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Many e-tailers providing attended home delivery, especially e-grocers, offer narrow delivery time slots to
ensure satisfactory customer service. The choice of delivery time slots has to balance marketing and

operational considerations, which results in a complex planning problem. We study the problem of selecting the
set of time slots to offer in each of the zip codes in a service region. The selection needs to facilitate cost-effective
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1. Introduction
The success of many e-commerce businesses hinges
upon their ability to offer efficient and effective “last-
mile” delivery. This task is especially challenging
in attended home delivery, particularly for Internet
grocers. The dramatic failures of e-grocery pioneers
such as Streamline and Webvan underline the impor-
tance of a cost-effective delivery operation. Despite
initial failures, the online grocery market has recov-
ered and has grown spectacularly since 2003, showing
an annual growth rate of 42% (Berning, Ernst, and
Hooker 2005).

To provide a high service level and to avoid deliv-
ery failures as much as possible, it is customary in
attended home delivery services for the company to
offer the customer a choice of narrow delivery time
slots. The specific time slot offering does not only
impact the perceived customer service but also the
expected delivery efficiency. In this paper, we consider
the tactical problem of selecting the time slots to offer
in each zip code of the delivery region. This selection
needs to offer an acceptable level of service in each zip
code and needs to be able to yield cost-effective daily

delivery routes. Once such a time slot schedule is put
in place, there is the operational problem of managing
the availability of the offered time slots. We will focus
only on the tactical, not the operational problem.

Our research effort is motivated by operations at
Albert.nl, the Internet channel of Albert Heijn, the
largest grocery supermarket chain in the Netherlands
and a subsidiary of Royal Ahold. Albert.nl is now
the only full-scale Internet grocer in the Netherlands.
Started in 2001, their delivery service is now avail-
able to around 60% of the country’s households. From
dedicated warehouses, the company uses small vans
to deliver a broad assortment of grocery products
to each customer’s home. The time slot offering at
Albert.nl is typical for those in the e-grocery industry
(see, for example, Peapod.com and Tesco.com). The
customer can choose a two-hour delivery slot from
a menu of time slots available in his or her specific
zip code. Each time slot has a corresponding deliv-
ery fee ranging from E4.95 to E8.95, depending on the
day and time of delivery. On a day-to-day basis, when
delivery capacity becomes tight, certain time slots in
certain zip codes may be closed. Closing a time slot at
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Albert.nl means that it is no longer available for the
customer to choose (the slot turns “grey” on the web-
site). Routes are planned for each morning and after-
noon shift. After the order cutoff time for a shift has
passed and thus all orders are known, the delivery
routes for that shift are planned using a commercial
vehicle routing package. The routing package prop-
erly takes delivery windows, dwell times, and vehicle
capacities into account.

Albert.nl uses a differentiated time slot offering
linked to the demand characteristics of each zip code.
This means that a zip code with low demand potential
receives only a few weekly time slots in an attempt
to concentrate that demand, where high-demand zip
codes receive a larger number of slots. The slots
offered, regardless of the total number, must also
exhibit a balance over the week between morning
and afternoon time slots to ensure an acceptable level
of service and choice to the customers. Determining
the specific time slots for each zip code involves a
careful trade-off between marketing and operational
considerations. After deciding the number of morn-
ing and afternoon slots that will satisfy marketing
needs, referred to hereafter as service requirements,
the specific time slots are selected for each zip code to
satisfy operational needs such as a low-cost delivery
schedule. Because delivery vehicles may visit several
zip codes during a single time slot and a delivery
route spans multiple time slots, routing considerations
should play a vital role in the construction of a time
slot schedule. Assigning specific time slots to a zip
code should not be done in isolation but should be
considered jointly for neighboring slots. This results in
a complex planning problem.

The time slot schedule employed at Albert.nl is cre-
ated manually. Because of its complexity, this task
takes several weeks to complete. Clearly, this is unde-
sirable in an environment that continually changes
as a result of a 30% annual growth rate. In particu-
lar, this manual process greatly limits their ability to
assess and compare potential future scenarios. There-
fore, Albert.nl is considering options for automating
the time slot schedule generation. In this paper, we
present an approach for making the time slot decision
that applies not only to Albert.nl but also for many
other companies offering attended delivery services.

More specifically, we address the following time
slot management problem (TSMP). Given service
requirements and average weekly demands for each
zip code in the delivery region, determine the set of
time slots to offer in each zip code so as to minimize
expected delivery costs while meeting the service
requirements. We explore a continuous approxima-
tion approach for the TSMP. This type of approach
focuses on a realistic evaluation of a given time slot

schedule and then uses relatively simple optimization
techniques to improve the schedule.

Our main contributions are
• the identification and explanation of a relevant

planning concern in the e-grocery business that gives
rise to challenging optimization problems;

• the development of a fully automated approach
capable of producing high-quality time slot schedules
much faster than the current manual process;

• a computational study analyzing the viability
and merits of the approach; and

• a computational study investigating the impact
of changes in the environment, such as increases
in demand and demand variability, more relaxed or
more stringent service requirements, and changes in
the structure of the delivery time slot template.

The remainder of the paper is organized as follows.
In §2, we summarize the relevant literature. In §3, we
introduce notation and outline our modeling frame-
work. In §4, we present our continuous approxima-
tion approach. In §5, we present an alternative integer
programming based approach that will be used as
a source of comparison in our computational experi-
ments. In §6, we describe the design of our compu-
tational experiments and present the results. Finally,
in §7, we summarize our main insights and discuss
directions for future research.

2. Literature
The choice of time slots is one of many critical deci-
sions in the design of an attended home delivery sys-
tem, as discussed in Agatz et al. (2008a) and Agatz,
Fleischmann, and van Nunen (2008b). Other impor-
tant issues include the choice between store-based
and warehouse-based delivery, inventory allocation,
pricing, and return handling. Home delivery and the
design and management of time slots has received
little attention in the distribution and routing litera-
ture. Time slots are typically assumed to be exoge-
nous information, e.g., specified by the customer or
set by the sales and marketing department. The rise
of e-commerce, which offers numerous opportunities
for the use and active management of time slots, is
changing this.

Much of the early research on “last-mile” delivery
primarily examines the impact of different time slot
lengths. For example, Punakivi and Saranen (2001)
assess the impact of the time slot length on trans-
portation costs for attended and unattended deliver-
ies. Their results indicate substantial efficiency gains
when time constraints are relaxed. Completely flex-
ible, unattended delivery reduces costs by up to a
third, relative to attended delivery with two-hour
time slots. Lin and Mahmassani (2002) summarize the
delivery policies employed by many online grocers in
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the United States and use vehicle routing software to
evaluate the performance of some of these policies on
a few realistic instances of the problem. Both unat-
tended and attended policies are considered along
with different time slot lengths.

