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Key message 11 

The effect of adult trees on sapling density distribution during the regeneration fellings is determined in a 12 

Pinus sylvestris L. Mediterranean forest using generalized additive models 13 

 14 

Abstract 15 

Context: Spatial pattern of adult trees determines the number of new individuals after regeneration fellings, 16 

which modify the light and air temperature under tree canopy. 17 

Aims: We proposed a novel spatio-temporal model with a functional predictor in a generalized additive 18 

model framework to describe non linear relationships between the size of the adult trees and the number of 19 

saplings of Pinus sylvestris and to determine if the spatial pattern of the number of saplings remained 20 

constant or changed in time. 21 

Methods: In 2001, two plots (0.5 ha) were set up in two phases of regeneration fellings under the group 22 

shelterwood method. We mapped the trees and saplings and measured their diameter and height. The 23 

inventories were repeated in 2006, 2010 and 2014.  24 

Results: We found a negative association between the diameter of adult trees and number of saplings up to 25 

7 – 8 m. Beyond these distances, the diameter of adult trees was not associated with the number of saplings. 26 

Our results indicate that the spatial pattern of the number of saplings remained quite constant in time. 27 

Conclusions: The generalised additive models are a flexible tool to determine the distance range of 28 

inhibition of saplings by adult trees. 29 

 30 
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 32 

1 Introduction 33 

Two main types of models can be used to explain or predict the renewal of a forest after 34 

regeneration fellings, seed dispersion and germination: regeneration and recruitment models. The former is 35 

related to the youngest individuals, seedlings, whereas the latter is related to larger stems, saplings, which 36 

reach or exceed a nominal size limit determined by the researcher (Vanclay 1992; Eerikäinen et al. 2007; 37 

Miina and Heinonen 2008). Since it is both difficult and expensive to obtain suitable data for modelling the 38 

regeneration, recruitment is more often modelled than regeneration. Both processes are influenced by the 39 

capacity of the soil to supply water and the amount of light that reaches the young seedlings. These are the 40 

most important factors for success in the establishment of new individuals (Kozlowski 2002). Hence, the 41 

summer drought in dry environments cause high mortality rates of seedlings over Mediterranean areas 42 

(Castro et al. 2004; Pardos et al. 2007; McDowell et al. 2008), where the water is a limited resource in the 43 

vegetative period. 44 

Regeneration fellings can modify the effect of summer drought on seedlings and saplings by 45 

setting different target densities or spacing between remaining trees and, thus, modify the shade and the air 46 

temperature (Caccia and Ballaré 1998; Pardos et al. 2007). However, not all species can tolerate the same 47 

amount of shade and the shade tolerance behavior may vary with site conditions (Kobe and Coates 1997; 48 

Gómez-Aparicio et al. 2006). Additionally, the light requirement of plants varies with age. Indeed, the light 49 

requirement increases faster with plant age in light-demanding species than in shade tolerant species 50 

(Valladares and Niinemets 2008). This determines the density and spacing between remaining trees after 51 

regeneration fellings. Therefore, it is necessary to have a clear understanding of the effects of the density 52 

of residual trees on new individuals over the regeneration period in order to ensure the spatial continuity of 53 

the forest stand after the regeneration fellings. 54 

In addition to the density and spacing between remaining trees after regeneration fellings, several 55 

features should be taken into account to model the number of saplings. The age of the stand should also be 56 

considered, particularly where shifts in the spatial relationship between trees and offspring over the stages 57 

of the forest renewal may occur (Wada and Ribbens 1997). Changes in spatial patterns of trees over time 58 

are determined by regeneration mechanisms, substrate characteristics, moisture and light availability as 59 

well as intra and inter specific competition (LeMay et al. 2009). Hence, the time perspective allows us to 60 
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distinguish between competition and the initial spatial pattern of individuals (Wolf 2005; Getzin et al. 61 

2006), i.e., the initial distribution of seedlings as a consequence of the dispersion and germination of the 62 

seeds can vary with the development of the seedlings and competition for resources. 63 

The spatial relationships between adult trees and new cohorts have previously been evaluated 64 

using different approaches. The bivariate Ripley’s K and related functions have been used to determine if 65 

stems of two mapped cohorts of trees show spatial positive, negative or random association (see Montes 66 

and Cañellas 2007; Wild et al. 2014) by testing the spatial independence between the two cohorts. Ledo et 67 

al. (2014) used inhomogeneous Poisson process spatial models. These models allow the spatial distribution 68 

of new individuals to be defined in function of attributes of adult trees. Other authors used distance-69 

dependent influence indices (Contreras et al. 2011) and available light under the forest canopy or the global 70 

site factor as explanatory variables in different models (Pardos et al. 2007; Moreno-Fernández et al. 2015a). 71 

Distance-dependent influence indices determine, at a given point, the influence of the tree size (such as 72 

diameter, height, or crown variables) and the distance between trees and the studied point whereas the 73 

global site factor measures the amount of light at a given point by analyzing hemispherical photographs. 74 

