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Chapter 1 

Introduction 

The acute respiratory failure CARP) remains as one of the most common reasons for 

admission to the intensive care units. It is caused by many factors [1]. and its incidence is about 

77.6 patients per IOO,OOO/year, with a 90-day mortality of 41% [2]. In all cases of ARF a 

pathological shortage of surfactant at the alveolar level is observed Pl. This deficit of 

surfactant increases the alveolar surface tension, promoting cndwcxpiratory instability with 

alveolar collapse and respiratory dysfunction, which includes hypoxemia and decreascd lung 

compliance [4,5]. It is clear that the more alveolar units are depleted of active surfactant 

aggregates, the morc alveolar units wiII collapse, and the more severe the respiratory failure 

will be [6-11]. Based on this pathophysiological process the treatment of the ARF should be 

based on: preserving the active surfactant aggregates in the remaining functionally alveolar 

units; re-opening collapsed alveolar units; and restoring the end-expiratory alveolar stability 

from those surfactant-deficient alveoli [12-14]. Nowadays, it is thought that exogenous 

surfactant therapy, mechanical ventilation with positive pressure ventilation, and 

perfluorocarbon therapy might play an important role in modifying the disease process of the 

ARF [12-17]. 

PHYSIOLOGY 

Endogenous surfactant system 

The integrity of the surfactant system of the lung is a prerequisite for normal breathing 

with the least possible effort [15]. LaPlace, a French mathematician (1749-1827), was the first 

to draw attention to surface active forces in general, and described the relationship between 

force, surface tension, and radius of an air-liquid interface of a bubble: 

p ~ 2y/r (P ~ pressure to stabilise a bubble; y ~ surface tension at air-liquid interface; and r ~ 

radius ofa bubble). 

Almost one century later, von Neergaard applied tIils law to pulmonary alveoli by 

demonstrating that the pressures required to expand an air-filled lung were almost three times 

that required to distend a lung filled with fluid [18]. In tIllS way, the surface tension effect at 
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the air-liquid boundary was eliminated (Fig. I) From these findings, he concluded that: I) two­

thirds of the retractile forces in the lung are due to surface tension phenomenon which act at 

the air-liquid interface of the alveoli, and 2) the surface tension at the air-liquid interface must 

be reduced by the presence of a surface active material with a low surface tension to allow 

nomJaI breathing [18]. Surfactant is synthesized by the alveolar type II cells and secreted into 

alveolar spaces and small airways, lowering its surface tension [15]. Pulmonary surfactant is a 

complex of phospholipids (80-90%), neutral lipids (5-10%) and at least four specific 

surfactant-proteins (5-10%) (SP-A, SP-B SP-C and SP-D) lying as a layer at the air-liquid 

interface in the lung [19, 20]. 

3 
Fluid - filled Lung 

- Healthy Lung ..:l 2 '-' 
<l) 

S 
:::l -0 1 > RDS - Lung 

o 
o 10 20 30 40 

Airway Pressure (CIl1~O) 

Figure 1. Pressure-volume diagratllS ofa normal air-filled hmg and a ARDS lung. Von Neergaard shol\ro in 

1929 that much Jarger pressures were required to eX1>and an air-filled lung tban a hmg fiUed TIith fluid. In a hmg 

suffering from surfactant deficiency (RDS-LUIlg) e\'en higher pressures are required to expand the lung, due to the 

high surface tension at the air-liquid interface in the alvcoli caused by a diminished surfactant system. 

The normal physiological filllctions of the pulmonary surfactant system include [21): 

a) Mechanical stabilisation of lung alveoli 
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Chapter 1 

The surfactant system acts by decreasing surface tension of the interface between 

alveoli and air. During deflation of the lung, a static high surface tension would tend to 

promote alveolar collapse. However, as alveolar size decreases, pulmonary surfactant ensures 

that surface tension falls approximately to zero. Thus, at small alveolar volumes, surface 

tension becomes a negligible force and thereby tends to promote alveolar stability [22]. 

b) Protection against lung edema 

Another function ofthe pulmonary surfactant system is stabilisation of the fluid balance 

in the lung and protection against lung edema (Fig. 2). In general, alveolar flooding will not 

~ccur as long as the suction force in the pulmonary interstitium exceeds the pressure gradient 

generated by the surface tension in the alveolar air-liquid interface. Since tills pressure gradient 

is inversely related to the radius of the alveolar curvature there is, for each combination of the 

interstitial reasorptive force and average surface tension, a critical value for surface tension and 

for alveolar radius, below which alveolar flooding occurs [23]. 

