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Abstract Cognitive load theory is intended to provide instructional strategies derived from
experimental, cognitive load effects. Each effect is based on our knowledge of human
cognitive architecture, primarily the limited capacity and duration of a human working
memory. These limitations are ameliorated by changes in long-term memory associated
with learning. Initially, cognitive load theory's view of human cognitive architecture was
assumed to apply to all categories of information. Based on Geary’s (Educational
Psychologist 43, 179–195 2008; 2011) evolutionary account of educational psychology,
this interpretation of human cognitive architecture requires amendment. Working memory
limitations may be critical only when acquiring novel information based on culturally
important knowledge that we have not specifically evolved to acquire. Cultural knowledge
is known as biologically secondary information. Working memory limitations may have
reduced significance when acquiring novel information that the human brain specifically
has evolved to process, known as biologically primary information. If biologically primary
information is less affected by working memory limitations than biologically secondary
information, it may be advantageous to use primary information to assist in the acquisition
of secondary information. In this article, we suggest that several cognitive load effects rely
on biologically primary knowledge being used to facilitate the acquisition of biologically
secondary knowledge. We indicate how incorporating an evolutionary view of human
cognitive architecture can provide cognitive load researchers with novel perspectives of
their findings and discuss some of the practical implications of this view.
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Cognitive load theory provides a theoretical framework dealing with individual information
processing and learning (Paas et al. 2003a; 2004; Paas and Van Merriënboer 1994a; Sweller
1988, 2010; Sweller et al. 2011, 1998; Van Merriënboer and Sweller 2005). In recent years,
that theoretical framework has increasingly relied on biological evolution (Sweller 2003,
2011a, b; Sweller and Sweller 2006) firstly, by treating biological evolution as an
information processing theory and suggesting that human cognition processes information
in an analogous fashion and secondly, by categorizing knowledge according to its
evolutionary status.

Human cognitive architecture can be specified using similar structures and functions to
biological evolution. This architecture consists of an effectively unlimited long-term
memory intended to govern activity in the same way as a genome governs biological
activity. Most of the information is acquired by long-term memory when reading what other
people have written, listening to what other people say, and observing what other people
do, in a manner that is analogous to the way in which a genome acquires information from
other genomes during reproduction. While most information held in long-term memory is
obtained from other people, that information must be initially created. Novel information is
created during problem solving using a random generate and test process analogously to the
way in which random mutation creates novel genomic information. That novel information
is processed by a working memory that is limited in capacity to 4±1 elements of
information (Cowan 2001; Baddeley 1986; Miller 1956) and duration to about 20 s
(Peterson and Peterson 1959). Working memory processes new information from the
environment in a similar way to the manner in which the epigenetic system processes novel,
environmental information. The epigenetic system links the environment to a genome
(Sweller and Sweller 2006).

The capacity and duration limits of working memory are far below the requirements of
most substantive areas of human intellectual activity. Alone, working memory would only
permit relatively trivial human cognitive activities. The relation between working memory
and long-term memory resolves the problem (Ericsson and Kintsch 1995). The capacity and
duration limits of working memory are eliminated when working memory deals with
familiar information organized in long-term memory rather than unfamiliar information
from the environment. Long-term memory contains cognitive schemas that are used to store
and organize knowledge by incorporating or chunking multiple elements of information
into a single element with a specific function. Schemas can be brought from long-term to
working memory to govern activity in the same manner as the epigenetic system can
activate or suppress large amounts of genomic information. Whereas working memory
might, for example, only deal with one element, a working memory load that can be
handled easily, that element may consist of a large number of lower-level, interacting
elements organized and stored in long-term memory. Those interacting elements may far
exceed working memory capacity if each element must be processed individually. Their
incorporation in a schema means that only one element must be processed. If readers of this
article are given the problem of reversing the letters of the last word of the last sentence
mentally, most will be able to do so. A schema is available for this written word along with
lower-level schemas for the individual letters and further schemas for the squiggles that
make up the letters. This complex set of interacting elements can be manipulated in
working memory because of schemas held in long-term memory.

Skilled performance develops through the building of increasing numbers of ever more
complex schemas by combining elements consisting of lower-level schemas into higher-
level schemas (i.e., schema construction). If the learning process has occurred over a long
period of time, a schema may incorporate a huge amount of information. The automation of
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those schemas (i.e., schema automation) so that they can be processed unconsciously,
further reduces the load on working memory. Because a schema can be treated by working
memory as a single element or used unconsciously after automation, the limitations of
working memory disappear for more knowledgeable learners when dealing with previously
learned information stored in long-term memory. As a result, once information is stored in
long-term memory, working memory can handle complex material that exceeds its capacity
prior to the information being stored.

Evidence for the critical importance of long-term memory to cognitive functioning
comes from the work of de Groot (1965). The only distinction between chess masters and
weekend players that he could find was in memory of briefly seen chessboard
configurations taken from real games. These results have been replicated in a variety of
educationally relevant fields (Chiesi et al. 1979; Egan and Schwartz 1979; Jeffries et al.
1981; Sweller and Cooper 1985). They indicate the critical importance of long-term
memory to cognitive functioning, including problem solving. Expert problem solvers in an
area have acquired large numbers of schemas stored in long-term memory. Those schemas
allow problem solvers to recognize a problem state and the best moves associated with that
state. Based on these results, a major function of instruction is for learners to acquire
schemas. These schemas, stored in long-term memory, alter our ability to process
information. The ability of working memory to efficiently process large amounts of
information previously stored in long-term memory provides a primary rationale for the
human cognitive system. We learn in order to be able to carry out tasks that otherwise
would be impossible.