Influence indices and site factors can easily be entered in a time-dynamic model as additional variables 75 

(Eerikäinen et al. 2007; Manso et al. 2013). However, the temporal modelling of Ripley’s K and related 76 

functions over time is complex. LeMay et al. (2009) investigated the evolution of these functions in the 77 

regeneration of Pseudotsuga menziesii var glauca (Mirb.) Franco over time using a random coefficient 78 

mixed model. Furthermore, specific distance dependent models implemented using packages such as 79 

SILVA or SORTIE-ND have been used in forest development simulation studies which include the 80 

regeneration establishment phase (Hanewinkel and Pretzsch 2000; Ameztegui et al. 2015). These software 81 

packages are compounded of several submodels for the biological processes operating at individual tree 82 

level. Comas (2008) and Redenbach and Särkkä (2012) adapted the growth-interaction model proposed by 83 

Renshaw and Särkkä (2001) to develop a spatio-temporal regeneration model under two regeneration 84 

methods using values taken from the literature to estimate the parameters. This approach generates marked 85 

point configurations changing over time.  86 

Generalized additive models (GAMs) may describe a complex relationship between the response 87 

and the predictors. This is especially useful in research fields such as ecology, biology or forestry in which 88 

simple models cannot capture the structure of the data and more complex models may be required (Faraway 89 

2006). Whereas GAMs have been used in different areas of forest science such as wood quality (Jordan et 90 
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al. 2008), annual radial growth (Moreno-Fernández et al. 2014), mortality (Barbeito et al. 2012) or species 91 

distribution (Franklin 1998), their use in regeneration or recruitment studies is relatively scarce (Rabasa et 92 

al. 2013). Augustin et al. (2009) fit spatio-temporal models within a GAM framework to monitor forest 93 

health data. However, these techniques have never been used to assess the dynamics of forest regeneration.  94 

Pinus sylvestris L. is the most widely distributed pine species in the world (Mason and Alía 2000). 95 

It can be found throughout Eurasia, stretching from Spain in the South-West to the far east of Russia 96 

(Houston Durrant et al. 2016). This pine species is commonly considered to be a light-demanding species 97 

in Central and northern Europe (Mátyás et al. 2003). However, it has a half-shade tolerant behavior in 98 

southern locations like Spain (Montes and Cañellas 2007), partially due to the high temperatures and 99 

drought conditions present during the summer months. Whereas during the early stages P. sylvestris 100 

seedlings prefer moderate light conditions (Pardos et al. 2007; Barbeito et al. 2009), the later development 101 

of saplings is inhibited by competition from the adult trees (Montes and Cañellas 2007). The variation on 102 

shade tolerance and climate conditions across its distribution condition the regeneration method; while seed 103 

tree and clear cutting are the main methods used in Central and Northern Europe, different alternatives of 104 

the shelterwood method are commonly used in Southern Europe (Mason and Alía 2000). In general, 2 000 105 

seedlings per hectare are considered to be a sufficient natural regeneration density (Rodríguez-García et al. 106 

2010; Hyppönen et al. 2013).  107 

In this work, we propose a methodology to describe non-linear relationships between the size of 108 

the adult trees and number of saplings of P. sylvestris in Mediterranean mountains as a smooth function. 109 

We carried it out analyzing data from repeated measurements of two large plots at two stages of the 110 

regeneration period where all the stems were mapped. We modelled the spatio-temporal distribution of the 111 

number of saplings using a functional predictor (see for example Wood 2011) in a GAM framework (Hastie 112 

and Tibshirani 1989; Wood 2006). The functional predictor allowed us to weight the effect of every adult 113 

tree on the number of saplings per quadrat based on the distance between adult trees and saplings. In 114 

addition, the approach can deal with spatial correlation and a spatio-temporal trend, i.e. changes in the 115 

spatial pattern of number of saplings during the development of the stand. In this regard, we fitted two 116 

models with different spatio-temporal structures to determine if the spatial pattern of the number of saplings 117 

remained constant or changed in time. 118 

 119 
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2 Material and methods 120 

2.1 Study area and data 121 

The study was carried out in a Scots pine forest (Pinar de Valsaín) located on the north facing 122 

slopes of the Central Range of Spain (40º 49´N, 4º 01´W). The elevation ranges from 1200 to 1600 m, the 123 

annual rainfall is about 1000 mm and the mean temperature is around 9.8 ºC. Regeneration is achieved 124 

using the group shelterwood method over a 40-year regeneration period. The regeneration fellings create 125 

small gaps (0.1-0.2 ha) for the establishment of the regeneration. As regeneration appears, subsequent 126 

harvests are carried out over the regeneration period to widen the gaps. The final fellings under the group 127 

shelterwood method take place at 120-140 years but some legacy trees are left for biodiversity conservation 128 

reasons at the end of the regeneration period. 129 

In 2001, we set up a chronosequence of six plots (0.5 ha) covering all the rotation period (see 130 

