogens.(Ed. PA Gadek) pp: eds): 21-26. Cooperative Research Centre and 
Management for Tropical Rainforest Ecology, Technical Report, Cairns. 

Cahill D, Bennett I, McComb J (1993) Mechanisms of resistance to Phytophthora 
cinnamomi in clonal, micropropagated Eucalyptus marginata. Plant Pathology 42: 
865-872. 

Cahill DM, Cope M, Hardham AR (1996) Thrust reversal by tubular mastigonemes: 
immunological evidence for a role of mastigonemes in forward motion of zoospores 
of Phytophthora cinnamomi. Protoplasma 194: 18-28. 

Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008a) Phytophthora 
cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards 
control. Australian Journal of Botany 56: 279-310. 

Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008b) Turner Review No. 
17. Phytophthora cinnamomi and Australia's biodiversity: impacts, predictions and 
progress towards control. Australian Journal of Botany 56: 279-310. 

Callaghan S, Guest D (2015) Globalisation, the founder effect, hybrid Phytophthora 
species and rapid evolution: new headaches for biosecurity. Australasian Plant 
Pathology 44: 255-262. 

Camac JS, Williams RJ, Wahren CH, Hoffmann AA, Vesk PA (2017) Climatic warming 
strengthens a positive feedback between alpine shrubs and fire. Global Change 
Biology 23: 3249-3258. 

Campbell W (1949) A method of isolating Phytophthora cinnamomi directly from soil. Plant 
Disease Reporter 33: 134-135. 

Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N (2017) Relic DNA is 
abundant in soil and obscures estimates of soil microbial diversity. Nature 
Microbiology 2: 16242. 

Català S, Berbegal M, Pérez‐Sierra A, Abad‐Campos P (2016) Metabarcoding and 
development of new real‐time specific assays reveal Phytophthora species 
diversity in holm oak forests in eastern Spain. Plant Pathology 66: 115-123. 

Català S, Pérez-Sierra A, Abad-Campos P (2015) The use of genus-specific amplicon 
pyrosequencing to assess Phytophthora species diversity using eDNA from soil and 
water in northern Spain. PloS one 10: e0119311. 

Chang T, Yang W, Wang W (1996) Use of random amplified polymorphic DNA markers for 
the detection of genetic variation in Phytophthora cinnamomi in Taiwan. Botanical 
Bulletin of Academia Sinica 37: 165-171. 

Chee K-H, Newhook F (1965a) Variability in Phytophthora cinnamomi Rands. New 
Zealand Journal of Agricultural Research 8: 96-103. 

Chee K-H, Newhook FJ (1965b) Improved methods for use in studies on Phytophtohora 
cinnamomi Rands and other Phytophthora species. New Zealand Journal of 
Agricultural Research 8: 88-95. 



 134 

Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species 
associated with high levels of climate warming. Science 333: 1024-1026. 

Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease 
management. Annual Review of Phytopathology 37: 399-426. 

Coince A, Caël O, Bach C, Lengellé J, Cruaud C, Gavory F, Morin E, Murat C, Marçais B, 
Buée M (2013) Below-ground fine-scale distribution and soil versus fine root 
detection of fungal and soil oomycete communities in a French beech forest. Fungal 
Ecology 6: 223-235. 

Colquhoun I, Hardy GSJ (2000) Managing the risks of Phytophthora root and collar rot 
during bauxite mining in the Eucalyptus marginata (Jarrah) forest of Western 
Australia. Plant Disease 84: 116-127. 

Cooke D, Drenth A, Duncan J, Wagels G, Brasier C (2000) A molecular phylogeny of 
Phytophthora and related oomycetes. Fungal Genetics and Biology 30: 17-32. 

Costin AB (1954) A study of the ecosystems of the Monaro region of New South Wales, 
with special reference to soil erosion. Government printer, Sydney, Australia. 

Costin AB, Gray M, Totterdell C, Wimbush D (2000) Kosciuszko alpine flora. CSIRO 
publishing, Collingwood. 

Crandall BS, Gravatt G (1967) The distribution of Phytophthora cinnamomi. Ceiba 13: 43-
53. 

Croeser L, Paap T, Calver M, Andrew M, Hardy GSJ, Burgess T (2018) Field survey, 
isolation, identification and pathogenicity of Phytophthora species associated with a 
Mediterranean‐type tree species. . Forest Pathology 
https://doi.org/10.1111/efp.12424. 

Crone M (2012) Persistence of Phytophthora cinnamomi in nature: Biotrophic growth and 
presence of stromata, oospores and chlamydospores in annual and herbaceous 
perennial plant species. PhD thesis. Murdoch University. 

Crone M, McComb J, O'Brien P, Hardy GSJ (2013a) Annual and herbaceous perennial 
native Australian plant species are symptomless hosts of Phytophthora cinnamomi 
in the Eucalyptus marginata (jarrah) forest of Western Australia. Plant Pathology 62: 
1057-1062. 

Crone M, McComb JA, O’Brien PA, Hardy GESJ (2013b) Survival of Phytophthora 
cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of 
symptomatic and asymptomatic annual and herbaceous perennial plant species. 
Fungal Biology 117: 112-123. 

Cunnington JH, Smith IW, de Alwis S, Jones RH, Irvine G (2010) First record of 
Phytophthora fallax in Australia. Australasian Plant Disease Notes 5: 96-97. 

Darmono T, Parke J (1990) Chlamydospores of Phytophthora cactorum: Their production, 
structure, and infectivity. Canadian Journal of Botany 68: 640-645. 

Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic 
plasticity than native species and, if so, is it adaptive? A meta‐analysis. Ecology 
Letters 14: 419-431. 

Davison E (1970) Phytophthora cinnamomi in South Australia. Australasian Plant Disease 
Recorder 22: 18. 

https://doi.org/10.1111/efp.12424


 135 

Davison E, Tay F (2005) How many soil samples are needed to show that Phytophthora is 
absent from sites in the south-west of Western Australia? Australasian Plant 
Pathology 34: 293-297. 

De Vienne D, Hood M, Giraud T (2009) Phylogenetic determinants of potential host shifts 
in fungal pathogens. Journal of Evolutionary Biology 22: 2532-2541. 

Delatour C (1986) Le problème de Phytophthora cinnamomi sur le chêne rouge (Quercus 
rubra) 1. EPPO Bulletin 16: 499-504. 

Delgado JD, Arroyo NL, Arévalo JR, Fernández-Palacios JM (2007) Edge effects of roads 
on temperature, light, canopy cover, and canopy height in laurel and pine forests 
(Tenerife, Canary Islands). Landscape and Urban planning 81: 328-340. 

Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A (2006) Interactive 
effects of drought and pathogens in forest trees. Annals of Forest Science 63: 597-
612. 

Desprez-Loustau M-L, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, Sache I, 
Rizzo DM (2007) The fungal dimension of biological invasions. Trends in Ecology & 
Evolution 22: 472-480. 

Diaz HF, Graham NE (1996) Recent changes in tropical freezing heights and the role of 
sea surface temperature. Nature 383: 152-155. 

Dick M (1990) Keys to Pythium. University of Reading Press, Reading, United Kingdom. 
Dick MA, Dobbie K, Cooke DE, Brasier CM (2006) Phytophthora captiosa sp. nov. and P. 

fallax sp. nov. causing crown dieback of Eucalyptus in New Zealand. Mycological 
Research 110: 393-404. 

Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in 
soil as shown by T‐RFLP analysis. New Phytologist 156: 527-535. 

Dingley JM (1969) Records of plant diseases in New Zealand. New Zealand DSIR Bulletin: 
298. 

Dobrowolski M, Shearer B, Colquhoun I, O’brien P, Hardy GES (2008) Selection for 
decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use 
of fungicide. Plant Pathology 57: 928-936. 

Dobrowolski M, Tommerup I, Shearer B, O'Brien P (2003) Three clonal lineages of 
Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopathology 
93: 695-704. 

Dobrowolski MP, Tommerup I, Blakeman HD, O'Brien PA (2002) Non-Mendelian 
inheritance revealed in a genetic analysis of sexual progeny of Phytophthora 
cinnamomi with microsatellite markers. Fungal Genetics and Biology 35: 197-212. 

Doherty M, Wright G, McDougall K (2015) The flora of Kosciuszko National Park, New 
South Wales: Summary and overview. Cunninghamia 15: 13-68. 

