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Abstract

With the increasing interest in decision support systems and the continuous advance

of computer science, revenue management is a discipline which has received a great

deal of interest in recent years. Although revenue management has seen many new

applications throughout the years, the main focus of research continues to be the

airline industry. Ever since Littlewood (1972) first proposed a solution method for the

airline revenue management problem, a variety of solution methods have been

introduced. In this paper we will give an overview of the solution methods presented

throughout the literature.

Keywords: Revenue Management, Seat Inventory Control, OR techniques

                                                          
* Erasmus Research Institute of Management and Econometric Institute, Erasmus University
Rotterdam, The Netherlands
† Econometric Institute, Erasmus University Rotterdam, The Netherlands

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Erasmus University Digital Repository

https://core.ac.uk/display/18524147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

1. Introduction

1.1. Revenue Management

Companies selling perishable goods or services often face the problem of selling a

fixed capacity of a product over a finite horizon. If the market is characterized by

customers willing to pay different prices for the product, it is often possible to target

different customer segments by the use of product differentiation. This creates the

opportunity to sell the product to different customer segments for different prices, e.g.

charging different prices at different points in time or offering a higher service level

for a higher price. In order to do so, decisions will have to be made about the prices to

charge and the number of products to reserve for each customer segment. Making this

kind of decisions is the topic of revenue management.

Revenue management can be defined as the art of maximizing profit generated

from a limited capacity of a product over a finite horizon by selling each product to

the right customer at the right time for the right price. It encompasses practices such

as price-discrimination and turning down customers in anticipation of other, more

profitable customers. Revenue management originates from the airline industry,

where deregulation of the fares in the 1970's led to heavy competition and the

opportunities for revenue management schemes were acknowledged in an early stage.

The airline revenue management problem has received a lot of attention throughout

the years and continues to be of interest to this day. Other applications of revenue

management can be found in the hotel, car rental, railway and cruise-line industries

among others. The possible applications of revenue management go beyond the

tourist industries, though. The energy and television broadcast industries have been

mentioned as possible applications and it has been argued that the concept of revenue

management can even be applied to fast moving consumer goods in supermarkets.

1.2. Airline Revenue Management

An airline, typically, offers tickets for many origin-destination itineraries in various

fare classes. These fare classes not only include business and economy class, which
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are settled in separate parts of the plane, but also include fare classes for which the

difference in fares is explained by different conditions for e.g. cancellation options or

overnight stay arrangements. Therefore the seats on a flight are products which can be

offered to different customer segments for different prices. Since the tickets for a

flight have to be sold before the plane takes off, the product is perishable and revenue

management can be applied.

At the heart of airline revenue management lies the seat inventory control

problem. This problem concerns the allocation of the finite seat inventory to the

demand that occurs over time before the flight is scheduled to depart. The objective is

to find the right combination of passengers on the flights such that revenues are

maximized. The optimal allocation of the seat inventory then has to be translated into

a booking control policy, which determines whether or not to accept a booking

request when it arrives. It is possible that at a certain point in time it is more profitable

to reject a booking request in order to be able to accept a booking request of another

passenger at a later point in time.

Other important topics that have received attention in the revenue management

literature are demand forecasting, overbooking and pricing. Demand forecasting is of

critical importance in airline revenue management because booking control policies

make use of demand forecasts to determine the optimal booking control strategy. If an

airline uses poor demand estimates, this will result in a booking control strategy

which performs badly. Airlines often have to cope with no-shows, cancellations and

denied boardings. Therefore, in order to prevent a flight from taking off with vacant

seats, airlines tend to overbook a flight. This means that the airline books more

passengers on a flight than the capacity of the plane allows. The level of overbooking

for each type of passenger has been the topic of research for many years. Pricing is

obviously very important for the revenues of an airline company. In fact, price

differentiation is the starting point of the revenue management concept. Demand

forecasting, overbooking and pricing are, however, topics beyond the scope of this

paper. For an overview of the literature on these three topics we refer to McGill and

Van Ryzin (1999).
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2. Seat Inventory Control

The seat inventory control problem in airline revenue management concerns the

allocation of the finite seat inventory to the demand that occurs over time. In order to

decide whether or not to accept a booking request, the opportunity costs of losing the

seats taken up by the booking have to be evaluated and compared to the revenue

generated by accepting the booking request. Solution methods for the seat inventory

control problem are concerned with approximating these opportunity costs and

incorporating them in a booking control policy such that expected future revenues are

maximized.