Another related stream of research focuses on the
real-time management of time slots in attended home
delivery. This work draws on revenue management
concepts and applies them in a distribution setting.
In this vein, both Bent and Van Hentenryck (2004)
and Campbell and Savelsbergh (2005a) examine
which deliveries to accept or reject. Their approaches
exploit stochastic information about future requests
to decide on requests under consideration. Bent and
Van Hentenryck (2004) aim to maximize the num-
ber of accepted requests by controlling the time slots
offered, but they do not consider rejecting an “expen-
sive” delivery to preserve resources for more, future
deliveries, in contrast with Campbell and Savelsbergh
(2005a). Campbell and Savelsbergh (2005b) study the
use of incentive schemes to reduce delivery costs by
encouraging the selection of time slots that result in
low-cost delivery routes. In contrast to the real-time
management of time slots, our TSMP is tactical in
nature and allocates time slots geographically prior
to actual order intake. The resulting time slot sched-
ules serve as a starting point for subsequent real-time
adjustments.

Anticipating the impact of the offered time slots
on delivery routes is crucial when solving the TSMP.
This links the TSMP to the vast body of literature on
vehicle routing with time windows. See Braysy and
Gendreau (2005a, b) for an extensive review. In partic-
ular, the TSMP shares some aspects with dynamic and
stochastic vehicle routing. In dynamic vehicle routing,
as discussed in Jaillet and Odoni (1988), Bertsimas,
Jaillet, and Odoni (1990), and Gendreau and Potvin
(1998), not all inputs are known beforehand but
become known concurrently with the determination
of the solution. In stochastic routing, some compo-
nents of the problem are stochastic, such as travel
times (Kenyon and Morton 2003), demand (Dror,
Laporte, and Trudeau 1989), or customers (Hvattum,
Lokketangen, and Laporte 2006). Another problem
with features similar to those of the TSMP is the
period vehicle routing problem with service choice
(PVRP-SC), where vehicle routes need to be con-
structed over a period of time and service frequency
is a decision in the model (Francis, Smilowitz, and
Tzur 2006; Francis and Smilowitz 2006).

Given the computational complexity of the vehicle
routing problem alone, it is unrealistic to incorporate
a full routing model in the tactical TSMP. Instead,
routing costs resulting from time slot selections have
to be approximated. One way is to model routing
costs using the continuous approximation method

(Daganzo 1987a, b). This approach represents demand
by continuous functions and assesses system-wide
costs by aggregating over “local” cost estimates. For
an overview of continuous approximation models in
logistics, see Daganzo (2005) and Langevin, Mbaraga,
and Campbell (1996). Another option is to explicitly
model routing decisions but on a more aggregate level
than a full vehicle routing problem. This idea is the
basis for the alternative approach explored in §5.

3. Assumptions and Notation
The objective of the TSMP is to minimize the expected
delivery costs for the customer orders ensuing from
the offered delivery time slots. This requires assump-
tions on the demand response to a certain time slot
offering. Throughout our analysis we make the fol-
lowing two key assumptions, where demand is mea-
sured in number of customer orders:

1. The expected weekly demand for each zip code
is known and independent of the set of offered time
slots.

2. The expected weekly demand for each zip code
is divided evenly over the set of offered time slots.

The first assumption supposes that customers
exhibit a certain degree of flexibility, such that chang-
ing the time slots offered does not result in lost sales.
An empirical analysis of historical data from Albert.nl
supports the validity of this assumption for moder-
ate changes in the time slot offering (Agatz 2009).
The second assumption implies that all time slots
are equally popular. Differentiated delivery fees are
introduced specifically for this reason. They coun-
terbalance differences in time slot popularity and
smooth demand. Historical data from Albert.nl show
the effectiveness of differentiated delivery fees and
indicate that the equal time slot popularity assump-
tion is reasonable.

We further assume that all orders are of the same
size in terms of the number of totes. The size of an
order impacts the number of orders that fit in a deliv-
ery vehicle. We conducted a few computational exper-
iments in which we varied order sizes and found that
it had little or no impact on the results.

The marketing-imposed service requirements limit
the set of feasible time slot offerings. Our models treat
these service requirements as exogenous. The service
requirements employed at Albert.nl specify for each
zip code the required number of available delivery
slots in each shift, e.g., one on Monday morning and
two on Tuesday afternoon. As a result of these specific
service requirements and the above demand assump-
tions, the problem decomposes by shift. Thus, sepa-
rate problems need to be solved for each shift.

Our objective function considers fixed costs as well
as variable costs, incorporating both distance-related
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Table 1 Notation

Z: Set of zip codes (indexed by i)
T: Set of time slots (indexed by s)
V: Set of vehicles
ei : Expected demand for zip code i for each time slot
Q: Vehicle capacity (in terms of the number of orders that can

be accommodated)
f : Vehicle fixed cost
cn : Cost per mile for vehicle and driver usage when driving within

a zip code and within a time slot
cz : Cost per mile for vehicle and driver usage when driving

between different zip codes within a time slot
ct : Cost per mile for vehicle and driver usage when driving

between zip codes in consecutive time slots
c0: Cost per mile for vehicle and driver usage when driving to or

from the depot
dij : Distance between centers of zip codes i and j

� : Dwell time per order

and time-related costs. We do not take into account
delivery fees and solely focus on minimizing expected
delivery costs.

In Table 1, we introduce notation that is common
to the proposed continuous approximation approach
as well as the alternative integer programming based
approach that will be used for comparison. Note that
ei is the weekly demand for zip code i divided by the
number of time slots that need to be offered in zip
code i.

4. Continuous Approximation
Approach

At the heart of the continuous approximation app-
roach is a model for estimating the delivery cost of a
given time slot schedule for a set of zip codes. Based
on this delivery cost estimate, a local search is per-
formed to iteratively improve the time slot sched-
ule. The original continuous approximation approach
proposed by Daganzo (1987a) does not consider time
slots and distinguishes two components of a vehicle
tour, namely the stem distance between the depot and
the delivery area and the distance between consec-
utive stops within the delivery area. To account for
time slots, we expand these ideas and distinguish four
components of vehicle tours (see Figure 1):

• d0: the stem distance to or from the depot to a
stop in a time slot;

• dn: the distance between stops within a zip code
within a time slot;

• dz: the distance between stops in different zip
codes within a time slot; and

• dt : the distance between stops in consecutive
time slots.
The corresponding travel times are denoted by h0, hn,
hz, and ht .

In line with the continuous approximation method-
ology, we estimate the distance values for these

zip 1 zip 2

zip 3

Time slot 1

Time slot 2
d0

dz

d t

dn

ei

Figure 1 Routing Components

components of a vehicle tour based on local data.
We estimate the distance values from the perspective
of each zip-code time slot combination 4i1 s5 in the
time slot schedule. These local estimates are then used
to compute a local estimate of the distance per order
(excluding the stem distance to and from the depot)
as follows:

DPO4i1 s5 =
1
nis

[

nt
is

(

nt
is − 1
nt
is

dt
is +nz

is

(

nz
is − 1
nz
is

dz
is

+ 4nn
is − 15dn

is

))]

1

where
• nis denotes the estimated number of orders per

route,
• nt

is denotes the estimated number of time slots
covered by a route,

• nz
is denotes the estimated number of zip codes

visited in time slot on a route, and
• nn

is denotes the estimated number of orders deliv-
ered in a zip code in a time slot on a route.
These n-values are again estimated based on local
data from the perspective of a given zip-code time-
slot 4i1 s5.