SCHEMATIC DIAGRAM OF WATER BALANCE IN THE LUNG 

~~~i~~ ___ ~PULMONARY CAPillARY 

SUPERFICIAL LAYER 

.- ----+ ----+ ----+ 
PLASMA CAPILLARY TISSUE SURFACE 
ONCOlie BLOOD FLUID TENSION 
PRESSURE PRESSURE ONeOIiC PRESSURE 

PRESURE IRodiu, ,'Inlion) 
.. NORMAL· VALUES 37 15 + 18 + , 
RESPIRA10RY OISTRESS 37 < IS + 18 1- , 1030 
SYNDROt-tE III III III 

Figure 2. 

reference 33). 

Simplified schematic diagmm representing the factors influencing fluid balance in the lung (from 
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c) Surfactant and airways stabilization. 

As early as 1970, Macklem et a1. [24] called attention to the significance of bronchial 

surfactant for stabilization of the peripheral airways and hinted that lack of stabilization may 

cause airway obstmction or collapse of the small bronchi with air trapping. Tlus has been 

proved in an animal model where the bronchial surfactant was selectively destroyed [25]. It 

was demonstrated that the pressure to open up the collapscd bronchi is 20 Clll H20. 

Besides its role in mechanical stabilization, bronchial surfactant also has a transport 

function for mucus and inhaled particles [25]. TIllS has been proven, in vitro, in a study 

showing that particles on a surface film move in one direction only if the surface film is 

compressed and dilated, comparable to the compression and expansion during expiration and 

inspiration [25]. Furthermore, bronchial surfactant also acts as an antiglue factor preventing 

the development of large adhesive forces between mucus particles, as well as between mucus 

and the bronchial wall [26]. 

d) Surfactant and local defence mechanisms 

The surfactant system plays a role in the lung's defense against infection [27]. 

Surfactant, and in particular SP-A, enhances the antibacterial and antiviral defense of alveolar 

macrophages [27]. It has been shown that the surfactant system may also be involved in 

protecting the lung against its own mediators (e.g. angiotensin II) and in protecting the 

cardiocirculatory system against mediators produced by the lung [28, 29]. 

Disturbance of the sUl'factant system 

Disturbance of the surfactant system can resuit from different factors [15]. Damage to 

the alveolar-capillary membrane leads to lugh-permeability edema with wash-out or dilution of 

the surfactant andlor inactivation of the surfactant by plasma components, such as fibrin, 

albumin, globulin and transferrin, hemoglobin and cell membrane lipids p0,31]. These 

components are known to inhibit pulmonary surfactant fimction in a dose-dependent way [31]. 

Furthermore, the pulmonary surfactant my also be disturbed by the following mechanisms: 

breakdown of surfactant by Iipases and proteases; phospholipid peroxidation by free radicals; 

loss of surfactant from the airways due to mechanical ventilation with large tidal volumes; 

disturbed synthesis storage, or release of surfactant secondary to direct injury to type II cells 

[32]. 
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Diminished pulmonary surfactant has far-reaching consequences for lung function. 

Independent of the cause, decreased surfactant function will directly or indirectly lead to: 

1) Decreased pulmonary compliance; 

2) Decreased functional residual capacity; 

3) Atelectasis and enlargement ofthe functional right-to-Ieft shunt; 

4) Decreased gas exchange and respiratory acidosis; 

5) Hypoxemia with anaerobic metabolism and metabolic acidosis; 

6) Pulmonary edema with further inactivation of surfactant by plasma constituents [33]. 

MECHANICAL VENTILATION IN TIlE TREATMENT OF ARF 

Mechanical ventilation has been used for more than 40 years to overcome the 

hypoxemia and low compliance produced during the ARF. However, it has been shown that 

mechanical ventilation can damage the lungs when a mode of ventilation, which allowed high 

inspiratory lung volumes and low levels of PEEP, is applied [6-11, 34-36]. In 1967, Ashbaugh 

and colleagues discussed the inactivation of the surfactant system by intra-alveolar plasma 

proteins in patients suffering from acute respiratory distress syndrome [37], and since then 

several studies have demonstrated qualitative and quantitative changes of surfactant in 

bronchoalveolar lavage fluid from patients with ARF [38-40]. Gregory and colleagues [41] 

showed that minimal surface tension, total phospholipids, and surfactant proteins (SP-A and 

SP-B) were all decreased in the bronchoalveolar lavage fluid obtained from patients suffering 

of ARF. In addition, tlus latter group observed that several of these alterations also occur in 

patients at risk for developing ARF, suggesting that these abnormalities of surfactant occur 

early in the disease process. Therefore, in experimental animals, and patients suffering from 

ARF lung damage is produced on the one hand by certain modes of mechanical ventilation, and 

on the other by the disease process, unless a protective ventilatory strategy is used. 

Surfactant changes during mechanical ventilation 

Studies have shown that during artificial ventilation several mechanisms are involved in 

the alterations of the surfactant fimction: (I) loss of surfactant into the small airways; (2) 
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conversion of active large into non-active sIllall surfactant aggregates; and (3) inactivation of 

the alveolar lining layer due to edema fluid. 

Mechanical ventilation enhances the release of surfactant from the type II pneuIllocytes 

into the alveoli by a metabolically active process [6-10]. Tills released material is squeezed out 

of the alveoli into the airways due to a compression of the surfactant film at end-expiration if 

the surface area of the alveolus becomes smaller than the surface occupied by the surfactant 

molecules [13]. During the following inflation the lost molecules are replaced by surfactant 

which is stored within the alveolus (hypophase) and the cells. More surfactant molecules are 

lost during the next expiration; tillS is an ongoing cycle (Fig. 3). 

Studies by Veldhuizen et al. showed that the pulmonary surfactant can be subdivided 

into two distinct subfractions: (l) large surface-active aggregates which are the precursor for 

the (2) small aggregates with poor surface activity [42]. In vivo and in vitro studies have 

shown that the size of the tidal volume correlates with the magnitude of conversion from large 

active to small inactive subfractions [43]. Therefore, ventilation with large tidal volume 

promotes the inactivation ofthe pulmonary surfactant system. 

It has been proven that loss of active molecules of surfactant with an increase in the 

alveolar surface tension results in a decrease in peri capillary pressure and an increase in the 

permeability of the alveolo-capillary barrier to small solutes [44-47], indicating that surfactant 

has a primary role in the regulation of the permeability of the alveolo-capillary barrier to small 

solutes and proteins. Additionally, mechanical ventilation can disturb the functional integrity of 

the endothelium and epithelium, which creates an imbalance at the alveolo-capillary membrane. 

Both increased capillary filtration pressure and altered microvascular protein permeability have 

been shown to contribute to pulmonary edema after lung overinflation. 

Role of pl'essure and volume in ventilation-induced lung injury 

Studies with high peak inspiratory pressure ventilation, in which peak inspiratory lung 

volume was limited by thorax restriction, have suggested that the end-inspiratory lung volume, 

and not end-inspiratory pressure, is the main determinant of ventilation-induced lung injury 

[48,49]. However, the alveolar pressure alone, as measured in such studies, does not provide a 

measure of alveolar distension. Rather than the absolute airway pressure, the absolute 

transpulmonary pressure (which is equal to the alveolar pressure minus pleural pressure) is 
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responsible for injury. Therefore, at a given lung-thoracic compliance, absolute transpulmonary 

pressure and end-inspiratory lung volume are interchangeable and indistinguishable with 

respect to their injurious potential. 

Inspiration Expiration 
A 

Scmllp 

B 
Inspiration End-inspiration 

Expiration Inspiration 
c 

Scmllp 

FiguJ'e3. A. Balance between synthesis, release and consumption of surfactant in the healthy lung. The 

pressure values given represent the intrapulmonary pressure needed to open up the alveolus. At the surface and 

the hypophase (micelles), there are sufficient molecules of surfactant. TIlcse micelles deliver the surfactant 

necessary to replace the molecules squeezed out during expiration. B) Imbalance between synUlcsis, release and 

consumption of surfactant due to artificial ventilation. At the begimung of inspiration, there is an apparent 

deficiency of surfactant molecules but there is a rcspreading of molecules stored in the hypophase of the 

surfactant layer. At Ule end of inspiration there is, in principle, enough surfactant on Ole surface. C) With the 

next expiration, surface active molecules are squeezed out and no surface active molecules are left in the 

hypophasc for rcspreading, creating the sihlation where a seriolls surfactant deficiency follows. 
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It is known that morc than the endothelium or interstitial spaces, the epithelium is rate­

limiting for solute and fluid movement between blood and alveolus [50,51]. Effects of 

overinflation on epithelial permeability have been studied in fluid-filled in situ lobes, to exclude 

the effect of surface tension. As the epithelium is progressively stretched during static inflation 

there is a non-reversible opening of water-fiUed channels between alveolar cells resulting in 

free diflbsion of smali solutes and even albumin across the epithelial barrier [52-54]. Such 

changes were shown to occur only at high distending pressures and have been attributed to 

peak inspiratory epithelial overstretching which occurs due to inflation in the supra­

physiological range only [54-56]. Due to the damage of both the epithelial and endothelial 

barrier, surfactant components may be lost into the bloodstream [55]. More importantly, 

protein wiH accumulate intra-alveolarly which results in dose-dependent inhibition of surfactant 

[31]. As surfactant is rate~limiting tor the transfer of proteins over the alveolo-capillary barrier, 

loss of surfactant function will lead to further protein infiltration. This may result in a self­

triggering mechanism of surfactant inactivation [31,57-59]. 

Structural damage of the alveolocapilJary barriel' due to I'epeated collapse and re­

expansion of alveoli 

Pioneering work of Mead and colleagues [60] demonstrated that due to the pulmonary 

interdependence of the alveoli the forces acting on the fragile lung tissue in non~Uluformly 

expanded lungs are not only the applied transpulmonary pressures, but also the shear forces 

that are present in the interstitium between open and closed alveoli (Fig. 4). An alveolus with 

surfactant impairment would be predisposed to end~expiratory alveolar collapse and prone to 

be affected by such "shear forces". Shear forces, rather than end-inspiratory overstretching, 

may well be the major reason for epithelial dismption, the loss of barrier function of the 

alveolar epithelium, and considerable increases in regional nucrovascular transmural pressure. 

Important evidence for this mechanism comes from the finding that ventilation at low 

lung volumes can also augment lung ir~ury in lungs with an impaired surfactant system [61]. A 

recent study in a model of subtle surfactant perturbation by dioctyl sodium sulphosuccionate 

showed that surfactant changes make the lung vulnerable to lung parenchymal injury by 

mechanical ventilation [62]. These studies confirm the earlier work of Nilsson et al. [63] in 

ventilated newborn premature rabbits with a primary surfactant deficiency. Fetuses treated with 
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surfactant before receiving mechanical ventilation had less bronchiolar epithelial lesions in 

comparison with non-surfactant treated controls . 

Figure 4. 

. 
•.... 

......... ~ ~ .......•.. 

. . . . .. . >-""""" ;-.-c 

Shear forces are caused between open and closed alveoli due to pulmonary interdependence of 

alveoli. This figure shows the difference between mechanical ventilation of Honnal alveoli (upper panel) and 

mechanical ventilation of the same alveolar unit after surfactant inactivation (lower panel), which results in 

end-e>..'piratory collapse (adapted from reference 60). 
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Introduction 

Improvement of gas exchange, lung function, and permeability changes by positive end~ 

expiratory pressul'e (PEEP) during mechanical ventilation 

Initial studies have investigated the eftect of increasing levels of PEEP at constant tidal 

volume ventilation, which resulted in higher endRinspiratory pressures and volumes. Such 

studies found that increasing levels of PEEP reduced shunt [64-66] and improved oxygenation 

and lung mechanics which was attributed to reopening of flooded alveoli with redistribution of 

edema fluid from flooded alveoli into the interstitial spaces [67-69]. Such studies, however, 

also demonstrated that the use of high PEEP levels did not reduce [64,66,70] or even increase 

edema formation [65,71]. These findings have been reported in both isolated perfilSed lungs 

[64] and in closed-chest healthy animals [66] and closed-chest animals with different forms of 

lung injury induced by bronchial hydrochloric acid administration [67], alloxan [70] oleic acid 

[72] or hydrostatic edema due to lobar venous occlusion [71]. Overinflation due to PEEP is 

probably the explanation for the lack of reduction or even worsening of edema reported with 

PEEP during such experiments [73]. However, it has now been demonstrated in different 

animal models that ventilation with PEEP at lower tidal volumes results in less edema than 

ventilation without PEEP and a higher tidal volume for the same peak or mean airway pressure 

[34,73,74] and that, more specifically, PEEP prevents alveolar flooding [34,36,75]. 

Dreyfuss et a!. showed in rats ventilated at peak inspiratory pressure of 45 cm H20 that 

damage due to mechanical ventilation begins at the endothelial side after 5 min and rapidly 

progresses to the epithelium after 20 min [35]. A subsequent study showed a reduction of 

endothelial injury and the preservation of the stmcture of the alveolar epithelium by use of 10 

cm H20 of PEEP, which was accompanied by a lack of alveolar flooding [49]. 

Experiments in the same rat model of overinflation have shown a significant conversion 

of active into nOIlRactive surfactant aggregates compared to nOIlRventiiated controls after lung 

overinflation; 10 cm H20 PEEP was shown to prevent a significant conversion of large 

aggregates into small aggregates compared with non-ventilated controls [36]. This latter study 

suggests that the beneficial effect of PEEP in reducing protein infiltration after overinflation at 

peak inspiratory pressure of 45 cm H20 without PEEP in rats is partially attributed to a 

reduced filtration by surfactant preservation [36]. 

Two basic mechanisms have been described in literature which explain the surfactant 

preserving eftect of PEEP during mechanical ventilation. Studies by Wyszogrodski et a!. have 
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shown that PEEP prevents a decrease in lung compliance and surface activity of lung extracts 

indicating a prevention of loss of alveolar surfactant function during lung overinflation [10]. 

Others have suggested that PEEP prevents alveolar collapse and thus keeps the end-expiratory 

volume of alveoli at a higher level, thereby preventing excessive loss of surfactant in the small 

airways by a squeeze-out mechanism during expiration [75-77]. 

The utilization of PEEP to splint open the airways and alveoli at end-expiration in 

surfactant-deficient lungs may markedly reduce lung injury. Studies in both saline-lavage 

isolated perfused rat lungs [61] and saline-lavage intact animals [78,79] have shown that 

ventilation strategies which keep the alveoli open throughout the respiratory cycle by 

sufficiently high levels of PEEP induce significantly less morphological injury with beller 

preservation of pulmonary compliance than strategies in which alveolar collapse is allowed at 

end-expiration. Although healthy lungs do not seem to be damaged when terminal units are 

repeatedly opened or closed for short periods by negative end-expiratory pressure (which 

nevertheless reduces compliance and alters gas exchange [62]), it does become clear from what 

is discussed above, that early surfactant changes, which may be induced by mechanical 

ventilation itself, predispose lungs for ventilation-induced lung injury by repeated opening and 

closure of alveolar units [62]. 

Techniques to protect the lung during mechanical ventilation in ARF 

The consequence of a high alveolar surface tension is the end-expiratory alveolar 

instability and alveolar collapse. It has been shown that in ARF atelectatic lung areas are 

mainly distributed in the dependent lung regions (vertebral regions), while in the anterior, or 

non-dependent regions, the lung is mainly composed of open healthy alveoli [80]. Depending 

on the magnitude of the lung damage, the proportion of alveoli which can consequently be 

ventilated may be reduced to almost 20-30% of a normal lung. Gattinoni et al. showed that 

patients with early ARF and collapsed dependent lung regions, have a reduced volume of 

aerated lung [80]. Volume controlled mechanical ventilation will predominantly ventilate tills 

aerated healthy portion of the lung with overdistension in such regions. If one assumes that 

75% of the lung is consolidated and only 25% is ventilated, then even small tidal volume 

ventilation e.g. 7 ml!kg bodyweight, would result in tidal volumes of 28 mllkg in such lung 
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regions with a danger of overdistension and further lung impairment. Use of pressure­

controlled time-cycled modes of ventilation in which the alveolar pressure can never exceed 

the peak inspiratory pressure set on the ventilator is then preferable to reduce dangerous 

alveolar overdistension in these lung areas [5]. 

With the intention to protect the lung against VILI, an international consensus 

conference compiled the following recommendations: The plateau pressure should be limited 

to 35 cm H20, the tidal volume should be as low as 5 mUkg, permissive hypercapnia was 

allowed if normocapnia is not achievable at a limited plateau pressure, and the FiO, should be 

minimised. In addition, a re-expansion maneuver should be performed [81]. 

It was suggested that to prevent overdistension in ARF patients, tidal volumes have to be 

decreased [82] and that tidal volume reduction would increase oxygen delivery due to better 

hemodynamics [83,84]. 

Preliminary reports of reduced tidal volumes by end-inspiratory ainvay pressure 

limitation in patients with or at risk of ARF, however, showed no reduction in mortality rate 

[85-87]. Such findings may be explained by a certain degree of VILI even with small tidal 

volume ventilation, due to repeated alveolar collapse and re-expansion. 

Laclunallll et al. proposed that a protective ventilatory strategy based on the law of 

LaPlace should be used [5,13]. They showed that raising airway pressures higher than 40 cm 

H20 resulted in a recruitment of most filllctional alveolar units. Once opened these units should 

be kept open by the minimal PEEP level, and gas exchange can be kept in the normal range 

even at low pressure amplitude between PIP and PEEP. These low pressure amplitudes 

produce less shear forces, and thus protect against YILI. However, only a few clinical studies 

have been performed using this ventilatory strategy [5,88]. Tllis strategy produces a ventilatory 

condition which saves the lung from further damage, allows a reduction of Fi02, promotes the 

resorption of interstitial and intrapulmonary edema, and finally reduces the pulmonary artery 

pressures by overcoming the hypoxic pulmonary vasoconstriction [5]. 

A similar protective ventilatory strategy can be applied using high frequency oscillatory 

ventilation (HFOV) at high levels of mean airways pressure, which results in low oscillation 

pressure amplitude, low tidal volumes and normal values of carbon dioxide (paCO,) [89,90]. 

Froese's group showed that HFOV is usefir! to protect the lung, but only after are-expansion 

maneuver; the oscillation pressure amplitude itself is adjusted according to PaCO, values [89]. 
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The ease of this intervention, makes this strategy a standard of ventilation in some neonatal 

intensive care units. However, its usefulness has been questioned by multicenter studies, in 

which no initial fe-expansion Illaneuver was performed, showing no significant differences 

between HFOV and conventional mechanical ventilation [91]. 

Additionally, our group showed in an experimental study that using the same ventilatory 

strategy, a conventional ventilator is as effective as a high frequency oscillatory ventilator in 

improving gas exchange and lung mechanics [92], and in preserving the exogenous surfactant 

function (unpublished data). 

EXOGENOUS SURFACTANT THERAPY 

Re-establishing a physiological surface tension at the air-liquid interface by application 

of exogenous surfactant during mechanical ventilation will prevent end-expiratory collapse and 

dangerous shear forces between open and closed alveoli, resulting in improvement of blood 

oxygenation at lower fractions of inspired oxygen, use of lower airway pressures with reduced 

barotrauma, and improvement of survival [93]. 

Clinical experience of surfactant therapy in neonates with respiratory distress syndrome 

has learned that the response after exogenous surfactant therapy depends not only on the 

course of the injury, but also on the timing of surfactant therapy, the used dose of exogenous 

surfactant, the type of surfactant preparation, and the ventilator settings of the mechanical 

ventilation. In particular the level of PEEP used, and the method of administration of 

exogenous surfactant (which is important for the distribution of the instilled surfactant) play an 

important role [93]. 

The exact amount of exogenous surfactant required in ARF to restore lung surfactant 

function is not known, but different case reports and pilot studies suggest that a dose between 

50 and 400 mglkg body weight may be appropriate. Because the quantity of inhibitors differ 

from patient to patient, an excess of surfactant should always be given or repeatedly be 

substituted until blood gas values improve [94]. Experience in neonates has also learned that 

exogenous surfactant is more effective when administration takes place in the early stages of 

RDS [94]. Early treatment of ARF may thus require smaller amounts of surfactant and the 
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outcome results will probably be better. 

The currently used technique of delivering exogenous surfactant is the bolus instillation 

through the endotracheal tube. Tlus method has been used in most animal studies as well as in 

neonates who suffer from respiratory distress syndrome (RDS) due to primary surfactant 

deficiency RDS [95]. The advantage of this method of instillation is that it is rapid and able to 

deliver large quantities of surfactant. From animal studies and in neonates suffering from RDS, 

it has been demonstrated that natural surfactant preparations are more effective in improving 

lung function immediately after instillation than the artificial surfactant preparations, due to the 

lack of surfactant proteins [95, 96]. Also, different studies have demonstrated that surfactant 

proteins reduce the surfactant inactivation that may be caused by plasma constituents which is 

of special importance in ARF. 

It has been shown that the ventilator pattern strongly influences exogenous surfactant 

therapy [97,98]_ Several studies have demonstrated that surfactant therapy and positive end­

expiratory pressure (PEEP) ventilation produces the largest and most sustained therapeutic 

eftect [99,100]. Surfactant administration does not permit immediate withdrawal of PEEP, but 

it is usually possible to reduce the peak inspiratory pressures as lung fililction improves. This 

avoids overdistension of the alveoli and increased perfhsion of the lung. It also reduces the 

number of pneumothoraces [101]_ 

High frequency oscillation studies have shown that ventilation at high end-expiratory 

lung volumes combined with small volume cycles at high rates best preserves exogenous 

surfactant and gas exchange in lavaged lungs [100]_ However, until now only a few studies 

have been published on the combined use of surfactant and HFOV in alumals or humans [91, 

92,102-104]_ It was shown that after surfactant therapy HFOV was superior to CMV in 

improving pulmonary function and reducing lung injury [91,98,102-103]_ In these studies, 

however, HFOV was used in combination with the high-lung volume strategy whereas CMV 

was not. Froese and colleagues [98] compared HFOV to Cl'v1V after surfactant therapy at low 

and high-lung volume and confirmed that HFOV at high-lung volume was superior to the 

alternatives in improving gas exchange and lung mechalucs in lung-Iavaged rabbits. 

Surprisingly, these authors were not able to maintain oxygenation above 350 mmHg 

(according to the high-lung volume strategy) in the CMV group after surfactant therapy [98]_ 

TIllS is in contrast to earlier results of CMV with surfactant therapy in lung-Iavaged rabbits in 
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which oxygenation increased rapidly to prelavage values after surfactant instillation and kept 

stable for 4 hours [104,105]. Froese et at. [98] demonstrated that the effect of exogenous 

surfactant on arterial oxygenation remained stable with HFOV, whereas it decreased 

significantly during the 4 h study period with CMV at high-lung volume. In their study, 

however, the high-lung volume strategy with CMV was performed by a gradual increase of 

PIP and PEEP but without an active volume recmitment maneuver as used with HFOV. 

Furthermore, CMV was used with a constant flow and high tidal volume (20 mllkg) which is 

known to increase the conversion from active into non-active surfactant subfractions; this leads 

to a shortage of "active" surfactant at the alveolar level. 

A recent study by our group [99] has shown that exogenous surfactant therapy can also 

be optimized by conventional pressure controlled mechanical ventilation with small pressure 

amplitudes and high levels of end-expiratory pressure as it can with high frequency oscillation. 

These settings resulted in an optimal gas exchange and low levels of protein infiltration with 

minimal loss of active surfactant subfractiolls. Therefore, this ventilatory strategy can be 

directly compared with HFOV on the efl1cacy of exogenous surfactant therapy. 

PARTIAL LIQUID VENTILATION 

An alternative technique to maintain end-expiratory stability is by instilling 

perfluorocarbon fluids (PFC) into the lung. Because PFCs dissolve high amounts of oxygen 

and carbon dioxide at normospheric pressures, gas exchange over the alveolar air-liquid 

interface is maintained when conventional mechanical gas ventilation is superimposed. This 

technique has become known as "partial liquid ventilation" (PLV) [106-110]. 

The hypothetical mechanism of PLY is explained in Fig. 5; panel A shows the 

atelectatic ARF lung. After a small dose of PFC (3 mllkg) a thin film with a low surface 

tension is formed at the air-liquid interface due to evaporation of the PFC (panel B) and covers 

the lung units of the whole lung. Due to this film the increased surface tension in the diseased 

lung is reduced to a low and constant value, which leads to a decrease of inflation pressure; 

however, this pressure cannot further decrease with additional doses of PFC. Independent of 

this speculation the dose-dependent improvement in oxygenation results from filling of the 
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collapsed atelectatic alveoli in the dependent part of the lung by the non-compressible PFC 