Moreno-Fernández et al. 2015b for details) to study the dynamics and structure in Mediterranean forests of 131 

P. sylvestris. This chronosequence represents the management of P. sylvestris in the study area from the 132 

beginning to the end of the rotation period (Fig. 1) and it contains six plots. The plots were as homogeneous 133 

as possible in terms of altitude, exposure and site quality. Since we aim to address the influence of the adult 134 

trees on the saplings, we selected two plots at different stages of the regeneration period: at an intermediate 135 

stage of the regeneration period (100 x 50 m, Fig. 2, ca. 19-years-old) and at the end of the regeneration 136 

period (58.82 x 85 m, Fig. 3, ca. 32-years-old). Young individuals with different size were spread over the 137 

youngest studied plot. In this plot, regeneration fellings were done from 2010 to 2014 removing mainly 138 

trees located in the corners of the plot (Fig. 2). At the end of the regeneration period, the arrival of new 139 

individuals has almost been completed and the crown cover is getting closer. Additionally, some legacy 140 

trees (larger trees) appear in this plot (Fig. 3). Another plot, at the first stages of the regeneration period, 141 

was available. However, the arrival of new individuals has started as consequence of the natural dynamics 142 

but the number of saplings was still quite low (Fig. 1). Therefore, we did not include this plot in the analysis. 143 

At the time the plots were set up, we carried out the first inventory in which all the stems higher 144 

than 1.30 m were labelled individually and their diameter at breast height (dbh) and height were measured. 145 

We numbered and classified the stems into: trees (dbh≥10 cm) and saplings (height≥1.30 m and dbh<10 146 

cm). We distinguished two cohorts of trees: adult trees (dbh≥20 cm) and small trees (10≤dbh<20 cm). We 147 

mapped the position of every tree (adult and small trees) in each plot and additionally, we grouped the 148 
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saplings into a 2 x 2 m quadrat grid. The coordinates of the center of each quadrat were used to determine 149 

the position of each quadrat. These measurements were repeated in 2006, 2010 and 2014.  150 

In order to model the sapling distribution, we used the number of saplings per quadrat (Ns) in each 151 

plot as response variable. We expected Ns to be highly related to the density of surrounding trees and 152 

distance to the surrounding trees, as well as to the time since the beginning of the regeneration fellings. 153 

However, the spatial dependence between the saplings and the two cohorts, adult and small trees, varies 154 

over stand development (Montes and Cañellas 2007). Thus, we considered as predictors the dbh of the adult 155 

trees  (dbh≥20 cm), the distance in meters from adult tree to each sapling quadrat (considering all the adult 156 

trees within a maximum radious of 30 m from each sapling quadrat; Montes and Cañellas 2007) and the 157 

number of small trees (Nsmall; 10≤dbh<20 cm) surrounding every sampling quadrat within a radius of 10 158 

m and the inventory year. The distribution of Ns, number of small and adult trees over inventories is shown 159 

in Figs. 1, 2 and 3. We assume that at a given distance, larger dbh of the adult trees entails greater 160 

competition between adult trees and saplings. Furthermore, we consider that this competition effect 161 

between adult trees and Ns decreases with distance. Therefore, a model in which the coefficient of the dbh 162 

depends on the distance between adult trees and the sapling quadrat would be very suitable. These 163 

requirements can be taken into account using a linear functional predictor in a GAM. Thus, this approach 164 

allowed us to weight the effect of every adult tree on the number of saplings per quadrat based on the 165 

distance between adult trees and saplings.  166 

2.2 Edge effect correction 167 

The quadrats close to the boundaries of the plots are affected by the edge effect and this must be 168 

corrected (Ledo et al. 2014). Thus, the number of adult and small trees which surround a quadrat within 30 169 

m and 10 m, respectively, can be underestimated because some of them may be located outside the plot 170 

(Goreaud and Pélissier 1999). Several authors (Lancaster and Downes 1998; Perry et al. 2006; 171 

Pommerening and Stoyan 2006) have investigated the edge effect and have analyzed the suitability of 172 

different edge-corrections for the calculation of the indices of spatial forest structure, Ripley´s K and related 173 

second order functions.  174 

In order to take account of the edge effect on the number of small and adult trees we used values 175 

per unit area, i.e., density. For each quadrat, we estimated the area of the 10 m radius circle within the plot 176 

(AreaIn10 in m2). Therefore, AreaIn10 changes with the distance between the quadrat and plot border, i.e, 177 

AreaIn10 is smaller in the quadrats closer to the plot border. Then, we obtained the density of small trees 178 
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as Nsmall/AreaIn10. We corrected the edge effect on adult trees by using the dbh density as dbh/AreaIn30. 179 

