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Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation. Cigarette smoke has been
considered a major player in the pathogenesis of COPD. The inflamed airways of COPD patients contain several
inflammatory cells including neutrophils, macrophages,T lymphocytes, and dendritic cells (DCs). The relative contributions
of these various inflammatory cells to airway injury and remodeling are not well documented. In particular, the potential
role of DCs as mediators of inflammation in the smoker’s airways and COPD patients is poorly understood. In the current
study we analyzed the effects of cigarette smoke extract on mouse bone marrow derived DC and the production of
chemokines and cytokines were studied. In addition, we assessed CSE-induced changes in cDC function in the mixed
lymphocyte reaction (MLR) examining CD4+ and CD8+ T cell proliferation. Cigarette smoke extract induces the release of
the chemokines CCL3 and CXCL2 (but not cytokines), via the generation of reactive oxygen species (ROS). In a mixed-
leukocyte reaction assay, cigarette smoke-primed DCs potentiate CD8+T cell proliferation via CCL3. In contrast, proliferation
of CD4+T cells is suppressed via an unknown mechanism. The cigarette smoke-induced release of CCL3 and CXCL2 by DCs
may contribute to the influx of CD8+T cells and neutrophils into the airways, respectively.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a multi-

component disease characterize by emphysema and/or chronic

bronchitis [1]. The pulmonary component is characterized by

airflow limitation that is not fully reversible. The airflow limitation

is usually progressive and associated with an abnormal inflamma-

tory response of the lung to noxious particles or gases [2].

COPD is mostly associated with cigarette smoking and thereby

cigarette smoke is defined as a major risk factor [3]. Several

inflammatory cells and their mediators, both of the innate and

adaptive immune system, participate in the inflammatory response

in COPD., Macrophages, neutrophils and CD8+ T cells are the

cells usually considered the prime effector cells in pathogenesis of

COPD [4], but recently DCs have been suggested to be a

potentially important new player/orchestrator of the pattern of

inflammation that characterizes of COPD [5].

In both humans and mice there are several subtypes of DCs, as

characterized by surface markers and function. Generally, DCs

can be distinguished into conventional DCs (cDCs) and plasma-

cytoid DCs (pDCs) [6–8] . cDCs are crucial antigen-presenting

cells (APCs) for primary T-cell responses. They arise from bone

marrow (BM) precursors that colonize peripheral tissues through

the blood or lymph [9]. In vitro studies using bone marrow and

monocyte-derived DCs exposed to varying doses of nicotine

[10,11] and cigarette smoke extract (CSE) [11] have yielded

contrasting results with respect to their effect on DC function.

cDCs might play a central role in bridging innate and adaptive

immunity via direct cell-cell interactions and/or cytokine produc-

tion [12,13]. These interactions may influence the activation status

of cells from the adaptive immune system such as CD4+T cells and

CD8+T cells [5,7,13–15] CD8+T cells could be essential for the

development of cigarette smoke-induced COPD [12]. In this

context, it has been reported that cigarette smoke in humans

reduces DC maturation and function. Changes that favor repeated

infection, increased exacerbation frequency, and the altered

(CD8+T-cell predominant) pattern of inflammation associated

with this progressive chronic disease [15]. Moreover, Robbins et al

provided evidence that cigarette smoke exposure causes specific

defects in DC maturation and suppresses the proliferation of

CD4+T cells in thoracic regional lymph nodes in mice [13].

To investigate the effect of cigarette smoke on cDC, these cells

were incubated with CSE and different chemokines and cytokines

were measured and accordingly the molecular mechanisms were
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studied. In addition, we assessed CSE-induced changes in cDC

function in the mixed lymphocyte reaction (MLR) examining

CD4+ and CD8+ T cell proliferation.

Materials and Methods

Reagents
GM-CSF was purchased from PeproTech (London, UK). Trizol

and SuperScript II were purchased from Invitrogen (CA, USA).

