Low Levels of Follicle-Stimulating Hormone Receptor-Activation Inhibitors in Serum and Follicular Fluid from Normal Controls and Anovulatory Patients with or without Polycystic Ovary Syndrome*

IZAÄK SCHIPPER, FOCKO F. G. ROMMERTS, PAULIEN M. TEN HACKEN, AND BART C. J. M. FAUSER

Division of Reproductive Medicine, Department of Obstetrics and Gynecology (I.S., P.M.T.H., B.C.J.M.F.), and Department of Endocrinology and Reproduction (F.F.G.R.), Dijkzigt Academic Hospital and Erasmus University Medical School, 3015 GD Rotterdam, The Netherlands

ABSTRACT

In patients with normogonadotropic anovulation, either with or without polycystic ovary syndrome (PCOS), factors interfering with FSH action may be involved in arrested follicle development. The aim of this study is to assess whether factors inhibiting FSH receptor activation are elevated in serum or follicular fluid from anovulatory patients, as compared with regularly cycling women. For this purpose, a Chinese hamster ovary cell line, stably transfected with the human FSH receptor, has been applied. FSH-stimulated cAMP se-
cretion in culture medium was measured in the presence of serum or follicular fluid. Chinese hamster ovary cells were stimulated with a fixed concentration of FSH (3 or 6 mIU/mL) to mimic FSH levels in serum or follicular fluid. Samples were added in concentrations ranging from 3–90% vol/vol to approach protein concentrations occurring in serum or follicular fluid.

In the presence of 10% vol/vol serum from regularly cycling women (n = 8), FSH-stimulated cAMP production was inhibited to 42 ± 2% (mean ± SEM of 2 experiments, each performed in duplicate) of cAMP production in the absence of serum, whereas a similar cAMP level (up to 38 ± 4% of the serum-free level) was observed at higher concentrations of serum (30–90% vol/vol). The inhibition of FSH-stimulated cAMP production in the presence of serum samples from normog-

Received September 19, 1996. Revision received November 22, 1996. Accepted January 30, 1997.

* This work was financially supported by the Netherlands Organization for Scientific Research (NWO/GB-MW 903-44-109) and Stichting Voortplantingsgeneeskunde Rotterdam.

Because normal follicular growth, selection, and ovulation can be induced in some PCOS patients by administration of exogenous gonadotropins (6) and granulosa cells of these patients show normal (7) or even elevated (8) FSH-induced estradiol (E₂) production in vitro, it may be postulated that locally active factors, rather than defective granulosa cells, are involved in arrested follicle growth in PCOS patients.

There are many indications that local regulation of FSH action may play a role in normal and disturbed follicular development (9–12). Growth factors, such as insulin-like growth factors (IGF) (13) or activin (14), act as potentiotators of FSH action in vitro. Ongoing growth of the dominant follicle, despite a decrease in FSH serum levels in the late follicular phase (LFP) (15), may be attributed to the enhancement of FSH action by these growth factors, acting in a para-
or autocrine fashion. On the other hand, growth factors may also exert inhibitory actions, as has been described for epidermal growth factor (16, 17). Although stimulatory or inhibitory effects of growth factors are mediated by their specific receptors and pathways, inhibition of FSH action may also be caused by specific FSH receptor inhibitors (12). Sev-
eral studies report the presence of specific FSH receptor-binding inhibitors of unknown origin in human serum (18, 19) and follicular fluid (20–23). Part of these inhibitors may be of immunological nature (24) and could lead to premature ovarian failure. It may be postulated that partial inhibition of FSH receptor activation causes arrested follicular growth and absent dominant follicle selection in PCOS patients.

The aim of this study was to assess the level of inhibitors of FSH receptor activation in serum and follicular fluid of normogonadotropic anovulatory patients, with or without PCOS, as compared with normal controls. For this purpose, a Chinese hamster ovary (CHO)-cell line, transfected with the human FSH receptor (25), has been used. Inhibition of FSH-stimulated cAMP production has been studied at physiologiocal concentrations of FSH and at a range of concentrations of serum or follicular fluid.

