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We study the committee decision making process using game theory. A committee here refers to any group of people who have to
select one option from a given set of alternatives under a specified rule. Shenoy (1980) introduced two solution concepts, namely, the
one-core and a version of bargaining set for committee games. Shortcomings of these solutions concepts are raised and discussed in
this paper.These shortcomings are resolved by introducing two new solutions concepts: the farsighted one-core and the bargaining
set revised, inspired by an idea of farsightedness initially defined by Rubinstein (1980). It is shown that the farsighted one-core
is always non-empty and is better than the one-core. In a well-specified sense, the bargaining set revised is also better than the
bargaining set as defined by Shenoy (1980) and it is always non-empty for simple committee games with linear preferences. Other
attractive properties are also proved.

1. Introduction

Our game model is the one considered by Shenoy [1], com-
mittee game that generalizes the voting model introduced
by von Neumann and Morgenstern [2] under the name of
simple game. A committee game consists in any finite group
𝑁 of persons who have to pick one option from the finite
given set of outcomes 𝐴 through a voting rule V by which the
committee arrives at a decision. The rule V is designed such
that the decision of the committee will consist of a unique
outcome. Any player is allowed to suggest any alternative for
consideration by the committee and players get their payoffs
only when the committee has made a decision. In such a
social choice context, the question generally asked is how a
player should behave or should vote when solicited to join
a coalition in order to decide over a status quo. Another
relevant issue is to determine what could be a suitable choice
of a given player 𝑖 if he is given the opportunity to introduce
a motion.

The core is a solution concept in which any player is
recommended to vote for 𝑥 against 𝑦 whenever he strictly
prefers 𝑥 to 𝑦 (i.e., 𝑢

𝑖
(𝑥) > 𝑢

𝑖
(𝑦)) (𝑢

𝑖
is the player

utility function; instead of considering utilities vectors one
could consider that each member of the committee has a

preference relation which is a weak order on the set of all
outcomes, thus yielding a preference profile) if 𝑥 is opposed
to 𝑦. Furthermore, a committee member should propose an
outcome 𝑥 if it is the (or one of his) best element in the
core. An outcome 𝑥 belongs to the core if it is undominated,
that is, there does not exist another outcome 𝑦, a coalition
𝑆 powerful on 𝑦 and all members of which are strictly
better off at 𝑦 than at 𝑥. This behavioral pattern of the
core has been criticized by Shenoy [1] who argued that a
player who is making a proposal does not cooperate in
any effort to dominate the proposal. In other words such a
player cares about undominated outcomes via coalitions not
containing him and picks only maximal ones. This yields the
definition of the one-core. Unfortunately, the one-core might
be empty even if players’ preferences are strict. Furthermore,
we show through a simple example of 3-person committee
game that players are not farsighted while making proposals
under one-core behavioral pattern. We resolve this lack of
farsightedness by introducing another solution concept, the
farsighted one-core for committee games. It is shown that this
new solution concept is better than the one-core. Moreover,
when preferences are strict orders, the farsighted one-core of
any simple committee game is always nonempty.
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Another contribution of Shenoy [1] is the introduction
of a bargaining set for committee games. The concept of
bargaining set was first introduced by Aumann andMaschler
[3] in the context of games with side payments. They
defined several kinds of bargaining sets. These sets were
generalized for games without side payments and studied by
Peleg [4], Billera [5, 6], D’Aspremont [7], and Asscher [8].
Since then, several other modifications of the bargaining set
have been studied in different contexts. The bargaining set
introduced by Shenoy [1] is relevant for committee games.
Like other bargaining sets, it is based on objections and
counter-objections. A proposal is said to be𝑀-stable if every
objection has a counter-objection. Let 𝑀̂ be the set of all
𝑀-stable proposals. A 𝑀-stable proposal (𝑖, 𝑥) is said to
be maximal if 𝑥 is at least as good as 𝑦 for all 𝑦 such
that (𝑖, 𝑦) ∈ 𝑀̂. The bargaining set M is the set of all
maximal𝑀-stable proposals. The Shenoy bargaining set can
be empty. We revise this solution concept by introducing
the revised Shenoy bargaining set which is proved to be
better than the latter. Moreover, when indifference is not
allowed in individual rankings, the farsighted bargaining
set of any simple committee game introduced herein is
nonempty.

The rest of the paper is organized as follows. Section 2
is devoted to the model and preliminaries. In Section 3,
we define the farsighted one-core and we prove that it is
better than the one-core. Moreover, we prove that the far-
sighted one-core of any committee game is always nonempty,
provided that individual preferences are linear orders. A
comparison of the farsighted one-core with other solu-
tion concepts is conducted therein. In Section 4, we revise
Shenoy bargaining set by reconsidering the definition of
objection and counter-objection. It is shown that the new
bargaining set improves on the latter defined by Shenoy for
committee games. Conclusion, which is Section 5, ends the
paper.

2. The Setting and Preliminaries

2.1. The Model. Throughout the paper the set of players, that
is, the committee, is denoted by𝑁 = {1, 2, . . . , 𝑛}; the finite set
of candidates or outcomes is𝐴. It is assumed that𝐴has at least
three elements. Nonempty subsets of 𝑁 are called coalitions
and the set of all coalitions of𝑁 is denoted by 2𝑁; |𝑇| stands
for the cardinality of any set 𝑇. The preference relation of any
player on𝐴 is a weak order (reflexive and transitive relation).
If ⪰
𝑖
denotes the preference of player 𝑖 and 𝑎 and 𝑏 are two

outcomes, 𝑎⪰
𝑖
𝑏means that, according to 𝑖, 𝑎 is at least as good

as 𝑏. 𝑎≻
𝑖
𝑏means that 𝑖 strictly prefers 𝑎 to 𝑏 and 𝑎∼

𝑖
𝑏means

that 𝑖 is indifferent between 𝑎 and 𝑏. A profile 𝑅 is a collection
of individual preferences, 𝑅 = (𝑅𝑖)

𝑖∈𝑁
.

The rules by which the committee members arrive at
a decision are called the characteristic function which is
a mapping V : 2

𝑁
→ P(𝐴), where P(𝐴) designates

the set of subsets of 𝐴. For any coalition 𝑆, V(𝑆) denotes
the subset of outcomes that coalition 𝑆 can realize if the
decision is unanimous in 𝑆. This means that, at any time,
an outcome 𝑥 becomes the final outcome of the game,

whenever a coalition 𝑆 such that 𝑥 ∈ V(𝑆) asks for the
adoption of 𝑥. It is assumed that V satisfies the following
conditions:

(C1) for all 𝑆
1
, 𝑆
2
∈ 2
𝑁, 𝑆
1
⊆ 𝑆
2
⇒ V(𝑆

1
) ⊆ V(𝑆

2
),

(C2) V(𝑁) = 𝐴,
(C3)

∀𝑆
1
, 𝑆
2
∈ 2
𝑁
,

𝑆
1
∩ 𝑆
2
= 0

V (𝑆
1
) ̸= 0, V (𝑆

2
) ̸= 0

󳨐⇒ V (𝑆
1
) = V (𝑆

2
) ,

󵄨󵄨󵄨󵄨V (𝑆1)
󵄨󵄨󵄨󵄨 = 1.

(1)

Condition (C1) is the well-known monotonicity condi-
tion; (C2) means that the whole committee members can
enforce any alternative. Condition (C3) ensures that the
committee decision consists of at most one outcome. The
tuple Γ = (𝑁,𝐴, V, 𝑅) is called an (ordinal) 𝑛-person com-
mittee game. 𝑅 could also be replaced with a utility vector
𝑢 = (𝑢

𝑖
), where 𝑢𝑖 : 𝐴 → R denotes the real-valued

ordinal utility function of player 𝑖. Here, utility is assumed to
be nontransferable and interpersonal comparison of utilities
has no meaning.

