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ABSTRACT 

Experimental data are reported for water boiling at 850, 450 and 50 mbar pressures on 

the shell-side of a model industrial boiler slice.  The boiler test section was 1 m high, 

0.75  m wide and contained 36 electrically heated tubes.  The tubes were 28.5 mm in 

diameter and 98 mm long.  The design of the boiler ensured that the tubes were submerged 

in a liquid pool. The height of the liquid pool could be varied.  The pool height was set to 

approximately 0.8 m for the tests carried out at a pressure of 850 mbar, submerging the 

top of the tube bundle by about 200 mm.  Two pool heights were used for the tests carried 

out at a pressure of 50 mbar, one at approximately 0.8 m and another at approximately 

2  m. The later submerged the top of the tube bundle by about 1.6 m.  The tube heat flux 

was varied from 10‐65 kW/m2 for the tests at pressures 50 mbar and was varied within 

the range 10-70 kW/m2 for the test of 450 and 850 mbar. A near-symmetrical half of the 

tube bundle contained wall thermocouples.  An additional 29 thermocouples were located 

throughout the liquid pool. 

The liquid pool temperature was found to be reasonably uniform and controlled by the 

pressure at the free surface.  This led to a small amount of sub-cooling at a pressure of 

850 mbar, up to 3 K, and a significant amount of sub-cooling at a pressure of 50 mbar, up 

to 16 K for the smaller pool height and up to 31 K at the larger pool height.  The 

reasonably uniform pool temperature suggests that the liquid re-circulates within it. 

Boiling is found to occur at all heat fluxes at a pressure of 450 and 850 mbar, with the 

measured heat-transfer coefficients shown to be in broad agreement with nucleate boiling 

correlations available in the open literature.  However, it is also consistent with a flow 

boiling process involving natural convection and nucleation, where the convection is 

driven by variations in liquid temperature on the walls of the tubes. This natural 

convection relies on an interaction between the tubes that produces mass fluxes in the 

range 46-87 kg/m2s, based on the approach area to the tube bundle.  Boiling occurs only 

at the higher heat fluxes during the low level tests at a pressure of 50 mbar, with 

interactive natural convection being the dominant heat-transfer mechanism.  The mass 

fluxes produced are in the range 28-70 kg/m2s.  Boiling also occurs only at the higher 

heat fluxes during the high level tests at a pressure of 50 mbar.  However, the convective 

heat transfer was more compatible with little interaction between the tubes, although some 
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evidence suggests that the evaporator oscillates between interaction and isolated tube 

behaviour.  

 Solids can come out of solution when some process fluids are evaporated.  These solids 

can form beds of particles on the heated base of the evaporator vessel.  The effect on base 

temperature of increasing the bed depth is experimentally investigated for water boiling 

at a pressure of 50 mbar absolute.  The bed depth is varied from 0-32 mm using glass 

particles 500-600 μm in diameter.  The evaporator used was a model industrial boiler 

slice. The tube heat flux was maintained at 65 kW/m² and the base heat flux varied within 

the range 0-45 kW/m².  Out with the solid bed, the liquid temperature in the liquid pool 

is shown to be reasonably constant and close to the free surface saturation temperature. 

This indicates that fluid recirculation is taking place, with fluid flashing to the saturation 

temperature at the free surface before returning to the depths of the pool.  The liquid 

temperature within to the solid bed is shown to be greater than that in the pool and to 

decrease with increasing base heat flux.  The temperature of the base is shown to be 

subcooled in the absence of a solids bed.  The presence of the bed induces boiling at most 

conditions, indicating that a strong convection current normally cools the base and that 

the base is insulated from this cooling by the bed.  The bubbles formed within the bed 

increase in size with increasing bed depth and heat flux.  Beneath the bed, the base 

temperatures decrease with increasing base heat flux and the base superheat increases 

with increasing bed depth until 16 mm, decreases at 24 mm and increase again at 32 mm. 
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Chapter 1– INTRODUCTION  

At the Sellafield site in Cumbria, three evaporators A, B and C were built since 1970; 

evaporators A and B were out of service.  Evaporator C is still running but an assessment 

of the remnant life of an evaporator is needed, based on the level of corrosion that the 

metalwork has received. New evaporator, D, Figure 1.1, is in the final stages of 

construction and will be ready for operations by 2017; it is one of the biggest industrial 

projects currently underway in UK.  The cost of the new evaporator is about £700 million. 

These evaporators are used to process the nuclear waste that comes from reprocessing 

operations. They produce a more concentrated form of waste known as Highly Active 

Liquor or HAL. This HAL is subsequently vitrified, i.e., combined with molten glass, to 

make it suitable for long-term safe storage [1]. 

These evaporators are stainless steel pressure vessels with dual heat transfer capability as 

shown in Figure 1.2, consisting of six heating coils, Figure 1.3, and a thick-walled heating 

jacket.  Low Pressure steam is used to heat the radioactive effluents that produce the more 

concentrated liquid.  The evaporator has a unique role in reprocessing in that it is currently 

the only evaporator that can process effluent arising from the Thermal Oxide 

Reprocessing Plant (THORP).  This makes it strategically important to the UK. It is the 

only evaporator capable of supporting the reprocessing of irradiated fuel from UK’s 

advanced gas cooled reactor fleet. 

 The corrosive nature of the reprocessed liquors results in a progressive thinning of the 

stainless steel heating surfaces, which ultimately dictates the remnant life of the 

evaporator [2]. This process is temperature dependent, with increasing corrosion rates 

occurring at increased temperatures.  To continue its operations, Sellafield has to show 

that the evaporator has sufficient wall thickness to support the operating vacuum pressure.  

To assess this, knowledge of the surface temperature of the evaporator is needed. 

Additionally, the life expectancy of the new evaporator will depend on how it is operated. 

This study was initiated in support of that assessment and to provide information that will 

maximise the life of the new evaporator.  

This study involves boiling liquids at a very low pressure.  Chapter 2 presents a literature 

review of heat transfer and pressure drop in similar evaporators and of low pressure 

boiling.  As the liquor in the evaporator becomes more concentrated, some solids come 

out of solution and settle on the evaporator base. The effects of solids on boiling surfaces 

are also reviewed in Chapter 2.  
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This investigation was carried out on a one-quarter scale, thin slice model of the actual 

evaporator.  Additionally, the model evaporator has the capability to vary the depth of the 

liquid pool in it from the one-quarter scale level up to the depth that occurs in the actual 

evaporator.  The model evaporator could operate at any free surface pressure from close 

to total vacuum to atmospheric pressure.  The test facility is described in Chapter 3. 

Evaporator behaviour was investigated through two experimental campaigns. The first 

campaign investigates the effect of pressure on the thermal performance of the evaporator 

and the second campaign investigates the effect on the wall temperature of solids being 

deposited on the evaporator base. 

 The campaign to investigate the effect of pressure on the thermal performance contains 

four tests series. These series varied the coil heating at different conditions.  The first 

series, the LLLP, low liquid level at low pressure series, was carried out at a surface 

pressure of 50 mbar absolute and at the scaled pool depth. The second series, the HLLP, 

high liquid level at low pressure series, was carried out at the same pressure but at the 

actual evaporator’s pool depth.  The third series, the LLMP, low liquid level at medium 

pressure series, was carried out at a surface pressure of 450 mbar and at the scaled pool 

depth and the fourth series, the LLHP, low liquid level at high pressure series, was carried 

out at pressure of 850 mbar and at the scaled pool depth.  This campaign is presented and 

discussed in Chapter 4.  

Two modelling approaches were investigated, one that assumed that the coils behaved 

independently and one that assumes an interaction between them. The models are 

presented and discussed in Chapter 5. 

The campaign to investigate the effect of solids on the evaporator base is presented in 

Chapter 6.  The investigation was carried out by boiling water at a surface pressure of 

50  mbar absolute with the scaled pool depth. Experimental data are reported for solid 

bed depths of 0-32 mm.  The solids used were glass particles 0.5-0.6 mm in diameter.  

These are a stimulant for Barium Nitrate, a solid that occurs in the actual evaporator.  The 

effect on the wall temperature of solids being deposited on the evaporator base is 

discussed and analysed in Chapter 7. 

Chapter 8 summarises and concludes on the finding achieved in the study.  It also gives 

some suggestions of some further work that could be done in the future.  
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Figure 1-1: Evaporator D 

 

 
Figure 1-2: The coils 

 

 
Figure 1-3: The vessel
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Chapter 2– LITERATURE REVIEW 

2.1 Introduction 

Some evaporators boil fluids that are highly corrosive.  The corrosion rate of the materials 

used to construct these evaporators depends on their temperature.  Thus, the life of the 

evaporator can be extended if the wall temperatures of the evaporator are kept low.  One 

way of achieving this is to boil the fluid at a low pressure, and hence a low saturation 

temperature.  This chapter reviews the literature relative to the kettle reboiler and the 

correlations that are used in prediction of the heat transfer coefficient, void fraction, 

pressure drops, boiling at low pressure and the effect of the solid particles.  

2.2 Fundamentals of Boiling 

Boiling is defined as the process of phase changing the state of a substance from liquid to 

vapour by adding heat at its saturation point.  Different types of boiling can be defined 

according to the geometric situation and to the mechanism occurring.  Regarding the 

geometry, it is possible to distinguish between pool boiling, where the heat is transferred 

to a stagnant fluid; and flow boiling, where the fluid has a velocity relative to the heating 

surface.  The three different boiling heat transfer mechanisms are nucleate boiling, where 

heat is transferred by means of vapour bubbles nucleating, growing and finally detaching 

from the surface; convective boiling, where heat is conducted through the liquid to 

produce evaporation at the liquid-vapour interface without bubble formation; and film 

boiling, where the heat is transferred by conduction and radiation through a film of vapour 

that covers the heated surface and the liquid vaporizes at the vapour-liquid interface. 

Nucleate boiling and film boiling may occur in both pool boiling and flow boiling, while 

forced convective boiling occurs only in flow boiling. In addition, if the temperature of 

the bulk liquid is below the saturation temperature, the process is called subcooled 

boiling, whereas if the liquid is maintained at the saturation temperature, the process is 

known as saturated boiling. 

2.3 Pool Boiling 

When a surface is heated to a temperature that is higher than the surrounding liquid’s 

saturation temperature, the process is known as pool boiling.  Pool boiling is similar to 

natural convection, in that there is no external mechanism that causes fluid motion.  On 

the other hand, active fluid motion exists during pool boiling as a result of the difference 
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in the density that exists between the vapour that is created by the evaporation process 

and the surrounding liquid density. 

2.3.1 Nucleate Pool Boiling Correlations 

To design heat transfer equipment, such as heat exchangers, accurate heat transfer 

correlations are required.  The boiling heat transfer coefficient is defined as 

ℎ =
𝑞´´𝑤

𝑇𝑤−𝑇𝑠𝑎𝑡
                       2-1 

Nucleate pool boiling heat transfer has a close relationship to the activities of the bubbles 

and results from a combination of several interacting mechanisms: 

 

 Transient heat conduction; the thermal boundary layer created by conduction into 

the liquid in the vicinity of the heated surface is periodically removed by the 

hydrodynamic drag during bubble growth and departure. 

  Enhanced heat Convection; liquid movement is generated by the growing and 

departing bubbles.  This creates convective streams that contribute in the heat 

transfer.  

 Evaporation; vaporization of the super-heated liquid surrounding the bubbles in 

layer between the bubble and the microlayer. 

Generally, the heat transfer coefficient can be predicted by knowing the frequency of the 

bubbles, the heat transfer in every cycle and the density of active nucleation sites [3].  

However, the contribution to heat transfer by each mechanism has not been firmly proven 

and analytical treatments are not completely developed for effective applications.  

Therefore many experimental correlations are available in the literature.  Rohsenow [4] 

correlation was one of the first correlations based on the bubble agitation mechanism. It 

was formulated as a single phase forced convection correlation. 

𝐶𝑝𝑙∆𝑇

ℎ𝑓𝑔
= 𝐶𝑠𝑓 [

𝑞

µ𝑙ℎ𝑓𝑔
(

𝜎

𝑔(𝜌𝑙−𝜌𝑔)
)

1
2⁄

]

𝑛

𝑃𝑟𝑙
𝑚+1         2-2 
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Where the specific heat of the liquid is 𝐶𝑝𝑙 , 𝜎 is the surface tension, 𝜌𝑙, 𝜌𝑔 are liquid and 

gas density and 𝑃𝑟𝑙 is the liquid Prandtl number; ℎ𝑛𝑏 is obtained from the definition of 

the heat transfer coefficient. 

 ℎ𝑛𝑏 =  𝑞/𝛥𝑇             2-3 

 The values of the exponents are m = 0.7 and n = 0.33 for all fluids except for water for 

which Rohsenow [4] recommended setting m = 0.  Values of 𝐶𝑠𝑓 for various surface-fluid 

combinations of Rohsenow [4] and additional values proposed by R.I.Vachon [5] for 

water are Water on polished copper 0.0128, water on lapped copper 0.0147 water on 

scored copper 0.0068, Water on ground and polished stainless steel 0.08 Water on PTFE 

pitted stainless steel 0.0058, Water on chemically etched stainless steel 0.0133, Water on 

mechanically polished stainless steel 0.0132. 

Montinski ignored surface effects and applied the principle of corresponding states to 

nucleate pool boiling heat transfer [6], correlating data as a function of the reduced 

pressure of the fluid 𝐹𝑝𝑟 and its critical pressure 𝑃𝑐𝑟𝑖𝑡.  His dimensional reduced pressure 

correlation gives ℎ𝑛𝑏 in W/m2K through 

ℎ𝑛𝑏 = 0.00417𝑞
0.7𝑃𝑐𝑟𝑖𝑡

0.69𝐹𝑝𝑟            2-4 

The correlation must be used with q in W/m2 and 𝑃𝑐𝑟𝑖𝑡 in kN/m2 (i.e. in KPa, not in N/m2). 

𝐹𝑝𝑟 is a non-dimensional pressure correction factor that characterizes pressure effects on 

nucleate boiling as: 

𝐹𝑝𝑟 = 1.8𝑃𝑟
0.17 + 4𝑃𝑟

1.2 + 10𝑃𝑟
10           2-5 

where is  𝑃𝑟 = 
𝑝

𝑃𝑐𝑟𝑖𝑡
            2-6 

Equation 2.3 is valid for q ≤ 0.9𝑃𝑐𝑟𝑖𝑡, where the critical heat flux, 𝑞𝑐𝑟𝑖𝑡 is defined by  

𝑞𝑐𝑟𝑖𝑡 = 3.2 × 104 𝑃𝑐𝑟𝑖𝑡𝑃𝑟
0.35(1 − 𝑃𝑟)

0.9        2-7 

Montinski fitted the above correlation to a large bank of experiment data and found that 

this correlation predicted the heat transfer coefficient to an accuracy of ±30%. 

Rice and Calus investigated pool boiling for toluene, methanol, water and 

water- isopropanol azeotrope at atmospheric pressure on a wire [7].  The wire had 
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diameter of 0.315 mm and was made a nickel-aluminium alloy.  They correlated their 

data in the form of equation as 

𝑁𝑢 = 𝐸𝑃𝑒0.7𝐾𝑃
0.7 [

𝑇𝑠𝑤

𝑇𝑠𝑎𝑡
]
4

                                                                                                2-8    

Rice and Calus used the modified version of Pelclet, Pe, Nusselt, Nu and Kp which is a 

function of absolute pressure, that modified by Borishanskii V. M. [8] .  The bubble 

growth diameter was equivalent to √
𝜎

𝑔(𝜌𝑙−𝜌𝑔)
  and the modified versions are stated in the 

Equations (2.9, 2.10, and 2.11). 

𝑃𝑒 =
𝜌𝑙𝐶𝑝𝑙 𝑞

𝑘𝑙𝜌𝑔ℎ𝑓𝑔
[

𝜎

𝑔(𝜌𝑙 −𝜌𝑔)
]
0.5

            2-9 

𝐾𝑝 =
𝑃

[𝑔𝜎(𝜌𝑙−𝜌𝑔)]
0.5           2-10 

𝑁𝑢 =  
𝑞

𝑘𝑙  ∆𝑇
[

𝜎

𝑔(𝜌𝑙 −𝜌𝑔)
]
0.5

          2-11 

where 𝑇𝑠𝑤 refers to the absolute boiling temperature of water at the system pressure and 

E is a factor depending on the liquid/surface conditions.  The value of E was chosen to be 

9.9×10-4 for water boiling on a stainless steel surface. 

Stephan and Abdelsalam developed a nucleation boiling correlation for various fluids, 

including water [9], hydrocarbons, cryogenics and refrigerants.  This correlation was 

based on fluid and thermal properties combined in various dimensionless groups.  Their 

water correlation is given as: 

ℎ𝑛𝑏𝑑𝑏𝑢𝑏

𝐾𝑙
= 0.246 × 107  (

𝑞𝑑𝑏𝑢𝑏

𝐾𝑙𝑇𝑠𝑎𝑡
)
0.673

(
ℎ𝑓𝑔𝑑𝑏𝑢𝑏

2

𝑎𝑙
2 )

−1.58

(
𝐶𝑝𝑇𝑠𝑎𝑡𝑑𝑏𝑢𝑏

2

𝑎𝑙
2 )

1.26

(
𝜌𝑙−𝜌𝑔

𝜌𝑙
)
5.22

   2-12 

The expression to the left of the equal sign is a Nusselt number and their bubble departure 

diameter 𝑑𝑏𝑢𝑏 is obtained from 

𝑑𝑏𝑢𝑏 = 0.0146𝛽 [
2𝜎

𝑔(𝜌𝑙−𝜌𝑔)
]

1
2⁄

                  2-13 

The contact angle 𝛽 assigned a fixed value of 45, 10-4 ≤ P/Pcrit ≤ 0.886,  𝑇𝑠𝑎𝑡 is the 

saturation temperature of the fluid in K, and 𝑎𝑙 is the liquid thermal diffusivity.     
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Nishikawa introduced a correlation that was determined by curve fitting to experimental 

results as [10]:  

ℎ = 3.14
𝑃𝑐𝑟𝑖𝑡0.2

𝑀0.1𝑇𝑐𝑟𝑖𝑡0.9
(8. 𝑅𝑝.𝑜𝑙𝑑)

1−𝑃𝑟
5 .

𝑃𝑟
0.23

(1−0.99 .𝑃𝑟)0.9
 . 𝑞0.8                                                2-14 

where 𝑃𝑟is the reduced pressure, 𝑅𝑝.𝑜𝑙𝑑 is the old standard of  surface roughness of the 

heating surface, 𝑀 is the molar mass, 𝑃𝑐𝑟𝑖𝑡 is the critical pressure and the 𝑇𝑐𝑟𝑖𝑡  is the 

critical temperature of the evaporating fluid.  The surface roughness 𝑅𝑝.𝑜𝑙𝑑 can be updated 

by  

𝑅𝑝.𝑜𝑙𝑑 = 
𝑅𝑝

0.4
          2-15 

Cooper proposed a correlation [11], which earned the reputation for its accuracy in 

predicting heat transfer coefficient of nucleate pool boiling.  In his correlation, the heat 

transfer coefficient was presented as a function of the reduced pressure, heat flux, 

molecular weight of the liquid and the surface roughness.  

ℎ𝑛𝑏 = 55𝑃𝑟
0.12−0.2𝑙𝑜𝑔10𝑅𝑝(−0.4343𝑙𝑛𝑃𝑟)

−0.55 𝑀−0.5𝑞0.67    2-16 

This is a dimensional correlation in which ℎ𝑛𝑏 is in W/m2K, q is in W/m2 and 𝑅𝑝 is the 

surface roughness in μm. When 𝑅𝑝 is unknown, it is set to 1.0 μm. Cooper 

recommended multiplying the above heat transfer coefficient by 1.7 for horizontal copper 

cylinders; however, the correlation seems to be more accurate for boiling of refrigerants 

on copper tubes without this correction and that approach is recommended here.  The 

Cooper correlation covers reduced pressures from 0.001 to 0.9 and molecular weights 

from 2 to 200. 

Gorenflo proposed a fluid specific reduced pressure correlation and included the effect of 

surface roughness [12].  His method uses a reference heat transfer coefficient ho, specified 

for each fluid at the following fixed reference conditions of 𝑃𝑟=0.1, 𝑅𝑝𝑜=0.4 μm and 𝑞0 

= 20,000 W/m2. The nucleate boiling heat transfer coefficient ℎ𝑛𝑏 at other conditions of 

pressure, heat flux and roughness is then calculated relative to the reference heat transfer 

coefficient using the following expression 

ℎ𝑛𝑏 = ℎ𝑜𝐹𝑃𝑟 (
𝑞

𝑞0
)
𝑛𝑓

(
𝑅𝑝

𝑅𝑝𝑜
)
0.133

         2-17 



Chapter 2 – Literature Review 

 

9 

His pressure correction factor FPr is  

     𝐹𝑃𝑟 = 1.2𝑃𝑟
0.27 + 2.5𝑃𝑟 +

𝑃𝑟

1−𝑃𝑟
         2-18 

The effect of reduced pressure on his exponent nf for the heat flux term is given by:  

𝑛𝑓 =  0.9 −  0.3𝑃𝑟
0.3         2-19       

Its value decreases with increasing reduced pressure, which is typical of experimental 

data. The surface roughness is 𝑅𝑝 in μm and is set to 0.4 μm when unknown.  The 

above method is for all fluids except water and helium; for water the corresponding 

equations are: 

𝐹𝑃𝑟 = 1.73 𝑃𝑟
0.27  [6.1 +

0.68

1−𝑃𝑟
] 𝑃𝑟

2          2-20 

And   𝑛𝑓 =  0.9 –  0.3 𝑃𝑟
0.15          2-21 

This method is applicable over the reduced pressure range from about 0.0005 to 0.95. 

References values of [12] with ℎ𝑜 for water 5600 W/m2K at Pr = 0.1,  𝑞0 = 20,000 W/m2 

and 𝑅𝑝𝑜= 0.4 μm with Pcrit for water 220.6 bar and M for water 18.02.  

Cornwell and Houston [13] correlation is presented in the following form 

ℎ =  
𝑁𝑢𝑘𝑙

√
𝜎

𝑔(𝜌𝑙−𝜌𝑔)

              2-22 

𝑁𝑢 = 9.7 𝑃𝑐𝑟𝑖𝑡
0.5 𝐹𝑝𝑟𝑅𝑒

0.67(
𝑃

𝑃𝑐𝑟𝑖𝑡
)0.4         2-23 

And  𝐹𝑝𝑟 is as shown in Equation 2.5. 

Pioro [14] correlation suggests that the heat transfer coefficient can be found from 

Equation 2.23, where 𝐶𝑠𝑓 is a constant that depends on the nature of the heating 

surface- fluid combination and can be taken as 0.016 for water and copper. 𝑚 suggested 

to be 1.0. 

ℎ =  
𝑘𝑙

√
𝜎

𝑔.𝜌𝑙

𝐶𝑠𝑓 [
𝑞

𝜌𝑔0.5ℎ𝑓𝑔[𝜎.𝑔.(𝜌𝑙−𝜌𝑔)]
0.25
]

2

3
𝑃𝑟𝑙

𝑚         2-24 

where 𝑃𝑟𝑙 is the Prandtle number which is 
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 𝑃𝑟𝑙 = 𝑐𝑝𝑙𝜇𝑙/𝑘𝑙            2-25 

Choon [15] modified Rohsenow [4] correlation, Using the water properties at the working 

pressures as well as measured boiling fluxes and ΔT, a multi-variable regression was 

conducted to give Equation 2.25.  The coefficients 𝐶𝑠𝑓 and index n remain unchanged 

from the Rohsenow [4] correlation, i.e., 0.0132 and 0.33, respectively, but the exponent 

L for the low pressure correction is best fitted by 0.293 and E is -0.098 

∆𝑇 = (
𝐶𝑠𝑓ℎ𝑓𝑔𝑃𝑟𝑙

𝑚+1

𝐶𝑝𝑙
) [

𝑞

µ𝑙ℎ𝑓𝑔
(

𝜎

𝑔(𝜌𝑙−𝜌𝑔)
)

1
2⁄

]

𝑛

(
𝑝

𝑝𝑎𝑡𝑚
)
𝐿

(
𝐴𝑤𝑒𝑡𝑡𝑒𝑑

𝐴𝑏𝑎𝑠𝑒
)
𝐸

     2-26 

2.4 Natural convection on horizontal tube: 

When a horizontal tube with temperature Tw is submerged in a fluid with temperature 

T∞ (𝑇𝑤 > T∞) a boundary layer develops along the curved surface.  The boundary layer 

thickness is a function of the angle ϕ (ϕ = 00 is at the bottom of the tube), as shown in 

Figure 2.1.  The similarity solution that worked for the case of the vertical plate does not 

work for natural convection over a horizontal tube.  Merk [16] assumed the momentum 

and thermal boundary layer thicknesses are identical, they found an integral solution 

depending on this assumption.  The results show that the local Nusselt number at the 

bottom where the boundary layer is thinnest is highest.  As the angle φ increases, the 

thickness of the boundary layer increases and the local Nusselt number decreases. 

Although the integral solution can produce results all the way to the top where ϕ= 1800 

and Nuϕ = 0, the result beyond ϕ = 1650 is no longer applicable because boundary layer 

separation occurred and plume flow takes place.  Merk [17] recommended the following 

empirical correlation for natural convection over a horizontal tube based on the integral 

solution:   

𝑁𝑢𝐷 = 𝐶 𝑅𝑎 𝐷
0.25                  2-27 

where is the diameter of the tube the characteristic length in the average Nusselt number 

and Rayleigh number.  The constant C is a function of Prandtl number  
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Figure 2-1: boundary layer for natural convection over horizontal cylinder  

Practically, the empirical correlations based on experimental results are more useful. 