Dong D, Yan A, Liu H, Zhang X, Xu Y (2006) Removal of humic substances from soil DNA 
using aluminium sulfate. Journal of microbiological methods 66: 217-222. 

Drenth A, Wagels G, Smith B, Sendall B, O’Dwyer C, Irvine G, Irwin J (2006) Development 
of a DNA-based method for detection and identification of Phytophthora species. 
Australasian Plant Pathology 35: 147-159. 

Dudley SA, Schmitt J (1996) Testing the adaptive plasticity hypothesis: density-dependent 
selection on manipulated stem length in Impatiens capensis. The American 
Naturalist 147: 445-465. 



 136 

Duncan J (1976) The use of bait plants to detect Phytophthora fragariae in soil. 
Transactions of the British Mycological Society 66: 85-89. 

Dunstan WA, Howard K, Hardy GES, Burgess TI (2016) An overview of Australia’s 
Phytophthora species assemblage in natural ecosystems recovered from a survey 
in Victoria. IMA Fungus 7: 47–58  

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) 
Climate extremes: observations, modeling, and impacts. Science 289: 2068-2074. 

Eckert J, Tsao P (1960) A preliminary report on the use of pimaricin in the isolation of 
Phytophthora spp. from root tissues. Plant Disease Reporter 44: 660-661. 

Eckert J, Tsao P (1962a) A selective antibiotic medium for isolation of Phytophthora and 
Pythium from plant roots. Phytopathology 52: 771-777. 

Eckert J, Tsao P (1962b) A selective antibiotic medium for isolation of Phytophthora and 
Pythium from plant roots. Phytopathology 52. 

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. 
Bioinformatics 26: 2460-2461. 

Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-
generation sequencing reads. Bioinformatics 31: 3476-3482. 

Edmonds T, Lunt ID, Roshier DA, Louis J (2006) Annual variation in the distribution of 
summer snowdrifts in the Kosciuszko alpine area, Australia, and its effect on the 
composition and structure of alpine vegetation. Austral Ecology 31: 837-848. 

Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. fourth edn. APS Press, 
St. Paul, MN, USA. 

Fichtner E, Lynch S, Rizzo D (2007) Detection, distribution, sporulation, and survival of 
Phytophthora ramorum in a California redwood-tanoak forest soil. Phytopathology 
97: 1366-1375. 

Flier WG, Grünwald NJ, Kroon LP, Van Den Bosch TB, Garay-Serrano E, Lozoya-Saldaña 
H, Bonants PJ, Turkensteen LJ (2002) Phytophthora ipomoeae sp. nov., a new 
homothallic species causing leaf blight on Ipomoea longipedunculata in the Toluca 
Valley of central Mexico. Mycological Research 106: 848-856. 

Forero‐Medina G, Joppa L, Pimm SL (2011) Constraints to species’ elevational range 
shifts as climate changes. Conservation Biology 25: 163-171. 

Forman RT, Alexander LE (1998) Roads and their major ecological effects. Annual Review 
of Ecology and Systematics 29: 207-231. 

Fraser LR (1956) Phytophthora cinnamomi attacking native plants. Australian Plant 
Disease Recorder 8: 629-637. 

Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO 2, ozone, and 
global climate change. Agriculture, Ecosystems & Environment 97: 1-20. 

Garbelotto M, Rocca GD, Osmundson T, di Lonardo V, Danti R (2015) An increase in 
transmission‐related traits and in phenotypic plasticity is documented during a 
fungal invasion. Ecosphere 6: 1-16. 

García-Pedrajas M, Bainbridge B, Heale J, Pérez-Artés E, Jiménez-Díaz R (1999) A 
simple PCR-based method for the detection of the chickpea-wilt pathogen Fusarium 
oxysporum f. sp. ciceris in artificial and natural soils. European Journal of Plant 
Pathology 105: 251-259. 



 137 

Garkaklis M, Calver M, Wilson B, Hardy G (2004) Habitat alteration caused by an 
introduced plant disease, Phytophthora cinnamomi: a potential threat to the 
conservation of Australian forest fauna. In:  Conservation of Australia's Forest 
Fauna: (D Lunney, eds): 899-913. Royal Zoological Society of New South Wales, 
Mossman, N.S.W. 

Garrett KA, Nita M, De Wolf E, Gomez L, Sparks AH (2009) Plant pathogens as indicators 
of climate change. In:  Climate change: observed impacts on planet earth: (T 
Letcher, eds): 425-437. Dordercht: Elsevier. 

George S, Milholland R (1986) Growth of Phytophthora fragariae on various clarified 
natural media and selected antibiotics. Plant disease 70: 1100-1104. 

Gerhardt F, Collinge SK (2007) Abiotic constraints eclipse biotic resistance in determining 
invasibility along experimental vernal pool gradients. Ecological Applications 17: 
922-933. 

Gevens A, Donahoo R, Lamour K, Hausbeck M (2007) Characterization of Phytophthora 
capsici from Michigan surface irrigation water. Phytopathology 97: 421-428. 

Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes 
higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative 
Biology 46: 5-17. 

Ghimire S, Richardson P, Moorman G, Lea‐Cox J, Ross D, Hong C (2009) An in‐situ 
baiting bioassay for detecting Phytophthora species in irrigation runoff containment 
basins. Plant pathology 58: 577-583. 

Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and 
aspirations. BMC biology 12: 69. 

Good R, Grenier P (1994) Some environmental impacts of recreation in the Australian 
Alps. Australian Parks & Recreation 30: 20-26. 

Graham NE (1995) Simulation of recent global temperature trends. Science 267: 666-671. 
Grant B, Byrt P (1984) Root temperature effects on the growth of Phytophthora cinnamomi 

in the roots of Eucalyptus marginata and E. calophylla. Phytopathology 74: 179-
184. 

Green K (2016) Dieback of Nematolepis ovatifolia (Rutaceae), an endemic shrub in the 
alpine- subalpine heaths of the Snowy Mountains, is facilitated by climate change. 
Cunninghamia 16: 1-9. 

Greenhalgh F (1978) Evaluation of techniques for quantitative detection of Phytophthora 
cinnamomi. Soil Biology and Biochemistry 10: 257-259. 

Grove GG, Boal RJ (1991) Influence of temperature and wetness duration on infection of 
immature apple and pear fruit by Phytophthora cactorum. Phytopathology 81: 1465-
1471. 

Grünwald NJ, Martin FN, Larsen MM, Sullivan CM, Press CM, Coffey MD, Hansen EM, 
Parke JL (2011) Phytophthora-ID. org: a sequence-based Phytophthora 
identification tool. Plant Disease 95: 337-342. 

Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, 
and lichens along an altitudinal gradient in western Norway. Acta Oecologica 29: 
241-246. 



 138 

Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null 
models and interpolated plant species richness along the Himalayan altitudinal 
gradient, Nepal. The American Naturalist 159: 294-304. 

Guest D (2007) Black pod: diverse pathogens with a global impact on cocoa yield. 
Phytopathology 97: 1650-1653. 

Halsall D, Williams J (1984) Effect of root temperature on the development of 
Phytophthora cinnamomi root rot in Eucalyptus seedlings. Australian Journal of 
Botany 32: 521-528. 

Hamann A, Wang T (2006) Potential effects of climate change on ecosystem and tree 
species distribution in British Columbia. Ecology 87: 2773-2786. 

Hannukkala AO (2011) Examples of alien pathogens in Finnish potato production-their 
introduction, establishment and consequences. Agricultural and Food Science 20: 
42-61. 

Hansen EM, Goheen DJ, Jules ES, Ullian B (2000) Managing Port-Orford-cedar and the 
introduced pathogen Phytophthora lateralis. Plant Disease 84: 4-14. 

Hansen EM, Reeser PW, Sutton W (2012) Phytophthora beyond agriculture. Annual 
Review of Phytopathology 50: 359-378. 

Hansen MJ, Clevenger AP (2005) The influence of disturbance and habitat on the 
presence of non-native plant species along transport corridors. Biological 
Conservation 125: 249-259. 

Hardham AR (2005) Phytophthora cinnamomi. Molecular Plant Pathology 6: 589-604. 
Hardham AR, Blackman LM (2018) Phytophthora cinnamomi. Molecular Plant Pathology 

19: 260-285. 
Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) 

Climate warming and disease risks for terrestrial and marine biota. Science 296: 
2158-2162. 

Hawkins BA (2004) Are we making progress toward understanding the global diversity 
gradient? Basic and Applied Ecology 5: 1-3. 