By multiplying the distance per order with the
cost per kilometer, we obtain a local estimate for
the distance-related costs (excluding stem distances).
This, in turn, yields a local estimate of the cost per
order (excluding stem costs and fixed vehicle costs):

CPO4i1 s5 =
1
nis

[

nt
is

(

nt
is − 1
nt
is

dt
isc

t
+nz

is

(

nz
is − 1
nz
is

dz
isc

z

+ 4nn
is − 15dn

isc
n

))]

0

We obtain an estimate of the expected delivery cost
associated with a given time slot schedule by multi-
plying the expected number of orders ei for a zip-code
time slot combination 4i1 s5 with the cost per order
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CPO4i1 s5, aggregating over all zip codes and time
slots, and adding stem costs and fixed vehicle costs:

expected delivery cost≈
∑

i∈Z

∑

s∈T

ei CPO4i1s5+d0c0
+fv1

where d0 is the estimated total stem distance and v is
the estimated number of vehicles required. Note that
we sum over all zip codes and all offered time slots for
that zip code. Also note that we omit labor costs for
the dwell times because these costs are constant and
independent of the offered schedule.

4.1. Estimating Vehicle Tour Components—Part I
In this subsection, we discuss how the vehicle tour
components are estimated from the perspective of a
given zip-code time slot combination 4i1 s5. We start
with the vehicle tour components used in the calcula-
tion of the cost per order.

4.1.1. Distance Between Stops Within a Zip Code
Within a Time Slot 4dn

is5. Statistical analysis of recent
routing data at Albert.nl shows that the driving dis-
tance between two customers within the same zip
code is similar across zip codes; we use dn to repre-
sent this distance. The same is true for the travel time
between two customers within the same zip code, so
we use hn to represent this travel time.

4.1.2. Distance Between Stops in Different Zip
Codes Within a Time Slot 4dz

is5. Daganzo (2005) app-
roximates the distance between two consecutive stops
of a route through a region with a slowly varying
demand density � by k/

√
�, where k is a dimension-

less constant that is independent of the region shape.
We apply this approach on a zip code level and con-
sider the density of open zip codes in time slot s in the
neighborhood of i. Let Zi be a collection of zip codes
in the neighborhood of zip code i (including zip code i
itself). In our calculations, we take Zi to be the set of
zip codes within a given maximum distance from the
center of zip code i. Let �is be the density of open zip
codes in Zi during time slot s. If aj denotes the surface
area of zip code j and Ijs denotes whether zip code j
is open during time slot s (Ijs = 1) or whether it is
closed during time slot s (Ijs = 0), then

�is =

∑

j∈Zi
Ijs

∑

j∈Zi
aj

0

The estimate of dz
is is then k/

√

�is . We impose an
upper bound d̄z on this estimate to handle very low
densities �is . In our calculations, we set d̄z equal to
twice the average diameter of a zip code. Thus, dz

is =

min4k/
√

�is1 d̄
z5.

The above calculation of �is does not take into
account that there may be open zip codes with an
expected demand per slot ei smaller than one. To

account for this situation, we modify �is to be a
weighted density:

�is =

∑

j∈Zi
min411 ej5Ijs
∑

j∈Zi
aj

0

This can be interpreted as treating values of ei smaller
than one as probabilities of a demand occurrence.

4.1.3. Distance Between Stops in Consecutive
Time Slots 4dt

is5. We take a similar approach when
computing dt

is , but using zip code densities in preced-
ing and succeeding time slots. We set dpre = dn if time
slot s − 1 is open for zip code i, i.e., for consecutive
open time slots we simply use the average distance
between stops within a zip code. Otherwise, we set
dpre = min8d̄z1 k/

√

�i1 s−19, where �i1 s−1 is the density of
open zip codes in Zi in time slot s − 1. Analogously,
dsuc = dn if time slot s + 1 is open for zip code i and
dsuc = min8d̄z1 k/

√

�is+19 otherwise, where �i1 s+1 is the
density of open zip codes in Zi in time slot s + 1.
Finally, we set dt

is = dpre (dsuc) if s is the first (last) time
slot of the shift and dt

is = 4dpre + dsuc5/2 otherwise.

4.1.4. Number of Stops in a Zip Code in a Time
Slot on a Route 4nn

is5. The number of stops in a zip
code in a time slot is limited by the demand ei and
by the length of the time slot l. Let �n be the maxi-
mum number of stops that can be made during a time
slot of length l and recall that � denotes the dwell
time. Then l − ht

is = �n� + 4�n − 15hn
is and thus �n =

4l−ht
is +hn5/4� +hn5, where we subtract ht

is from l
to account for travel time between consecutive time
slots. The number of stops in a zip code during a time
slot nn

is is therefore min8ei1 �n9.

4.1.5. Number of Zip Codes Visited in a Time
Slot on a Route 4nz

is5. Analogously, the number of zip
codes visited in a time slot is limited by the number
of neighboring open zip codes nopen and by the length
of the time slot l. Let �z denote the maximum number
of zip codes that can be visited during a time slot of
length l. Then l−ht

is = �z6nn
is�+4nn

is −15hn
is7+4�z−15hz

is ,
and thus �z = 4l−ht

is +hz
is5/4n

n
is� + 4nn

is − 15hn +hz
is5.

We then set nz
is = min8nopen1 �z9.

4.1.6. Number of Time Slots Covered on a Route
4nt

is5. The number of time slots covered on a delivery
tour is limited by the number of time slots in the shift
�T� and by the number of orders that can be accom-
modated by the delivery vehicle Q. Therefore, we set
nt
is = min8�T�1Q/4nn

isn
z
is59.

4.1.7. Number of Stops on a Route 4nis5. Using
the previously estimated parameters, the number of
stops on a delivery tour is nt

isn
z
isn

n
is .
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4.2. Estimating Vehicle Tour Components—Part II
In the previous subsection, we have shown how we
compute local estimates for the vehicle tour compo-
nents used in the computation of the local estimate of
the cost per order. What remains to be shown is how
to estimate the number of vehicles required (v) and
the stem distance (d0).

4.2.1. Number of Vehicles 4v5. We start with the
estimate of the number of vehicles required. The num-
ber of vehicles required for serving the total demand
of a shift depends on the vehicle capacity and on the
number of orders that can be delivered in a time slot,
i.e., on physical capacity and on available time. We
address each of these constraints separately.

We have local estimates for the number of orders
per route (nis). We take a demand-weighted aver-
age over these local estimates to obtain a global esti-
mate of the number of orders per route. Dividing the
expected demand for a shift by this global estimate
of the number of order per route gives an estimate of
the number of routes r . More precisely, let Zs denote
the set of open zip codes in time slot s. Then we have

r =

∑

i∈Zs1 s∈T ei
∑

i∈Zs1 s∈T4ei/
∑

i∈Zs1 s∈T ei5nis

=
4
∑

i∈Zs1 s∈T ei5
2

∑

i∈Zs1 s∈T einis

0

Similarly, we estimate the number of vehicles re-
quired to serve all orders in a given time slot vs , based
on the expected demand per time slot and the esti-
mated number of stops per time slot, with

vs =
4
∑

i∈Zs ei5
2

∑

i∈Zs ein
z
isn

n
is

0

The number of vehicles required is the maximum
of the number of routes r and the number of vehicles
required to serve all orders in a time slot vs . This is
represented by v = max8r1maxs∈T vs9.