Sybrgreen Universal PCR Master Mix was obtained from ABgene

(Hamburg, Germany). LPS, propidium ionide (PI), N-acetylcysteine

(NAC), SB 239063, and curcumin were obtained from Sigma-

Aldrich (Zwijndrecht, The Netherlands). The CCL3, CXCL2,

MCP-1, KC ELISA kits, neutralizing antibodies for CCL3 and

CXCL2 were purchased from R&D systems (Oxon, UK). Mouse

inflammatory and Th1/Th2 cytokine beads array (CBA) kits,

annexin V, 7-AAD were purchased from BD (Alphen, The

Netherlands). Rabbit polyclonal antibody against IkB-a and p65

were obtained from Santa Cruz Biotechnology (Heerhugowaard,

The Netherlands). Mouse monoclonal antibodies specific for JNK/

SAPK, phospho-Erk1/2, b-actin, phospho p38, p38, phospho c-jun

and c-jun were obtained from Cell Signaling (Leiden, The

Netherlands). Functional Grade Purified anti-mouse Toll-like

receptor 4 (TLR4)/MD-2 (Clone: MTS510 0) and isotype control

(Rat IgG2a, k) were purchased from ebioscience (San Diego, CA,

USA). ATF-2 and c-fos and lamin C were obtained from Stressgen

(Uden, The Netherlands). Horseradish peroxidase (HRP)-conjugat-

ed rabbit-anti mouse IgG, mouse anti-rabbit and goat anti-rabbit

IgG were purchased from Dako (Heverlee, Belgium). A nuclear and

cytoplasmic extraction kit, super blocking buffer and bicinchoninic

acid (BCA) protein assay kit were purchased from Pierce

(Amsterdam, The Netherlands). CFSE dye and miniTM protease

inhibitors were obtained from Molecular Probes (Eugene, OR,

USA) and Roche (Almere, The Netherlands), respectively.

Experimental animals
Ten- to 12-week-old Balb/c or C57BL/6 and MyD88 knockout

mice (kindly provided by Dr. S. Kunkel) were purchased from The

Jackson Laboratory (ME, USA) and maintained in the pathogen-

free Central Animal Facility of the University of Utrecht and

University of Michigan. All experiments were approved by the

University Utrecht and University of Michigan Committee on the

Use and Care of Animals.

Preparation of Cigarette Smoke Extract (CSE)
CSE was produced following the method as described before

[16]. Nontoxic concentrations of CSE were assayed performing

toxicological assays (lactase dehydrogenase) and flow cytometery

analysis (annexin-V and 7-AAD staining). We also performed a

dose–response to establish the effect of different CSE concentra-

tions on chemokine and cytokine release of cDCs. No toxic effects

of up to 1.5% concentration of CSE was found since viability was

consistently established to be .95% (trypan blue exclusion).

Generation of bone marrow dendritic cells culture with
GM-CSF

The method for generating BM-derived cDCs was modified (for

higher purity) from that described originally by Inaba and

coworkers [17].

Cell activation
Cells at 9 days of culture were washed and pre-incubated with

pharmacological inhibitors for 30 min, and then stimulated with

CSE (1.5%) or LPS (100 ng/ml, positive control) for 30 min for

protein expression in cytoplasmic and nuclear fraction, for

determination of chemokines at mRNA or protein levels by

ELISA and Real time-PCR, at 4 and 16 h, respectively. For MLR,

cDC were incubated with CSE (1.5%) for 24 h and then washed

and co-cultured with CD8+ and CD4+T cells for 72 h.

Chemokines and cytokine assays
CCL3, CXCL2, MCP-1 and KC at protein concentrations in

supernatants of cells were quantified using ELISA kits according to

the manufacturer’s instructions. To quantify the inflammatory

cytokines (TNF-a, IL-2, IL-6, IL-10, IL-12p70, MCP-1, IFN-c),

50 ml of culture medium were subjected to CBA kits by using

FACS analysis according to the manufacturer’s instruction.

RNA isolation and real time PCR
Total RNA was extracted from cDCs by using Trizol according

to standard protocols. Reverse transcription was performed with

SuperScript II. For real-time RT-PCR, cDNA was analyzed for

the expression of CCL3, CXCL2 and GAPDH/B2M genes using

Sybrgreen using an ABI Prism 7000 Sequence Detection System

(Applied Biosystems) under conditions of 50uC for 2 minutes,

95uC for 10 minutes, then 40 cycles of 95uC for 15 seconds and

60uC for 1 minute. The sequences for PCR primers (Eurogentec)

were used as described before [18,19].