Hemmes DE, Wong LD (1975) Ultrastructure of chlamydospores of Phytophthora 
cinnamomi during development and germination. Canadian Journal of Botany 53: 
2945-2957. 

Hendrix FF, Kuhlman EG (1965) Factors affecting direct recovery of Phytophthora 
cinnamomi from soil. Phytopathology 55: 1183. 

Henricot B, Perez Sierra A, Jung T (2014) Phytophthora pachypleura sp. nov., a new 
species causing root rot of Aucuba japonica and other ornamentals in the United 
Kingdom. Plant Pathology 63: 1095-1109. 

Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of 
taxonomic groups are expanding polewards. Global Change Biology 12: 450-455. 

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution 
interpolated climate surfaces for global land areas. International Journal of 
Climatology 25: 1965-1978. 

Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D (2004) Tree diseases and 
landscape processes: the challenge of landscape pathology. Trends in Ecology & 
Evolution 19: 446-452. 



 139 

Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and 
epigenetic inheritance in plants. Trends in Ecology & Evolution 27: 618-626. 

Hong C, Richardson PA, Kong P (2002) Comparison of membrane filters as a tool for 
isolating Pythiaceous species from irrigation water. Phytopathology 92: 610-616. 

Huai W-x, Tian G, Hansen E, Zhao W-x, Goheen E, Grünwald N, Cheng C (2013) 
Identification of Phytophthora species baited and isolated from forest soil and 
streams in northwestern Yunnan province, China. Forest Pathology 43: 87-103. 

Hüberli D (2001) Phenotypic variation of two localised populations of Phytophthora 
cinnamomi from Western Australia and how they imact on Eucalyptus maginata 
resistance. PhD thesis. Murdoch University. 

Hüberli D, Hardy GSJ, White D, Williams N, Burgess TI (2013) Fishing for Phytophthora 
from Western Australia’s waterways: a distribution and diversity survey. 
Australasian Plant Pathology 42: 251-260. 

Hüberli D, Tommerup I, Colquhoun I, Hardy GSJ (2002a) Evaluation of resistance to 
Phytophthora cinnamomi in seed‐grown trees and clonal lines of Eucalyptus 
marginata inoculated in lateral branches and roots. Plant Pathology 51: 435-442. 

Hüberli D, Tommerup I, Hardy GSJ (2000) False-negative isolations or absence of lesions 
may cause mis-diagnosis of diseased plants infected with Phytophthora cinnamomi. 
Australasian Plant Pathology 29: 164-169. 

Hüberli D, Tommerup IC, Colver MC, ColquhounC IJ, Hardy GESJ (2002b) Temperature 
and inoculation method influence disease phenotypes and mortality of Eucalyptus 
marginata clonal lines inoculated with Phytophthora cinnamomi. Australasian Plant 
Pathology 31: 107-118. 

Hüberli D, Tommerup IC, Dobrowolski MP, Calver MC, Hardy GE (2001) Phenotypic 
variation in a clonal lineage of two Phytophthora cinnamomi populations from 
Western Australia. Mycological Research 105: 1053-1064. 

Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJÁ, Garland T (2009) 
Why tropical forest lizards are vulnerable to climate warming. Proceedings of the 
Royal Society of London B: Biological Sciences 276: 1939-1948. 

Hwang J, Oak SW, Jeffers SN (2008) Detecting Phytophthora ramorum and other species 
of Phytophthora in streams in natural ecosystems using baiting and filtration 
methods: 2008. In: Proceedings of the Sudden Oak Death Third Science 
Symposium.Santa Rosa, CA. pp. 55-58. 

Ireland KB, Hardy GESJ, Kriticos DJ (2013) Combining inferential and deductive 
approaches to estimate the potential geographical range of the invasive plant 
pathogen, Phytophthora ramorum. PloS one 8: e63508. 

Irwin JA, Cahill DM, Drenth A (1995) Phytophthora in Australia. Australian Journal of 
Agricultural Research 46: 1311-1337. 

Janzen DH (1967) Why mountain passes are higher in the tropics. The American 
Naturalist 101: 233-249. 

Jayasekera AU, McComb JA, Shearer BL, Hardy GESJ (2007) In planta selfing and 
oospore production of Phytophthora cinnamomi in the presence of Acacia pulchella. 
Mycological Research 111: 355-362. 

Jeffers S, Aldwinckle H (1987) Enhancing detection of Phytophthora cactorum in naturally 
infested soil. Phytopathology 77: 1475-1482. 



 140 

Jeffers S, Martin S (1986) Comparison of two media selective for Phytophthora and 
Pythium species. Plant disease 70: 1038-1043. 

Jeger MJ, Pautasso M (2008) Plant disease and global change–the importance of long‐
term data sets. New Phytologist 177: 8-11. 

Jenkins D, Morris B (2003) Echinococcus granulosus in wildlife in and around the 
Kosciuszko National Park, south‐eastern Australia. Australian veterinary Journal 
81: 81-85. 

Jenkins P (1968) The root of trouble with rhododendrons and azaleas. Journal Department 
of Agriculture 66: 48-49. 

John F, Sanford W (2011) An R companion to applied regression(ed^eds), Thousand 
Oaks, Sage CA. 

Johnston FM, Johnston SW (2004) Impacts of road disturbance on soil properties and on 
exotic plant occurrence in subalpine areas of the Australian Alps. Arctic, Antarctic, 
and Alpine Research 36: 201-207. 

Jules ES, Kauffman MJ, Ritts WD, Carroll AL (2002) Spread of an invasive pathogen over 
a variable landscape: a nonnative root rot on Port Orford cedar. Ecology 83: 3167-
3181. 

Jung T, Blaschke H, Neumann P (1996) Isolation, identification and pathogenicity of 
Phytophthora species from declining oak stands. Forest Pathology 26: 253-272. 

Jung T, Blaschke H, Oßwald W (2000) Involvement of soilborne Phytophthora species in 
Central European oak decline and the effect of site factors on the disease. Plant 
Pathology 49: 706-718. 

Jung T, Blaschke M (2004) Phytophthora root and collar rot of alders in Bavaria: 
distribution, modes of spread and possible management strategies. Plant Pathology 
53: 197-208. 

Jung T, Colquhoun I, Hardy GSJ (2013) New insights into the survival strategy of the 
invasive soilborne pathogen Phytophthora cinnamomi in different natural 
ecosystems in Western Australia. Forest Pathology 43: 266-288. 

Jung T, Cooke D, Blaschke H, Duncan J, Oßwald W (1999) Phytophthora quercina sp. 
nov., causing root rot of European oaks. Mycological Research 103: 785-798. 

Jung T, Orlikowski L, Henricot B, Abad‐Campos P, Aday A, Aguín Casal O, Bakonyi J, 
Cacciola S, Cech T, Chavarriaga D (2016) Widespread Phytophthora infestations in 
European nurseries put forest, semi‐natural and horticultural ecosystems at high 
risk of Phytophthora diseases. Forest Pathology 46: 134-163. 

Jung T, Pérez-Sierra A, Durán A, Jung MH, Balci Y, Scanu B (2018) Canker and decline 
diseases caused by soil-and airborne Phytophthora species in forests and 
woodlands. Persoonia 40: 182-220. 

Jung T, Stukely M, Hardy GSJ, White D, Paap T, Dunstan W, Burgess T (2011) Multiple 
new Phytophthora species from ITS Clade 6 associated with natural ecosystems in 
Australia: evolutionary and ecological implications. Persoonia 26: 13-39. 

Kannwischer M, Mitchell D (1978) The influence of a fungicide on the epidemiology of 
black shank of tobacco Phytopathology 68: 1760-1765. 

Kasuga T, Bui M, Bernhardt E, Swiecki T, Aram K, Cano LM, Webber J, Brasier C, Press 
C, Grünwald NJ (2016) Host-induced aneuploidy and phenotypic diversification in 
the sudden oak death pathogen Phytophthora ramorum. BMC genomics 17: 385. 



 141 

Kasuga T, Kozanitas M, Bui M, Hüberli D, Rizzo DM, Garbelotto M (2012) Phenotypic 
diversification is associated with host-induced transposon derepression in the 
sudden oak death pathogen Phytophthora ramorum. PLoS One 7: e34728. 

Kessler M, Kluge J, Hemp A, Ohlemüller R (2011) A global comparative analysis of 
elevational species richness patterns of ferns. Global Ecology and Biogeography 
20: 868-880. 