The committee aims at choosing one option from the
set 𝐴 of outcomes. The members of the committee are
considered to be situated in one room. As in Shenoy [1], we
are primarily concerned with small committees that arrive
at a decision after lengthy deliberations. In this respect the
model considered here differs fundamentally from the theory
of elections where the decision makers (the players) are
numerous and spread out extensively. Let us remark that
the committee game model fits very well into the more
general model of social environments. A social environment
is described by a tuple (𝑁, 𝑍, (→

𝑆
)
𝑆∈2
𝑁 , (⪯)𝑖∈𝑁), where 𝑁

is the set of players, 𝑍 the set of outcomes, and {→
𝑆
}

are effectiveness relations defined on 𝑍. The relation →
𝑆

represents what coalition 𝑆 can do; 𝑎→
𝑆
𝑏 means that, if 𝑎

is status quo, 𝑆 can make 𝑏 the new status quo. It does not
mean that 𝑆 can enforce 𝑏 no matter what anyone else does.
After the move of 𝑆 to 𝑏 another coalition 𝑇 might move
to 𝑐 and so on. Social environments have been considered
in many works in the literature including Chwe [9], Xue
[10, 11], Suziki and Muto [12], Béal et al [13], and Kenfack
and Tchantcho [14]. In a committee game, if 𝑏 ∈ V(𝑆) then
𝑆 can enforce 𝑏. Note on the other hand that committee
games generalize the model of simple games. In this respect,
a committee game Γ = (𝑁,𝐴, V, 𝑅) is said to be simple if
∀𝑆 ∈ 2

𝑁, V(𝑆) = 0, or V(𝑆) = 𝐴. If V(𝑆) = 0 then 𝑆 is a
losing coalition and if V(𝑆) = 𝐴, 𝑆 is a winning coalition. In
a simple committee game, a coalition is a minimal winning
coalition if it is a winning coalition and if every proper subset
of 𝑆 is a losing coalition. In such a game, the set of winning
coalitions is denoted byW while the set of minimal winning
is denoted by W𝑚. Player 𝑖 is said to be a dummy player if
𝑖 ∉ ⋃
𝑆∈W𝑚 𝑆.

It is assumed that a particular outcome say 𝑎
0
is the initial

status quo. 𝑎
0
will be the decision of the committee if it cannot
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agree on any other outcome or if it specifically picks 𝑎
0
to

be the final decision. There is no agenda (a linear order on
𝐴 specifying in which order candidates are confronted) and
any member 𝑖 of the committee is allowed to suggest any
alternative 𝑥 at any time for consideration by the committee
in the form of a proposal (𝑖, 𝑥). The game ends at an option
𝑎
∗ such that there is no credible contestation. Such an option

is said to be stable.

2.2. Recall of Dominance Relations. We give below the def-
inition of 1-dominance that is suitable for committee games.
This is a transposition for committee games of the dominance
introduced by Rubinstein [15] for social decision systems.
According to 1-dominance, a player 𝑖 should participate in the
elimination ofmotion 𝑎 for 𝑏 only if any subsequent deviation
from 𝑏 to 𝑐 by another coalition 𝐿 does not worsen the utility
of 𝑖 relative to 𝑎.

Definition 1. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game,

𝑎, 𝑏 ∈ 𝐴, and 𝑆 a coalition.

(1) 𝑎 1-dominates 𝑏 via 𝑆 denoted by 𝑎 1-dom
𝑆
𝑏 if 𝑎 ∈

V(𝑆), for all 𝑖 ∈ 𝑆, 𝑎≻
𝑖
𝑏, and for all 𝑐 ∈ 𝐴, 𝑐 dom 𝑎 ⇒

𝑐⪰
𝑖
𝑏 for all 𝑖 ∈ 𝑆.

(2) 𝑎 1-dominates 𝑏 denoted by 𝑎 1-dom 𝑏 if there exists
a coalition 𝑆 ∈ 2𝑁 such that 𝑎 1-dom

𝑆
𝑏.

According to the 1-dominance, a coalition will refrain
fromblocking an alternative, say 𝑏, by voting for 𝑎, if 𝑎may be
blocked later on by another coalition voting for, say, 𝑐 against
𝑎, if it turns out that 𝑐 is worse than 𝑎 for some of itsmembers.
It is obvious that with respect to behavioral purposes, the
1-dominance improves the (classical) dominance recalled
below.

Definition 2. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game,

𝑎, 𝑏 ∈ 𝐴.

(1) 𝑎 dominates 𝑏 via 𝑆 denoted by 𝑎 dom
𝑆
𝑏 if 𝑎 ∈ V(𝑆)

and for all 𝑖 ∈ 𝑆, 𝑎≻
𝑖
𝑏;

(2) 𝑎 dominates 𝑏 denoted by 𝑎 dom 𝑏 if there exists 𝑆 ∈
2
𝑁 such that 𝑎 dom

𝑆
𝑏.

It follows from this definition that the rational behavior
underlying the core prescribes that a player should vote for an
alternative 𝑎 against another alternative 𝑏whenever he prefers
𝑎 to 𝑏.

As a comparison between these two dominances, one
could verify that for any 𝑎, 𝑏 ∈ 𝐴, if 𝑎 1-dom 𝑏 then 𝑎 domi-
nates 𝑏 but the converse is not true. In the next section, we
will use the 1-dominance to build our first solution concept:
the farsighted one-core.

3. The Farsighted One-Core of
a Committee Game

We introduce this section with the definition of the farsighted
one-core, based on the behavioral considerations captured by
the 1-dominance relation. Let us denote by

𝑃 = {(𝑖, 𝑥) : 𝑖 ∈ 𝑁, 𝑥 ∈ 𝐴} the set of all proposals,
𝑆
𝑖
= {(𝑖, 𝑥) ∈ 𝑃 : 𝑥 is not 1-dominated via a coalition

𝑆 ⊆ 𝑁 \ {𝑖}},
𝑆
𝑖
= {(𝑖, 𝑥) ∈ 𝑆

𝑖
: 𝑥⪰
𝑖
𝑦 for all (𝑖, 𝑦) ∈ 𝑆𝑖}.

𝑆
𝑖 represents the set of proposals made by 𝑖 that are not

1-dominated assuming player 𝑖’s noncooperation in any effort
to 1-dominate his proposal and 𝑆𝑖 represents the maximal
proposals in the set 𝑆𝑖.

Definition 3. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game.

The farsighted one-core of Γ denoted by F(Γ) is defined by
F(Γ) = ⋃

𝑖∈𝑁
𝑆
𝑖.

Intuitively, the farsighted one-core consists of all (max-
imal) proposals which are not 1-dominated assuming that
the player who makes the proposal does not cooperate in
any effort to 1-dominate the proposal. For obvious reasons,
assuming all proposals in 𝑆𝑖 to be equally stable, player 𝑖 picks
only the maximal ones.

Before giving some properties of the farsighted one-core,
we shall prove through a simple example that the farsighted
one-core overcomes a myopic shortcoming observed in the
Shenoy one-core. Before that, let us recall the definition of
the one-core as introduced by Shenoy [1].

The core was initially studied explicitly by Gillies [16] and
Shapley [17] for transferable utilities games. It is defined as
follows.