Solution methods for the seat inventory control problem should account for a

number of things. The stochastic nature of demand is one of them. Also, a booking

request that creates the highest possible revenue for the airline should never be

rejected whenever a seat is available, not even when the number of seats appointed to

this type of passenger by the booking control policy has been reached. In fact, any

passenger should be allowed to tap into the capacity reserved for any other lower

valued type of passenger. This is the concept of nesting and should be incorporated

into the booking control policy. Further, we make the distinction between single leg

and network seat inventory control and static and dynamic solution methods.

With single leg seat inventory control, every flight leg is optimized separately.

Network seat inventory control is aimed at optimizing the complete network of flight

legs offered by the airline simultaneously. Consider a passenger travelling from A to

C through B. That is, travelling from A to C using flight legs from A to B and from B

to C. If the single leg approach is used, this passenger can be rejected on one of the

flight legs because another passenger is willing to pay a higher fare on this flight leg.

But by rejecting this demand, the airline loses an opportunity to create revenue for the

combination of the two flight legs. If the other flight leg does not get full, it could

have been more profitable to accept the passenger to create revenue for both flight

legs. Hence, only the network approach takes into account the overall revenue that the

passenger creates from its origin to its final destination.

The distinction between static and dynamic solution methods is a second

partitioning that can be considered. Static solution methods generate an optimal

allocation of the seats at a certain point in time, typically the beginning of the booking

period, based on a demand forecast at that point in time. The actual booking requests
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do, however, not arrive at one point in time but occur gradually over the booking

period. Therefore, a better solution method would be one that monitors the actual

demand and adjusts the booking control policy to it. This would be a dynamic

solution method.

In Section 3 we discus the single leg solution methods and in section 4 the

network solution methods to the seat inventory control problem. The solution methods

may vary with the set of assumptions made in each research, e.g. taking nesting or

network-effects into account or not. However, there are also some assumptions that all

of the researches discussed in this paper make use of. These assumptions are:

- no cancellations or no-shows

- independent demand between the booking classes

- no demand recapturing

- no batch booking

The first assumption simply states that no attention will go out to overbooking.

Usually the seat inventory control problem and overbooking are considered

separately, although integration of the two problems would be preferred and has been

given attention also. A consequence of the second assumption is that no information

on the actual demand process of one fare can be derived from the actual demand

process of another fare. We speak of demand recapturing when a low fare booking

request is turned into a higher fare booking request when the low fare class is not

available. This can occur when the products are not sufficiently differentiated. The

assumption that there is no demand recapturing implies that every customer has got a

strict preference for a certain fare class and that a denied request is lost forever. The

last assumption is that there are no batch bookings, which justifies looking at one

booking request at a time. Relaxation of these assumptions has been given attention.

However, in order to give a good impression of what is considered as the general seat

inventory control problem and its basic solution methods, we will not discuss this

here.

Finally, we would like to mention that the seat inventory control problem can

also be seen as a pricing problem. When the fare classes are well differentiated, they

are separate products. A pricing scheme can then be constructed for each fare class

and closing a fare class for future booking requests can be done artificially by setting

the price sufficiently high. In our opinion, however, the decision whether to close a

fare class or not, can be represented by more straightforward formulations than that of
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a pricing problem. Whenever the fare classes are not sufficiently differentiated, the

fare classes can be seen as different prices for the same product. Then a formulation

of the problem as a pricing problem is evident. In this paper, we will, however, not

consider this situation. Applications of pricing techniques to airline revenue

management can be found in Chatwin (2000), Feng and Gallego (1995, 2000), Feng

and Xiao (2000a, 2000b), Gallego and van Ryzin (1994, 1997), Kleywegt (2001),

You (1999) and Zhao and Zheng (2000) among others.