AreaIn30 is the area (in m2) of the 30 m radius circle within the plot. Thus, we assume that the surrounding 180 

shelter trees outside the plot would be of similar density than within the area. AreaIn30 is the area (in m2) 181 

of the 30 m radius circle within the plot. 182 

2.3 Statistical analysis 183 

For each of the two plots we modelled the expected number of saplings E(Nsij) = µij in quadrat i 184 

and j-th inventory (j=1,…,4) using the following GAM: 185 

 1 2

1

log( ) ( ) ,
3

N
ij jn

ij in i i j

ni i

Nsmall dbh
f Dist f X Y Time

AreaIn10 AreaIn 0
  



 
       

 
   (1) 186 

with Nsij following a negative binomial distribution. This distribution is suitable for overdispersed counts 187 

such as those we are dealing with here. The variance function is   2

ijij ijV      , involving the extra 188 

parameter θ to be estimated. The greater θ is, the more similar the negative binomial distribution is to the 189 

Poisson distribution. Small values for θ indicate aggregation. The parameter α is the intercept of the model, 190 

β is the unknown but estimable parameter of the number of small trees. Distin is a matrix which contains 191 

the distances (in m) from the adult tree (n=1, ..., N) to the i-th quadrat, whereas dbhjn is the matrix of the 192 

dbh of the adult tree (n=1,..., N). When the distance of the n-th adult tree to the i-th quadrat was greater than 193 

30 m, the dbh was set to 0.  1

1

( )
N

in jn i
n

f Dist dbh AreaIn30


  is functional predictor where f1(Distin) is the 194 

smooth coefficient of dbhjn. The function f2(Xi, Yi) is a spatial smooth term to account the spatial trend and 195 

spatial correlation of the number of saplings. Any spatial trend will caused by other unmeasured 196 

environmental variables and hence the spatial smooth term is a proxy for other unmeasured environmental 197 

effects. Xi and Yi are the coordinates of the i-th quadrat and Timej is the temporal factor referred to the j-th 198 

inventory. 199 

Model 1 above separates the effects of space and time, i.e. the two effects are additive. The model 200 

can be made more flexible by allowing the spatial smooth to change in time, i.e., this model contains a 201 

spatial smooth per j-th inventory: 202 

 1 2

1

log( ) ( ) ,
3

N
ij jn j

ij in i i

ni i

Nsmall dbh
f Dist f X Y

AreaIn10 AreaIn 0
  



 
      

 
  (2) 203 

We used Akaike´s Information Criterion (AIC) to select the variables by using backward stepwise 204 

procedure and choosing the best spatio-temporal structure. 205 
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Functions f1 and f2  were represented using thin plate regression splines (Wood 2003). Thin plate 206 

regression splines keep the basis and the penalty of the full thin plate splines (Duchon 1977) but the basis 207 

is truncated to obtain low rank smoothers. This avoids the problems of the knot placement of the regression 208 

splines and reduces the computational requirements of the smoothing splines (Wood 2003). Penalized 209 

regression smoothers such as thin plate regression splines are computationally efficient because their basis 210 

have a relatively modest size, k. In practice, k determines the upper limit on the degrees of freedom 211 

associated with the smooth function, hence k must be chosen when fitting models. However, the actual 212 

effective degrees of freedom of the smooth function are controlled by the degree of penalization selected 213 

during fitting. The degree of penalization determines how smooth the function is. So, k should be chosen 214 

to be large enough to represent the underlying process reasonably well, but small enough to ensure 215 

reasonable computational efficiency. The exact choice of k is not critical (Wood 2006).  216 

The spatial smooth f2(Xi, Yi) is confounded with the functional predictor term, 217 

 1

1

( )
N

in jn i
n

f Dist dbh AreaIn30


 , since both terms describe, in some way, the spatial pattern in the 218 

response. To avoid further confounding, we decided to include the effect of small trees in a linear form 219 

rather than a functional predictor. We used k=10 for f1 since it was enough to represent the variation of the 220 

coefficient of dbh as the actual effective degrees of freedom for f1 was between 3 and 4 - well below 10.  221 

As we are ultimately interested in estimating the f1 of the functional predictor and f2 is entered to eliminate 222 

the spatial correlation, we selected the smallest basis dimension (k) in f2 that eliminated the spatial 223 

correlation. For the different values of k in f2, we checked whether the spatial correlation had been 224 

eliminated in the model by plotting semivariograms of the model residuals per inventory with envelopes 225 

from 99 permutations under the assumption of no spatial correlation (see Augustin et al. 2009 for a 226 

description).  227 

The statistical analyses were carried out in R 3.3.3. (R Core Team 2017) using the “gam” function 228 

of the package “mgcv” (Wood 2011) for fitting the models where we used the restricted maximum 229 

likelihood option. This means that the smoothness parameters are estimated using restricted maximum 230 

likelihood estimation and a penalized iterative re-weighted least squares algorithm is used to find all other 231 

parameters, i.e. the coefficients of basis functions and coefficients of linear terms. See Wood (2011) for the 232 

theory and Augustin et al. (2015) for a functional predictor example. For model checking we used the 233 

functions “variog” and “variog.mc.env” of the package “geoR” (Ribeiro and Diggle 2016) for estimating 234 

the semivariograms and the envelopes.  235 
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 236 

