Influence of topical human epidermal growth factor on postkeratoplasty re-epithelialisation

M M J Dellaert, T A Casey, S Wiffen, J Gordon, P Johnson, A J M Geerards, W J Rijneveld, L Remeijer, P G H Mulder and W H Beekhuis

Updated information and services can be found at: http://bjo.bmj.com/cgi/content/full/81/5/391

These include:

References

This article cites 19 articles, 11 of which can be accessed free at: http://bjo.bmj.com/cgi/content/full/81/5/391#BIBL

2 online articles that cite this article can be accessed at: http://bjo.bmj.com/cgi/content/full/81/5/391#BIBL

Rapid responses

You can respond to this article at: http://bjo.bmj.com/cgi/eletter-submit/81/5/391

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform

To subscribe to British Journal of Ophthalmology go to: http://www.bmjjournals.com/subscriptions/
Influence of topical human epidermal growth factor on postkeratoplasty re-epithelialisation

Abstract

Aim—To test the efficacy and safety of recombinant human epidermal growth factor (rHGF) on corneal re-epithelialisation following penetrating keratoplasty.

Methods—A prospective, randomised, placebo controlled study was carried out in which patients were matched for diagnosis and received either rHGF ophthalmic solution (30 µg/ml or 100 µg/ml) or placebo in a double masked fashion. Matched pairs of patients received donor corneas from the same donor and were operated by the same surgeon on the same day. At the end of surgery all donor epithelium was removed mechanically. Patients were examined twice daily and corneal photographs were taken until the epithelium had closed. The area of the defect was measured by planimetry of the fluorescein stained defect on the photographs.

Results—There were no significant differences in re-epithelialisation of the donor cornea between the placebo group and the group treated with 30 µg/ml rHGF. Time until complete closure was slightly longer with 100 µg/ml rHGF compared with 30 µg/ml rHGF and with placebo. Mean healing rate of the epithelial defect with 100 µg/ml rHGF was significantly slower than in the other groups.

Conclusion—No significant acceleration of corneal re-epithelialisation was demonstrated with the use of recombinant rHGF after penetrating keratoplasty in humans. (Br J Ophthalmol 1997;81:391–395)
in the operative eye, no corneal sensation, a Schirmer's test less than 5 mm per 5 minutes, and patients requiring the use of a bandage lens or having a tarsorrhaphy immediately after penetrating keratoplasty were excluded from the study. Written informed consent was obtained after explanation of the study purpose, procedures, and patients' responsibilities to the potential participant. Patients were matched in pairs. One patient of each pair was randomly assigned to receive topical treatment with hEGF (either 30 µg/ml or 100 µg/ml) and the other patient to receive placebo. Neither the investigator nor the patient was aware of the other patient to receive placebo. Neither with hEGF (either 30 µg/ml or 100 µg/ml) and randomised assigned to receive topical treatment with hEGF (either 30 µg/ml or 100 µg/ml) and each paired with a patient receiving 100 µg/ml hEGF, nine receiving 30 µg/ml hEGF, and nine placebo.

Results
Thirty six patients entered the study, nine receiving 100 µg/ml hEGF, nine receiving 30 µg/ml hEGF, and each paired with a patient receiving placebo. In all but one case, matched pairs had the same indication for penetrating keratoplasty (Table 1). There were no important demographic differences between the treated and the control groups (Table 2). Data relevant to the surgical procedure are shown in Table 3. Twenty five patients underwent penetrating keratoplasty only. Eight patients had penetrating keratoplasty combined with extracapsular cataract extraction and implantation of a posterior chamber lens in the capsular
The primary efficacy variable was time to complete healing of the epithelial defect. Figures 1 and 2 show the mean size of the defect, estimated by planimetry at each examination until complete closure, for the group receiving 100 µg/ml hEGF and the placebo group and the group receiving 30 µg/ml hEGF and its control group. Size of the baseline defect (size of defect at day 0) was the size of the recipient bed. There were no significant differences between treated and control patients in mean time until complete closure of the epithelial defect. Healing time was slightly longer in the 100 µg/ml hEGF group compared with the placebo group, mean 5.1 (SD 4.3) days versus 3.4 (1.0) days (p = 0.232), and also longer than in the 30 µg/ml hEGF group and its control group, 3.9 (3.1) days versus 3.5 (1.7) days (p = 0.718). Mean percentage decrease of the defect area per 12 hours was 29% in the 100 µg/ml hEGF group compared with 44% in its placebo group (p <0.0005). In the 30 µg/ml hEGF group the percentage decrease was 52%/12 hours compared with 35%/12 hours in its placebo group (p = 0.147).

Within the first postoperative week a transient fibrinous reaction was seen in seven eyes—three in the group of patients treated with 100 µg/ml hEGF, one in the group treated with 30 µg/ml hEGF, and three in the placebo control group. All affected eyes had other surgical procedures performed in addition to the penetrating keratoplasty. No correlation between the fibrinous reaction and the use of either the 100 µg/ml or the 30 µg/ml hEGF could be demonstrated. In two eyes an inflammatory reaction around a few of the nylon sutures on the recipient side was noted; one eye was treated with placebo and the other with 30 µg/ml hEGF. During the first postoperative days all eyes showed conjunctival hyperaemia. There was no conjunctival oedema or capillary closure which could have been associated with the subconjunctival injection of gentamicin at the end of surgery. Mean pachymetry measurements at days 7 and 28 following keratoplasty are shown in Table 4. The nine patients receiving 100 µg/ml hEGF therapy showed a significantly thicker cornea compared with the placebo control group at day 7. There were no significant differences in intraocular pressure between the groups at any time.