Materials and Methods

Hormones and reagents

Recombinant human FSH (recFSH; Org 32489, bioactivity 8413 IU/mg, as assessed by in vitro bioassay relative to reference preparation IS 70/45; immunoactivity 12,000 IU/mg) was a generous gift from NV Organon (Oss, The Netherlands). Isobutyl-methyl-xanthine (IBMX) was purchased from Sigma Chemie (Bornhem, Belgium).

Cell cultures

A CHO cell line, stably transfected with recFSH receptor complemenery DNA, was generously provided by NV Organon. CHO cells were cultured as described previously (25). In brief, cells (10⁶ cells/cm²) were plated on 48-well culture dishes in DMEM/Ham-F12 (1:1) (GIBCO Europe BV, Breda, The Netherlands) with the addition of 100 U/mL penicillin and 100 μg/mL streptomycin and 10% vol/vol FCS (Sebak GmbH, Adenbach, Germany). After 2 days, the CHO cells reached confluence and were used for the FSH receptor activation assay.

Serum samples

Serum samples were collected from 29 anovulatory patients, attending the Dijkzigt Hospital outpatient clinic for infertility evaluation. Inclusion criteria were: infertility, oligo- or amenorrhea, and serum FSH levels within normal limits (1–10 IU/L). The involvement of human subjects in these investigations was approved by the Ethics Review Committee of the Dijkzigt Academic Hospital and Erasmus University Medical School, and informed consent was obtained from all subjects participating. Patient samples were divided into 2 subgroups representing normogonadotropic anovulation, either without (n = 13) or with PCOS (n = 16). Patients were diagnosed as having PCOS on the basis of rigid criteria, including elevated serum LH levels (>8 IU/L) and elevated serum androgens (androstenedione (AD) more than 15.0 nmol/L and/or testosterone (T) more than 3.0 nmol/L and/or a free androgen index, calculated as testosterone × 100/steroid hormone binding globulin.

Follicular fluid samples

Follicle fluid was obtained from 22 women undergoing laparotomy for reversal of tubal sterilization or adhesiolysis and from 3 women undergoing laparoscopic tubal ligation. Informed consent was obtained from all subjects participating. All subjects were regularly cycling women with a mean cycle length of 27 ± 2 sd days and of normal weight (mean body mass index: 24 ± 2 sd kg/m²). Mean age was 33 ± 4 sd yr, and all patients had a history of proven fertility. The day of the menstrual cycle, at the time of the follicle puncture, was assessed from the day of onset of the last menstrual period. Follicle fluid was obtained from individual follicles (between 1 and 8 per patient; Fig. 1) and assayed for E₂ and AD as described previously (27). Follicular fluid samples were classified into 5 different categories. The classification was on the basis of 3 criteria: 1) the menstrual cycle phase in which patients underwent surgery (EFP: cycle day 1–8 or LFP: cycle day 9–15); 2) follicle size (nondominant: <10 mm or dominant: ≥10 mm) (15, 27); and 3) AD/E₂ ratio (healthy: <4, or atretic: ≥4) (27, 28).

In addition, follicle fluid was obtained from five anovulatory, infertile patients diagnosed as PCOS (diagnostic criteria the same as for PCOS serum study). In two patients, two to three follicles were punctured during laparoscopy. In one patient, six follicles were punctured during elective surgery for fallopian tube correction. The remaining two patients were stimulated with human menopausal gonadotropins for infertility treatment. Because of multiple follicle development (more than three follicles larger than 16 mm), stimulation was canceled. In these patients, follicular fluid samples (five and nine, respectively) were obtained through sonographically guided transvaginal puncture.

<table>
<thead>
<tr>
<th>TABLE 1. Population and endocrine characteristics (mean ± sd) of study subjects from which serum was obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 8)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Age (yr)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
</tr>
<tr>
<td>IRMA-FSH (IU/L)</td>
</tr>
<tr>
<td>IRMA-LH (IU/L)</td>
</tr>
<tr>
<td>Testosterone (nmol/L)</td>
</tr>
<tr>
<td>Androstenedione (nmol/L)</td>
</tr>
<tr>
<td>FAI</td>
</tr>
</tbody>
</table>

| FIG. 1. Follicle diameter and menstrual cycle day in 57 follicles, obtained from 25 normally cycling women. ○, Healthy follicles (AD/E₂ ratio < 4); +, atretic follicles (AD/E₂ ratio ≥ 4). Numbers on top indicate number of subjects from whom samples were obtained on a given cycle day. |