4.2.2. Stem Distance 4d05. Next, we consider the
(total) stem distance d0. We start by estimating d0

s , the
expected stem distance traveled by a vehicle making
its first delivery in time slot s. This is done by taking
the average distance between the depot and the open
zip codes in time slots s:

d0
s =

∑

j∈Zi
Ijs × d0j

∑

j∈Zi
Ijs

0

Of course, the expected stem distance traveled by a
vehicle making its last delivery in time slot s is the
same. Next, we use the estimates of the number of
vehicles required in each time slot (vs) to estimate the
number of vehicles that start their trip in time slot s
and to estimate the number of vehicles that end their
trip in time slot s. Let v0 = 0 and v�T�+1 = 0, then we
estimate the (total) stem distance as

d0
=

�T�
∑

s=0

(

max801vs+1 − vs9d
0
s+1 + max801vs − vs+19d

0
s

)

0

4.2.3. Handling Overlapping Time Slots. A fur-
ther complication arises if time slots are overlapping,
as is the case at Albert.nl. In our calculations, we han-
dle this situation by creating adjusted nonoverlapping
slots. To this end, we apportion the length of the over-
lapping part of two windows to both of the individual
windows, based on their expected demand volumes.
For example, consider two two-hour windows that
overlap for one hour. Furthermore, assume that the
total expected demand from all open zip codes in the
first time slot is twice as large as the total expected
demand in the second time slot. Then, we create a
first time slot of size 1.66 hours and a second slot of
size 1.33 hours.

4.3. Solution Method
The discussion above shows how to estimate the
expected costs of a given time slot allocation. The next
step is to optimize the time slot allocation based on
this evaluation. Note that this optimization problem
is nonlinear and nonconvex. Therefore we use a sim-
ple greedy iterative improvement heuristic. We can
start from any feasible time slot schedule. Observe
that finding a feasible schedule for the TSMP is not
difficult because any schedule that satisfies the service
requirements is feasible. In our experiments, we begin
with the schedule currently in place at Albert.nl. Next,
we determine for each zip code the time slot alloca-
tion for that zip code that results in the minimum
expected delivery cost (keeping the time slot alloca-
tion for all other zip codes fixed) by complete enumer-
ation. We then adjust the current time slot schedule by
implementing the time slot allocation for the zip code
that achieves the minimum expected delivery cost. We
repeat this process as long as there is a reduction in
expected delivery costs greater than some threshold
or until a maximum number of iterations is reached.

5. Integer Programming Alternative
The continuous approximation model presented in
the previous section does not model the operational-
level routing decisions explicitly. Instead, it aims to
reflect them implicitly in the employed cost approxi-
mations. In this section, we complement this approach
with a model that deals with the embedded routing
component of the TSMP in a more explicit way and
we will compare the results obtained by the contin-
uous approximation model with the results of this
model in our computational experiments. As with the
continuous approximation model, the objective is to
construct a time slot schedule that satisfies the service
requirements and minimizes delivery costs.

Intuitively, one could model the routing costs by
introducing variables that represent, for each vehi-
cle, the sequence of stops at various zip codes within
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each time slot. However, because vehicles visit multi-
ple time slots and may visit multiple zip codes within
a time slot, the embedded routing component makes
the integer program very hard to solve. Even finding
feasible solutions in a reasonable amount of time is
quite difficult with modern, sophisticated, and pow-
erful integer programming solvers.

Therefore, we approximate the routing costs using a
seed-based scheme (Fisher and Jaikumar 1981). Even
though the number of stops a vehicle makes dur-
ing a shift may be large, the number of time slots
in a shift is small; no more than four in the case of
Albert.nl. Solving routing problems with at most four
“stops” is much easier. This cost approximation is
expressed graphically in Figure 2. The dashed circles
surround the customers served in a single time slot
with the center dot representing the seed. With the
use of seeds, we can approximate the routing costs
for a vehicle by the sum of two costs: (1) the cost of
a route through the seeds associated with each time
slot plus (2) a simple estimate of the costs incurred
when visiting the customers within each single time
slot based on the distance to the seed.

Our integer program has the following variables to
represent the different decisions and associated costs:

• zv is one if vehicle v is used and zero otherwise;
• yvs

i is one if zip code i is the seed for vehicle v
for time slot s and zero otherwise;

• xvs
i is one if vehicle v visits zip code i in time

slot s and makes a delivery and zero otherwise;
• Xvs

ij is the distance from zip code i to zip code j
if vehicle v serves customer i in time slot s and zip
code j is the seed for time slot s and zero otherwise;

• Y vs
ij is the distance between the seed of time

slot s − 1 and the seed of time slot s for vehicle v if
zip code i is the seed of time slot s− 1 and zip code j
is the seed of time slot s and zero otherwise;

• us
i is one if a particular time slot s is offered for

a particular zip code i and zero otherwise; and
• qvsi is the portion of the demand of zip code i in

time slot s that is served by vehicle v.
One zip code will serve as the seed (or represen-

tative) for the customers served in a particular time

Figure 2 Routing with Seeds

slot/vehicle combination, and this decision is repre-
sented by the y variable. The set of zip codes served
in a particular time slot/vehicle combination is cap-
tured by the x variables. The estimate of the cost
to serve a set of zip codes in a time slot is based
on the sum of the distances between the zip codes and
the seed, which are represented by the X variables.
The cost of visiting the seeds associated with a vehi-
cle, i.e., the route through the seeds, is captured by
the Y variables. Note that the desired time slot sched-
ule is implied by the x variables. Slot s is offered in
zip code i if and only if xvs

i = 1 for some v.
Given the parameters defined in Table 1 and these

variables, the objective function can be expressed as

min
∑

v∈V

f ·zv +
∑

i∈Z1 j∈Z1v∈V 1 s∈T2 s>1

ctY vs
ij

+
∑

i∈Z1 j∈Z1v∈V 1 s∈T

cnXvs
ij +

∑

j∈Z1v∈V 1 s∈T

c0Xvs
0j 0

The first term represents the cost for using vehi-
cles/drivers. The second term represents the cost to
travel between seeds. The last two sums represent
the cost to serve zip codes from seeds and the depot
from seeds, respectively. Note that, as in the continu-
ous approximation model, we omit labor costs for the
dwell times because they are constant.

The continuous approximation model presented
in §4 evaluates the cost of a given time slot schedule.
Here, though, the model needs not only to capture the
costs but also needs to define what makes a sched-
ule feasible. To do so, we must include some new
parameters:

• ri: the number of slots that must be open for zip
code i in a shift, i.e., the service requirement for i,

• tn: the travel time between customers in the same
zip code, and

• tt : a multiplier to convert the distance between
zip codes into a travel time between zip codes.