Measurement of intracellular ROS
Intracellular ROS levels were measured by flow cytometry in

cells cultured in serum-free medium and loaded with the redox-

sensitive dye DCFH-DA (D399) [20]. Thirty minutes before the

end of each incubation period, cells were incubated with 10 mM

DCFH-DA in dark. Cells were thoroughly and quickly washed

with PBS and immediately acquired for analyzed for fluorescence

as described before [20,21] by FACSCalibur (BD Bioscienes). The

data were plotted and analyzed using CellQuest software. PMA at

concentration 0.1 mg/ml used as a positive control.

Preparation of cytoplasmic and nuclear extracts
Cells were washed twice with PBS and layzed with cytoplasmic

extraction reagent containing protease inhibitors (MiniTM

protease inhibitors, cocktail).as described before [22]. Protein

concentrations were determined by using a bicinchoninic acid

(BCA) protein assay kit (Pierce).

Western blot analysis
After activation, cDC were washed once with PBS and lysed in

lysis buffer containing MiniTM protease inhibitors. The lysate (25 or

50 mg) was subjected to SDS/PAGE [10% (w/v) gel] and blotteing as

described before [22]. After blocking the membranes with blocking

buffer, the membranes were probed with antibodies in recommended

concentration as described in usage instruction antibodies. After three

washes with TBS-T, membranes were treated for 1 h with HRP-

conjugated indicated antibodies diluted to 1:20,000 in TBS-T. After

three washes with TBS-T, immunoreactive protein bands were

revealed with an ECL and ECL Plus (Amersham). Films were

scanned and analyzed on a GS7-10 Calibrated Imaging Densitom-

eter equipped with Quantity One v. 4.0.3 software (Bio-Rad).

Quantification of AP-1 and NF-kB activities
We analyzed NF-kB and AP-1 activation by using the Trans-

AM NF-kB p65/NF-kB p50 and AP-1 Transcription Factor Assay

Kit (Active Motif, Rixensart), respectively, according to the

manufacturer’s instructions.

Cigarette Smoke and cDC
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Mixed lymphocyte reaction (MLR)
cDCs (from Balb/c mice) at day 8 were pretreated with CSE

(1.5%) for 24 h and then used to stimulate CD4+T cells or CD8+T

cells (from C57BL/6 mice) . The MLR was conducted in round-

bottom; 96-well micro test plates in 0.2 ml of RPMI with (10%)

FCS in the continued presence of the blocking mAb at 20 mg/ml.

Graded doses of cDCs were added as indicated in Results section. To

monitor the MLR, the CD4+T cells or CD8+T cells were isolated

from spleen by using CD4+ and CD8+T cell isolation kits

(Miltenyibiotec) and then cells (56107/ml) loaded with the

proliferation-tracking dye CFSE at a concentration of 4 mM in

phosphate-buffered saline for 15 min at 37uC. Labelled cells were

then washed three times. The MLR was assessed by CFSE dilution

after 72 h after co-culturing with T cells by FACS analysis. For

FACS analysis, cells were washed and labelled with CD3

conjugated with APC, CD4+ and CD8+ conjugated with PE

antibodies plus PI for 30 min. Then after 2 times washing with

FACS buffer (PBS, 5% FCS, 0.1% sodium azide) the proliferation

of T cells were measured by flow cytometery. T To determine the

production of IL-2 induced by CSE-conditioned cDCs, superna-

tants of T cells were harvested for measurement of IL-2.

Application of neutralizing antibodies
Using neutralizing antibodies directed against CCL3 or

CXCL2, we investigated the role of these chemokines in MLR

response of CSE-primed cDC. cDC were pretreated with CSE for

24 h and then were washed with PBS and treated with 10 mg/mL

anti-CCL3 or 0.1 mg/ml anti CXCL2 antibodies or control IgG

antibodies for 30–60 min at 37uC. Thereafter, cells were subjected

to MLR as described before.

Statistical analysis
Experimental results are expressed as mean6S.E.M. Results

were tested statistically by an unpaired two-tailed Student’s t-test

or one-way ANOVA, followed by Newman–Keuls test for

comparing all pairs of groups. Analyses were performed by using

GraphPad Prism (version 4). Results were considered statistically

significant when p,0.05.