Downloaded from jcem.endojournals.org at Medical Library Erasmus MC on December 13, 2006
Validation of this assay has been described previously (25). In brief, cultured CHO cells were incubated in 48-well culture dishes. The culture medium was replaced by FCS-free DMEM/Ham-F12 with 0.1 mmol/L IBMX and various concentrations of human serum or follicular fluid (3–90% vol/vol), and cells were stimulated with recFSH. After 4 h of incubation, medium was removed and stored at −20°C until analysis for cAMP.

For the measurement of the inhibitory effect in the serum samples, a fixed concentration of 6 mIU/mL FSH was used. To obtain this concentration of FSH in each dilution of the serum samples, endogenous FSH serum levels (range: 3–6 IU/L) were corrected by the addition of recFSH.

A pool of hypogonadotropic serum, obtained from high-dosed (50 μg ethinyl-E2 daily) combined oral contraceptive pill users, served as a control in each assay. The FSH level of this serum pool was less than 0.5 IU/L, as assessed by IRMA.

Each serum sample was tested in duplicate in two independent FSH receptor activation assays. Results are expressed as the percentage of the cAMP production, relative to the cAMP response in absence of serum or follicular fluid, which is set as 100%. Results were evaluated using one-way ANOVA, followed by Dunnett’s test.

Because of small volumes available, the CHO assay was adapted, to allow analysis of follicular fluid samples. For this purpose, CHO cells were cultured in 96-multiwell dishes, at a cell density of 10⁴ cells/cm², and incubated in a vol of 50 μL/well. The sensitivity for recFSH and the degree of stimulation of the cAMP production in this assay, applying small volumes, was similar to the assay performed in 48-wells (data not shown).

The small volumes of individual follicular fluid samples allowed for testing at only two concentrations (10 and 30% vol/vol) in triplicate. The inhibitory effect of follicular fluid was assessed by stimulating CHO cells with 3 mIU/mL recFSH, instead of 6 mIU/mL. This FSH concentration was taken, to approximate the endogenous FSH levels in the follicular fluid samples (4, 8, 29, 30). Because volumes of the tested follicular fluid samples were small (in some cases only 30 μL), it was not possible to measure the FSH content.

In all experiments, DNA content of the wells was measured by a fluorometric method, as described previously (31). The intraassay coefficient of variation for DNA content/well was less than 12%. In all FSH receptor activation assays, the cAMP levels were normalized on the basis of the DNA content of the wells.

Inhibitory effect of hypogonadotropic human serum

The dose-dependent stimulation of adenylate cyclase in CHO cells is shown in Fig. 2. Basal levels of cAMP were 0.9–2.1 pmol/μg DNA, and maximally stimulated levels were 350–420× higher. The sensitivity, defined as the dose of recFSH eliciting a response of more than twice the standard deviation of the basal cAMP production, was 0.4 mIU/mL. The half-maximal stimulation of cAMP production (ED₅₀ value) was obtained at a dose of 24.9 mIU/mL FSH.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Cycle day</th>
<th>Size (mm)</th>
<th>AD/E₂ ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal cycle:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (EFP; <10 mm; atretic)</td>
<td>10</td>
<td>(2–7)</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>II (EFP; <10 mm; healthy)</td>
<td>6</td>
<td>(2–7)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>III (LFP; <10 mm, atretic)</td>
<td>23</td>
<td>(8–15)</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>IV (LFP; ≥10 mm; atretic)</td>
<td>4</td>
<td>(9–14)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>V (LFP; ≥10 mm, healthy)</td>
<td>14</td>
<td>(8–15)</td>
<td>13</td>
<td>0.2</td>
</tr>
<tr>
<td>PCOS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (<10 mm; atretic)</td>
<td>7</td>
<td>(5–8)</td>
<td>5</td>
<td>9.5</td>
</tr>
<tr>
<td>B (<10 mm; healthy)</td>
<td>4</td>
<td>(5–8)</td>
<td>7</td>
<td>2.4</td>
</tr>
<tr>
<td>C (≥10 mm; atretic)</td>
<td>4</td>
<td>(3–8)</td>
<td>17</td>
<td>(0.1–3.2)</td>
</tr>
<tr>
<td>D (≥10 mm; healthy)</td>
<td>10</td>
<td>(16–18)</td>
<td>16</td>
<td>4.3–12.8</td>
</tr>
</tbody>
</table>

a EFP, early follicular phase; LFP, late follicular phase; healthy, AD/E₂ ratio < 4; atretic, AD/E₂ ratio ≥ 4. Values given are median and range.