Next, we describe the constraints that define feasi-
ble solutions. First, we examine the linkage between
the X and Y variables and the x and y variables. For
the X variables, the linkage is defined as follows:

Xvs
ij ≥ dij4x

vs
i + yvs

j − 15 i ∈Z1 j ∈Z1 v ∈ V1 s ∈T0

The above is valid because it forces Xvs
ij to have

nonzero value dij only if both xvs
i and yvs

j equal one;
otherwise, the right-hand side has a value less than
or equal to zero. In the same way, we can define the
linkage for the Y variables with

Y vs
ij ≥dij4y

vs−1
i +yvs

j −15 i∈Z1 j ∈Z1 v∈V1 s∈T2 s>10

Note that the above is only used for s > 1 because the
cost to travel to the first seed from the depot will be
handled by the X variables.
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The next set of constraints enforces that every time
slot has a seed,

∑

i∈Z

yvs
i = zv v ∈ V1 s ∈T0

Note that enforcing that every time slot has a seed
does not create unnecessary travel costs in the case
where a vehicle serves no customers in a time slot,
because the seed can be chosen to be the same as the
seed of the previous (or subsequent) time slot.

We allow multiple vehicles to visit the same zip
code in the same time slot. However, we should make
sure that multiple visits to a particular zip code in the
same time slot do not count toward the zip code’s ser-
vice requirements. Therefore, we use the binary vari-
able us

i in
∑

s∈T

us
i = ri i ∈Z1

∑

v∈V

xvs
i ≥ us

i i ∈Z1 s ∈T0

Recall that we have assumed that the demand in a zip
code is the same in every time slot offered. If multiple
vehicles serve a zip code during a particular time slot,
then the zip code’s demand ei must be distributed
over the different vehicles. This is defined by the fol-
lowing constraints:

∑

v∈V

qvsi ≥ eiu
s
i i ∈Z1 s ∈T1

qvsi ≤ min4ei1Q5xvs
i v ∈ V1 1 i ∈Z1 s ∈T0

The next set of constraints enforces that the demand
served by a single vehicle does not exceed the vehicle
capacity Q:

Qzv ≥
∑

i∈Z1 s∈T

qvsi xvs
i v ∈ V0

To properly estimate the routing costs, especially
the travel time to and from the depot, we force the
depot to be served in the first and last time slot of
a particular delivery period, i.e., time slot 1 and time
slot ŝ:

xv1
0 = zv v ∈ V1

xvŝ
0 = zv v ∈ V0

Recall from the continuous approximation model
that the maximum number of deliveries that a vehicle
can make is constrained not only by the vehicle capac-
ity but also by the length of each time slot. Enforcing
this time constraint is one of the most complex parts
of the integer programming model. The situation is
further complicated by the fact that the number and
the length of the time slots can vary by day and by

shift. Finally, there is a need to distinguish the first
time slot, “in between” time slots, and the last time
slot. Recall that travel from the depot and back to the
depot can occur outside of the time windows, so it
does not need to be incorporated within these time
window length constraints. As an example, let l1 rep-
resent the width of the first time slot. Then the con-
straints to limit the time spent on deliveries during
the first time slot is

∑

i∈Z1 j∈Z

ttXv1
ij +

∑

i∈Z

(

�ei + tn4ei − 15
)

xv1
i

+ 005
∑

i∈Z1 j∈Z

ttY v2
ij ≤ l1 v ∈ V 0 (1)

The first term captures the travel time to the seed and
the travel time between the zip codes visited during
the time slot. The second term in constraint (1) cap-
tures the stop time at a customer served in a zip code
as well as the travel time between customers served
in a zip code. The final term in constraint (1) captures
the travel time from the seed of this time slot to the
seed of the next time slot. The 0.5 in the final term
reflects the fact that half of this travel time is allocated
to this time slot and the other half is allocated to the
next time slot. Constraints for the “in between” and
final time slots are structured similarly.

To handle overlapping time windows, we add a
constraint that assures that the total length of the
combined slots is not exceeded. As an example, con-
sider the time slots 8 a.m.–10 a.m. and 9 a.m.–11 a.m.
(referred to below by 1 and 2, respectively) and
assume that the 8 a.m.–10 a.m. time slot is the first
time slot of the shift and that the 9 a.m.–11 a.m. time
slot is not the last time slot of the shift. Let the total
time period covered by the time slots be denoted by l,
which is three hours in this example. We add the fol-
lowing constraint:
∑

i∈Z1 j∈Z

tt4Xv1
ij +Xv2

ij 5+
∑

i∈Z1 j∈Z

tt4Y v1
ij + 005Y v2

ij 5

+
∑

i∈Z

(

�ei + tt4ei − 15
)

xv1
i +

∑

i∈Z

(

�ei + tt4ei − 15
)

xv2
i ≤ l0

Last, we add symmetry breaking constraints. These
constraints are not necessary for the correctness of
the model, but help the integer programming solver
find better solutions faster. These symmetry breaking
constraints force the lower indexed vehicles to be the
ones with the largest number of stops:

∑

i∈Z1 s∈T

xvs
i ≤

∑

i∈Z1 s∈T

xv−1s
i v ∈ V 2 v > 10

When only a subset of the vehicles is used, there are
many equivalent solutions. By imposing

zv ≤ zv−1 v ∈ V 2 v > 11

the number of equivalent solutions is also signifi-
cantly reduced.
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Customer
Depot

Figure 3 Geographical Distribution in Nijmegen Region

6. Computational Experiments
In this section, we report on the results of a com-
putational study to evaluate the performance of the
proposed models and to analyze the impact of var-
ious characteristics of the environment on their per-
formance. Recall that the TSMP is a tactical planning
problem with an embedded routing problem on the
operational level. We evaluate alternative time slot
schedules through simulation. To this end, we gen-
erate multiple demand realizations for each sched-
ule and determine the corresponding detailed routing
costs using a commercial routing package. To evalu-
ate the impact of characteristics of the environment
on the time slot schedules, we vary individual char-
acteristics and analyze the results.

For our study, we use real-life data from Albert.nl.
Specifically, we focus on the Nijmegen region, a sub-
set of the service area of Albert.nl consisting of 30
three-digit zip codes with varying demand densities
and covering a total area of approximately 1,000 km2.
Figure 3 shows the geographic distribution of demand
in the region. The area is served through a delivery
hub in the city of Nijmegen. We consider a typical
morning shift and a typical afternoon shift, because
they differ in terms of total length, number of time
slots, and time slot overlap (see Figure 4).

Furthermore, we use the current service require-
ments at Albert.nl for the Monday morning and the

08:00–10:00 10:00–12:00 12:00–14:00 16:00–18:00 18:00–20:00

19:00–21:0009:00–11:00

Morning shift 08:00–14:00 Afternoon shift 16:00–21:00

Figure 4 Albert.nl Time Slots

Tuesday afternoon. (We also performed simulations
for other weekdays and obtained similar results.)
The employed service requirements imply that in the
morning schedule 24 zip codes have to receive one
time slot, three zip codes have to receive three time
slots, and three zip codes do not receive any time slot.
In the afternoon schedule, 25 zip codes have to receive
one time slot and five zip codes have to receive two
time slots.

In our experiments we evaluate the following time
slot schedules:

• CA: The schedule produced by the continuous
approximation approach;

• IP: The schedule produced by the alternative
integer programming approach;

• ALBERT: The schedule that is currently in place
at Albert.nl;

• ALL: The schedule in which all time slots are
made available in all zip codes where Albert.nl cur-
rently offers at least one time slot;

• NO-SLOT: The schedule in which a single time
slot spanning the entire shift is made available in all
zip codes where Albert.nl currently offers at least one
time slot.