3. Single Leg Seat Inventory Control

In single leg seat inventory control, booking control policies for the various flight legs

are made independent of one another. There are two categories of single leg solution

methods; static and dynamic solution methods. In addition to the assumptions given in

the previous section, static single leg solution methods make use of the extra

assumption that booking requests come in sequentially in order of increasing fare

level, i.e. low fare booking requests come in before high fare booking requests. This

means that the booking period can be divided into time-periods for which all booking

requests belong to the same fare class. In this case, booking control policies can be

based on the total demand for each fare class and do not explicitly have to consider

the actual arrival process. Brumelle and McGill (1993) show that under this

assumption a static solution method that limits the number of booking requests to

accept for each fare class is optimal as long as no change in the probability

distributions of demand is foreseen. Dynamic solution methods do not assume a

specific arrival order of the booking requests. In this case, a booking control policy

based on the total demand for each fare class is no longer optimal, and dynamic

programming techniques are needed. In Section 3.1 we discuss the static solution

methods and in Section 3.2 the dynamic solution methods.
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3.1. Static Solution Methods

Littlewood (1972) was the first to propose a solution method for the seat inventory

control problem for a single leg flight with two fare classes. The idea of his scheme is

to equate the marginal revenues in each of the two fare classes. He suggests closing

down the low fare class when the certain revenue from selling another low fare seat is

exceeded by the expected revenue of selling the same seat at the higher fare. That is,

low fare booking requests should be accepted as long as

)Pr( 1112 pDff >≥ (3.1)

where f1 and f2 are the high and low fare levels respectively, D1 denotes the demand

for the high fare class, p1 is the number of seats to protect for the high fare class and

Pr(D1 > p1) is the probability of selling all protected seats to high fare passengers. The

smallest value of p1 that satisfies the above condition is the number of seats to protect

for the high fare class, and is known as the protection level of the high fare class. The

concept of determining a protection level for the high fare class can also be seen as

setting a booking limit, a maximum number of bookings, for the lower fare class.

Both concepts restrict the number of bookings for the low fare class in order to accept

bookings for the high fare class.

Belobaba (1987) extends Littlewood’s rule to multiple nested fare classes and

introduces the term expected marginal seat revenue (EMSR) for the general approach.

His method is known as the EMSRa method and produces nested protection levels,

i.e. they are defined as the number of seats protected for the fare class and all higher

classes. The EMSRa method does, however, not yield optimal booking limits when

more than two fare classes are considered.

Optimal policies for more than two classes have been presented independently

by Curry (1990), Brumelle and McGill (1993) and Wollmer (1992). Curry uses

continuous demand distributions and Wollmer uses discrete demand distributions. The

approach Brumelle and McGill propose, is based on subdifferential optimization and

admits either discrete or continuous demand distributions. They show that an optimal

set of nested protection levels, p1, p2, ..., pk-1, where the fare classes are indexed from

high to low, must satisfy the conditions:
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)()( 1 iiiii pERfpER −++ ≤≤ δδ for each i = 1, 2, ..., k-1 (3.2)

where ERi(pi) is the expected revenue from the i highest fare classes when pi seats are

protected for those classes and δ+ and δ- are the right and left derivatives with respect

to pi respectively. These conditions express that a change in pi away from the optimal

level in either direction will produce a smaller increase in the expected revenue than

an immediate increase of fi+1. The same conditions apply for discrete and continuous

demand distributions. Notice, that it is only necessary to set k-1 protection levels

when there are k fare classes on the flight leg, because no seats will have to be

protected for the lowest fare class. Brumelle and McGill show that under certain

continuity conditions the conditions for the optimal nested protection levels reduce to

the following set of probability statements:

)Pr( 1112 pDff >= (3.3)

)Pr( 2211113 pDDpDff >+∩>=

...

)......Pr( 1121221111 −− >+++∩∩>+∩>= kkk pDDDpDDpDff

These statements have a simple and intuitive interpretation, much like Littlewood’s

rule. Just like Littlewood’s rule and the EMSRa method, this method is based on the

idea of equating the marginal revenues in the various fare classes and therefore

belongs to the class of EMSR methods. The method is called the EMSRb method.

Robinson (1995) finds the optimality conditions when the assumption of a sequential

arrival order with monotonically increasing fares is relaxed into a sequential arrival

order with an arbitrary fare order. Furthermore, Curry (1990) provides an approach to

apply his method to origin-destination itineraries instead of single flight legs, when

the capacities are not shared among different origin-destinations.