Until recently, cognitive load researchers considered working memory as an immutable
system with learning facilitated under instructional conditions that keep the load imposed
by the learning task within appropriate limits. Research has, therefore, been concerned
mainly with developing and researching instructional techniques for managing the load
imposed on working memory by complex tasks in individual learning settings (Paas et al.
2010). Nevertheless, Geary’s (2002, 2007a, b, 2008, 2011; see also, Sweller 2008)
evolutionary account of educational psychology, suggests that working memory restrictions
may have only a limited importance when acquiring information we have evolved to
acquire over many generations. This information is known as biologically primary
knowledge. In contrast, working memory restrictions may be critical when acquiring
information that is culturally important but that we have not specifically evolved to acquire,
known as biologically secondary knowledge.

Biologically primary knowledge is modular in the sense that we may have evolved to
acquire some categories of primary knowledge independently and during a different epoch
to other categories of knowledge. We have evolved to acquire particular modules or
categories of knowledge in order to achieve access to and control of the social, biological,
and physical resources that enhance our survival or reproductive prospects. Humans are
easily able to acquire huge amounts of biologically primary knowledge outside of
educational contexts and without a discernible working memory load. In that sense,
biologically primary knowledge does not require the cognitive architecture outlined above.

The manner in which we learn to recognize faces (e.g., Bentin et al. 1999) and learn to
speak (e.g., Kuhl 2000) provides startling examples of our ability to discover large amounts
of complex knowledge without explicit instruction. With regard to speaking, we learn how
to simultaneously arrange our lips, tongue, breath, and voice simply by immersion in a
listening/speaking society. That learning is unconscious, effortless, rapid, and driven by
intrinsic motivation. The concept of a limited capacity, limited duration working memory is
irrelevant to the process because we do not have to determine how to process elements of
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biologically primary information. We know which elements to process and how to process
them because we have evolved to do so. Not only is hearing, speaking, and face-recognition
knowledge acquired at a very young age without explicit teaching, most of us would have
little idea how to teach children to speak their native language or to recognize faces.

Biologically secondary knowledge is related to knowledge and expertise that are useful
in the social milieu or ecology in which a group is situated. For biologically secondary
knowledge that can be found in domains such as reading and mathematics, humans have
great difficulty and often need to be extrinsically motivated to acquire relatively small
amounts of knowledge. To acquire that knowledge, we usually require explicit instruction
in an educational context. Working memory limitations are directly relevant to the
acquisition of biologically secondary knowledge because we have not evolved to know
how secondary information should be processed. For this reason, cognitive load theory has
been applied exclusively to the acquisition of biologically secondary subject matter taught
in educational and training contexts. That subject matter, like all biologically secondary
information, requires explicit instruction and a conscious effort by learners. In contrast,
biologically primary information needs neither explicit instruction nor a conscious effort.
Instructional recommendations for biologically secondary information should not be based
on the manner in which humans acquire biologically primary information. Nevertheless,
given the efficiency of biologically primary systems in the acquisition of knowledge, the
question immediately arises whether those primary systems can be used to facilitate the
acquisition of secondary knowledge.

Geary’s evolutionary educational psychology with its distinction between biologically
primary knowledge that we have evolved to acquire, and biologically secondary knowledge
that has become culturally important but for many people frequently difficult to acquire,
may provide us with a theoretical foundation for designing cognitive load-based
instructional design. In this article, we show how the incorporation of this new view of
human cognitive architecture into cognitive load theory can provide cognitive load
researchers with new perspectives on their findings such as the human movement effect and
the collective working memory effect. In addition, an evolutionary educational psychology
view can stimulate the consideration of other theoretical frameworks and their associated
research findings such as embodied cognition that allows gesturing to reduce cognitive
load. In general, we are concerned with the extent to which biologically primary knowledge
can be used to facilitate learning in biologically secondary domains.

The Collective Working Memory Effect

From an evolutionary perspective, natural selection promotes the fittest individuals.
Although this seems to predispose individuals to selfishness, collaboration can increase
the fitness of the collaborators when together they can access more resources than when
working individually. A group of collaborating learners can solve complex problems that
may be insoluble for an individual learner. Yet for individuals, the best strategy seems to
consist in allowing the other learners to devote their cognitive resources to solving the
problem and then to gain an advantage from the solution. But, if all learners acted in that
manner, any advantage of collaboration would be lost (Heylighen 2000).

The collective working memory effect reflects the finding that collaborating learners can
gain from each other’s working memory capacity during learning. The effect has been
demonstrated in cognitive load research comparing individual to collaborative learning
environments. Recently, group or collaborative learning has been recognized as an
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alternative way of overcoming individual working memory limitations (Kirschner et al.
2009a, b, 2011a, b). Collaborative learners can be considered as a single information
processing system (Hinsz et al. 1997; Tindale and Kameda 2000; Ickes and Gonzalez
1994), consisting of multiple, limited working memories which can create a larger, more
effective, collective working space. The result is the collective working memory effect
(Kirschner et al. 2011a, b; see also, Janssen et al. 2010).