The schedules ALL and NO-SLOT are included to
provide bounds on the performance and to provide
insights into the cost-service trade-off. Note that these
two schedules do not use the service requirements of
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Albert.nl. Instead, the schedule ALL offers the highest
level of customer service, and the schedule NO-SLOT
offers the lowest level of customer service. The service
levels will be reflected in the delivery costs, so the
NO-SLOT schedule serves as a lower bound, albeit a
weak lower bound, and the ALL schedule serves as
an upper bound.

We supplement the comparison outlined above
with values derived from the simulation results of
a few randomly generated feasible time slot sched-
ules. More precisely, we randomly generate five feasi-
ble time slot schedules, perform a simulation for each
of them, and average the statistics obtained from the
simulation runs. In our results tables, the resulting
values will be labeled with RAND-ASGN.

For each problem instance, we generate 20 random
demand instances for our simulations as follows. We
start with a list of 448 customer addresses in the
Nijmegen area. For each demand instance, we ran-
domly select a number of addresses from this list
for each zip code, based on the expected number of
orders per time slot in that zip code. Specifically, we
decide randomly and independently for each address
whether or not to select it. We set the probability of
selection of an address equal to the ratio between
the expected number of orders in the zip code to
which that address belongs and the total number of
addresses in that zip code. Therefore, the total num-
ber of orders varies across demand realizations, with
an average equal to the number of orders that was
used as input to the optimization models.

For 20 different streams of random numbers, this
results in 20 different random sets of addresses. We
use the same sets for each schedule, in order to reduce
variability across schedules to obtain more compara-
ble results. Using this approach, demand realizations
for different time slot schedules differ only in terms of
the time slots associated with each order. For example,
if time slot schedule CA has slots 2 and 4 open and
time slot schedule IP has slots 3 and 4 open, then the
same customer addresses have to be visited in slots
2 (CA) and 3 (IP) and in slots 4 (CA) and 4 (IP). For
the ALL schedules, we determine the time slot asso-
ciated with an order by means of a uniform random
draw. For the NO-SLOT schedule, all orders are asso-
ciated with a single time slot spanning the entire shift.

The continuous approximation model is imple-
mented in Excel with the heuristic implemented in
VBA. The time slot schedules were produced on an
Intel Pentium M 1.6 GHz machine. The heuristic takes
about two minutes to converge. The integer program-
ming model is implemented in AMPL with CPLEX 9.0
as the solver. The time slot schedules were produced
on an Intel Pentium D CPU 3.20 GHz (×2) machine.
A limit of eight hours of CPU time was imposed.

The limit was always reached without proving opti-
mality. We used Shortec version 7.3.2.1, the routing
tool from ORTEC (http://www.ortec.com), to con-
struct the delivery routes and determine associated
costs for each demand realization. Simulation exper-
iments were run on an Intel Xeon 3.0 GHz machine
and take approximately 25 minutes of computing time
for 20 demand realizations of a time slot schedule.

6.1. Model Comparison
The first set of experiments is aimed at assessing dif-
ferences in performance, if any, of the different time
slot schedules. We compute the following statistics to
compare the different time slots schedules: the aver-
age cost, the average number of vehicles used, the
average distance, and the average total time (where
the averages are taken over the 20 demand realiza-
tions). For convenience, we also display the percent-
age cost savings relative to ALL and provide the
widths of the 95% confidence intervals for these sav-
ings. For confidentiality, the cost figures are normal-
ized by setting the cost for ALL for the morning
shift to 100.

The results of the simulation experiments can be
found in Tables 2 and 3. We observe that the gap
between the upper bound (ALL) and the lower bound
(NO-SLOTS) in terms of average cost is substan-
tial. The absence of time slots in NO-SLOTS allows
for more cost-effective delivery routes but, of course,
is inconvenient for the customers as they have to
be home during the entire morning or afternoon.
This illustrates the core trade-off between service and
delivery cost and is in line with the results of Punakivi
and Saranen (2001) and Lin and Mahmassani (2002).
Time slot schedules provide a means for managing

Table 2 Schedule Comparison—Morning

No. of
vehicles Time Distance Cost Savings (%) CI (%)

ALL 5.3 1,399 443 100 —
RAND-ASG 4.8 1,348 408 94 506 0.9
ALBERT 4.5 1,361 384 92 705 2.3
CA 4.3 1,328 377 90 909 1.5
IP 4.6 1,310 393 91 809 1.7
NO-SLOTS 3.9 1,210 329 82 1804 1.2

Table 3 Schedule Comparison—Afternoon

No. of
vehicles Time Distance Cost Savings (%) CI (%)

ALL 5.4 1,352 444 98 —
RAND-ASG 5.1 1,310 417 94 403 1.1
ALBERT 4.6 1,266 400 89 809 1.4
CA 4.5 1,277 385 89 905 2.2
IP 4.6 1,260 386 89 906 2.2
NO-SLOTS 3.9 1,171 329 80 1900 1.4
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Depot

4P.M.–6P.M.

6P.M.–8P.M.

7P.M.–9P.M.

Figure 5 Afternoon Solution CA

this trade-off by concentrating demand while still pro-
viding acceptable service levels.

Next, we observe that the morning and afternoon
schedules currently in place at Albert.nl (ALBERT) are
improved on average by both CA and IP but that the
savings are not statistically significant. Albert’s cur-
rent schedule seems to perform quite well. We also
see that randomly constructed time slot schedules
(RAND-ASGN) already yield a noticeable improve-
ment over simply offering all time slots (ALL) but do
not achieve the quality of Albert.nl’s current time slot
schedule and that of the time slot schedules produced

Depot

4P.M.–6P.M.

6P.M.–8P.M.

7P.M.–9P.M.

Figure 6 Afternoon Solution IP

by our optimization models. We also observe, not
surprisingly, that the average number of vehicles
required in NO-SLOT is less than the average num-
ber of vehicles required by the optimized schedules,
which in turn is less than the average number of vehi-
cles required by ALL (and RAND-ASGN). This again
reflects the trade-off between efficiency and service.

In addition to comparing performance differences,
it is interesting to compare the actual time slot sched-
ules. Figures 5 and 6 show the afternoon time slot
schedules produced by the continuous approxima-
tion model and the integer programming model,
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respectively. For each zip code, the figure shows the
assigned time slot(s). We use the size of the circle to
reflect the number of expected orders for the zip code.

We observe that the distinct modeling paradigms
of the CA and the IP approach are reflected in dif-
ferent characteristics of the resulting schedules. In
Figure 5, we see that the continuous approximation
model assigns the same time slot to zip codes that are
geographically clustered together. This is especially
the case for the zip codes that receive the late after-
noon 19.00–21.00 time slot. In contrast, we see in Fig-
ure 6 that the integer programming model does not
necessarily clusters geographically close zip codes,
but forms “vehicle routes.” A possible explanation for
the observed behavior is the fact that the continuous
approximation approach aims to increase the demand
density within a time slot for each zip code. Therefore,
it tends to construct large zip code clusters for each
time slot. Because the integer programming model
explicitly considers the individual vehicle routes, it is
more concerned with the zip code groups that can
be visited by individual vehicles over the entire time
period. From an application perspective, these dif-
ferences are interesting, but the CA approach yields
much more practical run times.

