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Highly pathogenic avian H5N1 influ-

enza viruses are now enzootic in parts of

Southeast Asia and the Middle East.

Occasionally, these viruses transmit to

humans and cause severe respiratory

disease and fatalities. Currently, these

viruses are not efficiently transmitted from

person to person, although limited human-

to-human transmission may have occurred

[1–4]. A major determinant of influenza

virus host range is the viral hemagglutinin

(HA) protein: avian virus HA binds

preferentially to sialic acid linked to the

penultimate galactose residue by an a2,3-

linkage (Siaa2,3Gal) [5–7], as found for

sialic acid–containing receptors of the

epithelial cells in duck intestine [8], the

site of avian influenza virus replication. By

contrast, human virus HA has higher

affinity for Siaa2,6Gal [5–7], the main

sialyloligosaccharide on the epithelial cells

of the human upper respiratory tract

[9,10].

Recently, Herfst et al. [11] and Imai

et al. [12] identified H5 HA-possessing

viruses that transmit via respiratory drop-

lets among ferrets, an established animal

model for influenza virus transmission

studies. The H5N1 transmissible virus

identified by Herfst et al. [11] possesses

three mutations that were intentionally

introduced (PB2-627K, which confers

efficient replication in mammals [13],

and HA-Q222L/G224S (H5 numbering),

which confer human-type receptor-bind-

ing specificity [14,15]). The ‘‘Herfst virus’’

also possessed two mutations that emerged

during virus passages in ferrets. One of

these, HA-T156A, results in the loss of a

glycosylation site on the head of the HA;

the other, HA-H103Y, localizes to the HA

trimer interface. The transmissible virus

identified by Imai et al. [12] possesses a

mutant HA gene of an avian H5N1 virus

and the remaining seven viral genes of a

prototypic pandemic 2009 (H1N1) virus.

Random mutagenesis of the HA globular

head identified two mutations in HA (HA-

N220K and HA-Q222L; note that the

latter is identical to one of the mutations

identified in the ‘‘Herfst virus’’) that

conferred human-type receptor-binding

specificity. Virus passages in ferrets result-

ed in the selection of two additional

mutations in HA. One of these, HA-

N154D, resulted in the loss of the same

glycosylation site as HA-T156A in the

‘‘Herfst virus’’; the other, T314I, affected

HA stability [12]).

Although the Herfst and Imai studies

used different experimental strategies and

tested viruses of HA/H5 clade 2 or 1,

respectively, the results were remarkably

similar: the transmissible mutant H5

viruses bound to human-type receptors,

lost the glycosylation site at HA-154–156,

and acquired an additional mutation in

HA that likely increased the protein’s

stability. Moreover, both studies, and

findings by others [16–18], suggest that a

shift towards human-type receptor-bind-

ing specificity may be necessary, but not

sufficient, for H5N1 virus transmissibility

in mammals.

The loss of a glycosylation site at HA-

154–156, using two different mutations, is

particularly notable. Amino acids 154–156

of many H5 HAs encode an N-glycosyla-

tion site (N-X(except P)-S/T), which is

located near the receptor-binding pocket.

Loss of this glycosylation site enhances

H5N1 virus binding to Siaa2,6Gal (con-

ferred by the Q226L/G228 mutations

[19]) and is critical for H5N1 virus

transmissibility in guinea pigs [20]. In the

Herfst and Imai studies, loss of this

glycosylation site occurred during the first

virus passages in ferrets, suggesting that

this trait is essential for H5 virus transmis-

sibility in ferrets.

Since lack of the HA154–156 glycosyl-

ation site appears to be critical for H5

virus transmission in mammals, we in-

spected avian H5N1 viruses for this

feature. A phylogenetic tree of publicly

available H5 HA sequences showed that a

substantial number of these viruses, dis-

tributed across time and geography, lack

this glycosylation site. Closer inspection of

2009–2011 H5N1 viruses from Vietnam,

Indonesia, and Egypt (i.e., countries with

appreciable numbers of human H5N1

infections) revealed that ,25% of Viet-

namese, 0% of Indonesian, but .70% of

Egyptian isolates lack the HA154–156

glycosylation site. The H5N1 viruses

currently circulating in Egypt are descen-

dants of the so-called Qinghai Lake viruses

that killed wild birds (which typically do

not succumb to influenza virus infections)

at Qinghai Lake, China, in 2005 [21–23],

and have now spread through Europe to

the Middle East and Africa.

Next, we looked for a correlation

between the HA154–156 glycosylation site

and recent human H5N1 virus infections.
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Human H5N1 infections in Vietnam and

Indonesia from 2009 to 2011 were mostly

(Vietnam) or exclusively (Indonesia) caused

by viruses with the HA154–156 glycosyla-

tion site. However, all 46 H5N1 viruses

isolated in 2009–2011 from infected indi-

viduals in Egypt lacked the HA154–156

glycosylation site, while 28% of H5N1

viruses circulating in avian species in Egypt

in 2009–2011 possessed this site (Table 1).

Phylogenetic analysis further suggested that

mutations resulting in loss of the glycosyl-

ation site occurred in birds and that these

variants subsequently transmitted to hu-

mans. Although speculative at this point,

this finding might suggest that avian H5N1

viruses lacking the HA154–156 glycosyla-

tion site transmit to humans more readily

than those that possess the glycosylation

site, at least in the genetic background of

Egyptian H5N1 viruses.

In addition to mutations in HA, other

amino acid changes may be critical to

confer transmissibility in humans. One

such mutation may be the glutamic acid-

to-lysine mutation at position 627 of the

PB2 polymerase protein (PB2-627K),

which confers efficient replication in

mammals [13] and is a recognized host

determinant of influenza viruses [24].

Herfst introduced this mutation into their

virus; the ‘‘Imai virus’’ possesses the 2009

pandemic PB2 gene, in which a basic

amino acid at position 591 compensates

for the lack of PB2-627K [25,26]. The

mammalian-adapting PB2-627K mutation

also emerged in the Qinghai Lake viruses

[21–23] and has been maintained in

viruses of this lineage to this day, with

the exception of a few revertants. Most

Egyptian H5N1 viruses, which descend

from the Qinghai Lake viruses, thus

possess two mutations that may facilitate

transmissibility in mammals: a mutation in

HA (resulting in the lack of a glycosylation

site) that is critical for H5N1 virus

transmissibility in ferrets and guinea pigs,

and a mutation in PB2 that confers

efficient replication in mammals. In addi-

tion, some Egyptian H5N1 viruses have

acquired increased affinity for human-type

receptors [27].

The data presented here are invaluable

for monitoring circulating viruses for vari-

ants with increased potential to acquire

transmissibility to mammals. Our database

searches identified two H5N1 viruses that

encode HA-220K and have lost the

HA154–156 glycosylation site (A/muscovy

duck/Vietnam/NCVD-11/2007; A/

duck/Egypt/10185SS/2010), indicating

that only two additional mutations are

needed to create variants with the ‘‘trans-

missibility features’’ identified in the Ka-

waoka study. Because the outbreak of

H5N1 viruses in Egypt is extensive, Egyp-

tian H5N1 viruses may, therefore, present a

far greater pandemic risk than H5N1

viruses circulating in other countries.
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