According to the current evolutionary perspective of cognitive load theory, humans have
evolved to communicate with each other in order to obtain most of their information from
each other. The suggestion that humans obtain most of their information from other people
led to the borrowing and reorganizing principle (Sweller 2003, 2004; Sweller et al. 2011;
Sweller and Sweller 2006). This principle states that long-term memory is built primarily by
observing and imitating other people, listening to what they say and reading what they
write. In other words, humans obtain most of their information by borrowing that
information from other people’s long-term memory. This process involves constructive
reorganization in that new information must be combined with previous information using a
constructive process. The principle suggests that information can be better obtained from an
instructor, either in person or via instructional materials, rather than discovering information
by oneself. Of course, information can just as easily be obtained from other, sufficiently
knowledgeable people engaged in the same task during collaborative learning.

Most research demonstrating the borrowing and reorganizing principle is based on
individual learning environments using worked examples (e.g., Cooper and Sweller 1987;
Paas 1992; Paas and Van Gog 2006; Paas and Van Merriënboer 1994b; Renkl 1997; Sweller
1988; Sweller and Cooper 1985; Tuovinen and Sweller 1999) and animated models (e.g.,
Wouters et al. 2008, 2009, 2010). However, the principle also applies to any information
obtained from another human, resulting in collaborative learning environments providing us
with an ideal example of the principle at work. Humans collaborate in large part because
the people they are collaborating with can provide them with information more efficiently,
under many circumstances, than if they had to obtain that information without assistance
from others. For a group to carry out a learning task, not all group members need to possess
all necessary knowledge, or process all available information alone and at the same time.
As long as there is communication and coordination between the group members, the
information elements within the task and the associated cognitive load caused by the
intrinsic nature of the task can be divided across a larger reservoir of cognitive capacity.
Since we have evolved to communicate and coordinate information between each other,
general communication and coordination processes are biologically primary.

In terms of cognitive load theory, working in groups, as compared with working
individually, has two contrary consequences. First, if biologically secondary information
that imposes a heavy cognitive load is distributed over several collaborating individuals,
they have to invest less cognitive effort as compared with individuals learning alone.
Distributing that working memory load among group members may lead to a large
reduction in individual working memory load. Second, while dividing information between
individuals reduces cognitive load, that division requires the communication of information
and coordination of actions. Communication requires the group members to invest an
additional cognitive effort, an effort that individuals do not have to exert.

Communication costs can be divided into two categories. The working memory costs of
general communication and coordination processes may be quite low because they are
biologically primary. In contrast, the working memory costs of task-specific communication
and coordination processes may be substantial, because they are biologically secondary.
Therefore, a potential advantage of group learning may only result if the working memory costs
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are largely biologically primary. The working memory costs of task-specific communication
and coordination processes can be decreased by training those processes or by working in
carefully structured or scripted learning environments (e.g., Serfaty et al. 1998).

In the experiments reported by Kirschner et al., the efficiency of group versus individual
learning from tasks imposing a high or low cognitive load was expected to be affected by
the trade-off between the advantages of dividing information processing amongst group
members and the disadvantages or costs of inter-individual communication and coordina-
tion of information. It was hypothesized that learning from tasks imposing a high cognitive
load, should lead to more efficient collaborative learning than individual learning. In
contrast, when learning from tasks imposing a low cognitive load, individual learning
should be more efficient than collaborative learning. In general, the results of Kirschner et
al. experiments confirmed this interaction hypothesis. For learning tasks imposing a high
load, individual learners did not have sufficient processing capacity to successfully process
the information. For collaborative learners, the benefits of distributing the cognitive load
among each other proved to be higher than the costs of inter-individual integration and
coordination of information. Consequently, learners were able to devote the freed cognitive
capacity to activities that fostered learning. For learning tasks imposing a low cognitive
load, learners working either individually or collaboratively had sufficient cognitive
capacity to process all information by themselves. Hence, inter-individual communication
and coordination of information were unnecessary and resulted in transaction costs that
were higher than the benefits of distributing the cognitive load across group members
during the collaborative learning process. Consequently, when cognitive load was low,
qualitative differences in constructed schemas materialized in higher learning efficiency for
those who learned individually than for those who learned collaboratively.

The collective working memory effect provides the first example of the potential benefits of
using biologically primary knowledge to assist in the acquisition of the biologically secondary
information that is the usual subject of instruction. Face-to-face communication with others is a
biologically primary task. It is not a task that is characteristically taught in educational contexts.
We have evolved to acquire the skills associated with face-to-face communication and so learn
these skills easily and automatically simply due to our membership of a society. As a
consequence, while communicating is likely to require some working memory resources,
particularly for the task-related aspects of the communication process, there may be
considerable advantages to being able to communicate when faced with acquiring complex,
biologically secondary information.