3 Results 237 

3.1 Intermediate stages of the regeneration period 238 

The total number of saplings was inversely related to the time whereas the mean size (dbh and 239 

height) of the saplings increased with time (Table 1). Saplings were spread around the plot except in the 240 

center and the bottom left corner (Fig. 2). Unlike the saplings, we found that the number of trees, both small 241 

and adult trees, increased with time, the mean dbh and size of this stratum decreasing with time due to 242 

ingrowth of individuals from the previous class (Table 1). During the study period, we found a great 243 

increase in small trees, especially in the lower right part of the plot (Fig. 2). 244 

Both model 1 and model 2 explained a similar amount of deviance, almost 41%. However, the 245 

AIC of model 1 was lower than that of model 2 (Table 2). Therefore, we selected model 1, the more 246 

parsimonious model, with additive effects of space and time. This entails that the spatial distribution of the 247 

saplings remained constant over the time. The spatial smooth function (f2) and the temporal factor (Time) 248 

improved the model in terms of AIC (Table 3). Fig. 4 shows the estimated spatial smooth function f2 on the 249 

scale of the linear predictor. The estimate of the aggregation parameter θ of the negative binomial 250 

distribution is 1.5 and 1.4 in model 1 and 2, respectively. Our results show that we have chosen k large 251 

enough for both functions f1 and f2, as we see that the effective degrees of freedom given in Table 2 are 252 

below k-1; the same applies to results for the other plot. The coefficients of dbh were robust to changes in 253 

k. This also applies to results of the other plot. Fig. 5 shows that the spatial correlation was eliminated.  254 

Removing the term relating to the density of small trees increased the AIC (Table 3). The β of the 255 

density of small trees was negative (β =-0.0004) pointing towards competition between small trees and 256 

saplings. Furthermore, Fig. 6 shows the smooth coefficient of dbh (f1) of adult trees over Dist. More saplings 257 

are expected to be found when the product of the smooth coefficient and the dbh is large, that is, the model 258 

predicts the greatest number of saplings for the largest trees located at the distances to which f1 is highest. 259 

f1 varied smoothly across the distances with significantly negative values from 0 m up to 7 m. From 7 m, f1 260 

is not statistically different from zero as the 95 % confidence intervals contained zero. This suggests 261 

competition between adult trees and saplings at shorter distances (<7 m) and no relationship at larger 262 

distances between these two cohorts. From 13 to 20 m, the mean value of f1 turned positive and significant 263 

reaching the largest values of the smooth function. Beyond 20 m, the smooth function f1 started decreasing 264 

and it was not statistically different from zero.  265 
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3.2 End of the regeneration period 266 

 The dynamics of the saplings and the trees followed the same trends as at intermediate stages of 267 

the regeneration period: the number of saplings decreased and their mean size increased with time. The 268 

number of trees decreased but the mean dbh and height increased over the four inventories because of 269 

fellings. However, in this plot there were less saplings and their mean size was larger than in the youngest 270 

studied plot. Additionally, there were more trees overall at the end of the regeneration period than in the 271 

previous stages. Nevertheless, Table 1 shows that the number of small trees reduced with time whereas the 272 

number of adult trees increased. 273 

 As in the youngest studied plot, the model with the additive spatio-temporal structure (model 1), 274 

which assumes a constant spatial distribution of the saplings over the studied period, showed a lower AIC 275 

than model 2 (Table 2). We also found a significant effect of the spatio-temporal terms (f2 and Time) in 276 

terms of AIC (Table 3). The map of the contour lines (Fig. 7) represents well the spatial distribution of the 277 

saplings during the last stages of the regeneration period (Fig. 3). The semivariograms showed that the 278 

spatial structure eliminated the spatial correlation (Fig. 8). The estimate of the aggregation parameter θ of 279 

the negative binomial distribution is smaller than in the other plot, it is around 0.8 (Table 2). This indicates 280 

that saplings were more aggregated at the end of the regeneration period than in the previous stage, which 281 

is also confirmed by the visual inspection of the spatial distribution of saplings (Fig. 2 and 3) showing a 282 

more homogenous spread of saplings in earlier stages of the regeneration process. 283 

 In this plot, the β of density of small trees did not reduce the AIC whereas the rest of the terms 284 

reduced the AIC significantly (Table 3). Table 2 shows the effective degrees of freedom of the basis 285 

functions. The coefficient of the dbh of adult trees (f1) took significant negative values from 0 to 8 m (Fig. 286 