Khaliq I, Hardy GESJ, McDougall KL, Burgess TI (2018a) Phytophthora species isolated 
from alpine and sub-alpine regions of Australia, including the description of two new 
species; Phytophthora cacuminis sp. nov and Phytophthora oreophila sp. nov. 
Fungal Biology https://doi.org/10.1016/j.funbio.2018.10.006. 

Khaliq I, Hardy GESJ, White D, Burgess TI (2018b) eDNA from roots: a robust tool for 
determining Phytophthora communities in natural ecosystems. FEMS Microbiology 
Ecology 94: fiy048. 

Kliejunas JT, Nagata J (1979) Phytophthora cinnamomi in Hawaiian forest soils: Seasonal 
variations in population levels. Phytopathology 69: 1268-1272. 

Klotz L, DeWolfe T (1958) Techniques for isolating Phytophthora spp. which attack citrus. 
Plant Disease Reporter 42: 675-676. 

Klotz L, Wong P-P, DeWolfe T (1959) Survey of irrigation water for the presence of 
Phytophthora spp. pathogenic to citrus. Plant Disease Reporter 43: 830-832. 

Kluge J, Kessler M, Dunn RR (2006) What drives elevational patterns of diversity? A test 
of geometric constraints, climate and species pool effects for pteridophytes on an 
elevational gradient in Costa Rica. Global Ecology and Biogeography 15: 358-371. 

Kong P, Lee BW, Zhou ZS, Hong C (2010) Zoosporic plant pathogens produce bacterial 
autoinducer-2 that affects Vibrio harveyi quorum sensing. FEMS Microbiology 
Letters 303: 55-60. 

Korner C (2002) Mountain biodiversity, its causes and function: an overview. In:  Mountain 
Biodiversity – A Global Assessment: (C Körner, EM Spehn, eds): 3-20. Parthenon, 
New York. 

Körner C (1995) Alpine plant diversity: a global survey and functional interpretations. In:  
Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences: 
eds): 45-62. Springer-Verlag. 

Körner C (2003) Alpine plant life (2nd edition). Springer Berlin  
Körner C (2004) Mountain biodiversity, its causes and function. Ambio 13: 11-17. 

Körner C, Paulsen J (2004) A world‐wide study of high altitude treeline temperatures. 
Journal of Biogeography 31: 713-732. 

Körner C, Paulsen J, Spehn EM (2011) A definition of mountains and their bioclimatic belts 
for global comparisons of biodiversity data. Alpine Botany 121: 73-78. 

Kraft NJ, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community 
assembly, coexistence and the environmental filtering metaphor. Functional 
Ecology 29: 592-599. 

Krings M, Taylor TN, Dotzler N (2011) The fossil record of the Peronosporomycetes 
(Oomycota). Mycologia 103: 445-457. 

Kroon L, Bakker F, Van Den Bosch G, Bonants P, Flier W (2004) Phylogenetic analysis of 
Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal 
Genetics and Biology 41: 766-782. 

https://doi.org/10.1016/j.funbio.2018.10.006


 142 

Laine AL (2008) Temperature‐mediated patterns of local adaptation in a natural plant–
pathogen metapopulation. Ecology Letters 11: 327-337. 

Lamarck J-B (1809) Philosophie Zoologique ou Exposition des Considérations Relatives à 
L'histoire Naturelle des Animaux. Engelmann, Weinheim. 

Landeweert R, Leeflang P, Smit E, Kuyper T (2005) Diversity of an ectomycorrhizal fungal 
community studied by a root tip and total soil DNA approach. Mycorrhiza 15: 1-6. 

Lannou C (2012) Variation and selection of quantitative traits in plant pathogens. Annual 
Review of Phytopathology 50. 

Lear G, Dickie I, Banks J, Boyer S, Buckley HL, Buckley TR, Cruickshank R, Dopheide A, 
Handley KM, Hermans S (2018) Methods for the extraction, storage, amplification 
and sequencing of DNA from environmental samples. New Zealand Journal of 
Ecology 42: 10-50A. 

Leonian LH (1925) Physiological studies on the genus Phytophthora. American Journal of 
Botany 12: 444-498. 

Li L, Al-Soud WA, Bergmark L, Riber L, Hansen LH, Magid J, Sørensen SJ (2013) 
Investigating the diversity of Pseudomonas spp. in soil using culture dependent and 
independent techniques. Current Microbiology 67: 423-430. 

Liu F, Li B, Lian S, Dong X-l, Wang C-x, Zhang Z-f, Liang W (2018) Effects of temperature 
and moisture on the infection and development of apple fruit rot caused by 
Phytophthora cactorum. Plant Disease 102: 1811-1819. 

Lonsdale D, Gibbs J (1996) Effects of climate change on fungal diseases of trees. In:  
Broadmeadow MSJ, ed. Climate Change:Impacts on UK Forests. Forestry 
Commission: eds): 1-19. Cambridge University Press, Edinburgh, UK  

Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world's worst invasive 
alien species: a selection from the global invasive species database. The Invasive 
Species Specialist Group Auckland, New Zeeland. 

MacDonald J, Ali-Shtayeh M, Kabashima J, Stites J (1994) Occurrence of Phytophthora 
species in recirculated nursery irrigation effluents. Plant Disease 78: 607-611. 

Mallen-Cooper J (1990) Introduced plants in the high altitude environments of Kosciusko 
National Park, South-Eastern Australia. PhD thesis. Australian National University. 

Marçais B, Dupuis F, Desprez-Loustau M (1996) Modelling the influence of winter frosts on 
the development of the stem canker of red oak, caused by Phytophthora 
cinnamomi. Annales des Sciences Forestières 53: 369-382. 

Marçais B, Dupuis F, Desprez‐Loustau M (1993) Influence of water stress on 
susceptibility of red oak (Quercus rubra) to Phytophthora cinnamomi. Forest 
Pathology 23: 295-305. 

Margosian ML, Garrett KA, Hutchinson JS, With KA (2009) Connectivity of the American 
agricultural landscape: assessing the national risk of crop pest and disease spread. 
BioScience 59: 141-151. 

Mariette N, Androdias A, Mabon R, Corbiere R, Marquer B, Montarry J, Andrivon D (2016) 
Local adaptation to temperature in populations and clonal lineages of the Irish 
potato famine pathogen Phytophthora infestans. Ecology and Evolution 6: 6320-
6331. 



 143 

Marini L, Gaston KJ, Prosser F, Hulme PE (2009) Contrasting response of native and alien 
plant species richness to environmental energy and human impact along alpine 
elevation gradients. Global Ecology and Biogeography 18: 652-661. 

Marks G, Smith I (1981) Factors influencing suppression of root rot of Eucalyptus sieberi 
and E. obliqua caused by Phytophthora cinnamomi. Australian Journal of Botany 
29: 483-495. 

Martin FN, Abad ZG, Balci Y, Ivors K (2012) Identification and detection of Phytophthora: 
reviewing our progress, identifying our needs. Plant Disease 96: 1080-1103. 

Martin FN, Blair JE, Coffey MD (2014) A combined mitochondrial and nuclear multilocus 
phylogeny of the genus Phytophthora. Fungal Genetics and Biology 66: 19-32. 

Martin FN, Tooley PW (2003) Phylogenetic relationships among Phytophthora species 
inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I 
and II genes. Mycologia 95: 269-284. 

Masago H, Yoshikawa M, Fukada M, Nakanishi N (1977) Selective inhibition of Pythium 
spp. on a medium for direct isolation of Phytophthora spp. from soils and plants. 
Phytopathology 67: 425-428. 

McCarren K, McComb J, Shearer B, Hardy GSJ (2005) The role of chlamydospores of 
Phytophthora cinnamomi—a review. Australasian Plant Pathology 34: 333-338. 

McConnell M, Balci Y (2015) Fine root dynamics of oak saplings in response to 
Phytophthora cinnamomi infection under different temperatures and durations. 
Forest Pathology 45: 155-164. 

McCredie T, Dixon KW, Sivasithamparam K (1985) Variability in the resistance of Banksia 
Lf species to Phytophthora cinnamomi Rands. Australian Journal of Botany 33: 629-
637. 

McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and 
durable resistance. Annual Review of Phytopathology 40: 349-379. 