Definition 4. Let Γ = (𝑁,𝐴, V, (≻
𝑖
)
𝑖∈𝑁
) be a committee game.

The core of Γ is the set of all undominated outcomes; that is,
𝐶(Γ) = {𝑏 ∈ 𝐴 : not (∃𝑎 ∈ 𝐴, 𝑎 dom 𝑏)}.

With respect to the core behavioral pattern, amember 𝑖 of
the committee to whom it is given the opportunity to make
a proposal should propose the candidate of the core which
guarantees a maximal satisfaction. The main shortcoming of
the core is its existence, many interesting committee games
have empty cores.

The one-core is a solution concept introduced by Shenoy
[1] that results from a small modification in the definition
of the core. The modification is motivated by behavioral
considerations. Indeed, being in the core means not being
dominated. The modification provided by Shenoy [1] is that
it is better for such a player to propose, instead of that core
candidate, a (maximal) proposal which is not dominated
assuming that the player himself does not cooperate in any
effort to dominate the proposal. Formally, for each 𝑖 ∈ 𝑁,
define the following.

𝐶
𝑖
= {(𝑖, 𝑥) ∈ 𝑃 : 𝑥is not dominated via any 𝑆 ⊆ 𝑁 \

{𝑖}}, the set of proposals made by 𝑖 that are undominated
assuming player 𝑖’s noncooperation in any effort to dominate
his proposal, and 𝐶𝑖 = {(𝑖, 𝑥) ∈ 𝐶𝑖 : 𝑥⪰

𝑖
𝑦 for all (𝑖, 𝑦) ∈ 𝐶𝑖},

the set of maximal (best) proposals in 𝐶𝑖.

Definition 5. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game.

The one-core of Γ denoted by C
1
(Γ) is given by C

1
(Γ) =

⋃
𝑖∈𝑁

𝐶
𝑖.
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Figure 1: Domination graph of Example 6.

The one-core consists of all (maximal) proposals which
are undominated assuming that the player who makes the
proposal does not cooperate in any effort to dominate the
proposal.

Example 6. Let us consider the following 3-player committee
game Γ = (𝑁,𝐴, V, (≻

𝑖
)
𝑖∈𝑁
), where 𝑁 = {1, 2, 3}, 𝐴 =

{𝑎, 𝑏, 𝑐, 𝑑}, V(1) = V(2) = V(3) = V(12) = 0, V(13) = {𝑑},
V(23) = {𝑐}, V(123) = 𝐴, and the profile (≻

𝑖
) = (𝑏𝑎𝑑𝑐, 𝑐𝑏𝑎𝑑,

𝑑𝑎𝑐𝑏).

A simple computation gives 𝑆1 = {(1, 𝑏)}, 𝑆2 = {(2, 𝑏)},
𝑆
3
= {(3, 𝑑)}, and thus F(Γ) = {(1, 𝑏), (2, 𝑏), (3, 𝑑)}. As well

the core is {𝑎, 𝑑} and the one-core C
1
(Γ) = {(1, 𝑎); (2, 𝑏);

(3, 𝑑)},meaning that, if it is given to 1 the opportunity tomake
a proposal, he shall propose candidate 𝑎.This happens indeed
because𝐶1 = {(1, 𝑎), (1, 𝑐), (1, 𝑑)} and 𝑎 is the best of the three
proposals, according to 1. However, we claim that proposing
𝑎 is not the best strategy for player 1 as we explain in Figure 1.
Assume that player 1 proposes 𝑏.

(i) If 𝑐 is proposed (either by 2 or by 3), then both 𝑐 and
𝑏 will be put to vote with the players voting for one of
the two motions. It is not in the interest of 2 to vote
for 𝑐. Indeed, if 𝑐 becomes the new status quo 1 and
3 will certainly enforce the adoption of 𝑑 as the final
outcome. But 𝑑 is the worst candidate for 2.Thus even
if 𝑐 is opposed to 𝑏, 𝑐 will not win.

(ii) If 𝑑 is proposed (by 3), then it is obvious that it will be
eliminated since the only coalition able to enforce 𝑑 is
13 and player 1, who made the initial proposal 𝑏, will
not vote for 𝑑; hence 𝑏 will not be defeated!

(iii) For the same reason, if 𝑎 is proposed it will be
defeated.

Finally, as we can see, if 1 proposes 𝑏, then 𝑏 will be
elected.This shows that if 1 is given the possibility to propose
it will be better for him to propose 𝑏 instead of 𝑎, as
recommended by the one-core.

Thanks to Example 6 above, it is obvious that neither the
farsighted one-core includes the one-core nor the one-core
includes the farsighted one-core.

In the following result, we prove that if (𝑖, 𝑥) is in the
farsighted one-core, then 𝑥 is better than whatever outcome
𝑦 such that (𝑖, 𝑦) belongs to the one-core.

Proposition 7. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁

be a committee game.
Then, for all 𝑖 ∈ 𝑁, for all 𝑥 ∈ 𝐴, (𝑖, 𝑥) ∈ F(Γ) ⇒ 𝑥⪰

𝑖
𝑦 for all

𝑦 such that (𝑖, 𝑦) ∈ C
1
(Γ).

Proof. Let 𝑖 ∈ 𝑁 and 𝑥 ∈ 𝐴 such that (𝑖, 𝑥) ∈ F(Γ). Let
𝑦 ∈ 𝐴 such that (𝑖, 𝑦) ∈ C

1
(Γ). Since (𝑖, 𝑦) ∈ C

1
(Γ), then

(𝑖, 𝑦) ∈ 𝐶
𝑖 and this means that 𝑦 is undominated via 𝑆 for

each 𝑆 ⊆ 𝑁 \ {𝑖}. This latter implies 𝑦 is undominated (with
respect to 1-dom) via 𝑆 for each 𝑆 ⊆ 𝑁 \ {𝑖}: thus, (𝑖, 𝑦) ∈ 𝑆𝑖.
Moreover, (𝑖, 𝑥) ∈ F(Γ) implies (𝑖, 𝑥) ∈ 𝑆𝑖; that is, 𝑥⪰

𝑖
𝑦.

The Condorcet solution was first defined by Condorcet
[18] and rediscovered independently by Dodgson [19]. It is
defined as follows.

Definition 8. Let Γ be a committee game. A Condorcet
solution of Γ is any 𝑎 ∈ 𝐴 that dominates every other outcome
in 𝐴; that is, for all 𝑏 ∈ 𝐴 \ {𝑎}, 𝑎 dom 𝑏.

It is well known that if a Condorcet solution exists, it is
unique. Shenoy [1] showed that if in Γ the Condorcet solution
exists, say 𝛼, thenC

1
(Γ) = {(1, 𝛼); (2, 𝛼); . . . ; (𝑛, 𝛼)}.

We show in the following result that if the Condorcet
solution exists, then, with respect to the farsighted one-core,
every player should propose it.

Proposition 9. Let Γ be a committee game such that the
Condorcet solution 𝛼 exists. Then the farsighted one-core is
given byF(Γ) = {(1, 𝛼), (2, 𝛼), . . . , (𝑛, 𝛼)}.

Proof. Let Γ be a committee game such that the Condorcet
solution 𝛼 exists. Then for each player 𝑖 ∈ 𝑁, 𝛼 is
undominated with respect to the 1-dominance relation via
any coalition 𝑆 ⊆ 𝑁 \ {𝑖}. Hence, (𝑖, 𝛼) ∈ 𝑆𝑖 for each player
𝑖 ∈ 𝑁. In addition, for each player 𝑖 and for each proposal
(𝑖, 𝑥) with 𝑥 ̸= 𝛼, if (𝑖, 𝑥) ∈ 𝑆𝑖, then 𝛼≻

𝑖
𝑥.