Churchill and Chu [18] recommended the following correlation for horizontal cylinders 

(tubes): 

𝑁𝑢 =

{
 
 

 
 

0.6 +
0.387𝑅𝑎

1
6

[1+(
0.559

𝑃𝑟
)

9
16]

8
27

}
 
 

 
 
2

                        2-28 

And 

𝑅𝑎 = 𝐺𝑟𝑃𝑟 =
𝐿
2𝑔𝛽(𝑇𝑤−𝑇𝐿)𝐷

3

𝜇𝑙
2 𝑃𝑟         2-29 

when Ra<1012 

2.5 Flow Boiling on Tube Bundles 

The boiling on the outside of horizontal tube bundles is used in several systems such as 

thermosiphons and kettle reboilers, waste heat boilers, fire-tube steam generators and 

flooded evaporators in refrigeration systems.  A simplified tube bundle is shown in Figure 

2.2, with tube uniform heating in up flow boiling.  The Figure also shows different flow 

patterns encountered from the bottom to the top, with corresponding regimes of heat 

transfer.  A sub-cooled liquid flows from the inlet nozzle upwards to the bottom of heated 

tubes. The liquid is heated up to the saturation temperature and the temperature of the 

wall remains lower than that needed for nucleation, the process of the heat transfer is a 

single phase convection [19]. 
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Figure 2-2: Boiling on horizontal tube bundle [19] 

As the nucleation conditions are met, vapour is generated, the sub-cooled boiling regime 

is started and remains until the saturated boiling regime begins. This occurs when the 

liquid reaches the saturation temperature, similar to that for pool billing on a single tube. 

Bubbly flow occurs in the lower part of the bundle up until transition to bubble jet flow. 

Bubbly jet flow forms when a two-phase jet impinges on the tubes above.  As the local 

void fraction increases, large vapour plugs are formed and pass between adjacent tubes, 

trapping thin layers of evaporating liquid on the sides of tubes.  This is the sliding bubble 

phenomenon observed by Cornwel [20].  Higher up in the bundle, the vapour becomes 

the continuous phase and liquid is evaporated from thin films covering the tubes, 

producing a frothy spray type of flow [19].  At some critical value of quality and heat 

flux, dry out of the tube can occur with a substantial decrease in heat transfer performance.  

The liquid flow regime on the tube bundle of a kettle reboiler was observed by Cornwel 

[20].  The flow contained large bubbles that could be described as slugs interspersed with 

other smaller bubbles that could be characterize as plug flow or chugging.  At the same 

critical conditions, the flow changes into spray flow with large droplets on the tube 

forming a liquid film.    
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2.6 Heat Transfer on Tube Bundles 

Flow boiling across tube bundles is similar to in-tube flow boiling, with models for tube 

bundles requiring correlations for convective and boiling heat transfer.  The flow velocity, 

bundle geometry and fluid properties govern the heat transfer of forced convective flow 

across a tube bundle.  Experimental result for convective heat transfer in tube bundles are 

correlated with expressions of the form  

𝑁𝑢 = 𝑐𝑅𝑒𝑚𝑃𝑟𝑛 (𝑃𝑟 𝑃𝑟𝑤
⁄ )

0.25

         2-30                                                                                

where 𝑐 is an empirical constant, 𝑚 and 𝑛 are dependent on the tube geometry and 

Reynolds number. 

Models for boiling on tube bundles are available in the open literature, but most of them 

have been developed with a limited database.  Palen [21] presented a simple method to 

estimate the coefficients for bundle, ℎ𝑏.  It was obtained by superposition of the natural 

convection and boiling contributions. 

ℎ𝑏 = 𝐹𝑏𝐹𝑐ℎ𝑛𝑏 + ℎ𝑛𝑐          2-31 

where ℎ𝑛𝑏 is the nucleate pool boiling coefficient, 𝐹𝑏, 𝐹𝑐 are the bundle boiling and the 

mixture boiling correction factors respectively and ℎ𝑛𝑐 is the heat transfer coefficient for 

single- phase natural convection on the tube bundle.  

Fujita et al, Jensen et al and Cornwell et al [22-24] have shown that by using theory of 

two-phase flow for in-tube flow they can estimate the pressure drop and the heat transfer 

through the bundle, in an appropriate manner modified for the different flow regimes and 

the different geometry. 

Applying the corrections to tube boiling directly for the tube bundles obtains poor results, 

it is therefore required to calculate the local heat transfer coefficients within a tube bundle, 

either as a function of local vapour quality or by position.  Different adaptions have been 

done.  For instance, Hwang and Yao [25] modified the Chen [26] correlation. 

ℎ𝑇𝑃 = 𝑆ℎ𝑛𝑏 + 𝐹ℎ𝑠𝑝            2-32                                                                                                                              

Applying a new empirical expression for 𝐹 and the Bennett et al [27] expression for 

boiling suppression factor 𝑆. 
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𝑆 =
𝑘𝑓

𝐹ℎ𝑠𝑝𝑌
[1 − 𝑒𝑥𝑝 (

𝐹ℎ𝑠𝑝𝑌

𝐾𝑙
)]          2-33                                                                                                               

where 𝑌 is a dimensionless variable. 

Convective and nucleate boiling contributions were assumed to be additive without a 

boiling suppression factor by Cornwell et al [28]  

𝑁𝑢𝑏 = 𝑐𝑅𝑒
𝑚𝑃𝑟𝑛 + 𝐶𝑅𝑒𝑏

0.67          2-34 

The Zukauskas and Ziugzda [29] parameters were applied for 𝑐, 𝑚 and 𝑛 .  The local 

Nusselt number in the bundle is based on the tube parameters  

𝑁𝑢𝑏 =
ℎ𝑏𝐷

𝑘𝑙
             2-35 

and the Reynolds number is calculated based on the velocity of the liquid phase as: 

𝑅𝑒 =
𝜌𝑙𝑢𝑙𝐷

𝜇𝑙
               2-36     

The coefficient of bundle boiling was proposed by Nukiyama [30] as the summation of 

nucleate boiling and thin-film evaporation.  The general correlation for the coefficient of 

local heat transfer on the N the tube row from the bottom of the bundle is expressed as: 

  ℎ𝑏 = (1 − Є)ℎ𝑛𝑏 + Єℎ𝑡𝑙        2-37  

where Є the void fraction is used to weight the two contributions. Therefore nucleate 

boiling will be dominant at low void fraction while at higher void fraction, thin-film 

evaporation becomes controlling.  The coefficient for thin film heat transfer is proposed 

as the dimensional equation [30]. 

ℎ𝑡𝑙 = 2326 + 1512 𝑒𝑥𝑝 [−(
0.5556

𝑢𝑔
)
1.5

]         2-38 

The unit of ℎ𝑡𝑓 is  𝑊/𝑚² 𝐾 , and 𝑢𝑔 is the superficial vapour velocity in m/s, calculated 

from the energy input of the lower tube rows as  

𝑢𝑔 = ∑
∅𝜋𝐷

𝑖𝑓𝑔𝜌𝑔𝑁𝑠1

𝑁−1
𝑁              2-39 

where 𝑠1 is the transvers tube pitch.  
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2.7 Void Fraction Prediction Methods 

In the tube bundles similar to flow in tubes, the void fraction has been expressed as: 

 Є = 1 −
1

Ф𝐿
2                      2-40

       

where Ф𝐿
2 is the two phase multiplier.  The method of Ishihara et al [31], Equation 2.41, 

is such a method which is expressed as a function of the Martinelli parameter, Equation 

2.42. Cornwell et al [32] suggested similar approach, Equation 2.42, as did Fair and Klip 

[33] suggested a method based on a different two-phase friction multiplier, Equation 2.43. 

1

1−Є
  =  1 + 

8

𝑋𝑡𝑡
 + 

1

𝑋𝑡𝑡
2               2-41 

1

1−Є
  =  1 + (

6

𝑋𝑡𝑡
)
0.71

                2-42                                                     

1

(1−Є)2
 =  1 + 

20

𝑋𝑡𝑡
 +  

1

𝑋𝑡𝑡
2            2-43 

All equations are based on Martinelli parameter, Xtt, 

𝑋𝑡𝑡 = (
1−𝑥

𝑥
)
0.9

(
𝜌𝑔

𝜌𝑙
)
0.5

(
µ𝑙

µ𝑔
)
0.1

           2-44 

The prediction method of Schrage et al [34] used a correction factor based on the liquid 

Froude number as a multiplier to the homogeneous model.  This model of Schrage et al 

[34] was one of the earliest models that involved the important effect of mass flux 

directly: 

Є

Є𝑯
 = 1 +  0.123 (

𝑙𝑛 𝑥

𝐹𝑟𝑙
0.191)           2-45                                                                                

with    𝐹𝑟𝑙 =
𝑚

𝜌𝑙 (𝑔𝐷)
0.5                               2-46 

Dowlati et al [35] suggested a void fraction model based on data from R113 flow at mass 

velocities higher than 50 kg/m2s. Dowlati method is based on two constants (C1 = 30 and 

C2 = 50) and dimensionless gas phase superficial velocity  

Є = 1 −
1

(1+𝐶1𝑗𝑔
∗+𝐶2𝑗𝑔

∗)
0.5              2-47                                                                               

with   



Chapter 2 – Literature Review 

 

16 

  𝑗𝑔
∗ = 

𝜌𝑔
0.5𝑗𝑔

√𝑔𝐷 ( 𝜌𝑙−𝜌𝑔 )
              2-48                                                                                 

The Feenstra et al [36] method is based on dimensionless parameters that were identified 

and used to fit to their database. The models proposed in the literature were reviewed by 

Ribatski and Thome [37] and found that the Feenstra et al [36] model is the most suitable 

method  to predict the void fraction  for tube bundles. 

By combining liquid and gas phase’s continuity equations, accounting the definition of 

cross-sectional vapour quality, velocity or slip ratio 𝑆 =  
𝑢𝑔 

𝑢𝑙 
, the void fraction Є is derived 

as follow: 

Є =  [1 + 𝑆 
𝜌𝑔 

𝜌𝑙 
(
1−𝑥

𝑥
)]
−1

              2-49                                                                           

Dimensional analysis [36] was used to identify four dimensionless groups governing the 

velocity ratio’s. Equation 2.50 is theoretical result from their separated flow model.  

𝑆 = 1 + 25.7 (𝑅𝑖 . 𝑐𝑎𝑝)0.5 (
𝑃

𝐷
)
−1

                  2-50 

If the basic length scale, (a) is assumed to be the narrowest gap between two tubes and 

the pitch velocity 𝑢𝑔is evaluated in the flow area in the gap, it follows that: 

𝑅𝑖 =  
(𝜌𝑙 −𝜌𝑔 )

2  
𝑔𝑎

𝑚2    𝑎𝑛𝑑 𝑐𝑎𝑝 =  
𝜇𝑙𝑢𝑔

𝜎
   𝑤𝑖𝑡ℎ      𝑢𝑔 =

𝑥𝑚

Є 𝜌𝑔 
      2-51                                       

where the Richardson number (𝑅𝑖) is the ratio between buoyancy force and the inertial 

force and the capillary number (𝑐𝑎𝑝) is the ratio between the viscous force and the surface 

tension force.  An iterative procedure is needed for the computation. 

2.8 Pressure Drop in Tube Bundle  

2.8.1 Single Phase Pressure Drop Prediction Methods 

The pressure drop for single phase flow over tube bundles was expressed by Zukauskas 

[38] as: 

∆𝑝𝑙 = 𝐸𝑢 𝑁𝑅
𝑚2

2𝜌
           2-52 
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For 3 < Re ≤ 103 

𝐸𝑢

𝑘1
=   0.795 + 

0.247  103

𝑅𝑒
+ 

0.335  103

𝑅𝑒2
− 

0.155  104

𝑅𝑒3
+
0.241  104

𝑅𝑒4
      2-53 

For 103 < Re < 2.106 

𝐸𝑢

𝑘1
= 0.245 + 

0.339  104

𝑅𝑒
+
0.984  107

𝑅𝑒2
− 

0.132  1011

𝑅𝑒3
+
0.599  1013

𝑅𝑒4
        2-54 

where 𝑘1, the geometric factor is a function of the aspect ratio( 
𝑎

𝑏
 ), The relative transverse 

(a) and longitudinal (b). 𝑘1≈ 1, the influence of this parameter can be neglected.  

ESDU [39] proposed 

∆𝑝𝑙 = 
𝑓𝑙

2𝐷 𝜌𝐿
𝑚2𝑙           2-55 

𝑓𝐿 the single phase friction factor for the tube bundle and m  is mass flux.  The single 

phase friction factor for the tube bundles expresses by ESDU [39]: 

𝑓𝑙 = 𝑃𝑙𝑐 𝑟𝑒𝑓 . 𝐹𝑣. 𝐹𝑓𝑖. 𝐹𝑅𝐶           2-56 

where Plc ref  is the reference pressure loss coefficient. 

𝑃 𝐿𝐶 𝑟𝑒𝑓 = 𝑌. 𝐹. 𝑏 𝑓 . (
1

𝑃 𝑖−1
)
3

           2-57 

where 𝐹 factor =1.0, 𝑃 𝑖 = 𝑃/𝐷 and the blockage factor 𝑏 𝑓 is  

𝑏 𝑓 =
4𝑃𝑖

2

𝜋
−

𝑅𝑒

𝑅𝑒+1000
               2-58                                          

𝑌 = (
𝑋 𝐶𝐴

𝑋 𝐶𝐶−𝑋 𝐶𝐶
+ 𝑋 𝐶𝐷)

0.5

              2-59 

𝑋 𝐶𝐴 = (
0.1 𝑅𝑒

𝑅𝑒+100
)
2
,   𝑋 𝐶𝐵 = (

𝐴

0.5(1.0+0.6𝐴)
)
2
,  𝑋 𝐶𝐶 =

1.0

(1000+3𝐴)2
 , 𝐴𝑛𝑑  𝑋 𝐶𝐷 =

49

(𝑅𝑒)1.95
         2-60                                                                   

The viscosity correction factor F𝑣 given by  

𝐹𝑣 = (
𝜈 𝑤

𝜈 𝑙
)

0.38

(𝑅𝑒)0.24
              2-61   

  The flow inclination correction factor 𝐹𝑓𝑖 =1.0 and the surface roughness correction        

factor 𝐹𝑅𝐶 = 1.0 as well. 
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2.8.2 Two-Phase Pressure Drop Prediction Methods 

The total pressure drop ΔP𝑡𝑜𝑡𝑎𝑙 of the two-phase fluid following in cross-flow over a tube 

bundle is the sum of the frictional pressure drop,ΔP𝑓, the momentum pressure drop, ΔP𝑚, 

and the gravitational pressure drop ΔP𝐺,: 

𝛥𝑃𝑡𝑜𝑡𝑎𝑙 = 𝛥𝑃𝐺  + 𝛥𝑃𝑚 + 𝛥𝑃𝑓          2-62 

for a shell-side flow, the gravitational pressure drop is  

𝛥𝑃𝐺 =  𝜌𝑔 𝐻            2-63 

where H is the height through the boiling. The 𝜌 is  

𝜌 =  𝜌𝐿(1 − Є)  + 𝜌𝑔Є          2-64 

The vapour and liquid densities are 𝜌𝑔 and 𝜌𝐿, respectively.  

The momentum pressure drop is  

𝛥𝑃𝑚 =  𝑚𝑡𝑜𝑡𝑎𝑙
2 {(

(1−𝑥)2

 𝜌𝐿(1−Є)
+

𝑥2

𝜌𝑔Є
)
𝑜𝑢𝑡

− (
(1−𝑥)2

 𝜌𝐿(1−Є)
+

𝑥2

𝜌𝑔Є
)
𝑖𝑛

}                  2-65 

The momentum pressure drop results in a decrease in pressure of the fluid when       

𝑥𝑜𝑢𝑡 > 𝑥𝑖𝑛 (evaporation).  The two-phase multiplier, ФL
2, crossflow over a tube bundles 

is defined by 

𝛥𝑃𝑓 = Ф𝐿
2∆𝑝𝑙                   2-66                                                                                 

Ishihara et al [31] and Huang [40] based their two-phase multiplier correlations on the 

Martinelli parameter  

Ф𝐿
2 = 1 +

𝐶

𝑋𝑡𝑡
+ 

1

𝑋𝑡𝑡
2                         2-67 

For two-phase flow Ishihara et al [31] set the parameter C to a value of 8.0 The Martinelli 

parameter 𝑋𝑡𝑡 is given by Equation.2.44. For flooded evaporators, the gravitation head 

𝛥𝑃𝐺  typically dominates as low mass velocities.  Hence, the influence of the void fraction 

is particularly significant on the value of the total pressure drop especially at low quality. 
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2.9 Boiling at Sub-Atmospheric Pressures 

Boiling at low pressure can be useful when low temperatures are required, keep the 

temperature of a boiling surface low and thus reduce its corrosion rate; low temperatures 

can be achieved by reducing the saturation pressure.  A reduction in the saturation 

pressure causes a corresponding decrease in the saturation or boiling temperature. This 

temperature decrease is translated to the boiling surface.  This is particularly useful when 

water is used as the boiling liquid.  Water is a desirable liquid since it has such a high 

thermal conductivity, a high heat of vaporization and is non-toxic non-flammable Boiling 

in sealed vessels is a typical application of low pressure boiling.  Heat pipes, 

thermosiphons, and some thermodynamic cycles may depend on low pressures to provide 

low surface temperatures while moving significant quantities of heat. 

Research on the boiling of liquids at sub-atmospheric pressures has mainly focused on 

the reduced pressure effect on the bubble nucleation process, critical heat flux, incipient 

superheat and surface temperature.  Water boiling at sub-atmospheric pressures has been 

done in most cases on plain surfaces or wires, and in some cases on roughened machine 

surfaces. Van Stralen [41], studied boiling of water and a mixture of methyl-ethyl ketone 

on an electrically heated platinum wire within a pressure range of 0.13-1.0 bar. He found 

a reduction in heat transfer during boiling at sub atmospheric pressures.  He observed that 

a decrease in pressure delayed the onset of nucleate boiling, led to increase in the bubble 

size and reduced the maximum heat flux attained. 

I. A. Raben [42] investigated saturated nucleate pool boiling of water at sub-atmospheric 

pressures from a 38.1 mm diameter horizontal heated surface.  The reported experimental 

data included the number of bubbles on the surface, frequency of bubble departure and 

bubble departure diameter for pressures ranging from 0 .013 to 1.0 bar.  The objective of 

their investigation was to identify the dominant energy transport mechanisms of nucleate 

boiling and to understand how they are affected by pressure.  By applying the energy 

equation to a simple heat transfer model, a theoretical analysis of nucleate boiling was 

discussed. They postulated that free convection, vapour-liquid exchange, and the latent 

heat of vaporization are the modes in which energy is transferred during saturated 

nucleate boiling.  For very low pressures, they found that the contribution of latent heat 

was insignificant compared to the vapour-liquid exchange.  Measured heat fluxes ranged 

from about 8 W/cm2 at 13 mbar to about 19 W/cm2 at 1.01 bar.  Heat fluxes were not 

extended into the regimes of vapour slugs and columns or critical heat fluxes. 
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Enhancement strategies were not considered either. However, the investigation of I. A. 

Raben [42] did reveal the vapour bubble formation characteristics for water at low 

pressure in a large vessel. 

Ponter [43] visualized boiling of water for the pressure range of  0.133-1.013bar with a 

tubular stainless steel heater in a stainless steel cylinder. Similar to Van Stralen [41], they 

also observed a reduction in potentially active bubble nucleation sites. Further, they also 

observed that the increase in pressure led to an increase in the critical heat flux.  Another 

notable study on the mechanism of nucleate boiling at atmospheric and sub-atmospheric 

pressures was by Miyauchi [44] who tried to explain the suppressed bubble growth rates 

at sub-atmospheric pressures. They suggested that a rapidly growing bubble would 

accelerate the liquid surrounding the bubble, which will increase the pressure inside the 

bubble with respect to the outside pressure.  They believed that this process would induce 

a higher saturation pressure inside the bubble and thus a higher wall superheat, which will 

suppress the bubble growth rate. 

 Later, Van Stralen et al [45] experimentally investigated the growth rate of vapour 

bubbles in water using a nickel-plated copper-heating surface for a pressure range of 

20- 267 mbar. They observed that the bubble departure time and departure bubble radius 

increased substantially with a decrease in operating pressure. 

Joudi and James [46] focused on a pressure range of 0.25-1.013 bar for boiling water, 

R- 113 and methanol, they observed fluctuations in the surface temperature during 

incipience and noted that decreasing pressure initiated a decrease in the onset superheat.  

Fath and Judd [47]  investigated micro-layer evaporation and found higher wall 

superheats with decrease in operating pressure.  With an increase in surface heat flux, 

they found an increase in the bubble generation site density, which helped transfer of 

additional heat. Tewari et al [48] observed that the heat transfer coefficient decreased 

with a decrease in saturation pressure in the nucleate boiling regime within a pressure 

range of 0.6-1 bar.  They studied nucleate boiling on a horizontal tube at atmospheric and 

sub-atmospheric pressure with water and NaCl solution. Later, McGillis [49] investigated 

the boiling of water in a thermosiphon configuration at sub-atmospheric pressures using 

a plain surface with surface enhancements. They observed that lower pressure generated 

larger nucleation bubbles, which impeded growth in active nucleation sites, resulting in 

larger wall superheats. However, surface enhancements improved the heat transfer with 
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lower wall superheat and increased the critical heat flux. Rainey et al [50] did experiments 

with FC-72 at reduced pressures and observed that increase in pressure brings an increase 

in CHF with a decrease in boiling onset. Boiling from enhanced surfaces produced wall 

superheat that remained at much lower than those of plain surfaces for the range of heat 

flux applied to the experiments. 

Figure.2.3 shows the variation of heat flux with temperature difference data was compiled 

by Choon et al [15].  The range of heat fluxes varied from 1 to 5 W/cm2 in their 

experiments whilst the ΔT varies up to 5.4 K. Included in the Figure are the nucleate pool 

boiling experimental data for water of McGillis et al [51] at pressures of 4 and 9 Kpa. 

These data were obtained at heat fluxes from 5 to 10 W/cm2. 

 
Figure 2-3:  Heat flux versus temperature difference for water at 18 mbar [15] 

experiment), 4 , 9 Kpa [51]and 11Kpa [12]. The bottom most data of 1.8 Kpa is 

observed to have insignificant boiling, i.e., mainly convective heat transfer by water. 

The modified Rohsenow [4] correlation, Equation 2.26 is applicable at low absolute 

pressures from 1.8 to 10 Kpa. Extrapolation beyond these pressures may not reasonable 

as higher system pressures tend to delay the onset of pool boiling [15] highlighted that 

the lowest data point in Figure. 2.3, falls far from the modified correlation and was 

observed to have no boiling at low heat flux, i.e., the rise in ΔT was refer to natural 

convective heat transfer.  Due to the high Awetted/Abase of copper-foam, the effect of the 

capillary is found to be excellent and these effects enhance the boiling heat transfer 

coefficients at higher heat fluxes. The analysis of Rohsenow [4] pool boiling correlation 

Pool boiling region 

Natural convection 

heat transfer region 

Kim Chon experimental data and correlation 

at 1.8 kPa with Cu-foam, Awetted/Abase =60 

McGillis data at 4 kPa, 

Awetted/Abase =10 

McGillis data at 9 kPa, 

Awetted/Abase =10 

Gorenflo correlation at 11 kPa, 

Awetted/Abase =1 

Rosenow correlation for scored cupper 

Csf = 0.0068 and at 11 kPa, 

Awetted/Abase =1 



Chapter 2 – Literature Review 

 

22 

of scored copper surfaces (𝐶𝑠𝑓 = 0.0068 and n = 0.33) at a working pressure 1.8 Kpa, is 

included in Figure 2.3 for comparison.  This correlation does not match with the Choon 

et al [15] experimental data.  

The reduced pressure correlation of Gorenflo [12] for polished copper with pure water is 

also shown in Figure 2.3. Choon et al. [15] observed that, at the sub-atmospheric 

pressures, the Gorenflo [12] correlation did not agree with the experimental data of 

McGillis et al. [51] as well as Choon et al. [15] measured data.  

Liu and Liao [52] reported that the test pressure has a marked effect on the boiling heat 

transfer performance of in line tube bundles. The heat transfer enhancement effect 

decreases with decreasing test pressure for the same tube spacing and the position of the 

test tube in the bundle had a clear effect on its heat transfer characteristics. The heat 

transfer enhancement effect of the top tube was the best.  

 Flow boiling of water in a vertical tube at sub-atmospheric pressure was studied by 

Barbosa Jr et al. [53].  The experiments were conducted at 250, 500 and 1000 mbar. They 

observed an enhancement of local heat transfer at near zero quality and postulated that 

the heat transfer enhancement was due to the formation of a large Taylor bubble at the 

onset of nucleate boiling.  

The comparison of several sets of experimental data for boiling water done by Feldmann 

and Luke [54], Figure 2.4.  The Nishikawa [10], Equation 2.13, Gorenflo [12], Equation 

2.16, and Cooper [11], Equation 2.14, calculation methods for water boiling on copper 

surfaces with Rp = 0,4μm are included in Figure 2.4.  Feldmann and Luke [54] conclude 

that the Gorenflo [12] equation predicts a stronger rise of the heat transfer coefficient than 

Nishikawa, as shown in Figure 2.4.  Both methods seem to be more accurate for water 

than the correlation of Cooper, especially for intermediate and high reduced pressures.  