It should be noted that the cognitive-load-oriented research leading to the collective
working memory effect represents only a small part of the immense amount of research
conducted in the field of collaborative learning. It is hard to find unequivocal empirical
support for the premise that learning is best achieved interactively rather than individually
in that research. Empirical evidence comparing collaborative learning with individual
learning reveals mixed results. Positive effects are primarily found in highly structured and
highly scripted learning environments in which learning processes were bound to strict
rules (Dillenbourg 2002). In those environments, students working collaboratively become
more actively engaged in the learning process, retain the information being learned for a
longer period of time (e.g., Morgan et al. 2000), engage in higher-order skills (e.g., Sloffer
et al. 1999), and engage in activities valuable to the processes of learning such as self-
directed learning, negotiating meaning, verbalizing explanations, justifications and
reflections, and giving each other mutual support (e.g., Van Boxtel et al. 2000).

Along with the positive findings, however, there is also a body of research showing
mixed and negative findings regarding both the learning process itself (Gregor and Cuskelly
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1994; Heath 1998; Mason 1991) and the dynamics of group formation (Hughes and
Hewson 1998; Taha and Caldwell 1993). Groups appear to fall prey to information
processing limitations such as underutilizing base-rate information (Tindale 1993),
committing additional resources to failing projects (Smith et al. 1998), ineffectively
sharing information known only by individual group members (Stasser 1999), production
blocking (Diehl and Stroebe 1987), and social loafing (Latané et al. 1979).

An important characteristic of the cognitive load theory motivated studies on the
collective working memory effect is that they were conducted under carefully structured
and randomized learning conditions to isolate the cognitive effects of task complexity and
minimize the effects of social and motivational factors on collaborative learning. Clearly,
the identification of working memory load as a factor determining the effectiveness of
collaborative learning represents the modest contribution cognitive load theory can make to
the research on collaborative learning. Ultimately, this research requires an interrelated
perspective integrating cognitive, social, and motivational aspects of the learning
environment but only after all of the individual contributing factors have been studied.

Another important characteristic of the studies on the collective working memory effect
is that they were conducted in a traditional face-to-face collaborative learning context.
Although we have argued here that we have evolved to acquire the skills associated with
face-to-face communication and so applying these skills requires minimal working memory
resources, many contemporary learning environments use a computer to mediate the
communication between different students or to communicate with students. In computer-
mediated communication, the computer can be nothing more than a conduit to another
person or object (e.g., teleconferencing) or present virtual social actors that are automated
interactants (e.g., social agents). An important question in the context of the evolutionary
educational psychology approach pertains to the working memory requirements of such
computer-mediated communication and how those requirements can inform the design of
computer-mediated collaborative learning environments.

According to Reeves and Nass's (1996) media equation, people tend to treat new
technologies as real people and places because the human brain has not evolved quickly
enough to assimilate these technologies. One of the important research lines providing
evidence for their claim is related to Mayer's (2005) social agency theory, which refers to
the idea that social cues in multimedia instructional messages can prime a social response
that leads to deeper cognitive processing and better learning outcomes. For example, people
learn more deeply when the words in a multimedia presentation are in conversational style
rather than formal style (the personalization principle: e.g., Mayer et al. 2004; Moreno and
Mayer 2004), or when the words in a multimedia message are spoken in a standard
accented human voice rather than in a machine voice or foreign-accented human voice
(voice principle, e.g., Atkinson et al. 2005; Mayer et al. 2003). In the present context, social
agency theory can be considered as another example of biologically primary knowledge
assisting in the acquisition of biologically secondary knowledge. In future research, it
would be interesting to investigate whether those social agency effects are also effective for
the design of computer-mediated collaborative learning environments.

Human Movement Effect

The human movement effect reflects the finding of neuroscience research that the same
cortical circuits that are involved in executing an action oneself, also respond to observing
someone else executing the same action. The effect has been used in cognitive load research
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to investigate learning from dynamic visualizations or animations involving a human
movement component. In the current context, we will use the human movement effect as
the second example of using biologically primary knowledge to facilitate the acquisition of
biologically secondary knowledge.

Cognitive load theorists have argued that dynamic visualizations can be ineffective if
they create high extraneous cognitive loads (Ayres and Paas 2007a, b) defined as a
cognitive load that can be avoided by changing an instructional design. In this context, an
extraneous load can be caused by a number of poor design features. Separating text and a
diagram leading to a split-attention effect (e.g., Ayres and Sweller 2005; Chandler and
Sweller 1992; Mayer and Moreno 1998), or more endemically, the very transitory nature of
dynamic visualizations (e.g., Hegarty 2004; Lewalter 2003), provide examples. By their
intrinsic nature, dynamic visualizations change over time, which often involves information
disappearing from a screen and so requiring learners to process new information while
simultaneously trying to remember and integrate important past information, thus creating
an extraneous load as working memory resources are focused on dealing with the demands
of the presentation, rather than on learning.

The transient information effect provides a possible explanation why some forms of
user-interactivity (for an overview see, Wouters et al. 2007), segmentation (for an overview
see, Spanjers et al. 2010), and attention cueing (for an overview see, De Koning et al.
2009) improve the effectiveness of animations. These instructional manipulations reduce
transient information and consequently the demands on working memory are reduced. The
influence of transient information also explains why in many cases, dynamic visualizations
are no more effective than static visualizations. With statics, there is less need to hold
information in working memory because in many research designs the sequence of static
displays are continuously available without disappearing, and thus can easily be reviewed
by the learner.