6). From 8 m, the 95 % confidence intervals contained the zero, and therefore we can state that the 287 

coefficient is not statistically different from 0. This suggests competition between saplings and adult trees 288 

at very small distances and no effect beyond 8 m. 289 

 290 

4 Discussion 291 

 We fitted a GAM with a functional predictor in the model to describe the influence of size of trees 292 

on the number of saplings by distance in two stages of the regeneration period. We have confirmed that the 293 

functional predictor is useful to achieve this aim. In GAMs explanatory variables may enter the model in 294 

many different forms: as variables with linear effects, smooth terms, tensor products of several variables, 295 
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with varying coefficients or as functional predictors. Additionally, alternative response distribution families 296 

and link functions can be selected (see for example Wood 2006). Therefore, all this makes the approach 297 

employed suitable to be used in other fields of forestry or ecology in which the response variable depends 298 

on the size and distance of the neighbors. For instance, this approach could be useful to fit growth or 299 

mortality models instead of using competition indices in parametric models (Contreras et al. 2011).  300 

 In this work, we have studied the last stages of the renewal of a forest after regeneration fellings. 301 

Other authors have modelled the whole renewal of the forest using multistage models. For instance, Manso 302 

et al. (2014) proposed a multistage model based on partial studies or submodels in order to predict the 303 

regeneration occurrence of Pinus pinea L. in space and time. They considered different stages such as seed 304 

dispersal, seed germination, post-dispersal predation and seedling survival. Multistage models provide 305 

deeper ecological understanding than ours but the implementation is harder and requires stronger ecological 306 

hypotheses. However, our approach shows great flexibility and might be used to determine the effects of a 307 

limited number of factors on sapling distribution without making any assumptions about other factors 308 

involved on dispersion and survival processes. 309 

As mentioned above, this methodology allows different types of variables to be included in the 310 

model. In this work, we included the density of small trees as a linear term and the spatio-temporal structure. 311 

It might be useful to use variables driving the regeneration as predictors in the model, like shrub cover, soil 312 

characteristics, cover and depth of litter or grass in each quadrat. However, gathering this data on large 313 

plots requires a great effort and the influence of these variables on the seedlings of P. sylvestris has already 314 

been studied at smaller scales (González-Martínez and Bravo 2001; Pardos et al. 2007; Barbeito et al. 2011; 315 

Moreno-Fernández et al. 2015a). On the other hand, new individuals of P. sylvestris are expected to be 316 

more affected by soil moisture than by other microsite characteristics (Barbeito et al. 2009; Moreno-317 

Fernández et al. 2015a). However, because youngest individuals – seedlings – are less resistant to drought 318 

than older – saplings (Maseda and Fernández 2006; Rodríguez-García et al. 2011; Manso et al. 2014), it 319 

seems it is more necessary to include environmental variables in models dealing with seedlings rather than 320 

in those dealing with older individuals – saplings. Moreover, it is likely the distance to adult trees is 321 

confounded with other local factors. Any residual spatial trend in a model without a spatial smooth term is 322 

caused by missing (unmeasured) environmental variables. Furthermore, the residual spatial trend could be 323 

due to the seedling spatial structure that would result from past dispersal events from adjacent mother trees. 324 

We have included the spatial smooth term as a proxy for effects of unmeasured environmental variables 325 
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and for the spatial pattern of the new individuals during previous stages of the forest renewal. We have 326 

investigated goodness-of-fit thoroughly, and found that we did not have any spatial trend in residuals or 327 

residual spatial correlation. This means that the models fit well and there was no model mis-specification. 328 

Although we have only results from two plots, it is striking that the estimated functions f1 (of the effect of 329 

dbh) shown in Fig. 6 are very similar.   330 

Our approach allows to test whether the spatial pattern remained constant over time by comparing 331 

model 1 which assumes a constant spatial pattern with model 2 which allows for a spatial pattern changing 332 

in time in the model selection. In our case, model 1 was selected suggesting that the spatial pattern of the 333 

saplings remained constant over time. If model 2 had been selected, the spatial pattern of saplings would 334 

have changed over the time. Due to the gradual low intensity fellings regime, which avoids damaging the 335 

established saplings clumps, these clumps persist and the spatial structure of the saplings remains fairly 336 

constant in each plot during the 15-year measurement period. On the other hand, if we were dealing with 337 

faster-growth species the saplings could move to the next cohort faster and then change the spatial pattern. 338 

Our results are consistent with LeMay et al. (2009) who reported that the spatial pattern of the new 339 

individuals of P. menziesii did not change very much over time.  340 

 Although we only analyzed data from two large plots (0.5 ha) we re-measured the plots four times, 341 

leading to four observations per plot. Large-sized plots with few sampling over time are common in 342 

regeneration studies describing spatial processes. These kind of plots have been used in tropical (Ledo et 343 

al. 2015), temperate (McDonald et al. 2003) and Mediterranean forests (Montes and Cañellas 2007; Ledo 344 

et al. 2014). Additionally, we modelled the number of saplings per 4 m2 quadrat, i.e., we used 5 000 quadrats 345 

covering different competition conditions to fit every model. Moreover, the models presented in this work 346 

were fitted for explanatory purposes rather than predictive purposes. If we had aimed to fit a predictive 347 

model, we would have needed more temporal measurements to cover all the regeneration period. 348 