Van Ryzin and McGill (2000) introduce a simple adaptive approach for

finding protection levels for multiple nested fare classes, which has the distinctive

advantage that it does not need any demand forecasting. Instead, the method uses

historical observations to guide adjustments of the protection levels. They suggest

adjusting the protection level pi upwards after each flight if all the fare classes i and
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higher reached their protection levels, and downwards if this has not occurred. They

prove that under reasonable regularity conditions, the algorithm converges to the

optimal nested protection levels. This scheme of continuously adjusting the protection

levels has the advantage that it does not need any demand forecasting and therefore is

a way to get around all the difficulties involving this practice. However the updating

scheme does need a sufficiently large sequence of flights to converge to a good set of

protection levels. In practice, such a start-up period can not always be granted when

there are profits to be made.

The solution methods in this paragraph are all static. This class of solution

methods is optimal under the sequential arrival assumption as long as no change in the

probability distributions of the demand is foreseen. However, information on the

actual demand process can reduce the uncertainty associated with the estimates of

demand. Hence, repetitive use of a static method over the booking period based on the

most recent demand and capacity information, is the general way to proceed.

3.2. Dynamic Solution Methods

Dynamic solution methods for the seat inventory control problem do not determine a

booking control policy at the start of the booking period as the static solution methods

do. Instead, they monitor the state of the booking process over time and decide on

acceptance of a particular booking request when it arrives, based on the state of the

booking process at that point in time.

Lee and Hersh (1993) consider a discrete-time dynamic programming model,

where demand for each fare class is modeled by a nonhomogeneous Poisson process.

Using a Poisson process gives rise to the use of a Markov decision model in such a

way that, at any given time t, the booking requests before time t do not affect the

decision to be made at time t except in the form of less available capacity. The states

of the Markov decision model are only dependent on the time until the departure of

the flight and on the remaining capacity. The booking period is divided into a number

of decision periods. These decision periods are sufficiently small such that not more

than one booking request arrives within such a period. The state of the process

changes every time a decision period elapses or the available capacity changes. If

U(c,t) is the optimal total expected revenue that can be generated given a remaining
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capacity of c seats and with t remaining decision periods before the departure of the

flight, then a booking request of class i is accepted if, and only if:

)1,1()1,( −−−−≥ tcUtcUf i for each i = 1, 2, ..., k, (3.4)

c = C, C-1, ..., 1, t = T, T-1, ..., 1

where C is the total seat capacity and T is the total number of decision periods. This

decision rule says that a booking request is only accepted if its fare exceeds the

opportunity costs of the seat, defined here by the expected marginal value of the seat

at time t. Lee and Hersh provide a recursive function for the total expected revenue

and show that solving the model under the decision rule given by (3.4) results into a

booking policy that can be expressed as a set of critical values for either the remaining

capacity or the time until departure. For each fare class the critical values provide

either an optimal capacity level for which booking requests are no longer accepted in

a given decision period, or an optimal decision period after which booking requests

are no longer accepted for a given capacity level. The critical values are monotone

over the fare classes. Lee and Hersh also provide an extension to their model to

incorporate batch arrivals.

Kleywegt and Papastavrou (1998) demonstrate that the problem can also be

formulated as a dynamic and stochastic knapsack problem (DSKP). Their work is

aimed at a broader class of problems than only the single leg seat inventory control

problem considered here, and includes the possibility of stopping the process before

time 0 with a given terminal value for the remaining capacity, waiting costs for

capacity unused and a penalty for rejecting an item. Their model is a continuous-time

model, but they do, however, only consider homogeneous arrival processes for the

booking requests. In a recent paper Kleywegt and Papastavrou (2001) extend their

model to allow for batch arrivals.

Subramanian et al. (1999) extend the model proposed by Lee and Hersh to

incorporate cancellations, no-shows and overbooking. They also consider a

continuous-time arrival process as a limit to the discrete-time model by increasing the

number of decision periods. Liang (1999) reformulates and solves the Lee and Hersh

model in continuous-time. Van Slyke and Young (2000) also obtain continuous-time

versions of Lee and Hersh’ results. They do this by simplifying the DSKP model to
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the more standard single leg seat inventory control problem and extending it for

nonhomogeneous arrival processes. They also allow for batch arrivals. Lautenbacher

and Stidham (1999) link the dynamic and static approaches. They demonstrate that a

common Markov decision process underlies both approaches and formulate an

omnibus model which encompasses the static and dynamic models as special cases.