Results

CSE induces CCL3 and CXCL2 production by cDCs
CSE dose dependently (0.035–2.5%) induced the release of

chemokines (data not shown). The CSE concentration of 1.5% is

most effective in inducing chemokines release from cDCs (Fig. 1A

and B, upper panels). Therefore, this concentration was used in all

subsequent experiments. Stimulation of cells with CSE (1.5%) did

not induce significant TNF-a, IL-2, IL-6, IL-10, IL-12p70, MCP-

1 and IFN-c production (data not shown). CSE-induced CCL3

and CXCL2 production is associated with an increased in mRNA

levels for both chemokines (Fig. 1A and B, lower panels). To

investigate the involvement of ROS and oxidative stress in the

production of CCL3 and CXCL2 by CSE-exposed cDCs, the

effect of the antioxidant agent N-Acetyl-Cysteı̈ne (NAC 2.5 mM)

was investigated.

NAC attenuated the production of CCL3 and CXCL2 induced

by CSE (Fig. 1A and B). Furthermore, intracellular ROS

production after CSE treatment was measured. Exposure of

cDCs to CSE or PMA, as a positive control, resulted in the

production of ROS (Fig. 2). Pretreatment of cDCs with the

antioxidant NAC resulted in an inhibition of CSE-induced ROS

production (Fig. 2).

Figure 1. CSE induces the expression of mRNA and the production of chemokines in cDCs. The supernatants of CSE-exposed cDCs were
tested for the production and release of CCL3 (A) and CXCL2 (B) ELISA (upper panels) and cell pellets were tested for CCL3 and CXCL2 mRNA levels by
real time PCR (upper panels). White bars represent cDCs treated with medium, black bars represent cDCs treated with CSE and gray bars cDCs treated
with NAC and CSE. Data are representative of three independent experiments, showing the means6SEM from triplicate cultures. * represents
significant differences compared with medium-treated cells (*p,0.05; ***p,0.001). # indicates significant differences between cells treated with CSE
in combination with NAC and cells treated with CSE.
doi:10.1371/journal.pone.0004946.g001
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TLR4 and MyD88 are involved in the CSE-induced CCL3
and CXCL2 production of cDC

We and others have demonstrated that CSE activates

inflammatory cells via TLRs [16,23]. By using neutralizing

antibody against TLR4, the releases of CCL3 and CXCL2 was

decreased (Fig. 3A and B).

MyD88 is a critical adapter molecule for the transduction of

TLRs signals [24]. Therefore, cDCs lacking MyD88 were

investigated. CSE did not induce the release of CCL3 and

CXCL2 from cDCs obtained from MyD88 knockout mice (Fig. 3C

and D). Similarly, LPS, the positive control did not induce a

response in MyD88 2/2 cDCs (Fig. 3C and D).

Involvement of MAPKs and NF-kB in CSE-induced CCL3
and CXCL2 release by cDCs

It has been reported that CSE activates MAPK and NF-kB in

many inflammatory cells [25–27]. Therefore, in the current study,

the involvement of these pathways were investigated. CSE

stimulated phosphorylation of the JNK/SAPK, Erk1/2 and p38

pathways in cytoplasm of cDCs (Fig. 4A). In addition, NAC

abrogated the phosphorylation of all these molecules. Next, the

effect of pharmacological inhibitors were examined on chemokine

release after CSE stimulation. Inhibition of p38 MAP kinase by SB

239063 induced a 63%617 and 43%631 reduction of CSE-

induced CCL3 and CXCL2 production by cDCs, respectively.

Inhibition of Erk1/2 by PD98059 induced a 28.4%62 and

29%616 reduction in CCL3 and CXCL2 production, respec-

tively. In the nuclear fraction, CSE increased the phosphorylation

of c-jun, c-fos and ATF-2 in cDC (Fig. 4B) and addition of NAC

abrogated the phosphorylation of these molecules (Fig. 4B).

CSE and LPS (the positive control) significantly increased the

activity of AP-1 compared to control. Pre-incubation of cells with

NAC, suppressed the activation of AP-1 induced by CSE (Fig. 4C).