Indeed, assume for some 𝑖 ∈ 𝑁 and 𝑥 ∈ 𝐴 that non
(𝛼≻
𝑖
𝑥). That is, 𝑥≽

𝑖
𝛼, since preference relations are weak

orders.Then, 𝛼 being a Condorcet solution implies that there
exists𝑇 ⊆ 𝑁 such that 𝛼 1-dom

𝑇
𝑥 and for each player 𝑗 ∈ 𝑇,

𝛼≻
𝑗
𝑥. Therefore, there exists a coalition 𝑇 ⊆ 𝑁 such that 𝛼 1-

dom
𝑇
𝑥 and 𝑖 ∉ 𝑇. That is, (𝑖, 𝑥) ∉ 𝑆𝑖. Hence, 𝑆𝑖 = {(𝑖, 𝛼)} for

each 𝑖 ∈ 𝑁, and thusF(Γ) = {(1, 𝛼), (2, 𝛼), . . . , (𝑛, 𝛼)}.

An important solution concept for social environments
in general and committee games in particular is the Chwe [9]
largest consistent set. It describes situations where deviating
coalitions anticipate the ultimate consequences of their initial
move.

Definition 10. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game.

(1) Given 𝑎, 𝑏 ∈ 𝐴, 𝑏 indirectly dominates 𝑎 (denoted
by 𝑏 ≫ 𝑎) if there exists a sequence of outcomes
𝑎 = 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑝
= 𝑏, and a sequence of coalitions

𝑆
1
, . . . , 𝑆

𝑝
⊂ 𝑁 such that 𝑎𝑗 ∈ V(𝑆𝑗) and 𝑏≻

𝑆
𝑗𝑎
𝑗−1 for

all 𝑗 = 1, . . . , 𝑝.
(2) A subset 𝐿 of𝐴 is said to be consistent if for all 𝑥 ∈ 𝐴,

𝑥 ∈ 𝐿 ⇔ for all 𝑦 ∈ 𝐴, for all 𝑆 ⊆ 𝑁 : 𝑦 ∈ V(𝑆), ∃𝑧 ∈
𝐿 such that [𝑧 = 𝑦 or 𝑧 ≫ 𝑦] and not (𝑧≻

𝑆
𝑥).

(3) The largest consistent set LCS(Γ) is the unique consis-
tent set that includes any other consistent set.



GameTheory 5

In order to compare the farsighted one-core and the
largest consistent set, let us consider the following example
due to Chwe [9, page 321].

Example 11. A committee game involves a set of players𝑁 =

{1, 2, 3} and a set of outcomes 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. Preferences
which are linear are defined as follows: ≻

1
: 𝑐𝑏𝑒𝑑𝑎, ≻

2
:

𝑑𝑐𝑎𝑏𝑒, and ≻
3
: 𝑒𝑎𝑏𝑑𝑐. The characteristic function V is

the majority rule defined by V(𝑆) = 𝐴 if and only if
|𝑆| ≥ 2.

According to the farsighted one-core the solution is
{(1, 𝑐), (2, 𝑑), (3, 𝑒)} and according to the largest consistent set,
the solution is {(1, 𝑐), (2, 𝑑), (3, 𝑏)} (since LCS(Γ) = {𝑏, 𝑐, 𝑑}).

With this Example 11, it is clear that neither the farsighted
one-core includes the largest consistent set nor the largest
consistent set includes the farsighted one-core. However,
whenpreferences are linear orders, the result belowhighlights
one advantage of the farsighted one-core over the largest
consistent set.

Proposition 12. Let Γ = (𝑁,𝐴, V, (≻
𝑖
)
𝑖∈𝑁
) where |𝑁| is odd

and V the majority rule. Then, for all 𝑖 ∈ 𝑁, for all 𝑥 ∈ 𝐴,
(𝑖, 𝑥) ∈ F(Γ) ⇒ 𝑥⪰

𝑖
𝑦 for all 𝑦 ∈ LCS(Γ).

Proof. It is known that when preferences are linear orders, the
set of not 1-dominated outcomes includes the largest consis-
tent set (see Chwe [9, Proposition 7, page 321]). Moreover,
for each 𝑖, the set 𝑆𝑖 includes the set of not 1-dominated
outcomes.That is, LCS(Γ) ⊂ 𝑆𝑖(Γ) for all player 𝑖 and the result
follows.

Nonemptiness of the Farsighted One-Core. It is well known
that the Condorcet solution has a very strong stability
requirement. As a consequence of this, it does not always
exist.

As said above, the core of a committee game might be
empty. If the core is nonempty, then𝐶𝑖 is nonempty (implying
that the one-core is nonempty) for each player 𝑖. Furthermore,
any player 𝑖 prefers 𝑦 to 𝑥 whenever 𝑥 ∈ 𝐶

𝑖 and 𝑦 ∈

C
1
(Γ). Shenoy [1] illustrated clearly the advantage of the one-

core over the core through a simple example and proved
that the one-core is nonempty for any 𝑛-person finite simple
committee game when 𝑛 ≤ 4.

Although the behavioral pattern is improved in the one-
core over the core, the problem of existence is still unsolved.
Shenoy [1] provides in Example 4.2, page 393, the following
5-player committee game with empty one-core.

Example 13. Consider 𝑁 = {1, 2, 3, 4, 5}, 𝐴 = {𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
,

𝑎
4
, 𝑎
5
},

V (𝑆) = { 𝐴 if |𝑆| ≥ 3
0 if |𝑆| < 3, (2)

and the payoff utility functions are shown in Table 1.

A calculation shows that 𝑆𝑖 = {(𝑖, 𝑎
1
), (𝑖, 𝑎

2
), (𝑖, 𝑎

3
),

(𝑖, 𝑎
4
), (1, 𝑎

5
)} for each player 𝑖 ∈ 𝑁. Then, 𝑆1 = {(1, 𝑎

4
)},

Table 1

𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑢
1

0 1 2 3 4 0
𝑢
2

0 2 3 4 0 1
𝑢
3

0 3 4 0 1 2
𝑢
4

0 4 0 1 2 3
𝑢
5

0 0 1 2 3 4

𝑆
2
= {(2, 𝑎

3
)}, 𝑆3 = {(3, 𝑎

2
)}, 𝑆4 = {(4, 𝑎

1
)}, and 𝑆5 = {(5, 𝑎

5
)}.

Hence, the farsighted one-core is given by F(Γ) = {(1, 𝑎
4
),

(2, 𝑎
3
), (3, 𝑎

2
), (4, 𝑎

1
), (5, 𝑎

5
)}.

Thus, the farsighted one-core is nonempty.We prove next
that when indifference is not allowed in individual rankings
or utilities vectors are componentwise different the farsighted
one-core of every simple committee game is nonempty. But
before that, we need the following result that proves the
transitivity of the 1-dominance.

Proposition 14. The relation 1-dom is transitive over the set of
simple committee games when individual preferences are linear
orders. More precisely, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, for all 𝑆, 𝑇 ∈ 2

𝑁,
[𝑎 1-dom

𝑆
𝑏 𝑎𝑛𝑑 𝑏 1-dom

𝑇
𝑐] 󳨐⇒ 𝑎 1-dom

𝑇
𝑐.