4. Network Seat Inventory Control

In network seat inventory control, the complete network of flights offered by the

airline is optimized simultaneously. One way to do this, is to distribute the revenue of

an origin-destination itinerary over its legs, which is called prorating, and apply single

leg seat inventory control to the individual legs. Williamson (1992) investigates

different prorating strategies, such as prorating based on mileage and on the ratio of

the local fare levels. This approach provides a heuristic to extend the existing single

leg solution methods to a network setting. However, only a mathematical

programming formulation of the problem can be capable of fully capturing the

combinatorial aspects of the network. In order to obtain the mathematical

programming formulation for capturing these combinatorial aspects, denote an origin-

destination and fare class combination by ODF. Let XODF denote the number of seats

reserved for an ODF, DODF the demand for an ODF, and fODF the fare level for an

ODF. Further, let l denote a single flight leg, Cl the seat capacity for a leg, and Sl the

set of all ODF combinations available on a leg. The problem can then be formulated

as follows:

maximize ( )�
ODF ODFODFODF DXfE },min{ (4.1)

subject to �
∈

≤
lSODF lODF CX for each l

0≥ODFX  integer for each ODF

The objective is to find the seat allocation that maximizes the total expected revenue

of the network and satisfies the capacity constraints on the various flight legs. The

objective function depends on the distributions of demand and generally is not linear,
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continuous or in any other way regular. Therefore, relaxations of this formulation

have been suggested for use in practice.

4.1 Mathematical Programming

The first full network formulation of the seat inventory control problem is proposed

by Glover et al. (1982). They formulate the problem as a minimum cost network flow

problem with one set of arcs corresponding to the flight legs and another set

corresponding to the ODF combinations. The method is aimed at finding the flow on

each arc in the network that maximizes revenue, without violating the capacity

constraints on the legs and upperbounds posed by the demand forecasts for the ODF

combinations. A drawback of the network flow formulation is that it can not always

discriminate between the routes chosen from an origin to a destination. Therefore, this

formulation only holds when passengers are path-indifferent. The advantage of the

formulation is that is it easy to solve and can be re-optimized very fast.

A formulation of the problem that is able to distinguish between the different

routes from an origin to a destination, is given by the integer programming model

underlying the network flow formulation:

maximize �
ODF ODFODF Xf (4.2)

subject to �
∈

≤
lSODF lODF CX for each l

ODFODF EDX ≤  for each ODF

0≥ODFX  integer for each ODF

In this model EDODF denotes the expected demand for an ODF. It is easy to see that

this is the model obtained from model (4.1) if the stochastic demand for each ODF is

replaced by its expected value. The demand for an ODF is treated as if it takes on a

known value, e.g. as if it is deterministic, and no information on the demand

distributions is taken into account. Accordingly, the model produces the optimal seat

allocation if the expected demands correspond perfectly with the actual demands. It is

common practice to solve the LP relaxation of the model rather than the integer
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programming problem, since an integer programming problem is usually very hard to

solve. The LP relaxation of the model is known as the deterministic linear

programming (DLP) model. A booking control policy based on the DLP model can be

constructed by setting booking limits for each ODF equal to the number of seats

reserved for the ODF in the optimal solution of the model. Such a booking control

policy is a static method and, just as with the single leg methods discussed in the

previous section, the general way to proceed is to use the model repeatedly over the

booking period based on the most recent demand and capacity information.

The DLP method is a deterministic method and will never reserve more seats

for a higher fare class than the airline expects to sell on average. In order to determine

whether reserving more seats for more profitable ODF combinations can be

rewarding, it is necessary to incorporate the stochastic nature of demand in the model.

Wollmer (1986) develops a model which incorporates probabilistic demand into a

network setting.

maximize � � ≥
ODF i ODFODFODF iXiDf )()Pr( (4.3)

subject to � �
∈

≤
lSODF li ODF CiX )( for each l

}1,0{)( ∈iX ODF for each ODF,

i = 1, 2, ..., maxl{ Cl:ODF∈Sl}

In this model the decision variables XODF(i) take on the value 1 when i seats or more

are reserved for the ODF, and 0 otherwise. The coefficient of each XODF(i) in the

objective function represents the expected marginal revenue of allocating an

additional ith seat to the ODF. The model is called the expected marginal revenue

(EMR) model. A drawback of this model is the large amount of decision variables,

which makes the model impractical in use.