McDougall K, Hardy GSJ, Hobbs RJ (2002) Distribution of Phytophthora cinnamomi in the 
northern jarrah (Eucalyptus marginata) forest of Western Australia in relation to 
dieback age and topography. Australian Journal of Botany 50: 107-114. 

McDougall K, Summerell B, Coburn D, Newton M (2003) Phytophthora cinnamomi causing 
disease in subalpine vegetation in New South Wales. Australasian Plant Pathology 
32: 113-115. 

McDougall KL, Lembrechts J, Rew LJ, Haider S, Cavieres LA, Kueffer C, Milbau A, Naylor 
BJ, Nuñez MA, Pauchard A (2018) Running off the road: roadside non-native plants 
invading mountain vegetation. Biological Invasions: 1-13 
https://doi.org/10.1007/s10530-10018-11787-z. 

McIntosh D (1966) The occurrence of Phytophthora spp. in irrigation systems in British 
Columbia. Canadian Journal of Botany 44: 1591-1596. 

Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, ALM‐KÜBLER K, Bissolli P, 
Braslavská Og, Briede A (2006) European phenological response to climate change 
matches the warming pattern. Global Change Biology 12: 1969-1976. 

Messenger B, Menge J, Pond E (2000) Effects of gypsum on zoospores and sporangia of 
Phytophthora cinnamomi in field soil. Plant disease 84: 617-621. 

Messerli B, Viviroli D, Weingartner R (2004) Mountains of the world: vulnerable water 
towers for the 21st century. Ambio: 29-34. 

https://doi.org/10.1007/s10530-10018-11787-z


 144 

Meyer E, Thaler K (1995) Animal diversity at high altitudes in the Austrian Central Alps. In:  
Arctic and alpine biodiversity: patterns, causes and ecosystem consequences: (F 
Stuart, I Chapin, C Korner, eds): 97-108. Springer, Verlag, Berlin. 

Mills H (1999) Conservation ecology of a sub-alpine woodland: the influence of fire, 
disease and weed invasion. Honours thesis, University of New South Wales, 
Sydney, Australia. 

Mircetich SM (1970) Inhibition of germination of chlamydospores of Phytophthora 
cinnamomi by some antimicrobial agents in Phytophthora selective media. 
Canadian Journal of Microbiology 16: 1227-1230. 

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity 
hotspots for conservation priorities. Nature 403: 853–858. 

Nakayama J, Jiang J, Watanabe K, Chen K, Ninxin H, Matsuda K, Kurakawa T, Tsuji H, 
Sonomoto K, Lee Y-K (2013) Up to species-level community analysis of human gut 
microbiota by 16S rRNA amplicon pyrosequencing. Bioscience of Microbiota, Food 
and Health 32: 69-76. 

Nechwatal J, Bakonyi J, Cacciola S, Cooke D, Jung T, Nagy Z, Vannini A, Vettraino A, 
Brasier C (2013) The morphology, behaviour and molecular phylogeny of 
Phytophthora taxon Salixsoil and its redesignation as Phytophthora lacustris sp. 
nov. Plant Pathology 62: 355-369. 

Nesbitt H, Malajczuk N, Glenn A (1979) Effect of soil moisture and temperature on the 
survival of Phytophthora cinnamomi Rands in soil. Soil Biology and Biochemistry 
11: 137-140. 

Newby ZJ (2014) Quantification of the risk of Phytophthora dieback in the Greater Blue 
Mountains World Heritage Area. PhD dissertation, Faculty of Agriculture and 
Environment, University of Sydney, Australia. 

Newhook F (1959) The association of Phytophthora spp. with mortality of Pinus radiata 
and other conifers: I. Symptoms and epidemiology in shelterbelts. New Zealand 
Journal of Agricultural Research 2: 808-843. 

Newhook F, Podger F (1972) The role of Phytophthora cinnamomi in Australian and New 
Zealand forests. Annual Review of Phytopathology 10: 299-326. 

Newsome D, Moore SA, Dowling RK (2012) Natural area tourism: Ecology, impacts and 
management. Channel view publications, Sydney. 

Nienhaus F (1960) Das Wirtsspektrum von Phytophthora cactorum (Leb. et Cohn) 
Schroet. Journal of Phytopathology 38: 33-68. 

Nocker A, Cheung C-Y, Camper AK (2006) Comparison of propidium monoazide with 
ethidium monoazide for differentiation of live vs. dead bacteria by selective removal 
of DNA from dead cells. Journal of Microbiological Methods 67: 310-320. 

Nogués-Bravo D, Araújo M, Romdal T, Rahbek C (2008) Scale effects and human impact 
on the elevational species richness gradients. Nature 453: 216. 

NPWS (1997) Repairing the Roof of Australia: Report on the Commonwealth National 
Ecotourism Program. New South Wales National Parks and Wildlife Service, 
Jindabyne. 

 
O’Brien PA, Williams N, Hardy GES (2009) Detecting Phytophthora. Critical Reviews in 

Microbiology 35: 169-181. 



 145 

Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA 
from sediments. Journal of microbiological methods 7: 57-66. 

Oh E, Gryzenhout M, Wingfield BD, Wingfield MJ, Burgess TI (2013) Surveys of soil and 
water reveal a goldmine of Phytophthora diversity in South African natural 
ecosystems. IMA fungus 4: 123-131. 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O'Hara 
R, Simpson G, Solymos P, Stevens M, Szoecs E, Wagner H (2017) Vegan: 
Community Ecology Package. R package version 2.4-2.  https://cran.r-
project.org/package=vegan(ed%5Eeds). 

Okubara PA, Schroeder KL, Li C, Schumacher RT, Lawrence NP (2007) Improved 
extraction of Rhizoctonia and Pythium DNA from wheat roots and soil samples 
using pressure cycling technology. Can. J. Plant Pathol 29: 304-310. 

Olson Å, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canbäck B, Coutinho PM, 
Cullen D, Dalman K (2012) Insight into trade‐off between wood decay and 
parasitism from the genome of a fungal forest pathogen. New Phytologist 194: 
1001-1013. 

Oudemans PV (1999) Phytophthora species associated with cranberry root rot and surface 
irrigation water in New Jersey. Plant Disease 83: 251-258. 

Oxenham B, Winks BL (1963) Phytophthora root rot of Pinus in Queensland. Queensland 
Journal of Agricultural Science 20: 355-366. 

Papavizas G, Bowers J, Johnston S (1981) Selective isolation of Phytophthora capsici 
from soils. Phytopathology 71: 129-133. 

Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant 
invasion along roads and streams in the HJ Andrews Experimental Forest, Oregon. 
Conservation Biology 14: 64-75. 

Parker WC, Colombo SJ, Cherry ML, Greifenhagen S, Papadopol C, Flannigan MD, 
McAlpine RS, Scarr T (2000) Third millennium forestry: what climate change might 
mean to forests and forest management in Ontario. The Forestry Chronicle 76: 445-
463. 

Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, 
Cavieres LA, Guisan A, Haider S (2009) Ain't no mountain high enough: plant 
invasions reaching new elevations. Frontiers in Ecology and the Environment 7: 
479-486. 

Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T, Daehler C, Englund G, Essl F, 
Evengård B, Greenwood GB (2016) Non-native and native organisms moving into 
high elevation and high latitude ecosystems in an era of climate change: new 
challenges for ecology and conservation. Biological invasions 18: 345-353. 

Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the 
distribution of species: are bioclimate envelope models useful? Global Ecology and 
Biogeography 12: 361-371. 

Pérez-Sierra A, León M, Álvarez L, Alaniz S, Berbegal M, García-Jiménez J, Abad-
Campos P (2010) Outbreak of a new Phytophthora sp. associated with severe 
decline of almond trees in eastern Spain. Plant Disease 94: 534-541. 

Perkins LB, Leger EA, Nowak RS (2011) Invasion triangle: an organizational framework for 
species invasion. Ecology and Evolution 1: 610-625. 

https://cran.r-project.org/package=vegan(ed%5eeds
https://cran.r-project.org/package=vegan(ed%5eeds


 146 

Petersen H (1909) Studier over Ferskvands-Phycomyceten. Tidsskrift for 
Samfunnsforskning 29: 345-429. 

Pethybridge GH, Lafferty H (1919) A disease of tomato and other plants caused by a new 
species of Phytophthora. Science Proceedings of the Royal Dublin Society. 15: 
487-503. 

Petitpierre B, McDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2016) Will 
climate change increase the risk of plant invasions into mountains? Ecological 
Applications 26: 530-544. 