Data analysis

Experimental data are presented as the mean ± SEM if they are normally distributed and as median and range if distributed otherwise. The inhibition of FSH-stimulated cAMP production is expressed as the percentage of the cAMP response in absence of serum or follicular fluid, which is set as 100%. Results were evaluated using one-way ANOVA, comparing responses as percentages of the serum free response. Correlation of follicle characteristics with experimental results were analyzed using Spearman’s rank order test. P values given are two-sided, with 0.05 taken as the limit for statistical significance.
The intraassay coefficient of variation, at different stimulatory concentrations of FSH, was less than 16%. To study the effects of serum at different doses of recFSH, CHO cells were incubated in the presence of different concentrations of human hypogonadotropic serum (10, 30, and 90% vol/vol) and stimulated with increasing doses of recFSH (3–100 mIU/mL). Basal cAMP production was not affected by the addition of hypogonadotropic serum, whereas in the presence of 90% vol/vol hypogonadotropic serum, stimulated cAMP production decreased to 49–68% of responses under serum-free conditions (Fig. 2).

When cAMP response at any given concentration of recFSH is expressed relative to cAMP production under serum-free conditions, addition of hypogonadotropic serum at concentrations more than 10% vol/vol inhibits cAMP production, independent from the concentration of serum (Fig. 3). At a high FSH concentration (30 mIU/mL), a competition between FSH and serum components is apparent over the whole serum concentration range, whereas at low FSH concentrations (3 or 6 mIU/mL), this competition occurs only at serum concentrations less than 3% vol/vol. At serum concentrations more than 10% vol/vol, a saturation of the inhibitory effect is observed. Despite the slight inhibition by serum factors, CHO cells remain sensitive to stimulation by FSH. Even in the presence of 90% vol/vol of hypogonadotropic serum, addition of 3 mIU/mL recFSH results in a 5- to 8-fold stimulation of the cAMP production (data not shown).

Effects of serum from normal controls, normogonadotropic anovulatory patients, and PCOS patients

Serum samples obtained from normally cycling individuals or anovulatory patients, with or without PCOS, inhibited cAMP production up to 39 ± 4%, 35 ± 2%, and 34 ± 3% of the response under serum-free conditions, respectively, when tested at 90% vol/vol. Within each group, a significant further increase in inhibition was absent ($P > 0.38$) when serum concentrations were increased from 10 to 90% vol/vol. Furthermore, no statistically significant differences were found between patient groups and normal controls ($P > 0.08$), with regard to the inhibition of FSH-stimulated cAMP production at each concentration of serum (Fig. 4).

Effect of follicular fluid from normal controls and PCOS patients

Adapted bioassay conditions were used to measure the effects of small amounts of follicular fluid (see Materials and Methods section). The intraassay coefficient of variation of the adapted assay was greater (<21%), compared with the 48-well assay (<16%). FSH-stimulated cAMP production was clearly inhibited in the presence of 10 or 30% vol/vol of follicular fluid, although in several samples, a concentration-dependent decrease in cAMP was not observed. The mean
Discussion

Inhibition of FSH action at the level of granulosa cells in the ovaries may underlie anovulation in women presenting with normal circulating FSH concentrations. The aim of this study was to compare levels of FSH receptor inhibitory activity in serum and follicular fluid from regularly cycling women and patients with normogonadotropic anovulation. The inhibitory activity was assessed by measuring the FSH-induced adenylate cyclase activity in cultured CHO cells stably transfected with the human FSH receptor (25). A similar system has been applied recently to assess bioactive FSH concentrations in serum throughout the menstrual cycle (34). In the present study, CHO cells were stimulated with physiological concentrations of FSH in the presence of untreated serum or follicular fluid. A wide range of concentrations of serum or follicular fluid was tested, from 3–90% vol/vol. High concentrations were applied, to approach protein concentrations that occur under physiological conditions.