thus preventing them from end-expiratory collapse (panel B vs C) tillS leads to a continuation 

of gas exchange even during the expiratory phase of the respiratory cycle. With increasing 

amounts of PFC in the lung, more collapsed atelectatic alveoli can be opened and prevented 

from end-expiratory collapse thus eliminating intrapulmonary shunt. This mechanism was 

recently supported by computed tomographic scans from Quintel et al. [Ill] who showed that 

during PLY, PFC is distributed predominantly to the lower lung regions, whereas gas 

ventilation took place in the upper regions, 

Figure 5. 

~~-'----~-"''\ 
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A 

Upper lung 

B 

Lower lung 
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Panel A shows the atelectatic surfactant deficient alveoli at end-inspiration (dashed line) and 

end-expiration (solid line). Panel B shows what happens when PFC is instilled into Ole lung. Due to its 

evaporation a thin layer of PFC is fanned at the air-liquid interface and due to its low surface tension, 

pulmonary compliance is improved. This occurs already at low dose PFC and does not further improve with 

higher PFC dosing. Some dependent alveoli are pIcvenled from end-expiratory collapse by the non­

compressible PFC, and titis improves ox-ygenation. Panel C shows what happens if morc PFC is instilled into 

UlC lung: morc alveoli are recruited at end-e:-. .. piration. Therefore, there is a dose-dependent improvement in 

oxygenation WiUl PFC during partial liquid ventilation. 
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OUf group was the first to apply tltis technique in animals suffering on acute respiratory 

failure [106-109] which has shown that: 

1) Higher doses of PFC lead to higher levels of oxygenation [106]. Tills is suggested to result 

from dose-dependent recmitment of collapsed atelectatic alveoli by PFC fluid. 

2) Oxygenation deteriorates over time ifno additional doses ofPFC are applied [107]. Tills is 

attributed to evaporation ofPFC, which will cause affected alveoli to collapse. 

3) Lung mechaIllcs and carbon dioxide elimination improve after an initial low dose of PFC 

and show no fhrther improvements with subsequent Illgher doses of PFC [106]. Tills is 

attributed to the replacement of the alveolar air-liquid interface with a tllln air-PFC interface. 

Evaporating PFC appears to cover the entire lung surface. As PFCs have a low constant 

surface tension (which is 18 mN/m), pulmonary compliance is increased after a lowMdose PFC 

and C02 elimination is higher. No fbrther improvement is seen after additional PFC dosing. 

4) PLY does not impair any cardiovascular parameter; even in animals with a large anterior­

posterior thoracic diameter. Mean pulmonary artery pressure decreases when PFC is applied, 

due to reversal of hypoxic pulmonary vasoconstriction [108]. 

5) PLY does prevent the progress of histologically assessed lung ir~ury [l06-lIO]. External 

PEEP has to be applied during PL V to prevent bulk movement of PFC fluids from the alveoli 

into the airways and to prevent dangerously high airway pressures at the onset of inspiration 

[106]. 

6) PL V can be combined with other ventilatory support techniques in ARF [110]. 

Studies comparing PLY with exogenous surfactant therapy and Illgh levels of PEEP, 

should be performed. Additionally, due to the physical properties of perfluorocarbons, PL V 

mllst be evaluated on the capability to restore the lung function after ventiiationMinduced lung 

injury. 
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Summary 

Objective: To demonstrate in experimental animals with respiratory insufficiency that under well~ 

defined conditions, commercially available ventilators allow settings which are as effective as high 

frequency oscillato!}' ventilators (HFOV), with respect to the levels of gas exchange, protein infiltratiOJ\ 

and lung stability. 

Design: Prospective, randomized, animal study. 

Setting: Experimentallaborato!}, of a University. 

Subjects: Eighteen adult male Sprague-Dawley rats. 

Interventions: Lung injury was induced by repeated whole-lung lavage. Thereafter, the animals were 

assigned to pressure control ventilation (pCV) plus the Open Lung Concept (OLe) or HFOY plus 

OLC (HFOY OLe). In both groups, an opening maneuver was perfonned by increasing airway pressures 

to improve the arterial oxygen tensionffractional inspired oxygen (paO,jFiO,);, 500 mmHg; thereafter, 

airway pressures were reduced to minimal values, which kept PaOfl'i02 ~ 500 llllllHg. Pressure 

amplitude was adjusted to keep CO, as close as possible in the nonnal range. 

Measurements and Results: Airway pressure, blood gas tension, and arterial blood pressure were 

recorded eve!}' 30 min. At the end ofthe 3-h study period, a pressure-volume curve was recorded and 

a broncho-alveolar lavage was perfonned to detennine protein content. After the recruitment maneuver, 

the resuiting mean airway pressure to keep a PaO,jFiO, ;, 500 nunHg was 25 ± 1.3 em H,O during 

PCYOLC and 25 ± 0.5 cm H20 during HFOY 0I.c. Arterial oxygenation in both groups was above;, 500 

mmHg and arterial carbon dioxide tension was kept close to the nomml range. No differences in mean 

arterial pressure, lung mechanics and protein influx were found between the two groups. 

Conclusion: This study shows that in surfactantMdeficient animals, pev, in combination with a 

recruitment maneuver, opens atelectatic lung areas and keeps them open as eftectively as HFOV. 
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Introduction 

It is becoming increasingly clear that besides inspiratory epithelial overstreching [1], the 

repeated collapse and reexpansion of alveoli, which leads to the development of shear forces, 

contributes to a great extent to ventilation-induced lung ;,~ury (VILI) [2]. It has been suggested that 

collapsed alveoli should be recruited before starting long-tenn mechanical ventilation, and high 

inspiratory lung volumes should be avoided by using small pressure amplitudes [the Open Lung 

Concept (OLC)] [3]. 

More than 25 years ago, high frequency oscillatory ventilation (HFOV) was introduced as a 

new ventilatory technique for treating the neonatal respiratory distress syndrome (RDS) [4]. The small 

pressure amplitudes applied during HFOV were expected to reduce VILI, but it has been demonstrated 

that HFOV ol~y leads to less lung damage when it is applied to re-expanded lungs (Le., open lungs) by 

use of a relatively high mean airway pressure (MAwP) [5, 6]. Tlus is called the lugh-Iung volume 

strategy; the results of recent pilot studies in neonates ,,;th RDS applying this strategy are encouragulg 

[7-10]. 

The idea has become established that, due to the larger pressure swings, conventional 

mechanicaJ ventilation (eMV) recruits a1veoli at inspiration but can not prevent them from collapse at 

end~expiration and that only an increase in positive end~expiratory pressure (PEEP) during CMV would 

reduce the amount of alveolar derecruitment at the cost of higher peak ulspiratory pressures [11,12]. 

Studies comparing CMV and BFOV with respect to gas exchange seem to support this idea [5,6, 13-

15]. These studies showed that, although the lung can be opened during CMV with relatively lugh peak 

ulspiratory pressures, the lung could not be kept open during the ventilation period. The required lugh 

level of PEEP and high tidal volumes to keep the lung open and provide adequate gas exchange in these 

studies resulted in barotrauma and circulatory impainnent [5, 6]. However, earlier studies with CMV 

using a pressure-controlled tune-cycle mode (PCV) applyulg small pressure amplitudes combined "'th 

high levels of PEEP and high inspiratory pressure for a short tinle, have shown that PCV can effectively 

recruit alveoli and keep them open during the entire respiratory cycle [16, 17]. 

Therefore, in the present study in experimental animals with respiratory insufficiency, we 
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investigated whether under well-defined conditions, commercially available ventilators allow settings 

which are as effective as HFOV, with respect to the levels of gas exchange, protein infiltration, and lung 

stability. 

Materials and Methods 

The study protocol was approved by the institutional A1umal Investigation Comnuttee. Care 

and handling of the animals were in accordance with European Conllllunity guidelines (86/609/EC). 

The study was perfonned in 18 adult male Sprague-Dawley rats (body weight 280-350 g). A11esthesia 

was induced with 2% enflurane and 65% nitrous oxide in oxygen. Immediately after induction of 

anesthesia, 6 animals were killed, the thorax was opened, and a static pressure-volume curves (J!N 

curves) were recorded and a broncho-alveolar lavage (BAL) was perfomled. These animals served as 

a healthy non-ventilated control group (Healthy). In the remaining animals, a polyethylene catheter (0.8 

nml outer diameter) was inserted into the right carotid artery for drawing arterial blood samples, and 

for continuous monitoring of arterial pressure to adjust hemodynamic support. Before tracheotomy, 

the animals received 30 mg/kg pentobarbital sodium, intraperitoneally (Nembutal"; Algin, Maassluis, 

The Netherlands). After tracheotomy, muscle relaxation was induced with pancuronium bromide 0.6 

mg/kg, intramuscularly (pavuIOli"; Organon Teknika, Boxtel, The Netherlands) inunediateiy followed 

by cormection to the ventilator and to a pressure transducer (Siemens Sirocust 1280, Siemens, Danvers, 

Mass, USA) for continuous arterial pressure monitoring. The animals were mechanically ventilated 

with a Servo Ventilator 300 (Siemens-Elema, SO~la, Sweden) in a pressure-controlled tinle-cycIed 

mode, at a fractional inspired oxygen concentration (FlO,) of 1.0, frequency of30 breaths per minute 

(bpm), peak inspiratory pressure (PIP) of 12 cmH,O, PEEP of2 cm H,O, inspiratory/expiratory lIE 

ratio of I :2. Anesthesia was maintained with pentobarbital sodium (Nembutal~; 30 mg/kg); 

neuromuscular block was maintained with pancuronium bromide, Lm. (pavulon®; 0.6 mglkg). Body 

temperature was kept within the nonnal range by means of a heating pad. Initially, PW was increased 

to 20 cm H,Ofor 30 seconds to open up atelectatic regions in the lungs due to the surgical procedure. 

After tIlis procedure to open up the lungs, the ventilator settings were reset to the previous ones and 

a 0.15 ml blood sample was taken and replaced by heparinized (10 IV/ml) saline (0.9% NaCI). Arterial 

oxygen tension (paO,) and carbon dioxide tension (PaCO,) were measured by conyentionalmethods 

(ABL 505, Radiometer Copenhagen, Denmark). Next, respiratory failure was induced by repeated 
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whole-lung lavage as described by Laclllllallll et aL [l8). Each lavage was perfonned with saline (32 

mllkg body weight) heated to 37'C. Just before the first lavage, PIP and PEEP were elevated to 26 and 

6 em H20, respectively. Lung lavage was repeated five to seven times with 5-min intervals to achieve 

a PaOjFI02 .0:;; 85 nmlHg. Within 10 min after the last lavage, the animals were randomized to one of 

the following groups (n~6 per group). In the first group, PCVOLC, a procedure to open up the lungs 

(defined as PaO,/FIO,;> 500 nllllHg), at the following ventilator settings: PIP 40 cm H,O, static PEEP 

12 em H,O, lIE ratio 4: I, FlO, 1.0, respiratory frequency 150 bpm. After I to 2 min at these settings, 

a blood sample was drawn to verify that PaO,lFIO, was ;> 500 !lunHg. After tills recruitment 

procedure, total PEEP (PEEP~ static PEEP plus intrisic PEEP) was decreased in approximately in 2 

to 3 mi!l steps to the minimal level wlllch kept PaO,/FIO, ;> 500 nunHg. Then the pressure amplitude 

was set to keep PaCO, as close as possible to the nonnal range and was not changed thereafter [19,20]. 

The second group, HFOV OLC, was ventilated with HFOV (type OHF-I, Dufour, Villeneuve d'Mcq, 

France); an opening maneuver was perfooned by setting the ventilator to oscillation mode without sigh, 

respiratory rate at 10 Hz, oscillatory pressure amplitude of28 cm H,O, FlO, 1.0. The MAwP was 

initiated at 28 em H,O. After about 1-2 min at these ventilator settings, a blood gas sample was drawn 

to verify that PaO,lFiO, was;> 500 nunHg. Thereafter, the level ofMAwP was decreased in 2 to 3 

minute steps, to the minimal level which kept PaO,/FIO, ;> 500 nunHg. Then, the oscillatory pressure 

amplitude was set to maintain PaC02 as close as possible to Boruml range and was not changed 

thereafter. 

Airway pressures were continuously monitored with a tip catheter pressure transducer 

(Raychem EO 2A 121, USA), using a water colu!lm as a reference pressure, connected with a Y-piece 

to the tracheal tube, and recorded (Siemens Sirecust 1280, Siemens, Danvers, Mass, USA). 

Additionally, intrinsic PEEP was deternllned by subtracting set PEEP from total PEEP in the PCVOLC 

group and in the HFOVOLC total PEEP was defined as the lowest pressure within the oscillatory 

pressure amplitude. The highest pressure within the oscillatory pressure amplitude was defined as 

PIP. 

After surfactant depletion and perfonnance of the recruitment procedure, airway pressures were 
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detemlined and blood gas samples were taken at 15, 30, 60, 90, 120, 150 and 180 min. At the same 

time points, arterial pressure was recorded. Hemodynamic support was provided by infusion of 1 ml 

saline 0.9"10 (to a maximum of 3 Illi per h) whenlllean arterial pressure (MAP) decreased below 100 

mmHg. 

After 180 min, all animals were killed with an overdose of pentobarbital sodium injected 

through the penile vein. Then static PN curves were recorded using the syringe technique. After 

the thorax and diaphragm were opened, the tracheostomy catheter was connected to a pressure 

transducer with a syringe attached to it (Validyne model DP 45-32, Validyne Engineering, 

Northridge, Calif, USA), and pressures were recorded on a polygraph (Grass model 7B, Grass 

Instrument, Quincy, Mass, USA). Using a syringe filled with nitrogen (N2) the lungs were first 

innated (within \0 s) to an airway pressure of35 cm H20, which was maintained for 5 s, followed 

by deflation to an airway pressure of 0 cmH20. Then the lungs were re-inflated in steps of 0.5 ml 

until an airway pressure of35 cmfI,O was reached. Each inflation step took 1-2 s followed by a 

5-8 pause to allow pressure equilibration. After tillS, in the same way, the lungs were then deflated 

until an airway pressure of 0 cmH20 was reached. The volume of N2 left in the syringe was 

recorded. Maximal compliance (C~,) was calculated from the steepest part ofthe deflation limb 

[21]. Total lung capacity (TLC,,) was defined as lung volume at inflation with a distending 

pressure of35 cm H20. 

The Gruenwald index, which characterizes the surfactant system in situ, was calculated 

from the pressure-volume curve, defined as (2VS+V IO)/2Vrn2" where Vs, VIO and Vll1J-~ are the 

lung volumes at transpulmonary pressures of 5, 10, and 35 cm H20 from the deflation limb, 

respectively [22). 

After PN recordings, BAL was perfonlled five tinles with saline-CaC!, 1.5 nilllOVL. l11Creafler, 

cell debris was removed from BAL by centrifilgation at 400 g for \0 mll, and protein concentration was 

measured using the Bradford method (Biorad protein assay, Munich, Gemlany) [23]. 

Statistical analysis was perfonlled using the Instat 2.0 biostatistics package (Graph Pad 

Software, San Diego, Calif, USA). Analysis of variance was perfonlled to compare intragroup and 

intergroup differences at every time point; ifp<0.05, a Tukey post-hoc test was perfonl1ed. All data are 

reported as mean ± standard deviation (SD). 
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Results 

Blood gas values before and ilrunediately aner lavage were comparable for both groups (Fig. 

I, Table I). None of the animals died during the 3-h study period. Carboil dioxide values decreased 

significantly from 64±9.0 mmHg aner lung-lavage to 32±8.6 nunHg 15 min aner the recruitment 

procedure (p< 0.01) and from 54±5.7 to 32±7.5 mmHg (p< 0.01) in PCVOLC and HFOVOLC, 

respectively, and remained comparable during the entire observation period (Table I). 

700 

600 

'O:il 500 
~ a 400 a 
'-;:. 300 
0 
OJ 
~ 200 

100 

0 

Figure 1. 

B 

T T T T T 

L 15' 30' 60' 90' 120' 150 180' 
Time 

Pa02 values (mean ± SD) over the whole study period. B= before ia-..'age, L= after lavage. Pressure 

controlled time-cycled ventilation with open lungs (continuous line) and highfrcquencyoscillatory ventilation with open 

lungs (dashed line). No statistical difl:erences within or between the two groups over time were found after the Open 

Lung Concept was applied. 

Figure 2 shows the mean airway pressures recorded from the tip catheter pressure transducer 

3 h after the recruitment procedure. PIP and PEEPt values were significantly lower in the PCVOLC 

group than in the HFOVOLC group. However, the driving pressure amplitude was significantly higher 
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in the PCVOLC group (IS.S±2.2 cm H20) compared with the HFOVOLC group (I4.0±1.6 cm H20, 

p<O.OS). The MAwP were not significantly dift",ent between the two groups (2S±1.3 cm H20 in 

PCVOl.c and 26±O.S cm H20 inHFOVOI.c). The total PEEP in PCVOLC consisted of10±0.3 cm H20 

static PEEP and 3±2.4 cm H20 intrinsic PEEP. 

In PCVOLC, mean values of MAP (Table I) IS min after the recruitment maneuver were kept 

above 100 mmHg, and no intergroup differences were found during the 3-h study period. However, 

intragroup differences were observed in the HFOVOLC group where the mean values of MAP were 

significantly lower at the end of the study period. Fluid replacement aaer the recruitment maneuver was 

required in 2 animals in the PCVOLC group and in 3 aninlals in the HFOVOLC group. There was no 

statistical dift"rence in the rate of saline infusion during the 3-h study period between groups, with 0.5 

mlJh in PCVOI.c and O.S mllh in HFOVOLC. 

Table 1. Data on arterial carbon dioxide tension (paC02) and mean arterial pressure (MAP) over time in the 

groups with pressure-controlled ventilation with open lungs (PCVOLC) and high frequency oscillatory ventilation with 

open lungs (HFOV OLe). Values arc mean ± SD 

Time (min) PCVOLC HFOVOLC 

PaCO, (mmHg) Basal 40± 6.4 37±6.2 
Lavage 64± 9.0 S4± 5.7 
IS' 32± 8.6' 32± 7.5' 
30' 37± 8.3' 37± 6.4' 
60' 33± 6.6' 3S± 6.0' 
90' 3S± 8.4' 37± 5.5' 
120' 36± 10.0' 37± 4.5' 
ISO' 38± \3.0' 34± 3.2' 
180' 34± 10.0' 32± 4.3' 

MAP (mmHg) Basal \34± 22.5 144± 14.7 
Lavage 90± 21.0 100± 9.0 
IS' IIS±\3.0 121± 14.3 
30' 122± 12.1 122± 23.2 
60' 126± 10.0 114± 19.0 
90' 123± 14.5 114± 11.9 
120' 12S± \3.0 108± 14.0 
ISO' 122± 12.4 108± 18.9 
180' IIS± 14.4 101± 17.0 

vs after lavage pS; 0 05 
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Figure 3 shows tile PN curves from the Healthy, PCVm.c, and HFOVm.c groups. No statistical 

differences were found in lLC" between groups (43±2mllkg in the Healthy control group, 41±6 mllkg 

in PCVOl.c, and 42±2 mllkg in HFOVOl.c). As expected, in the Healthy control group Cm.,., was 

significantly higher (4.0±0.2 ml/c111 H20 per kg) than in the surfactant-depleted lungs ventilated either 

with PCVOLC or HFOVOLC (2.4±O.6 and 2.5±O.2 ml/c111 H20 per kg, respectively). Obviously, the 

Gruenwald index was also significantly ltigher in the Healthy control group than in PCVoLC(1.06±O.20 

vs 0.67±O.I3; p<O.OI) and I-IFOVoLC (1.06±0.20 vs 0.53±O.15, P < 0.001). 

The protein concentration of BAL fluid was not sigrtificantly different between the three 

groups: 0.44±O.20 in the Healthy control group; 0.55±O.23 in PCVOl.c, and 0.59±O.28 inHFOVOLC. 
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Figure 2. Airway pressures (mcan±SD) recorded with the tip catheter pressure transducer 3 hours after the 

recruitment maneuver. In pressure controlled time-cycled ventilation with open lungs (PCVOLC) Ihere was a significantly 

(* p< 0.05) lower peak pressure (peak) and lower positive end-expiratory pressure: (PEEP) compared with high 

frequency oscillatory ventilation with open lungs (HFOVOld. at the same mean airway pressure (MAwP). 
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Figure 3. Pressure-volume curves (mean ± SD). At total lung capacity, no statistical differences were found 

bet\yeen the three groups. In the Healthy non-ventilated controls (Healthy) Cma-~ was significantly higher than those in 

the pressure controlled time+cycled ventilation with open lungs (Fevocc) and high frequency oscillatory ventilation with 

open lung, (HFOVor.cl (* p<o.OOI). 

Discussion 

Tills study shows in experimental animals with respiratory insufficiency that WIder well-defined 

conditions, commercially available ventilators allow settings which are as effective as HFOV with 

respect to the level of gas exchange, protein infiltration, and lung stability. 

In the present study we used the lung lavage model, willch has proved to be a consistent and 

conveillent model of acute lung injury [18]. It has beClI postulated that, in the acule phase, lhis model 

reflecls more a primary surfaclanl deficiency, as seen in neonalal RDS [16, 17]. Despite Ihe fact that 

the lung hyury hllhis study is nol exactly represenlalive oflhe patilOlogy seen in humans Witil RDS, tills 

model is ideal fortesling various Iherapeulic inlervenlions for RDS [16, 17]. 
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It has been demonstrated that arterial oxygenation increases with increasing functional residual 

capacity as alveoli re-expand and shunt 1I0w decreases [5, 6, 20, 24). Therefore, in the present study 

we used arterial oxygenation as a parameter to characterize the state of alveoli recruitment. Previous 

studies in rabbits with acute lung ilUUlY have shown that HFOV applied with the "high-lung volume 

strategy" is able to reach oxygenation levels above 350 nunHg and nonnocapnia [5, 6, 12J. A 

prerequisite for tlIis latter strategy is that, high pressures have to be applied, for a short period, to 

reaerate collapsed lung regions, which means that after reaeration oscillation takes place on the deflation 

limb of the PN curve. Under this condition, carbon dioxide elimination is controlled by the oscillation 

pressure amplitude. However, according to Froese and Bryan's studies [6, 11, 12J, the small swing in 

pressures and low tidal volumes produced by HFOV in the past, could not be produced with CMV. In 

contrast to these latter studies, our study demonstrates that it is also possible to reach IIigh levels of 

arterial oxygenation and nonnocapnia by applying small driving pressure amplitudes in the PeYOLe 

mode. Pressure readings from the tip catheter pressure transducer showed that mean airway pressures 

were comparable in both OLC groups, with comparable good oxygenation. HypercaplIia was not 

observed and PaCO,leveis were close to nonnal values during the 3-h study period in both groups. 

However, the driving pressure amplitude was almost 5 cmH,O higher in the PCVOLC group. Whether 

the latter observation has any clinical impact on YIL! cannot be answered from tlus study. If one 

considers that protein influx is a sensitive parameter for VllJ [25], then at least the higher driving 

pressure amplitude had no additional negative effect on the protein influx over the study period. 

It is known that lugh "MAwP can decrease venous return of the systenuc circulation by 

impaimlCIlt of the pulmonary circulation due to overdistentioll of alveoli, which results in compression 

of the pulmonary capillaries [17, 26). When applying the OLC, hemodynanIic compronIise should be 

mirIinIized by setting the MAwP finally at a level that just compensates for the increased tendency of 

the alveoli to collapse. However, if tllis still leads to hemodynamic compromise it should be 

compensated for by proper fluid management and hemodynamic support by inotropics [3, 19,27, 28J. 

In our study, we observed a decrease in blood pressure only during the recruitment maneuver, which 

retumed to nonnallevels within 1-2 nun after reaching the ainvay pressures which kept the lungs open. 
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After the recmitment maneuver, the MAwP in both OLC groups was the same, which resulted in 

mean MAP values above 100 mmHg over the whole study period in both groups, and that is why the 

demand for fluids in both groups was not significantly different. These results agree with clinical trials 

which assessed the beneficial effects of open lungs in patients with adult ARDS [27 - 30]. 

There was no difference between the groups in the amount of protein recovered in the BAL, 

nor when compared with healthy, nomlalnonventilated control animals. TI,e epithelium rather than the 

endothelium is rate limiting for the transfer of prote", across the alveoli capillary barrier [25]. Although 

peak inspiratory epithelial overstretching has been considered the main contributing factor for epithelial 

injury and intra-alveolar protein infiltration [I, 31, 32] it is realized more and more that repeated 

alveolar collapse and reexpansion leads to shear stress with epithelial and endothelial damage, resulting 

in alveolar protein accumulation [33, 34]. In a surfactant-deficient model of acute lung injury, 

application ofOLC decreases protein leakage [35]. It is known that counterbalancing the increased 

collapse tendency of the surfactant deficient alveoli with appropriate airway pressures favors the shift 

of fluid from the alveoli to the interstitium by decreasing the pressure gradient across the alveolar­

capillary membrane [36]. In addition, ventilating the alveoli with the smallest possible pressure 

amplitude will prevent epithelial overstretching. These two mechanisms may explain the comparable 

protein values in both groups compared with the healthy control group. 

All changes in the PN curves after surfactant depletion (e.g., decreased Cm,.,and Gmenwald 

index, and increased opening pressure) coOOml earlier results in tins animal model [5, 6, 12, 16, 17] on 

the one hand and, on the other hand, demonstrate that the two modes of mechanical ventilation did not 

influence lung mechanics durulg the 3-h observation period. 

In summary, tlus study shows that in surfactant-deficient animals, pev in combination with a 

recruitment maneuver results in the same level of oxygenation, carbon dioxide elimination, protein 

infiltration and lung mechanics as HFOV. Moreover, mean values of MAP were kept above 100 mmHg 

"' both modes of ventilation during the 3-h study period. These data indicate that the preferred use of 

high frequency oscillators for certain clinical conditions over pressure-controlled ventilators needs to 

be re-considered. Rather than using special modes of mechruncal ventilation in RDS, one should apply 

a general concept of ventilation winch provides an open lung over the entire respiratory cycle, ,vitl, the 

least possible hemodynamic compromise. 
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Summary 

O~ieCfh)e: To demonstrate that under wel1~defined conditions. pressure controlled ventilators 

(PCY) allow settings which are as good as high frequency oscillatory ventilators (HFOY) to 

preserve the function of exogenous surfactant in lung-Iavaged rats. 

Desigll: Experimental, comparative study. 

Setting: Research laboratory of a large university. 

Subjects: Sixteen adult male Sprague-Dawley rats (280-310 g). 

lllten'enfiolls: Lung injury was induced by repeated lavage. After last lavage, all animals received 

exogenous surfactant, and were then randomly assigned to two groups (n~8 per group). The first 

group received pev with small pressure amplitudes and 'high' positive end-expiratory pressure. 

The second group received HFOY. In both groups, an opening maneuver was performed by 

increasing airway pressure to improve PaoJFio1 2: 500 torr. 

A1easlIJ'emellts and A1aill Results: Blood gases were measured every 30 min for 3 hours. Airway 

pressures were measured with a tip catheter pressure transducer. At the end of the study period, 

a pressure-volume curve was recorded and a brancho-alveolar lavage was perfonned to detennine 

protein content and surfactant composition. The results showed that arterial oxygenation in both 

groups could be kept above 500 torr during the 3-hour study period by using a mean airway 

pressure of 13±3 cm H20 in PCY and 13±2 cm H20 in HFOY. Further, there was no differences 