The underlying process studied here is the competition between trees and saplings. Our findings 349 

are in concordance with other studies: the saplings of P. sylvestris require high light conditions for 350 

successful development (Montes and Cañellas 2007). In Mediterranean areas, P. sylvestris seedlings require 351 

microsites with moderate light conditions (Pardos et al. 2007). These microsites ensure higher soil moisture 352 

than in open canopies but conserve enough level of sun radiation. In this regard, Castro et al. (2005) 353 

analyzed the growth of P. sylvestris  seedlings in southern Spain under different light and water conditions 354 

concluding that the effects of water addition on seedlings growth are more evident in lightly microsites. 355 
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Moreover, once the seedlings have stepped into saplings, the maintenance costs increase with size (Falster 356 

and Westoby 2003) and higher minimum light levels are required for survival (Williams et al. 1999). 357 

Additionally, their roots can reach deeper soil layers with more water availability (Ritchie 1981). 358 

Considering this, it seems it is necessary to reduce the canopy to favor the development of the saplings after 359 

seedling establishment under moderate light conditions in Mediterranean areas. However, the shade 360 

tolerance of P. sylvestris differ among regions. In northern locations where the summer drought is not a 361 

limiting factor for seedling development, natural regeneration takes place in open canopies by using the 362 

seed tree method (Hyppönen et al. 2013). In these latitudes, the negative spatial association between P. 363 

sylvestris adult trees and saplings may be even more pronounced than in our study. 364 

The establishment of the new stand has been achieved successfully at the end of the regeneration 365 

period, the number of saplings decreased and the arrival of new individuals is no longer expected. Hence, 366 

the mean dbh of the saplings is getting close to 10 cm, the lower limit for small trees. In this plot, the 367 

number of small trees decreased over time due to the mortality as well as the growth and consequent 368 

reclassification of trees as adult trees. Most of the trees in this plot were not mother trees of the saplings 369 

but rather new cohorts of trees established at the first and intermediate stages of the regeneration period, 370 

such as those in our youngest studied plot. Therefore, the spacing between saplings and adult trees is a 371 

consequence of the competition between trees of different sizes.  372 

 373 

5 Conclusions 374 

 We show that functional predictor in GAMs is a useful tool for modelling these kind of data as 375 

they allow to model nonlinear and linear relationships. In addition they allow to take account of the spatio-376 

temporal structure of the data by inclusion of spatial and spatio-temporal smooth predictors. The 377 

methodology proposed has not been employed in forestry or ecology and can be broadly used in 378 

regeneration studies or in other fields of forestry or ecology dealing with spatio-temporal data. Therefore 379 

this methodology is potentially applicable in future ecological studies because of its flexibility. 380 

Additionally, this model can be used as a first step for a predictive model when more temporal data is 381 

available. We found that once the seedlings have become established, the density of the adult trees must be 382 

reduced heavily to allow the saplings to grow under high light conditions. In Mediterranean stands of P. 383 

sylvestris, the radius of the gaps created during the regeneration fellings under the group shelterwood should 384 
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be always larger than 7-8 m in order to minimize the competition between adult trees and saplings; whereas 385 

if the radius is between 13 – 20 m the number of saplings will be maximized 386 

 387 
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 546 

Tables 547 

Table 1 Summary of the mean forest features in each plot during the four inventories. Trees (dbh>= 10cm), 548 

adult trees (dbh≥20 cm), small trees (10≤dbh<20 cm), saplings (dbh<10cm and height ≥1.30m). Standard 549 

deviation is within brackets 550 

Feature 2001 2006 2010 2014 

Intermediate stage of the regeneration period  

 Number of saplings 1 861 1 625 1 498 1 347 

 Mean diameter of saplings (cm) 3.68 (2.31) 4.42 (2.29) 4.61 (2.38) 4.77 (2.36) 

 Mean height of saplings (m) 4.20 (1.78) 4.86 (2.03) 5.38 (2.21) 5.76 (2.36) 

 Number of adult trees 80 62 75 102 

 Number of small trees 152 250 351 399 

 Number of trees 232 312 426 501 

 Mean diameter of trees (cm) 23.07 (14.75) 17.89 (11.30) 16.68 (8.89) 16.96 (8.72) 

 Mean height of trees (m) 15.00 (6.90) 12.46 (5.32) 12.31 (4.23) 13.26 (4.16) 

End of the regeneration period 

 Number of saplings 558 364 208 117 

 Mean diameter of saplings (cm) 5.54 (2.66) 6.43 (2.32) 6.55 (2.24) 6.97 (2.19) 