Further, the regulation of NF-kB signaling in cDCs by CSE was

investigated. To address the mechanism involved in the degrada-

tion of IkB-a by CSE, phosphorylation of IkB-a by Western blot

analysis was examined. CSE or LPS (the positive control)

increased IkB-a phosphorylation (Fig. 5A) and exposure to CSE

or LPS resulted in the degradation of IkB-a (Fig. 5A). Pretreat-

ment with NAC inhibited the CSE-induced phosphorylation and

degradation of IkB-a (Fig. 5A). In the nuclear fraction CSE and

LPS increased the nuclear translocation of p65 which was

abrogated by NAC (Fig. 5B). Pretreatment of cDC with the

pharmacological NF-kB inhibitor (curcumin) resulted in an

80%63 reduction of the chemokine production (data not shown).

For determination the activity of NF-kB, nuclear proteins were

Figure 2. CSE increases the production of intracellular ROS in
cDC. cDCs were incubated with CSE , with or without NAC or PMA (as a
control) and ROS generation was assayed by FACS analysis. The mean
fluorescent intensity (MFI) of the following groups are indicated in the
figure: control: unlabelled CSE-treated cells (green line), unstimulated:
control labeled cells (red line), CSE: CSE-stimulated labeled cells (blue
line), CSE+NAC: CSE-stimulated labeled cells treated with NAC (black
line), PMA: PMA-stimulated labeled cells (light blue line).
doi:10.1371/journal.pone.0004946.g002

Figure 3. CSE increases the production of CCL3 and CXCL2 by TLR4 and MyD88 dependent manner. cDC were prepared by culturing BM
cells from Balb/c mice preincubated with anti-TLR4 antibody (20 mg/ml) or isotype control (20 mg/ml) for 1 h and then stimulated with CSE for 16 h
and amount of CCL3 (A) and CXCL2 ( B) were determined by ELISA. cDCs were prepared by culturing BM cells from Balb/c mice and age- and sex-
matched MyD88-deficient mice. CSE or LPS were incubated for 16 h and supernatant were harvested for determination of CCL3 (C) and CXCL2 (D) by
ELISA. White bars represent cDCs treated with medium, dotted bars are cDCs treated with LPS and black bars represent cDCs treated with CSE. Data
are representative of three independent experiments, showing the means6SEM from triplicate cultures. * represent significant differences compared
with medium-treated cells (***p,0.001).
doi:10.1371/journal.pone.0004946.g003
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subjected to a reaction containing biotin conjugated-oligonuclo-

tides NF-kB. CSE increased the activity of NF-kB in cDCs and

pretreatment with NAC suppressed NF-kB activity (Fig. 5C).

CSE-primed cDCs stimulate the proliferation of CD8+T
cells

CSE significantly increased the ability of cDCs to stimulate the

proliferation of CD8+T cells compared with untreated cDCs

(Fig. 6A) and decreased proliferation of CD4+T cells (Fig. 6B). In a

reciprocal fashion, the MLR was also determined by using T cells

exposed to CSE. CSE did not effect proliferation of T cells (CD4+

or CD8+T cells) when co-cultured with untreated allogeneic cDCs

(data not shown). To further characterize the effect of CSE on the

priming capacity of cDCs, the effect of CSE on IL-2 production in

the MLR was assessed. As depicted in Fig 6A upper panels, IL-2

production of CD8+T cells was increased and decreased by

CD4+T cells (Fig. 6B, upper panel).

CCL3 antibodies suppress CSE-primed cDC- induced
proliferation of CD8+T cells

Finally, the involvement of CCL3 and CXCL2 in MLR

reaction were investigated.

cDCs were exposed with CSE for 24 h, treated with

neutralizing antibodies directed against CCL3 or CXCL2 and

were then subjected to MLR reaction. Incubation of neutralizing

CCL3 antibody in MLR, profoundly suppressed the CSE-primed

cDC–induced proliferation of CD8+T cells in the MLR (Fig. 7).

Incubation with CCL3 antibody did not affect the CSE-primed

cDCs-induced reduction of CD4+T cell proliferation (data not

shown). Moreover, the effects of CXCL2 neutralizing antibodies

on the MLR with CSE-primed cDCs and CD8+ or CD4+T cells

were investigated. CXCL2 antibody had no effect on the

proliferation of CD8+T cells or CD4+T cells when co-cultured

with CSE-primed cDCs (data not shown).