Proof. Consider three distinct alternatives 𝑎, 𝑏, 𝑐 and two
winning coalitions 𝑆 and 𝑇 such that 𝑎 1-dom

𝑆
𝑏 and 𝑏 1-

dom
𝑇
𝑐. To show that 𝑎 1-dom

𝑇
𝑐 it suffices to prove that

𝑎 dom
𝑇
𝑐 and for all 𝑧 ∈ 𝐴, (𝑧 dom 𝑎 ⇒ 𝑧⪰

𝑖
𝑐 for all

𝑖 ∈ 𝑇).
Since 𝑎 1-dom

𝑆
𝑏 then 𝑎 dom

𝑆
𝑏. In addition 𝑏 1-dom

𝑇
𝑐

and 𝑎 dom 𝑏 imply 𝑎⪰
𝑖
𝑐 for all 𝑖 ∈ 𝑇. That is, 𝑎≻

𝑖
𝑐 for all

𝑖 ∈ 𝑇 since preferences are linear orders and this means
that 𝑎 dom

𝑇
𝑐, for the committee game, is simple. Next, let

𝑧 ∈ 𝐴 such that 𝑧 dom 𝑎. Since 𝑎 1-dom
𝑆
𝑏 then, for each

𝑖 ∈ 𝑆, 𝑧⪰
𝑖
𝑏. That is, 𝑧 dom

𝑆
𝑏. Moreover, 𝑏 1-dom

𝑇
𝑐. Thus,

for each 𝑖 ∈ 𝑇, 𝑧⪰
𝑖
𝑐; that is, for all 𝑖 ∈ 𝑇, 𝑧≻

𝑖
𝑐, or 𝑧 dom

𝑇
𝑐

since preferences are linear orders.

Now we prove the main result of this section that deals
with the nonemptiness of the farsighted one-core of any
simple committee game in which preferences are linear
orders and the nonemptiness of the farsighted one-core of any
3-player committee game.

Proposition 15. For any simple committee game Γ where
preferences are linear orders,F(Γ) ̸= 0.

Proof. Let Γ = (𝑁,𝐴, V, (≻
𝑖
)
𝑖∈𝑁
); since F(Γ) = ⋃

𝑖∈𝑁
𝑆
𝑖, it is

enough to prove that for all 𝑖 ∈ 𝑁, 𝑆𝑖 ̸= 0. On the other hand,
by definition of 𝑆𝑖 = {(𝑖, 𝑥) ∈ 𝑆𝑖 : 𝑥⪰

𝑖
𝑦 for all (𝑖, 𝑦) ∈ 𝑆𝑖},

again it is enough to prove that 𝑆𝑖 ̸= 0. Assume that for some
player 𝑖 ∈ 𝑁, 𝑆𝑖 = 0. Then there exists a sequence (𝑆

𝑘
)
0≤𝑘≤𝑝

of coalitions with 𝑖 ∉ 𝑆
𝑘
for each 0 ≤ 𝑘 ≤ 𝑝 and a sequence

(𝑎
𝑘
)
0≤𝑘≤𝑝

of candidates such that 𝑎
𝑘
1-dom

𝑆𝑘
𝑎
𝑘−1

for each 𝑘 =
1, . . . , 𝑝 and 𝑎

0
1-dom

𝑆0
𝑎
𝑝
.
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We have 𝑎
2
1-dom

𝑆2
𝑎
1
and 𝑎

1
1-dom

𝑆1
𝑎
0
, which imply

by transitivity of the relation 1-dom that 𝑎
2
1-dom

𝑆1
𝑎
0
. By the

same way, we can show that for each 𝑘 = 1, . . . , 𝑝 and 𝑎
𝑘
1-

dom
𝑆1
𝑎
0
, in particular, 𝑎

𝑝
1-dom

𝑆1
𝑎
0
. Thus, 𝑎

0
1-dom

𝑆0
𝑎
𝑝

and 𝑎
𝑝
1-dom

𝑆1
𝑎
0
. Since the committee game is simple and

𝑎
0
∈ V(𝑆

0
), 𝑎
𝑝
∈ V(𝑆

1
) we have V(𝑆

0
) = 𝐴 = V(𝑆

1
).

This implies by condition (𝐶
3
) that 𝑆

0
∩ 𝑆
1
̸= 0. Let 𝑖

0
∈

𝑆
0
∩ 𝑆
1
; then the following holds: 𝑎

0
≻
𝑖0
𝑎
𝑝
≻
𝑖0
𝑎
0
and this is a

contradiction.

For general committee games (that need not be simple)
we prove that if the number of players is three, then the
farsighted one-core is nonempty.

Proposition 16. For any 3-player committee game Γ,
F(Γ) ̸= 0.

Proof. Let Γ = (𝑁,𝐴, V, (≽
𝑖
)
𝑖∈𝑁
) be a 3-player committee

game. SinceF(Γ) = ⋃
𝑖∈𝑁

𝑆
𝑖, it is enough to prove that for all

𝑖 ∈ 𝑁, 𝑆𝑖 ̸= 0. Assume that for some player 𝑖 ∈ 𝑁, 𝑆𝑖 = 0. Then
there exists a sequence (𝑆

𝑘
)
0≤𝑘≤𝑚

of coalitions with 𝑖 ∉ 𝑆
𝑘

for each 0 ≤ 𝑘 ≤ 𝑚 and a sequence (𝑎
𝑘
)
0≤𝑘≤𝑚

of distinct
candidates such that 𝑎

𝑘
1-dom

𝑆𝑘
𝑎
𝑘−1

for each 𝑘 = 1, . . . , 𝑚

and 𝑎
0
1-dom

𝑆0
𝑎
𝑚
.

Since 𝑎
𝑝
̸= 𝑎
𝑞
for each 𝑝, 𝑞 ∈ {0, . . . , 𝑚} with 𝑝 ̸= 𝑞, then

0 ̸= V(𝑆
𝑝
) ̸= V(𝑆

𝑞
) ̸= 0, which implies 𝑆

𝑝
∩ 𝑆
𝑞
̸= 0 for each 𝑝, 𝑞 ∈

{0, . . . , 𝑚} with 𝑝 ̸= 𝑞.

(i) If for each 𝑝 ∈ {0, . . . , 𝑚} |𝑆
𝑝
| = 2, then 𝑆

𝑝
=

𝑁 \ {𝑖}. Then, the following holds for some player
𝑖
0
: 𝑎
0
≻
𝑖0
𝑎
𝑚
≻
𝑖0
𝑎
𝑚−1
≻
𝑖0
⋅ ⋅ ⋅ ≻
𝑖0
𝑎
2
≻
𝑖0
𝑎
1
≻
𝑖0
𝑎
0
which is a

contradiction.
(ii) If not, there exists 𝑝

0
∈ {0, . . . , 𝑚} such that |𝑆

𝑝0
| =

1. Let 𝑆
𝑝0
= {𝑗} : since 𝑆

𝑝
∩ 𝑆
𝑞
̸= 0 for each 𝑝, 𝑞 ∈

{0, . . . , 𝑚} with 𝑝 ̸= 𝑞; then 𝑆
𝑝0
∩ 𝑆
𝑞
̸= 0 for each 𝑞 ∈

{0, . . . , 𝑚} with 𝑝
0
̸= 𝑞. Therefore, 𝑗 ∈ 𝑆

𝑞
for each

𝑞 ∈ {0, . . . , 𝑚}. For that player 𝑗, we have the
following: 𝑎

0
≻
𝑗
𝑎
𝑚
≻
𝑗
𝑎
𝑚−1
≻
𝑗
⋅ ⋅ ⋅ ≻
𝑗
𝑎
2
≻
𝑗
𝑎
1
≻
𝑗
𝑎
0
which is

also a contradiction.