in the Gmenwald index, protein influx, or ratio of small to large aggregates between both study 

groups. 

COllclusion: pev with suft1cient level of positive end-expiratory pressure and small driving 

pressure amplitudes is as effective as HFOV to maintain optimal gas exchange, to improve lung 

mechanics, and to prevent protein influx and conversion of large into small aggregates after 

exogenous surfactant therapy in lung-Iavaged rats. 
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Introduction 

In surfactant-deficient animals, it has been demonstrated that high-frequency oscillatory 

ventilation (HFOV), which combines small volume cycles at high rates, is as injurious to the lungs 

as conventional mechanical ventilation (CMV) unless HFOV is used with the so-called "high-lung 

volume strategy" [1,2]. With this latter strategy, all alveoli are recmited by using a pressure 

greater than the opening pressure and kept open by use of a relatively 'high' mean airway pressure. 

This results in a so-called 'open lung' that prevents lung damage and is characterized by a 

Pao,/Fi02 <: 500 torr [66.7 kPa] [3]. First HFOV studies in neonates with respiratory distress 

syndrome (RDS) applying this strategy showed better clinical improvement with reduction in lung 

injury compared with CMV [4,5]. In all these c1i1tical and experimental HFOV studies, in the 

control group that received CMV, surprisingly, no lung recmitment strategy was used [1-5]. 

Froese and colleagues [6] were the only investigators who compared HFOV to CMV at 

low and high-lung volume. In lung-Iavaged rabbits, it was shown that after surfactant treatment 

HFOV with small volume cycles at high rates combined with a 'high-lung volume' strategy 

resulted in a constant improvement of Pa02 with a lower alveolar protein influx and a higher 

amount of active surfactant than CMV at high-lung volume where Pao2 decreased over time. Such 

differences were explained by differences in volume cycles which were ten-fold higher during 

CMV than during HFOV. In surfactant-deficient animals, several studies have shown that the level 

of positive end-expiratory pressure (PEEP) has a major impact on the effect of exogenous 

surfactant therapy on arterial oxygenation [7-9]. Recently, we have shown inlung-Iavaged rats that 

during pressure-controlled ventilation (PCY), ventilator settings that combine small driving 

pressure amplitudes (10-14 em H20) with high levels of PEEP lead to a sustained improvement 

ofPao2 to preJavage values, low alveolar protein influx and best preserve the large aggregate, the 

surface active component of exogenous surfactant [9]. Therefore, the purpose of the present study 

was to demonstrate that under weH-defmed conditions, PCY allows settings which are as effective 

as HFOV to preserve the function of exogenous surfactant in lung-lavaged rats. 

Material and methods 

This study was approved by the local Animal Committee of Erasmus University 

Rotterdam, and the care and handling of the animals conformed with European Community 
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guidelines (86/609/EC). The study was performed in 16 adult male Sprague-Dawley rats (body 

weight 280-310 g). After induction of anaesthesia with 2% cllflurane and 65% nitrous oxide in 

oxygen, a polyethylene catheter (0.8 nUll outer diameter) was inserted into the right carotid artery for 

drawing arterial blood samples. Defore tracheotomy, the animals received 30 mglkg pentobarbital 

sodium, ip. (Nembutal~; Algin D.Y., Maassluis, The Netherlands). After tracheotomy, muscle 

relaxation was induced with pancuronium bromide 0.6 mglkg, LIll. (Pavulon®; Organon Teknika RY., 

Doxtel, The Netherlands) inullediately followed by connection to the ventilator. The animals were 

mechanically ventilated with a Servo Ventilator 300 (Siemens-Elema AD, SOhla, Sweden) in a pressure 

controlled time-cycled mode, at an inspired oxygen concentration (Fio,) of 1.0, frequency 000 breaths 

per minute (bpm), peak inspiratory pressure (PIP) of 12 cmH,O, PEEP of2 em H,O, lIE ratio of I :2. 

Anesthesia was maintained with pentobarbital sodium (Nembutal"; 30 mglkg); neuromuscular block 

was maintained with pancuronium bromide, im. (Pavulon®; 0.6 mglkg). Body temperature was kept 

withinnomlal range by means of a heating pad. Initially, PIP was increased to 20 cm H,O for 30 

seconds to open up atelectatic regions in the lungs due to the surgical procedure. During tlus 

maneuver all other ventilator settings were unchanged. After tlus procedure the PIP was reset to 

the previous one, and a 0.15 ml blood sample was taken and replaced by heparinized (10 IU/ml) saline 

(0.9% NaCI). Pao, and Paco, were measured by conventional methods (ADL 50S, Radiometer 

Copenhagel\ Denmark). 

Acute lung injury was induced by repeated whole-lung lavage as described by Laclullann 

et al. [10]. Each lavage was performed with saline (32 mL/kg) heated to 37 'C. Just before the 

first lavage, PIP and PEEP were elevated to 26 and 6 cm H,O, respectively. Lung lavage was 

repeated 5-7 times at 5 nun intervals to achieve a Pao, s 85 torr [11.3 kPaJ. Within 10 nun after 

the last lavage, all animals received exogenous surfactant at a dose of 100 mgikg intratracheally, 

for which the animals were disconnected from the ventilator. The surfactant suspension, at 

concentration of 40 mgimL, was administered as a bolus followed by a bolus of air (28 mLlkg) 

directly into the endotracheal tube via a syringe, and was immediately followed by re-connection 

to the ventilator. The surfactant used was isolated from minced pig lungs that were processed as 

previously described [11]. Within 5 nUn after surfactant application, the alumals were randomized 

to one ofthe two groups (n~8 per group). In one group, PCV \vith the Servo 300 was continued 

and a procedure to open up the lungs (defined as Pao,/Fio,2 500 torr) was perfomled at the following 
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ventilator settings: PIP 30 cm H,O, static PEEP 15 cm H,O, liE ratio 1:1, Fio, 1.0, respiratory 

frequency 150 bpm. After 1 to 2 minutes at these settings, a blood sample was drawn to verity that 

PaoIFi02 was;?: 500 torr. After this recmitment procedure, PEEP was deereased in approximately 2 

to 3 minute steps to the point of derecmitment which was defined as the point where PaoIFi02 

decreased below 500 mmHg. A new procedure to re-open up the lungs was penomled and PEEP was 

immediately decreased to the minimal level which kept PaojFio, ;, 500 tOIT. Then the driving pressure 

amplitude was set to keep Pac02 as close as possible to the nonnal range and was not changed 

thereafter [12-14]. The second group was connected to a high-frequency oscillator (type OHF-I, SA 

Dufour, Villeneuve d'Ascq, France), a procedure to open up the lungs was perfonned by setting the 

ventilator to oscillation mode lvithout sigh, respiratory rate at 10 Hz, oscillatory pressure amplitude of 

20 cm H,O, Fio, 1.0. The MAwP was initiated at 25 cm H,O. After about 1-2 minutes at these 

ventilator settings, a blood gas sample was drawn to verify that PaojFio, was;' 500 tOIT. Thereafier, 

the level ofMAwP was decreased in 2 to 3 minute steps to the point of derecmitment which was 

defined as the point where PaoIFi02 decreased below 500 mmHg. A new procedure re-open up the 

lungs was perfonned and the MAwP was immediately decreased to the minimal level which kept 

PaOjFlO, ;, 500 tOIT. Thel~ the oscillatory pressure amplitude was set to maintaul the Paco, as close 

as possible to nonnal range and was not changed thereafter. 

Airway pressures were continuously monitored with a tip catheter pressure transducer 

(Raychem EO 2A 121, USA), using a water colunm as a reference pressure, cOlmected with a Y-piece 

to the tracheal tube, and recorded (Siemens Sirecust 1280, Siemens, Danvers, Massachusetts, USA). 

Additionally, PEEP in HFOV was defined as the lowest pressure lvithUl the oscillatory pressure 

amplitude and the highest pressure lvithin the oscillatory pressure amplitude was defined as PIP. 

After surfactant administration and perfonnance of the recruitment procedure, airway pressures 

were detennined and blood gas samples were taken at 30, 60, 90, 120, 150 and 180 minutes afier the 

recruitment procedure. 

After 180 min all animals were killed ,vith an overdose of pentobarbital sodium uuected through 

the penile vein. Then static PM curves were recorded using the syringe technique. After the thorax 

and diaphragm were opened, the tracheostomy catheter was cOimected to a pressure transducer 

with a syringe attached to it (Validyne model DP 45-32, Validyne Engineering, Northridge, CA, 

USA), and pressures were recorded on a polygraph (Grass model 7B, Grass Instrument, Quincy, 
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MA., USA). Using a syringe filled with nitrogen (N,) the lungs were first inflated (within 10 sec) 

to an airway pressure of 35 cm H,O, which was maintained for 5 sec, followed by deflation to an 

airway pressure of 0 cmH,O. Then the lungs were re-inflated in steps of 0.5 ml until an airway 

pressure of35 cmH,O was reached. Each inflation step took 1-2 sec followed by a 5-sec pause 

to allow pressure equilibration. After this, in the same way, the lungs were then deflated until an 

airway pressure of 0 em H20 was reached. The volume ofN21eft in the syringe was recorded. 

Total lung capacity (TLC,,) was defined as lung volume at inflation with a distending pressure of 

35 em H,O. 

The Gmenwald index which characterizes the surfactant system ill situ, was calculated 

from the pressure-volume curve, defined as (2V5+V IO)/2Vma.v., where Vs, VIO and Vnu.x are the lung 

volumes at transpulmonary pressures of5, 10 and 35 cm H,O from the deflation limb, respectively 

[15]. 

After PN recordings, a broncho-alveolar lavage (BAL) (30 mLlkg) was perfonned five times 

with saiine-CaCl, 1.5 mmollL. The active surfuctant component in the BAL fluid was separated from 

the non-active surfactant component by differential centrifugation [16] followed by subsequent 

phosphonls analysis, and the ratio of non-active to active (small to large aggregate) surfactant was 

calculated. The protein concentration of the supernatant of BAL fluid was deteollined using the 

Bradford method (Biorad protein assay, Munich, Gemlany) [17]. 

Statistical analysis was performed using the Instat 2.0 biostatistics package (GraphPad 

software, San Diego, CA, USA). Intra-group comparisons were analyzed with repeated measures 

ANOVA. Ifa dift"rence was found, a post-hoc test was performed (Tukey-Kramer). Inter-group 

comparisons were analyzed with a t-test at 90% of confidence inte!val Statistical significance was 

accepted at p-values <0.05. All data are expressed as mean ±SD. 

Results 

Blood gases before and directly after lavage were comparable in all animals (Fig. 1 and 

Table 1). None of the animals developed a pneumothorax and all animals survived the 3-h study 

period. 

In the PCV group, PIP and PEEP were decreased from 30 to 21± 0.9 cm H,O and from 

15 to 9±1 cm H,O, respectively, within 5 min while mean Pao, values maintained above 500 torr 
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[66.7 kPa] (Fig. I). In the HFOV group, the initial mean airway pressure was 25 cm H20 and was 

decreased to 13:12 cm H20 within 10 min while Pa02 remained stable. The corresponding airway 

pressures measured with the tip catheter pressure transducer 3 hours after the recruitment 

procedure were comparable in both groups and no differences were observed. In pev a PIP of 

21±0.9 cm H20, a PEEP 9±1.3 cm H20 and MAwP of 13±3 cm H20 were recorded, while in 

HFOV a PIP of 20±2 cm H20, a PEEP of 9±1 cm H20 and MAwP of 13±2 cm H20 were 

recorded. 
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Figure 1. Change in mean arterial oxygenation (Pa02) (mean ± SD) of both study groups before lung lavage 

(BL), after lavage (Lav), after exogenous surfactant treatment (surf.) and during the subsequent 3-h observation period. 

Broken/ille, animals (n=8) that received exogenous surfactant followed by HFOV; Solid line, animals (0=8) that 

received exogenous surfactant followed by pev. 

After surfactant administration and before randomization, mean Pao2 values were above 

450 torr [59.9 kPa] in both groups. After the recruitment maneuver the mean Pa02 values were 

above 500 torr [66.6 kPa] and did not difter between the pev and HFOV group during the entire 
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study period (Fig. I). In both study groups mean Paco, values increased significantly after the 

lavage procedure and decreased after surfactant application and stayed within normal range (Table 

I). 

Data on TLC" , the Gruenwald index, total protein concentration, total phosphorus 

concentration of non-active surfactant or small aggregates (SA), total phosphorus concentration 

of active surfactant or large aggregates (LA), small to large aggregate ratio, and recovery ofBAL 

fluid are given in Table 2. There was no significant difference between these parameters in both 

study groups. 

Table 1. Data 011 PaCOl of both study groups (pCV and HFOV). Values arc given as mean ± so. 

BL Lav Surf. th 2h 3h 

Group 

PCV torr 39±9 SS±II 40±3 44±4 38±7 41±9 

Kpa 
S.l±l.l 7.3 ±4.S S.3±\.4 S.8±O.S S.O±O.9 S.4±l.l 

HFOV torr 32±4 SI±9 41±7 38±6 39±9 33±12 

Kpa 4.3±O.S 6.7±1.l S.4±O.9 S.O±O.8 S.l±l.l 4.4±l.6 

BL, before lavage. Lay, the repeated saline lavage in order to induce the lung injury. Surf., surfactant (100 mglkg). rev, 
pressure controlled ventilation. I-IFOV, high frequency oscillatory ventilation. 
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Table 2. Data on total lung capacity (TLC3S), Gruenwald index, total protein concentration (conc), total 

phosphorus small aggregates (SA), total phosphorus large aggregates (LA) and ratio of small to large aggregates 

(SM.A) and reco\'CI)' ofbroncho-alveolar lavage of both study groups (pCV and HFOV). Values are given as mean 

±SD. 

PCV HFOV 

TLC" 40 ± 4.4 40 ± 9.5 

Gruenwald Index 0.88 ± 0.09 0.91 ± 0.08 

Total protein cone (mg/mL) 0.35 ± 0.10 0.41 ± 0.13 

SA (mmol) 3.6 ± 1.1 0.41 ±0.13 

LA (nmlOl) 11.2±4.1 11.2 ± 4.2 

SA/LA ratio 0.44 ± 0.15 0.43 ± 0.20 

Recovery BAL (%) 94 ± 1.0 94 ± 2.0 

PCV, pressure control ventilation. HFOY, high frequency oscillator), ventilation 

Discussion 

In the present study we used the lung lavage model which has proved to be a consistent 

and convenient model of acute lung injury [10]. It has been postulated that, in the acute phase, 

this model reflects more a primary surfactant deficiency, as seen in neonatal RDS [18,19]. Despite 

the fact that the lung injury in this study is not exactly representative of the pathology as seen in 

humans with RDS, this model is used for testing various therapeutic interventions for RDS such 

as exogenous surfactant therapy or different forms of mechanical ventilation [18,19]. In the same 

animal model, our group has previously demonstrated [9] that after exogenous surfactant 

treatment, PEEP levels of2 cm H20 and PIP of 26 cm H20 (pressure amplitudes of24 cm H20) 

resulted in oxygenation levels comparable with the post-lavage values (85 ± 20 nUllHg), and the 

highest level of the smalVlarge surfactant aggregates ratio, and the highest amount of proteins in 

the BAL fluid. A group ventilated with 6 cm H20 of PEEP and PIP of 26 cm H20 (pressure 

amplitudes of 20 cm H20) resulted in oxygenation levels comparable with pre-lavage values, but 

still with a high level of smalVlarge surfactant aggregates ratio, and a higher amount of protein 
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in the BAL fluid when compared with animals which were ventilated with high levels of PEEP and 

small pressure amplitudes. In contrast, two groups ventilated with 10 em H,O ofpEEP and PIP 

of20 em H,O (pressure amplitude of 10 em H,O) resulted in oxygenation levels comparable with 

pre-lavage values, a lower amount of proteins in the BAL fluid, and a lower level of smalVlarge 

surfactant aggregates ratio. Additionally, it was shown that efteetive carbon dioxide removal could 

be achieved by applying a ventilation mode that creates auto-PEEP. From t1us earlier study, it has 

been suggested that under well-defined conditions, PCV allows settings which are as effective as 

HFOV to preserve the function of exogenous surfactant inlung-Iavaged rats [9]. 

The results of tlus study demonstrate that inlung-Iavaged rats PCV with sufficient PEEP 

and small driving pressure amplitudes is as eRective as HFOV to maintain optimal gas exchange, 

to improve lung mechanics, and to prevent protein influx and conversion of active into non-active 

surfactant components under conditions in which the entire lung is fully recruited (open lungs). 

These results are in contrast with the results of Froese et al. [6] who showed that HFOV at lugh­

lung volume was superior to CMV at low and high-lung volume in improving lung function and 

preserving exogenous surfactant efficacy. In their study, it was shown that after surfactant therapy 

HFOV at high-lung volume resulted in a sustained improvement of Pao, to prelavage values 

whereas Pao, decreased over time during CMV at high-lung volume. Whereas HFOV was applied 

to expanded lungs during the entire observation period, in the CMV group a recruitment maneuver 

was not perfonned; in this latter group, despite the gradual increase of peak inspiratory pressure 

over time, the required opening pressure was never reached. It is, however, known that a critical 

opening pressure has to be reached before previously collapsed alveoli can be opened [12]. Once 

they are open, they remain open until the pressure drops below a critical level, then immediate 

coUapse occurs. Reopening requires higher recruiting pressures. Therefore, alveoli should first be 

actively opened and then lower pressures are needed to keep the lung open and to achieve an 

adequate gas exchange [l2, l3]. This is shown in the present study in wluch Pao, could be kept 

stable at prelavage values during the entire observation period with pev at a peak inspiratory 

pressure of only 20.5±O.9 cm H,O and a PEEP of 9.l±1.3 em H,O resulting in the same mean 

airway pressure as with HFOV after an initial opening procedure. 

It becomes clear that the ventilator pattern strongly influences exogenous surfactant 

therapy [20]. Several studies have demonstrated that surfactant therapy and lugh end-expiratory 
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lung volumes produce the largest and most sustained therapeutic effect [6,9). Administration of 

exogenous surfactant leads to alveolar expansion with stabilization during expiration [II). 

However, surfactant administration does not permit immediate withdrawal of PEEP (9). It has 

been suggested that PEEP also contributes to the clearance of the excess fluid in which the 

surfactant is suspended (21). In contrast, peak inspiratory pressure can normally be reduced 

shortly after surfactant administration as lung function improves, tllis avoids overdistension of the 

alveoli, increases perfusion of the lung, reduces the number of pneumothoraces, and reduces the 

pressure swings (21). Recent studies in vivo by Veldhuizen et al. [22] in rabbits showed that the 

conversion of active into non-active surfactant sub fractions was not dependent on the respiratory 

rate but was dependent on tidal volume and time. The results of our study showed that the ratio 

of nou-active to active surfactant components was comparable between pev and HFOV, 

indicating that the alveolar volumes are comparable. However, it is believed that during pev tidal 

volumes have to be ten times higher than during HFOV (3). Data from a pilot study (unpublished 

data) showed that for rats ventilated in the pev mode the used pressure amplitudes at a 

respiratory rate of 150 bpm resulted in a tidal volume of about 4.8 mLlkg bodyweight, and for rats 

ventilated with HFOV at 10 Hz the tidal volume was about 3.5 mLlkg (measurements were 

performed with a bodybox). In the present study, however, we used much smaller pressure 

amplitudes than normally used with pev, and found that also these smali pressure amplitudes in 

combination with higher frequencies were able to obtain nonnocapnia. In addition, we found no 

difference in protein influx between pev and HFOV groups and the values were comparable with 

normal values of healthy rats. These results confirmed previous results in lung-lavaged rats in 

which application of the 'open lung concept' with pev resulted in decreased protein influx 

compared to pev where Paol values were kept between 450-500 torr (59.9-66.6 kPa) (23). Thus, 

the optimal ventilator mode should produce minimal pressure swings during the respiratory cycle 

and keep the lung volume at end-expiration egualto or just above functional residual capacity level 

to preserve the fimction and composition of exogenous surfactant, to achieve optimal gas 

exchange, and to prevent damage to the lung [9, 12). 

We conclude that pev with sufficient level of PEEP and small driving pressure amplitudes 

is as effective as HFOV, both applied to fully aereated lungs, to maintain optimal gas exchange, 

to improve lung mechanics, and to prevent protein influx and conversion of large into small 
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aggregates after exogenous surfactant therapy in lung-Iavaged rats. TIlls indicates that achieving 

and maintaining alveolar expansion is more important than the type of mechanical ventilation. 

References 

1. Hamilton PP, Onaycmi A, Smyth JA, et al: Comparison of conventional mechanical and high-frequency 
ventilation: oxygenation and lung pathology. J App/ Physio/ 1983; 55: 131-138 

2. McCulloch PR, Forkert PO, Froese AB: Lung volume maintenance prevCllts iWlg injury during high frequency 
oscillatory ventilation in surfactant·deficient rabbits. Am Rev Respir Dis 1988; 137:1185-1192 

3. Froese AD, Bryan AC: High frequency ventilation. Am Rev Respir Dis 1987; 135:1363-1374 
4. Ogawa Y, Miyasaka K. Kawano T, ct al: A multicenter randomized trial of high frequency oscillatory 

ventilation as compared with conventional mechanical ventilation in pretenn infants with respiratory failure. 
Ear/yHllman Dev 1992; 32:1-10. 

5. Oerstmarul DR, Minton SD, Stoddard RA, et al: The provo multicenter early high-frequency oscillatory 
ventilation trial: improved pulmonary and clinical outcome in respiratory distress syndrome. PediatriCS 1996; 
98: 1044-1057 

6. Froese AB, McCulloch PR, Sugiura M, et al: Optimizing alveolar expansion prolongs the effectiveness of 
exogenous surfactant therapy in the adult rabbit. Am Rev Respir Dis 1993; 148:569-577 

7. Kobayashi T, Kataoka H, Veda T. et al: Efiix:ts ofsurfaetant supplement and end-expiratOI)' pressure in lung­
lavaged rabbits. J Appl Physiofl984; 57:995-1001 

8. Ito Y, Manwell SEE, Kerr CL, et al: Efiects of ventilation strategies on the efficacy of exogenous surfactant 
therapy in a rabbit model of acute lung injury. Am J RespirCrit Care A/ed 1998; 157: 149-155 

9. Verbrugge SJC, OonIDlers 0, Lachmann B: Conventional ventilation modes with small pressure amplitudes 
and high end-expiratory pressure levels optimize surfactant therapy. Crit Care Med (In press) 

10. Lachmann 13, Robertson B, Vogel J: In vivo lung lavage as an experimental model of respiratory distress 
syndrome. Acta Anaes/hesio/ Scand 1980; 24:231-236 

II. Gommers D, Vilslrup C, Bos JAI r, et al: Exogenous surfactant therapy increases static lung compliance, and 
cannot be assessed by measurements of dynamic compliance alone. Crit Care Med 1993; 21 :567-574 

12. Lachmann B. Open up the lung and keep the lung open. bllensive Care Med 1992; 18:319-321 
13. B6hm SH, Vazquez de Anda OF, Lachmann B: "The Open Lung Concept"_ In Vincent JL (ed). Yearbook of 

intensive care and emergency medicine. Springer-Verlag, Berlin Heidelberg 1998, pp 430-440 
14. Vazquez de Anda OF. Lachmann B: Protecting the lung during mechanical ventilation with The Open Ltmg 

Concept. Acta Anaesthesiof Scand 1998; 112; 63-66 
15. Gruenwald P: A numerical index stability of lung expansion. J Appf Physiofl963; 88:359-367 
16. Rouser G, Fleischer S, Yamamoto A: Two dimensional thin layer chromatographic separation of polar lipids 

and detemlination of phospholipids by phosphoms analysis of spots. Lipids 1970; 5:494-496 
17. Bradford MM: A rapid and sensiti\'e method of quantitation of microgram quantities of protein utilizing the 

principle of protein-dye binding. AlIa&'t Biochem 1976; 72:248- 254 
18. Lachmann B, Jonson B, Lindroth M, et al: Modes of artificial ventilation in severe respiratory distress 

syndrome: Lung function and morphology in rabbits after wash-out of alveolar surfactant. Crit Care Med 1982; 
10: 724-732 

19. Lachmann B. Danzmann E, Haendly B, et al: Ventilator settings and gas exchange in respiratory distress 
syndrome. In: Prakash 0 (cd). Applied physiology in clinical respiratory care. Nijhoff, The Hague, 1982. pp 
t41-176 

20. Verbmgge SJC, Sorrn V, Lachmarm B: Mechanisms of acute respiratOIY distress syndrome: Role of surfactant 
changes and mechanical ventilation. J Physio/ Phannacol1997; 48: 537-557 

21. Hallman M, Merritt TA, Kari A, et al: Factors ail'ecting surfactant responsiveness. Ann A.fed 1991; 23:693-698 
22. Veldhuizen RAW, Marcou J, Yao L-J, et al: Alveolar surfactant aggregate conversion in ventilated normal and 

injured lungs. Am J Physiol1996; 270:l,152-LI58 
23. Hartog A, Vazquez de Anda G, Oommers D, et al: Comparison of exogenous surfactant therapy, mechanical 

ventilation with high end-expiratory pressure and partial liquid ventilation in a model of acute lung injury. Br 
J Anaesth 1999,82:81-86 

58 



Differellilherapies of acule IUllg ill jill)' 

Chapter 4 

Comparison of exogenous surfactant therapy, mechanical 

ventilation with high end-expiratory pressure and partial liquid 

ventilation in a model of acute lung injury 

A. Hartog', G.F. Vazquez de Anda', D. Gammers', U. Kaisers', SJ.C. Verbmgge', 

R. Schnabel3
, B. Lachmann1 

'Depts. of Anaesthesiology, Erasmus University Rotterdam, The Netherlands; 

2 Anaesthcsiology and Intensive Care Medicine, Virchow Clinics, Humboldt University Berlin, 

Gennany; 

3Dept. of Pathology, Ruhr University Bochum, Germany. 

Published ill: Br J Allaeslh 1999; 82: 81-86 
Reprinted wilh permission (copyright flOldel) 

59 



Chapter 4 

Summary 

We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for 

their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and 

surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated 

mechanically with 100% oxygen and a PEEP of 6 cm H,O, and acute lung injury was induced by 

repeated lung lavage to obtain a PaO, value < 13 kPa. Animals were then allocated randomly 

(IFI2 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm 

H,O), partial liquid ventilation, or ventilation with low PEEP (8 cm H,O) (ventilated controls). 

Blood-gas values were measured hourly. At the end of the 4-h study period, in six animals per 

group pressure-volume curves were constmcted and bronchoalveolar lavage (BAL) was 

performed, whereas in the remaining animals lung injury was assessed. In the ventilated control 

group, arterial oxygenation did not improve and protein concentration ofBAL and conversion of 

active to non-active surfactant components increased significantly. In the three treatment groups, 

PaO, increased rapidly to >50 kPa and remained over the next 4 h. The protein concentration of 

BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active 

to non-active surfactant components increased significantly in the partial liquid ventilation group 

and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation 

groups, less lung iI~ul)' was found compared with the ventilated control group and the group 

ventilated with high PEEP. We conclude that although all three strategies improve PaO, to >50 

kPa, the impact on protein transfer into the alveoli, surfactant system, and lung injury differed 

markedly. 
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Introduction 

Acute lung injury (ALl) is a condition of acute respiratory failure in which lack of active 

surfactant leads to alveolar collapse, resulting in severe hypoxia [I]. Available treatments include 

mechanical ventilation with high inspiratory oxygen concentrations and high peak alveolar 

pressures with large distending tidal volumes, but these are known to induce lung damage [2]. 

Ventilation strategies that prevent repeated alveolar collapse are thought to prevent further 