Discussion

In this study, the effects of CSE on cDCs were explored with

particular emphasis on the function and cellular immune

responses. Among the tested cytokines and chemokines, CSE

induced the release of CCL3 and CXCL2 by a ROS dependent

manner. Interestingly, CSE did not induce the production of

TNF-a, IL-2, IL-6, IL-10, IL-12p70, MCP-1, IFN-c and even

suppressed the production of these cytokines induced by LPS (data

not shown). Similar data on IL-12 and IL-23 have been published

by Kroening et al, [28]. Our findings are consistent with the work

of others showing the induction of IL-8 by CSE or cigarette smoke

in human pulmonary DCs and in an in vivo model of smoke

exposed mice [29].

Figure 4. CSE increases the activity of the MAPK pathway in cDCs. Western blot analysis of the cytoplasmic fraction (A) for JNK/SAPK, p-Erk1/
2 and p- p38 and p38 from whole cell extracts and of the nuclear fraction (B) ATF-2, p-c-jun, c-jun and c-fos. Representative results of three
independent experiments are shown. b-actin and lamin served as loading controls from cytoplasmic and nuclear fractions, respectively. AP-1 activity
after stimulation of cells with CSE, LPS or CSE and NAC (C). Values (mean6SEM) are representative data from one of five independent sets of
experiments. * indicates significant differences between medium-treated cells and cells treated with LPS or CSE (* p,0.05) and # represents the
significance between cells treated with CSE in combination with NAC and cells treated with CSE (# p,0.05).
doi:10.1371/journal.pone.0004946.g004
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Moreover, we show for the first time that CSE modulates cDC-

mediated of T cells and specifically augments proliferation of

CD8+T cells and inhibits proliferation of CD4+T cells in MLR.

The increase in proliferation of CD8+T cells is mediated by

CCL3, since the increase in proliferation is inhibited by

antibodies against CCL3. CXCL2 antibodies did not have an

effect (data not shown).

Cigarette smoke contributes to oxidant-induced damage of the

cells via oxidants and free radicals [30] and generation of

intracellular ROS [31]. We showed, that CSE induces ROS

production in cDCs leading to the production and release of

CXCL2 and CCL3. Interestingly, the generation of chemokines

by cigarette smoke-activated DCs could be mitigated by anti-

oxidants, NAC treatment. These data indicate that anti-oxidant

therapy with agents like NAC may effect cigarette smoke-induced

chemokine release of cDCs.

Next we found that MyD88/TLR4 activation and NF-kB/

MAPK signaling is involved in the induction of chemokines by

CSE in cDCs. The first signaling protein to be recognized as

oxidative stress-sensitive molecules are transcription factors, such

as NF-kB [32] . ROS strongly affects the activation of NF-kB

[32]. Besides, the MAPK pathway is an important signaling

pathway affected by CSE [26]. In the current study, CSE induces

the release of chemokines by both the activation of NF-kB and

the MAPK pathways since inhibition of these intracellular

signaling pathways suppresses the release of both chemokines.

Chemokines regulate the movement of leukocytes such as

neutrophils and lymphocytes [33]. The predominant chemokine

for human neutrophils is the CXC chemokine CXCL8. Mice lack

CXCL8 but have the neutrophilic CXC chemokine ligand 2,

MIP-2 or CXCL2 [34]. The importance of this chemokine in

promoting pulmonary inflammation associated with COPD has

extensively been investigated in vitro and in vivo [35–37].

Therefore, the CSE-induced release of CXCL2 by cDCs may

result in the infiltration and activation of neutrophils in the

airways.