4. The Bargaining Set Revised

Shenoy [1] defines a bargaining set that is relevant to the
context of a committee game and is presented as an extension
of the one-core. It is based, as all thewell-known references on
bargaining set in the context of games with and without side
payments (Aumann andMaschler [3], Peleg [4], Billera [5, 6],
D’Aspremont [7], Asscher [8], and others), on objections and
counter-objections but is quite different from all of them. An
objection against proposal (𝑖, 𝑥) is a triple (𝑗, 𝑆, 𝑦) such that
𝑗 ∈ 𝑆 ∈ 2

𝑁, 𝑦 ∈ 𝐴, 𝑖 ∉ 𝑆, and 𝑦 dom
𝑆
𝑥. The rationale

behind the dominance is that a coalition 𝑆 such that 𝑦 ∈

V(𝑆) and members of which prefer 𝑦 to 𝑥 should vote for 𝑦
against 𝑥 whenever they are given the possibility to. But as
argued before, this is a myopic behavior. Our purpose is to
explore the consequence of replacing the dominance with the
more foresight dominance, the 1-dominance in the definition
of objection on one hand and on the definition of counter-
objection on the other hand.

Definition 17. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game.

(1) An 𝑅-objection against a proposal (𝑖, 𝑥) is a triple
(𝑗, 𝑆, 𝑦) such that

𝑗 ∈ 𝑆 ∈ 2
𝑁
, 𝑦 ∈ 𝐴 \ {𝑥} ,

𝑖 ∉ 𝑆, 𝑦 1-dom
𝑆
𝑥.

(3)

(2) An 𝑅-counter-objection against objection (𝑗, 𝑆, 𝑦) to
(𝑖, 𝑥) is a triple (𝑘, 𝑇, 𝑧), where

𝑘 ∈ 𝑇 ∈ 2
𝑁
, 𝑧 ∈ 𝐴 \ {𝑥, 𝑦} ,

either 𝑘 = 𝑖 or 𝑥≻
𝑘
𝑦,

𝑧 1-dom
𝑇
𝑦, 𝑧⪰

𝑘
𝑥,

∃𝑒 ∈ 𝐴 : 𝑒 dom 𝑧, 𝑥≻
𝑗
𝑒.

(4)

(3) A proposal is said to be 𝑅𝑀-stable if every 𝑅-
objection has an 𝑅-counter-objection. Let 𝑅𝑀̂ be
the set of all 𝑅𝑀-stable proposals. An 𝑅𝑀-stable
proposal (𝑖, 𝑎) is said to be maximal if 𝑎⪰

𝑖
𝑥 for all 𝑥

such that (𝑖, 𝑥) ∈ 𝑅𝑀̂.
(4) The farsighted bargaining set FM is the set of all

maximal 𝑅𝑀-stable proposals.

Below, we recall the Shenoy [1] definition of the bargain-
ing set.

Definition 18. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee game.

An objection against a proposal (𝑖, 𝑥) is a triple (𝑗, 𝑆, 𝑦)
such that

𝑗 ∈ 𝑆 ∈ 2
𝑁
, 𝑦 ∈ 𝐴 \ {𝑥} ,

𝑖 ∉ 𝑆, 𝑦 dom
𝑆
𝑥.

(5)

A counter-objection against objection (𝑗, 𝑆, 𝑦) to (𝑖, 𝑥) is
a triple (𝑘, 𝑇, 𝑧) such that

𝑘 ∈ 𝑇 ∈ 2
𝑁
, 𝑧 ∈ 𝐴 \ {𝑥, 𝑦} ,

either 𝑘 = 𝑖 or 𝑥≻
𝑘
𝑦,

𝑧 dom
𝑇
𝑦, 𝑥≻

𝑗
𝑧, 𝑧⪰

𝑘
𝑥.

(6)

If (𝑗, 𝑆, 𝑦) is an objection against a proposal (𝑖, 𝑥), player
𝑗 expects the players in coalition 𝑆 to vote for 𝑦 which would
result in 𝑦winning against 𝑥. The counter-objection which is
a reply by player 𝑘 is made either by player 𝑖 or by a player
who stands to lose if the objection is carried out. If a counter-
objection does exist, there is a strong motivation for player
𝑗 to withdraw his objection. On the other hand, if there is
no counter-objection, then player 𝑗 has a justified objection
and player 𝑖 cannot expect to get his proposal accepted by the
committee.

Definition 19. (1) A proposal is said to be 𝑀-stable if every
objection has a counter-objection. Let 𝑀̂ be the set of all
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𝑀-stable proposals. A 𝑀-stable proposal (𝑖, 𝑎) is said to be
maximal if 𝑎⪰

𝑖
𝑥 for all 𝑥 such that (𝑖, 𝑥) ∈ 𝑀̂.

(2) The bargaining set M is the set of all maximal 𝑀-
stable proposals.

First, let us reconsider Example 6 and compute the
bargaining set and the farsighted bargaining set. A simple
calculation shows that the set of all 𝑅𝑀-stable proposals
𝑅𝑀̂(Γ) is given by 𝑅𝑀̂(Γ) = {(1, 𝑎), (1, 𝑏), (1, 𝑐), (1, 𝑑), (2, 𝑎),
(2, 𝑏), (2, 𝑑), (3, 𝑎), (3, 𝑏), (3, 𝑐), (3, 𝑑)}.

Hence, FM(Γ) = {(1, 𝑏), (2, 𝑏), (3, 𝑑)} while M(Γ) =

{(1, 𝑎), (2, 𝑏), (3, 𝑑)}.
Again, we can see that the farsighted bargaining setmakes

a better prediction. While for the bargaining set player 1
should propose 𝑎, with respect to the farsighted bargaining
set, he should rather propose 𝑏, which is better in his point of
view.

We now show that the farsighted bargaining set can be
nonempty while the Shenoy bargaining set is empty.

Proposition 20. There exists a committee game Γ for which
the one-core C

1
(Γ) and the bargaining set M(Γ) are empty

meanwhile the farsighted bargaining setFM(Γ) is nonempty.

Proof. Consider the committee game defined in Example 13.
For that game, C

1
(Γ) and the bargaining set M(Γ) are

empty. Meanwhile the farsighted bargaining set FM(Γ)

is nonempty and the computation gives FM(Γ) =

{(1, 𝑎
4
), (2, 𝑎

3
), (3, 𝑎

2
), (4, 𝑎

1
), (5, 𝑎

5
)}.

Indeed, the set of not 1-dominated outcomes of this game
is 𝐴 \ {𝑎

0
}. Thus, for each 𝑖 ∈ {1, 2, 3, 4, 5}, the proposal (𝑖, 𝑥)

with 𝑥 ∈ 𝐴 \ {𝑎
0
} is 𝑅𝑀-stable and since the farsighted

bargaining set is the set of all maximal 𝑅𝑀-stable proposals,
then the result holds.

Shenoy [1] shows that, if the Condorcet solution, say
𝛼, exists, the Shenoy bargaining set is given by M(Γ) =

{(1, 𝛼); (2, 𝛼); . . . ; (𝑛, 𝛼)}. We prove below that this result also
holds for the farsighted bargaining set.

Proposition 21. Let Γ be a committee game such that the Con-
dorcet solution, say 𝛼, exists.Then, the farsighted bargaining set
is given byFM(Γ) = {(1, 𝛼), (2, 𝛼), . . . , (𝑛, 𝛼)}.