progression of/ung damage [3]. Therefore, new treatment strategies that aim to prevent repetitive 

alveolar collapse during ALI are under investigation. 

These new strategies include: (1) pressure-controlled ventilation that recmits collapsed 

lung areas by applying an inspiratory pressure that overcomes the opening pressure of collapsed 

but recruitable lung units. After recmitment. ventilation pressures are reduced and PEEP is set just 

above the critical closing pressure of these lung units to prevent end-expiratory collapse [4, 5]. (2) 

Partial liquid ventilation, in which ventilation is superimposed on lungs that arc filled with 

perfluorocarbons thus preventing expiratory collapse [6,7]. (3) Exogenous surfactant therapy, in 

which the lost active surfactant is replaced [8,9]. 

Studies have shown that these strategies improves oxygenation while diminishing the 

effects on lung injury in animal models of ALl [4,8, I 0]. All three strategies are, currently under 

investigation for clinical use, and although results are promising, they have not been compared 

directly [II-IS]. In tlus study, we compared these three teclll1iques for their emcacy in improving 

arterial oxygenation and lung mechanics in rats who underwent bronchoalveolar lavage, and 

assessed their impact on transfer of protein into the alveoli, the surfactant system and on lung 

injury. 

Materials and methods 

The study was approved by the Uluversity's Alumal Experimental Conll1uttee, and the care 

and handling of the animals conformed with European Community guidelines (86/609/EC). The 

study was performed in 60 adult male Sprague-Dawley rats (body weight 270-330 g). After 

induction of anaesthesia with 2% enflurane and 65% nitrous oxide in oxygen, a polyethylene 

catheter was inserted into a carotid artery for obtaining arterial blood samples. Before 

tracheostomy, the animals received pentobarbital (pentobarbitone) 60 mgkg·! i.p. (Nembutal', 
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Algin BV, Maassluis, the Netherlands). After tracheostomy, neuromuscular block was produced 

with pancuronium I mgkg-I, i.m. (pavulon", Organon Teknika, Boxtel, the Netherlands) followed 

immediately by connection to a ventilator. The animals underwent mechanical with a Servo 

Ventilator 300 (Siemens-Elema, Solna, Sweden) in a pressure constant time-cycled mode, at an 

inspired oxygen concentration (FiO,) of 1.0, frequency 30 bpm, peak inspiratory pressure (PIP) 

12 cm H,O, positive end-expiratory pressure (PEEP) 2 cm H20, and inspiratory/expiratory (lIE) 

ratio 1 :2. Anaesthesia was maintained with pentobarbital 40 mgkg"i h- I
, i.p. neuromuscular block 

was maintained with pancuronium 1 mg kg-1 
hoi, Lm. Body temperature was maintained within 

normal range using a heating pad. Immediately after induction of anaesthesia 12 animals were 

killed and served as healthy controls. 

Acute lung injury was induced by repeated broncho-alveolar lavage (BAL) (32 1111 kg'l) 

with warm saline (37'C), according to Lachmallll and colleagues [16]. BAL was repeated as often 

as necessary to produce a PaO,<13 kPa at a PIP and PEEP of 26 and 6 cm H20, respectively. 

Within 10 min after the last lavage, the animals were allocated randomly to one of the following 

groups VF 12 each). In the first group, the lungs were opened by increasing PIP to 40 cm H20 and 

PEEP to 20 cm H,O, and the lIE ratio was set at I: 1. After 2-3 min, PIP was decreased to 35 cm 

H20 and PEEP to 18 cm H20, and arterial blood-gas values obtained. Ventilator setting remained 

unchanged for the rest of the study. The second group received an intra-tracheal bolus dose of 

perfluorocarbon 15 mI kg-I (APF-175A ~ Perfluoro-dimethyldecalin, F1uoro-Seal Inc, Round 

Rock, USA). After disconnection from the ventilator. APF-175A is a perfluorocarbon with a 

density of 1.98 g 1111'1, a vapour pressure 0.09 kPa, surface tension 20.5 dynes cm-I and all oxygen 

solubility 35 ml 0, per 100 ml perfluorocarbon per atmosphere of oxygen pressure (all values at 

25'C). During the study, evaporation losses of perfluorocarbon were compensated for by 

administering substitution doses. The substitution doses were based on our previous experience 

with this model, and aimed at maintaining PaO, constant during the rest of the study. The third 

group received exogenous surfactant at a dose of 120 mg kg- l The surfactant used was isolated 

from minced pig lungs, prepared as described previously [17]. The freeze-dried material was 

suspended in wann saline to a concentration of 40 mg mI-', and administered intra-tracheally, after 

disconnection from the ventilator. The surfactant suspension was administered as a bolus followed 

by a bolus of air (12 Illi kg-I), directly into the endotracheal tube via a syringe, and was followed 
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inUllediately by fe-connection to the ventilator. In the fourth group, ventilator pressures were 

increased by 2 cm H,O (PIP/PEEP of 2818 cm H,O) to prevent critical hypoxia and remained 

unchanged throughout the study. This group served as ventilated controls. 

Arterial blood-gas samples were obtained before lavage, aner lavage and hourly for 4 h. 

Samples were analysed for arterial oxygen tension (Pa02) and arterial carbon dioxide tension 

(PaCO,) using an electrochemical blood-gas analyser (ABL 505, Radiometer, Copenhagen, 

Denmark). 

At the end of the experiment, the animals were killed by an overdose of pentobarbital. Six 

animals from each group were selected randomly for histopathologic examination. The lungs of 

these animals were fixated, sectioned and stained as described previollsly [IS]. A semi-quantitative 

morphometric analysis of lung injury was performed under blinded conditions by a pathologist 

(R.S.), who scored atelectasis, oedema, vascular wall thickening and leucocyte infiltration as none, 

light, moderate or severe (score 0, 1,2 or 3, respectively). Lung injury score was defined as the 

average from all variables for each group. 

The remaining animals from each group were used to assess lung mechanics. Static 

pressure-volume cllrves were recorded using conventional techniques [16]. Total lung capacity 

(TLC3S) was defmed as lung volume at inflation with a distending pressure of35 cm H20. After 

pressure-volume recordings, BAL was perfonned five times with saline-CaCh 1.5 mmollitre-'. The 

active surfactant component in BAL fluid was separated from the non-active surfactant component 

by differential centrifugation followed by subsequent phosphorus analysis, and the ratio between 

non-active and active components (small aggregate to large aggregate (SNLA) ratio) was 

calculated, as described previously [19]. Protein concentration ofBAL fluid was determined using 

the Bradford method (Bio-Rad protein-assay, Munich, Germany) [20]. 

Statistical analysis was performed using the lnstat statistical package. Inter-group 

comparisons were analysed with ANDV A and intra-group comparisons by repeated measures 

ANOV A. If ANOVA resulted in P < 0.05 a Tukey-Kramer post-test was perfomled. All data are 

reported as mean (SD) and P < 0.05 was considered statistically significant. 
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Results 

Blood-gas values before and inllllediateiy after lavage were comparable in all groups (Fig. I 

and Table 1). None of the animals died during the 4-h observation period. In the ventilated control 

group, PaO): did not improve, whereas it increased to pre-lavage values and remained stable during 

the 4-h study in the surfactant-treated group and the group ventilated with high PEEP (Fig. I). 

In the partial liquid ventilation group, administration ofa bolus dose ofperfluorocarbon 15 ml kg-' 

resulted in a significant improvement in PaO, but pre-lavage values were not reached (Fig. 1). 

Perfluorocarbon was substituted periodically to compensate for the evaporation loss and the 

substitution dose ofperfluorocarbon was 1.1 (0.4) ml kg-' III 

Table 1. Paco2 (mean (SD)) values (kPa) in the four trcatment groups, before lavage (Healthy), immediately 

after lavage (Lav.) and 1,2,3 and 4 h after lavage. * P< 0.05 compared with surfactant group; t P< 0.05 vs control 

group; t P< 0.05 vs La\'. Control ~ ventilated controls with low PEEP; H·PEEp:=: high PEEP; PLY = partial liquid 

ventilation; SURF:= exogenous surfactant therapy. 

Group Healthy Lav. 1 h 2h 3h 4h 

Control 5.8 (0.9) 9.0 (1.4) 7.5(1.7)' j 7.7 (1.7)' j 7.8 (1.8) 'j 8.2(21)' 

H-PEEP 5.2 (0.6) 8.6 (1.3) 7.7 (12)' 6.9 (1.5) 'j 6.4 (1.7) 'j 6.8 (1.8) 'j 

PLY 5.5 (1.1) 9.9 (15) 6.8 (16) 'j 6.6 (1.7) 'j 6.2(18) 'j 6.1 (1.9) H 
SURF 5.2 (1.2) 8.5 (1.5) 4.7 (0.6)) 4.4 (0.5) j 4.3 (0.6)) 4.5 (0.7)) 

PaCO, data are give in Table 1. PaCO, decreased significantly in both the surfactant­

treated group and the partial liquid ventilation group, and was significantly lower in the surfactant­

treated group compared with the other groups (Table I). 

Figure 2 shows the deflation limbs of the pressure-volume curves. At deflation less than 

15 cm H20, lung volume in the healthy controls exceeded lung volume in all other groups, other 

than the group threated with surfactant. TLC" was significantly decreased in the ventilated control 

group, but not in the three tratment groups, compared with healthy controls. 

The protein concentration ofBAL fluid was significantly increased in both the partial liquid 

ventilated group and the ventilated control group compared with healthy control animals (Fig. 3). 

SAILA ratio, the ratio between non-active and active surfactant components, was significantly 
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increased in the ventilated control group, the group ventilated with high PEEP, and the partial 

liquid ventilation group, but not in the surfactant-treated group (Fig. 4). Compared with healthy 

control animals, the total amount of phosphorus in BAL fluid, measured to quantity the 

phospholipid-containing surfactant system, was significantly lower in the ventilated control group, 

the group ventilated with high PEEP, and the partial liquid ventilation group (Table 2). 

Semi-quantitative lung injury analysis showed that in both the surfactant and partial liquid 

ventilation group, lung injury was significantly lower than in the two groups that were ventilated 

only (high and low PEEP) (Fig. 5). However, only in the surfactant group, lung injury was not 

significantly increased compared with healthy controls. 

c::::J Ventilated control 

~ Surfactant 

~PLV 
~ H·PEEP 

* * 

Time (h) 

Figu .. e I, Mean (SD) Pa02 va!ues.in ventilated control, surfaclant~treated, partial liquid ventilation (pLY) and 

high (H) PEEP groups. * p< 0.05 vs PLY group. 
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Figure 2. 
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Deflation limbs from the pressure-volume curves, (mean (SD» in the healthy control, ventilated 

control. surfactant-treated, partial liquid ventilation (PLV) and high (H) PEEP groups, Volume is lung volume above 

FRC. At deflation less than 15 em H20, hmg volwnc in the healthy controls exceeded the hmg volume in all other groups, 

except the suriaclanHreated group. TLC35 was decreased only in the ventilated control group compared with the healthy 

control group. 

Figure 3. Mean (SD) protein concentration of BAL fluid in the healthy control, ventilated control, surfactant-

treated, partial liquid ventilation cPL V) and high (H) PEEP groups. * P < 0.05 vs healthy control group. 
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* 

Figure 4. Ratio between noo-active and 3cti\"e surfactant components (mean (SO)) in the healthy control, 

ventilated c()ntrol, surfactant-treated, partial liquid Yelltilalion (PLV) and high (f-f) PEEP groups (SAJLA= small (0 large 

aggregates). * P < 0.05 l'S healthy control group. 

*t:J: *t:J: 
3 

Healthy Ventilated Surfactant H-PEEP PLV 
control control 

Figure 5. Lung injury score (mean (SD» in the healthy control, ventilated control, surfactant-treated, partial 

liquid ventilation (PLY) and high (l-J) PEEP groups. * P < 0.05 vs healthy control group; tP < 0.05 vs surfactant group; 

t p < 0.05 1'5 PLY group. 
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Table 2. Total phosphorus recovered from bronchoalveolar lavage fluid (mean (SD)) (11). * P<O.OS vs healthy 

controls (Healthy); t P<O.05 l'S to all other groups. Control:= ventilated controls with low PEEP; H·PEEP =: high PEEP; 

PLY = partial liquid ventilation; Surfactant::: exogenous surfactant therapy_ 

Total Phosphorus (f!mol mrl) 

Healthy 0.14 (0.06) 

Control 0.05 (0.01)' 

H-PEEP 0.05 (0.01)' 

PLY 0.05 (0.01)' 

Surfactant 0.45 (0.05)1 

Discussion 

We have shown that although exogenous surfactant therapy, ventilation with high PEEP 

and partial liquid ventilation all increased PaD, to greater than 50 kPa, their impact on transfer of 

proteins into the alveoli, lung injury, and on the surfactant system differed markedly. Ventilation 

with high PEEP and exogenous surfactant therapy prevented transfer of proteins into the alveoli, 

whereas partial liquid ventilation did not. Conversion of active to non-active surfactant aggregates 

was increased in both the partial liquid ventilation group and the group ventilated with high PEEP, 

but not in the surfactant-treated group. Lung injury score was reduced in both the partial liquid 

ventilation and surfactant groups compared with the groups that were ventilated only. 

The sustained improvement in Pa02 compared to the pre-lavage value in the group 

ventilated with high PEEP indicates that applied PIP and PEEP were sufficient to open the lungs 

and keep them open (Fig. I). That alveolar recruitment and stabilization in tltis group was a result 

of mechanically counterbalancing the increased retractive forces and not recovery of the 

endogenous surfactant system, was evident by the lack of improvement in surfactant variables of 

BAL fluid determined at the end of the study (Table 2). However, protein concentration ofBAL 

fluid was not increased during the 4-h ventilation period with high PEEP. This is important as 

plasma proteins are known to inhibit surfactant fimction in a dose-dependent manner [21]. 
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Therefore, protein leakage may mediate the destructive chain of events that lead to further 

progression of lung irtiury. The clinical significance of these findings in tlus high PEEP group 

remains to be determined, but studies by Kesecioglu, Tibboel and Lachmallll [II], and recently by 

Amato and colleagues [12], have shown improvement in Pa02 in patients when lIsing an 'open 

lung' strategy, and provided the first resuits indicating that the technique is associated with a 

decrease in morbidity and mortality [22]. 

In surfactant-deficient lungs, partial liquid ventilation with perfluorocarbons has been 

shown to provide adequate gas exchange, which was confirmed in our study (Fig. I) [10,23]. 

However, despite the high PaD, values which indicate that the lungs were kept open, we found 

that transfer of proteins into alveoli was increased after partial liquid ventilation for 4-h (Fig. 2). 

The mechanism responsible for this is not known. It is hypothesized that improvement in gas 

exchange with partial liquid ventilation resnits from filling the collapsed atelectatic alveoli in the 

dependent part of the lung with the non-compressible, high-density perfluorocarbons thus 

preventing end-expiratory collapse. In the non-dependent part of the lung, a thin film of 

perfluorocarbon is formed at the air-liquid interface because of evaporation of perfluorocarbons 

from the lower lung regions [23]. We specnlate that as a resuit of the low constant snrface tension 

of perfluorocarbons, the retractive forces in the non~dependent part of the lung are reduced, 

resulting in large volume changes at small increments in pressure, making these lungs prone to 

epithelial overstreching, which has been shown to damage the alveolar-capillary membrane leading 

to increased transfer of proteins into the alveoli [24] (for review see Dreyfuss and Saumon[2S]). 

This mechatusm is supported by a study of Cox and colleagues [26], who showed that during 

partial liquid ventilation perfluorocarbon is distributed predominantly to the lower lung regions, 

whereas gas ventilation takes place in the upper lung regions. Furthermore, several pathology 

studies have demonstrated a significant variance in lung injury between non-dependent and 

dependent lobes after partial liquid ventilation, with greater non-dependent lobe damage [27,28]. 

In our study, the partial liquid ventilation and surfactant groups underwent ventilation with 

the same PIP and PEEP pressures, but protein concentration of BAL fluid from the surfactant 

group was not increased (Fig. 2). Pulmonary surfactant has the unique property of reducing 

surface tension in parallel with a decrease in alveolar radius, thus keeping the ratio of surface 

tension/radius ofthe alveolus constant and preventing epithelial overstretching. Furthermore, as 
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seen in the surfactant-treated group, a lower lung injury score was found in the partial liquid 

ventilation group despite increased transfer of protein into the alveoli. Tlus probably reflects a 

direct effect of perfluorocarbon on inflammation processes, as ill vih'o evidence suggests a 

decrease in alveolar macrophage and neutrophil adherence, chemotaxis, phagocytosis and 

superoxide release [29,30]. 

Total lung capacity at a distending pressure of35 cm H,O (TLC,,) was decreased only in 

the ventilated control group (Fig. 3). As substances with surface tension lowering properties have 

been administered into the lungs of the partial liquid ventilation group and the surfactant-treated 

group, it is not surprising that TLC3S was preserved in these groups. However, preservation of 

TLC" in the group ventilated with high PEEP, but decreased TLC" in the ventilated control 

group, is striking as there were no differences in recovery of pulmonary surfactant between these 

groups (Fig. 4 and Table 2). We speculate that the difference in TLC" is explained by the 

difference in transfer of protein into the alveoli between these two groups, because of inhibition 

of the already compromised surfactant function by plasma proteins, as mentioned above. 

In our study, we used the lung lavage model which has been studied extensively and is 

considered a reliable model of acute lung injury [16]. Repeated whole-lung lavage produced an 

acute quantitative surfactant deficiency and, together with conventional mechanical ventilation 

leading to severe lung injury with impaired gas exchange, decreased lung compliance and FRC, 

increased permeability changes of the alveolo-capillairy membrane with oedema, and sustained 

pulmonary hypertension [\6,\7,3\]. Despite the fact that lung injury in this study was not 

representative of the pathology seen in humans with ALI, this model is ideal for testing 

interventions which may prove therapeutic for acute lung injury [4,6, \7]. 

In sunmlary we have shown that although exogenous surfactant therapy, mechanical 

ventilation with lugh PEEP and partial liquid ventilation opened up the lungs and kept them open, 

as indicated by the high PaD, values, the impact on pulmonary fimction differed markedly. Only 

with exogenous surfactant therapy was there improvement in all variables. Some studies have 

reported physiologic and pathological benefits of partial liquid ventilation or ventilation with high 

PEEP in combination with exogenous surfactant, but whether any of these hybrid teclmiques has 

advantages over the use of exogenous surfactant alone has yet to be confirmed. 
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Summary 

Pulmonary surfactant plays a role in ventilation-induced lung injury (YILI). Therefore, we 

investigated whether exogenous surfactant might restore gas exchange and lung mechanics in an 

established model ofVILI. From 24 adult rats, 6 animals were killed immediately after induction 

of anesthesia and were used as healthy controls. In 18 rats, vnJ was induced by increasing peak 

inspiratory pressure (PIP) to 45 cm H20 without positive end-expiratory pressure (PEEP) for 20 

min. Thereafter, animals were randomly divided into three groups of six animals each: One group 

was killed immediately after VIU (non-ventilated controls). In the other two groups, ventilator 

settings were changed to PIP ofJO em H20 and PEEP of 10 em H20, and respiratory rate of 40 

bpm. One group received surfactant and the other group received no treatment. Blood gas tension 

and arterial blood pressures were recorded every 30 min for two hours. Then, a pressure-volume 

curve was recorded, a brancho-alveolar lavage was performed to determine protein content, 

minimal surface tension and surfactant composition. Oxygenation, lung mechanics, surfactant 

function and composition were significantly improved in the surfactant-treated group compared 

to the ventilated and non-ventilated control groups. We conclude that exogenous surfactant can 

be used to treat YILI. 
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Introduction 

It is known that modes of mechanical ventilation which allow alveolar end-expiratory 

collapse andlor end-inspiratory alveolar overstretching lead to decreases in lung compliance (1-4) 

and gas exchange (5), and result in atelectasis, pulmonary edema, pneumonitis and fibrosis (6, 7). 

Development of intra-alveolar edema in healthy rats subjected to intermittent positive pressure 

ventilation at high inflation pressures, without positive end-expiratory pressure (PEEP), was fIrst 

demonstrated by Webb and Tierney and was later confirmed by DreyfilSs and colleagues who 

suggested that high inspiratory lung volumes induce endothelial and epithelial overstretching 

leading to microvascular injury (8, 9). However, it is increasingly realized that impairment of the 

surfactant system plays a key role in the mechanism of ventilation-induced lung injury (VLLI) in 

the above-mentioned model (5, 10-12); filrther on it has been shown that surfactant fimction is 

impaired by puhnonary edema constituents (13-15). Loss of surfactant function will increase the 

surface tension at the air-liquid interphase of the alveolar walls (l, 3), which will lead, amongst 

others, to alveolar collapse and to all increased suction force on the pulmonary interstitium 

resulting also in alveolar edema (5, 8-12). Continuous re-expansion and collapse during the 

ventilatOJY cycles causes epithelial and endothelial damage mainly due to shear forces (5, 10). In 

addition, we have shown that exogenous surfactant administration preceding mechanical 

ventilation with high peak inspiratory lung volumes without PEEP, could partially prevent VILI 

which is characterized by e.g. impaired gas exchange and lung mechanics (II). In this study we 

wanted to investigate whether exogenous surfactant is able to restore gas exchange and lung 

mechanics in VILI. 

Material and methods 

Animal Preparation 

TIllS study was approved by the local Animal Committee at the Erasmus University 

Rotterdam, and the care and handling of the animals conformed with European Community 

guidelines (86/609/EC). 

The study was performed in 24 adult male Sprague-Dawley rats (body weight 280-350 g). 

Anesthesia was induced with 2% enflurane and 65% nitrous oxide in oxygen, a polyethylene 

catheter was inserted into a carotid artery for drawing arterial blood samples and continuous 
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monitoring of arterial blood pressure. Immediately after, in a separate group of 6 animals a blood 

gas sample was taken and arterial blood pressure was measured, thell the animals were killed, the 

thorax was opened, and a static pressurcRvolume curve (p-Y curve) was recorded and a 

bronchoalveolar lavage (BAL) was perfomled. These animals served as a nOIl-YILI, non-ventilated 

control group (Healthy). In the remaining animals, before tracheostomy, the animals received 30 

mglkg pentobarbital sodium, Lp. (Nembutal·, Algin BV, Maassluis, the Netherlands). After 

tracheostomy, muscle relaxation was induced by pancuroniuTll bromide 0.6 mglkg, i.m. (Pavulon'X', 

Organoll Teknika, Boxtel, the Netherlands) immediately followed by connection to a ventilator 

and a pressure transducer for continuous monitoring of arterial blood pressure. The animals were 

mechanically ventilated with a Servo Velltilator 300 (Siemens-Elema, Solna, Sweden) in a pressure 

constant time-cycled mode, at all inspired oxygen concelltration (FiO,) of 1.0, frequency of 30 

breaths per minute (bpm), peak inspiratory pressure (PIP) of 12 cm H,O, postive elld-expiratory 

pressure (PEEP) of 2 cm H,O, and inspiratory/expiratory (lIE) ratio of I :2. Anesthesia was 

maintained with pentobarbital sodium 30 mglkglh, i.p.; muscle relaxation was maintained with 

pancuroniulU bromide 0.6 mglkg/h, i.m. Body temperature was kept within nonnal range by means 

of a heating pad. 

Experimental Design 

In order to produce YILI, PIP was increased to 45 cm H,O and PEEP was decreased to 

zero for 20 min, other settings were not changed. Thereafter, PIP was decreased to 26 em H20 

and PEEP was increased to 6 em fhO for 5 min, in order to increase arterial CO2 tension. These 

ventilator settings were chosen based on a pilot study (unpublished data) in which we observed 

that when animals were ventilated at 45/0 em H,O (PIPIPEEP, respectively) for 20 minutes and 

then ventilated at 30/10 em H,O, the animals died from severe hypocapnia. Then, the animals were 

disconnected from the ventilator and the lungs were emptied of edema fluid and a randomization 

was performed. 

Etperimenlal Groups 

The animals were randomized to one of three groups (IF6). The first group (Surfactant) 

received a bolus of exogenous surfactant (100 mglkg) intratracheally. The surfactant used was 

isolated from minced pig lungs, that were processed as previously described (16). The surfactant 

suspension, at a concentration of 40 mglmL, was administered as a bolus followed by a bolus of 

air 28 mVkg, directly into the endotracheal tube via a syringe, and was inunediately followed by 
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re-cOlUlection to the ventilator. Mechanical ventilation was continued at a PIP of30 cm lhO, 

PEEP of 10 cm H,O, liE ratio of 1 :2, FiO, 1.0, and respiratory rate of 40 bpm for two hours. 

These ventilator settings, were chosen based on results of a preliminary study which showed that 

applied ventilation pressures of26/6 cm H,O (PIP, PEEP, respectively) and 28/8 cm H,O were 

too low to keep animals alive for an observation period of2 hours. The second group (Ventilated) 

did not receive exogenous surfactant but received a sham bolus of air 28 ml./kg intra-tracheally 

and was mechanically ventilated at the same settings as the Surfactant group. The third group of 

animals (Non-Ventilated) were killed after the 5 minute ventilation period of 26/6 with an 

overdose of pentobarbital and were used as a non-treated, non-ventilated control group. 

Gas Erc/Jange and Hemodynamics 

Arterial blood gas samples were taken in all groups before, after VILI, and at 5 min after 

the 26/6 period, and in the Surfactant and Ventilated control groups at 5 min after the 30/10 

period, and every 30 min for 2 h. The samples were analyzed for arterial oxygen tension (PaO,) 

and arterial carbon dioxide tension (PaCO,) by conventional methods (ABL 505, Radiometer, 

Copenhagen, Denmark). At the same time points, arterial pressure was recorded. Hemodynamic 

support was provided by infilsion ofl ml of saline 0.9% (to a maximum of 2 tnl per hour) when mean 

arterial pressure (MAP) decreased below 60 nllllHg. 

Pressure-Volllme Cun'es 

At 120 min after exogenous surfactant therapy all altimals were killed with an overdose of 

pentobarbital sodium injected ulfough the penile vein. Then static P-V curves were recorded. After 

the thorax and diaphragm were opened, the tracheostomy catheter was cOlUlected to a pressure 

transducer (Validyne model DP 45-32, Validyne Engineering Co., Nortllfidge, CA, USA) with a 

syringe attached to it, and pressures were recorded on a polygraph (Grass model 7B, Grass 

Instrument Co., Quincy, MA., USA). Using a syringe filled with nitrogen (N,) the lungs were first 

inflated (within 10 sec) to an airway pressure of35 cm H,O, which was maintained for 5 sec, 

followed by deflation to an airway pressure of 0 cm H,O. Then the lungs were re-inflated in steps 