 Mean height of saplings 7.03 (3.27) 7.82 (3.32) 8.61 (3.44) 8.70 (3.55) 



20 

 

 Number of adult trees 174 233 283 317 

 Number of small trees 568 492 434 366 

 Number of trees 742 725 717 683 

 Mean diameter of trees (cm) 16.88 (6.04) 17.77 (5.99) 19.15 (6.45) 20.30 (6.78) 

 Mean height of trees (m) 14.72 (3.06) 16.21 (3.44) 17.16 (3.13) 18.85 (3.33) 

 551 

 552 

 553 

 554 

 555 

 556 

Table 2 Percentage of deviance explained, AIC (Akaike´s Information Criterion), θ parameter in the 557 

variance of the negative binomial distribution, basis dimension (k) and effective degrees of freedom (e.df) 558 

of the functional linear predictor and the spatial smooth according to model 1 and model 2 in both plots. 559 

Inventory 2001, Inventory 2006, Inventory 2010 and Inventory 2014 indicate the effective degrees of 560 

freedom of the spatial smooth during the four inventories in Model 2 561 

Feature Intermediate stage of the 

regeneration period  

 End of the regeneration period 

Model 1  Model 2  Model 1  Model 2 

Deviance explained (%) 40.7 41.0  34.8 41 

AIC 1 3120.98 1 3432.74  5 083.48 5 184.80 

θ of variance 1.53 1.42  0.83 0.76 

k of f1 10 10  10 10 

e.df of f1 3.47 3.599  4.33 4.40 

k of f2 100 100  30 30 

e.df of f2 in model 1 90.42 -  24.50 - 

 Inventory 2001 - 69.60  - 19.47 

 Inventory 2006 - 65.64  - 17.30 

 Inventory 2010 - 63.42  - 16.28 

 Inventory 2014 - 63.11  - 13.15 
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f1: linear predictor. f2: spatial smoother 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

Table 3 Summary of the backward stepwise variables selection process according to the Akaike´s 572 

Information Criterion (AIC). In bold, the selected model 573 

Variables included in the alternative models during backward stepwise selection process AIC 

Intermediate stage of the regeneration period 
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 578 

Caption of figures  579 

 580 

Fig. 1 Position of adult trees (dbh≥20 cm; red circles), small trees (10≤dbh≤20 cm; green dots) and number 581 

of saplings per quadrat (darker tones indicate larger number of saplings) of the six plots of the 582 

chronosequence in 2001. Size of adult trees is proportional to dbh 583 
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 584 

Fig. 2 Position of adult trees (dbh≥20 cm; red circles), small trees (10≤dbh≤20 cm; green dots) and number 585 

of saplings per quadrat (black and gray squares) at intermediate stages of the regeneration period in 2001 586 

(upper left), 2006 (upper right), 2010 (bottom left) and 2014 (bottom right). Size of adult trees is 587 

proportional to dbh 588 

 589 
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Fig. 3 Position of adult trees (dbh≥20 cm; red circles), small trees (10≤dbh≤20 cm; green dots) and number 590 

of saplings per quadrat (black and gray squares) at the end of the regeneration period in 2001 (upper left), 591 

2006 (upper right), 2010 (bottom left) and 2014 (bottom right). Size of adult trees is proportional to dbh 592 

 593 

Fig. 4 Estimated f2(Xi, Yi) spatial smooth function (continuous black contour lines) and standard errors 594 

(dashed red and green contour lines) on the scale of the linear predictor at intermediate stages of the 595 

regeneration period. Large values of f2(Xi, Yi) indicate large number of saplings 596 

 597 

Fig. 5 Semivariograms (circles) and envelopes (dashed lines) of the Pearson residuals from the sapling 598 

distribution model at intermediate stages of the regeneration in 2001 (upper left), 2006 (upper right), 2010 599 

(lower left) and 2014 (lower right) 600 
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 601 

Fig. 6 Estimated f1(Distin) smooth coefficient function of the diameter at breast height of adult trees over 602 

the distance between adult trees – saplings (continuous lines) and 95% confidence intervals (dashed lines) 603 

at intermediate stages (upper) and the end (lower) of the regeneration period. Positive values of f1(Distin) 604 

indicate positive effects of the diameter at breast height of adult trees on the number of saplings 605 
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 606 

Fig. 7 Estimated f2(Xi, Yi) spatial smooth function (continuous black contour lines) and standard errors 607 

(dashed red and green contour lines) on the scale of the linear predictor at the end of the regeneration period. 608 

Large values of f2(Xi, Yi) indicate large number of saplings 609 

 610 

Fig. 8 Semivariograms (circles) and envelopes (dashed lines) of the Pearson residuals from the sapling 611 

distribution model at the end of the regeneration period in 2001 (upper left), 2006 (upper right), 2010 (lower 612 

left) and 2014 (lower right) 613 