De Boer et al. (1999) introduce a model which is an extension of the EMR

model. It incorporates the stochastic nature of demand when demand for each ODF

can take on only a limited number of discrete values { dODF(1) < dODF(2) < ... <

dODF(NODF)}.
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maximize � � ≥
ODF i ODFODFODFODF iXidDf )())(Pr( (4.4)

subject to � �
∈

≤
lSODF li ODF CiX )( for each l

)1()1( ODFODF dX ≤ for each ODF

)1()()( −−≤ ididiX ODFODFODF for each ODF, i = 2, 3, ..., NODF

0)( ≥iX ODF  integer for each ODF, i = 1, 2, ..., NODF

The decision variables XODF(i) each accommodate for the part of the demand DODF

that falls in the interval (dODF(i-1), dODF(i)]. Summing the decision variables XODF(i)

over all i for an ODF, gives the total number of seats reserved for the ODF which can

be interpreted as a booking limit. The LP relaxation of this model is called the

stochastic linear programming (SLP) model. The EMR model is a special case of the

SLP model that can be obtained by letting dODF(1) = 1 and dODF(i)-dODF(i-1) = 1 for

all i = 2, 3, ..., maxl{ Cl:ODF∈Sl}. But the SLP formulation of the problem is more

flexible because it allows a reduction of the number of decision variables by choosing

a limited amount of demand scenarios. If only the expected demand is considered as a

possible scenario, the SLP model reduces to the DLP model. In fact, the DLP and

EMR models can be seen as the two extremes that can be obtained from the SLP

model. The first by considering only one demand scenario, the latter by considering

all possible scenarios.

The mathematical programming models discussed in this section are very well

capable of capturing the combinatorial aspects of the problem. The booking control

policies derived from the models are, however, static and non-nested. In the following

sections we will discuss techniques to augment the mathematical programming

models for nesting. Dynamic solution methods are discussed in Section 4.2.

4.1.1. Nesting

Nesting is an important aspect of the seat allocation problem and should be taken into

account. How to determine a nesting order of the ODF combinations is not trivial in a

network setting. The nesting order should be based on the contribution of the ODF

combinations to the network revenue. Ordering by fare class does not take into
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account the level of the fare, and ordering by fare level does not account for the load

factors of the flight legs. Williamson (1992) suggests nesting the ODF combinations

by the incremental revenue that is generated if an additional seat is made available for

the ODF while everything else remains unchanged. For the DLP model, she

approximates this by the dual price of the corresponding demand constraint. In this

particular model, this corresponds to the incremental revenue obtained from

increasing the mean demand for the ODF by one. A stochastic model typically does

not have demand constraints, but the incremental revenue obtained from increasing

the mean demand can still be used. An approximation can be obtained by re-

optimizing the model with the mean demand increased by one and comparing the new

objective value with the original objective value. This does, however, require a re-

optimization of the model.

After determining a nesting order on each flight leg, a nested booking control

policy can be constructed. Let HODF,l be the set of ODF combinations that have higher

rank than ODF on flight leg l. Then nested booking limits for an ODF on a flight leg l

are given by:

�
∈

−=
lODFHODF ODFllODF XCb

,* *, (4.5)

This illustrates that nested booking limits are obtained from non-nested booking limits

by allowing ODF combinations to make use of all seats on the flight leg except for the

seats reserved for higher ranked ODF combinations.

De Boer et al. (1999) stick to Williamson’s idea of using the net contribution

to network revenue of the ODF combinations to determine a nesting. However, they

use a different approach to approximate this. They approximate the opportunity costs

of an ODF combination by the sum of the dual prices of the capacity constraints of the

legs the ODF uses. An approximation of the net contribution to network revenue is

then obtained by subtracting this from the fare level. Thus, a nesting order is based

on:

�
∈

−=
lSODF lODFODF pff (4.6)
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where pl denotes the dual price of the capacity constraint for flight leg l. For the DLP

method this nesting method is equivalent to Williamson’s approach. The advantage of

this method over Williamson’s, is that it can be applied for a stochastic model without

re-optimizing the model.