The transient information argument based on cognitive load theory provides a plausible
reason why dynamic visualizations frequently have not produced the desired learning
results, particularly when compared with static visualizations. Not surprisingly, there is
limited research that has found dynamic visualizations to be more effective than static
graphics. Interestingly, under some instructional conditions, such as the use of dynamic
visualizations to teach human motor skills, this tension between a limited working memory
capacity and transient information seems to be non-existent, with animations being more
effective than equivalent static graphics. In particular, the meta-analysis of Höffler and
Leutner (2007) showed that superior learning (the largest effect size) was found when the
animations were highly realistic and procedural-motor knowledge was involved, such as in
learning to (dis)assemble a machine gun. On the surface, the Höffler and Leutner findings
are not consistent with the cognitive load theory transient information explanation, as some
of the studies used a non-interactive, video-based recording that clearly contained transient
information, yet the animation was superior to an equivalent static presentation. To explain
this potential contradiction, Van Gog et al. (2009) extended the cognitive load theory
argument to include a special case for human movement (see also, Ayres et al. 2009; Wong
et al. 2009).

Van Gog et al. proposed that the high working memory demand created by transient
information in dynamic visualizations is less of a problem if the learning focus is related to
human movement, because of the activation of the “mirror-neuron system” (Rizzolatti and
Craighero 2004). Observing an action performed by somebody else induces in an observer
the tendency to perform an action that is related (Katz 1960). These, often called
“ideomotor movements,” can occur both when the observer views the execution of the
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action and when an observer views only the outcome of the action. A theoretical basis for
induced action is provided by Prinz’s (1997) “common coding principle,” which suggests
that the perception of an action outcome engages the same neural systems involved in the
planning of a future action. This link between perception of action outcome and action
execution is supported by physiological studies examining “mirror neurons” in the
premotor cortex of monkeys (Gallese et al. 1996). Indirect evidence from studies using
Transcranial Magnetic Stimulation or brain imaging techniques suggests that the human
motor system also has a mirroring capacity and is activated by observing motor actions
made by others (for a review see Rizzolatti and Craighero 2004). That is, the same cortical
circuits that are involved in executing an action oneself, also respond to observing someone
else executing that action. Moreover, this process seems to prime the execution of similar
actions, which suggests that the mirror-neuron system mediates imitation, by priming (i.e.,
preparing the brain for) execution of the same action (e.g., Iacoboni et al. 1999).

Van Gog et al. argued, based on Geary’s (2008) biologically primary knowledge
concept, that humans have evolved the ability to acquire certain types of knowledge
effortlessly. If, as part of this primary knowledge, we have evolved to observe human
movement and copy it, then asking learners to observe an animation in order to learn a
motor skill may not place an excessive burden on working memory resources. In contrast,
learning about biologically secondary knowledge, such as biological or mechanical
systems, may require more working memory resources, because humans do not have the
same biological (neural networks) advantages.

Two studies recently completed within a cognitive load theory framework provide
evidence in favor of the suggestion that learners can gain understanding from observation
as well as imitation. In the first study (Wong et al. 2009), primary school students were
asked to learn origami skills, and in the second (Ayres et al. 2009), university students were
required to learn to tie knots and complete puzzle rings. Both studies found superior
performance when learners observed a dynamic representation rather than a static
representation and when they manually had to complete the tasks (observe and imitate).
While these studies used tasks associated with human movement, it may be useful for
future research to focus on whether it is effective for learning to call upon human
movement when teaching non-motor knowledge.

The human movement effect provides the second stream of evidence for the suggestion
that the use of evolved, biologically primary knowledge can assist in the acquisition of
biologically secondary information. Transient information can substantially increase
working memory load when learning from animations. That load can result in the
superiority of static graphics. Nevertheless, if the transient, animated information
incorporates human movement that we have evolved to learn as a biologically primary
skill, animations can be superior to static graphics.

Embodied Cognition

Embodied cognition will be used as the third example of biologically primary knowledge
used in the service of acquiring biologically secondary knowledge. The theoretical
framework of grounded or embodied cognition is based on the notion that cognitive
processes develop from goal-directed interactions between organisms and their environment
(Barsalou 1999, 2008; Glenberg 1997; Rueschemeyer et al. 2009). Embodied cognition
assumes that cognitive processes are grounded in perception and action, rather than being
reducible to the manipulation of abstract symbols (Barsalou 1999). Cognitive representa-
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tions of symbols like numbers and letters are ultimately based on sensorimotor codes within
a generalized system that was originally developed to control an organism’s motor behavior
and perceive the world around it, which has resulted in automaticity of perceptual and
motor resonance mechanisms in cognitive tasks. Ample evidence for the embodied
cognition framework comes from psychological research in a variety of domains, such as
research on action semantics (Lindemann et al. 2006), language comprehension (Zwaan
and Taylor 2006), and neuroscience (Glenberg et al. 2008; Martin 2007). This research
shows that visual and motor processes in the brain are active during the performance of
cognitive tasks such as reading, comprehension, mental arithmetic, and problem solving,
while semantic codes are activated during the performance of motor tasks, suggesting that
cognitive and sensorimotor processes are closely intertwined. Gesture and object
manipulation are sensorimotor experiences that could be considered as sources of
biologically primary information and have been shown to assist in the acquisition of
biologically secondary information. Both types of experiences will be described next.