Interestingly, in current study we show that CSE-primed cDCs

increase the proliferation of CD8+ and suppress CD4+T cells

proliferation. In the supernatants of MLR samples the IL-2

production is elevated in CD8+T cells which is in agreement with

the proliferation of cells. These data could explain the enhanced

CD8+T cell population observed in lungs of smokers and smoke-

treated mice [37–39]. Until now, the mechanism for this process

is not well documented. Maeno and coworkers, described a

critical role for CD8+T cells in inflammatory cell recruitment

and lung destruction in a cigarette smoke-induced murine model

for COPD [12]. Earlier evidence reported that CCL3 is involved

in CD8+T cell proliferation [40]. Interestingly, CCL3 production

by cDCs after CSE stimulation has a central role in the induction

of the proliferation of CD8+T cells since proliferation was

blocked by adding CCL3 neutralizing antibody. Moreover, CSE-

primed cDCs suppress CD4+T cells proliferation which is

Figure 5. CSE increases the activity of the NF-kB pathway in cDCs. Western blot analysis of the cytoplasmic fraction (A) for IkB-a and p-IkB-a
from whole cell extracts and of the nuclear fraction (B) p65 were carried out with related antibodies. Representative results of three independent
experiments are shown. b-actin and lamin served as loading controls from cytoplasmic and nuclear fractions, respectively. NF-kB activity after
stimulation of cells with CSE, LPS or CSE and NAC. (C). Values (mean6SEM) are representative data from one of five independent sets of experiments.
* Indicates significant differences between medium-treated cells and cells treated with LPS or CSE (* p,0.05) and # represents the significance
between cells treated with CSE in combination with NAC and cells treated with CSE (# p,0.05).
doi:10.1371/journal.pone.0004946.g005
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agreement with recent in vivo studies [38]. The role and amounts

of CD4+T cells in COPD is not well documented but early

studies reported that cigarette smoke exposure led to a specific

decrease in the percentage of activated CD4+T cells, but not

CD8+T cells in the lung [37]. Interestingly, very recently,

Harissison et al reported that the total number of BAL CD4+

and CD8+T cells is higher in mice exposed to cigarette smoke.

Furthermore, CD4+T cells were proportionally higher than

CD8+T cell [41]. We tested the effects of neutralization

antibodies against CCL3 and CXCL2 on the decreased CD4+

T cell proliferation induced by CSE-primed cDCs and did not

find any suppressive effects on (data not shown). The reasons for

the above mentioned discrepancies are not clear. The decrease

in proliferation of CD4+T cells may indicate suppressive effects

of cigarette smoke on immune responses and may account for

the higher susceptibility of smokers to viral and bacterial

infections [42,43].

The above-mentioned explanation for the regulation of

proliferation of T cells by CSE primed-DCs is an over

simplification and is mainly used as a working hypothesis. In

Figure 6. CSE increases cDC-induced CD8+T cell but inhibits CD4+T cell proliferation. cDCs from Balb/c mice were incubated with medium
(white bars) or CSE ( black bars) and coincubated with allogenic T cells from C57BL/6 mice [CD8+ (A) and CD4+T cells (B)] in a MLR. Presented are pooled
data from eight individual experiments using cDCs generated from eight isolations. Values are represented as mean6SEM. A statistically significant
modulation of proliferation of T cells with CSE-primed cDCs occurred (*p,0.05 and ** p,0.01 when compared to medium-treated cDCs). The
supernatants of MLR were collected for the measurement of IL-2 by ELISA (inserted graphs in A & B). Presented are pooled data from eight individual
experiments using cDCs generated from eight isolations. Values are represented as mean6SEM. * Indicates significant differences between medium-
treated cells (* p,0.05).
doi:10.1371/journal.pone.0004946.g006

Figure 7. CCL3 neutralizing antibodies suppresses CSE-primed
cDC-induced proliferation of CD8+T cells. cDCs were incubated
with medium (white bars) or CSE and then incubated without (black bars)
or with polyclonal antibodies neutralizing CCL3 (gray bars). The cDCs
were co-cultured with CD8+T cells. Data represent means6SEM of
triplicate experiments. * represents significant differences compared with
medium-treated cDCs (p,0.05, n = 3). # indicates significant differences
between CSE-primed cells and CCL3- treated and CSE-primed cells.
doi:10.1371/journal.pone.0004946.g007
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summary, cigarette smoke induces the release of CXCL2 and

CCL3 by cDCs. CXCL2 is considered as a chemokine that can

recruite neutrophils. CCL3 results in the proliferation of CD8+T

cells and may be a key factor for increasing this cell in smokers

and COPD patients. However, the relevance of above mentioned

data should be confirmed in animal model with COPD and

human.
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