Primary cultures of rat granulosa (35) or Sertoli cells (36) have been used as in vitro bioassays for FSH. These bioassays are hampered by a strong inhibition of the FSH response caused by unspecified factors in serum. An inhibition of more than 80% of the induced E2 response can be observed in the presence of only 4% serum (25, 35). In contrast, currently used CHO cells show only a limited inhibition of FSH-induced cAMP production by serum. Even in the presence of 90% vol/vol human serum, the cAMP response is inhibited up to 60% only. Although this inhibition might be caused by metabolic changes in the cells, this seems less likely because prolonged incubation of the cells in serum affected neither cell viability nor basal cAMP production (25). In addition, the cells can be stimulated to produce large amounts of cAMP despite preincubation in 90% serum (25). It is of interest that in the presence of serum concentrations more than 10% vol/vol, the percentage inhibition of FSH-dependent receptor activation (at a fixed FSH concentration) is independent of the concentration of serum. This fixed magnitude of inhibition over a wide range of serum concentrations (10–90% vol/vol) suggests a saturating effect of the inhibitory components in serum. On the other hand, the CHO cells still respond to elevation of the FSH levels, irrespective of serum concentrations. This suggests that a competition exists between inhibiting factors and FSH for the FSH receptor. Although the mechanism of inhibition is unclear, this may be attributed to a nonspecific protein matrix effect, because bovine and equine sera show similar inhibition curves (25). Comparing sera from regularly cycling women with normogonadotropic anovulatory patients (with or without PCOS) showed no differences in inhibitory activity. This argues against the presence of increased levels of inhibitors of FSH receptor activation in serum from these patients.

Because factors inhibiting FSH receptor activation may be present exclusively in the follicular compartment, follicular fluid obtained from individual follicles throughout the follicular phase of the menstrual cycle and from PCOS patients also were tested. Follicular fluid samples were classified according to the stage of the menstrual cycle in which they were obtained, as well as by size and steroid content (expressed as the AD/E2 ratio). Different classes of normally developing follicles did not reveal differences with regard to inhibition of FSH receptor activation. Neither did follicular fluid from PCOS patients, compared
with matched control follicles, show any difference in inhibition of FSH receptor activation. Results obtained with follicular fluid displayed a larger degree of variation, compared with results obtained from the addition of serum samples. Part of this variation may be caused by the higher intraassay coefficient of variation of the assay applying small volumes. Another explanation may be found in differences in the endogenous FSH levels of the individual follicular fluid samples. In the present study, FSH content in follicular fluid could not be assessed, because of the small volumes available. It was therefore not possible to normalize for potential differences in FSH levels. In an attempt to limit the variation in FSH levels in the follicular fluid assays, a small amount of FSH (3 mIU/mL) was added to each follicular fluid dilution. The choice for this FSH concentration was on the basis of data from the literature (4, 8, 29) that report levels of intrafollicular immunoreactive FSH ranging between 0.3 and 6 IU/L. This uncertainty in the final FSH concentration could explain the reversal of inhibition observed in some samples at increased concentration. However, despite these uncertainties, the observed responses did not correlate with any follicle characteristic, such as size or steroid content, or with menstrual cycle phase or PCOS diagnosis. Although inhibitory effects of subfractions in serum or follicular fluid have not been tested separately, the total net effect of potentially different combinations is similar in both controls and anovulatory patients. Therefore, it seems unlikely that FSH receptor inhibition plays a significant role in the (patho)physiology of normal or disturbed follicle development.