We conclude from the above experiments that our
CA model achieves our main objective, namely, sup-
porting the design of effective time slot schedules in
real-life scenarios. By automating the generation of
time slot schedules the models significantly reduce
the planning effort, compared to the current prac-
tice of manual planning as well as the alternative IP-
based approach. In what follows, we consider what-if
analyses of many different scenarios and discuss the
insights that they yield.

6.2. Changes in the Environment
As the e-grocery channel is still a relatively new dis-
tribution channel, understanding the impact of char-
acteristics of the environment on its performance is
of enormous value to companies experimenting with
it. Therefore, the second part of our computational
study focuses on these issues. All of the percentage
differences reported are relative to the costs found in
Tables 2 and 3 for the same schedule type.

6.2.1. Demand. The e-grocery market is experi-
encing huge annual growth rates. Therefore, it is
interesting to study the impact of an increase in
demand on the resulting time slot schedules and their
performance. We consider a scenario in which the ser-
vice requirements remain unchanged, but every zip
code in the existing service area is experiencing a
30% increase in demand. The results can be found in
Tables 4 and 5. (We omit time slot schedule ALBERT
from these and further experiments as it was not
designed for these environments.)

Table 4 Demand Increase—Morning

No. of
vehicles Time Distance Cost ã Cost (%)

ALL 6.6 1,734 522 123 23.00
RAND-ASG 5.9 1,677 485 116 23.40
CA 5.5 1,618 451 110 22.22
IP 5.8 1,664 465 114 25.27
NO-SLOTS 5.0 1,511 386 101 23.17

Table 5 Demand Increase—Afternoon

No. of
vehicles Time Distance Cost ã Cost (%)

ALL 6.7 1,665 519 120 22.45
RAND-ASG 6.2 1,607 485 114 21.28
CA 5.9 1,570 467 110 23.60
IP 6.0 1,574 462 111 24.72
NO-SLOTS 4.8 1,459 386 98 22.50

We observe a cost increase of a little over 20% for
a demand increase of 30%, which demonstrates, as
expected, that there are economies of scale. This sup-
ports the importance of growth in order for a com-
pany to become more profitable.

6.2.2. Vehicle Capacity. An important considera-
tion when setting up any delivery operation is the
vehicle fleet and mix. As Albert.nl wants to oper-
ate a homogeneous fleet of vehicles, we focus on the
impact of vehicle capacity. We consider two scenarios:
one in which larger vehicles are used, i.e., the vehi-
cle capacity is increased by 25%, and one in which
smaller vehicles are used, i.e., the vehicle capacity
is decreased by 25%. The results can be found in
Tables 6 and 7.

Not surprisingly, a capacity reduction results in a
cost increase whereas a capacity expansion results
in a cost decrease. What is interesting, however, is
that the cost penalty of a capacity reduction is much
stronger than the cost benefit of additional capacity.

Table 6 Vehicle Capacity Change—Morning

No. of
vehicles Time Distance Cost ã Cost (%)

−25%
ALL 5.7 1,433.4 456 103 3000
RAND-ASG 5.4 1,402.1 433 100 6038
CA 5.3 1,414.8 414 99 10000
IP 5.3 1,435.3 428 101 10099
NO-SLOTS 5.2 1,282.4 370 91 10098

+25%
ALL 5.3 1,394.9 440 100 0000
RAND-ASG 4.7 1,342.1 407 94 0000
CA 4.1 1,287.6 371 87 −3033
IP 4.5 1,328.5 394 91 0000
NO-SLOTS 3.5 1,183.7 311 78 −4088
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Table 7 Vehicle Capacity Change—Afternoon

No. of
vehicles Time Distance Cost ã Cost (%)

−25%
ALL 5.5 1,355 444 99 1002
RAND-ASG 5.3 1,329 428 96 2013
CA 4.9 1,319 418 94 5062
IP 5.1 1,324 416 95 6074
NO-SLOTS 4.7 1,220 361 86 7050

+25%
ALL 5.4 1344 437 97 −1002
RAND-ASG 5.0 1,303 412 93 −1006
CA 4.5 1,271 401 89 0000
IP 4.7 1,256 383 89 0000
NO-SLOTS 3.8 1,165 327 79 −1025

This suggests a decreasing marginal value of capac-
ity. To understand this, note that the physical vehicle
capacity is only one of the factors that limits the num-
ber of orders that a vehicle can deliver. In particular,
recall from our models that time constraints, based
on the length of a time slot and of a shift, form
another constraining factor. The above results suggest
that these time constraints become more relevant with
increasing vehicle capacity.

The extent to which vehicle capacity is binding
depends on the shift and on the service level. The
optimization-based time slot schedules and the NO-
SLOT time slot schedule appear to be more sensitive
to capacity changes because they can better exploit
capacity, thus achieving a higher utilization. More-
over, the morning shift seems to be more sensitive to
a reduction in vehicle capacity (10% versus 7%), most
likely because it covers a period of six hours, as com-
pared to five hours in the afternoon, whereby time
constraints are less tight.

6.2.3. Service Level. A key challenge for e-grocers
is to find a proper trade-off between service level and
delivery costs. A higher service level typically comes
at the expense of higher delivery costs. We clearly
see this when comparing the simulations results for
the NO-SLOTS schedules with those for the sched-
ules that use the service requirements of Albert.nl and
with those of the ALL slots schedules. We now inves-
tigate this issue further by varying the imposed ser-
vice requirements.

We consider two scenarios. In the first, we increase
the required service level by offering more time slots,
more specifically by offering one additional time slot
in each zip code except in those zip codes where
all time slots are already offered. In the second, we
reduce the service level by offering fewer time slots,
more specifically by offering one fewer time slot in
each zip code except in those zip codes where only
a single time slot is currently offered. Note that in

Table 8 Service Level Adjustments—Morning

No. of
vehicles Time Distance Cost ã Cost (%)

Reduce service
ALL 5.3 1,399 443 100 0.00
RAND-ASG 4.9 1,376 412 96 2.13
CA 4.4 1,325 387 91 1.11
IP 4.5 1,341 402 92 1.10
NO-SLOTS 3.9 1,210 329 82 0.00

Increase service
ALL 5.3 1,399 443 100 0.00
RAND-ASG 5.0 1,418 425 99 5.32
CA 5.1 1,384 416 97 7.78
IP 4.9 1,434 432 99 8.79
NO-SLOTS 3.9 1,210 329 82 0.00

the latter scenario, the changes are minor as most zip
codes require only a single time slot to be offered in
the base case.

Note also that these changes do not affect the
ALL and NO-SLOT schedules because they do not
use the service requirements. We only recall their
performance as a point of reference. The results can
be found in Tables 8 and 9.