The Gorenflo [12] correlation shows a good agreement with the experimental results.  For 

low pressures there is a large deviation within the experimental results. Cooper 

overestimates the heat transfer coefficient for the whole pressure range. 
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          Figure 2-4: Comparison of experimental data for water calculated by [54] with 

the Methods of  [10, 12] and [11] 

A study of boiling heat transfer from a longitudinal rectangular finned surface immersed 

in saturated water at near vacuum pressure was presented by Chan et al. [55], they found 

that boiling at low pressure causes the formation of vapour films (compressed bubbles) 

inside the narrow fin spacing.  At high heat flux, vapour films were present in all of the 

fin spaces, impeding the return of the liquid and leading to a decline in the slope of the 

boiling curve.  Boiling at very low pressure between 1.2 kPa and 1.8 kPa was studied by 

Giraud et al. [56], they focused on a special boiling flow pattern, large bubble departure 

followed by the generation of many bubbles of different sizes which collapsed before 

leaving the wall.  They explained that increasing the liquid height above the surface leads 

to an increase in the minimum wall superheat required to maintain nucleation and to a 

decrease in heat transfer. 

Experimental research on water boiling on a horizontal copper rod surface was done by 

Yu et al [57] at sub-atmospheric pressure.  The test conditions were 1.8–3.3 kPa and 

4000–10,000 W/m2. 

 They concluded the follows: 

   At sub-atmospheric pressure, when the heat flux is constant, the boiling heat 

transfer coefficient of water increases with increasing pressure.  
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 When the pressure is low, the increase of boiling heat transfer coefficient with 

increasing pressure is slow. When the pressure reaches a certain value, the 

increase is enhanced.  

 The Cooper correlation used for calculating the pool boiling heat transfer 

coefficient for refrigerants, is not consistent for their experiments, i.e., this 

correlation is not suitable for the calculation of evaporator heat transfer 

coefficients in water vapour compression refrigeration and heat pump systems. 

Giraud et al [58] studied pool boiling of water over a large range of pressures from 

(0.85- 100) kPa on a horizontal heated copper disk.  They presented a boiling curve that 

showed that as the pressure decrease, a new boiling regime appeared. The regime is 

specific to sub-atmospheric pool boiling and is referred to as the cyclic boiling regime.  

Fluctuation in the wall temperature in this regime reached 20 K affecting the heat transfer 

coefficient and causing material fatigue.   

The influence of sub-atmospheric pressure on nucleate boiling was studied by 

Zajaczkowski et al  [59].  Sixteen correlations were calculated and compared to the 

experimental data within pressure range of 1.0-10 kPa for heat flux of 10-45 kW/m2, they 

found that the Montinski [6] correlation was the most accurate approximation for the heat 

transfer coefficient and that the Stephan and Abdelsalam [9] correlation showed 

reasonable agreement. The experiments were conducted by using an isolated glass 

cylinder with water boiling above the cooper plate. Their results showed that low 

pressures adjust the character of the boiling curve.  The curve flattened and the region of 

natural convection shifted towards higher wall superheat because of the influence of low 

pressure on the bubble creation and bubble departure processes. 

2.10 The Effect of Using Free Particles 

As the liquid is evaporated in the actual evaporator, the solid can come out of solution 

and settle on the evaporator base, this solid can form different bed sizes.  The effect of 

these particles on the base requires more understanding from the previous researches. 

Yang and Maa, Yamaguchi and James, Ma et al [60-62] reported that when a suitable 

amount of solid particles were present in a boiling liquid, the pool boiling heat transfer 

can be enhanced and the boiling hysteresis, is partly, or even completely, removed. 
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Chuah and Carey [63] presented the effects of a thin layer of free particles on saturated 

pool boiling heat transfer from a horizontal surface.  They used two different types of 

particles, the first was glass spheres 0.275 and 0.475 mm in diameter, which have a low 

thermal conductivity and density, and the second was copper spheres 0.1 and 0.2 mm in 

diameter, which have a high thermal conductivity and density.  They used water at a 

pressure of 1 atm with heat fluxes of 20-100 kW/m2. For both types of particles, they 

observed that vapour moves vertically through chimneys in the particle layers that tended 

to fluidize the layer.  Comparisons with normal pool boiling at the same level of heat flux 

showed that the addition of light and low conductivity particles significantly increases the 

wall superheat. However, the heavier and high conductivity particles decreased the wall 

superheat. Chuah and Carey [63] measured the coefficients of heat transfer with a layer 

of copper particles and found that for same heat flux, they were as much as a factor of 

two larger than those measured in normal pool boiling.  Furthermore, the results obtained, 

showed that the boiling curve was insensitive to the thickness of the layer at least for thin 

layers.  

McGillis et al [51] studied the pool boiling enhancement techniques for water at low 

pressure, [51].  They suggested that the presence of copper beads of 0.2 mm did not 

contribute to bubble nucleation and did not significantly enhance the nucleation 

behaviour.  This was probably because additional large critical cavity sites were not 

introduced by adding small copper beads. 

The experimental results for Shi et al [64]  show that the boiling behaviour is significantly 

different from water pool boiling and that boiling heat transfer can be enhanced greatly 

for both a fixed particle or fluidized bed.  Visual observations show that there are 

additional nucleation sites in the gaps between the particles and the heated surface.  The 

onset boiling temperature is much lower than that of pure water boiling, especially for 

fixed particle beds. The boiling hysteresis phenomena almost disappear in all the boiling 

cases tested.  Experimental observations also show that the average bubble size in 

nucleate pool boiling with solid particles are generally greater than those without 

particles, especially if the solid particles are static on the heated wall (that is, in a fixed 

bed) or not been fully fluidized.  Bubble sizes are usually between 10 and 20 mm in 

diameter for water boiling on a copper surface under atmosphere pressure. 
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Shi et al [64]  suggest that boiling heat transfer can be enhanced greatly by adding solid 

particles into the liquid, whether in a fixed particle bed or a fluidized bed.  Their 

experimental results show that the boiling heat transfer enhancement is closely related to 

the particle size, the initial bed depth (in fluidized case) and the heat flux applied.  The 

boiling heat transfer characteristics are greatly changed when a particle layer is put on the 

heated surface. Shi et al [64] concluded that the major effects of a fixed particle bed on 

nucleate pool boiling heat transfer is the nucleation sites, bubble motion and the thermal 

conductivity. 

A free-particles-based, boiling enhancement technique was studied using water as the 

working fluid by Kim and Garimella [65]. Free metal particles placed on a heated surface 

were found to improve the boiling heat transfer by providing additional active nucleation 

sites.  The enhancement was a function of the number and size of the particles introduced.  

An optimum particle size of 3 mm to 6 mm, depending on the heat flux, was identified.  

For the uniform particle size test cases, the largest average heat transfer coefficient over 

the range of heat fluxes tested was provided by the 3 mm particles.  They also produced 

the lowest wall superheat at the onset of nucleate boiling. Models developed for vapour 

bubble embryo growth and incipience were consistent with these experimentally observed 

particles sizes.  In order to maximize the boiling heat transfer performance, and invest the 

mechanistic compromise between a large particle size for simplicity of bubble 

growth/departure and a small particle size for more effective superheating of the 

surrounding liquid, mixtures of different sizes of particles were tested. A mixture of 

3  mm and 6 mm particles was shown to improve the average heat transfer coefficient by 

115% compared to a polished surface over a heat flux range of 20 to 100kW/m2.   

The concept of a free-particle technique for boiling heat transfer enhancement was also 

proposed in the companion paper by Kim et al [66].  They experimentally investigated 

the concept using the wetting fluid FC-72 as the working fluid.  This technique introduces 

free-standing metal particles, which may be orders of magnitude larger than 

nanoparticles, on to the immersed boiling surface.  The primary function of the particles 

was to change the local surface topography by forming narrow corner gaps between the 

particle and the surface. These cavities help for bubble nucleation and consequently 

enhance nucleate boiling at low heat fluxes.  This nucleation enhancement mechanism is 

similar to conventional porous structure attached promoters, except that the particles are 

not fixed to the heated surface and are free to move. 
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2.11 The surface aging  

The duration or history of the boiling may affect considerably the heat transfer coefficient 

in nucleate pool boiling, i.e. the age of the surface.  The ageing of solid surfaces may be 

because of any or all of the following reasons: 

 Changeable activity of minute pits, grooves. 

 Deposition of a fouling film on the heated surface 

 Corrosion of the surface. 

 Fluctuations of the temperature during boiling, (hysteresis).  

 The gradual expulsion of dissolved gases from the liquid. 

 The release of gases occluded on the solid surface.  

The time elapse required to reach steady state heat transfer rates will differ, being affected 

by all these factors and other conditions such as the purity of the liquid, the material and 

the heating surface initial condition.  Jakob [67] first stated the ageing effect; following 

studies have implied that the attainment of steady state heat transfer depends mainly on 

the type of surface used, and to a lesser extent on its initial condition [68]. No general 

agreement, however, exists on the influence of heat flux on the ageing rate of a heating 

surface.  In addition, rather little attention has been given to ageing in the boiling of 

organic liquids.  In the chemical and petroleum industries the design of boiling equipment 

for organic liquids is of considerable importance.   

Bergles and Chyu [69] observed the Hysteresis behaviour in nucleate pool boiling on 

porous metallic coatings, with reasonably wetting liquids, such as water, and highly 

wetting liquids, such as R-113. The surface aging, surface sub cooling and heat flux 

change affected the range of the temperature overshoot and resultant boiling curve 

hysteresis.  The hysteresis was supposed to have occurred due to flooding of the porous 

matrix with liquid so that only relatively small sites are available for nucleation.  

Introduction of foreign gas was found to be effective to overcome this behaviour but the 

way it works was not well understood.  Boiling hysteresis was observed with Gewa-T 

tubes but to a significantly lower degree to that observed with Thermoexcel-E and High 

Flux as described by Ayub and Bergles [70].  Chyu and Bergles [71] also confirmed that 

boiling on structured surfaces started readily with no hysteresis. 
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2.12 The One-Dimensional Model 

The geometry of thin slice model used in this study is similar to those used in the study 

of kettle reboilers.  A review of these studies is given by Bamardouf and McNeil [72] 

Most of these studies were carried out using pentane and refrigerant R113.  This study 

used water. 

The kettle reboiler is one of the most commonly used shell and tube heat exchangers in 

the process industry and consists of a tube bundle placed in a shell.  The conventional 

one-dimensional model is applied in sections of the shell where the flow is at right angles 

to the tube bundle. This approach is frequently used in the design of kettle reboilers [73-

76]. A recirculation model [75, 77] was developed by Burnside et al [78] to predict the 

flow and heat transfer in the bundle for a uniform heat flux. Each column, with the 

appropriate number of tubes, was treated separately as a column of square cells with 

boundaries half way between the tube centres. The tubes were immersed in a pool of 

saturated liquid.  The recirculation mass flux, m, was based on equating the head of liquid 

in the pool against the sum of the gravitational, 𝛥𝑃𝐺  frictional, ΔP𝑓 and momentum, ΔP𝑚. 

(Bamardouf and McNeil,2009), the model assumed that a constant vertical mass flux, mv, 

passed upwards through a column, and that the total vertical pressure drop across it was 

the static liquid value for the height of the column.  The horizontal mass flux was taken 

to be zero. The pressure gradient for each tube within the column had a frictional, 

gravitational and acceleration component.  However, the acceleration component was 

negligible. The momentum equation for the one-dimensional model of a two-phase 

mixture with a liquid density of 𝜌𝑙, a vapour density of 𝜌𝑔 and a void fraction of Є was 

therefore given by 

𝜕𝑝

𝜕𝑦
= −𝜌𝑇𝑃𝑔 + 𝐹𝑠𝑓            2-68 

where p is the pressure, y is the distance up the column, 𝜌𝑇𝑃 is the two-phase density, 

given by Equation 2.64, 𝑔 is the acceleration due to gravity and 𝐹𝑠𝑓 is the force on the 

fluid by the tubes and is given by 

 𝐹𝑠𝑓 = 𝛥𝑃𝑓          2-69 

where ΔP𝑓 is given by Equation 2.68.  Bamardouf and McNeil [72] investigated the 

relevant available pressure drop data for one-dimensional flow across tube bundles and 



Chapter 2 – Literature Review 

 

29 

recommended that, for kettle reboilers, the tube friction factor be evaluated from ESDU 

[39]  Equation 2.55, the void fraction from Feenstra et al [36] et al. Equation 2.50 and the 

two-phase multiplier from Ishihara et al [31] Equation 2.67.  It is assumed that the flow 

enters the base of a column of tubes as a saturated liquid. The energy equation is therefore 

𝑑𝑥

𝑑𝑦
= 

𝜋𝐷𝑞

𝑚𝑣𝑝𝑣𝑝ℎℎ𝑓𝑔
            2-70 

where D is the tube diameter, 𝑞 is the heat flux, ℎ𝑓𝑔is the enthalpy of evaporation and 

𝑝𝑣 and 𝑝ℎ are the vertical and horizontal tube pitches, respectively. 

2.13 Conclusion 

There are many research papers on the boiling at high pressure.  Boiling at low (vacuum 

level) pressures has not had very much attention in the literature.  Some pool boiling data 

has been reported, most of the studies focus on enhancement of the heat transfer, bubbles 

behaviour, and agreement of some correlation to the experimental results, the important 

points of the boiling at low pressure can be concluded as: 

 Reduction in heat transfer  

 Decrease in pressure delayed the onset of nucleate boiling, led to increase in the 

bubble size and reduced the CHF. 

 The contribution of latent heat was insignificant compared to the vapour-liquid 

exchange. 

 Higher wall superheat required 

 Cooper [11], Gorenflo [12] and Stephan and Abdelsalam correlations [9] showed 

reasonable agreement. 

  The heat transfer enhancement effect decreases with decreasing test pressure 

  A special boiling flow pattern, new boiling regime  

  The increase of boiling heat transfer coefficient with increasing pressure is slow. 

 But there is a lack of data on the characteristics at low pressures, especially, the tube 

bundle effect, thermal fluid process at low pressure and the boiling mechanism.  This 

study was initiated to investigate the changes that occur in evaporator operation as the 

pressure is reduced and because of the geometry of the evaporator used in this study is 
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similar to those used in the study stated above of kettle reboilers, so one dimensional 

model can be used for more understanding.  

Most of the research papers used the solid particles as enhancement techniques for the 

boiling heat transfer.  Most of them used metal particles at atmospheric and concentrate 

on the particle sizes effect at atmospheric pressure and higher pressures.  All the reported 

results are still insufficient to define the effect of solid particles on the evaporator base at 

vacuum.  This study is to investigate the influence of glass particles on evaporator base 

using range of 0-32 mm bed depth. 
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Chapter 3: EXPERIMENTAL APPARATUS AND DATA 

PROCESSING 

3.1 Experimental Apparatus 

The layout of the test facility is shown in Figure 3.1.  Deionised water flows from the hot-

well to the test section via the pump.  Heat was supplied to the evaporator by Joule heating 

that generated vapour within the three part test section.  Vapour from the test section was 

condensed and sub-cooled to approximately 12oC in the condenser before being returned 

to the hot‐well.  The entry point to the test section could be selected as shown in Figure 

3.1. The Vacuum pump was used to control the pressure of the system. 

 

 
Figure 3-1: plane layout 
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3.1.1 Test Section 

The test section was manufactured from stainless steel and is shown in Figures 3.2 and 

3.3.  The main vessel was 1 m high, 0.75 m wide and 98 mm deep. The two smaller 

vessels were 0.6 m high and were used to vary the pool height from quarter scale up to 

the level attained in the actual evaporator.  The mid and upper sections were identical and 

are shown in Figures 3.2 and 3.4.  

 
Figure 3-2: test sections 
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The vapour exit port was 50 mm at diameter and was situated in the top of the third vessel. 

The feed was introduced through one of three possible inlet ports. They were all located 

on the shell centre line as shown in Figure 3.3 and 3.4 and were connected to the hot-well 

via the preheater.  A forth port, the drain was situated in the bottom of the main test 

section; this was connected to the water storage tank.  All four ports had a diameter of 

13  mm.  The vessels in Figure 3.2 were fitted with viewing windows.  These windows 

were made from toughened glass, 25 mm thick. The glass was compressed against 

a  3  mm rubber seal by a stainless steel flange.  After assembly, the shell and 

accompanying pipe-work were insulated with 30 mm thick glass wool. 

 

 

 
Figure 3-3: test section 



Chapter 3 – Experimental Apparatus and Data Processing 

 

34 

 
Figure 3-4: mid and upper section 

3.1.2 Tube Bundle 

The two tube bundles each contained 18 tubes in an in-line configuration, with a 

horizontal tube pitch of 69 mm and a vertical tube pitch of 62.5 mm.  The tubes were 

made of brass, had an outside diameter of 28.5 mm, a length of 98 mm, were 5 mm thick 

and were electrically heated.  The tubes in the left hand bundle of Figure 3.2 were offset 

by 32 mm above those in the right to replicate a thin slice through tube coils.  Each tube 

contained a rod heater.  The rod heater had a diameter of 15 mm, and was 90 mm in length 

as shown in Figure 3.5. The tube heater arrangement is shown in Figure 3.6.  The tube 

bank is divided into six sectors, 1-6, each with 6 tubes, 3 on either side, dividing the 

bundle volume into six blocks, representing the six coils in the evaporator. 

 

 
Figure 3-5:  The tube cartridge heater 
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Figure 3-6: tube and wall heaters arrangement  

3.1.3 Wall Heater  

Wall heating was provided by pairs of 38mm wide, Watlow MS1J18A strip heaters, 

shown in Figure 3.7.  They were uniformly spaced on the walls of the vessels, as shown 

in Figure 3.3.  Because of variable curvature of the walls of the lower vessel, as shown in 

Figure 3.6, and because the heaters were rigid, the assembly contained aluminium 

adaptors between the walls and the heaters.  The straight walls in the upper vessels and 

in the upper part of the lower vessel had adaptors that were 1.5 mm deep and wide 92 mm 

strips of aluminium.  On the lower vessel these strips covered the whole length of the 

surface and were longer than the heaters, Figure 3.2 and 3.3.  On the upper vessel walls 

the length of the strips are the same as the heaters, Figure 3.4. 

 
Figure 3-7: wall heaters 
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Figure 3-8: variacs 

3.1.4 Power Supply 

The 240 V, 50 Hz supply to the heaters was taken from a 440 V, 3 phase 50 Hz supply. 

Power to the heaters was controlled by 11 variac variable transformers. Six variacs 

controlled the power to the tube heaters, with each variac supplying six cartridge heaters. 

Five variacs supplied power to the wall heaters.  Dial gauge meters indicated the voltage 

and current in each circuit. These were mounted on the supply box, one box per phase, 

that housed fuses and on/off switches as shown in the Figure 3.8.  The switches allowed 

any particular tube bank to be isolated. 

 All the measurement and control circuitry were located in the same laboratory.  Wires to 

the heaters were routed through ducting that terminating on sealed die-cast boxes that 

were mounted on the boiler support framework. 

 The bottom three sets of the wall heater pairs were connected to a single power controller, 

controller F.  The next four mirror‐imaged heater pairs were on controller E.  The top four 

heater pairs were also on a single controller, controller D.  However, a switch was in place 

that allowed the top pairs to be switched off, as the MS1J12AS2 heaters were only used 

in high level tests.  

3.1.5 Vacuum Pump 

The rig operates at a pressure of 50 to 850 mbar absolute. Inevitably for a vacuum system, 

air leaked in and had to be removed to allow the operating pressure to be maintained.  To 

avoid removal of excessive amounts of vapour from the rig while removing the air, the 
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method chosen was to reduce the temperature of the condensate to a level where the 

vapour partial pressure was low and hence the vapour air mixture was predominantly air. 

Removal of the air was accomplished by pumping away only a small amount of vapour. 

This method is commonly used in modified Rankine cycle steam plant.  However, the 

problem in this study was that the flowrate of condensate was very low, a maximum of 

0.0143 kg/s.  Therefore a CVC 3000 vacuum pump was used for this purpose.  The CVC 

3000 vacuum pump manages the vacuum by working to a set point and altering the pump 

speed to maintain it. 

3.1.6 Circulating Pump 

The circulating pump  used was a GRUDFOS 25-80. This pump is a single phase pump, 

it provided a head of up to 8 metres, with a flow rate of up to 5.7 m3/h and a system 

pressure of up to 10 bar. 

3.1.7 Feed System 

The feed flow system is shown in Figure 3.9, and was controlled by the Crane D934 

15  mm valve. The maximum flow rate corresponding to all wall heaters on at a heat flux 

of 45 kW/m2 and the maximum tube heating of 70 kW/m2 is 0.0175 kg/s or 0.0176l/s. 

The bypass flow, Figure 3.9, was controlled by Crane D931 (DN20) 20 mm, fixed orifice 

double regulating valve (DRV), which combines control and orifice metering of the flow. 

The pressure drope over the range of flow rates and handwheel setting of the bypass and 

the feed control valves were plotted from the KV values provided by the manufacturer. 
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Figure 3-9: Rig feed pump circuit  

3.1.8 The Condenser 

The condenser was a Serck ZA396 heat exchanger.  This is a single pass condenser with 

condensation on the tube side.  A cooling water flow rate of up to 85 l/min was available 

for cooling the condenser. 

3.1.9 The Hot-Well Tank 

The hot-well tank was made of stainless steel was 40 cm high, 20 cm wide and 20 cm 

deep.  It had a sight glass to observe the water level as shown in Figure 3.10.  The hot- well 

was connected to the atmosphere via a valve.  This valve used to allow air into the rig and 

increase the pressure back to atmospheric pressure. 
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Figure 3-10: Hot-well tank 

3.2  Instrumentation  

3.2.1 Pressure  

The test‐section and pool pressures were measured by Rosemount 1151 absolute pressure 

transducers.  These smart pressure transducers were accurate to ± 0.25% of range and the 

range was set by a HART communicator.  A Rosemount 1151 differential transducer was 

available to measure the pressure difference across the tube bundle.  This was a fixed 

range transducer, accurate to ±0.5% of range. 

3.2.2 Flow Rate 

The flow rate was set by adjusting the pump control valves until a steady level was 

obtained in the hot‐well sight glass.  The flow rate was measured by a Pelton wheel 

turbine meter, accurate to ±1% of reading. 

3.2.3 Temperature 

TC Direct thermocouples were positioned in the shell to measure the liquid and wall 

temperatures.  The thermocouple locations in the test section are shown in Figure 3.11. 

Only the right-hand-side of the evaporator contained thermocouples.  The thermocouples 

were classified into 4 groups.  The first group are referred to as the stream thermocouples. 

The ‘stream’ was considered to start at the free surface in the top section, flow down the 
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centre line through the mid-section and on to the base of the test section, move across the 

base and up the side walls of all three sections, before returning to the free surface.  These 

thermocouples were numbered TS1‐TS18 and are shown in Figure 3.11. 

 The second group are referred to as the wall thermocouples.  They began in the centre of 

the wall at the base of the test section, moved across it and up through the other sections. 

These thermocouples were numbered TW1‐TW10, and are also shown in Figure 3.11.  

The third group are the tube thermocouples. These are numbered from right to left going 

top to bottom as TT1‐T18 in Figure 3.11. The fourth and final groups are the fluid 

thermocouples.  These were the thermocouples located in the fluid between the tubes and 

were also numbered right to left going from top to bottom as TF1‐TF11 in Figure 3.11.  

All temperatures within the evaporator were measured by k-type thermocouples and were 

connected to the data logger system.  The same system was used in the calibrations and 

in the tests. 

3.2.4 Data Logger 

The National Instrument data logging equipment was linked to a PC and controlled 

through LABVIEW software.  All instruments, except the power meter, were connected 

to NI data logging equipment that was linked to a PC, Figure 3.12, and.  The software 

allowed monitoring of the instruments during operation and logging of the data when 

required. 

3.2.5 Power 

For the tube bundle, inner most tubes were on a single power controller, coil 1, with the 

upper 3 middle tubes on coil 2 and the upper 3 outer tubes on coil 3.  The lower tubes 

were similarly powered as coils 4-6.  This allowed each coil to operate independently, as 

is possible on the actual evaporator.  A uniform heat flux was applied to the tubes in this 

study. The power to each left (three tubes) and right (three tubes) for each coil was 

measured by a power meter. Each sector is controlled by one variable transformer.  The 

object of this arrangement is to enable the imposition of non-uniform heat flux patterns. 
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For the wall heaters, Controllers D, E, and F, the mid and upper sections were powered 

independently through controllers P2 and P5.  These independent controllers allowed a 

distribution of wall heat to be applied. The power measured by the power meter.  The data 

was entered into a computer file manually.  The power meter was accurate to ±1% of 

reading. 

3.2.6 Cameras 

Two webcam cameras (Logitech) Tessar 2.0/3.7, 2 MP Autofocus, were used.  One was 

used to monitor the test section and the other to monitor the mid and upper sections.  

These were controlled through Lab view software and recordings of each test condition 

were made prior to measurement being taken.  Another camera, SLR EOS 7D CANON, 

was used to monitor the test section to get more detailed pictures and videos.  This camera 

used to record the visual images had a resolution of 5184 x 3456 pixels. 
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Figure 3-11: Thermocouple locations 
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3.3 Operation Procedure 

 To fill the rig with deionised water, both drain valves and the vent valve were closed and 

the vacuum pump control valve was opened, Figure 3.1.  The vacuum pump was switched 

on until the test section pressure was reduced to 500 mbar.  The drain valve to the test 

section was opened, allowing water to flow from the storage tank to the evaporator. The 

drain valve was closed when the desired water level was achieved in the evaporator.  The 

drain valve from the hot well was opened, allowing water to flow from the storage tank 

to the hot well.  The drain valve was closed when the water reached the desired height in 

the hot-well sight glass.  The circulating pump, water control valves and the evaporator 

entry shut-off valve were opened, allowing water to flow from the hot well to the vessel, 

purging any air from the pipe work.  The shut-off valve was closed when a steady flow 

of water was evident in the evaporator.  