Petryna L, Moora M, Nuñes C, Cantero J, Zobel M (2002) Are invaders disturbance-
limited? Conservation of mountain grasslands in Central Argentina. Applied 
Vegetation Science 5: 195-202. 

Phillips D, Weste G (1985) Growth rates of four Australian isolates of Phytophthora 
cinnamomi in relation to temperature. Transactions of the British Mycological 
Society 84: 183-185. 

Pickering CM, Hill W (2007) Impacts of recreation and tourism on plant biodiversity and 
vegetation in protected areas in Australia. Journal of Environmental Management 
85: 791-800. 

Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. The Jhons Hopkins 
University Press, Baltimore, MD. 

Podger F (1972) Phytophthora cinnamomi, a cause of lethal disease in indigenous plant 
communities in Western Australia. Phytopathology 62: 972-981. 

Podger F (1978) Phytophthora cinnamomi a cause of lethal disease of indigenous plant 
communities. Phytopathology 62: 972-981. 

Podger F, Doepel R, Zentmyer G (1965) Association of Phytophthora cinnamomi with a 
disease of Eucalyptus marginata forest in Western Australia. Plant Disease 
Reporter 49: 943-947. 

Podger F, Mummery D, Palzer C, Brown M (1990) Bioclimatic analysis of the distribution of 
damage to native plants in Tasmania by Phytophthora cinnamomi. Australian 
Journal of Ecology 15: 281-289. 

Ponchet P, Ricci P, Andreoli C, Auge G (1972) Méthodes sélectives d'isolement du 
Phytophthora nicotianae f. sp. parasitica (Dastur) Waterh. à partir du sol. Annales 
de Phytopathologie 4: 97-108. 

Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MP, Foster PN, La 
Marca E, Masters KL, Merino-Viteri A, Puschendorf R (2006) Widespread 
amphibian extinctions from epidemic disease driven by global warming. Nature 439: 
161-167. 

Pratt B, Heather W, Shepherd C (1973) Recovery of Phytophthora cinnamomi from native 
vegetation in a remote area of New South Wales. Transactions of the British 
Mycological Society 60: 197-204. 

Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving 
genetic evolution. Proceedings of the Royal Society of London, Series B 270: 1433-
1440. 

Prigigallo M, Mosca S, Cacciola S, Cooke D, Schena L (2015) Molecular analysis of 
Phytophthora diversity in nursery‐grown ornamental and fruit plants. Plant 
Pathology 64: 1308-1319. 



 147 

Pryce J, Edwards W, Gadek PA (2002) Distribution of Phytophthora cinnamomi at different 
spatial scales: When can a negative result be considered positively? Austral 
Ecology 27: 459-462. 

Rafiei V, Banihashemi Z, Hamzehzarghan H (2018) Effect of temperature and inoculum 
density on disease intensity of Phytophthora parsiana. Iran Agricultural Research 
37: 11-18. 

Rands RD (1922) Streepkanker van Kaneel, veroorzaakt door Phytophthora cinnamomi n. 
sp. (Stripe canker of cinnamon caused by Phytophthora cinnamomi n. sp.). 
Mededeelingen van het Instituut voor Plantenziekten 54: 1–53. 

Redondo MA, Boberg J, Olsson CH, Oliva J (2015) Winter conditions correlate with 
Phytophthora alni subspecies distribution in Southern Sweden. Phytopathology 
105: 1191-1197. 

Redondo MA, Boberg J, Stenlid J, Oliva J (2018) Functional traits associated with the 
establishment of introduced Phytophthora spp. in Swedish forests. Journal of 
Applied Ecology 55: 1538-1552. 

Reeser PW, Sutton W, Hansen EM, Remigi P, Adams GC (2011) Phytophthora species in 
forest streams in Oregon and Alaska. Mycologia 103: 22-35. 

Rehfeldt GE, Crookston NL, Warwell MV, Evans JS (2006) Empirical analyses of plant-
climate relationships for the western United States. International Journal of Plant 
Sciences 167: 1123-1150. 

Reis A, Smart CD, Fry WE, Maffia LA, Mizubuti ES (2003) Characterization of isolates of 
Phytophthora infestans from southern and southeastern Brazil from 1998 to 2000. 
Plant Disease 87: 896-900. 

Ricci P (1972) Moyens d'etude de l'inoculum du Phytophthora nicotianae f. sp. parasitica 
(Dastur) Waterh., parasite de l'Oeillet dans le sol. Annales de phytopathologie 4: 
257-276. 

Rigg J, McDougall K, Liew E (2018) Susceptibility of nine alpine species to the root rot 
pathogens Phytophthora cinnamomi and P. cambivora. Australasian Plant 
Pathology 47: 351–356. 

Ristaino JB, Gumpertz ML (2000) New frontiers in the study of dispersal and spatial 
analysis of epidemics caused by species in the genus Phytophthora. Annual 
Review of Phytopathology 38: 541-576. 

Ristaino JB, Madritch M, Trout CL, Parra G (1998) PCR amplification of ribosomal DNA for 
species identification in the plant pathogen genus Phytophthora. Applied and 
Environmental Microbiology 64: 948-954. 

Rizzo DM (2005) Exotic species and fungi: interactions with fungal, plant, and animal 
communities. Mycology Series 23: 857. 

Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon 
forest ecosystems. Frontiers in Ecology and the Environment 1: 197-204. 

Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research 
and management of an emerging pathogen in California and Oregon forests. 
Annual Review of Phytopathology 43: 309-335. 

Robin C, Desprez-Loustau M-L, Delatour C (1992) Factors influencing the enlargement of 
trunk cankers of Phytophthora cinnamomi in red oak. Canadian Journal of Forest 
Research 22: 367-374. 



 148 

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, 
Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic 
inference and model choice across a large model space. Systematic Biology 61: 
539-542. 

Root TL, MacMynowski DP, Mastrandrea MD, Schneider SH (2005) Human-modified 
temperatures induce species changes: joint attribution. Proceedings of the National 
Academy of Sciences of the United States of America 102: 7465-7469. 

Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, 
Estrella N, Seguin B (2008) Attributing physical and biological impacts to 
anthropogenic climate change. Nature 453: 353-357. 

Rytkönen A, Lilja A, Petäistö R-L, Hantula J (2008) Irrigation water and Phytophthora 
cactorum in a forest nursery. Scandinavian Journal of Forest Research 23: 404-
411. 

Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Hardy GSJ, Burgess T (2015) Re-
evaluation of the Phytophthora cryptogea species complex and the description of a 
new species, Phytophthora pseudocryptogea sp. nov. Mycological progress 14: doi 
10.1007/s11557-015-1129-9: 108. 

Sakalidis ML, Hardy GES, Burgess TI (2011) Endophytes as potential pathogens of the 
baobab species Adansonia gregorii: a focus on the Botryosphaeriaceae. Fungal 
Ecology 4: 1-14. 

Sandoya V, Pauchard A, Cavieres LA (2017) Natives and non‐natives plants show 
different responses to elevation and disturbance on the tropical high Andes of 
Ecuador. Ecology and Evolution 7: 7909-7919. 

Scarlett K, Daniel R, Shuttleworth LA, Roy B, Bishop TF, Guest DI (2015) Phytophthora in 
the Gondwana rainforests of Australia world heritage area. Australasian Plant 
Pathology 44: 335-348. 

Schlichting CD, Levin DA (1986) Phenotypic plasticity: an evolving plant character. 
Biological Journal of the Linnean Society 29: 37-47. 

Schmider E, Ziegler M, Danay E, Beyer L, Bühner M (2010) Is it really robust? 
Methodology. 

Schmitt J, McCormac AC, Smith H (1995) A test of the adaptive plasticity hypothesis using 
transgenic and mutant plants disabled in phytochrome-mediated elongation 
responses to neighbors. The American Naturalist 146: 937-953. 

Schmitthenner A (1973) Isolation and identification methods for Phytophthora and 
Pythium: 2008. In:  . Proceedings of first woody ornamental workshop. Columbia. 
pp. 94-110. 

Scibetta S, Schena L, Chimento A, Cacciola SO, Cooke DE (2012) A molecular method to 
assess Phytophthora diversity in environmental samples. Journal of microbiological 
methods 88: 356-368. 