of 0.5 m1until an airway pressure of35 cm H,o was reached. Each inflation step took 1-2 sec 

followed by a 5-sec pause to allow pressure equilibration. Afler tltis, in the same way, the lungs 

were then deflated until an airway pressure of 0 cm H20 was reached. The volume ofN2 left in 

the syringe was recorded. Maximal compliance (C=,) was calculated from the steepest part of the 
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deflation limb (16). Total lung capacity (TLC,,) was defined as lung volume at inflation with a 

distending pressure of35 cm H20 (17). 

Gruemvald Illdex 

The Gruenwald index which characterizes the surfactant system ill silll (18), was calculated 

from the P-V curve, defined as (2V,+VIO)I2V=" where V" VIO and V=, are the lung volumes at 

transpulmonary pressures of5, 10 and 35 cm H20 from the deflation limb, respectively. 

Fllllcfiollal Residllal Capacity (FRC) 

After P-V recordings, the lungs were removed ell bloc and weighed, and lung volume at 

an airway pressure of 5 cm H20 (V,) was determined by fluid displacement. A positive pressure 

of5 cm H20 was chosen to compensate for the loss of trans pulmonary pressure in the open chest 

(19). The total lung volume at tlus distending pressure was considered close to FRC. 

Brollchoaiveolar lavage 

After the FRC measurement a BAL (30 ml/kg) was perfonned five times with saline-CaC!, 

1.5 nnnoi/litre(cmde lavage}. Thereafter, cell debris were removed from BAL by centrifugation 

at 400 g for 10 min. The active surfactant component in the BAL fluid was separated from the 

non-active surfactant component by difterential centrifilgation, followed by subsequent phosphoms 

analysis, and the ratio of non-active to active (small to large aggregate) snrfactant was calculated 

(20). Finally, the protein concentration of the BAL fluid was deternuned using the Bradford 

method (Bio-Rad protein-assay, Munich, Germany) (21). 

Minimal SUllace Tension 

Milumal surface tension of the cmde lavage was deternuned by means of a modified 

Wilhelmy balance (E. Biegler GmbH, Mauerbach, Austria). In this method, a tight-fitting teflon 

barrier reduces the surface area ofa teflon trough from 100-20% at a cycle speed ofO.33/min. 

Saline is used as subphase and is kept at 37°C. The force on a platinum slide (1x1 cm), dipped into 

the subphasc, is measured by a force transducer and expressed as surface tension. Further, 

maximal surface tension is measured at 100% surface area and minimal surface tension at 80% 

surface compression and expressed as milli Newton/meter (mN/m). Surface tension characteristics 

of a BAL sample are measured after applic~tion on the surface of the saline-filled trough. In tlus 

study 300 1,1 ofBAL fluid was applied to the surface ofthe trough; milumal surface tension was 

measured after 3 cycles (22). 
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Statistical data analysis 

Statistical analysis was performed using the Instat 2.0 biostatistics package (GraphPad 

software, San Diego, CA, USA). Intragroup comparisons were analyzed with repeated measures 

ANOV A. Intergroup comparisons for protein concentration in the supernatant of BAL, total 

phosphorous of small aggregates, total phosphorous oflarge aggregates, non-activelactive total 

phosphorous ratio, minimal surface tension of the crude lavage, Cm,." nc", Gruenwald index and 

V, were analysed by means of an ANOV A. Ifa p <0.05 was found, a post-hoc test was perforated 

(Tukey-Kramer). A t-test analysis was performed for intergroup comparisons during the 2-h study 

period, for PaO" PCO, and MAP in the Surfactant and Ventilated control groups. Statistical 

significance was accepted at p-values <0.05. All data are expressed as mean ± standard deviation. 

Results 

Figure 1 shows the PaO, levels during the whole study period. After the ventilator settings 

were set at 26/6 cm H,O for 5 minutes the PaO, decreased below 100 torr in all animals. The 

Surfactant group showed a significant increase in PaO, values to pre-VILI levels (p< 0.001), and 

were maintained during the 2-h study period. In the Ventilated control group, mean PaO, values 

remained below 200 torr during the 2-h study period: the difference between the values in the 

Ventilated group and the Surfactant group was significant throughout the study (p< 0.001). 

Table 1 shows that the PaCO, and MAP levels were comparable in both ventilated groups 

during the whole study period. 

Table 2 shows data from BAL fluid and lung mechanics. Protein concentration was 

significantly higher in the three Vll..I groups when compared with Healthy controls. Additionally, 

protein concentration was significantly lower in the Surfactant group than in the Non-Ventilated 

control group, but not significantly different from the Ventilated control group. The ratio of small 

to large aggregates in BAL fluid was significantly lower in the Surfactant group compared to the 

Non-Ventilated and the Ventilated control groups, and not different when compared with the 

Healthy group. The minimal surface tension of the crude lavage fluid in the Surfactant group was 

significantly lower than in the Non-Ventilated and the Ventilated control groups. In the Surfactant 

group the Gruenwald index, TLC", and Cm" were comparable with healthy values, and 

significantly higher than in the Non-ventilated and Ventilated control groups. However, V, values 
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were significan'ily lower in the Surfactant group than in the Healthy control group, but significantly 

higher than in the Non-ventilated and Ventilated control groups. 
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ventilation with Peak inspiratory pressure (PIP) 01'45 em H20 without PEEP after 20 min, 26/6= after 5 min at PIP 26 

em H20, 6cm H20 PEEP, 30/10= 5 min PIP 30cm H20, JO em H20 PEEP. * indicates signillcantdifference between 

th~ Surtactant ~oup and the Ventilated control group. 

Figure 2 shows the deflation limbs from the P-V curves. The Surfactant group had TLC", 

and C~, values comparable with the Healthy group, and significantly higher than both the Non­

ventilated and the Ventilated control groups. 
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Table 1. Data on arterial carbon dioxide tension (paC02) and mean arterial pressure (MAP) over time in the 

healthy control group (Healthy), non-Treated, 000- Ventilated control group (Non-Ventilated), Ventilated control group 

(Ventilated), and treated with surfactant group (Surfactant). Values are mean ± standard deviation. 

Time Healthy Non-Ventilated Ventilated Surfactant 

PaCO, (torr) Basal 39±5 38±8 38±6 41±6 

VILI 14±3' 21±1 I' 14±2' 

S' 26/6 33±1O 36±8 34±6 

S' 30/10 39±5 47±9 

30' 38±7 40±7 

60' 43±8 41±5 

90' 46±10 40±3 

120' 49±13 39±6 

MAP (torr) Basal 140±10 151±8 134±12 I 57±23 

VILI 77±26' 83±29' 89±31' 

S' 26/6 74±32' 68±43' 76±28' 

S' 30110 106±20' 122±23 

30' 107±20 104±16 

60' 73±23'! 101±14 

90' 86±23 89±22 

120' 88±28 I 19±1O 

vs Baseline p<O.05, t vs Surfactant p<O.05 
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Table 2. AmOlmt of recovered brancho-alveolar lavage (BAL) fluid, protein concentration, total phosphtirus 

of small aggregates (SA) and total phosphorus of large aggregates (LA), non-activeJacti vc total phosphorus ratio (SAfLA 

ratio). minimal surface tension (min surl) of crude BAL fluid, Gruenwald Index, total lung volume at a transpulmonary 

pressure of 5 em H20 (V 5), lung yolume above FRC at pressure 35 em lI20 (TLC3S) and maximum compliance (Cm.\.J. 

Values are mean ± standard deviation 

Recovery BAL fluid (%) 

Protein concentration 
BAL(mg/ml) 
SA (mmol) 

LA (mmol) 

SAILA ratio 

Min surf (mN/m) 

Gruenwald Index 

V5(mllkg) 

TLCJ5 (ml/kg) 

Cm" (mllkg) 

• vs Surfactant p< 0.05 

f \'S Healthy p<O.05 

Healthy 

90±1 

O.3±O.1 

O.S3±O.!' 

l.8±O.2' 

O.39±O.OS 

22.8±2.S' 

l.O±O.OJ 

24.3±S.6 

41±3.6 

4±O.S 
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Non- Ventilated Surfactant 
Ventilated 

90±1 90±1 90±J 

O.9±O.03't O.7±O.2t O.6±O.Jt 

l.2±O.I· l.2±O.2' 2.6±O.6 

l.O±O.2' I.3±O.5' JJ±2 

I.3±O.22't l.O±O.33't O.22±O.O8 

32.2±2.6't 29.5±I.I't 17.3±2.2 

O.20±O.08't O.37±O.2't O.96±O.06 

3.S±O.S't S.5±O.S't 13.O±l.Ot 

32±8't 32±S't 42±3 

l.8±O.7't l.6±O.3't 3.2±O.7 
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Discussion 

This study shows that exogenous surfactant given to rats suffering from VILI restored the 

gas exchange at the used ventilator settings to basal values, and improved lung mechanics. 

In the present study, 20 minutes of ventilation with high peak-inspiratory pressures 

without PEEP resulted in pulmonary edema and hypoxemia, and in impairment of the surfactant 

system. The latter is characterized by a decrease in pulmonary compliance, V" and Gruenwald 

Index. The exact mechanism by which the lung damage is produced by artificial ventilation is not 

yet entirely clear, but the role of surfactant changes is increasingly realised (1-5, II, 12,23,24). 

Two primary mechanisms of surfactant inactivation by mechanical ventilation have been described. 

In the first mechanism mechanical ventilation enhances surfactant release from the pneumocytes 

type II into the alveolus (1-4). This matenal is subsequently lost into the small airways as a result 

of compression of the surfactant film when the surface ofthe alveolus becomes smaller than the 

surface occupied by the surfactant molecules, so that surface active material moves into the 
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airways (1, 4, 24). The second mechanism describing the surfactant changes associated with 

mechanical ventilation is based on the observation that the alveolar surface area changes associated 

with mechanical ventilation result in the conversion of large surface-active surfactant aggregates 

into small nonsurface-active surfactant aggregates (S, 2S, 26). These two mechanisms will lead 

to alveolar collapse and protein infiltration (S, 8-12) in which the latter leads to further inactivation 

of surfactant (13-1S). These mechanisms produce self-perpetuating changes which require higher 

ventilator pressures which may finally be responsible for more parenchymal damage (S, 8-12). 

In the current study we used an exogenous surfactant to replace the surfactant lost and/or 

inactivated during YILI, trying to re-establish the physiological surface tension at the air-liquid 

interface. The exogenous surfactant used contains 1-2% of the surfactant proteins Band C which 

are a pre-requisite for a rapid adsorption at the air-liquid interface. In the Surfactant group a 

significant increase in arterial oxygen tension levels, comparable with basal values, was seen within 

S minutes and was sustained during the 2-h study period. At the end of the study period TLC", 

C=" and the Gruenwald Index, were significantly higher in the Surfactant group compared with 

the Ventilated and Non-Ventilated controls groups, and not significantly different from the healthy 

control group. Additionally, in the Surfactant group a low minimal surface tension of the BAL 

fluid was observed. It is known that one of the most important functions of the pulmonary 

surfactant system is the mechanical stabilisation of the lung alveoli during end-expiration. Tlus is 

aclueved by decreasing the surface tension in parallel with the decrease in alveolar radius (27). 

Conversely, a high surface tension will promote alveolar collapse during deflation of the lung (1-4, 

8-10). Based on our results, we assume that the alveolar surface tension was restored by 

exogenous surfactant in the Surfactant group, providing, together with PEEP, open alveoli 

resulting in almost normal arterial oxygen tension. In contrast, the Ventilated control group 

showed an impaired gas exchange and decreased alveolar stability, probably caused by the 

demonstrated lugh surface tension in the BAL fluid of this group. 

Another important filllction of pulmonary surfactant is the stabilization of fluid balance in 

the lung and preventing pulmonary edema (27-29). Therefore, loss of surfactant function will lead 

to alveolar edema which dilutes and inactivates the pulmonary surfactant. The protein level from 

the crude BAL fluid was significantly higher in all exposed to VILI groups compared with the 

Healthy group. Therefore the application of exogenous surfactant had no additional effect on the 

resolution of this edema during the 2-h study period. More studies have to be performed to 
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determine jf there are any changes in lung water, microvascular permeability, and histological 

parameters of edema when exogenous surfactant is used after VILL 

The model of VILI used in tllis study nlight resemble a clinical situation, especially when 

high inspiratory lung volumes are applied. It is known that mecharlical ventilation may damage the 

lung in the presence or absence of pre-existing lung disease and produces a sinlilar pattern ofiJ~ury 

as that observed during ARDS (23); mechanical ventilation can induce lung parenchymal damage 

especially in the surfactant deficient parts of the ARDS lungs and may further induce surfactant 

changes in those parts of the ARDS lung wllich still have an adequately functioning surfactant 

system (12). The possible clinical relevance of our study is that exogenous surfactant can be used 

not only to prevent YILT, but also as a treatment after VILI, restoring the surfactant fimction in 

those alveolar lIIlits already damaged and preventing damage ofthe intact alveolar units. 

In conclusion, our results show that exogenous surfactant can be used as a treatment for 

VILI, restoring lung function and lung mechanics. 
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Summary 

Backgroulld: Disturbances in lung function and lung mechanics are present after ventilation with 

high peak inspiratory pressures and low levels of PEEP. The combination of perfluorocarbon 

(PFC) with gas ventilation, better known as partial liquid ventilation (PL V), might be usenil for 

treatment of ventilation-induced lung injury (VIL!). Therefore, we investigated whether PLY can 

re-establish lung function after VILI has been induced. 

Method,·: Adult rats were exposed to high peak inspiratory pressures without PEEP for 20 

min. Thereafter, the animals were randomly divided into five groups. The first group was killed 

immediately after randomisation and used as a non-ventilated control. The second group received 

only mechanical ventilation, and three groups received PFC (10 mLlkg, 20 mLlkg, and 20 mLlkg 

plus 5 mLlkg afler one hour to compensate loss ofPFC due to evaporation). Then the four groups 

were mechanically ventilated for two hours. Blood gases, lung mechanics, total protein 

concentration, minimal surface tension, and small surfactant aggregates/large surfactant aggregates 

ratio were determined. 

Results: PLY improved gas exchange, dose and time dependent, and total lung compliance, 

but did not decrease the protein concentration Of the small aggregates/large aggregates ratio in 

bronchoalveolar fluid after 2 hours mechanical ventilation. 

Conclusion: PLY improves gas exchange and pulmonary compliance in YILI when evaporated 

PFC is replaced) but does not reduce the level of intra-alveolar protein concentration. 
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Introduction 

It is known that modes of mechanical ventilation which allow end-expiratory alveolar 

collapse and/or end-inspiratory alveolar overstretching result in a decrease of/ung compliance and 

gas exchange [l], and lead to atelectasis, pulmonary edema, pneumonitis and fibrosis [2,3]. 

Development of intra-alveolar protein-rich edema in healthy rats subjected to intermittent positive 

pressure ventilation at high inflation pressures, without positive end-expiratory pressure (PEEP), 

was first demonstrated by Webb and Tierney [4] and was later confirmed by Dreyfuss and 

colleagues who suggested that high inspiratory lung volumes induce endothelial and epithelial 

overstretching leading to nticrovascular injury [5,6]. Additionally, it is known that large changes 

in both volume and surface area result in surfactant depletion from the alveoli into the ainvays 

as well as to transfoTInation from surface active large aggregates to inactive small aggregates [7-

II]. Thus, loss of surfactant function will increase the surface tension at the air-liquid interface 

afthe alveolar walls resulting in alveolar coUapse and an increased suction force on the pulmonary 

interstitium which causes more alveolar edema. The epithelial/endothelial damage results mainly 

from the shear forces which appear in a non-homogeneous ventilated lung [6, I 0]. It is known that 

perfluorocarbons (PFCs) have a surfactant-like activity due to their low surface tension (18 

mN/m) wltich in a surfactant-deficient lung decreases the high surface tension at the air liquid 

interface [12-15]. Based on this low surface tension, the resulting peak inspiratory pressures 

during volume controlled ventilation are reduced [12-15]. Another property ofPFCs is their high 

density wltich, mainly in the dependent part of the lung, recruit collapsed alveolar units [12-16]. 

The combination ofPFCs with gas ventilation, better known as partial liquid ventilation (PL V), 

finally also improves gas exchange in surfactant-deficient lungs [12, l3]. Additionally, because 

PFCs ntight not be affected by the presence of plasma proteins in the alveolus, PFC ntight prove 

useful as treatment for VILI [17,18]. Therefore, the aim of this study was to establish whether 

PL V can re-establish lung function in ventilation-induced lung injury. 

Material and methods 

Animal Preparation 

This study was approved by the local Animal COllllnitlee at the Erasmus University 

Rotterdam. The study was performed in 30 adult male Sprague-Dawley rats (body weight 280-
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350 g). After induction of anesthesia with 2% enflurane and 65% nitrous oxide in oxygen, a 

polyethylene catheter was inserted into a carotid artery for drawing arterial blood samples and 

continuous monitoring of arterial blood pressure. Before tracheostomy, the animals received 30 

mVkg pentobarbital sodium, intraperitoneal (i.p.) (Nembutal·, Algin BV, Maassluis, the 

Netherlands). After tracheostomy, muscle relaxation was induced by pancuronium bromide 0.6 

mVkg, intramuscular (i.m.) (Pavulon®, Organon Teknika, Boxtel, the Netherlands) inmlediately 

followed by connection to a ventilator and a pressure transducer for continuous monitoring of 

arterial blood pressure. The animals were mechanically ventilated with a Servo Ventilator 300 

(Siemens-Elema, Soilla, Sweden) in a pressure constant time-cycled mode, at an inspired oxygen 

concentration (Fi02) of 1.0, frequency ofJO breaths per minute (bpm), peak inspiratory pressure 

(PIP) of 12 cm H20, postive end-expiratory pressure (PEEP) of 2 cm H20, and 

inspiratory/expiratory (lIE) ratio of I :2. Anesthesia was maintained with pentobarbital sodium 30 

mL/kg/h, i.p.; muscle relaxation was maintained with pancuronium bromide 0.6 mLlkg/h i.m. 

Body temperature was kept within normal range by means of a heating pad. 

Etperimenfal Design 

In order to produce VILI, PIP was increased to 45 cm H20 and PEEP was decreased to 

zero for 20 min, whereas the other ventilator settings were not changed. Thereafter, PIP was 

decreased to 26 Col H20 and PEEP was increased to 6 Col H20 for 5-min. Then, the animals were 

disconnected from the ventilator to ambient pressure to allow some edema fluid (1-2 ml) to flow 

from the lungs; after this procedure the animals were randomized. 

Experimental qrollps 

The animals were randomised to one of five groups (n~6 per group). In the first group 

(Non-Ventilated) the animals were killed afier the 5-minute ventilation period of26/6 (PIPIPEEP) 

with an overdose of pentobarbital and were used as a non-treated, non-ventilated control group. 

The secoud group (Ventilated) received a sham bolus of air 28 mLlkg intra-tracheally and was 

mechanically ventilated at a PIP of30 cm H20, PEEP of 10 Clll H20, lIE ratio of 1 :2, Fi02 1.0, 

and respiratory rate of 40 bpm for two hours. These ventilator settings were chosen based on 

results of a preliminary study which showed that applied ventilation pressures of 26/6 cm H20 

(PIP, PEEP, respectively) and 28/8 cm H20 were too low to keep animals alive for an observation 

period of 2 hours. Three groups received PFC at a dose of: 10 lI1L1kg (PFC IO), 20 mLlkg 

(PFC,,), or 20 mLlkg plus an extra dose of 5 mLlkg (PFC"'R). 
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Treatment with PFC 

The PFC used in tltis study (Liquivent®, Alliance Pharmaceutical, San Diego, CA, USA) 

is insoluble in water, has a specific gravity of 1.918 g1cm at 25°C, a surface tension of 18.1 

dyneslcm, vapor pressure of3.6 kPa at 20°C and 10.5 kPa at 37°C, an oxygen solubility of 53 

mLlIOO mL and CO, solubility of21O mLlIOO mL at 37°C, at I atmosphere pressure [12, 13]. 

The groups PFCIO and PFC20 received a single dose ofPFC intratracheally. The PFC20+R group 

received an initial dose of20 mLlkg ofPFC and, after 60 minutes, an extra dose of 5 mLlkg of 

PFC was instilled intratracheally to compensate loss ofPFC due to evaporation. At instillation 

animals were disconnected from the ventilator and PFe was administered directly into the 

endotracheal tube over 3 to 5 sec; the animals were then immediately reconnected to the 

ventilator. 

Gas Exchange Gnd Hemodynamics 

Arterial blood gas samples were taken in all groups before, after VlLr, and at 5 min after 

the 2616 period, and in the four ventilated groups at 5 min after the 30/10 period, and every 30 

min for 2 h. The samples were analyzed for arterial oxygen tension (paO,) and arterial carbon 

dioxide tension (paCO,) by conventional methods (ABL 505, Radiometer, Copenhagen, 

Denmark). At the same time points, arterial pressure was recorded. Hemodynamic support was 

provided by infusion of I n~ of saline (to a maximum of 2 n~ per hour) when mean arterial pressure 

(MAP) decreased below 60 nunHg. 

Pressure-Volume (P-V) Cw'ves 

At 120 min after admittistration of PFC all animals were killed with an overdose of 

pentobarbital sodium injected through the penile vene. Then static P-V curves were recorded. After 

the thorax and diaphragm were opened, the tracheostomy catheter was cOJlnected to a pressure 

transducer (Validyne model DP 45-32, Validyne Engineering Co., Northridge, CA, USA) with 

a syringe attached to it, and pressures were recorded on a polygraph (Grass model 7B, Grass 

rnstnllllent Co., Quincy, MA., USA). Using a sym,ge filled with nitrogen (N,) the lungs were first 

inflated (within 10 sec) to an airway pressure of35 cm H,O, which was maintained for 5 sec, 

followed by deflation to an ainvay pressure of 0 cm H,O. Then the lungs were re-inflated in steps 

of 0.5 ml until an ainvay pressure of35 cm H,O was reached. Each inflation step took 1-2 sec 

followed by a 5-sec pause to allow pressure equilibration. After tlus, in the same way, the lungs 
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were then deflated until an airway pressure of 0 em H20 was reached. The volume ofN2 left in 

the syringe was recorded. The lower inflection point (LIP) was determined from the intersection 

of the lines representing the minimum slope of the compliance curve and the maximum slope of 

the compliance curve. Maximal compliance (Cm,,) was calculated from the steepest part of the 

deflation limb [19]. Total lung capacity (TLC,,) was defined as lung volume at inflation with a 

distending pressure of35 cm H20 [20]. 

Grueml'ald Illdex 

The Gruenwald index which characterises the surfactant system ill situ [21], was calculated 

from the P-V curve, defined as (2V,+V IO)/2V m", where V" VIO and Vm" are the lung volumes 

at transpulmonary pressures of 5, 10 and 35 cm H20 from the deflation limb, respectively. 

Brollchoalveolar lavage (BAL) 

After the P-V curve recordings a BAL (30 mLlkg) was performed five times with saline­

CaC!, 1.5 mmoVlitre (crude lavage). Thereafter, cell debris were removed from BAL by 

centrifugation at 400 g for 10 min. The active surfactant component in the BAL fluid was 

separated from the non-active surfactant component by differential centriihgation, followed by 

phosphorus analysis, and the ratio of non-active to active (small to large aggregate) surfactant 

was calculated [22]. Finally, the protein concentration of the BAL fluid was determined using the 

Bradford method (Bio-Rad protein-assay, Munich, Germany) [23]. 

Minimal Sm/ace Tension 

Minimal surface tension of the cmde lavage was determined by means of a modified 

Wilhelmy balance (E. Biegler GmbH, Mauerbach, Austria). In tills method, a tight-fitting teflon 

barrier reduces the surface area of a teflon trough from 100-20% at a cycle speed of 0.33/min. 

Saline is used as subphase and is kept at 37°C. The force on a platinum slide (lxl cm) is measured 

by a force transducer and expressed as surface tension. Further, maximal surface tension is 

measured at 100% surface area and minimal surface tension at 80% surface compression and 

expressed as milli Newton/meter (mN/m). Surface tension characteristics of a BAL sample are 

measured after application on the surface of the saline-filled trough. In tills study 300 f" ofBAL 

fluid was applied to the surface of the trough; surface tension was measured after 3 cycles [24]. 

Statistical analysis 

Statistical analysis was performed using the Instat 2.0 biostatistics package (GraphPad 
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software, San Diego, CA, USA). Intragroup comparisons were analysed with repeated measures 

ANOV A; intergroup comparisons were analysed with ANOV A. Ifa difference was fonnd, a post­

hoc test was performed (Tukey-Kramer). Statistical significance was accepted at p-values <0.05. 

All data are expressed as mean ± standard deviation. 

Results 

Figure I shows the PaD, levels during the whole study period. After VILI and after the 

ventilator settings were set at 26/6 cm H,O for 5 minutes the PaD, decreased below 13.3 kPa in 

all groups. After PFC instillation and after increasing the pressures to 30/1 0 cm H,O the PFC20 

and PFC20'R groups showed a significant increase in PaD, values to pre-VILI levels (p < 0.00 I), 

but only the PFClO'R group maintained oxygen tension levels above 60 kPa during the 2-h study 

period. In both groups with a single dose ofPFC (PFCIO and PFC",) PaO, values decreased over 

time. There were significant differences between the values in the Ventilated and PFC IO groups 

compared with the values of the PFClO'R throughout the study period (p<O.OOI). 

Table I shows that the PaCO, values and MAP levels were comparable in all groups 

during the whole study period. 

TabJe 2 shows data from BAL fluid and lung mechanics. Protein concentration was 

significantly higller in the PFC IO group compared with the Non-Ventilated group and the PFC''''R 

group. The Gmenwald Index and the minimal surface tension ofthe cmde lavage fluid, from all 

ventilated groups were not significantly different from the Non-Ventilated control group. For data 

on TLC", C~" and LIP, see Table 2 and Fig. 2afb. The total phosphorous concentration in the 

BAL fluid was not difterent between groups. 

The ratio of small to large aggregates in BAL fluid was significantly higher in the four 

ventilated groups compared with the Non-Ventilated control group, and there was no significant 

difference between the ventilated control group and all the PFC-treated groups. 

Figure 2a shows the inflation limbs from the P-V curves. Both PFC treated groups with 

20 mLlkg have a significantly lower opening pressure (LIP) than both Non-Ventilated and the 

Ventilated control groups. Figure 2b shows the deflation limbs from the P-V curves. The three 

PFC treated groups had a significantly higller TLC" and C=, than both the Non-Ventilated group 

and the Ventilated control groups (Table 2). 
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Figure 1. Arterial oxygen tension (mean ± standard deviation) during the whole study period. B = baseline, VILI 

= ventilation with Peak inspiratory pressure (PIP) of 45 em IhO without PEEP ailcr 20 min, 26/6 = aller 5 min at PIP 

26 em H20, 6 em H20 PEEP. " indicates significant diflerence with Ventilated control group, + indicates significant 

dill'erence with PFCIO • A indicates significant diftcrence with PFC20. 