To operate the rig, the vacuum pump was switched on and adjusted until the required test 

section pressure was achieved.  Heat was supplied to the evaporator by Joule heating of 

rod heaters contained within the tubes. Initially, the tube heaters were switched on at 90% 

of full power.  After some time, steam was generated.  This pushed any remaining air into 

the hot well before it was expelled to the atmosphere. When condensate began to 

accumulate in the hot well, the liquid entry shut-off valve was opened and the circulating 

pump was started.  The flow rate was set by adjusting the pump control valves until a 

steady level was obtained in the hot-well sight glass.  Water from the hot-well was 

pumped by the circulating pump into the test section via the pre-heater. The inlet 

temperature can be set by adjustment of the pre-heater.  However, this was not used in 

these tests. Vapour from the vessel was condensed and subcooled before being returned 

to the hot-well.  Steady conditions were achieved in about 3 hours, whence the power 

controllers were set to produce the required heat flux for the test. Test conditions were 

achieved in a further 30 minutes.  To obtain data set a, each instrument was read once per 

second over a 2 minute period.  The readings were obtained a second time, ten minutes 

later, to obtain data set b.  Thereafter, the power controllers were set to the next condition 

and the procedure repeated until the necessary heat-flux range had been achieved.  
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3.4 Adding the Glass Particles 

The glass particles obtained has similar properties to barium nitrate, it’s contained a range 

of particle sizes and all less than 1.0 mm.  The particle size is compatible to the particle 

size in the actual evaporator.  A sieving machine with different meshes was used to obtain 

particles 0.5-0.6 mm in diameter.  Sieving was repeated many times to obtain this range. 

A volume of glass particles size 0.5-0.6 mm was measured in a measuring cylinder.  These 

particles were weighted to establish a mass-volume relationship.  The volume of the base 

of the evaporator against the centre line height, H, was obtained from the test sections 

geometry.  Measured masses of particles were positioned on the base of the test section 

to achieve the required bed depth as shown in Table 3.1.  To add the particles to the test 

section, the required mass of glass particles was mixed with some water.  The drain valve 

from the test section, Figure 3.1, was opened, allowing the mixture to flow into the vessel 

where the glass beads separated from the water to form the required bed. When the tube 

heat flux was applied, the convection current within the test section produces a flatbed 

surface, an example is shown in Figure 3.14.    

Table 3-1: mass of glass particles required for each bed depth 

 

 

 
Figure 3-12: flatbed surface at a 32 mm bed depth   

  

bed depth Total particles weight 

04  mm            60   gram 

08  mm           168 gram 

12 mm           310 gram 

16 mm           475 gram 

24 mm           876 gram 

32 mm          1346 gram 

H 



Chapter 3 – Experimental Apparatus and Data Processing 

 

45 

3.5 Data Processing:  

The heat transfer mechanism could fall into one of three categories, single phase, sub-

cooled boiling or saturated boiling.  The difference between the first and the other two is 

the heat transfer temperature.  For single phase flow this is the liquid value, for the others 

it is the saturation value.  The onset of nucleate boiling was taken to occur when the heat 

flux, q, was related to the wall temperature through, [79],  

𝑞 =
𝑄

𝐴
=   

𝐾𝑙ℎ𝑓𝑔𝜌𝑣(𝑇𝑤−𝑇𝑠𝑎𝑡)
2

8𝜎𝑇𝑠𝑎𝑡
        3-1 

where 𝐾𝑙 is the liquid thermal conductivity, ℎ𝑓𝑔is the enthalpy of evaporation, 𝜌𝑣 is the 

vapour density, 𝑇𝑠𝑎𝑡 is the saturation temperature and 𝜎 is the liquid surface tension.  If 

the wall temperature fell below the value from Equation 3.1, the local liquid temperature 

was used otherwise the saturation value was used.  

The heat-transfer area was taken as the outside surface area of a tube A.  The heat flow, 

Q, to the tubes on the right hand side of a coil, i.e. 3 tubes, was measured.  The tube heat 

flux, q, was therefore found from 𝑞 =
𝑄

3𝐴
.  For the tube heat transfer coefficients, the heat 

transfer area is the outside surface area of the tubes on the right hand side of a coil, i.e.  

3  tubes.  The power to the right side of each coil was measured.  The surface temperature 

of each tube surface can be found from 

𝑇𝑤 = 𝑇𝑡𝑐 −
𝑞𝐷

2𝐾𝐵
𝑙𝑛 (

𝐷

𝐷−2𝐿𝑡𝑐
)        3-2 

where 𝑇𝑤 is the measured wall temperature, 𝐷 is the outside diameter of a tube,𝐾𝐵 is the 

thermal conductivity of brass, 190 W/mK, and 𝐿𝑡𝑐 is the depth of the thermocouple from 

the tube surface, i.e. 2.5 mm.  

The coil heat fluxes can be found as shown in the Table 3.2. 
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Table 3-2: The coil heat fluxes 

 

where  PTR are power variables for right tubes, Figure 3.11. 

The analyses, of the evaporator is considered in columns and rows as shown in 

Figure.3.13. 

 

 

 

 

Coil Tube no Heat flux 

 

                   Coil 1 

 

12  PTR(1)/(3ΠD 𝐿𝑡𝑐) 

15  PTR(1)/(3ΠD 𝐿𝑡𝑐) 

18   PTR(1)/(3ΠD 𝐿𝑡𝑐) 

 

Coil 2 

11 PTR(2)/(3πD 𝐿𝑡𝑐) 

14 PTR(2)/(3πD 𝐿𝑡𝑐) 

17 PTR(2)/(3πD 𝐿𝑡𝑐) 

  

Coil 3 

10 PTR(3)/(3πD 𝐿𝑡𝑐) 

13 PTR(3)/(3πD 𝐿𝑡𝑐) 

16 PTR(3)/(3πD 𝐿𝑡𝑐) 

 

Coil 4 

3 PTR(4)/(3πD 𝐿𝑡𝑐) 

6 PTR(4)/(3πD 𝐿𝑡𝑐) 

9 PTR(4)/(3πD 𝐿𝑡𝑐) 

 

Coil 5 

2 PTR(5)/(3πD 𝐿𝑡𝑐) 

5 PTR(5)/(3πD 𝐿𝑡𝑐) 

8 PTR(5)/(3πD 𝐿𝑡𝑐) 

 

Coil 6 

1 PTR(6)/(3πD 𝐿𝑡𝑐) 

4 PTR(6)/(3πD 𝐿𝑡𝑐) 

7 PTR(6)/(3πD 𝐿𝑡𝑐) 
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Figure 3-13: columns and rows numbering 

 

The liquid temperatures were distributed throughout the pool.  The temperature for each 

tube was found as shown in the Table 3.3. 
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Table 3-3: The liquid temperature at tubes 

Row Tube nu Liquid temperature at tube 

 

                   Row 1 

16 TL16 = (TF7 + TF13)/2.0 

17 TL17 = (TF8 + TF10)/2.0 

18 TL18 = (TF9 + TF11)/2.0 

 

Row 2 

13 TL13 = TF7 

14 TL14 = TF8 

15 TL15 = TF9 

 

Row 3 

10 TL10 = (TF4 + TF7)/2.0 

11 TL11 = (TF5 + TF8)/2.0 

12 TL12 = (TF6 + TF9)/2.0 

 

Row 4 

7 TL7 = TF4 

8 TL8 = TF5 

9 TL9 = TF6 

 

Row 5 

4 TL4 = (TF1 + TF4)/2.0 

5 TL5 = (TF2 + TF5)/2.0 

6 TL6 = (TF3 + TF6)/2.0 

 

Row 6 

1 TL1 = TF1 

2 TL2 = TF2 

3 TL3 = TF3 

The saturation temperature was evaluated from the local pressure, p, found from 

𝑝 = 𝑝𝑠 + 𝜌𝑙𝑔𝐻         3-3

        

where 𝑝𝑠 is the measured shell pressure, 𝜌𝑙  is the density of liquid and 𝐻 is the depth of 

the tube centre line from the free surface.  The height of the free surface above the pool 

measurement location was found from 

𝐻𝑝𝑜𝑜𝑙 =
(𝑝𝑝𝑜𝑜𝑙−𝑝𝑠)

𝐿𝑔
         3-4 

where ppool was the measured pool pressure.  Liquid properties were evaluated at the 

liquid temperature with vapour properties evaluated at the local saturation conditions 

deduced from the local pressure. 
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For the walls, the heat transfer area depended on the heat spreaders used.  The heat was 

assumed to spread across the full width of the wall, i.e. 92 mm, and the total length of the 

heat spreaders controlled by a given power controller.  These were 0.5964 m for controller 

F, 0.8065 m for controller E, 0.45 m for controller D during low level tests and 1.144 m 

during high level tests, 0.9141 m for controller P2 and 0.9141 m for controller P5.  The 

supplied power was as measured.  The wall temperature at each wall location was found 

from: 

𝑇𝑊 = 𝑇𝑡𝑐 −
𝑞 𝐿𝑡𝑐

𝐾𝑠
           3-5 

where Ks is the thermal conductivity of stainless steel, 16 W/mK. The depth of the 

thermocouple from the wall surface, Ltc, was 2.5 mm.  The liquid temperature at each 

wall location can be found as, Figure 3.11, 

TwL1 = TS9        TwL2 = TS10 

TwL3 = TS11       TwL4 = TS12 

TwL5 = TS13       TwL6 = TS14 

TwL7 = TS15       TwL8 = TS16 

TwL9 = TS17       TwL10 = TS18. 

A heat balance was obtained by measuring the volume of condensate collected in the hot-

well and comparing the associated cooling power with the power supplied to the tubes. 

The cooling power was found to be 96% of the heating power.  For the wall, the cooling 

power was found to be 92% of the heating power.  

3.6 Uncertainty 

 All of the thermocouples were calibrated in a water bath. The water bath contained a 

heater, a stirrer and a resistance thermometer accurate to ±0.1oC.  The thermocouples, 

with the necessary compensation cable attached.  The thermocouple holes were located 

at better than ±0.5 mm on their pitch circle radius.  The uncertainty in the wall temperature 

therefore varied from ±0.1 K to ±0.2 K as the heat flux increased from 10 to 70 kW/m2. 

The pressure in the test-section vapour space was measured by an absolute pressure 

transducer, accurate to 0.25% of range.  With this uncertainty in the pressure at the free 

surface, the uncertainty in the corresponding calculated saturation temperature is ±0.9 K 
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for the 50 mbar tests and ±0.1 K for the 850 mbar tests. A second, similar pressure 

transducer measured the pool pressure.  The uncertainties in the pressure at the free 

surface and in the pool combined to give an uncertainty in the calculated pool height of 

±51 mm.                                                                         
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Chapter 4: EXPERIMENTAL THERMAL RESULTS FOR 

VARIOUS PRESSURES 

4.1  Introduction 

The campaign to investigate the effect of pressure on the thermal performance of the 

evaporator contained four tests series.  The first series, the LLLP, low pressure low liquid 

level series, was carried out at 50 mbar absolute pressure and at a low liquid level.  The 

second series, the HLLP, low pressure high liquid level series, was carried out at a 

pressure of 50 mbar and at a high liquid level.  The third series, the LLMP, medium 

pressure low liquid level series, was carried out at a pressure of 450 mbar at low liquid 

level.  The fourth series, the LLHP, high pressure low liquid level series, series, was 

carried out at a pressure of 850 mbar and at a low liquid level.  The tube heat flux was 

varied from 10‐65 kW/m2 for the LPLL series and the LPHL series, and varied from 

10- 70 kW/m2 for the LLMP series and the HPLL series.  The tests were carried out at 

two pool heights, one at approximately 0.8 m, the low level tests, and one at 

approximately 2m, the high level tests.  The stream temperature locations are shown in 

Figure 3.11 and the rows and columns are obtained in Figure 3.13 

4.2  LLLP Series (50 mbar) 

These tests was carried out at 50 mbar absolute pressure at low liquid level, the pool 

height was approximately 0.8 m.  The tube heat flux in this test was varied from 

10‐ 65  kW/m2. 

4.2.1 Stream Temperature for the LLLP Series (50 mbar) 

Tests with the tube heat flux within the range of (10-65) kW/m2 produced the stream 

temperatures shown in Figures 4.1.  Included in Figure 4.1 are the saturation temperatures 

corresponding to the pressure at the free surface and the evaporator base.  The saturation 

temperature varies from 32oC at the free surface to 49oC at the evaporator base.  Figures 

4.1 shows that the stream temperatures are close to the free surface saturation temperature 

for all heat fluxes.  However, for heat fluxes of 10, 25, 40 and 55 kW/m2, they are slightly 

below the free surface saturation temperature, while they are slightly above at a heat flux 

of 65 kW/m2.  The stream temperatures are well distributed throughout the pool.  These 
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results are therefore indicative of fluid recirculation taking place, with fluid flashing to 

the saturation temperature at the free surface before returning to the depths of the pool. 

 
Figure 4-1: Variation of stream temperature with stream location 

 

 

                        A) q = 10kW/m2                                                                   B) q =  25kW/m2 

 

                          C) q = 40kW/m2                                                                      D)q = 55kW/m2 

 

                         E) q =  65kW/m2 
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4.2.2  Tube and Liquid Temperatures for the LLLP Series (50 mbar) 

Tube and fluid temperature are shown in Figure 4.2a for a tube heat flux of 10 kW/m2. 

Included in the Figure are the saturation temperature and the boiling onset temperature. 

The boiling onset temperature was found from the applied heat flux so that it represents 

the maximum temperature that can occur without boiling happening.  The saturation and 

boiling onset temperatures increase with pool pressure (depth).  Reasonably constant fluid 

temperatures are shown.  These temperatures are below the local saturation temperature 

and are consistent with the stream temperatures, Figure 4.1, and therefore support the 

concept of re‐circulation within the evaporator. The liquid has a large degree of 

subcooling, typically 11K.  All tube temperatures are below the saturation temperature 

except tubes in rows 3 and 4 of column 3 and row 4 of column 2.  Figure 4.2a, shows that 

all of the tube temperatures are less than the onset boiling temperature, therefore 

convective heat transfer is taking place. 

Figure 4.2b shows the temperatures for a heat flux of 25 kW/m2.  All of the tube 

temperatures are higher than the saturation temperature and the degree of sub-cooling is 

similar to the 10 kW/m2 case.  Most of the tube temperatures are below the onset boiling 

temperature, and are therefore in the single phase regime.  However, the temperatures of 

the tubes in rows 3, 4, and 5 of columns 3 are above the onset boiling temperature, 

indicating that boiling is likely on these tubes. The tube temperatures differ about 9 K. 

Figure 4.2c shows the temperatures for a heat flux of 40 kW/m2.  The liquid temperatures 

are below the saturation temperature with a sub-cooling of about 10.4 K. The liquid 

temperatures vary within 2.3 K. Tube temperatures in rows 2, 3, and 4 of column 3, and 

in row 1of column 1 are above the onset boiling temperature.  Therefore, these tubes are 

in the sub-cooled boiling regime.  The other tube temperatures are less than the boiling 

onset temperature and are therefore in the single phase regime.  The tube temperatures 

vary within 9.1 K. 

Figure 4.2d shows the temperature for a heat flux of 55 kW/m2.  The liquid temperatures 

are reasonably uniform varying by about 1.7 K and are less than the saturation 

temperature.  The tube temperatures of the rows 2, 3, 5 and 6 in column 1 and row 6 in 

columns 2 and 3 are below the onset boiling temperature. Therefore these tubes are in the 

single phase regime.  The others are above, and are in the sub-cooled boiling regime.  
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   Figure 4-2: Variation of tube and liquid temperatures with row number for a heat flux  

Tube and fluid temperature are shown in figure 4.2f for a heat flux of 65 kW/m2.  The 

liquid temperatures vary within 0.8 K, so they are practically constant.  The degree of 

subcooling is typically 8.6 K.  All tubes are shown to be boiling except row 5 of column 

     
a)10 kW/m2                                                                                         b) 25 kW/m2 

     
c) 40 kW/m2                                                         d)55 kW/m2 

    
                             f) 65 kW/m2 
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1 and row 6 of columns 1, 2 and 3, which are in single phase convection.  Overall, all the 

liquid temperatures for all heat fluxes are below the local saturation temperature and are 

reasonably close to the stream temperatures.  The liquid temperatures are approximately 

constant and therefore support the concept of re‐circulation within the evaporator.  The 

LLLP data have a reasonably large degree of sub-cooling, typically 11 K, and have a tube 

temperatures that vary by about 8.6 K.  Most tube temperatures for heat fluxes of 10, 25 

and 40 kW/m2 are shown to be below the boiling onset temperature and therefore most 

tubes are in the single phase regime.  For heat fluxes of 55 and 65 kW/m2, most tube 

temperatures are above the boiling onset temperature, so most of the tubes are in the 

subcooled boiling regime. 

4.3 LLMP Series (450 mbar) 

These tests were carried out at 450 mbar at low liquid level, the pool height was 

approximately 0.8 m.  The tube heat fluxes in these tests were varied from 10‐70 kW/m2. 

4.3.1 Stream Temperature for the LLMP Series (450 mbar) 

Variation of stream temperature with stream location for heat fluxes of 10-70 kW/m2 are 

shown in Figure 4.3.  The saturation temperatures corresponding to the pressure at the 

free surface and the evaporator base are included. The behaviour for all applied heat 

fluxes looks similar.  The difference between the base saturation temperature and the free 

surface saturation temperature is 3.7 K for all of the tests.  The stream temperature is 

approximately the same for all heat fluxes, it varies by about 0.9 K at a heat flux of 

10kW/m2, 0.7 K at a heat flux of 20 kW/m2, 0.8 K at a heat flux of 30 kW/m2, 0.6 K at a 

heat flux of 40 kW/m2, 0.6 K at a heat flux of 50 kW/m2, 0.5 K at a heat flux of  60 kW/m2 

and 0.6 K at a heat flux of 70 kW/m2.  The stream temperature is close to the free surface 

saturation temperature for all cases.  The stream temperature is less than the free surface 

saturation temperature by 1.3-2.2 K for a heat flux of 10 kW/m2, 1.6-2.3 K for 20 kW/m2, 

1.6-2.4 K for 30 kW/m2, 2.0-2.6 K for 40 kW/m2, 2.1-2.7 K for 50kW/m2, 1.8-2.3 K 

for  60 kW/m2 and 1.9-2.5 K for 70 kW/m2. In general, the stream temperatures varies by 

0.5-0.9 K and the difference between the free surface saturation temperature and stream 

temperature was 1.3-2.7.  Therefore, this reasonably uniform stream temperature suggests 

that recirculation is taking place within the pool, with fluid flashing to the saturation 

temperature at the free surface before returning to the depths of the pool. 
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Figure 4-3: Variation of stream temperature with stream location  

 
        a)10 kW/m2                                                            b)20  kW/m2 

 
      c) 30kW/m2                                                  d) 40 kW/m2 

    
e) 50kW/m2                                                              f) 60kW/m2 

           
                        g) 70kW/m2 
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4.3.2 Tube and Liquid Temperatures for the LLMP Series (450 mbar) 

Variation of liquid and tube temperatures with row number for the LLMP series are 

shown in Figure 4.4.  Included in the figures are the onset boiling temperature for each 

column and the saturation temperature.  For a heat flux of 10 kW/m2, Figure 4.4a shows 

that in column 1 the degree of sub-cooling is about 2.6 K.  The tube temperatures vary by 

about 3.9 K and they are all above the onset boiling temperature by 1.3-3.9 K.  All the 

tubes are therefore in the sub-cooling boiling regime. The liquid temperatures in column 

1 vary by about 0.6 K.  In column 2 the sub-cooling is about 2.6 K and the liquid 

temperatures differs by 0.7 K.  The tube temperatures vary by about 3.8 K and they are 

above the onset boiling temperature by 0.7-3.4 K. In column 3 the degree of sub-cooling 

is typically 3.1 K and varies within 3.1 K.  The tube temperatures vary by about 2.0 K 

and exceed the boiling onset temperature by 0.8-2.0 K. For a heat flux of 20 kW/m2, 

Figure 4.4b shows that column 1 was a degree of sub-cooling of about 2.6 K and that the 

liquid temperature varies within 0.4 K.  The tubes temperatures vary by about 2.9 K and 

they are above the onset boiling temperature by 1.4-3.5 K.  All the tubes are therefore 

boiling in the sub-cooled regime. Column 2 has a degree of sub-cooling of about 2.6 K 

and the liquid temperatures differ by 0.8 K.  The tube temperatures vary by about 2.2 K 

and are above the onset boiling temperature by 2.1-2.8 K. All of the tubes are in 

sub  - cooling boiling regime.  Column 3 has a degree of sub-cooling of about 3.1 K with 

a 0.5K variation. The tube temperatures vary within 2.8 K and are above the onset boiling 

temperature by 1.6-4.1 K. The tubes are all boiling in the sub-cooled regime. 

Figure 4.4c for a heat flux of 30 kW/m2 Shows that Column 1 has a small degree of 

sub- cooling of about 2.4 K that varies within 0.4 K.  The tube temperatures vary within 

2.0 K and are above the onset boiling temperature by 3.4-5.1 K. The tubes are boiling in 

subcooled regime. Column 2 shows a small degree of sub-cooling of about 2.3 K with the 

liquid temperatures varying within 0.6 K.  The tube temperatures vary by about 2.7K and 

are higher than the onset boiling temperature by 3.1-4.8 K.  Thus, all the tubes are boiling 

in the sub-cooled regime.  Column 3 shows that the liquid temperature is below the 

saturation temperature by about 2.8 K and varies within 0.5 K. The tube temperatures 

differ by 3.8 K and are above the onset boiling temperature by 3.4-6.5 K. All the tubes 

are in sub-cooled boiling regime. 
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Figure 4-4: Variation of tube and liquid temperatures with row number  

 
                                    a)  10 kW/m2                                                                                           b) 20 kW/m2 

 

                                    c)  30 kW/m2                                                              d) 40 kW/m2

 

                                     e) 50 kW/m2                                                                f) 60 kW/m2                                                  

        

                                g) 70 kW/m2                               
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For a heat flux of 40 kW/m2, Figure 4.4c shows that Column 1 has a sub-cooling of about 

2.7 K. The tube temperatures vary within 2.6 K and are above the onset boiling 

temperature by 1.4-5.4 K.  All the tubes are boiling in the sub-cooled regime.  The liquid 

temperatures are reasonably uniform and vary within 0.3 K. Column 2 has a sub-cooling 

of about 2.5 K.  The liquid temperatures are nearly constant and vary within 0.5 K.  The 

tubes temperatures differ by about 2.3 K and are above the onset boiling temperature by 

3.1-5.9 K.  All tubes are boiling and all of them are in the sub-cooled regime.  Column 3 

has sub-cooling of about 2.8 K and the liquid temperature varies within 0.3 K.  The tube 

temperatures vary by about 3.9 K and are above the onset boiling temperature by 

4.8- 7.6  K. Therefore all the tubes are boiling in the sub-cooled regime. 

Figure 4.4d shows the variation of tube and liquid temperatures with row number for a 

heat flux of 50 kW/m2.  Column 1 has a sub-cooling of about 2.7 K.  The tube 

temperatures differ by 2.6 K and are above the onset boiling temperature by 3.0-6.6 K. 

All the tubes are boiling and in the sub-cooled regime.  The liquid temperatures in column 

1 vary by about 0.3 K.  Column 2 has a small degree of sub-cooling of 2.5 K and the 

liquid temperatures varies within 0.5 K. The tube temperatures differ by 2.5 K and are 

higher than the onset boiling temperature by 3.3-6.6 K.  This means that all the tube are 

boiling in the sub-cooled regime.  Column 3 has a sub-cooling of about 2.7 K. The tubes 

temperatures vary by about 2.9 K and are above the onset boiling temperature by 

5.0  -  8.1 K.  All the tubes are boiling in the sub-cooled regime.  The liquid temperatures 

are reasonably constant in column 3 and differ by 0.4 K. 

For a heat flux of 60 kW/m2 Figure 4.4f shows that Column 1 shows a degree of sub-

cooling of about 2.5 K.  The tube temperatures vary by about 2.1 K and are above the 

onset boiling temperature by 3.5-6.5 K.  The tubes all are boiling and in the sub-cooled 

regime.  The liquid temperatures in column lare nearly constant and vary within 0.3 K. 

Column 2 has a sub-cooling of about 2.4 K.  The temperatures of the tubes vary within 

2.4 K and are higher than the onset boiling temperature by 3.7-6.3 K.  All the tubes are 

boiling in the sub-cooled regime.  The liquid temperatures in column 2 vary within 0.5K. 

Column 3 has a sub-cooling of about 2.6 K and the liquid temperatures vary within 0.4K. 

The tube temperatures are above the onset boiling temperature by 5.3-8.2 K. All the tubes 

therefore are boiling in the sub-cooled regime.  
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For a heat flux of 70 kW/m2, Figure 4.4g shows that column 1 has a sub-cooling of about 

2.6 K.  The liquid temperature is reasonably constant and differs within 0.4 K.  The tube 

temperatures are above the onset boiling temperature by 3.8-7.0 K and differ by 2.1K.  

All the tubes are boiling, in the sub-cooled regime.  Column 2 has a sub-cooling of about 

2.4 K and the liquid temperatures changes within 0.5 K.  The tubes temperatures vary by 

about 2.2 K and are above the onset boiling temperature by 3.7-7.0 K.  Thus, all tubes are 

boiling in the sub-cooled regime. Column 3 has a sub-cooling of about 2.6 K and the 

liquid temperature is reasonably uniform and changes within 0.4 K. The tube 

temperatures vary within 3.3 K and are above the onset boiling temperature by 5.7-8.8 K, 

as a result, all the tubes are boiling in the sub-cooled regime. 