Specific FSH receptor-binding inhibitors have been described in partly purified fractions of human serum and follicular fluid (19, 23, 37). However, not all FSH-binding inhibitory activity results in inhibition of FSH, because part of these binding inhibitors have FSH agonist activity (22). Results of the present study show that the biological activity of FSH in the context of serum proteins is approximately 50% of the activity in the absence of serum. The mechanism underlying this reduction in bioactivity is not known, but it may be postulated that FSH is partly bound to plasma proteins with low affinity, thereby reducing the amount available for receptor activation. On the other hand, serum proteins also may bind reversibly to the receptor, thereby reducing the number of receptors available for interaction with FSH. One other aspect to be considered is that, in the present study, only adenylate cyclase activity has been taken as the endpoint of FSH receptor activation. It is known that FSH receptor activation results in formation of intracellular messengers other than cAMP, like calcium ions (38, 39). Although it is not yet clear whether this Ca$^{2+}$ pathway functions independently from cAMP (39, 40), it could be postulated that specific FSH receptor inhibitors have a preference for one pathway, leaving the other less inhibited, which could thus result in expression of different cellular functions. Possible inhibition of different pathways is illustrated by findings that immunoglobulins in serum from women with premature ovarian failure block FSH-induced DNA synthesis in granulosa cells in vitro (24), although they do not affect FSH-induced steroidogenesis (41).

Our conclusion from these in vitro studies that FSH receptor inhibition is a constant, and therefore may be of only limited significance for regulation of follicle development, is being supported by recent findings from clinical studies. Growth and selection of the dominant follicle is induced by increasing levels of FSH during the luteo-follicular transition in the menstrual cycle (42). Although normogonadotropic anovulatory patients display bioactive and immunoreactive FSH levels comparable with follicular phase levels during the normal menstrual cycle (1, 5), these patients lack the intercycle rise. Normal monofollicular development and ovulation can be induced in normogonadotropic anovulatory patients by the administration of exogenous FSH, applying a decremental-dose regimen (6, 43). Although the administration of gonadotropins in these patients suggests an increased FSH-threshold level that needs to be surpassed to ensure follicle development, it seems that normal follicle development can be achieved in normogonadotropic anovulatory patients without increasing FSH to supraphysiological concentrations (5). These findings dispute the presence of an increased FSH-threshold level in normogonadotropic anovulatory patients, which could be caused by locally acting factors blocking FSH action. It could well be that the absence of the transient increase in FSH levels in anovulatory patients is an important factor in the etiology of arrest of follicle development. It may be of interest that, in particular, bioactive FSH levels increase during the luteo-follicular transition, as has been demonstrated recently (34). Although the bioactive-to-immunoactive FSH ratio remains constant during the EFP in regular cycling women (5, 34) and is not different in anovulatory patients (5), the change in FSH levels and the bioactive-to-immunoreactive ratio in the late luteal phase may be of significance for follicle recruitment and selection. Furthermore, under normal conditions, ongoing growth of the dominant follicle occurs despite decreasing levels of FSH in the LFP (15). This suggests an enhancement of FSH action, allowing the dominant follicle to continue its development, whereas FSH levels drop below the threshold for the remaining, less mature follicles. This enhancement of FSH action may be the result of locally active growth factors, such as IGF-I and -II, and the IGF-binding proteins (13). These factors act through their own specific receptors and therefore exert their effect through intracellular pathways and not directly through the FSH-receptor. The potential significance of IGF-II, as an intraovarian factor involved in the development of the dominant follicle in the human, has been stressed recently (44).

In conclusion, analysis of inhibition of FSH receptor activation, by serum or follicular fluid samples from both regularly cycling women and PCOS patients, indicates that increased levels of FSH receptor inhibitors do not play a significant role in the regulation of normal and abnormal follicle development. This is in concert with findings that normogonadotropic anovulatory patients do not exhibit an increased FSH-threshold level per se. Both the dynamics in FSH levels in the EFP and locally active growth factors, acting
through their own receptors, may be of greater significance for follicle growth and selection.

Acknowledgments

The authors would like to thank A. Van Heusden for providing hypogonadotropic serum and W. C. Hop for advice on statistical analysis.

References

1. Fauser BCJM, Pache TD, Lamberts SW, Hop WC, de Jong FH, Dahl KD. 1991 Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease. J Clin Endocrinol Metab. 73:811–817.

25. Lee DW, Butler WJ, Horvath PM, Shelden RM, Reichert Jr LE. 1991 Human follicular fluid contains a follicle-stimulating hormone (FSH) binding inhibitor which has FSH agonist activity, is immunologically similar to FSH, but can be distinguished from FSH. J Clin Endocrinol Metab. 72:1102–1107.