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Table 1. Data on arterial carbon dioxide tension (poCOl ) and mean arterial pressure (rv1AP) over time in the 

groups treated, Non· Ventilated = Non·vcntilated control. Ventilated = Ventilated control. PFCIO = partial liquid 

ventilation (PL V) with pertluorocarbons (PFC) at dose 10 mglkg, PFC2J} = PL V with PFC at dose 20 mgJkg; PFC20+R= 

PLY with PFC at dose 20 mglkg plus 5 mglkg after 60 minutes ofycntilalion. VJLI = \'cntilation-induced lung injury, 

Baseline = measurement before VILI. Values are mean ± standard deviation. 

Time Non- Ventilated PFCIO PFC" PFC20tR 

Ventilated 
PaCO, (kPa) Baseline 4.7±O.7 5.3±1.6 4.8±O.97 4.9±O.8 5.6±1. 7 

VILI 2.5±O.3 2.4±O.6 2.5±O.35 2.7±O.4 2.9±O.5 

5' 26/6 4.7±O.7 5.3±1.0 5.0±2.1 5.2±O.89 6.7±1.7 

5' 30110 5. 3± 1.3 4.3±O.4 4.8±O.7 5.7±O.8 

30' 5.6±1.3 3.9±O.4 4.4±O.9 5.4±O.9 

60' 6.3±1.6 4.4±1.3 4.4±O.7 4.7±1 

90' 6.5±1.3 4.8±1.2 4.7±O.5 5.6±O.8 

120' 6.9±1.8 4.8±2.1 4.9±O.3 4.4±O.9 

MAP (mmHg) Baseline 135±16 134±15 144±6 140±24 136±17 

VILI 75±25 84±32 72±25 85±22 71±21 

5' 26/6 74±30 63±42 47±24 67±36 89±32 

5' 30110 1I1±12 88±24 I06±25 97±14 

30' 91±24 80±20 89±21 90±9 

60' 89±19 78±17 95±15 95±37 

90' 86±29 76±17 97±15 97±12 

120' 89±27 85±9 73±24 80±13 
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Figure 2. 2.a) Inflation limbs from the pressure-volume curves, (mean ± standard deviation). Non-Vent = Non-

ventilated group. Lower inflection point. 2.b) Deflation limbs from the prcssure-vohullC curves, (mean ± standard 

deviation). * indicates significant difterences PFC20+R vs Non-Ventilated, ** indicates significant differences between 

PFC20+R vs Ventilated, + indicates significant differences between PFC20 'IS Ventilated, 'PFCIO 'IS Non-Ventilated, 0 

indicates significant dilTercnce between PFClOvs Ventilated, ... indicates significant difference between PFC20 'IS Non­

Ventilated. 
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Table 2. Amount of recovered broneha-alveolar lavage (BAL) Huid, protein concentration, lung volume above 

FRC at pressure 35 em H20 (TLe)), maximum compliance (Cma.~), Gruenwald Index, lower inflection point of the 

pressure-volume cun'c (LIP), minimal surface tension (min surf) of crude BAL fluid, total phosphorus concentration, 

and small aggregates (SA)lIarge aggregates (LA) ratio. Non-Vent = Non- Ventilated Control group. Ventilated = 

Ventilated control group. PFC IO '" PFC 10 mglkg. PFC20 = PFC 20 mglkg. PFCWR = PFC 20 mglkg + 5 mglkg at 60 

min of study period to replace PFC loss due to evaporation. Values arc mean ± standard deviation. 

Non-Vent 

Recovery BAL fluid (%) 90± I 

Prot. Conc. BAL (mg/ml) I.3±O.3' 

TLC" 3S±2" 

G .... ellwald Illdex O.30±O.09 

Ventilated 

90±1 

1.4±O.4 

31±3++H 

1.4±O.2*+·· 

O.4O±O.17 

PFCIO 

90±1 

1.9±O.2 

3S±4 

2.4±O.2 

O.4O±O.O7 

PFC20 PFC20+R 

90±1 90±1 

l.S±O.3 1.4±O ... 

39±4 42±S 

2.6±O.2 2.S±O.6 

O.4±O.O7 O.S±O.2 

LIP (cm H20) IS.3±1.4"" lS.2±2"" IO.S±1.2" 1O.6±3.3" 6.7±1.9' 

Mill surf (mN/m) 33±3.1 31±1.6 35±2.1 3S±O.S 32±3.9 

Total phospho .... s (111/1101) 2.0±O.6 

SA/LA ratio 

• \1 PFC p< 0.05 
10 

+\'SPFC p<O.05 
20 

"\'SPFC p<O.05 
20+R 

Discussion 

l.7±1.1 

1.4±O.S 1.7±0.4 I.5±O.3 1.5±O.2 

4.6±2.7 4.6±2.3 S.6±3.S 4.2±2.7 

This study shows that partial liquid ventilation improves Pa02 and lung mechanics in 

ventiiatiollMillduced lung injury, despite the presence of a high intraRalveolar protein 

concentration. 

In the present study, 20 min of ventilation with high peak-inspiratory pressures without 

PEEP resulted in pulmonary edema and hypoxemia, and in impalnllcnt of the pulmonary surfactant 

system. The latter is characterised by a decrease in lung mechanics and Gruenwald Index, and a 

high minimal surface tension in BAL fluid compared with healthy rat lungs [10]. The exact 
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mechanism by which the lung damage is produced by artificial ventilation is not yet entirely clear, 

but the role of surfactant changes is becoming increasingly realised [10, 11,17]. Recently, our 

group showed that modes of mechanical ventilation with large tidal volume without PEEP disturb 

the surfactant system in the used animal model ofVILI [10]. It has been demonstrated that loss 

of surface active molecules due to mechanical ventilation with high inspiratory lung volumes 

without PEEP is produced by displacement of surfactant from the alveolar air-liquid interface into 

the small airways [4,7]. Moreover, the surface area changes produced by the high inspiratory lung 

volumes lead to an increased rate of conversion of active into non-active surfactant subfractions 

[8-11]. These together will lead to alveolar collapse and protein infiltration [4-6,10, II] in which 

the latter leads to fhrther inactivation of surfactant [25,26]. In the current study we used partial 

liquid ventilatiou to correct the lung ihnction affected by YILI. The results shown that after YILI 

partial liquid ventilation produced an immediate improvement in PaOl, dose and time dependent. 

In the group treated with 10 mVkg of per fluorocarbon the pre-YILI values ofPaO, were never 

reached, while in both groups treated with 20 mL/kg PFC within 5 min there was a significant 

increase in Pa02 values compared with values after VILI, and these improved values were 

comparable with baseline values. However, Pa02 decreased over time in both groups in which 

perfluorocarbon was not replaced. It has been shown that in surfactant-deficient animal lungs 

partial liquid ventilation provides adequate gas exchange as long as a sufficient amount ofPFC 

is present in the lungs [12-15]. Our group has demonstrated that higher doses ofPFC lead to 

higher levels of oxygenation in animals suffering from acute respiratory failure as a result of dose­

dependent recruitment of collapsed atelectatic alveoli by PFC [12,13]. It is also known that 

oxygenation deteriorates over time if no additional doses ofPFC are instilled; this is attributed to 

evaporation ofPFC which will cause aftected alveoli to collapse [12,13]. 

In the present study, the inflation limbs of the P-V curves showed on the one hand a 

significantly lower opening pressure in the three PFC-treated groups, and on the other n 

significantly higher total lung capacity and maximal compliance compared with both control 

groups. The reason for tlus is that in surfactant-deficient lungs, the decrease of SUI face tension at 

the air-liquid interface by PFC improves the mechanical properties of the lung [12,13,27-30]. 

Dreyfuss et al. advocated that an important benefit ofPFC on lung mechanics was the reduction 

ofthe mechanical nonuniformity of flooded lungs and probably opposition to overinflation ofthe 
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more compliant, aereated zones [27]. But the results from the present study and other studies 

[29,30] would not support the findings of Dreyfuss and colleagues because our data, which 

characterise (indirectly) overinflation of alveoli i.e. a high SAILA ratio [8,9] and high alveolar 

protein influx [5], just indicate overinflation. 

A side effect ofPFC may be the constant surface tension which does not change with the 

changes in surface area (which is a property of natural surfactant) so that the end-expiratory 

stability in the PFC-treated animals (characterised by the Gruenwald Index) was the same as in 

the Ventilated control animals [IS]. 

As mentioned above, in the current study the protein level from the crude BAL fluid in all 

ventilated groups was as high as in the Non-Ventilated control group. Moreover, in both PFC 

treated groups without replacement, an increase in the total protein concentration was observed. 

Dreyfuss et aI. showed in rats that PFC partially reversed the effects of alveolar flooding, but did 

not reduce the permeability changes on the alveolo-capillary membrane measured by I"I-Iabeled 

serum albumin [27]. This is partially supported by our data showing that with a larger amount of 

PFC in the lung, the total amount of protein in the BAL fluid is less. How PFC prevents protein 

infiltration and alveolar flooding is not entirely clear. It has been suggested that as a result of the 

PFC-filled alveoli the suction forces on the interstitium more or less disappear thus preventing 

protein influx into the PFC-filled alveoli. However, alveoli which have only a PFC mm at the air­

liquid interface and which may collapse during expiration will promote alveolar flooding due to 

their high surface tension at end-expiration: this explains why the amount of proteins in the PFC 

group receiving only 10 mIJkg PFC is significantly higher than in the group treated with 20 mLlkg 

ofPFC. 

In conclusion, our results in tillS animal study show that, in VILI, partial liquid ventilation 

improves gas exchange and pulmonary function, despite the presence of a high intra-alveolar 

protein concentration. However, the loss of perfluorocarbon over time due to evaporation has to 

be replaced. 
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Chapter 7 

Introduction 

Mechanical ventilation has been used during the last 30 years as the most important 

treatment of the acute respiratory failure (ARF) and neonatal respiratory distress syndrome 

(IRDS). The classical paper on ARF by Ashbaugh and colleagues, describes the consequences of 

closed lung units: Hypoxemia; intrapulmonary shunt (under the assumption that the hypoxic 

pulmonary vasoconstriction is inhibited) and atelectasis. Mechanical ventilation was used in all 12 

patients to re-expand collapsed lung units, and to prevent re-collapse of those alveoli, positive end­

expiratory pressure (PEEP) was initially applied (in only five patients) at levels of 5-7 cmH20. The 

authors conclude that "PEEP is most helpful in combating atelectasis and hypoxemia" [I]. 

The same group used positive pressure ventilation with PEEP at levels of7-10 cmH20, in 

21 patients with ARF. They found that once alveoli are collapsed, high pressure amplitudes are 

required for mechanical ventilation, in which the supplied gas is mainly distributed to healthy 

alveoli. Higher peak inspiratory pressures (PIP) between 60-70 cm H20 were required to achieve 

tidal volumes of 400-500 m!. The combination of PIP and PEEP could improve oxygenation; when 

mechanical ventilation was applied without PEEP, alveolar collapse occurred during the expiratory 

phase [2]. 

Kirbyet a!. [3), used levels of PEEP ;, 25 cm H20 in 28 patients with ARF. They showed 

that very high inspiratory pressures (up to 160 cmH20) were initially required to deliver a tidal 

volume of 1000 m!. PEEP produced better values of oxygenation without hemodynamic 

compromise. A low rate of barotrauma was observed, and survival was reported to be 61%. 

It is known that high pressure amplitudes, high tidal volumes, and low levels of PEEP can 

damage the lung. Many ventilator designs and ventilation strategies have been developed to 

improve oxygenation, which at the same time avoid ventilation-induced lung injury (VIL!) [4). 

Nowadays, to obtain reasonable gas exchange a recmitment manoeuvre to open most lung units, 

has been advocated. Thereafier, a mode ofventilaton with lower pressure amplitude, with low 

inspiratory pressures and sufficient levels of PEEP has been reconmlended [5]. It is believed that 

tlus ventilatory strategy may play an important role in modifYing the disease process. 

Physiologic bacl<g,·olllld 

The relation between airway pressures and lung volumes has been the focus of basic lung 
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physiology. This relation is determined by the interaction of millions of individual alveoli. To 

understand the behaviour of the entire lung it is, therefore, helpful to look first at a single 

alveolus. 

The membrane of each alveolus is composed of different layers, starting with the capillary 

endothelium, the basement membranes, the connective tissue, the epithelial layer and finally the 

intraalveolar surfactant film. The tissue contains elastic and nonelastic fibers that limit the 

expansion of an alveolus beyond its elastic properties. The surface tension at the air-liquid interface 

adds to the retractive forces of the alveolar wall [6]. 

In 1929, von Neergard first called attention to the contribution of the alveolar surface 

tension to the retractive forces of the lungs [7]. He considered the formation of a bubble on the end 

of a capillary tube as an analogue for the surface geometry of an alveolus. For this model the law 

of LaPlace provides a mathematical explanation: P = 2y / r; where P is the pressure inside the 

bubble, y the surface tension of the liquid and r the radius of the bubble [6]. The physiological 

behaviour of the alveolus can be described by the following model (Figure 1). Before any pressure 

is applied, the fluid covers the orifice of the capillary tube as a flat perpendicular film. Increasing 

the pressure in the capillary will start the formation of a small bubble. The pressure within the 

system rises until the bubble's shape approaches that of a hemisphere. The bubble now has the 

same radius as the tube. Once the pressure within the bubble exceeds a critical pressure, the bubble 

overcomes the hemispheric state; it opens. Now the bubble can be kept open with a much lower 

pressure than the critical opening pressure. In an open bubble the pressure changes required to 

induce certain changes in volume are now significantly lower compared to the closed state [6]. 

Applying these concepts to the inflation of a surfactant-deficient collapsed alveolus, it 

becomes apparent that surface forces, as stated hI the law of LaPlace, act predominantly at a low 

alveolar radius; they hinder alveolar opening. Once, the alveolus is opened, however, and willie 

maintaining identical opening pressures the volume increases rapidly to about two thirds of the 

maximal volume up to the point where the tissue forces begin to oppose further expansion. The 

pressure within this newly expanded alveolus can now be decreased until the bubble reaches its 

unstable state, and collapses. In a healthy alveoli with a normal surfactant system tills collapse 

pressure is reduced to 3-5 em H20. In other words, due to the fact that at end-expiration surface 

tension decreases almost to zero, the required pressure to stabilise healthy alveoli is only 3-5 em 
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H20 which is equal to the applied transpulmonary pressure. This, in general, prevents a healthy 

lung from collapse. However, should the alveolus collapse once again, an active fe-expansion is 

required to open it [8]. Thereafter, the pressures are reduced and kept at a value slightly above the 

previously determined collapsing pressure. This pressure level depends mainly on the fimction of 

the surfactant system [9]. In summary, the behaviour of alveoli is quantal: they are either open or 

closed. No stable state in between these endpoints exists. However, wIllIe maintaining identical 

opening pressures the volume increases rapidly to about two thirds of the maximal volume up to 

the point where the tissue forces begin to oppose further expansion. The pressure within tllis newly 

expanded alveolus can now be decreased until the bubble reaches its unstable state, and collapses. 

In a healthy alveoli with a normal surfactant system this collapse pressure is reduced to 3-5 em 

H20. In other words, due to the fact that at end-expiration surface tension decreases almost to 

zero, the required pressure to stabilise healthy alveoli is only 3-5 cm H20 which is equal to the 

applied transpu~llonary pressure. This, in general, prevents a healthy lung from collapse. However, 

should the alveolus collapse once again, an active re-expansion is required to open it [8]. 

Thereafter, the pressures are reduced and kept at a value slightly above the previously detenllined 

collapsing pressure. This pressure level depends mainly on the function of the surfactant system 

[9]. In sunmlary, the behaviour of alveoli is quantal: they are either open or closed. No stable state 

in between these endpoints exists. TillS quantal alveolar physiology was demonstrated by Mead 

[6]and Staub et al. [10] and was confirmed in computer tomography studies by Wegenius et al. 

[10-11]. 

Ventilatory strategies to avoid ventilation-induced lung injury 

ARF and IRDS are characterised by atelectasis. Positive pressure ventilation has been used 

to re-expand alveoli and to minimise atelectasis. However, the application of high inspiratory 

pressures and volumes with the associated overdistention of open alveoli, combined with a low 

expiratory volume, increases the risk of barotrauma and volutrauma [4]. On the other hand, low 

levels of PEEP may also contribute to ventilation-induced lung injury by allowing alveoli to 

collapse and re-open during each respiratory cycle [4]. Shear forces are the result and may be 

responsible for a massive release of mediators into the alveoli [12] and into the pulmonary 

circulation [13]. In addition, an alteration of the surfactant function, and bacterial translocation at 
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low PEEP have been demonstrated [14]. 
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Figure I. Physiological behaviour oflhe alveolus. The pressure (P)-volume(V) relation is displayed in X-Y 

axes. On the right side, the status of the brancho-alveolar unit lts radius (r) reflects the pressure-volwne relation (I-IV). 

Surface tension in pathological (TI) and normal conditions (T2). The arrows show the direction ITom closed (bottom) 

to open (top) states and vice versa (modified from Mead, 1961). For more detail see text. 

To protect the lung against VILI, Lachmann et al. proposed that a protective ventilatory 

strategy based on the law of LaPlace should be used [5,8]. They showed that; raising airway 

pressures higber than 40 cm H20 resulted in a recruitment of most functional alveolar units. Once 

opened these units should be kept open by the minimal PEEP level, and gas exchange can be kept 

in the normal range even at low pressure amplitude between PIP and PEEP. These low pressure 

amplitudes produce less shear forces, and thus protect against VILI. However, only a few clinical 
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studies have been performed using this ventilatory strategy [5,15]. Tlus strategy produces a 

ventilatory condition which saves the lung from further damage, allows a reduction of Fi02• 

promotes the resorption of interstitial and intrapulmonary edema, and finally reduces the pulmonary 

artery pressures by overcoming the hypoxic pulmonary vasoconstriction [5]. 

A similar protective ventilatory strategy can be applied using lugh frequency oscillatory 

ventilation (HFOV) at high levels of mean airways pressure, which results in low oscillation 

pressure amplitude, low tidal volumes and normal values of carbon dioxide (paCO,) [16]. Froese's 

group showed that HFOV is useful to protect the lung, but only after a re~expansion manoeuvre. 

The oscillation pressure amplitude itself is adjusted according to PaCO, values [17]. The ease of 

this intervention, makes tlus strategy a standard of ventilation in some neonatal intensive care units. 

However, its usefulness has been questioned by multicenter studies, in which no initial re~expansioll 

manoeuvre was performed, showing no significant differences between HFOV and conventional 

mechanical ventilation [18]. 

With the intention to protect the lung against VILI, an international consensus conference 

compiled the following reCOIl1l11endations: The plateau pressure should be limited to 35 cm H20, 

the tidal volume should be as low as 5 mVkg, pennissive hypercapnia was allowed if nonnocapnia 

is not achievable at a limited plateau pressure, and the FiO, should be mininused. In addition, a re­

expansion manoeuvre should be performed [19]. In relation to all these reconll1lendations, some 

clinical studies have been performed. The efiects oflimited tidal volumes (Vt) and PIP were studied 

by two difterent groups; Brochard et al. [20], in a multicentric study, used a protective ventilatory 

strategy. It consisted of limiting the plateau pressure to 25 cm H20, and was compared with 

standard ventilation, Vt;, 10 ml/kg and PIP below 60 cm H,O. It was shown that Iinuting PIP to 

25 cm H20 does not produce a protective effect, and no difterences in mortality or multi-organ 

system failure were found between the groups. However, PIP was not reported in the standard 

ventilation group. 

Stewart et al. [21] prospectively studied patients at high risk for ARDS or with ARDS. The 

authors compared a protective strategy of ventilation, with tidal volumes of 7 mVkg, against a 

control group with tidal volume between 10-15 mVkg. No difterences in mortality were found 

between groups. This absence of differences could be attributable to the fact that in both groups 

plateau pressures were below 30 cm H20. In both studies, neither in the protective strategy nor 
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in the control group was a recruitment procedure done, and PEEP levels were not tritrated to 

prevent alveolar collapse. Thus, in these trials the lungs were allowed to Hclose". Tills ventilation 

at low lung volumes, in contrast to the protective low PIP, may have contributed to YILI. 

Amato et al. [22] compared another ventilatory strategy against conventional ventilation 

in 53 patients with ARDS. Their ventilatory strategy aimed at lung protection. The PEEP level was 

set above the lower inflection point (Pflex) on the static pressure-volume curve. At the same time, 

tidal volume was limited to 6 ml/kg or PIP to 40 em H,O independent of the tidal volume. 

Permissive hypercapllla was allowed. Their study shows the importance of ventilating at low 

pressure amplitude between PIP and PEEP. A higher survival rate at 28 days in the protective 

ventilatory strategy, a lower incidence of barotrauma and a higher rate of weaning were observed. 

However, the open lung procedure with a PIP of 30-35 cm H,O, could not effectively open all 

alveolar units and, therefore, these low tidal volumes produced hypoventilation and 

hypercarpnia. 

Fort et al. [23], studied the effect of HFOV in adults with ARF in which conventional 

mechanical ventilation had failed to improve oxygenation. They showed, in tills preliminary report, 

that applying a recmitment procedure by raising the Mawp in steps of 2 cm up to 45 cm H,O 

(which was not applied during conventional mechanical ventilation), an oxygen saturation:?: 90% 

at an FiO, -> 0.6 could be reached. PaCO, could be kept within normal values by adjusting the 

differential pressure. This study showed that HFOV, applying a protective strategy, can be 

successfully used in adults with ARF. Higher levels of oxygenation and normal values ofPaCO, 

without hemodynamic compromise could be obtained. 

Using the same theoretical concept, conventional mechanical ventilation is very similar to 

HFOV only if"The Open Lung Concept" is applied. However, HFOV is noisier than conventional 

mechanical ventilation, in addition more clinical care, humidity of the circuit, and a huge amount 

of gases are required. Table 1 shows the main characteristics of the different procedures to open 

the lung. 
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Table 1. Different ventilatory strategies to open the lungs and to avoid vcntilation·induccd lung injury. 

Strategy 

Open Lung 
Concept 
Lachmann et aL 
[5J 

High Lung 

Volume Strategy 

Froese et aL [16J 

Open Lung 
Approach 
Amato et aI. [15J 

Modeo! 
Ventilation 

PCV 
PC-IRV 

HFOV 

PSV 
PC-IRV 
VAPSV 

Criteria of 
Open Lung 

PaO, /FiO, 
" 450 mmHg or 
ma'Ximum 

PaO,IFiO, 
;:: 350 nunHg or 
SAT" 90% at FiO, 
< 0.6 

PEEP above FOe>: of 
the P-V curve 

Open Lung Keep 
Procedure Open 

RR >20, tPEEP tPEEP above 
15-20 em H,O, t closing pressure 
PIP to 50-60 em 
H,O for 15-20 s 

SI for 15 s at Ma"1l Mawp above 
of 30-40 emH,O closing pressure 

CPAP at PEEP above P flex, or 
30-35 cmH20 PEEP at 16 cmH,O 
for 10-20 s and Vt < 6 mlIkg at 

PIP rna., of 40 em 
H,O 

CO, 
Removal 

HbP 
carefully controlled 
byRR 

HbPof 
oscillation 

Vt< 6ml1kg 
Permissive 
Hypercapnia 

Clinical 
Application 

For all mechanically 
ventilated patients 

IRDS 
ARDS 

ARDS 

pev= prc~'UI"c controlled ventilation. PC-IRV= pressure controlled inverse ratio ventilation. Pa02IFi02 = arterial o:-. .. ygen tension/inspired o>..ygcn fraction. RR= respiratory 
ratc. PlP'=- peak iru.'Piratory pressure. Positive end ex-piratory prcssure= PEEP. tPEEP"" total positive end C':>..-piratory pressure (e:-"1ernal PEEP+intrinsic PEEP). t = increasing, 
,[,= decreasing. f.. P= pr~"Ufe amplitude (tPEEP~PIP). ARDS= acute respiratory distress syndrome. IRDS= neonatal r~1Jiratory &:'ircss syndrome. CO;:!= arterial carbon 
dioxide. HFOV= high frequency oscillatory ventilation. SAT= arterial saturation of oxygen. SI = slli>'tai.ned inflation. Mawp = mean airway pressure. P~ V= pressure~volume. 
Po,"" = lower inflection point on p~ V curve. PSV= pressure support ventilation. V PJ?SV= volume assured pressure support ventilation. CPPJ? = continuous positive airway 
preS!>"Ufe. Vt = tidal volume. 
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Nowadays, after reviewing the evidence of lung protection and VILl, "The Open Lung 

Concept" developed by Lachmann and colleagues some 20 years ago (Figure 2), still remains an 

effective lung protective strategy, which defines global treatment goals for optimal ventilator 

settings [5,8,24]. 
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Figure 2. Example oftwo studies of mechanical ventilation based on lung protection strategies. "The Open LlUlg 

Concept" applied by Lachmann et aI. [5J (dashed line) in 1978 in six patients with acute respiratory failure, and the 

"Open Lung Approach" applied by Amato el aL {IS] in 1995 in 28 patients with acute respirato,}' distress syndrome 

(solid line), Airway pressures (a,b) and gas exchange (b,e) arc displayed in function of days of me ehani cal ventilation. 

Note! Despite a smaller pressure anlplitude in the Lachmann group, the PaC02 was lower in comparison to the Amato 

group. The reason for this is the use of more autoPEEP in the Lachmann group, which generally allows to better control 

CO2 removal. 
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Practical considerations 

The open lung state is characterised by an optimal gas exchange. The intrapulmonary shunt 

is ideally less than 10%, which corresponds to a PaOl of more than 450 IllmHg on pure oxygen. 

At the same time, airway pressures are at the minimum that ensure the required gas exchange. 

Hemodynamic side-effects are minimised [5]. 

The three following statements by LachmaIlll and colleagues describe the treatment 

concept: 

I) One must overcome a critical opening pressure during inspiration 

2) TillS opening pressure must be maintained for a sufticiently long period of time 

3) During expiration, no critical time that would allow closure oflung units should pass. 

"The Open Lung Concept" is safe only when used with a pressure-control mode of 

ventilation; its application with a volume-control mode may even be considered a professional 

error. During the process of opening the lungs the Pa02 helps to guide this effort, because it is the 

only parameter that reliably correlates with the amount of lung tissue that participates in gas 

exchange (Figure 3). 

The objective of an initial intervention is to open up the lung. Therefore, it is important to 

manage: the level of both set PEEP and autoPEEP (tPEEP), respiratory rate (RR), lIE ratio, and 

PIP. PEEP should be at least 15-20 cm H20, increase the RR by 10-20 to 25-30 breath/min to get 

a certain autoPEEP (expiratory time too short to allow emptying the lungs from expiratory 

collapse), it will keep open those alveoli which are to be recmited by the peak inspiratory 

pressures. Thereafter, at an lIE ratio which guarantees an end-inspiratory flow of zero, peak 

pressures are incremented until 15-20 cm I-hO for 20 seconds, until the point where further 

increases in peak pressure do not lead to any further increases in Pa02. If the lung disease is 

inhomogeneous, which is almost always the case, there may be a large difference in the pressures 

needed to open collapsed alveoli; some have always been open while others need fhrther 