Follow up results at 6 months, 1 year, and 2 years after surgery are shown in Table 5. Complications were encountered in six cases. Three patients needed revision of their sutures—one in the placebo group, one in the group treated with 30 µg/ml hEGF, and one in the placebo control group at day 7. There were no significant differences in intraocular pressure between the groups at any time.

Table 4 Corneal thickness (µm) on days 7 and 28 following penetrating keratoplasty (mean (SD))

<table>
<thead>
<tr>
<th></th>
<th>hEGF (100 µg/ml)</th>
<th>Placebo</th>
<th>p Value*</th>
<th>hEGF (30 µg/ml)</th>
<th>Placebo</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 7</td>
<td>693 (74)</td>
<td>612 (62)</td>
<td>0.002</td>
<td>655 (50)</td>
<td>663 (75)</td>
<td>0.709</td>
</tr>
<tr>
<td>Day 28</td>
<td>523 (37)</td>
<td>536 (38)</td>
<td>0.268</td>
<td>533 (50)</td>
<td>547 (58)</td>
<td>0.609</td>
</tr>
</tbody>
</table>

*Paired Student’s t test.
Table 5 Follow up results

<table>
<thead>
<tr>
<th></th>
<th>hEGF (100 µg/ml)</th>
<th>Placebo</th>
<th>hEGF (30 µg/ml)</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>C</td>
<td>VA</td>
<td>No</td>
</tr>
<tr>
<td>6 Months</td>
<td>9</td>
<td>a</td>
<td>0.4</td>
<td>9</td>
</tr>
<tr>
<td>1 Year</td>
<td>8</td>
<td>0</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>2 Years</td>
<td>7</td>
<td>d</td>
<td>0.7</td>
<td>8</td>
</tr>
</tbody>
</table>

No = number of patients. C = complications: a, suture problem; b, endothelial rejection; c, stromal rejection; d, endothelial rejection

Discussion

Epidermal growth factor has been demonstrated by radioimmunoadassay to be present in human tears. Compared with the tear film of healthy control eyes, the concentration of EGF in the tear film of eyes with ocular surface disease is significantly lower. In such cases, including penetrating keratoplasty, an increase in EGF concentration to enhance epithelial recovery would seem desirable. In this study we tested the efficacy and safety of hEGF eye-drops on re-epithelialisation of the denuded human cornea after penetrating keratoplasty. The effect of two different dosages of hEGF, 30 µg/ml and 100 µg/ml, were compared with the effect of placebo, in a double masked fashion. This is, to our knowledge, the first report on the use of recombinant hEGF in humans. There were no significant differences in re-epithelialisation of the donor cornea after penetrating keratoplasty between the group treated with 30 µg/ml hEGF and placebo control group. Mean healing time to closure of the defect with topical application of 100 µg/ml hEGF was actually slightly longer compared with the other three groups. This is reflected in the significantly lower percentage decrease of the defect area per 12 hours after treatment with 100 µg/ml hEGF. This could be explained by down regulation of the receptor sites.

Binding of hEGF to its plasma membrane receptor is followed by internalisation and degradation of the EGF-receptor complex, without concomitant production of new receptors. If an abundance or excess of EGF is presented to the receptors all receptor sites will be occupied and for some time no receptor sites will be available.

A high incidence of suture related problems was noted in this study, both in the group treated with hEGF and in the placebo control group. This may be related to the mechanical removal of the corneal epithelium at the end of the surgery, a procedure we do not normally perform. The transient increase in corneal thickness measured on day 7 of the study in the 100 µg/ml hEGF group might reflect hyperplasia and hypertrophy of the epithelium in EGF treated eyes, as reported previously by other investigators. However, this does not fit with the longer mean time to closure of the defect, since a shorter healing time would be expected with hyperplasia and hypertrophy. It may be that dysregulation of re-epithelialisation is induced by a relative over-load of hEGF in a concentration of 100 µg/ml. Otherwise, hEGF eye-drops were well tolerated and no signs of toxicity could be observed.

It is known that both steroids and antibiotics can retard corneal wound healing, but all patients received the same concomitant topical medication in the operated eye and there should have been no difference between the groups in this respect.

Although increase in corneal wound strength by hEGF has been demonstrated in vivo in animals, it has not been determined in this study because the operated eye has to be sacrificed to estimate stromal wound strength. Patients with essentially normal corneal surface, presumably with normal EGF in the tear film, do not benefit from supplementation of hEGF in the postoperative phase of corneal epithelial healing rate. This study has not addressed the possible advantage of hEGF supplementation to patients undergoing corneal grafting with abnormal ocular surface, sensibility defects, or tear insufficiencies.

During the course of our study Sheardown et al reported the optimal concentration of hEGF to accelerate wound healing to be 50 µg/ml and also found that an increase in exposure time reduced healing time. Taking these findings into account the doses we used may have been too low or too high and the exposure time too short. A gel at a concentration of 50 µg/ml with controlled release of hEGF might be a more successful adjuvant than eye-drops in slowly healing corneas after penetrating keratoplasty.

Supported by Chiron Vision, Claremont, California, USA.