The first type of sensorimotor experience that has been shown to be effective for
learning mathematics and science concepts is gesture, either in the case of learners who
express information in gesture or learners who observe an instructor expressing information
in gesture (e.g., Singer and Goldin-Meadow 2005). Gesture is particularly important in the
interaction between learners and teachers, in the sense that learners’ gestures communicate
to the teacher information about what they know and how they view a problem (e.g.,
Alibali and Goldin-Meadow 1993; Goldin-Meadow et al. 1993) and teachers use gestures
when providing instruction to learners (e.g., Flevares and Perry 2001; Roth and Welzel
2001). Learners pay attention to and glean information from the verbal explanations and
gestures made by a teacher, and generally understand a message that is divided between
gesture and speech better than they understand either speech or gesture alone (e.g., Kelly
2001). Observing gestures made by an instructor can have beneficial effects on children’s
learning. For example, Perry et al. (1995) showed that for 9–11-year-old children learning
the mathematical concept of equivalence, instruction that included gestures made by the
teacher was more effective than only receiving verbal instruction from the teacher.
Similarly, Church et al. (2004) showed that children who had received instructional videos
about Piagetian conservation tasks with verbal explanations and gestures being made by the
instructor outperformed children, who had received the same instructional videos with
verbal explanations only.

However, we not only learn more by observing gestures, making gestures can also foster
our learning. Broaders et al. (2007) showed that when 9-year-old children were instructed
to gesture while solving mathematics problems themselves, they learned more from a lesson
by the teacher. A study by Cook et al. (2008) revealed that instructing children to make
particular kinds of gestures while practicing solving mathematics problems themselves after
having received explanations by the teacher, advanced their learning compared with
children who were instructed only to speak during practice.

These findings support the embodied cognition view that learning by observing an
instructor who verbally explains and gestures or by making gestures oneself while giving
verbal explanations leads to the construction of higher-quality cognitive schemas than
learning by observing or giving verbal explanations without gestures. Higher-quality
cognitive schemas are associated with better learning, which materializes in faster and more
accurate performance on a learning test. Most importantly, the construction of higher-
quality cognitive schemas from verbal explanations with gestures has been shown to be less
cognitively demanding than the construction of lower quality cognitive schemas from
verbal explanations only. Studies in the domains of mathematics (Goldin-Meadow et al.
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2001) and Piagetian conservation tasks (Ping and Goldin-Meadow 2010) have shown that
the involvement of the more basic motor system in the form of gesturing reduces the
working memory load during instruction.

Goldin-Meadow et al. (2001) investigated the effects of being allowed to gesture or not
gesture in children and adults who had to explain how they solved mathematics problems.
As a secondary task they had to remember a list of unrelated words (children) or letters
(adults) while explaining how they solved the problem. Performance on the secondary task
served as a measure of cognitive load. The higher the load imposed by the primary
explanation task, the lower the available cognitive capacity would be for remembering the
words or letters of the secondary task (e.g., Brünken et al. 2003; Chandler and Sweller
1996; Paas et al. 2003; Sweller 1988). As a consequence, the higher the load of the
explanation task, the lower the number of items that are likely to be remembered. Goldin-
Meadow et al. found that children and adults, who were allowed to gesture while
explaining how they solved the mathematics problem, experienced a lower cognitive load
because they could remember more items than when they were not allowed to gesture.

In a study using Piagetian liquid quantity conservation tasks, Ping and Goldin-Meadow
(2010) investigated whether the Goldin-Meadow et al. (2001) findings could be explained
by the fact that children mostly made gestures that directly pointed out aspects of the
mathematics problem, which could free up cognitive resources by serving as a kind of
external memory aid, or whether gesturing when speaking about absent objects could make
those objects cognitively present, thereby lowering cognitive load. The results revealed that
gesturing lowered cognitive load, regardless of whether objects were present or absent.
They also found that the cognitive load benefits of gesturing were even higher when the
gestures added information to the information conveyed by speech than when the gestures
conveyed the same information as speech, while both resulted in a lower cognitive load
than not gesturing.

Goldin-Meadow et al. have argued that gesture can convey the same basic idea as
speech, but it does so using a visuospatial rather than a verbal representational format. This
distinct representational format can enrich the way information is coded and might allow
gesture to facilitate information processing and reduce effort because of the larger motor
movements involved. The associated reduction of working memory load can be argued to
free resources that can then be used to construct higher-quality cognitive schemas in long-
term memory. An alternative explanation is that gesturing shifts some of the load from
verbal working memory to other cognitive systems. This explanation is consistent with
results from cognitive neuroscientific research showing that gesture is represented in
cortical areas that differ from those that handle verbal materials (e.g., Decety et al. 1997).
All explanations can be interpreted as examples of biologically primary knowledge
associated with gesturing assisting in the acquisition of biologically secondary knowledge.