Seipel T, Kueffer C, Rew LJ, Daehler CC, Pauchard A, Naylor BJ, Alexander JM, Edwards 
PJ, Parks CG, Arevalo JR (2012) Processes at multiple scales affect richness and 
similarity of non‐native plant species in mountains around the world. Global 
Ecology and Biogeography 21: 236-246. 

Shaw M, Bearchell S, Fitt BD, Fraaije B (2008) Long‐term relationships between 
environment and abundance in wheat of Phaeosphaeria nodorum and 
Mycosphaerella graminicola. New Phytologist 177: 229-238. 



 149 

Shearer B (2003) Time course studies of the effect of temperature and stimulation of soil 
from different depths on sporangium production of Phytophthora cinnamomi. In: 
McComb JA, Hardy GE StJ,  Tommerup IC (eds). Phytophthora in forests and 
natural ecosystems. 2nd international IUFRO working party 7.02. 09 
meeting.Albany, Western Australia. p. 266 

. 
Shearer B (2014) Time course studies of temperature and soil depth mediated sporangium 

production by Phytophthora cinnamomi. Australasian Plant Pathology 43: 235-244. 
Shearer B, Crane C, Barrett S, Cochrane A (2007) Phytophthora cinnamomi invasion, a 

major threatening process to conservation of flora diversity in the South-west 
Botanical Province of Western Australia. Australian Journal of Botany 55: 225-238. 

Shearer B, Crane C, Cochrane A (2004) Quantification of the susceptibility of the native 
flora of the South-West Botanical Province, Western Australia, to Phytophthora 
cinnamomi. Australian Journal of Botany 52: 435-443. 

Shearer B, Dillon M, Kinal J, Buehrig R (2010) Temporal and spatial soil inoculum 
dynamics following Phytophthora cinnamomi invasion of Banksia woodland and 
Eucalyptus marginata forest biomes of south-western Australia. Australasian Plant 
Pathology 39: 293-311. 

Shearer B, Shea S, Deegan P (1987) Temperature-growth relationships of Phytophthora 
cinnamomi in the secondary phloem of roots of Banksia grandis and Eucalyptus 
marginata. Phytopathology 77: 661-665. 

Shearer BL, Tippett JT (1989) Jarrah dieback: the dynamics and management of 
Phytophthora cinnamomi in the jarrah (Eucalyptus marginata) forest of south-
western Australia. Research Bulletin 3. Department of Conservation and Land 
Management: Perth. 

Shelley B, Luster D, Garrett W, McMahon M, Widmer T (2017) Effects of temperature on 
germination of sporangia, infection and protein secretion by Phytophthora 
kernoviae. Plant Pathology 67: 719–728  

Shepherd C (1975) Phytophthora cinnamomi-an ancient immigrant to Australia. Search 6: 
484-490. 

Shepherd C, Pratt B (1974) Temperature-growth relations and genetic diversity of A2 
mating-type isolates of Phytophthora cinnamomi in Australia. Australian Journal of 
Botany 22: 231-249. 

Shepherd C, Pratt B, Taylor P (1974) Comparative morphology and behaviour of A1 and 
A2 isolates of Phytophthora cinnamomi. Australian Journal of Botany 22: 461-470. 

Shew H, Benson D (1982) Qualitative and quantitative soil assays for Phytophthora 
cinnamomi. Phytopathology 72: 1029-1032. 

Simamora A, Stukely M, Barber P, Hardy G, Burgess T (2016) Age related susceptibility of 
Eucalyptus species to Phytophthora boodjera. Plant Pathology 66: 501-512. 

Simamora AV, Paap T, Howard K, Stukely MJ, Hardy GESJ, Burgess TI (2017) 
Phytophthora contamination in a nursery and its potential dispersal into the natural 
environment. Plant Disease 1: 132-139. 

Simpson EH (1949) Measurement of diversity. Nature. 
Sneh B, Katz D (1988) Behaviour of Phytophthora citrophthora and P. nicotianae var. in 

soil, and differences in their tolerance to antimicrobial components of selective 



 150 

media used for isolation of Phytophthora spp. Journal of Phytopathology 122: 208-
221. 

Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ 
(2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. 
Proceedings of the National Academy of Sciences 103: 12115-12120. 

Stefansson TS, McDonald BA, Willi Y (2013) Local adaptation and evolutionary potential 
along a temperature gradient in the fungal pathogen Rhynchosporium commune. 
Evolutionary Applications 6: 524-534. 

Stenlid J, Oliva J, Boberg JB, Hopkins AJ (2011) Emerging diseases in European forest 
ecosystems and responses in society. Forests 2: 486-504. 

Stone JK, Coop LB, Manter DK (2008) Predicting effects of climate change on Swiss 
needle cast disease severity in Pacific Northwest forests. Canadian Journal of Plant 
Pathology 30: 169-176. 

Streito JC, Jarnouen de Villartay G, Tabary F (2002) Methods for isolating the alder 
Phytophthora. Forest Pathology 32: 193-196. 

Stukenbrock EH, McDonald BA (2008) The origins of plant pathogens in agro-ecosystems. 
Annual Review of Phytopathology 46: 75-100. 

Sturrock R, Frankel S, Brown A, Hennon P, Kliejunas J, Lewis K, Worrall J, Woods A 
(2011) Climate change and forest diseases. Plant Pathology 60: 133-149. 

Suggitt AJ, Gillingham PK, Hill JK, Huntley B, Kunin WE, Roy DB, Thomas CD (2011) 
Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos 
120: 1-8. 

Swofford D (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), 
version 4.0b 10. Sinauer associates, Sunderland. 

Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Molecular 
Ecology 21: 1789-1793. 

Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, 
Brereton TM, Bright PW, Carvalho L (2010) Trophic level asynchrony in rates of 
phenological change for marine, freshwater and terrestrial environments. Global 
Change Biology 16: 3304-3313. 

Thomas CD (2010) Climate, climate change and range boundaries. Diversity and 
Distributions 16: 488-495. 

Thompson LG, Mosley-Thompson E, Davis ME, Lin P-N, Henderson KA, Cole-Dai J, 
Bolzan JF, Liu K-B (1995) Late glacial stage and Holocene tropical ice core records 
from Huascaran, Peru. Science 269: 46-50. 

Thompson S, Levin S, Rodriguez-Iturbe I (2012) Linking plant disease risk and 
precipitation drivers: a dynamical systems framework. The American Naturalist 181: 
E1-E16. 

Thompson SE, Levin S, Rodriguez‐Iturbe I (2014) Rainfall and temperatures changes 
have confounding impacts on Phytophthora cinnamomi occurrence risk in the 
southwestern USA under climate change scenarios. Global Change Biology 20: 
1299-1312. 

Tsai Y-L, Olson BH (1992) Rapid method for separation of bacterial DNA from humic 
substances in sediments for polymerase chain reaction. Applied and Environmental 
Microbiology 58: 2292-2295. 



 151 

Tsao P (1990a) Why many phytophthora root rots and crown rots of tree and horticultural 
crops remain undetected1. EPPO bulletin 20: 11-17. 

Tsao PH (1983) Factors affecting isolation and quantitation of Phytophthora from soil In:  
Phytophthora its Biology, Taxonomy, Ecology, and Pathology: (DC Erwin, S 
Bartnicki-Garcia, PH Tsao, eds): 219-236. The American Phtyopathological Society, 
St. Paul. 

Tsao PH (1990b) Why many Phytophthora root rots and crown rots of tree and horticultural 
crops remain undetected. EPPO bulletin  20: 11-17. 

Tsao PH, Ocana G (1969) Selective isolation of species of Phytophthora from natural soils 
on an improved antibiotic medium. Nature 223: 638-638. 

Tucker CM (1931) Taxonomy of the genus Phytophthora de Bary. University of Missouri 
Agricultural Experiment Station Research Bulletin: 153. 

van den Bergh T, Körner C, Hiltbrunner E (2018) Alnus shrub expansion increases 
evapotranspiration in the Swiss Alps. Regional Environmental Change 18: 1375-
1385. 

van Kleunen M, Richardson DM (2007) Invasion biology and conservation biology: time to 
join forces to explore the links between species traits and extinction risk and 
invasiveness. Progress in Physical Geography 31: 447-450. 

Van Steekelenburg N (1973) Influence of low temperatures on the survival of 
Phytophthora cinnamomi in soil. Meded Ryjksfac Landbouwwet Genet 38: 1399-
1405. 