Proof. Obviously, (𝑖, 𝛼) ∈ FM(Γ) for each player 𝑖 ∈ 𝑁.
Assume that there is a proposal (𝑖, 𝑥) of some player 𝑖

such that (𝑖, 𝑥) ∈ FM(Γ) with 𝑥 ̸= 𝛼. Then, 𝑥∼
𝑖
𝛼. But 𝛼

being a condorcet solution implies 𝛼 dom 𝑥 via a certain
coalition 𝑆 and 𝛼 is undominated, that is, 𝛼 1-dom

𝑆
𝑥, and

since 𝑥∼
𝑖
𝛼, then 𝑖 ∉ 𝑆. Hence, for a player 𝑗 ∈ 𝑆, (𝑗, 𝑆, 𝛼)

is an 𝑅-objection to proposal (𝑖, 𝑥) that does not have
a 𝑅-counter-objection since 𝛼 is undominated. Therefore,
(𝑖, 𝑥) ∉ FM(Γ) which is a contradiction: hence, FM(Γ) =

{(1, 𝛼), (2, 𝛼), . . . , (𝑛, 𝛼)}.

Farsighted One-Core and Shenoy Bargaining Set. The defini-
tion of the farsighted one-core and of the Shenoy bargaining
set seems a bit similar at a first sight, but these notions differ
significantly. The following result states that each player by

proposing his proposals from the farsighted one-core does as
good (if not better) as any outcome in the Shenoy bargaining
set.

Proposition 22. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee

game. Then, for all 𝑖 ∈ 𝑁, for all 𝑥 ∈ 𝐴, (𝑖, 𝑥) ∈ F(Γ) ⇒ 𝑥⪰
𝑖
𝑦

for all 𝑦 such that (𝑖, 𝑦) ∈M(Γ).

Proof. Assume that there exists, for some player 𝑖
0
, a proposal

(𝑖
0
, 𝑥) ∈ F(Γ) and another proposal (𝑖

0
, 𝑦) ∈ M(Γ) with

𝑦≻
𝑖0
𝑥. Since (𝑖

0
, 𝑦) ∈ M(Γ) then (𝑖

0
, 𝑦) is 𝑅𝑀-stable. That

is, either there is no objection to (𝑖
0
, 𝑦) or each objection to

(𝑖
0
, 𝑦) has a counter-objection.

(i) If there is no objection to (𝑖
0
, 𝑦) then 𝑦 is undomi-

nated or, for each 𝑆 such that 𝑦 is dominated via 𝑆,
𝑖
0
∈ 𝑆 and 𝑦 is undominated via 𝑆\ {𝑖

0
}.Thus, (𝑖

0
, 𝑦) ∈

𝐶
𝑖0 with 𝑦≻

𝑖0
𝑥, which means that (𝑖

0
, 𝑦) ∈ F(Γ) and

(𝑖
0
, 𝑥) ∉ F(Γ). This is a contradiction.

(ii) If there exists an objection to (𝑖
0
, 𝑦), let (𝑗, 𝑆, 𝑎) be

such an objection that admits a counter-objection
(𝑘, 𝑇, 𝑧). Then 𝑖

0
∉ 𝑆, 𝑎 dom

𝑆
𝑦 and 𝑧 dom

𝑇
𝑎.

But from the definition of the counter-objection we
have 𝑦≻

𝑗
𝑧. Thus, non (𝑧⪰

𝑖
𝑦) for each player 𝑖 ∈

𝑆. Therefore, non(𝑎 1-dom
𝑆
𝑦) which means that

(𝑖
0
, 𝑦) ∈ 𝑆

𝑖0 . Since (𝑖
0
, 𝑥) ∈ F(Γ)we have 𝑥⪰

𝑖0
𝑦which

contradicts the assumption 𝑦≻
𝑖0
𝑥.

Proposition 23. (1) For all committee game Γ = (𝑁,𝐴, V,
(⪰
𝑖
)
𝑖∈𝑁
), 𝑀̂(Γ) ⊂ ⋃

𝑖∈𝑁
𝑆
𝑖
(Γ).

(2) The above inclusion may be strict.

Proof. (1) Let (𝑖, 𝑥) be an𝑀-stable proposal. Either there is no
objection or each objection has a counter-objection. If there is
no objection to (𝑖, 𝑥), then (𝑖, 𝑥) is undominated and therefore
is not 1-dominated. If not, let (𝑗, 𝑆, 𝑦) be an objection and
(𝑘, 𝑇, 𝑧) a counter-objection. We have 𝑥≻

𝑗
𝑧, with 𝑦 dom

𝑠
𝑥,

𝑧 dom 𝑦, and 𝑗 ∈ 𝑆. That is, (𝑖, 𝑥) is not 1-dominated.
(2) In the Shenoy [1] Example 4.2, recalled here in

Example 13, the bargaining set is empty and the farsighted
one-core is nonempty.

Farsighted One-Core and Farsighted Bargaining Set. The fol-
lowing result deals with the comparison of the farsighted one-
core and the farsighted bargaining set.

Proposition 24. (1) For each committee game Γ where prefer-
ences are linear orders,FM(Γ) = F(Γ).

(2) There exists committee games such that
FM(Γ) ̸=F(Γ).

Proof. (1) Let Γ be a committee game. Assume that for all 𝑖, ⪰
𝑖

is a linear order. According to Proposition 15, the farsighted
one-coreF(Γ) is nonempty. It follows that 0 ̸= ⋃

𝑖∈𝑁
𝑆
𝑖
⊂ 𝑅𝑀̂,

which impliesF(Γ) ⊂ FM(Γ).
Conversely, let (𝑖, 𝑥) ∈ FM(Γ) and assume there

exists an 𝑅-objection (𝑗, 𝑆, 𝑦) against (𝑖, 𝑥) that has an
𝑅-counter-objection (𝑘, 𝑇, 𝑧). Then the following holds:
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b
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d

24
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145

345

235

123145
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Classical dominance relation
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e2

Figure 2:FM(Γ) andF(Γ) are different.

𝑧 1-dom
𝑇
𝑦, 𝑦 1-dom

𝑆
𝑥 and by the transitivity of 1-dom, we

have 𝑧 1-dom
𝑆
𝑥. Since (𝑘, 𝑇, 𝑧) is an 𝑅-counter-objection,

there exists 𝑒 ∈ 𝐴 : 𝑒 dom 𝑧 and 𝑥≻
𝑗
𝑒. Since 𝑧 1-dom

𝑆
𝑥,

𝑒 dom 𝑧, and 𝑗 ∈ 𝑆, it follows that 𝑒⪰
𝑗
𝑥 which contradicts

𝑥≻
𝑗
𝑒. Therefore there is no objection to any proposal (𝑖, 𝑥) ∈

FM(Γ), meaning thatFM(Γ) ⊂ F(Γ).
(2) Consider the following committee game that

involves a set of players 𝑁 = {1, 2, 3, 4, 5} and a set of out-
comes 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒

1
, 𝑒
2
}. Preferences are as follows:

⪰
1
:(𝑎𝑑𝑐) (𝑒

1
𝑒
2
)𝑏, ⪰

2
: 𝑒
2
𝑑𝑏(𝑎𝑐)𝑒

1
, ⪰
3
: 𝑒
2
(𝑎𝑑)(𝑏𝑒

1
)𝑐, ⪰

4
: 𝑒
1
𝑐𝑏

(𝑑𝑎)𝑒
2
, and ⪰

5
: 𝑒
1
(𝑎𝑐)(𝑏𝑒

2
)𝑑. The characteristic function

V is defined by V(24) = {𝑏}, V(145) = {𝑐}, V(123) = {𝑑},
V(345) = {𝑒

1
}, V(235) = {𝑒

2
}, V(𝑆) = {𝑏} if |𝑆| = 3 and 24 ⊂ 𝑆,

V(𝑆) = 𝐴 if |𝑆| ≥ 4 and V(𝑆) = 0 elsewhere. The computation
of the dominance graph gives, as shown in Figure 2, the
following.