The second type of sensorimotor experience that is effective in acquiring biologically
secondary knowledge is related to the Moved by Reading intervention, which was
developed by Glenberg et al. (2004; see also, Glenberg 2008; Glenberg et al. 2007; Marley
et al. 2007) to improve children's reading comprehension. The intervention consisted of
three types of activities designed to teach children how to map words and phrases onto
current and remembered experiences. The studies by Glenberg et al. typically asked
children to read texts, for example about activities within a farm scenario, and at the same
time, provided them with access to a set of toys, such as a barn, a tractor, and different
animals. A green traffic light was used during critical sentences as a cue for the children to
act out a sentence with the toys (e.g., “The farmer brings hay to the horse”), either
physically, by imagining, or by computer-assisted manipulation of the toys, thereby
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connecting words to particular objects and syntactic relations to concrete bodily experiences
(Glenberg et al. 2011). In the “imagine” manipulating conditions, the children were taught
to imagine how they would interact with the toys to act out a sentence after they had
physically manipulated the toys. In the computer manipulation condition, children had to
manipulate images on the computer screen using a mouse. The manipulation conditions
were compared regarding their performance on a comprehension test to a control condition
in which the children, instead of manipulating the toys, had to re-read the critical sentences.
The results of the different studies revealed substantially better comprehension performance
in the manipulation conditions than in the control conditions.

The results regarding the computer manipulation condition, which were similar to those
of the physical and imagine manipulation conditions, suggest that effective embodied
representations do not require activity with real objects. This observation is consistent with
the findings of studies into the human movement effect, which indicate that representing the
hands is not necessary for learners to construct effective embodied representations from
dynamic visualizations representing a typical manual skill, such as origami (Wong et al.
2009). In addition, the results of Ping and Goldin-Meadow (2010) show that gesturing
lowered cognitive load and resulted in better recall performance than non-gesturing,
regardless of whether objects were present or absent.

It is interesting to note that with regard to object manipulation, children need to manipulate
objects to understand written text that they may be perfectly capable of understanding if the
same information is presented in spoken form. Reading is a biologically secondary activity
while listening is biologically primary so the cognitive load associated with decoding written
text may be relevant. Decoding biologically primary spoken text may impose a minimal
cognitive load compared with decoding biologically secondary written text and so the
assistance of object manipulation may be unnecessary when dealing with spoken text. Using
biologically primary information to assist in the acquisition of other biologically primary
information, may yield few benefits compared with the use of biologically primary information
to assist in the acquisition of biologically secondary information. Future research, should repeat
the experiments of Glenberg et al. with spoken rather than written text.

Unlike the research on gesturing, research on using the manipulation of objects to
improve reading comprehension has yet to determine if object manipulation reduces
working memory load during instruction. Future work is needed to determine if load
reduction materializes with object manipulation in the same way as with gesturing.

Biologically primary information is modular with most primary skills probably evolving
independently of each other and indeed, probably at different evolutionary epochs. We may
have evolved the use of gestures before the use of speech and almost certainly evolved the use
of object manipulation prior to speech. Both gesturing and object manipulation may be very
old, very well-developed skills that are acquired easily and can be used with a minimal working
memory load. One of their functions may be to reduce workingmemory load when dealingwith
biologically secondary knowledge such as learning mathematics and reading comprehension.
The work of Goldin-Meadow et al. and Glenberg et al. strongly supports this suggestion.

Discussion and Conclusions

The major purpose of this paper has been to indicate that biologically primary knowledge that
makes minimal demands on working memory resources can be used to assist in the acquisition
of the biologically secondary knowledge that provides the content of most instruction and that
imposes a high working memory load. Evidence for this suggestion can be found in the
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collective working memory effect, the human movement effect and in embodied cognition
through the use of gestures and object manipulation. The collective working memory effect
indicates that our primary skill in communicating with others can be used to reduce individual
cognitive load when acquiring secondary knowledge. The human movement effect
demonstrates that we are able to overcome transience and the resultant cognitive load of
animations if those animations deal with human motor movement because we may have
evolved to readily acquire motor movement knowledge as a primary skill. The use of gestures
and object manipulation are primary skills that do not need to be explicitly taught but can be
used to acquire the secondary skills associated with instructional content.

Another recent demonstration of how human movement as a primary skill can be used in
the acquisition of secondary skills comes from a study of Shoval (2011) on the use of
“mindful movement” in cooperative learning about angles in geometry class. Mindful
movement is defined as the use of body movements, for instance children forming a circle,
for the purpose of learning about the properties of a circle. The use of mindful movement
was expected to be particularly effective for children who are able to cooperate but are not
yet capable of high-level verbal interaction. Shoval found that, compared with the
conventionally taught control group, the experimental group using mindful movement in
cooperative learning obtained better results.

There are other, older cognitive load effects that may similarly rely on biologically primary
knowledge assisting the acquisition of biologically secondary knowledge. For example, the
modality effect occurs when learners presented related information in audiovisual form with
spoken text learn more than when the information is presented in a visual only formwith written
text (Mousavi et al. 1995; Tindall-Ford et al. 1997). The effect has been explained within a
cognitive load theory context by suggesting that effective working memory capacity is
increased by using both auditory and visual processors. That increase may be due to
biologically primary knowledge. We may have evolved to listen to someone discussing an
object while looking at it. We certainly have not evolved to read about an object while
looking at it because reading itself requires biologically secondary knowledge.