Overall, all the liquid temperatures for all heat fluxes are below the local saturation 

temperature and are consistent with the stream temperatures.  The fluid temperature is 

approximately constant and therefore supports the concept of re‐circulation within the 

evaporator.  The LLMP data have a reasonably small degree of sub-cooling, typically 

2.6K, and have a tube temperature that varies by about 2.9 K.  All tube temperatures are 

shown to be above the boiling onset temperature and therefore all tubes are in the 

sub- cooled boiling regime.  It is reasonable to conclude that all of the LLMP data lie in 

the sub-cooled boiling regime.  Tubes in Column 3 have higher wall superheat than 

column 2, while the tubes in column 2 have higher wall superheat than tubes in column 

1.  

4.4  LLHP Series (850 mbar) 

These tests were carried out at 850 mbar absolute pressure and at a low liquid level, the 

pool height was approximately 0.8 m. The tube heat fluxes in these tests were varied from 

10‐70 kW/m2. 

4.4.1 Stream Temperature for the LLHP Series (850 mbar) 

Variation of stream temperature with stream location for heat fluxes of 10-70 kW/m2 are 

shown in Figure 4. 5.  Stream temperature behaves similar to LLML series.  In general, 

the stream temperature varies by 0.7-1.6 K and the difference between the free surface 

saturation temperature and stream temperature was 1.6-3.6 K. The stream temperatures 

are well distributed throughout the pool.  These results are therefore indicative of fluid 
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recirculation taking place, with fluid flashing to the saturation temperature at the free 

surface before returning to the depths of the pool. 

        
                             a) 10 kW/m2                                                            b) 20 kW/m2 

        
                            c) 30 kW/m2                                                                 d) 40 kW/m2 

       
          e) 50 kW/m2                                                             f) 60 kW/m2 
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                            g) 70 kW/m2 

Figure 4-5: Variation of stream temperature with stream location  

4.4.2  Tube and Liquid Temperatures for the LLHP Series (850 mbar) 

Variation of liquid and tube temperatures with row number for the LLHP series are shown 

in Figure 4.6.  Included in the Figures is the onset boiling temperature for each column 

and the saturation temperature. Figure 4.6 shows that LLHP series behaves similar to 

LLMP with respect of slight difference of the tube and liquid temperatures which shown 

in Table 4.1. 

All the liquid temperatures for all heat fluxes are below the local saturation temperature 

and are consistent with the stream temperatures.  The fluid temperature is approximately 

constant and therefore supports the concept of re‐circulation within the evaporator.  The 

LLHP data have a reasonably small degree of sub-cooling, typically 2.4K, and have a 

wall temperature that varies by about 3.2 K.  All tube temperatures are shown to be above 

the boiling onset temperature and therefore all tubes are in the sub-cooled boiling regime. 

It is reasonable to conclude that almost all of the HPLL data lie in the sub-cooled boiling 

regime.  Tubes in Column 3 have higher wall superheat than column 2, while the tubes in 

column 2 have higher wall superheat than tubes in   column 1.  
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Figure 4-6: Variation of tube and liquid temperatures with row number  

                                         
                               a) 10kW/m2                                                                                           b) 20 kW/m2 

 

                                      c) 30 kW/m2                                                         d) 40 kW/m2 

  
                                   e) 50 kW/m2                                                              f) 60 kW/m2 

 

                               g) 70 kW/m2 
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Table 4-1: Results of LLHP series 

Heat flux 

kW/m2 

Column 

     C 

Sub-cooling 

    (K) 

    Liquid 

temperatures 

variation  (K) 

 Tube 

temperatures  

variation  (K) 

      Regime 

 

 

10 

1 2.6 0.3 1.1 sub-cooled boiling regime 

2 2.6 0.6 2.4 sub-cooled boiling regime 

3 2.9 0.4 2.0 sub-cooled boiling regime 

 

 

20 

1 2.2 0.4 1.7 sub-cooled boiling regime 

2 2.3 0.5 3.7 sub-cooled boiling regime 

3 2.7 0.4 3.3 sub-cooled boiling regime 

 

 

30 

1 2.2 0.4 2.7 sub-cooled boiling regime 

2 2.2 0.5 3.7 sub-cooled boiling regime 

3 2.5 0.3 4.1 sub-cooled boiling regime 

 

 

40 

1 2.4 0.5 2.9 sub-cooled boiling regime 

2 2.3 0.3 3.5 sub-cooled boiling regime 

3 2.7 0.2 3.8 sub-cooled boiling regime 

 

 

50 

1 2.2 0.4 2.9 sub-cooled boiling regime 

2 2.1 0.4 2.4 sub-cooled boiling regime 

3 2.4 0.2 3.9 sub-cooled boiling regime 

 

60 

1 2.2 0.6 3.0 sub-cooled boiling regime 

2 2.0 0.3 3.8 sub-cooled boiling regime 

3 2.4 0.2 3.7 sub-cooled boiling regime 

 

70 

 

1 2.2 0.6 2.9 sub-cooled boiling regime 

2 2.1 0.4 4.0 sub-cooled boiling regime 

3 2.5 0.1 3.9 sub-cooled boiling regime 

 

4.5 HLLP Series (50mbar) 

These tests were carried out at 50 mbar absolute pressure at high liquid level, the pool 

height was approximately 2.0 m.  The tube heat flux in these tests were varied from 

10‐ 65  kW/m2. 



Chapter 4 – Experimental Thermal Results for Various Pressures 

 

65 

4.5.1 Stream Temperature for the HLLP Series (50mbar) 

HLLP tests for heat fluxes of 10, 25, 40, 55 and 65 kW/m2 produced the stream 

temperature shown in Figure 4.7.  The saturation temperatures corresponding to the 

pressure at the free surface and the evaporator base are included. The saturation 

temperature is shown to vary from 32oC at the free surface to 64oC at the evaporator base. 

Figure 4.7a shows the variation of stream temperature with stream location for a heat flux 

of 10 kW/m2.  The stream temperature is reasonably uniform and close to the free surface 

saturation temperature. 

The difference between the saturation temperature at the free surface and the stream 

temperature increases as the heat flux increases at most locations, as shown in Figure 4.7, 

except locations 1, 2 and 18, which are close to the free surface saturation temperature. 

The stream temperatures fluctuate by 2.1 K for a heat flux of 10 kW/m2, 3.4 K for a heat 

flux of 25 kW/m2, 4.7 K for a heat flux of 40 kW/m2, 5.6 K for a heat flux of 55 kW/m2 

and 6.2 K for a heat flux of 65 kW/m2.  The stream temperatures are well distributed 

throughout the pool.  These results are therefore indicative of fluid recirculation taking 

place, with fluid flashing to the saturation temperature at the free surface before the liquid 

is returned to the depths of the pool. 
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           a) 10 kW/m2                                                                   b) 25 kW/m2 

    

          c) 40 kW/m2                                                                d) 55 kW/m2 

     

                               e) 65 kW/m2                                                                              

Figure 4-7: Variation of stream temperature with stream location  
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4.5.2 Tube and Liquid Temperatures for the HLLP Series (50mbar) 

The variation of liquid and tube temperatures with row number is shown in Figure 4.8. 

Included in the Figures is the onset boiling temperature and the saturation temperature. 

Figure 4.6 shows that HLLP series behaves similar to LLLP with respect of slight 

difference of the tube and liquid temperatures which shown in Table 4.2.  The liquid 

temperatures for all heat fluxes are below the local saturation temperature and are 

consistent with the stream temperatures.  The liquid temperature is approximately 

uniform, and therefore supports the concept of re‐circulation within the evaporator.  The 

HLLP data have a high degree of sub-cooling, typically 26 K. Most tube temperatures for 

heat fluxes of 10, 25 and 40 kW/m2 are shown to be below the boiling onset temperature 

and therefore are mostly in the single phase regime.  Most of the tube temperatures at heat 

fluxes of 55 and 65 kW/m2 are above the onset boiling temperature, and are in the 

sub- cooled boiling regime. Boiling heat transfer therefore starts at a heat flux between 

40 and 55 kW/m2. 
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Figure 4-8: Variation of tube and liquid temperatures with row number  

 

 

  

                                  a) 10 kW/m2                                                                                        b)   25 kW/m2 

  

                                        c) 40 kW/m2                                                      d)55 kW/m2 

        

                                    e) 65 kW/m2 
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Table 4-2: Results of Results of HLLP series 

Heat flux 

kW/m2 

  Column 

      C 

  Sub-

cooling 

         (K) 

Liquid 

temperature 

variation   (K) 

Tube 

temperature 

variation  

(K) 

Regime 

 

           

10 

1 30 0.6 2.2 All the tubes are in 

single phase regime 

2 31 0.7 1.6 All the tubes are in 

single phase regime 

3 31.5 1.1 2.1 All the tubes are in 

single phase regime 

 

            

25 

1 30 1.4 3.1 All the tubes are in 

single phase regime 

2 29 1.4 1.4 All the tubes are in 

single phase regime 

3 29 1.5 3.2 All the tubes are in 

single phase regime 

 

          

40 

1 26 4.1 2.7 All the tubes are in 

single phase regime 

2 26.5 1.6 3.3 All the tubes are in 

single phase regime 

3 28 3.4 8.1 All the tubes are in 

single phase regime 

except that in fourth 

row, which in sub-

cooling boiling 

regime. 

 

           

55 

1 26 1.8 7.7 All the tubes are in 

sub-cooled boiling 

regime except that in 

the second row which 

in single phase regime 

2 25 0.5 2.2 All the tubes are in 

sub-cooled boiling 

regime 

3 25 2.3 8.3 All the tubes are in 

sub-cooled boiling 

regime 

 

        

65 

1 25 1.8 3.1 All the tubes are in 

sub-cooled boiling 

regime 

2 24 2.5 2.4 All the tubes are in 

sub-cooled boiling 

regime 

3 24 3.1 5.7 All the tubes are in 

sub-cooled boiling 

regime 
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4.6 Discussion and Visual Observations 

The results obtained show that the operation of the evaporator changes significantly as 

the pressure is reduced. This is evidenced by the stream temperatures.  The stream 

temperatures indicate that some kind of re‐circulation is occurring, irrespective of the 

pressure, because the pool temperature is similar to the saturation temperature 

corresponding to the pressure at the free surface. However, this produces small liquid 

sub-coolings at high pressure, LLHP, and large liquid sub-coolings at vacuum pressures, 

LLLP and HLLP. The LLMP and LLHP tests behaved as expected.  However, the vacuum 

tests behave differently.  The vapour density in Equation 3.1 means that vacuum heat 

fluxes require a significantly higher wall superheat to nucleate.  This has meant that tube 

wall temperatures are lower than expected at the lower heat fluxes and are being cooled 

by single-phase flows. The single‐phase cooling is enhanced as a result of the 

re‐ circulation, another source of the delay in nucleation.  The tubes nucleate at the higher 

heat fluxes but only partial boiling is confirmed by the visual observations shown in 

Figures 4.29, 4.30, 4.31 and 4.32. The LLHP and the LLMP tests shows lots of bubbles 

whereas the HLLP and LLLP tests shows very few. 

Photographs taken of the tube bundle at a pressure of 50 mbar during the LLLP series for 

various heat fluxes are shown in Figure 4.29.  At a heat flux of 10 kW/m2, bubbles were 

not evident so the photograph is excluded. Bubbles are evident as the heat flux increases. 

However, the bubbles are relatively large and attached to the tube wall.  Larger heat fluxes 

led to a more frequent appearance of the bubbles.  These photographs indicate that 

sub- cooled boiling happens at heat fluxes greater than 10 kW/m2 but the information 

obtained does not allow any evidence of the presence or absence of convection to be 

confirmed. The HLLP series are shown in Figure 4.30 and looked similar to the LLLP 

series. However, bubbles were not observed until a heat flux of    40 kW/m2. 

Photographs taken of the tube bundle at a pressure of 450 mbar, the LLMP series, are 

shown in Figure 4.31 they looked similar to the LLHP series shown in Figure 4.32.  At 

heat fluxes of 10 and 20 kW/m2, small bubbles are evident towards the top of the tube 

bundle.  As the heat flux increases to 30 kW/m2, bubbles are evident further down in to 

the tube bundle.  For heat fluxes greater than 30 kW/m2, the LLMP series, and for the 

heat flux greater than 20 kW/m2, the LLHP series show bubbles present from row 1 

upwards, confirming that sub-cooled boiling is occurring.  However, what cannot be 
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deduced is the presence or absence of convective heat transfer.  It is noticeable that, even 

at a heat flux of 70 kW/m2, the void fraction is low. 

 

        
a) 25 kW/m2        b) 40 kW/m2               c) 55 kW/m2                 d) 65 kW/m2 

Figure 4-9: LLLP test 

      
        a) 25kW/m2          b) 40 kW/m2               c) 55 kW/m2                   d) 65kW/m2 

Figure 4-10: HLLP test 
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  a) 10kW/m2                   b) 20 kW/m2               c) 30 kW/m2                  d) 40kW/m2 

                          
   e) 50 kW/m2                                       f) 60 kW/m2                          g) 70 kW/m2 

Figure 4-11: LLMP test 
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      a) 10kW/m2                 b) 20kW/m2                 c) 30kW/m2               d) 40kW/m2 

 

                       
              e) 50 kW/m2                           f) 60 kW/m2                              g) 70 kW/m2                                      

Figure 4-12: LLHP test 
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Chapter 5 : HEAT-TRANSFER REGIME INVESTIGATION 

5.1 Introduction 

The non-equilibrium model studied by McNeil et al at the same condition for low pressure 

and high pressures, [80] suggested that the non-equilibrium scenario is very unlikely to 

have occurred.  Two analyses were undertaken in an attempt to establish the heat-transfer 

mechanisms that occurring on the tube surfaces, the isolated tube analysis and the 

equilibrium one-dimensional column analysis. 

5.2  The Isolated Tube Analysis 

This analysis assumed that the tubes acted independent of each other in either natural 

convection or sub-cooled nucleate boiling.  For a horizontal cylinder, Churchill and Chu 

[81] gave the natural convection, heat-transfer coefficient, ℎ𝑛𝑐,as in Equation 2.31, 

Prandtl number, given in Equation 2.24 and Ra is the Rayleigh number, given by Equation 

2.32.  The fluid properties were evaluated at the film temperature, Tf, given by 

𝑇𝑓 =
(𝑇𝑤+𝑇𝐿)

2
          5-1 

Natural convection took place with increasing heat flux until the onset of nucleate boiling. 

This occurred when the wall superheat from natural convection balanced with the onset 

condition, Equation, i.e. 

𝑞𝑜𝑛𝑏 =
𝑘𝐿ℎ𝑓𝑔𝑔(𝑇𝑜𝑛𝑏)

2

8s𝑇𝑠𝑎𝑡
= ℎ𝑛𝑐(𝑇𝑜𝑛𝑏 +𝑇𝑠𝑢𝑏)            5-2 

with nucleate boiling continuing thereafter.  The correlations considered for the boiling 

heat-transfer coefficient, ℎ𝑛𝑐 were of the form  

ℎ𝑛𝑏 = 𝛾𝑞𝑛𝑏
𝑛                      5-3

            

Three correlations were used, the Cooper [11] correlation, Equation 3.16, and Gorenflo 

[12] correlation, Equation 3.17, as they had been identified by Feldmann and Luke [54] 

as having some success at these reduced pressures and the Stephan and Abdelsalam [9] 

correlation, Equation 3.12.  Two errors were used to indicate accuracy, the average and 

the root mean square errors.  The average error was defined as 
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Error average = 
𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
                           5-4 

The root mean square error was defined as      

 rms = √
1

𝑛
(𝐷12 + 𝐷22 +⋯𝐷𝑛2)          5-5 

where D is the wall temperature difference, which is the difference between the wall and 

liquid temperatures.  This temperature difference is used for the statistical comparisons 

for all of the models. 

5.2.1  Low Pressure Low Level Series LLLP 

At a pressure of 50 mbar, Equation 5.2 gave onset wall superheats of typically 3.9-6.4 K 

for the LLLP data series.  This translates to the data taken at a heat flux of 10 kW/m2, 

being in the natural convection regime while others were in the sub-cooled nucleate 

boiling regime.  There are differences between the behaviors of the columns, with 

columns 1 running cooler than column 2, which, in turn is running cooler than column3. 

5.2.1.1 Cooper correlation based predictions 

 A comparison between the measured and predicted wall superheats using the Cooper 

[11] correlation in the sub-cooled boiling regime for columns 1, 2 and 3 are shown in 

Figure 5.1.  Data sets (a) and (b), taken at the same conditions ten minutes apart, are both 

shown.  The upper and lower limits shown in Figure 5.2 are set at ± 30% with the data 

for columns 1, 2 and 3 shown in red, green and black respectively.  The Cooper-based 

approach over- predicts the data with an error average difference of -23.1%, -15.8% and 

-8.9% for columns 1, 2 and 3 respectively. The corresponding root mean square 

differences (rms) are 27.9%, 19.0% and 16.6%.  Thus, the Cooper [11] based approach 

predicts the wall temperatures in columns 3 better than those in columns 1 and 2. Overall, 

the average and rms differences are -15.9% and 21.6% respectively. 
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                                   a) Column 1                                                       b)   Column 2 

       
      c) Column 3 

Figure 5-1: variation of row number with wall superheat  
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Figure 5-2: comparison of predicted with measured wall superheat  
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5.2.1.2 Gorenflo correlation based predictions 

A comparison between the measured and predicted wall superheats using the Gorenflo 

[12] correlation in the sub-cooled boiling regime is shown in Figure 5.3 for column 1, 2 

and 3 respectively.  Predictions of the data occur with average differences of -35.7%,   

- 29.3% and   -23.2% for columns 1, 2 and 3 respectively.  The corresponding root mean 

square differences (rms) are 37.7%, 30.4% and 27.0%.  Thus, the Gorenflo [12] based 

approach predicts the wall temperatures in column 3 better than those in columns 1 and 

2. Overall, the average and rms differences are -29.4% and 32.0% respectively.  The 

variation of predicted and measured wall superheat, Figure 5.4, shows that the Gorenflo 

[12] correlation gives poor agreement with wall superheat. 

 

 
                           a) Column 1                                                      b) Column 2 

   
                       c) Column 3 

Figure 5-3: variation of row number with wall superheat for 
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Figure 5-4: comparison of predicted with measured wall superheat 
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5.2.1.3 Stephan and Abdelsalam correlation based predictions 

Figures 5.5 shows the comparison between the measured and predicted wall superheats 

using the Stephan and Abdelsalam [9] correlation in the sub-cooled boiling regime for 

column 1, 2 and 3 respectively.  The Stephan and Abdelsalam [9]-based approach 

over- predicts the data with an average differences of -20.5%, -13.0% and - 5.9% for 

columns 1, 2 and 3 respectively.  The corresponding root mean square differences (rms) 

are 26.4%, 17.3% and 15.3%.  Thus, the Stephan and Abdelsalam [9] based approach 

predicts the wall temperatures in columns 3 better than those in columns 1 and 2.  Overall, 

the average and rms differences are -13.1% and 20.3% respectively.  The variation of all 

of the predicted and measured wall superheat is shown in Figure 5.6. 

 
a) Column 1                                                 b) Column 2 

 
                   c) Column 3 

Figure 5-5: Variation of row number with wall superheat for 
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Figure 5-6: comparison of predicted with measured wall superheat
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Overall, when this model is applied to the low level data at a pressure of 50 mbar, root 

mean square differences of 21.6% and an average error of -16% occur when the Cooper 

[11] correlation was used to describe the boiling element.  The corresponding figures 

achieved for the Gorenflo [12] correlation were 32.0% and -29.4% and for the Stephan 

and Abdelsalam [9] correlation were 20.3% and -13.2%. Figures 5.2, 5.4 and 5.6 shows 

that the Stephan and Abdelsalam [9]-based approach predicts the data significantly better 

than the Cooper [11]-based approach, which is better than Gorenflo [12]-based approach. 

5.2.2 Low Pressure High Level Series HLLP 

At a pressure of 50 mbar, Equation 5.2 gave onset wall superheats of typically 6.1-7.2 K 

for the HLLP data series.  This translates to the data taken at heat fluxes of 10 and 25 

kW/m2, being in the natural convection regime with those obtained at 55 and 65 kW/m2 

being in the sub-cooled nucleate boiling regime.  Some of the data obtained at a heat flux 

of 40 kW/m2 are in the natural convection regime while others are in the sub-cooled 

boiling regime. 

5.2.2.1 Cooper correlation based predictions 

A comparison between the measured and predicted wall superheats using the Cooper [11] 

correlation for the sub-cooled nucleate boiling regime are shown in Figure 5.7 for 

columns 1, 2 and 3 respectively.  There is little difference in the behavior of the columns. 

The Cooper-based approach predicts the data with an average difference of 0.5%, 1.28% 

and 3.1% and the corresponding root mean square differences (rms) are 14.7%, 13.6% 

and 14.4% for columns 1, 2 and 3 respectively.  The variations of the predicted and 

measured wall superheat are shown in Figure 5.8.  The Cooper [11]-based approach 

predicts the wall temperatures in all columns equally well.  Overall, the average difference 

and the corresponding root mean square differences (rms) are 1.6% and 14.3% 

respectively.  
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                    a)  Column 1                                                        b) Column 2 

  

                             c)  Column 3 

Figure 5-7: variation of row number with wall superheat 
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Figure 5-8: comparison of predicted with measured wall superheat
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5.2.2.2 Gorenflo correlation based predictions 

Using the Gorenflo [12] correlation in the sub-cooled nucleate boiling regime, Figure, 5.9 

show little difference between the columns, with an average difference of -4.6%, -3.9% 

and 2.0% and with corresponding root mean square differences (rms) of 12.1%, 12.9% 

and 12.0% for columns 1, 2 and 3 respectively.  Thus, the Gorenflo [12]-based approach 

also predicts the wall temperatures in all columns equally well. Overall, the average 

difference and the corresponding root mean square differences (rms) are -3.5% and 12.1% 

respectively.  The variation of the predicted and measured wall superheat is shown in 

Figure 5.10. 

 

  
                                a) Column 1                                                       b) Column 2 

  

                               c) Column 3 

Figure 5-9: variation of row number with wall superheat 
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Figure 5-10: comparison of predicted with measured wall superheat
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5.2.2.3 Stephan and Abdelsalam correlation based predictions 

A comparison between the measured and predicted wall superheats using the Stephan and 

Abdelsalam [9] correlation for the sub-cooled nucleate boiling regime is shown in Figures 

5.11 for columns 1, 2 and 3 respectively.  The Stephan and Abdelsalam [9]-based 

approach predicts the data with an average difference of 0.3%, 1.7% and 2.9% while the 

corresponding root mean square differences (rms) are 14.6%, 13.4% and 14.2% for 

columns 1, 2 and 3 respectively.  The variation of the predicted and measured wall 

superheat is shown in Figure 5.12.  The Stephan and Abdelsalam [9]-based approach 

predicts the wall temperatures in all columns equally well.  Overall, the average error and 

the corresponding root mean square differences (rms) are 1.4% and 14.1%, respectively.   

  
                                a) Column 1                                                        b) Column 2 

 
                                       c) Column 3 

Figure 5-11: variation of row number with wall superheat for 
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Figure 5-12: comparison of predicted with measured wall superheat
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Overall, the Stephan and Abdelsalam [9]-based approach, Cooper [11]-based approach 

and the Gorenflo [12]-based approach predict the data equally well. However, 

a  significant proportion of the good agreement comes from the natural convection 

predictions, which masks the boiling element. Boiling occurs at heat fluxes of 55 and 

65 kW/m2, for which the Gorenflo [12] correlation has an rms difference of 12.14% while 

the Stephan correlation has an rms difference of 14.14% and the Cooper correlation as 

the root mean square difference of 14.3%. Thus, the Gorenflo [12] correlation predicts 

the data better than the Stephan correlation, which predicted similarly to the Cooper [11] 

correlation.  

5.2.3 Medium Pressure Low Level Series LLMP: 

At a pressure of 450 mbar, Equation 5.2 gave onset wall superheats of typically 0.9-1.2K, 

so that all of the LLMP data set is predicted to be boiling.  This translates to the data taken 

at all heat fluxes being in the sub-cooled nucleate boiling regime.  All the columns behave 

similarly, with column 3 slightly hotter than the other columns. 