4.1.2. Bid-Prices

A booking control policy that incorporates nesting in a natural way, is setting bid-

prices. In this procedure, a bid-price is set for each leg in the network reflecting the

opportunity costs of reducing the capacity of the leg with one seat. A booking request

is accepted only if its fare exceeds the sum of the bid-prices of the legs it uses. The

opportunity costs of selling a seat on a leg can be approximated by the dual price of

the capacity constraint of the leg in a mathematical programming model. After

obtaining the dual prices of the capacity constraints by the use of such a model, the

rule is to accept a booking request for an ODF if:

�
∈

>
lSODF lODF pf (4.7)

Notice that this measure is equivalent to the approximation de Boer et al. (1999) use

for the opportunity costs of an ODF and directly links the revenue gain from

accepting a booking request to the opportunity costs of the ODF. A disadvantage of

bid-price control is that there is no limit to the number of bookings for an ODF once it

is open for bookings, i.e. once its fare exceeds the opportunity costs. This can lead to

flights filling up with passengers that only marginally contribute to network revenue.

Frequently adjusting the bid-prices based on the most recent demand and capacity

information is necessary to prevent this from happening.

Williamson (1992) investigates using the DLP model for constructing bid-

prices. This method to construct bid-prices does not take into account the stochastic

nature of demand. Talluri and van Ryzin (1999) analyze a randomized version of the

DLP method for computing bid-prices. The idea is to incorporate more stochastic

information by replacing the expected demand by the random vector itself. They

simulate a sequence of n demand realizations and for each realization determine the
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optimal seat allocation. This can be done by applying the DLP model with the

realization of the demand taking the place of the expected demand as the upperbound

for the number of bookings for each ODF. The n optimal seat allocations provide n

sets of dual prices. The bid-price for a leg is simply defined as the average over the n

dual prices for the flight leg. This method is known as the randomized linear

programming (RLP) method. De Boer et al. (1999) construct bid-prices on their SLP

model.

It should be noted that both the nested booking limits and the bid-price

procedures are heuristics to convert a non-nested solution from one of the

mathematical programming models into a nested booking control policy by allowing

ODF combinations to make use of all seats reserved for the lower valued ODF

combinations. Allowing this, reduces the necessity to reserve seats for the ODF in the

model. Therefore, the solution of the model is no longer optimal. To obtain an optimal

booking control strategy that accounts for nesting, the nesting and allocation decisions

should be integrated. No mathematical programming model is capable of doing this.

A heuristic that does integrate the nesting and allocation decisions is discussed in the

next section.

4.2. Simulation Approach

In a recent study, Bertsimas and de Boer (2000) introduce a simulation based solution

method for the network seat inventory control problem. They define the expected

revenue function as a function of the booking limits and their aim is to find those

booking limits that optimize the function. The DLP model is used to generate an

initial solution which takes the combinatorial aspects of the network into account and

by which a nesting order can be determined. After that, the solution is gradually

improved to make up for factors such as the stochastic nature of demand and nesting.

The search direction is determined by the gradient of the expected revenue function.

Because the expected revenue function is not known, it is approximated by means of

simulation. The expected revenue generated by a set of booking limits is

approximated by the average of the revenues generated by the booking limits when

they are applied over a sequence of simulated demand realizations. The gradient of
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the function is approximated by the change in expected revenue caused by a small

deviation in the booking limits.

Bertsimas and de Boer reduce a great deal of the computation time of their

method by linking it to ideas from the field of approximate dynamic programming.

They devide the booking-period into smaller time-periods and define future revenue

as a function of the remaining capacity. A booking control policy for the current time-

period can then be obtained by simulating the booking process of the present time-

period only. The revenue of each simulation run is defined as the revenue within the

present time-period plus the estimated future revenue which depends on the remaining

capacity. In order to estimate the future revenue function an Orthogonal

Array/Multiple Adaptive Regression Splines method is used as in Chen et al. (1998),

which we will discuss in the next section when we present the dynamic solution

methods for network seat inventory control.

Bertsimas and de Boer also provide a method to derive bid-prices from their

booking limits by use of simulation. The bid-price for each leg is set equal to an

approximation of the opportunity costs of reducing the capacity on the leg. They

simulate a sequence of demand realizations and for each simulation calculate the

revenue resulting from using the booking limits. To obtain an approximation of the

opportunity costs, they subtract from this revenue the revenue generated by the same

booking limits if the capacity on the leg would have been decreased by one seat. The

bid-price is defined as the average of the approximated opportunity costs over the

simulations.