Of course, listening to someone involves transitory information because spoken
information is generally transitory. Spoken information must be sufficiently low in content
and complexity (element interactivity) to enable it to be processed and held in working
memory. The advantage of using the biologically primary knowledge associated with
listening and looking simultaneously may disappear when dealing with lengthy, complex,
spoken text. Under those circumstances, the modality effect may disappear or even reverse,
with written text being superior to spoken text (Leahy and Sweller 2011).

These independent research areas are all linked by the suggestion that biologically
primary knowledge can be used to assist in the acquisition of biologically secondary
knowledge. One of the considerations associated with this general hypothesis concerns the
extent to which we can distinguish between biologically primary and secondary knowledge.
The concepts are well defined. We have evolved to acquire biologically primary knowledge
in modular form. We are able to acquire biologically secondary knowledge and may need to
for cultural reasons but we have not specifically evolved to acquire that knowledge. Despite
the concepts being well defined, it may not always be obvious in the absence of an
evolutionary history into which category a particular skill should be placed. At present, the
clearest marker is whether most members of a population will acquire the skill without
tuition. In the case of gestures and oral communication in a social context, we do not have
to explicitly teach the required skills—they are unlikely to appear in any syllabus
documents. Human movement on the other hand, is explicitly taught. Our suggestion that it
is a biologically primary skill comes from other sources—neurological studies on the
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mirror-neuron system. It also should be noted that many skills may consist of a combination
of primary and secondary knowledge and so we may be dealing more with a continuum
than a dichotomy. Where a skill is placed on that continuum may depend on the relative
ratios of primary and secondary knowledge required.

We suggest that the distinction between biologically primary and secondary knowledge
is important for research in educational psychology. It is possible that some of the skills
currently the subject of extensive research programs consist largely of biologically primary
knowledge. Very general skills provide an example. We are likely to have evolved general
skills such as, for example, general problem solving. As far as we are aware, there are no
data demonstrating that a general problem solving strategy such as means-ends analysis
(Newell and Simon 1972) is teachable. A means-ends strategy requires us to search for
problem solving operators that will reduce differences between a current problem state and
a goal state. If means-ends analysis is a biologically primary skill and we have evolved to
use the strategy without explicit tuition, attempting to teach it is likely to be ineffective.

We suspect the same can be said for most general cognitive and metacognitive strategies.
We may automatically acquire them at a very young age because they are biologically
primary skills essential for human survival. Frequently, the precise skills are not specified in
empirical work and so it is not clear whether any documented improvements are due to the
acquisition of an unspecified general skill or due to an improvement in biologically
secondary, domain-specific knowledge. It is essential that studies claiming to demonstrate
the effectiveness of teaching very general skills include far transfer tests to indicate that
improvements in performance are not just due to increases in domain-specific knowledge. If
very general, biologically secondary cognitive or metacognitive skills exist, they need to be
clearly specified and the extent to which they are teachable demonstrated using far transfer
tests. Such biologically secondary skills may not exist if we have evolved to acquire
important, general skills. We need to at least consider the possibility that all very general
skills are biologically primary and so cannot be taught.

It needs to be emphasized that while we have suggested that biologically primary skills
cannot be explicitly taught because we have evolved to acquire the relevant skills
automatically, it does not follow that the skills are not learned, nor does it follow that we do
not take actions to ensure they are learned. Our argument is that the actions we take to
ensure that biologically primary skills are learned are themselves biologically primary. We
take such actions automatically and unconsciously because we have evolved to take such
actions. Csibra and Gergely (2009), in discussing “natural pedagogy” provide some
examples of such processes. For example, learning how to open a milk carton is a
biologically secondary skill that we have not specifically evolved to acquire. In contrast,
showing someone how to manipulate an object to reach a goal such as opening a milk
carton may be biologically primary. The act of demonstrating physical manipulation is a
complex act but we do not need to make it part of any formal curriculum because we
engage in that natural pedagogy automatically.

Similarly, when shown how to open a milk carton once, we will generalize that
knowledge to all situations that we perceive to be similar. Again, such “one-trial-learning”
is biologically primary. We do not need to teach people to generalize because it is a
biologically primary skill. We may need to teach people to open milk cartons because that
knowledge is biologically secondary. Acquiring that secondary knowledge relies heavily on
primary knowledge. The natural pedagogy examples discussed by Csibra and Gergely
(2009) may provide an example of the use of biologically primary knowledge that does not
need to be explicitly taught, in the service of acquiring biologically secondary knowledge
that does need to be explicitly taught. As Csibra and Gergely speculate “…communication
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of generic knowledge was selected for during hominin evolution…” (p. 148). Biologically
primary knowledge is defined in precisely this manner. The communication of generic
information may be too important to be anything other than biologically primary.

While general skills may be primary in nature and so essentially unteachable because
they are acquired automatically, it does not follow that they are instructionally unimportant.
Their major function may be reflected in the use of biologically primary knowledge
discussed in this paper. It may be possible to galvanize general, primary skills to facilitate
the acquisition of the secondary skills that are characteristically the subject matter of
cognitive load theory based research and that are taught in instructional contexts.
Previously acquired general skills, biologically primary in nature, may be of assistance
when acquiring biologically secondary skills. Organizing general skills to assist in the
acquisition of subject matter knowledge may be more productive than attempting to teach
skills that we have evolved to acquire automatically.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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