5.2.3.1 Cooper correlation based predictions 

Figure 5.13 shows a comparison between the measured and predicted wall superheats for 

the Cooper  [11] correlation.  The data behavior is consistent with pool boiling in that the 

wall superheat increases with increasing heat flux as shown in Figure 5.13. The  Cooper 

[11]-based approach over-predicts the data with an average difference of 3.1%, 0.8% and 

6.2% for columns 1, 2 and 3 respectively.  The corresponding root mean square 

differences (rms) are 12.0%, 11.3% and 14.8%.  Thus, the Cooper correlation predicts the 

wall temperatures in columns 1 and 2 better than those in column 3.  Overall, the average 

and the corresponding root mean square differences are 3.1% and 12.8% respectively, 

Figure 5.13.  The upper and lower limits shown in Figure 5.14 are set at ±30% with the 

data for columns 1, 2 and 3 shows good agreement between the predicted and measured 

wall superheat. 
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                                     a) Column 1                                                    b) Column 2 

   
                                c)  Column 3 

Figure 5-13: variation of wall superheat with row number  

 
Figure 5-14: comparison of predicted with measured wall superheat 

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0 1 2 3 4 5 6 7

W
a

ll
 s

u
p

e
rh

e
a

t 
(K

)

Row number (-)

10 kW/m2 a

10kW/m2 b

prediction  (10 kW/m2)

20 kW/m2 a

20 kW/m2 b

prediction (20 kW/m2)

30 kW/m2 a

30 kW/m2 b

prediction (30 kW/m2)

40 kW/m2 a

40 kW/m2 b

prediction (40 kW/m2)

50 kW/m2 a

50 kW/m2 b

prediction (50 kW/m2)

60 kW/m2 a

60 kW/m2 b

prediction (60kW/m2)

70 kW/m2 a

70 kW/m2 b

prediction 70 kW/m2

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0 1 2 3 4 5 6 7

W
a

ll
 s

u
p

e
rh

e
a

t 
(K

)

Row number (-)

10 kW/m2 a

10kW/m2 b

prediction  (10 kW/m2)

20 kW/m2 a

20 kW/m2 b

prediction (20 kW/m2)

30 kW/m2 a

30 kW/m2 b

prediction (30 kW/m2)

40 kW/m2 a

40 kW/m2 b

prediction (40 kW/m2)

50 kW/m2 a

50 kW/m2 b

prediction (50 kW/m2)

60 kW/m2 a

60 kW/m2 b

prediction (60kW/m2)

70 kW/m2 a

70 kW/m2 b

prediction 70 kW/m2

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0 1 2 3 4 5 6 7

W
a

ll
 s

u
p

e
rh

e
a

t 
(K

)

Row number (-)

10 kW/m2 a

10kW/m2 b

prediction  (10 kW/m2)

20 kW/m2 a

20 kW/m2 b

prediction (20 kW/m2)

30 kW/m2 a

30 kW/m2 b

prediction (30 kW/m2)

40 kW/m2 a

40 kW/m2 b

prediction (40 kW/m2)

50 kW/m2 a

50 kW/m2 b

prediction (50 kW/m2)

60 kW/m2 a

60 kW/m2 b

prediction (60kW/m2)

70 kW/m2 a

70 kW/m2 b

prediction 70 kW/m2

10 kW/m2 a 10kW/m2 b

prediction  (10 kW/m2) 20 kW/m2 a

20 kW/m2 b prediction (20 kW/m2)

30 kW/m2 a 30 kW/m2 b

prediction (30 kW/m2) 40 kW/m2 a

40 kW/m2 b prediction (40 kW/m2)

50 kW/m2 a 50 kW/m2 b

prediction (50 kW/m2) 60 kW/m2 a

60 kW/m2 b prediction (60kW/m2)

70 kW/m2 a 70 kW/m2 b

prediction 70 kW/m2

0.0

5.0

10.0

15.0

20.0

25.0

0.0 5.0 10.0 15.0 20.0

M
e

a
s

u
re

d
 w

a
ll

 s
u

p
e

rh
e

a
t 

(K
)

Predicted wall superheat (K)

10 kW/m2 a column 1 10kW/m2 b column 1

10 kW/m2 a column 2 10 kW/m2 b column 2

10 kW/m2 a column 3 10 kW/m2 b column 3

20 kW/m2 a column 1 20 kW/m2 b column 1

20 kW/m2 a column 2 20 kW/m2 b column 2

20 kW/m2 a column 3 20 kW/m2 b column 3

30 kW/m2 a column 1 30 kW/m2 b column 1

30 kW/m2 a column 2 30 kW/m2 b column 2

30 kW/m2 a column 3 30 kW/m2 b column 3

40 kW/m2 a column 1 40 kW/m2 b column 1

40 kW/m2 a column 2 40 kW/m2 b column 2

40 kW/m2 a column 3 40 kW/m2 b column 3

50 kW/m2 a column 1 50 kW/m2 b column 1

50 kW/m2 a column 2 50 kW/m2 b column 2

50 kW/m2 a column 3 50 kW/m2 b column 3

60 kW/m2 a column 1 60 kW/m2 b column 1

60 kW/m2 a column 2 60 kW/m2 b column 2

60 kW/m2 a column 3 60 kW/m2 b column 3

70 kW/m2 a column 1 70 kW/m2 b column 1

70 kW/m2 a column 2 70 kW/m2 b column 2

70 kW/m2 a column 3 70 kW/m2 b column 3

line of agreement lower limit (-30%)

upper limit +30%



Chapter 5 – Heat-Transfer Regime Investigation 

 

91 

5.2.3.2 Gorenflo correlation based predictions 

A comparison between the measured and predicted wall superheats for the Gorenflo [12] 

correlation is shown in Figure 5.15.  The Gorenflo [12] correlation predicts the data with 

an average difference of -19.1%, -21.0% and -16.7% for columns 1, 2 and 3 respectively.  

The corresponding root mean square differences (rms) are 21.4%, 22.9% and 19.9%.  

Thus, the Gorenflo [12] correlation predicts the wall temperatures in column 3 better than 

those in columns1 and 2.  Overall, the average and the corresponding root mean square 

(rms) differences are -18.0% and 21.48% respectively.  A comparison of predicted with 

measured wall superheat, Figure 5.16, shows poor agreement. 

 
                                   a) Column 1                                                          b) Column 2 

   
                                   c) Column 3 

Figure 5-15: variation of wall superheat with row number  
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Figure 5-16: comparison of predicted with measured wall superheat 

5.2.3.3 Stephan and Abdelsalam correlation based predictions 

Figure 5.17 shows a comparison between the measured and predicted wall superheats for 

the Stephan and Abdelsalam [9] correlation. A comparison of predicted with measured 

wall superheat are shown in Figure 5.18 for columns 1, 2 and 3.  The Stephan and 

Abdelsalam [9] correlation predicts the data with an average difference of 0.5%, -1.7% 

and 3.6% for columns 1, 2 and 3 respectively.  The corresponding root mean square 

differences (rms) are 10.9%, 10.7% and 13.1%.  Overall, the average difference and root 

mean square differences are 0.8% and 11.6% respectively.  

 

0.0

5.0

10.0

15.0

20.0

25.0

0.0 5.0 10.0 15.0 20.0

M
e

a
s

u
re

d
 w

a
ll

 s
u

p
e

rh
e

a
t 

(K
)

Predicted wall superheat (K)

10 kW/m2 a column 1 10kW/m2 b column 1

10 kW/m2 a column 2 10 kW/m2 b column 2

10 kW/m2 a column 3 10 kW/m2 b column 3

20 kW/m2 a column 1 20 kW/m2 b column 1

20 kW/m2 a column 2 20 kW/m2 b column 2

20 kW/m2 a column 3 20 kW/m2 b column 3

30 kW/m2 a column 1 30 kW/m2 b column 1

30 kW/m2 a column 2 30 kW/m2 b column 2

30 kW/m2 a column 3 30 kW/m2 b column 3

40 kW/m2 a column 1 40 kW/m2 b column 1

40 kW/m2 a column 2 40 kW/m2 b column 2

40 kW/m2 a column 3 40 kW/m2 b column 3

50 kW/m2 a column 1 50 kW/m2 b column 1

50 kW/m2 a column 2 50 kW/m2 b column 2

50 kW/m2 a column 3 50 kW/m2 b column 3

60 kW/m2 a column 1 60 kW/m2 b column 1

60 kW/m2 a column 2 60 kW/m2 b column 2

60 kW/m2 a column 3 60 kW/m2 b column 3

70 kW/m2 a column 1 70 kW/m2 b column 1

70 kW/m2 a column 2 70 kW/m2 b column 2

70 kW/m2 a column 3 70 kW/m2 b column 3

line of agreement lower limit (-30%)

upper limit +30%



Chapter 5 – Heat-Transfer Regime Investigation 

 

93 

 
                                a) Column 1                                                            b) Column 2 

  
                                c) Column 3 

Figure 5-17: variation of wall superheat with row number  

 
Figure 5-18: comparison of predicted with measured wall superheat 
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Overall, when this model is applied to the low level data at a pressure of 450 mbar, root 

mean square differences of 12.8 % and an average error of 3.1 % occur when the Cooper 

[11] correlation was used to describe the boiling element.  The corresponding figures 

achieved when the Gorenflo [12] correlation was used were 21.5 % and -18.0 % and when 

the Stephan and Abdelsalam [9] correlation was used 11.6 % and 0.81 %.  The Stephan 

and Abdelsalam [9] and Cooper [11] based approach, gives good agreement with the 

measured values. 

5.2.4 High Pressure Low Level Series LLHP 

At a pressure of 850 mbar, Equation 5.2 gave onset wall superheats of typically 0.7 K, so 

that all of the LLHP data set is predicted to be boiling.  This translates to the data taken 

at all heat fluxes being in the sub-cooled nucleate regime.  All the columns behave 

similarly, with column 3 slightly hotter than the other columns. 

5.2.4.1 Cooper correlation based predictions 

A comparison between the measured and predicted wall superheats for the Cooper  [11] 

correlation shown in Figures 5.19.  The Cooper [11] correlation predicts the data with an 

average difference of 3.1%, 5.07% and 15.5% for columns 1, 2 and 3 respectively.  The 

corresponding root mean square differences (rms) are 15.1%, 14.9% and 21.0%. Thus, 

the Cooper  [11] correlation predicts the wall temperatures in columns 1 and 2 better than 

those in column 3.  Overall, the average and rms differences are 7.9% and 17.2% 

respectively.  The data behavior is consistent with pool boiling in that the wall superheat 

increases with increasing heat flux. Figure 5.20 shows good agreement for the predicted 

wall superheat with measured value. 
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                                 a)  Column 1                                                             b) Column 2 

 
                                      c) Column 3 

Figure 5-19: variation of wall superheat with row number for  

 
Figure 5-20: comparison of predicted with measured wall superheat 
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5.2.4.2 Gorenflo correlation based predictions 

Figure 5.21 shows a comparison between the measured and predicted wall superheats for 

the Gorenflo [12] correlation.  The Gorenflo [12] correlation predicts the data with an 

average difference of -18.9%, -17.4% and -9.2% for columns 1, 2 and 3 respectively. The 

corresponding root mean square differences (rms) are 23.0%, 21.3% and 15.9%. Thus, 

the Gorenflo [12] correlation predicts the wall temperatures in column 3 better than those 

in columns 1 and 2.  Overall, the average and the corresponding root mean square 

differences are -15.0% and 20.3% respectively.  Figure 5.22 shows poor agreement 

between the predicted and the measured wall superheat compare to cooper correlation. 

  
                                      a) Column 1                                                       b) Column 2 

   
                                     c) Column 3 

Figure 5-21: variation of wall superheat with row number  
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Figure 5-22: comparison of predicted with measured wall superheat 
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                                  a) Column 1                                                         b) Column 2 

  
                                    c) Column 3 

Figure 5-23: variation of wall superheat with row number  

 
Figure 5-24: comparison of predicted with measured wall superheat 
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Overall, for the low level data at a pressure of 850 mbar, the model produced root mean 

square differences of 17.2 % and an average error of 7.9 % when the Cooper [11] 

correlation was used to describe the boiling element.  The corresponding figures achieved 

when the Gorenflo [12] correlation was used were 20.3 % and -15.0 % .  The Stephan and 

Abdelsalam [9] correlation gave a root mean square difference of 14.8 % and an average 

error of 2.7 %. The Stephan and Abdelsalam [9] correlation gives good agreement with 

the measured values and better than the other correlations used. 

5.3 The Equilibrium, One-Dimensional Model 

The one-dimensional model, as described by McNeil et al and Brisbane et al  [75, 82] 

normally assumes that the liquid enters a column of tubes in a saturated state and 

evaporates as the fluid moves upwards across the tubes.  This model in forced convection 

and assumes single phase convection caused by natural circulation. The mass flux 

upwards through the column is the value that balances the pressure drops in the tube 

column with the static liquid value outside of it.  The pressure gradient, 
𝑑𝑝

𝑑𝑧
 in the column 

has three components,  (
𝑑𝑝

𝑑𝑧
)
𝑀

, the pressure gradient due to momentum, (
𝑑𝑝

𝑑𝑧
)
𝐹

, the 

pressure gradient due to friction and, (
𝑑𝑝

𝑑𝑧
)
𝐺

 , the pressure gradient due gravity, i.e. 

𝑑𝑝

𝑑𝑧
= (

𝑑𝑝

𝑑𝑧
)
𝑀
+ (

𝑑𝑝

𝑑𝑧
)
𝐹
+(

𝑑𝑝

𝑑𝑧
)
𝐺

                                             5-6 

In the current application the pressure gradient due to momentum (
𝑑𝑝

𝑑𝑧
)
𝑀

was neglected 

because the void fraction was very low. 

The frictional pressure gradient was obtained from  

(
𝑑𝑝

𝑑𝑧
)
𝐹
= −

𝑓𝐿

2𝐷𝐿
𝑚2                        5-7 

The single-phase friction factor, fL, was found from the method of ESDU [83],  Equation 

(2.55).  In this model, the liquid temperature in the column was raised but was found not 

to reach the local saturation temperature.  The driving force for the mass flux in the 

column was modified to use natural circulation caused by temperature differences in the 

liquid.  Thus, for a sub-cooled liquid, the energy equation for a tube within a column, 

Figure 5.25, becomes 



Chapter 5 – Heat-Transfer Regime Investigation 

 

100 

𝑇𝐿𝐸 = 𝑇𝐿𝐼 +
𝐷𝑞

𝑚𝑃𝐻𝑐𝑝𝐿
         5-8 

The net pressure drop, ∆pnet, which must be balanced by friction in the column, is given 

by 

𝑝𝑛𝑒𝑡 = ∑ 𝑔𝑃𝑣  
𝑁𝑟𝑜𝑤
𝑖=1 (

𝐿𝐵
− 

𝐿𝑤𝑖
)       5-9 

where Nrow  is the number of rows, i is the row number, 𝑃𝑣 is the vertical tube pitch, 
𝐿𝐵

 

is the bulk fluid liquid density and 
𝑙𝑤

 is the liquid density at the wall temperature.  The 

heat flux was assumed to partition into nucleate,𝑞𝑛𝑏 and single-phase, 𝑞𝑠𝑝, components, 

thus 

𝑞 = 𝑞𝑛𝑏 + 𝑞𝑠𝑝          5-10 

The tube wall superheat, 𝑇𝑠𝑢𝑝 was therefore found from the solution of 

𝑞 = (𝑇𝑠𝑢𝑝)
1

(1−𝑛) + ℎ𝑠𝑝(𝑇𝑠𝑢𝑝 +𝑇𝑠𝑢𝑏)      5-11 

where 𝑇𝑠𝑢𝑏 is the liquid sub-cooling and ℎ𝑠𝑝 was obtained from the ESDU [84] 

correlation 

ℎ𝑠𝑝 = 𝑅𝑁𝑢 𝑘𝑙  /𝐷           5-12 

where 𝑅𝑁𝑢 is the row Nusselt number , this is found from 

 𝑅𝑁𝑢 = 𝑓1𝑓4 𝑅𝑁𝑢𝑅          5-13 

 where 𝑓1 And 𝑓4 are correlation parameters and 𝑓4 depends on row number and 𝑓1 is 

defined as  

  𝑓1 = (
𝑃𝑟

𝑃𝑟𝑤
)0.26           5-14  

in which 𝑃𝑟 and 𝑃𝑟𝑤 are the bulk flow Prandtl number and the wall flow Prandtl number 

respectively, Equation 2.25    

𝑅𝑁𝑢𝑅  is the reference Nusselt number, which is given as: 

𝑅𝑁𝑢𝑅 = 0.34𝐴 𝐶 𝑅𝑒 𝑃𝑟            5-15 

where A and C depend on 𝑅𝑒, Reynolds number 



Chapter 5 – Heat-Transfer Regime Investigation 

 

101 

 If 10 < 𝑅𝑒 <300 then A= 0.742 and C = 0.431  

 If 300 < 𝑅𝑒 <2.105 then A= 0.211 and C = 0.651 

 If 2.105 < 𝑅𝑒 <2.106 then A= 0.116 and C = 0.700 

 𝑅𝑒 =
𝑚𝑃ℎ𝐷

𝜇𝑙(𝑃ℎ−𝐷)
            5-16 

where 𝑃ℎ is the horizontal tube pitch and. 

 Three correlations were used for the nucleating boiling component, the Cooper [11]  , 

Gorenflo [12] and Stephan and Abdelsalam [9] correlations. 

 
Figure 5-25: tube column from the evaporator 

5.3.1 Low Pressure Low Level Series LLLP 

At a pressure of 50 mbar, Equation 5.4 gave onset wall superheats of typically 5.5-9.6 K 

for the LLLP data set, so that most of the data at heat fluxes of 10 and 25 kW/m2 are in 

single-phase convection, with the remainder convecting and boiling. 
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5.3.1.1 Cooper - ESDU combination 

Figure 5.26 shows a comparison between the measured and predicted wall superheats for 

the Cooper-ESDU [11] [84] combination.  This combination predicts the data with an 

average difference of -0.7%, 9.4% and 19.8% for columns 1, 2 and 3 respectively. The 

corresponding root mean square differences (rms) are 14.7%, 13.2% and 28.1%.  Thus, 

the Cooper - ESDU [11] [84] combination predicts the wall temperatures in columns 

1  and 2 better than those in column 3 

   
                                     a) Column 1                                                        b) Column 2 

   
                                       c) Column 3 

Figure 5-26: variation of wall superheat with row number  

Overall, the average and the corresponding root mean square differences (rms) are 9.3% 

and 19.8% respectively.  A comparison of predicted with measured wall superheat is 

shown in Figure 5.27 for the data for columns 1, 2 and 3.  This figure shows good 

agreement for the predicted wall superheat with the measured wall superheat. 
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Figure 5-27: comparison of predicted with measured wall superheat 

5.3.1.2 Gorenflo –ESDU combination 

A comparison between the measured and predicted wall superheats for the 

Gorenflo  -  ESDU [12] [84] combination is shown in Figures 5.28 for columns 1, 2 and 
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and 18.5% respectively.  A comparison of predicted with measured wall superheat is 
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                                    a) Column 1                                                     b) Column 2 

     
                                     c) Column 3 

Figure 5-28: variation of wall superheat with row number  

 
Figure 5-29: comparison of predicted with measured wall superheat 
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5.3.1.3 Stephan and Abdelsalam – ESDU combination 

Figure 5.30 shows a comparison between the measured and predicted wall superheats for 

the Stephan and Abdelsalam - ESDU [9] [84] combination.  The Stephan and Abdelsalam 

- ESDU [9] [84] combination predicts the data with an average difference of 0.5%%, 

10.7% and 20.5% for columns 1, 2 and 3 respectively. The corresponding root mean 

square differences (rms) are 15.3%, 14.6% and 29.0%.  

Overall, the average difference and rms differences are 10.6% and 20.7% respectively. 

A  comparison of predicted with measured wall superheat shown in Figure 5.31. 

   
                                      a) Column 1                                                        b) Column 2 

  
                                    c) Column 3 

Figure 5-30: variation of wall superheat with row number  
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Figure 5-31: comparison of predicted with measured wall superheat 
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–  ESDU [9, 84] combination predicts the data similarly because virtually all of the 

predictions come from the ESDU correlation.  A comparison of predicted with measured 

wall superheat is shown in Figure 5.33.  This figure show poor agreement between the 

predicted wall superheat and the measured wall superheat. The mass flux required for this 

data set was in the range 29-87 kg/m2s.  

   
                                       a) Column 1                                                      b) Column 2 

   
                                    c) Column 3 

Figure 5-32: variation of wall superheat with row number  
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Figure 5-33: comparison of predicted with measured wall superheat 
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                                     a) Column 1                                                       b) Column 2 

     
                                    c) Column 3 

Figure 5-34: variation of wall superheat with row number for  

 
Figure 5-35: comparison of predicted with measured wall superheat 
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5.3.3.2 Gorenflo - ESDU combination 

A comparison between the measured and predicted wall superheats for the Gorenflo 

-  ESDU [12] [84] combination is shown in Figure 5.36 for the columns 1, 2 and 3 

respectively.  The Gorenflo -  ESDU [12] [84] combination predicts the data with an 

average difference of 10.9%, 7.7% and 13.4% for columns 1, 2 and 3 respectively.  The 

corresponding root mean square differences (rms) are 22.1%, 15.8% and 19.7%.  Overall, 

the average and rms differences are 10.7% and 19.7% respectively.  A comparison of 

predicted with measured wall superheat is shown in Figure 5.37.  

  
                                       a) Column 1                                                        b) Column 2 

  
                                   c) Column 3  

 Figure 5-36: variation of wall superheat with row number 
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Figure 5-37: comparison of predicted with measured wall superheat 

5.3.3.3 Stephan and Abdelsalam - ESDU combination 

Figure 5.38 shows a comparison between the measured and predicted wall superheats for 

the Stephan and Abdelsalam - ESDU [9] [84] combination. The Stephan and Abdelsalam 

- ESDU [9] [84] combination predicts the data with an average difference of 30.8%, 

27.4% and 34.1% for columns 1, 2 and 3 respectively. The corresponding root mean 

square differences (rms) are 34.6%, 29.6% and 36.2%.  Overall, the average difference 

and rms differences are 30.8% and 33.6% respectively. A comparison of predicted with 

measured wall superheat is shown in Figure 5.39. 

 

 

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

-10.0 0.0 10.0 20.0

M
e

a
s

u
re

d
 w

a
ll
 s

u
p

e
rh

e
a

t 
(K

)

Predicted wall superheat (K)

10 kW/m2 a column 1 10kW/m2 b column 1

10 kW/m2 a column 2 10 kW/m2 b column 2

10 kW/m2 a column 3 10 kW/m2 b column 3

20 kW/m2 a column 1 20 kW/m2 b column 1

20 kW/m2 a column 2 20 kW/m2 b column 2

20 kW/m2 a column 3 20 kW/m2 b column 3

30 kW/m2 a column 1 30 kW/m2 b column 1

30 kW/m2 a column 2 30 kW/m2 b column 2

30 kW/m2 a column 3 30 kW/m2 b column 3

40 kW/m2 a column 1 40 kW/m2 b column 1

40 kW/m2 a column 2 40 kW/m2 b column 2

40 kW/m2 a column 3 40 kW/m2 b column 3

50 kW/m2 a column 1 50 kW/m2 b column 1

50 kW/m2 a column 2 50 kW/m2 b column 2

50 kW/m2 a column 3 50 kW/m2 b column 3

60 kW/m2 a column 1 60 kW/m2 b column 1

60 kW/m2 a column 2 60 kW/m2 b column 2

60 kW/m2 a column 3 60 kW/m2 b column 3

70 kW/m2 a column 1 70 kW/m2 b column 1

70 kW/m2 a column 2 70 kW/m2 b column 2

70 kW/m2 a column 3 70 kW/m2 b column 3

line of agreement lower limit (-30%)

upper limit +30%



Chapter 5 – Heat-Transfer Regime Investigation 

 

112 

    
                                   a) Column 1                                                           b) Column 2 

    
                                 c) Column 3 

Figure 5-38: variation of wall superheat with row number  

 
Figure 5-39: comparison of predicted with measured wall superheat 
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When this model analysis is applied to the low level data at a pressure of 450 mbar, root 

mean square differences of 35.9 % and an average error of 33.2 % are obtained for the 

Cooper - ESDU [11] [84] combination.  The corresponding figures achieved when the 

Gorenflo - ESDU [12] [84] combination was used were 19.4 % and 10.7 % and when the 

Stephan and Abdelsalam - ESDU [9] [84] combination was used the root mean square 

differences was 33.6 % and an average error was 30.8%.  These results shows that the 

Gorenflo - ESDU [12] [84] combination gives good agreement with the measurements 

better than the other correlations used.  

5.3.4 High Pressure Low Level Series LLHP 

At a pressure of 850 mbar, Equation 3.2 gave onset wall superheats of 1.2-1.5 K, so that 

all of the HP data set is predicted to be convection and boiling.  

5.3.4.1 Cooper – ESDU   combination 

A comparison between the measured and predicted wall superheats for the Cooper 

-  ESDU [11] [84] combination for columns 1, 2 and 3 are shown in Figure 5.40 

respectively.  The corresponding Cooper - ESDU [11] [84] combination predicts the data 

with an average difference of 32.1%, 34.5% and 47.1% for columns 1, 2 and 3 

respectively.  The root mean square differences (rms) are 38.2%, 39.5% and 49.3%.  

Overall, the average and rms differences are 34.5% and 39.5% respectively.  

A  comparison of predicted with measured wall superheat is shown in Figure 5.41, 

showing poor agreement for the predicted wall superheat compared to the measured data. 
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                                     a) Column 1                                                          b) Column 2 

  
                                   c) Column 3 

Figure 5-40: variation of wall superheat with row number  

 
Figure 5-41: comparison of predicted with measured wall superheat 
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5.3.4.2  Gorenflo – ESDU combination 

A comparison between the measured and predicted wall superheats, using the Gorenflo 

[12] correlation to describe boiling and the ESDU [84] correlations to describe 

convection, is shown in Figure 5.42.  The Gorenflo - ESDU [12] [84] combination 

predicts the data with an average difference of 11.6%, 13.6% and 24.3% for columns 1, 

2 and 3 respectively.  The corresponding root mean square differences (rms) are 25.4%, 

25.3% and 30.6%.  

Overall, the average and rms differences are 16.5% and 27.3% respectively. 

A  comparison of predicted with measured wall superheat is shown in Figure 543, 

showing good agreement for the predicted wall superheat compared to the measured data. 