4.3. Dynamic Solution Methods

For the simulation based solution method discussed in the previous section, Bertsimas

and de Boer (2000) make use of approximate dynamic programming. They devide the

booking period into smaller time-periods for which booking control policies are

determined. A solution is constructed in each period taking into account the

realizations in the previous time-periods and the expectations about the future time-

periods. All other network solution methods discussed thus far, are static methods.

These methods produce a solution at a given point in time for the complete booking

period. This solution is usually adjusted a multitude of times during the booking
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period by re-optimizing the underlying models. A fully dynamic solution method,

however, would be one that adjusts the booking control policy continuously.

Chen et al. (1998) are the first to provide a fully dynamic solution method for

the network seat inventory control problem. They formulate a Markov decision model

that uses mathematical programming in a dynamic setting. As with the single leg

dynamic solution methods, the state space of the Markov decision model is defined by

the time until departure and the remaining capacities of the flights. The decision

periods are chosen sufficiently small such that not more than one booking request

arrives within such a period. Let V(c,t) be the optimal total expected revenue that can

be generated when c is the vector of remaining capacities on the flight legs and t is the

number of decision periods left before departure. Further, let aODF be the vector that

denotes whether a flight leg is used by an ODF or not; i.e. 1 if the ODF traverses the

flight leg and 0 otherwise. Then a booking request for an ODF is accepted if, and only

if:

)1,()1,( −−−−≥ tVtVfODF ODFacc for each ODF, c, (4.8)

t = T, T-1, ..., 1

where T is the total number of decision periods. The right-hand side of (4.8)

corresponds to the opportunity costs of the seats taken up by the booking request. A

booking request is accepted only if its fare exceeds the opportunity costs.

To approximate the opportunity costs, the objective value for a mathematical

programming model can be evaluated when the booking request is accepted as well as

when the booking request is rejected. Subtracting these objective values gives the

opportunity costs based on that particular model. Chen et al. (1998) argue that the

opportunity costs are overestimated by the DLP model and underestimated by a non-

nested stochastic model they formulate. Based on this idea, they formulate the

following algorithm to accept or reject a booking request for an ODF:

1. reject if fODF ≤ OCSTOCH , otherwise

2. accept if fODF ≥ OCDLP , otherwise

3. accept if fODF > x, with x random from the interval [OCSTOCH, OCDLP].
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where OCSTOCH and OCDLP denote the opportunity costs of the ODF as approximated

by the stochastic and the DLP model. Evaluating the two models in two different

states every time a booking request comes in, obviously requires a lot of computation

time. Therefore, Chen et al. propose a method to estimate the value function of a

model for each possible state beforehand. They evaluate the model on a carefully

selected limited number of points in the state space and use these observations to

estimate the value function of the model over the entire state space. The selection of

the points is based on an Orthogonal Array method, and Multivariate Adaptive

Regression Splines are used to estimate the value function of the model. With an

approximation of the value function of each model available at any time, the Markov

decision model can be used in a dynamic way.

In a recent paper Bertsimas and Popescu (2001) use the network flow

formulation of the problem, proposed by Glover et al. (1982), to approximate the

opportunity costs. Because this formulation can be re-optimized very efficiently, a

new solution can be constructed every time a booking request comes in. Bertsimas

and Popescu overcome the fact that the network flow formulation does not account

for the stochastic nature of demand by means of simulation. They simulate a sequence

of demand realizations and approximate the opportunity costs by the average of the

opportunity costs obtained from the simulations. A drawback of the network flow

formulation remains that it only holds when passengers are path-indifferent.

4. Conclusion

In this paper, we make a distinction between single leg and network solution methods

for the seat inventory control problem in airline revenue management. Apart from the

distinction between static and dynamic solution methods, literature on the single leg

approach to the problem is rather harmonious. For both the static and the dynamic

approach, a certain amount of consensus has been reached about the general way to

proceed. In recent years, literature on single leg solution methods has been aimed

mainly at extending the existing models to account for aspects such as overbooking,

batch arrivals, less dependence on demand forecasts etc. Literature on the network

solution methods is less harmonious. How to account for the combinatorial effects of
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the network, the stochastic nature of demand and nesting simultaneously, is not

trivial. Moreover, the size of the problem prescribes the use of heuristics as opposed

to optimal policies, especially if a policy is to be used in a dynamic way.

Nevertheless, we think that it is essential to account for the network effects.
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