Vannini A, Bruni N, Tomassini A, Franceschini S, Vettraino AM (2013) Pyrosequencing of 
environmental soil samples reveals biodiversity of the Phytophthora resident 
community in chestnut forests. FEMS microbiology ecology 85: 433-442. 

Venn S, Kirkpatrick J, McDougall K, Walsh N, Whinam J, Williams R (2017) Alpine, sub-
alpine and sub-Antarctic vegetation of Australia. In:  Australian Vegetation: (DA 
Keith, eds): 461-489. Cambridge University Press, Cambridge. 

Via S, Lande R (1985) Genotype‐environment interaction and the evolution of phenotypic 
plasticity. Evolution 39: 505-522. 

Volney WJA, Hirsch KG (2005) Disturbing forest disturbances. The Forestry Chronicle 81: 
662-668. 

Von Broembsen S, Wilson S (1998) Occurrence of Phytophthora spp. in nursery runoff 
and recycled irrigation water. Phytopathology 90: S92. 

Walker CA, van West P (2007) Zoospore development in the oomycetes. Fungal Biology 
Reviews 21: 10-18. 

Weber CF, Vilgalys R, Kuske CR (2013) Changes in fungal community composition in 
response to elevated atmospheric CO2 and nitrogen fertilization varies with soil 
horizon. Frontiers in Microbiology 4: 78. 

Welch B (1951) On the comparison of several mean values: an alternative approach. 
Biometrika 38: 330-336. 

Weste G, Kennedy J (1997) Regeneration of susceptible native species following a decline 
of Phytophthora cinnamomi over a period of 20 years on defined plots in the 
Grampians, western Victoria. Australian Journal of Botany 45: 167-190. 

Weste G, Marks G (1987) The biology of Phytophthora cinnamomi in Australasian forests. 
Annual Review of Phytopathology 25: 207-229. 



 152 

Weste G, Vithanage K (1978) Seasonal variation in numbers of chlamydospores in 
Victorian forest soils infected with Phytophthora cinnamomi. Australian Journal of 
Botany 26: 657-662. 

Weste GM, Taylor P (1971) The invasion of native forest by Phytophthora cinnamomi. I. 
Brisbane Ranges, Victoria. Australian Journal of Botany 19: 281-294. 

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal 
ribosomal RNA genes for phylogenetics. In:  PCR protocols: a guide to methods 
and applications: (M Innis, D Gelfand, J Sninsky, T White, eds): 315-322. Academic 
Press, Inc., New York, Australia. 

Willard BE, Marr JW (1970) Effects of human activities on alpine tundra ecosystems in 
Rocky Mountain National Park, Colorado. Biological Conservation 2: 257-265. 

Williams N, Hardy GSJ, O’Brien P (2009) Analysis of the distribution of Phytophthora 
cinnamomi in soil at a disease site in Western Australia using nested PCR. Forest 
Pathology 39: 95-109. 

Zeng Hc, Ho Hh, Zheng FC (2009) A survey of Phytophthora species on Hainan Island of 
South China. Journal of Phytopathology 157: 33-39. 

Zentmyer G (1988) Origin and distribution of four species of Phytophthora. Transactions of 
the British Mycological Society 91: 367-378. 

Zentmyer G, Gilpatbick J, Thorn W (1960) Methods of isolating Phytophthora cinnamomi 
from soil and from host tissue. Phytopathology 50: 87. 

Zentmyer G, Leary J, Klure L, Grantham G (1976) Variability in growth of Phytophthora 
cinnamomi in relation to temperature. Phytopathology 66: 982 - 986. 

Zentmyer G, Thorn W (1967) Hosts of Phytophthora cinnamomi. California Avocado 
Society Yearbook 51: 177-186. 

Zentmyer GA (1980) Phytophthora cinnamomi and the diseases it causes. American 
Phytopathological Society, St. Paul, MN. 

Zhan J, Mcdonald BA (2011) Thermal adaptation in the fungal pathogen Mycosphaerella 
graminicola. Molecular Ecology 20: 1689-1701. 

Zoete T (2000) Vegetation survey of the Barrington Tops and Mount Royal National Parks 
for use in fire management. Cunninghamia 6: 511-578. 

 


	Dedication
	Declaration
	Abstract

	List of publications
	Acknowledgements
	Statement of contributions
	Chapter 1: General Introduction and literature review
	What is a mountain?
	The uniqueness of mountain ecosystems

	Decline in species richness with altitude
	Decreased anthropogenic disturbance

	The genus Phytophthora
	Distribution and origin

	Phytophthora cinnamomi
	Phytophthora cinnamomi in Australia
	The biology and life cycle of Phytophthora cinnamomi

	Climate change and the distribution of pathogens
	Climate change and range expansion
	Phenotypic plasticity and range expansion
	Range expansion of Phytophthora, in particular Phytophthora cinnamomi into colder environments: a changing environment, adaptation or both?
	Thesis aims

	Chapter 2: eDNA from roots: a robust tool for determining Phytophthora communities in natural ecosystems
	Abstract
	Introduction
	Materials and Methods
	Sampling sites and sampling procedure
	Traditional isolation from soil using bait leaves
	Isolation from filtered bait water
	Isolation using Granny Smith apple baits
	Bait plants in glasshouse
	Morphological and molecular identification of isolates
	DNA extraction
	Amplicon pyrosequencing and clustering
	Data processing and statistical analysis

	Results
	Traditional isolation from soil using bait leaves
	Isolation from filtered bait water
	Isolation using Granny Smith apple baits

	Phytophthora species detected from eDNA
	Comparison of traditional isolations to metabarcoding
	DISCUSSION

	Chapter 3: Phytophthora species isolated from alpine and sub-alpine regions of Australia, including the description of two new species; Phytophthora cacuminis sp. nov and Phytophthora oreophila sp. nov
	Abstract
	Introduction
	Materials and methods
	Samples collection and isolation
	DNA isolation, amplification and sequencing
	Phylogenetic analysis
	Cultural characteristics
	Morphology of sexual and asexual structures

	Results
	Phytophthora species isolated from sub-alpine and alpine areas
	Phylogenetic analysis


	Table 3.2. Number of isolates of each Phytophthora species recovered through baiting in Kosciuszko National Park and Tasmania.
	Discussion

	Chapter 4: Phenotypic plasticity favours range expansion of Phytophthora cinnamomi into colder environments
	Abstract
	Introduction
	Materials and methods
	Isolates and media
	Effect of temperature on radial growth
	Method of sporangia production and subsequent count
	Effect of temperature on sporulation and zoospore release
	Phenotypic plasticity experiment 1
	Phenotypic plasticity experiment 2
	Phenotypic plasticity experiment 3
	Phenotypic plasticity experiment 3 was identical to phenotypic plasticity experiment 2 except temperature in the growth chamber was dropped from 9 ˚C to 7.5 ˚C.
	Data analysis

	Results
	Effect of temperature on radial growth
	Effect of temperature on sporulation and zoospore release
	Phenotypic plasticity experiment 1
	Phenotypic plasticity experiment 2
	Phenotypic plasticity experiment 3

	Discussion
	Effect of temperature on radial growth
	Effect of temperature on sporulation and zoospore release
	Phenotypic plasticity in relation to sporulation, zoospore release and disease

	Chapter 5: Comparison of distribution of Phytophthora and vascular plant species along a steep elevation gradient
	_________________________________________________
	Abstract
	Introduction
	Methods
	Study area description
	Survey design and sampling
	Baiting
	DNA extraction and amplicon sequencing
	Bioinformatics analysis

	Statistical analysis
	1) Is there an effect of disturbance and elevation on species richness?
	2) Is there an effect of disturbance and elevation on species composition?
	3) Is there an effect of disturbance and elevation on species distribution?

	Results
	Bioinformatics analysis
	Total species richness
	1) Is there an effect of disturbance and elevation on species richness?
	2) Is there an effect of disturbance and elevation on species composition?
	3) Is there an effect of disturbance and elevation on species distribution?

	Discussion
	Is there an effect of disturbance and elevation on species richness?
	Is there an effect of disturbance and elevation on species composition?
	Is there an effect of disturbance and elevation on species distribution?


	Chapter 6: General Discussion
	Overview of the study
	Future directions/research
	Best methodology for determining Phytophthora diversity
	Determination of lower temperatures for infection
	Phenotypic plasticity experiments- a step further

	Future risks
	Climate change/changing environment
	Other invasive Phytophthora species
	Recreation and tourism

	Management strategies

	Supplementary Material
	References