    
                                  a) Column 1                                                 b) Column 2 

  
                                   c) Column 3 

Figure 5-42: variation of wall superheat with row number  

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0 1 2 3 4 5 6 7

W
a

ll
 s

u
p

e
rh

e
a

t 
(K

)

Row number (-)

10 kW/m2 a

10kW/m2 b

prediction  (10 kW/m2)

20 kW/m2 a

20 kW/m2 b

prediction (20 kW/m2)

30 kW/m2 a

30 kW/m2 b

prediction (30 kW/m2)

40 kW/m2 a

40 kW/m2 b

prediction (40 kW/m2)

50 kW/m2 a

50 kW/m2 b

prediction (50 kW/m2)

60 kW/m2 a

60 kW/m2 b

prediction (60kW/m2)

70 kW/m2 a

70 kW/m2 b

prediction 70 kW/m2
-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0 1 2 3 4 5 6 7

W
a

ll
 s

u
p

e
rh

e
a

t 
(K

)

Row number (-)

10 kW/m2 a

10kW/m2 b

prediction  (10 kW/m2)

20 kW/m2 a

20 kW/m2 b

prediction (20 kW/m2)

30 kW/m2 a

30 kW/m2 b

prediction (30 kW/m2)

40 kW/m2 a

40 kW/m2 b

prediction (40 kW/m2)

50 kW/m2 a

50 kW/m2 b

prediction (50 kW/m2)

60 kW/m2 a

60 kW/m2 b

prediction (60kW/m2)

70 kW/m2 a

70 kW/m2 b

prediction 70 kW/m2

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

0 1 2 3 4 5 6 7

W
a

ll
 s

u
p

e
rh

e
a

t 
(K

)

Row number (-)

10 kW/m2 a

10kW/m2 b

prediction  (10 kW/m2)

20 kW/m2 a

20 kW/m2 b

prediction (20 kW/m2)

30 kW/m2 a

30 kW/m2 b

prediction (30 kW/m2)

40 kW/m2 a

40 kW/m2 b

prediction (40 kW/m2)

50 kW/m2 a

50 kW/m2 b

prediction (50 kW/m2)

60 kW/m2 a

60 kW/m2 b

prediction (60kW/m2)

70 kW/m2 a

70 kW/m2 b

prediction 70 kW/m2

10 kW/m2 a 10kW/m2 b

prediction  (10 kW/m2) 20 kW/m2 a

20 kW/m2 b prediction (20 kW/m2)

30 kW/m2 a 30 kW/m2 b

prediction (30 kW/m2) 40 kW/m2 a

40 kW/m2 b prediction (40 kW/m2)

50 kW/m2 a 50 kW/m2 b

prediction (50 kW/m2) 60 kW/m2 a

60 kW/m2 b prediction (60kW/m2)

70 kW/m2 a 70 kW/m2 b

prediction 70 kW/m2



Chapter 5 – Heat-Transfer Regime Investigation 

 

116 

 
Figure 5-43: comparison of predicted with measured wall superheat 

5.3.4.3 Stephan and Abdelsalam – ESDU combination 

Figure 5.44 shows a comparison between the measured and predicted wall superheats for 

the Stephan and Abdelsalam - ESDU [9] [84] combination.  The Stephan and Abdelsalam 

- ESDU [9] [84] combination predicts the data with an average difference of 27.4%%, 

29.8% and 42.0% for columns 1, 2 and 3 respectively.  The corresponding root mean 

square differences (rms) are 34.2%, 35.4% and 44.5%.  Overall, the average difference 

and the corresponding root mean square differences (rms) are 33.1% and 38.3% 

respectively.  A comparison of predicted with measured wall superheat is shown in Figure 

5.45. 
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                                      a) Column 1                                                          b) Column 2 

   
                                 c) Column 3 

Figure 5-44: variation of wall superheat with row number  

 
Figure 5-45: comparison of predicted with measured wall superheat 
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Overall, for to the low level data at a pressure of 850 mbar, the root mean square 

differences was 39.5% and the average error of 34.5 % when the Cooper – ESDU [11] 

[84] combination was used.  The corresponding figures achieved when the Gorenflo 

-  ESDU [12] [84] combination was used were 27.3 % and 16.5 % and when the Stephan 

and Abdelsalam - ESDU [9] [84] combination was used the root mean square differences 

was 33.4 % and an average error was 33.1%.  These results shows that the Gorenflo 

-  ESDU [12] [84] combination gives better agreement than the other correlations used.  

The mass flux range required for this model was in the range 48-80 kg/m2s.  

5.4 Discussion and Conclusion  

The visual evidence presented in the experimental result chapter 4, Figures 4.29-4.32 

show changes to the liquid pool behavior as the pressure is reduced.  At a pressure of 450 

and 850 mbar, the flow contains many bubbles, Figures 4.31 and 4.32, whereas few 

bubbles are evident at a pressure of 50 mbar, as shown in Figures 4.29 and 4.30.  This is 

caused by the increase in sub-cooling that occurs at the lower pressure, a sub-cooling that 

is even larger when the pool height is increased.  The increase in sub-cooling is produced 

by liquid re-circulating within the pool, as evidenced by the stream temperatures, Figures 

4.1 and 4.15.  The pool temperature is similar to the saturation temperature corresponding 

to the pressure at the free surface.  This produces small liquid sub-coolings at a pressure 

of 450 and 850 mbar and large liquid sub-coolings at a pressure of 50 mbar.  However, 

re-circulation requires a liquid velocity which means that convection and sub-cooled 

boiling could be present.  What heat-transfer mechanism is dominating is less clear.  Two 

analyses methods were used to help deduce what the heat-transfer mechanisms were.  The 

statistics summarizing the comparison between the data and the models is given in 

Table  5.1. 

The visual evidence at a pressure of 50 mbar, Figure 4.29, does not show bubbles rising 

up the columns.  To get an indication of the flow patterns, 0.05 gram of neutrally buoyant 

particles 1 mm in diameter were added to the flow.  These particles were observed to 

move chaotically, with streams of particles changing from vertically upwards through 

horizontally to vertically downwards at different parts of the ‘cycle’.  The mean ‘cycle’ 

motion could not be identified, but ‘time of flight’ estimates from these particles indicated 

liquid velocities that were consistent with the predictions from the equilibrium model. 

The motion of the particles is supportive of a convective component of heat transfer. 
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(Comparison the results when these particles added and the test without it, showed that 

these particles did not have any effect). 

When the models were applied to the low level data at a pressure of 50 mbar, an average 

differences of -16.0% and 9.3%  and root mean square differences of 21.6% and 19.8% 

were obtained when the Cooper [11] correlation was used to describe the boiling element 

of the isolated tube and equilibrium models respectively.  The corresponding figures 

achieved when the Gorenflo [12] correlation was used were -29.4% and -0.47% for the 

average differences and 32.0% and 18.5% for the root mean square differences.  When 

the Stephan and Abdelsalam [9] correlation was used -13.2% and 10.6% were obtained 

for the average differences 20.3% and 20.8% for the root mean square differences.  These 

results suggest that the isolated tube model is less likely than the equilibrium model.  

Velocity magnitudes supportive of the equilibrium model have been observed.  Thus, at 

a pressure of 50 mbar, the equilibrium model with the Gorenflo - ESDU [12] [84] 

combination used to describe boiling gives the best results.  This model doesn’t predict 

vaporization to occur at any of the test conditions.  At a heat flux of 10 kW/m2, the isolated 

tube model, Figures 5-1, 5-3 does show good agreement with some of the data, while 

others agree with the equilibrium model, Figures 5-26, 5-28, 5-30.  This could be further 

evidence that a minimum heat flux is required to fully-establish tube interaction, as 

described by the equilibrium model.  In the low-level case, boiling is achieved at higher 

heat fluxes after tube interaction is established, giving flow boiling at these heat fluxes. 

When the models were applied to the high level data at a pressure of 50 mbar, average 

differences of 1.6% and 53%  and root mean square differences of 14.3% and 58% were 

obtained when the Cooper [11] correlation was used to describe the boiling element of 

the isolated tube and equilibrium models respectively.  The corresponding figures 

achieved when the Gorenflo [12] correlation was used were -3.5% and 53% for the 

average differences and 12.1% and 58% for the root mean square differences.  When the 

Stephan and Abdelsalam [9] correlation was used, 1.4% and 53% were obtained for the 

average differences and 14.1% and 58% for the root mean square difference.  These 

results suggest that the equilibrium model behavior is unlikely and that isolated tube 

behavior is probable.  The isolated tube model suggests that boiling only occurs at heat 

fluxes of 55 and 65 kW/m2, for which the rms differences are 14.3 % , 12.1% and 14.1%  

for the Cooper [11], the Gorenflo [12] and the Stephan and Abdelsalam [9] correlations 
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respectively.  Thus, the Gorenflo [12] correlation seems to be more accurate at these low 

pressures. 

The visual evidence at a pressure of 450 and 850 mbar, Figures 4.31 and 4.32 shows 

bubble rising up the columns.  These bubbles exist in a sub-cooled liquid pool and are not 

taken into consideration in the equilibrium model.  The fluid thermocouples are located 

at a reasonably large distance from the tube centers, typically 35 mm horizontally and 31 

mm vertically, Figure 3.11.  It is possible that these thermocouples are not detecting rises 

in fluid temperature from fluid nearer the top of each tube.  However, the bubble locations 

suggest that this is unlikely.  The presence of a moving bubble stream is supportive of a 

convective component of heat transfer. 

When the models were applied at a pressure of 450 mbar, average differences of 3.1% 

and 33.2%  and root mean square differences of 12.8% and 35.9% were obtained when 

the Coope [11] correlation was used to describe boiling heat transfer in the isolated tube 

and equilibrium models respectively.  The corresponding figures achieved when the 

Gorenflo [12] correlation was used were -18% and 10.7% for the average differences and 

21.5% and 19.4% for the root mean square differences, and when the Stephan and 

Abdelsalam [9] correlation was used 0.81% and 30.8% for the average differences and 

11.6% and 35.9% for the root mean square differences. 

 When the models were applied at a pressure of 850 mbar, average differences of 7.9% 

and 34.5% and root mean square differences of 17.2% and 39.5% were obtained when 

the Cooper correlation was used to describe boiling heat transfer in the isolated tube and 

equilibrium models respectively. The corresponding figures achieved when the Gorenflo 

[12] correlation was used were -15% and 16.5% for the average differences and 20.3% 

and 27.3% for the root mean square differences and when the Stephan and Abdelsalam, 

1980) [9] correlation was used were 2.7% and 33.1% for the average differences and 

14.8% and 33.4 for the root mean square differences.  

The results for 450 and 850 mbar suggest that the equilibrium scenario is less likely to 

have occurred and that isolated tube behavior is more likely.  However, the low root mean 

square differences were obtained with the isolated tube model by a systematic change 

from over prediction at low heat flux to under-prediction at high heat flux, Figures 5.13, 

5.15 and 5.17 for 450 mbar and Figures 5.19, 5.21 and 5.23 for 850 mbar.  This is not the 

case for the equilibrium model, Figures 5.34, 5.36 and 5.38 for 450 mbar and 5.40, 5.42 
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and 5.44 for 850 mbar, which does give credible results when the Cooper [11], Gorenflo 

[12] or Stephan and Abdelsalam [9] correlations were used to describe boiling.  The low 

pressure, high level measured wall superheats, Table 5.1, shows little difference between 

the columns.  These data are consistent with the isolated tube model. In other words, when 

tubes at a similar vertical position are subjected to the same conditions, the wall 

superheats are similar.  This is not the case for the low level results at 450 and 850 mbar, 

Table 5.1, where the columns behave differently.  This suggests that a significant 

convective element is present.  Also, the visual evidence, Figures 4.31 and 4.32, is 

suggestive of a convective contribution. The equilibrium model predictions suggest that 

two-phase flow does not occur but it is observed.  The results for 450 or 850 mbar suggest 

that the Stephan and Abdelsalam [9] correlation based prediction seems to be more 

accurate at these pressures. 

It seems likely that the low pressure, high level data is dominated by isolated tube 

behavior, where the heat-transfer mechanism is natural convection until the onset of 

boiling and nucleate boiling thereafter.  The low pressure, low level data is dominated by 

tube interactions as described by the equilibrium model, where the heat-transfer 

mechanism is convection before the onset of boiling, with convection and nucleation 

afterwards.  It is possible that the reduction in pressure changes the low level behavior of 

the heat exchanger and that the dominant mechanism at a pressure of 450 and 850 mbar 

is different from that at 50 mbar.  But the data are inconclusive, particularly since the 

convective effect of the bubbles has not been accounted for the pressure drop. 

The ratio of the convective to the total heat flux predicted by the equilibrium model is 

shown in Figures 5.46 and 5.47. The Gorenflo [12] correlation was used to evaluate the 

nucleate boiling component.  At a pressure of 850 mbar, Figure 5.46, the heat flux is 

convective at a heat flux of 10 kW/m2.  The convective fraction reduces with increasing 

heat flux, reaching about 50% at a heat flux of 70 kW/m2.  At a pressure of 50 mbar, 

Figure 5.47, the heat flux is convective at a heat flux of 10 kW/m2.  The convective 

fraction reduces with increasing heat flux, reaching about 80% at a heat flux of 65 kW/m2. 

Thus, even when boiling is present, low level flows are dominated by convection. 
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Figure 5-46: comparison of heat-flux ratio with position for pressure of 850 mbar 

 

 
Figure 5-47: comparison of heat-flux ratio with position for pressure of 50 mbar 
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Table 5-1: summary of the average and RMS differences for all series 

 

Test 

series 

 

Analysis 

method 

 

Boiling 

correlation 

         Column 1         Column 2        Column 3           All 

Average  

error 

% 

RMS 

error

% 

Average  

error 

% 

RMS 

error 

% 

Average  

error 

% 

RMS 

error

% 

Average  

error 

% 

RMS 

error 

% 

 

50 

mbar 

low 

level 

LLLP 

 

Isolated 

Tube 

Cooper -23.1 27.9 -15.8 19.0 -8.9 16.6 -16.0 21.6 

Gorenflo -35.7 37.7 -29.3 30.4 -23.2 27.0 -29.4 32.0 

Stephan -20.6 26.4 -13.0 17.4 -5.9 15.3 -13.2 20.3 

 

Two 

Phase 

Equilibriu

m 

Cooper -0.69 14.7 9.4 13.3 19.8 28.1 9.3 19.8 

Gorenflo -10.0 15.8 -0.48 10.3 9.07 25.0 -0.47 18.5 

Stephan 0.53 15.3 10.7 14.6 20.5 20.1 10.6 20.8 

 

50 

mbar 

high 

level 

HLLP 

 

Isolated 

Tube 

Cooper 0.50 14.7 1.3 13.7 3.14 14.5 1.6 14.3 

Gorenflo -4.61 12.1 -3.9 13.0 2.0 12.1 -3.5 12.1 

Stephan  0.30 14.6 1.7 13.5 2.9 14.3 1.4 14.1 

 

Two 

Phase 

Equilibriu

m 

Cooper 51 58 52 57 54 59 53 58 

Gorenflo 51 58 52 57 54 59 53 58 

Stephan  51 58 52 57 54 59 53 58 

 

450 

mbar 

low 

level 

LLMP 

 

Isolated 

Tube 

Cooper 3.12 12.1 0.80 11.3 6.3 14.8 3.1 12.8 

Gorenflo -19.2 21.5 -21.0 22.9 -16.7 19.9 -18.0 21.5 

Stephan 0.55 10.9 -1.7 10.7 3.6 13.1 0.81 11.6 

 

Two 

Phase 

Equilibriu

m 

Cooper 33.2 36.8 29.8 31.9 36.6 38.6 33.2 35.9 

Gorenflo 10.9 22,7 7.7 15.8 13.4 19.7 10.7 19.4 

Stephan 30.8 34.6 27.4 29.6 34.1 36.2 30.8 33.6 

 

850 

mbar 

low 

level 

LLHP 

 

Isolated 

Tube 

Cooper 3.1 15.1 5.1 15.0 15.5 21.0 7.9 17.2 

Gorenflo -19.0 23.0 -17.5 21.4 -9.2 16.0 -15.0 20.3 

Stephan -1.9 14.1 -0.04 13.3 9.9 16.8 2.7 14.8 

 

Two 

Phase 

Equilibriu

m 

Cooper 32.1 38.2 34.5 39.5 47.1 49.3 34.5 39.5 

Gorenflo 11.65 25.5 13.7 25.4 24.3 30.7 16.5 27.3 

Stephan  27.5 34.2 29.8 35.4 42.0 44.6 33.1 33.4 
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Chapter 6 – EXPERIMENTAL RESULTS WITH SOLIDS ON THE 

EVAPORATOR BASE 

This experimental campaign was carried out with 0.5-0.6 mm diameter glass spheres 

placed in a bed on the base of the evaporator.  These are a stimulant for Barium Nitrate, 

a solid that occurs in the actual evaporator. All of the tests were carried out with water at 

a low liquid level at a pressure of 50 mbar absolute.  Experimental data are reported for 

bed depths of 4, 8, 12, 16, 24 and 32 mm.  During the tests, the tube heat flux was set to 

65 kW/m2 and the wall heat flux was varied from 0 to 45 kW/m2. 

6.1 Stream Temperature for a Bed Depth of 4 mm 

The stream temperatures are shown in Figures 6.1 and 6.2 for a bed depth of 4 mm and 

for wall heat fluxes of 5 and 45 kW/m2.  Other wall heat fluxes behaved similarity. 

Included in figures are the saturation temperatures corresponding to the pressure at the 

free surface and the evaporator base.  The tests show that the saturation temperature 

changes as the pressure increases, with the saturation temperature varying from 32 oC at 

the free surface to 47.5 oC at the evaporator base for a heat flux of 10 kW/m2 and to 50.4oC 

for a heat flux of 45 kW/m2.  The stream temperature for both cases are shown to be 

reasonably constant and close to the free surface saturation temperature, the stream 

temperature variation was 2.8 K at a heat flux of 10 kW/m2 and was 3.6 K for a heat flux 

of 45 kW/m2.  These results indicate that liquid recirculation is taking place, with fluid 

flashing to the saturation temperature at the free surface before returning to the depths of 

the pool.  The temperature at Ts9, shown as location 9 in Figure 3.11, looks different to 

the others because it is close to the solid bed.  This is discussed as a bed temperature in 

the 6.2 section. 
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Figure 6-1: Variation of stream temperature with stream location at a heat flux of 

5kW/m2 

 
Figure 6-2: Variation of stream temperature with stream location at a heat flux of 

45kW/m2 

6.2 Wall and Bed Temperatures for a Bed Depth of 4 mm 

 The wall temperature TW1, Figure 3.11 against heat flux for a 4 mm bed depth is shown 

in Figure 6.3.  When the wall heat flux is zero, the wall temperature is sub-cooled. It 

becomes close to the saturation temperature at a heat flux of 5 kW/m2.  However boiling 

did not occur at a heat flux of 5 kW/m2, but did above this.  This suggests that the 

convection currents were sufficiently cooling the wall at 5 kW/m2 to prevent boiling.  The 

wall temperature is reasonably uniform for all heat fluxes once boiling is initiated.  

However, above a heat flux of 15 kW/m2, the wall temperature does decrease with 

increasing heat flux. It is decrease by 5.2 K between heat fluxes 15 and 45 kW/m2.  The 

bed temperature was measured by TS9, Figure. 3.11. Its value is also shown in Figure 6.3. 

The bed temperature is below the saturation temperature so that sub-cooled boiling is 

dominant at heat flux of higher than 5 kW/m2 and single phase convection is dominant at 

a heat flux 5 kW/m2.  The bed temperature increases by 3.6 K over the heat fluxes range.   
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Figure 6-3: Variation of wall and bed temperature with heat flux 

6.3 Stream Temperature for a Bed Depth of 8 mm 

Figures 6.4 and 6.5 show the variations of stream temperature with stream location for a 

bed depth of 8 mm and at heat fluxes of 5 and 45 kW/m2.  The stream temperatures behave 

similarly to those at a bed depth of 4 mm, other than Ts9.  The stream temperatures vary 

by 2.2 K for a heat flux of 5 kW/m2 and by 1.6 K for a heat flux of 45 kW/m2.  The 

temperature at Ts9 behaves differently to the other results because it is covered by the solid 

bed.  This will be discussed as a bed temperature in section 6.4. 

 
           Figure 6-4: Variation of stream temperature with stream location at a heat flux 

of 5kW/m2 
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           Figure 6-5: Variation of stream temperature with stream location at a heat flux 

of 45 kW/m2 

6.4 Wall and Bed Temperatures for a Bed Depth of 8 mm 

The wall temperature TW1 and the bed temperatures TS9, Figure 3.11, against wall heat 

flux for an 8 mm bed depth are shown in Figure 6.6.  When the wall heat flux is not 

applied, the wall temperature is sub-cooled.  The wall temperature is reasonably uniform 

for all heat fluxes.  However, the wall temperatures tend to decrease slightly with 

increasing heat flux, after a heat flux of 15 kW/m2, as shown in Figure 6.6.  It decreases 

by 1.9 K between the heat fluxes of 15 and 45 kW/m2.  The bed temperatures are below 

the saturation temperature so that sub-cooled boiling is dominant at all heat fluxes.  The 

bed temperatures decrease by 4.6 K as the heat flux is increased from 5-45 kW/m2. 

 
Figure 6-6: Variation of wall and bed temperature with heat flux 
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6.5 Stream Temperature for a Bed Depth of 12 mm 

Figures 6.7 and 6.8 shows the variation of stream temperature with stream location for a 

bed depth of 12 mm and for heat fluxes of 5 and 45 kW/m2.  The stream temperatures 

behave similarly to those at a bed depth of 4 mm.  The stream temperatures vary by 2.3  K 

for a heat flux of 5 kW/m2 and 2.5 K for a heat flux of 45 kW/m2.  The temperature at Ts9 

is again different to the other results because it is covered by the solid bed and is discussed 

as a bed temperature in the section 6.6. 

 
           Figure 6-7: Variation of stream temperature with stream location at a heat flux 

of 5 kW/m2 

 
           Figure 6-8: Variation of stream temperature with stream location at a heat flux 

of 45 kW/m2 
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6.6  Wall and Bed Temperature for a Bed Depth of 12 mm 

Figure 6.9 shows the variation of the wall temperature TW1 and the bed temperatures TS9 

with heat flux for a 12 mm bed depth.  The wall temperature is reasonably constant for 

all heat fluxes, but does decrease slightly after a heat flux of 15 kW/m2.  It decreases by 

1.3 K between the heat fluxes of 5 and 45 kW/m2.  The bed temperature decreases as the 

heat flux increases.  It decrease by 2.7 K over the heat flux range and is always below the 

saturation temperature so that sub-cooled boiling is dominant at all heat fluxes.  

 
Figure 6-9: Variation of wall and bed temperature with stream location  

6.7 Stream Temperature for a Bed Depth of 16 mm 

Figures 6.10 and 6.11 show the variation of stream temperature with stream location for 

a bed depth of 16 mm at heat fluxes of 5 and 45 kW/m2.  The stream temperatures behave 

similar to those at a bed depth of 4 mm.  The variation in the stream temperature was 

2.5K at a heat flux of 5 kW/m2 and 1.5 K for a heat flux of 45 kW/m2. The temperature 

Ts9 is again different because it is covered by the solid bed and will be discussed as a bed 

temperature in the section 6.7. 
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          Figure 6-10: Variation of stream temperature with stream location at a heat flux 

of 5kW/m2 

 
         Figure 6-11: Variation of stream temperature with stream location at a heat flux 

of 45kW/m2 

6.8 Wall and Bed Temperatures for a Bed Depth of 16 mm 

The wall temperature TW1 and the bed temperatures TS9, Figure.3.11, are shown against 

heat flux for a 16 mm bed depth in Figure 6.12.  After a heat flux of 5 kW/m2, the wall 

temperatures decreases slightly with increasing heat flux, decreasing by 0.9 K between 

the heat fluxes of 5 and 45 kW/m2, which is practically constant.  The bed temperature is 

below the saturation temperatures so that sub-cooled boiling is dominant at all heat fluxes. 

It decreases as the heat flux increases by 4.7 K over the heat flux range.   
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Figure 6-12: Variation of wall and bed temperature with heat flux 

6.9 Stream Temperature for a Bed Depth of 24 mm 

Figure 6.13 shows the variation of stream temperature with stream location for a bed 

depth of 24 mm at heat fluxes of 5 and 45 kW/m2.  The stream temperatures behave 

similar to those at a bed depth of 4 mm.  The stream temperature varies within 2.8 K for 

a heat flux of 5 kW/m2 and within 2.3 K for a heat flux of 45 kW/m2.  The temperature at 

Ts9 and Ts10 behave differently to the other results because they are covered by the solid 

bed and will be discussed as bed temperatures in section 6.9. 

 
         Figure 6-13: Variation of stream temperature with stream location at a heat flux 

of 5kW/m2 
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         Figure 6-14: Variation of stream temperature with stream location at a heat flux 

of 45kW/m2 

6.10 Wall and bed temperatures for a bed depth of 24 mm 

Figure 6.15 shows the variation of the wall temperature and the bed temperatures with 

heat flux for a 24 mm bed depth.  The wall temperature is reasonably uniform with heat 

flux, decreases slightly with increasing heat flux.  It decreases by 3.5 K between the heat 

fluxes of 15 and 45 kW/m2.  The bed temperature also decreases as the heat flux increases 

and it is always below the saturation temperature, so that sub-cooled boiling is dominant 

at all heat fluxes.  The decrease in the bed temperature was 3.2 K for the Ts9 location and 

was 4.6 K for the Ts10 location. 

 
Figure 6-15: Variation of wall and bed temperature with heat flux 
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6.11 Stream Temperature for a Bed Depth of 32 mm 

Figures 6.16 and 6.17 show the variation of stream temperature with stream location for 

a bed depth of 32 mm at heat fluxes of 5 and 45 kW/m2.  The stream temperatures behave 

similarly to those at previous bed depths.  The stream temperature varies at a heat flux of 

5 kW/m2 to within 2.2 K and to within 2.1 K for a heat flux of 45 kW/m2.  The temperature 

at Ts9, and Ts10 behave differently to the other results, because they are covered by the 

solid bed and will be discussed as bed temperatures in the section 6.11. 