One can observe on one hand that (1, 𝑎) ∉ F(Γ). On the
other hand, (1, 𝑎) ∈ FM(Γ). Indeed, the only𝑅-objections to
proposal (1, 𝑎) that can be made by players are (2, 24, 𝑏) and
(4, 24, 𝑏) by players 2 and 4, respectively.

If we consider (2, 24, 𝑏), then (1, 145, 𝑐) is an 𝑅-counter-
objection since 𝑐 1-dom

145
𝑏, 𝑎≻
1
𝑏, 𝑐⪰
1
𝑎, and 𝑒

1
dom 𝑐 with

𝑎≻
2
𝑒
1
.

As well consider (4, 24, 𝑏); then (1, 123, 𝑑) is an 𝑅-
counter-objection since 𝑑 1-dom

123
𝑏, 𝑎≻

1
𝑏, 𝑑⪰

1
𝑎, and

𝑒
2
dom 𝑑 with 𝑎≻

4
𝑒
2
.

Thus, proposal (1, 𝑎) is𝑅𝑀-stable and, since 𝑎 is maximal
with respect to player 1 preference, it follows that (1, 𝑎) ∈
FM(Γ).

The following result shows the advantage of the farsighted
bargaining set over the farsighted one-core.

Proposition 25. Let Γ = (𝑁,𝐴, V, (⪰
𝑖
)
𝑖∈𝑁
) be a committee

game. Then, for all 𝑖 ∈ 𝑁, for all 𝑥 ∈ 𝐴, (𝑖, 𝑥) ∈ FM(Γ) ⇒

𝑥⪰
𝑖
𝑦 for all 𝑦 such that (𝑖, 𝑦) ∈ F(Γ).

Proof. Let Γ be a committee game. Let (𝑖, 𝑥) ∈ FM(Γ) and
(𝑖, 𝑦) ∈ F(Γ). Since (𝑖, 𝑦) ∈ F(Γ), there is no R-objection
to proposal (𝑖, 𝑦). Therefore, (𝑖, 𝑦) is an 𝑅𝑀-stable proposal.
Moreover, (𝑖, 𝑥) ∈ FM(Γ) means (𝑖, 𝑥) is a maximal 𝑅𝑀-
stable proposal. Hence, 𝑥⪰

𝑖
𝑦.

Nonemptiness of the Farsighted Bargaining Set. Shenoy [1]
proved that if Γ is a finite committee game with a nonempty
core, then

(i) the Shenoy bargaining setM(Γ) is nonempty;
(ii) for any player 𝑖, there exists an option 𝑥 such that

(𝑖, 𝑥) ∈M(Γ);
(iii) any player 𝑖 is better off at any𝑥 than at𝑦where (𝑖, 𝑥) ∈

M(Γ) and 𝑦 ∈ 𝐶(Γ).

The above three items still hold with the one-core.
In general committee games, the nonemptiness of the

Shenoy bargaining set ensures the nonemptiness of the
farsighted bargaining set as we can observe in the result
below.

Proposition 26. Let Γ be a committee game such that
M(Γ) ̸= 0; thenFM(Γ) ̸= 0.

Proof. Let Γ be a committee game. Assume that M(Γ) is
nonempty. Let (𝑖, 𝑥) ∈ M(Γ); then, (𝑖, 𝑥) ∈ 𝑅𝑀̂(Γ). Indeed,
(𝑖, 𝑥) ∈M(Γ)means that either there is no objection to (𝑖, 𝑥)
or any objection to (𝑖, 𝑥) admits a counter-objection.

(i) If there is no objection to (𝑖, 𝑥) then (𝑖, 𝑥) is a core
proposal or (𝑖, 𝑥) ∈ 𝐶𝑖0 ⊆ 𝑆𝑖0 ⊆ 𝑅𝑀̂(Γ).

(ii) Assume that there exists an objection to (𝑖, 𝑥).
Let (𝑗, 𝑆, 𝑦) be an 𝑅-objection to (𝑖, 𝑥). Then, 𝑦 1-
dom
𝑆
𝑥 with 𝑖 ∉ 𝑆, which implies 𝑦 dom

𝑆
𝑥 with

𝑖 ∉ 𝑆. Thus, (𝑗, 𝑆, 𝑦) is an objection to proposal
(𝑖, 𝑥). From the assumption that any objection has a
counter-objection, let (𝑘, 𝑇, 𝑧) be a counter-objection
to (𝑗, 𝑆, 𝑦). From the definition of the counter-
objection we have 𝑧 dom

𝑇
𝑦 with 𝑥≻

𝑗
𝑧. This implies

not (𝑦 1-dom
𝑆
𝑥) which contradicts the fact that

(𝑗, 𝑆, 𝑦) is an 𝑅-objection to (𝑖, 𝑥). Hence, there is
no 𝑅-objection to (𝑖, 𝑥) and, therefore, (𝑖, 𝑥) ∈

𝑅𝑀̂(Γ). In all cases, 𝑅𝑀̂(Γ) is nonempty; hence
FM(Γ) ̸= 0.

If the committee game is simple and preferences are
linear orders, it follows from Propositions 15 and 24 that the
farsighted bargaining set is nonemptiness.

Proposition 27. For any simple committee game Γ where
preferences are linear orders,FM(Γ) ̸= 0.

For general (not necessarily simple) committee games, we
have the following proposition stating the nonemptiness of
the farsighted bargaining set (aswell as the Shenoy bargaining
set) of any 3-player committee game.

Proposition 28. For any 3-player committee game Γ,
FM(Γ) ̸= 0.

Proof. Let Γ be a 3-player committee game. According to
Proposition 16, F(Γ) is nonempty. Let (𝑖, 𝑥) ∈ F(Γ); then,
there is no 𝑅-objection to (𝑖, 𝑥) since it is not 1-dominated.
Hence (𝑖, 𝑥) ∈ 𝑅𝑀̂(Γ) and the conclusion follows.
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5. Conclusion

We came back on the four different solution concepts studied
in relation to committee games by Shenoy [1] with emphasis
on the one-core and the bargaining set. After showing that
the one-core is subject to a lack of foresight, we introduce
another solution concept, the farsighted one-core which is
better than the one-core in terms of behavioral standard,
which is always nonempty when individual preferences are
linear orders, a property not shared neither by the one-core
nor by the Shenoy bargaining set. This latter set has also
been revised and we introduce a new bargaining set which is
also better than the latter for committee games and is always
nonempty when restricted to simple committee games in
which preferences are strict orders.

We prove furthermore that any 3-player committee game
has a nonempty farsighted one-core andwedid not succeed in
giving a characterization of general committee games induc-
ing a nonempty farsighted one-core. Although the emptiness
of the farsighted bargaining set of a simple committee game
is guaranteed, the general study of the nonemptiness of this
Shenoy revised solution concept is still an open problem.
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Imprimerie Royale, Paris, France, 1785.

[19] C. L. Dodgson,ADiscussion of the VariousMethods of Procedure
in Conducting Elections, 1873, Reprinted inD. Black,TheTheory
of Committees and Elections, Cambridge University Press,
Cambridge, UK, 1958.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