As expected, the impact on cost of increasing the
service level is much higher than the impact of reduc-
ing the service level, as far fewer changes were made
to the service level requirements. What may be more
surprising is that for the morning shift a reduction of
the service level actually leads to a cost increase! This
seems counterintuitive, because one would expect to
gain operational efficiency from a decrease in cus-
tomer service. However, we have to realize that we
only reduced the number of time slots offered in zip
codes in which we used to offer more than one time
slot. These zip codes tend to be urban areas with a
relatively high demand density. A reduction in the
number of time slots offered forces demand to be con-
centrated in fewer time slots, which results in a less

Table 9 Service Level Adjustments—Afternoon

No. of
vehicles Time Distance Cost ã Cost (%)

Reduce service
ALL 5.4 1,352 444 98 0000
RAND-ASG 5.1 1,318 412 94 0000
CA 4.5 1,265 397 89 0000
IP 4.5 1,274 387 89 0000
NO-SLOTS 3.9 1,171 329 80 0000

Increase service
ALL 5.4 1,352 444 98 0000
RAND-ASG 5.1 1,385 439 98 4026
CA 5.0 1,385 443 98 10011
IP 5.1 1,342 412 95 6074
NO-SLOTS 3.9 1,171 329 80 0000
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balanced workload and thereby in a lower capacity
utilization.

This example highlights two opposing effects.
Capacity utilization benefits from a well-balanced
workload and therefore from spreading demand over
multiple time slots. However, the distance between
customers decreases when clustering demand in
fewer slots. The interplay between both of these
effects results in complex trade-offs, which are very
hard to make without any analytical support tools.

In both the morning and afternoon shifts, we do
see increases in cost associated with improving the
service level. This is not surprising but shows a valu-
able aspect of developing such models. They reveal
the cost associated with such changes, so companies
can make better decisions with regard to deciding the
level of service to offer to their customers.

6.2.4. Time Slot Template. The set of time slots
that may be offered, known as the time slot tem-
plate, has overlapping time slots in both shifts (see
Figure 4). A time slot template with overlapping time
slots may be attractive for both the delivery com-
pany and the customer. Overlapping slots provide
more routing flexibility to the company than shorter
nonoverlapping slots. At the same time, they provide
a higher service to the customer than a single overall
slot. Note that from a modeling perspective the over-
lap is challenging.

We investigate the impact of overlapping time slots
by analyzing alternative time slot templates. We con-
sider two such time slot templates. The first uses
time slots with smaller widths that do not overlap,
i.e., 8:00–9:20, 9:20–10:40, 10:40–12:00, 12:00–14:00 for
the morning and 16:00–18:00, 18:00–19:30, 19:30–21:00
for the afternoon. The second uses different overlap-
ping two-hour time slots, i.e., 8:00–10:00, 9:30–11:30,
11:00–13:00, 12:00–14:00 for the morning and 16:00–
18:00, 17:30–19:30, 19:00–21:00 for the afternoon. The
results for these different time slot templates can be
found in Tables 10 and 11. Note that the different tem-
plates do not affect the NO-SLOTS scenario, which is
just reported as a benchmark.

As expected, we see that the use of nonoverlapping
time slots with smaller widths translates in increased
costs, especially in the morning shift. The results for
the alternative overlap template are less conclusive.
In general, the cost effects appear to be smaller than
for removing the overlap. Note that the total amount
of overlap, the number of hours which fall into more
than one slot, is the same as in the original templates,
however distributed differently.

The overlap was a difficult issue in terms of mod-
eling for both CA and IP. The continuous approxima-
tion model heuristically adjusts the individual time
slot lengths based on the order volumes and virtu-
ally removes the overlap. Conceptually, the IP model

Table 10 Time Slot Template Changes—Morning

No. of
vehicles Time Distance Cost (%)

No overlap
ALL 5.7 1,469 480 106 6000
RAND-ASG 5.2 1,434 446 101 7045
CA 4.5 1,430 401 96 6067
IP 4.6 1,394 416 96 5049
NO-SLOTS 4.0 1,218 330 82 0000

Alternative overlap
ALL 5.1 1,391 435 98 −2000
RAND-ASG 4.7 1,353 409 94 0000
CA 4.4 1,325 391 91 1011
IP 4.7 1,350 408 94 3030
NO-SLOTS 4.0 1,218 330 82 0000

Table 11 Time Slot Template Changes—Afternoon

No. of
vehicles Time Distance Cost (%)

No overlap
ALL 6.0 1,391 467 103 5010
RAND-ASG 5.3 1,339 434 97 3019
CA 4.7 1,302 406 92 3037
IP 4.8 1,291 403 92 3037
NO-SLOTS 3.9 1,171 329 80 0000

Alternative overlap
ALL 5.4 1,351 440 98 0000
RAND-ASG 4.8 1,293 407 92 −2013
CA 4.8 1,270 403 90 1012
IP 4.6 1,279 399 90 1012
NO-SLOTS 3.9 1,171 329 80 0000

deals with the issue in a more accurate way by taking
into account the exact timing of a zip code delivery.
However, this comes at the cost of an increased prob-
lem size and it introduces symmetry in the model.
But, we see that the overlap does translate to lower
cost solutions, so it is important to consider it.

7. Conclusions
In this paper, we introduce the time slot manage-
ment problem (TSMP), a novel tactical planning prob-
lem which is relevant to many businesses that offer
attended home delivery, especially e-grocery. The
problem entails the decision of which time slots to
offer in each zip code so as to minimize expected
delivery costs. The use of time slots gives rise to
complex interactions between marketing and opera-
tional considerations and requires sophisticated deci-
sion support tools.

This paper presents a fully automated approach
that is capable of producing high-quality solutions
within a short amount of time. The approach, which
is based on continuous approximation, estimates the
route costs resulting from the time slot selections per
zip code based on “local” information. Our numerical
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experiments on real-life data from Albert.nl show the
following:

• Although narrow delivery time slots are con-
venient for the customer, they greatly reduce rout-
ing efficiency. Our experiments indicate an increase
in delivery cost of up to 25% from using two-hour
time slots instead of time slots that span an entire
morning or afternoon. This illustrates the core trade-
off between service and delivery costs.

• The regional differentiation of the delivery time
slot offering leads to significant cost savings as com-
pared to simply offering the full range of time slots
in the whole delivery region. In particular, the results
from our numerical experiments suggest up to 10%
delivery cost savings.

• There are clear economies of scale in the deliv-
ery operation. The results show potential cost bene-
fits from increasing the number of stops within the
current delivery area. This illustrates the importance
of growth in order for an e-tailer to become more
profitable.

• The time slot constraints and the constraints on
physical vehicle capacity interact. Time slot manage-
ment decisions become more relevant when the vehi-
cle capacity allows a vehicle tour to span several
time slots.

• The main trade-off in the time slot schedule
design is between demand clustering and demand
smoothing. The advantage of clustering demand is
that it minimizes the distance between successive
stops, and thus travel costs. The disadvantage is the
potential underutilization of the vehicle capacity, and
a corresponding increase in vehicle costs.

There remain several interesting directions for
future research. We see the joint optimization of the
service requirements and the time slot schedule as one
of the most challenging. This will not only require a
more complete understanding of customer behavior,
but also more sophisticated solution approaches. We
would also be interested in further investigating the
IP approach to see if we can find high-quality solu-
tions in a shorter amount of time. In general, we see
great potential for additional research on the real-time
management of demand and the use of incentives in
attended home delivery.
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