 
         Figure 6-16: Variation of stream temperature with stream location at a heat flux 

of 5kW/m2 

 
         Figure 6-17: Variation of stream temperature with stream location at a heat flux 

of 45 kW/m2 
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6.12  Wall and Bed Temperatures for a Bed Depth of 32 mm 

Figure 6.18 shows the variation of the wall temperature TW1 and the bed temperatures TS9, 

TS10, and TS11 with heat flux for a 32 mm bed depth.  The wall temperature is practically 

constant, vary within 0.7 K.  The bed temperature for the location TS9 and TS10 decrease 

as the heat flux increases. Decreasing by 6.6 K for TS9 and by 5.8 K for TS10.  The bed 

temperature for location TS10 behaves similar to the 12 mm bed depth, which means the 

depth in this location about 12 mm.  The bed temperature at location TS11 behaves 

similarly to the 4 mm bed depth.  They are all below the saturation temperature so that 

sub-cooled boiling is dominant at all heat fluxes. 

 
Figure 6-18: Variation of wall and bed temperature with heat flux 

6.13 Discussion and Visual Observation 

For the non-solids case, the base superheat, ΔTonb, required to initiate nucleation can be 

estimated from Equation 6.1, [79].  

𝑞𝑜𝑛𝑏 =
𝑘𝐿ℎ𝑓𝑔𝑔(𝑇𝑜𝑛𝑏)

2

8s𝑇𝑠𝑎𝑡
= ℎ𝑠𝑝(𝑇𝑜𝑛𝑏 +𝑇𝑠𝑢𝑏)                                                         6-1 

where ℎ𝑠𝑝 is the single-phase, heat-transfer coefficient in the pool.  The low vapour 

density produced at these low pressures, the large liquid sub-cooling in the liquid pool 

and the circulation within the pool, which increased the hsp heat-transfer coefficient, all 

combined during these tests to require a large base superheat for the onset of nucleation. 

Hence, in the absence of solids, the base temperatures were lower than expected and 
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nucleation was not observed.  The solids bed isolated the heated base below it from the 

circulation in the liquid pool, reducing the heat-transfer coefficient ℎ𝑠𝑝within the bed. 

This increased the base temperature below the bed sufficiently to initiate boiling at much 

lower base superheats.  The circulation within the pool was still happening.  Thus, out 

with the bed, the base was being cooled as before.  Thus, in general, boiling was observed 

below the bed but not on either side of it.  When the bed depth was 4 mm and the heat 

flux was 5 kW/m2, boiling was not observed on the base of the evaporator, within or out 

with the bed.  The corresponding wall temperature, TW1, as shown in Figure 6.3, was 

below the saturation temperature.  However, when the wall heat flux was increased to 

15  kW/m2, boiling was initiated.  The onset of nucleation caused the bed location to 

change with time, moving up the curved base to close to the vertical portion, Figure 3.1, 

before returning to the base minimum point and moving up the other side.  Some of the 

locations of this oscillation are shown in Figure 6.19 for a heat flux of 45 kW/m2.  The 

bed and the location of the test section drain hole are highlighted to help clarify the 

movement.  As the bed moved, the nucleation sites moved with it, restoring single-phase 

convection to where the bed, and boiling, had previously been.  As the bed depth 

increased, the magnitude of this oscillation decreased, stopping completely at bed depths 

of 24 mm and above. However, significant bed oscillation only occurred at a bed depth 

of 4 mm, with minor or no oscillations present with deeper beds.  

Images of the base are shown in Figure 6.20 for bed depths of 8-32 mm and for two base 

heat fluxes, 5 kW/m2 and 45 kW/m2.  At a bed depth of 8 mm and at a base heat flux of 

5 kW/m2, Figure 6.20a, bubbles are shown to grow at one or two nucleation sites on the 

heated surface within the bed.  These bubbles tended to coalesce, probably to produce the 

buoyancy force required to overcome the flow resistance of the particle in the bed and 

allow the vapour to escape into the pool, where the bubbles collapsed in the subcooled 

liquid.  The number of nucleation sites decreases with increasing bed depth at high fluxes, 

as shown in Figure 6.20. For bed depths of 24 and 32 mm and at heat fluxes greater than 

35 kW/m2, the upward vapour flows were observed to ‘fluidise’ the bed.  Particles were 

ejected from the bed by the vapour bubbles.  These particles subsequently landed on the 

right or left side of the bed, depending on the direction of the liquid flow in the pool.  The 

pool direction was observed to oscillate with time.  Figure 6.21 shows that the bubble 

initiated on the base as a small bubbles and then these bubbles merged to became two 

bubbles, these pictures been taken from video reordering, the time between the each 

picture is 1/8 sec.  
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a) At 0 sec                                                

          

 
b) After 16 sec 

 

 
c) After 28sec               

                                             

 

d) After 53 sec 

Figure 6-19: Bed movement for 4 mm at a heat flux of 45kW/m2 

 

Drain hole 
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    a) 8 mm at 5 kW/m2                                      b) 8 mm at 45 kW/m2 

      
       c) 16 mm at 5 kW/m2                                      d) 16 mm at 45 kW/m2  

                                            
      e) 24 mm at 5 kW/m2                                  f) 24 mm at 45 kW/m2 

      

     h) 32 mm at 5 kW/m2                                 j) 32 mm at 45 kW/m2 

 

Figure 6-20: pictures at different heat flux and bed depth 
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a) 

 

b) 

 

C) 

 

d) 

 

e) 
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F 

 
h) 

Figure 6-21: bubbles growth and merging (bed depth 32mm, q 5 kW/m2) 
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Chapter 7 – THE EFFECT OF SOLIDS ON WALL TEMPERATURES 

7.1 Introduction 

This chapter studies the effect of particles placed centrally in a bed on the base of the 

evaporator, wall and bed temperatures were compared, bubble sizes and changes in the 

bed depth were investigated. 

7.2 Wall Temperature Comparison 

Wall temperature TW1 was located at the lowest point in the evaporator and TW5 was 

located at the interface between the curved and vertical portions of the base, Figure 3.11. 

In general, TW1 was covered by solids and TW5 was not.  The variation of base temperature 

against heat flux for each bed depth is shown in Figure 7.1.  The local saturation 

temperatures are included.  Figure 7.1 shows that the base temperature in the central 

portion of the evaporator was affected by solids and Figure 7.2 shows that the effect was 

local.  

In the central portion of the base, Figure 7.1, in the absence of solids, 0 mm case, the base 

is subcooled at low heat flux and moves closer to the saturation temperature as the heat 

flux increases.  Boiling was not observed in the absence of solids on the base of the 

evaporator.  This is because liquid circulation within the pool produces a cooling effect 

that is sufficient to prevent the onset of nucleate boiling.  At a bed depth of 4 mm, Figure 

7.1, boiling did not occur at a heat flux of 5 kW/m2, but did at all heat fluxes above this. 

This suggests that the convection currents were sufficient to cool the base at a heat flux 

of 5 kW/m2, but not at heat fluxes above this.  Boiling occurred at all heat fluxes for bed 

depths of 8 mm and above, Figure 7.1.  At these bed depths, the bed acts as a blanket, 

separating the base from the cooling convection currents in the liquid pool and causing 

the base temperature to rise.  The base temperatures under the bed are reasonably uniform 

for all solid levels once boiling is initiated.  

Note: as shown in Figures 7.1, 7.2 and 7.3, the saturation temperature is not the same due 

to the changes happened in the atomsperice pressure durring the day causes changing in 

the operating pressure from 50 to 62.5 mbar. 
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Figure 7-1: Variation of heat flux with wall temperature at location Tw1 

 
Figure 7-2: Variation of heat flux with wall temperature at location Tw5 

7.3  Bed Temperature Comparison 

The variation of bed temperature, as measured by TS9 in Figure 3.11, with bed depth is 

shown in Figure 7.3. The local saturation temperature is also shown. All of the bed 

temperatures are below the saturation temperature so that, when boiling occurs, it is 

subcooled boiling.  The bed temperature increases as the bed depth increases until a depth 

of 16 mm is reached, it decreases at 24 mm before increasing again at 32 mm.  The 

variations of bed temperature with heat flux for each bed depth is shown in Figure 7.4.  

In the absence of a bed, the bed temperature increases with increasing heat flux, 0 mm 

case. For a bed depth of 4 mm, the bed temperature increases slightly as the heat flux 
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increase.  For all other bed depths, the bed temperature decreases as the base heat flux 

increases.  The bed temperature moves close to the stream temperatures at high heat 

fluxes.  

 
Figure 7-3: Variation of bed temperature with bed depth  

 
Figure 7-4: Variation of bed temperature with heat flux 

7.4 Analysis of Solid Beds Containing Glass Particles  

Bubble size was observed to increase with bed depth and heat flux and some fluidisation 

was observed to occur at the larger bed depths and heat fluxes.  The camera used to record 

the visual images had a resolution of 5184 x 3456 pixels.  The camera was focussed on 

the height of the test section, approximately 1 m.  Thus, each vertical pixel represented 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

b
e
d

  
te

m
p

e
ra

tu
re

 (
o
C

)

bed depth (mm)

 5kW/m^2

15kW/m^2

25kW/m^2

 35kW/m^2

saturation

 45 kW/m^2

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0

b
e
d

  
te

m
p

e
r
a

tu
r
e
 (

o
C

)

heat flux (kW/m2)

4 mm

8 mm

12 mm

16 mm

24 mm

32 mm



Chapter 7 – The Effect of Solids on Wall Temperatures 

 

143 

approximately 0.29 mm of test section.  This resolution is sufficient to allow the camera 

to be used to make estimates of bubble size and bed depth.  

As is clear from the images, the camera angle was not ideally set up for this type of 

analysis. The analysis requires reference lengths to translate the pixels to physical sizes. 

Two reference distances were used.  The first was the drain hole. This is the small hole 

shown above the solids bed in Figure 7.5 and is 13 mm in diameter.  The second was the 

diameter of a heated tube.  The tubes were manufactured in-house and had a diameter of 

28.5 mm as shown in Figure 7.6.  The analyses required appropriate software to make the 

measurements, Image J,[85] was used.  These reference lengths were subjected to similar 

distortions as the measured quantities, making the measured quantities reasonably 

representative. 

 
Figure 7-5: using drain hole’s diameter as a reference 

 
Figure 7-6: using tube diameter as a reference 
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7.4.1 Bubble Diameter 

The bubbles measured were located in the centre of the base, where the bed depth was 

largest. Four images were selected for each measurement.  An ellipse was used to measure 

the bubble size, as this best reflected the bubble shape.  The equivalent diameter of the 

bubble on each image was taken as the average of the major and minor axes of the ellipse, 

the equivalent diameters for all the pictures for each depth shown in table 7.1.  An 

example of the technique is given in Figure 7.7 for a bed depth of 8 mm and heat flux of 

35 kW/m2.  The bubble diameter was taken as the average of the diameters from the four 

images.  

   

a)                                                                  b) 

  

c)                                                                       d) 

Figure 7-7: four pictures for a bed depth of 8 mm at a heat flux of 35 kW/m2  

For a bed depth of 4 mm and at heat fluxes higher than 5 kW/m2, the particles bring about 

nucleate boiling within the bed, while convective heat transfer is dominant at the sides. 

By using Image J software, the equivalent estimated bubble diameters were 2.8, 7.6, 10.9 

and 9.7 mm for heat fluxes of 15, 25, 35 and 45 kW/m2 respectively.  Examples of these 
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bubble diameters are given in Figure 7.8.  A large numbers of bubbles are observed for 

the 4 mm bed at a heat flux of 45kW/m2, as shown in Figure 7.8d.  

For a bed depth of 8 mm, boiling started at a heat flux of 5 kW/m2.  The equivalent 

estimated bubble diameters increased as heat flux increased and were 7, 8.6, 10.7, 13.6 

and 13.8 mm for heat fluxes of 15, 25, 35 and 45 kW/m2 respectively.  At bed depth 

higher than 12 mm the equivalent estimated bubble diameters increased significantly as 

heat fluxes increased, the results are shown in Table 7.1. 

 Figure 7.9 show the variation of estimated equivalent bubble diameter with the heat flux. 

The bubble diameter increases as the bed depth increases at the same heat flux.  The 

equivalent estimated bubble diameter increases with increasing heat flux for the same bed 

depth, as shown in Figure 7.9.  Similar measurements on the lower vertical wall, where 

there were no solids, gave bubble diameters of 20 mm at a heat flux 45 kW/m2.  Horizontal 

bubbles on the tube surfaces gave bubble diameters of 16 mm at a heat flux of 65 kW/m2. 

These highlight just how large bubbles are at these low pressures and how much larger 

they can become in the presence of a solids layer.  The nucleation sites decreased as the 

bed depth increased as shown in Figures 7.8d and 7.10f. 

 

a) at heat flux of 15 kW/m2               
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b )  at heat flux of 25 kW/m2 

 

 
  c )  at heat flux of 35 kW/m2         
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d )  at heat flux of 45 kW/m2 

Figure 7-8: bubble behaver at a bed depth of 4 mm 

 

 

Table 7-1: The equivalent estimated bubble diameters for each heat flux            

Bed Depth E.E. Bubble 

diameter at 

5 kW/m2 

(mm) 

E.E. Bubble 

diameter at 

15 kW/m2 

(mm) 

E.E. Bubble 

diameter at 

25 kW/m2 

(mm) 

E.E. Bubble 

diameter at 

35 kW/m2 

(mm) 

E.E. Bubble 

diameter at 

45 kW/m2 

(mm) 

4 mm No bubbles 2.8 7.6 10.9 9.7 

8 mm 7 8.6 10.7 13.6 13.8 

12 mm 8.4 11.3 13.5 15.1 18.5 

16mm 9.7 14.1 17.1 18.6 20.5 

24 mm 14 15.7 20.7 25.5 30.1 

32 mm 17.9 25 26.6 33.5 40.3 
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Figure 7-9: Variation of the estimated bubble diameter with the heat flux 

    

               a)  at heat flux of 5 kW/m2                       b)  at heat flux of 15 kW/m2 

 

      

        c)  at heat flux of 25 kW/m2                               d)  at heat flux of 35 kW/m2 
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                                                    f)  at heat flux of 45 kW/m2 

Figure 7-10: changing bubble size with the heat flux at bed depth of 32 mm  

 

7.5 Changing in the Bed Depth (Fluidization) 

Bed depths were also measured in the centre of the base, where it was largest.  Five images 

were selected for each measurement.  An example of a tube being used as the reference 

is shown in Figure 7.6.  A line was used to measure the bed depth.  An example of the 

technique is given in Figure 7.12.  The bed depth was taken as the average of the depths 

from the five images.  

The bed depth measurements are shown in Figure 7.11.  Reliable estimates of the bed 

depth at 4 and 8 mm were not possible because of the movement of the bed. 

Measurements are shown for the bed depth before base heating was applied and at a heat 

flux of 45 kW/m2.  All 5 readings are included.  These measurements show that only small 

variations were obtained from the different images.  At bed depths of 12 and 16 mm, there 

is little difference between the values obtained at 0 and 45 kW/m2.  However, there is a 

significant difference between them at bed depths of 24 and 32 mm where decreases of 

about 2.5 and 5 mm were respectively obtained as shown in Figures 7.12 and 7.13.  This 

is an indication of the partial fluidisation of the bed. Particles were observed to be 

irregularly driven from the centre of the bed surface by the rising vapour bubbles.  These 

particles were temporarily distributed in the bulk liquid, before returning to the base. 

However, the majority of the particles remained in the bed and continued to provide 

nucleation sites to maintain the process. 
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Figure 7-11: Variation of bed depth with the heat flux 

 

      
a) No heat flux applied                                    b)  At a heat flux of 45 kW/m2 

                    Figure 7-12: the bed depth estimation at a bed depth of 24 mm 
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             a)  No heat flux applied                    b) At a heat flux of 45 kW/m2, picture 1 

                  
  c) At a heat flux of 45 kW/m2, picture 2        d) At a heat flux of 45 kW/m2, picture 3 

 

                     

  d) At a heat flux of 45 kW/m2, picture 4      f) At a heat flux of 45 kW/m2, picture 5 

Figure 7-13: the bed depth estimation at a bed depth of 32 mm 
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Figure 7-14: Fluidization at a bed depth of 32 mm with heat flux of 45 kW/m2 

7.6 Wall Superheat 

The variation of base superheat with bed depth is shown in Figure 7.15.  For a bed depth 

of 4 mm, the base superheat is negative at a heat flux of 5 kW/m2, thus boiling was not 

happening at this heat flux.  The base superheat increases to 9 K when the heat flux is 

increased to 15 kW/m2, before reducing steadily at the heat flux is further increased.  This 

was due, in part, to the bed moving around the base.  For bed depths greater than 4 mm, 

the base superheat changes with increasing heat flux are less significant.  However, the 

base superheat is shown to increase with increasing bed depth until 16 mm, before 

reducing.  
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Figure 7-15: variation of the base superheat with the bed depth  

7.7 Summary 

The temperatures measured throughout the liquid pool were reasonably uniform at the 

saturation temperature of the free surface, irrespective of the particle type, Figures 6.1 

and 6.2.  This is an indicator that liquid circulation occurred within the pool, with flashing 

occurring at the free surface.  This happens when the particles remain in a bed or when 

they were ‘fluidised’. 

In the absence of particles, the base temperatures were below the saturation temperature, 

Figures 7.1.  However, the presence of the glass particles induced boiling below the bed. 

At bed depths of 16 mm and below, the liquid temperature within the bed, and the base 

superheat below it, increased with bed depth, Figures 7.3 and 7.15, and reduced at larger 

bed depths.  The change in behaviour was probably caused by the onset of fluidisation of 

the bed, Figure 7.11. 

Without solid particles, boiling did not occur because of convective cooling by the liquid 

circulating in the pool. When added, the deposited particles acted like a blanket, 

preventing the cooling effect of the pool and causing the base temperature below the bed 

to rise until boiling was initiated.  Visual observations showed that bubbles were 

generated in the gaps between the heated surface and the particles, Figure 6.21.  The 

vapour bubbles generated by the glass particles, Figure 7.9, are much larger than the 

particles in the bed, which were 0.5-0.6 mm in diameter, and they completely surrounded 

them.  The number of bubbles produced by the glass particles was much larger at low bed 
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depths than at larger depths.  An estimate from the images obtained showed 60-80 bubbles 

present at a heat flux of 45 kW/m2 and a bed depth of 4 mm.  This was reduced to 5-15 

bubbles at the same heat flux but at a bed depth of 32 mm.  Deeper beds have a greater 

flow resistance, restricting the liquid flow through the bed to the heated surface and 

reducing vapour flow into the pool.  The latter was overcome by small bubbles joining 

together to become large bubbles, Figure 7.9.  Normally an increase in bubble departure 

diameter occurs with a decrease in bubble frequency and the higher the bubble frequency 

the stronger the boiling heat transfer, [65]. Therefore, larger bubble diameters imply a 

decrease in the heat transfer performance. 

The evaporator tested operates at a low pressure to reduce the saturation temperature and 

thus the base temperature.  This is done to reduce the corrosion rate of the evaporator 

base.  These tests indicate that the presence of any particles on the base significantly 

increases the base temperature and therefore the corrosion rate.  The glass particles were 

mainly on the base.  The literature reviewed, and the observations from these tests, 

suggest that the presence of particles may change the boiling heat transfer rate.  It is not 

clear whether it will be improved or degraded, i.e., the corrosion rate may be increased or 

reduced, relative to the plain base boiling performance. 
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Chapter 8- SUMMARY OF THE CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

8.1 Summary of the Conclusions 

The experimental results show that the operation of the evaporator changes significantly 

as the pressure is reduced.  This is evidenced by the visual observations, the stream 

temperatures and the heat‐transfer measurements.  The stream temperatures indicate that 

re‐circulation is occurring, irrespective of the pressure, because the pool temperature is 

similar to the saturation temperature corresponding to the pressure at the free surface. 

However, this produces small liquid sub-coolings at high pressure, as seen in the LLHP 

and LLMP data series, and large liquid sub-coolings at vacuum pressures, as seen in the 

LLLP and HLLP data series.  The LLMP and LLHP tests behaved as expected, with 

bubbles generated and moving upwards in the liquid pool.  However, the vacuum tests 

behave differently.  The vapour density in Equation 3.1 means that vacuum heat fluxes 

require a significantly higher wall superheat to nucleate. This has meant that tube wall 

temperatures are lower than expected at the lower heat fluxes and are being cooled by 

single-phase flows.  The single‐phase cooling is enhanced as a result of the re‐circulation, 

another source in the delay in nucleation.  The tubes nucleate at the higher heat fluxes but 

only partial boiling was obtained. 

The visual evidence shows 

 For the LLLP series, bubbles were evident at heat fluxes greater than 10 kW/m2. 

However, the bubbles were relatively large and attached to the tube wall.  Larger 

heat fluxes led to a more frequent occurrence of the bubbles. 

 For the HLLP series, bubbles were not observed until a heat flux of 40 kW/m2. 

 For the LLMP and LLHP series, small bubbles were evident towards the top of 

the tube bundle at heat fluxes of 10 kW/m2.  As the heat flux increases, bubbles 

were evident further down in to the tube bundle.  

 The liquid pool changed as the pressure was reduced.  At a pressure of 450 and 

850 mbar the pool contained many bubbles, whereas few bubbles were evident at 

a pressure of 50 mbar. 
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 It is noticeable that, even at high heat fluxes, the void fraction is low.  

Re-circulation requires a liquid velocity which means that convection and sub-cooled 

boiling could be present.  However, which heat-transfer mechanism is dominating is less 

clear.  Two analyses methods, the equilibrium model and isolated tube model, were used 

to help deduce what the heat-transfer mechanisms were. 

 When the models were applied to the low level data at a pressure of 50 mbar, the 

analysis suggested that the isolated tube model was less likely than the equilibrium 

model.  Velocity magnitudes supportive of the equilibrium model were observed. 

Thus, at a pressure of 50 mbar, the equilibrium model with the Gorenflo - ESDU 

[12] [84] combination used to describe boiling gave the more credible results.  

 When the models were applied to the high level data at a pressure of 50 mbar, the 

isolated tube with the Gorenflo [12] correlation used to describe boiling gave the 

more credible results. 

 When the models were applied at a pressure of 450 and 850 mbar, it is suggested 

that the equilibrium model is less likely to have occurred and that the isolated tube 

behavior is more likely.  The results for 450 and 850 mbar suggest that the Stephan 

and Abdelsalam [9] correlation are more accurate at these pressures. However, 

caution must be exercised because the tube columns did not behave the same and 

the presence of the bubbles was not taken into account in the equilibrium model. 

The low pressure, high level data show isolated tube behavior, where the heat-transfer 

mechanism is natural convection until the onset of boiling and nucleate boiling thereafter. 

The visual evidence and the models results supported that the low pressure, low level data 

is dominated by tube interactions as described by the equilibrium model, where the heat-

transfer mechanism is convection before the onset of boiling, with convection and 

nucleation afterwards.  It is probable that the reduction in pressure changes the low level 

behavior and that the dominant mechanism at a pressure of 450 and 850 mbar is different 

from that at 50 mbar. However, caution must be exercised as explained above. 

The effect on base temperature of increasing the bed depth has been investigated for water 

boiling at a pressure of 50 mbar absolute.  The bed depth was varied from 0-32 mm using 

glass particles 500-600 μm in diameter.  
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 The visual evidence shows that 

  The average bubble size increases with increasing bed depth.  These bubbles are 

much greater than those present without particles.  

 The bed was observed to oscillate from one side of the base to the other.  The 

magnitude of oscillation decreased with increasing thickness and stopped moving 

at bed depth of 24 mm. 

 The number of nucleation sites decreases with increasing bed depth 

 For a bed depth of 24 and 32 mm, at heat fluxes greater than 35 kW/m2, the vapour 

flows upward and fluidizes the particles, the fluidization produced significant 

decreases in the bed depths. 

 The bubbles are initiated on the base as small bubbles, which subsequently merge. 

 The major effect of particles on nucleate boiling heat transfer can be analysed as follows. 

Firstly, with no solid particles, boiling is not observed, because of convective cooling by 

the liquid circulating in the pool.  The solid particles act like a blanket, preventing the 

cooling effect of the pool and causing the wall temperature to rise until boiling is initiated. 

Secondly, according to visual observations, additional bubbles were provided on the 

heated surface by the particles in contact with the surface.  This is dominant at low depth 

and decreases as the depth increases.  The liquid flow to the surface is restricted by the 

bed flow resistance.  For the same reasons vapour needs larger buoyancy forces to escape. 

This is achieved by small bubbles joining together to become larger bubbles.  Once the 

bubble escapes the vacuum effect causes liquid to rush in to the bed. 

8.2 Recommendation for Future Work 

 Further controlled experiments should be undertaking to obtain boiling curve and 

convective coefficients for water at controlled flow rates, pressure and temperature 

across electrically heated tubes and walls. 

  The fluid properties can be modified by the use of additives, e.g. the viscosity can 

be changed by adding glycerol to see the difference in the evaporator behaviour. 
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 Simulation using a CFD model is recommended. 

  Deeper beds need to be investigated to see how fluidization progresses. 

 Further study on particle shape is required to fully understand the particle effect. 

 Different sizes of particles with different thermal conductivities are required to 

better understand the effect of the particles. 

  Further work is required to investigate the magnitude of the heat-transfer 

coefficient during boiling in the presence of solids. 
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