increments in pressure to overcome their closed state. The absolute level of Pa02 at this point 

reflects the number of functional alveolar units. The lung is called "open"; a set of airway pressures 

is then recorded as "opening pressure". 
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Figure 3. Results of a Pa02 airway pressure Cllr\'e from a rabbit suticnng from acute respiratory failure, Arterial 

m.:ygen tensions are displayed as a function of PEEP (solid line) and peak pressure (dashed line). With a combination 

of PEEP (A)JPlP(a): at 12122 cmH20. Pa02 remains below 100 mmHg_ The lung is closed, Raising PEEP (13)1 PIP(b) 

the IWlg starts 10 open at 14/24 cmH20, The lung is complctelyopen at 23 (C)/33 (c) cmlhO and Pa02 is higher than 

500 mmHg. Beyond 20/30 cmH20 a few changes in Pa02 occur. In the newly opened lung, pressures are decreased 

without changes in Pa02 until the level of6 (0)116 (d) cmH20, the lung collapses and the Pa02 drops. To re---open the 

lung, PEEPIPIP should be raised until 22/33 cOlE 120; to keep the iLmg open, PEEP should be kept:2: 8 cmH20 (E). PIP 

should be decreased 10 keep a pressure amplitude between PEEP and PIP CAP) normally between 8-12 cmH20 (e). 

The second intervention is to find the closing pressure, After achieving an "open lung"> 

alveolar instability will occur only at low airway pressures. As a consequence, PIP and PEEP can 

be carefhlly reduced to a level which is safe, usually 2 em H20 above the closing pressure. During 

this phase the Pa02 should, however, remain high despite the reduction in airway pressure, until 

the critical level of pressure is reached at which the least compliant parts of the lung start to 

collapse (closing pressure). Should this occur> then inspiratory pressure is immediately set back 

to the previously deternuned opening pressure and is kept there for a short period of 15-20 

seconds (reopening). The lung tissue is yet again fuUy recruited, and the peak inspiratory pressures 

should then be reduced to 2-3 cm H20 above the closing pressure. 
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After opening the lung and finding the closing pressures, the resulting pressure amplitude 

is minimised, normally between 8-12 em H20 and at the same time pulmonary gas exchange is 

maximised (keep open). In all open lung procedures performed with "The Open Lung Concept", 

hypercapnia never occurred, so permissive hypercapnia never had to be accepted. In the further 

course of the disease the ventilator can be adjusted carefully to any changes in the patient's 

respiratory condition. A reduction of the total level of support is generally possible aftcr a 

successful alveolar fe-expansion, within a few hours, especially if the patient is not mechanically 

ventilated for morc than 48 hours. 

It is important to realise that the lung has to be kept open at all times. Unnecessary 

disconnection and intrapulmonary sllction have to be avoided. The fall in Pa02 indicates that a 

renewed fe-expansion manoeuvre has to be performed in the same way as previously described. 

Also, later in the weaning phase, one has to guarantee a sufficient level of PEEP to keep the entire 

lung open. Tllis can be combined with a pressure support mode of ventilation to ensure adequate 

CO, removal. Both levels of support should be reduced according to the improvement of the 

patient's condition. 

Alveolar re-expansion should almost always be possible during the first 48 hours on 

mechanical ventilation. Even ifnot all of the lung tissue may be fully re-expanded for gas exchange, 

as in consolidating pneumonia, this ventilatory strategy will prevent filrther damage to the re­

aerated part of the lung. 

Conclusion 

The basic treatment principles are: 

I. Open up the lung with high inspiratory pressures 

2. Keep the lung open with tPEEP levels above the closing pressures 

3. !\1aintain optimal gas exchange at the smallest possible and at the lower pressure amplitude to 

guarantee lung protection against VllJ without circulatory compromise. 

\Vith the strict application of these principles, prophylactic treatment is aimed at preventing 

ventilator-induced lung it~ury and pulmonary complications. Ongoing and future clinical trials will 

have to provide further evidence for this treatment concept. 
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Summary 

Objective: To evaluate whether mechanical ventilation using "the open lung concepC' during 

surfactant depletion can attenuate the deterioration in pulmonary function. 

Design: Experimental, comparative study. 

Sellillg: Research laboratory of a large university. 

Subjects: Eighteen adult male Sprague-Dawley rats, weighing 280-340 g. 

Infenentiolls: Twelve rats were anesthetized and mechanically ventilated with 100% oxygen, and 

randomly divided into two groups (1l~6 each): The open lung group underwent 6 saline lavages 

at different ventilator settings that prevented alveolar collapse. The settings were 

(frequencyIPIPIPEEPII:E): 30126/611:2 during the first lavage, 100/27/1011: 1 during the next two 

lavages and 100/33/15/1:1 during the last three lavages and during the remaining ventilation 

period. The ventilated control group underwent 6 saline lavages with settings 301261611 :2. After 

the lavages, PIP and PEEP were increased in this group by 2 cm H,O each for the remaining study 

period. An additional group of 6 animals was sacrified immediately after induction of anesthesia 

and served as healthy controls. Blood gases were measured before lavage, immediately after the 

last lavage and thereafter hourly. At the end of the 4 h study period, pressure-volume curves were 

constructed from which total lung capacity at a distending pressure of35 em H,O (TLC,,) was 

determined. Subsequently, total lung volume at a distending pressure of 5 cm H,O (V,) was 

determined, followed by broncho-alveolar lavage (BAL). 

Results: In the ventilated control group, Pao" V, and TLC" were significantly decreased, and 

protein concentration ofBAL was significantly increased compared to the healthy control group. 

In the open lung group, Pao, did not decrease after the lavage procedure, and V" TLC" and 

protein concentration ofBAL were comparable with the healthy controls. 

COllclusioll: We conclude that application of "the open lung concept" during surfactant depletion 

attenuates the deterioration in pulmonary function. 
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Introduction 

In the acute respiratory distress syndrome (ARDS), dysftmction of the pulmonary 

surfactant system leads to hypoxemia, decreased functional residual capacity (FRC) and decreased 

compliance [1]. Despite extensive research the mortality rate of ARDS remains in excess of50% 

[2]. New strategies that are currently under clinical investigation include 'open lung' ventilation 

strategies, which aim to re-open collapsed but recruitable lung units and to keep them open by 

applying a suftlciently high positive end-expiratory pressure (PEEP) [3-6]. Recent studies show 

that such strategy improves oxygenation in ARDS patients, and provide the first results that 

indicate that the technique is associated with a decrease in morbidity and mortality [7-9]. 

Ventilation strategies that prevent repeated alveolar collapse are thought to prevent further 

damage to the pulmonary surfactant system and progression of lung damage [10-13]. Since 

surfactant abnormalities are known to be present in patients who are at-risk for ARDS, 

prophylactic use of such a ventilation strategy might prevent or attenuate the decrease in 

pulmonary ftmction by protecting the surfactant system [14]. A previous study, in which an 'open 

lung' concept utilizing an inspiration time of 80% was appJied in an animal model during repeated 

lung lavage, showed that this strategy resulted in better gas exchange, hemodynamics, oxygen 

transport and less lung injury [5]; however, lung mechanics, composition and function of the 

surfactant system were not assessed. 

We hypothesize that when the lungs are kept open in an early stage of lung injury, 

surfactant function is better preserved resulting in less deterioration of pulmonary function. 

Therefore, in this study a ventilation strategy with a high PEEP and a high frequency was applied 

during repeated lung lavages, to evaluate whether severity of respiratory distress can be influenced 

by maintaining a better residual surfactant fimction, compared with conventional mechanical 

ventilation. 

Materials and methods 

The study protocol was approved by the University's animal experimental committee, and 

the principles of/aboratory animal care (NIH publication No. 86-23, revised 1985) were followed. 

The study was performed in eighteen adult male Sprague-Dawley rats (body weight 280-

340 g). After induction of anesthesia with 2% enflurane and 65% nitrous oxide in oxygen, a 
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polyethylene catheter was inserted into a carotid artery for drawing arterial blood samples. Before 

tracheostomy, the animals received 60 mglkg pentobarbital sodium, i.p. (Nembutal", Algin BV, 

Maassluis, the Netherlands). After tracheostomy, muscle relaxation was induced by pancuronium 

bromide 1 mglkg, i.m. (Pavulon'·, Organon Teknika, Boxtel, the Netherlands) immediately 

followed by connection to a ventilator. The animals were mechanically ventilated with a Servo 

Ventilator 300 (Siemens-Elema. Soina, Sweden) in a pressure constant time-cycled mode, at an 

inspired oxygen concentration (Fio,) of 1.0, frequency of 30 breaths per minute (bpm), peak 

inspiratory pressure (PIP) set at 12 cm H,O, positive end·expiratory pressure (PEEP) set at 2 cm 

H,O, and inspiratory/expiratory (lIE) ratio of I :2. Anesthesia was maintained with pentobarbital 

sodium 40 mg/kg/h, Lp.; muscle relaxation was maintained with pancuroniutll bromide Imglkglh, 

i.m. Body temperature was kept within nonnal range by means of a heating pad. Illlmediately after 

induction of anesthesia 6 animals were sacrificed and served as healthy, non-ventilated controls. 

The remaining animals subsequently underwent 6 whole lung lavages with warm saline (37°C, 

LA V I to 6), according to Lachmann et al. [14]. During lavage, different ventilator settings were 

used in both groups, that are shown in table l. After lavage, PIP and PEEP were increased in the 

ventilated control group to prevent critical hypoxia, and remained unchanged in the open lung 

group, after which both groups were ventilated for 4 h (Table I). The recovered volume of lavage 

fluid was recorded, and a phosphorus analysis was performed on the lavage fluid to quantity the 

amount of surfactant phospholipids washed out during lavage. 

Table 1. Ventilator settings in the two ventilated groups. 

Ventilated control gmup Open lung gJ"Oup 

LAV LAV LAV >LAV LAV LAV LAV >LAV 

2·3 4·6 6 2·3 4·6 6 

PIP (cmH,O) 26 26 26 27 26 28 33 33 

PEEP (cmH,O) 6 6 6 8 6 10 15 15 

Frequency 30 30 30 30 100 100 100 100 

liE 112 1/2 1/2 112 Y, 1/1 111 111 

LA V - lung lavage; PIP - positive inspiratoI)' pressure; PEEP - positive end-expiratory pressure~ IIE -

inspiratoryiexpiratoI)' ratio. 
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Arterial blood gas samples were taken prior to lavage, after lavage, and hourly for 4 h. The 

samples were analysed for arterial oxygen tension (Pao2) and arterial carbon dioxide tension 

(paco,) on a blood gas analyser (ABL 505, Radiometer, Copenhagen, DelUnark). 

After the animals were sacrificed by administering an overdose of pentobarbital, static 

pressure-volume curves (plY curves) were recorded using the syringe technique. After the thorax 

and diaphragm were opened, the tracheostomy catheter was connected to a pressure transducer 

with a syringe attached to it (Validyne model DP 45-32, Validyne Engineering Co., Northridge, 

CA, USA), and pressures were recorded on a polygraph (Grass model 7B, Grass Instmment co., 

Quincy, Mass., USA). The lungs were first quickly inflated with 100% nitrogen (N,) from the 

syringe to an airway pressure of35 em H20, which was maintained for 5 seconds, followed by 

deflation to an airway pressure of 0 cm H,O. Then, the lungs were re-inflated with N, from the 

syringe in steps of 0.5 ml until an airway pressure of35 cm H,O was reached. For each step, the 

bolus ofN, was administered quickly, and was followed by a 5 seconds pause to allow pressure 

equilibration. After tllis, the lungs were deflated likewise, until an airway pressure of 0 em H20 

was reached. The volume ofN, left in the syringe was recorded. From the PlY curves total lung 

capacity (TLC,,) was determined, which was defined as lung volume above collapsed volume at 

a distending pressure of35 cm H,O, and maximal compliance (c"",) which was calculated from 

the steepest part ofthe deflation limb. 

After constnlction orthe PlY curves, the lungs were removed ell bloc and weighted, and 

lung volume at an airway pressure of 5 cm H,O (V,) was determined by fluid displacement. A 

positive pressure of5 em H20 was choosen to compensate for the loss of trans pulmonary pressure 

in the open chest [16]. The total lung volume at this distending pressure was considered close to 

functional residual capacity (FRC). 

After assessment of lung mechanics, the lungs were lavaged with saline-CaCh 1.5 

mmollliter. The active surfactant component in the BAL fluid was separated from the non-active 

surfactant component by differential centrifugation followed by subsequent phosphorus analysis, 

and the ratio between non-active and active components (small aggregate to large aggregate ratio 

~ SA/LA ratio) was calculated, as previously described by Veldhuizen and colleagues [17]. The 

protein concentration of the BAL fluid was determined using the Bradford method (Bio-Rad 

protein-assay, Munich, Germany) [18]. 
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Statistical analysis was perfomled using the Instat statistical package. For bloodgases inter­

group comparisons were analysed using the alternate (Welch) t-test, while intra-group 

comparisons were analysed using repeated measures ANOV A All other data were analysed with 

ANOV A. If ANOYA resulted in a p < 0.05 a Tukey-Kramer post-test was performed. All data 

are reported as mean ± SD and p < 0.05 was considered statistically significant. 

Results 

In the lavage fluid from the 6 lavages used to induce lung injury, there were no siglrificant 

differences in fluid volume recovered (83 ± 0.7 vs 83 ± 3%) and total amount of phosphorus 

between the ventilated control group and open lung group (5.58 ± 0.8 vs 5.28 ± 1.38 lllnol), 

respectively. 

Blood gas values before lavage were comparable for both ventilated groups (Table 2). 

After 6 lavages, Pao, decreased to 102 ± lIS torr [13.6 ± 15.8 kPa] in the ventilated control 

group, whereas in the open lung group Pao, remained >500 torr [67 kPa] ([1<0.001)( Table 2). 

In both ventilated groups, Pao, did not change during the remaining study period. Paco, increased 

to >60 torr [S kPa] (P<O.OOI) in the ventilated control group, whereas it remained in the normal 

range (35 to 45 torr [4.7 to 6 kPa]) in the open lung group (Table 2). During the 4-hour 

ventilation period, none of the animals died. 

The pressure-volume curves are shown in Figure 1. TLC35 was decreased in the ventilated 

control group compared to the healthy controls ([1<0.01), but in the open lung group TLC" was 

preserved. Cm~:I: was decreased in the ventilated control group compared to the open lung group 

(5.4 ± 1.0 vs S.6 ± 2.S mLicm H,O/kg,p<0.05), but in both ventilated groups C=, was decreased 

compared to the healthy control group (13.4 ± l.lmLicm H,O/kg,p<O.OOI vs ventilated control, 

p<0.05 vs open lung group). There was no difference between both ventilated groups in total lung 

volume at a distending pressure of 5 cm H,O (Y,); however, only in the ventilated control group 

Y, was lower than in the healthy control group (p<0.001) (Table. 3). 
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FigUl'e 1. Pressure-volume curves, mean ± SD. Volume (ml.Jkg) is lung volume above functional residual 

capacity. *p<lJ.O I \'5. healthy control group. emu was deercaSt-xI in the ventilated control group compared to the open iWlg 

group (5,4 ± 1.0 \'e~"Us 8.6 ± 2.8 mUcmHzOlkg,p<O.05), but in both ventilated groups emu was significantly decreased 

compared to the healthy control group (13.4 ± 1. I mUcmH20lkg, p<O.OO I vs ventilated control, p<tJ.05 YS open lung 

group). TLC3S = total lung capacity at a distending pressure of35 cmHzO. Cmo.~= maximal compliance. 

Table 2. Pao2 and Paco2 in the two ventilated groups (mean ± SD, torr) 

Pao} Pacol 

Ventilated control Open lung Ventilated control Open lung 

Before lavage 585.4 ± 36.2 597.4 ± 38.0 43.6 ± 6.7 42.1 ± 5.1 

After lavage 102.3 ± 118.2§! 621.3 ± 31.7 64.8 ± 16.4§ I 33.2 ± 8.01 

I h 109.4 ± 120.5§1 599.3 ± 36.7 62.7 ± 19.211 40.0 ± 8.9 

2h 104.8 ± 125.511 602.9 ± 30.7 65.5 ± 20.711 43.9 ± 11.1 

3h 100.5 ± 112.0§! 598.2 ± 37.3 66.9 ± 22.01 I 44.1 ± 11.6 

4h 100.8 ± 114.711 600.5 ± 41.6 68.8 ± 24.611 44.0 ± 9.8 

To convert torr to kPa, mUltiply the value by 0.1333 
h, hour. § p<O.05 vs. open lung group; , p<o.05 vs. before lavage 
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Figure 2. Mean protein concentration ± SD (mg/OIL) of the 13AL fluid of the three study groups. * p<O.05 VS. 

healthy control group. 

The concentration of protein in the BAL fluid was increased in the ventilated control group 

(p<O.OOI), whereas it was not increased in the open lung group (Fig. 2). The total amount of 

phosphorus in the BAL fluid, which was measured to quantity the phospholipid containing 

surfactant system, was obviously decreased in both lavaged groups, but there were no differences 

between these groups (Table 4). The ratio between non-active and active surfactant components 

(SA/LA ratio) was significantly increased in both ventilated groups compared to the healthy 

control group (p<0.001) (Table 4). 

Table 3. V 5. (mean ± SO) and lung weight (mean ± SD, g). 

Healthy control group Ventilated control group Open IUllg group 

V,(mLlkg) 

LUllg weight (g) 

17.0 ± 3.7 

1.9 ± 0.2 

7.4 ± 3.5* 

4.5 ± 0.3* 

* p<O~05 vs. healthy control group. Vs total1ung volume at a distending pressure of 5 cmH10. 
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Table 4, Pulmonary surfactant data: Total phosphorus, and small aggregate to large aggregate ratio (SAJLA ratio) 

in the three study groups (mean ± SD). 

Healthy control gmllp Ventilated contml gl'oup Openlllng gl'oup 

Total phosphol'US 

(IlDlol/mL) 

SA/LA ... tio 

0.14 ± 0.06 

0.3 ± 0.1 

·p<o.05 vs. Healthy control group 

Discussion 

0.07 ± O.D3' 0.06 ± 0.01' 

1.6 ± 0.6' 1.5 ± 0.5 ' 

In this study, the lungs were defined to be open when Pao, /Fio, was above 500 torr [67 

kPa], indicating that there is no intrawpulmonary shunting. We have previollsly shown that 

surfactant-deficient lungs can be opened and kept open when the open lung concept that applies 

a high PEEP and high frequency is used [19,5,6]. These same settings were therefore used in the 

present study, to preserve oxygenation during surfactant depletion. 

In the open lung group gas exchange and total lung capacity were preserved, and protein 

leakage into the alveoli was prevented, compared to the healthy control group. In the ventilated 

control group, however, all these parameters deteriorated. Compared to healthy controls, lung 

volume at a distending pressure of 5 em H,O (V,), which was taken to be FRC, was significantly 

decreased only in the ventilated control group, although no significant differences in V5 were 

found between the 0pclllung and ventilated control groups. 

An important determinant of protein transport across the alveolar-capillary membrane is 

integrity of the alveolar epithelium. Repeated alveolar collapse has been shown to compromise the 

integrity ofthe alveolar epithelium due to the occurrence of shear forces [20,21]. Application of 

"the open lung concept" in an animal model after lung lavage was previously demonstrated to 

decrease protein leakage [19], [for review see (21)]. In addition, application of PEEP has been 

shown to favor the shift of fluid from the alveoli to the interstitium by decreasing the pressure 

gradient across the alveolar-capillary membrane [22]. This may explain the decrease in protein 

leakage that was found in the open lung group, in which end-expiratory alveolar collapse was 
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prevented by application ofa PEEP of 15 cm H20. 

No differences in surfactant quantity and quality (SAILA ratio) were found between the 

open lung group and the ventilated control group (Table 4). It has been demonstrated that the 

alveolar area cycling, which is dependent on the pressure difference between inspiration and 

expiration, is responsible for conversion of active LA into non-active SA [17]. The difference in 

pressure amplitude was comparable between both ventilated groups, which may explain the 

absence of any difference in SAJLA ratio between both ventilated groups. However, significant 

differences between both ventilated groups were found in lung mechanics (TLC35 and maximal 

compliance). We attribute this discrepacy between lung mechanics and surfactant parameters to 

the difference in protein leakage, since it has been established that plasma proteins inhibit 

surfactant fill1ction in a dose-dependent way [23]. We therefore conclude that prevention of 

protein leakage during and after surfactant depletion is important to protect the remaining 

surfactant function. 

Recruitment of collapsed alveoli requires inspiratory airway pressures that overcome the 

critical opening pressure of these alveoli, which implies application of a high inspiratory airway 

pressure for a brief period. However, airway pressures can be decreased once the lungs have been 

opened, as has been pointed out previously, with reference to the law of LaPlace [3J..From this 

law (P~2ylr, where P~alveolar pressure; y=surface tension at the alveolar air-liquid interface; 

roalveolar radius) it follows that the pressure necessary to keep alveoli open, and the pressure 

difference to induce volume changes in the alveoli, is smaller at a high FRC level (i.e. larger 

alveolar radius). Therefore, when the lungs are opened, gas exchange can be maintained with a 

lower PEEP and smaller pressure difference, and hence a lower PIP. than prior to alveolar 

recruitment. If PEEP is kept above the critical closing pressure, alveolar collapse will not occur 

and reperated application of higher PIP will not be necessary. 

Although direct translation to the clinical situation is ditlicult, our results are in contrast 

to those ofa clinical study by Pepe et al. [24] who found that early application of PEEP in high­

risk patients had no efrect on the incidence of ARDS. However, in that study a PEEP of8 cmH20 

was used, and PEEP was removed for eight minutes when taking blood samples, thus allowing 

alveolar collapse. In a more recent study, Steward et al. [25] evaluated the use of a pressure- and 

volume limited ventilation strategy in patients at high risk for ARDS. Also in tllis study, which 
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reported no reduction in mortality and possibly an increase in morbidity, an average PEEP of<1O 

cm H20 was used. We hypothesize that the PEEP levels used in these later studies were not high 

enough to prevent alveolar collapse, which may have resulted in an increase in protein leakage. 

Tills hypothesis is supported by resuits from GattinOill et aI., who, in a computed tomography 

study of ventilated ARDS patients, showed that re-inflated lung tissue could only be kept open at 

end-expiration at PEEP levels of 15 cmH20 and higher (26). TIllS might explain the resuits by 

Kirby et al. [27] and Douglas et al. [28], who showed an improvement in puhnonary function in 

patients with acute respiratory failure after application of a PEEP in excess of 25 cmH20, and 

Illore recently by Amato et al. [9], who demonstrated that application of an open lung approach 

in ARDS patients resulted in improved survival and reduction of barotrauma. 

We conclude that the application of "the open lung concept" during surfactant depletion 

prevents a decrease in gas exchange, attenuates the deterioration in lung mechanics, and prevents 

an increase in protein leakage. The prevention of protein leakage is of special importance in 

surfactant deficient lungs, since the low amollnt of remaining surfactant makes it morc vulnerable 

to inhibition of its fimction. We speculate that the prevention of end-expiratory collapse during 

mechanical ventilation in the early phase of acute respiratory failure may decrease morbidity and 

mortality in patients. 
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Summary 

Background: Changes in pulmonary edema infiltration and surfactant after intemlittent positive 

pressure ventilation with high peak inspiratory lung volumes have been well described. To lhrther 

elucidate the role of surfactant changes, the authors tested the eftect of difterent doses of exogenous 

surfactant preceding high peak inspiratory lung volumes on lung fimction and lung penneability. 

Methods: Five groups of Sprague-Dawley rats (n ~ 6 per group) were subjected to 20 min of 

high peak inspiratory lung volumes. Before high peak inspiratory lung volumes, four of these 

groups received intratracheal administration of saline or 50, 100, or 200 mglkg body weight 

surfactant; one group received no intratracheal administration. Gas exchange was measured during 

mechanical ventilation. A sixth group served as nontreated, llonventilated controls. After death, all 

lungs were excised, and static pressure-volume curves and total lung volume at a transpulmonary 

pressure of 5 em 1-1"20 were recorded. The Gmenwald index and the steepest part of the compliance 

curve (C=,) were calculated. A bronchoalveolar lavage was perfoffiled; surfactant small and large 

aggregate total phosphorus and minimal surface tension were measured. In a second experiment in 

five groups of rats (n ~ 6 per group), lung peffileability for Evans blue dye was measured. Before 20 

min of high peak inspiratory lung volumes, three groups received intratracheal administration of 

100, 200, or 400 mglkg body weight surfactant; one group received no intratracheal administration. 

A fith group served as nontreated, non-ventilated controls. 

Results: Exogenous surfactant at a dose of 200 mglkg preserved total lung volume at a 

pressure of 5 cm H20, maximum compliance, the Gruenwald Index, and oxygenation after 20 min 

of mechanical ventilation. The most active surfactant was recovered in the group that received 200 

mglkg surfactant, and this dose reduced miIumal surface tension of bronchoalveolar lavage to 

control values. Alveolar influx of Evans blue dye was reduced in the groups that received 200 and 

400 mglkg exogenous surfactant. 

Conclusions: Exogenous surfactant preceding high peak inspiratory lung volumes prevents 

impaim1ent of oxygenation, lung mechanics, and minimal surface tension of brochoalveolar lavage 

fluid and reduces alveolar influx of Evans blue dye. These data indicate that surfactant has a 

beneficial eftect on ventilation-induced lung injury. 
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Introduction 

The development of pu~nonary edema and alveolar flooding in healthy rats after 

overinflation of the lungs with peak inspiratory pressures of 45 em H20 without positive end­

expiratory pressure (PEEP) were first demonstrated by Webb and Tierney [I) and was later 

confirn,ed by DreyfiiSs et al. [2]. The main detenninant for development edema is the peak 

inspiratory lung volume [3]. Experiments with thoracic restriction in this rat model have clearly 

shown that high peak inspiratory pressures themselves when not accompanied by high peak 

inspiratory lung volumes (Hll'PV), do not induce lung il~ury [3]. 

Peak inspiratory overstretching by overinflation ofthe lungs alone, however, can not explain 

ventilation-induced lung iI~ury, because JO em H20 of PEEP at the same degree of overdistension 

(e.g. the same peak inspiratory pressure) in tlus animal model has been shown to reduce 

penneability edema and to prevent lung parenchymal iI,jury almost completely [2,3]. One study 

attributed this reduction iII penneability edema by PEEP to a decrease in the pulmonary capillary 

hydrostatic pressure [4), wluch reduces fonnation of edema when the pressure balance between (I) 

plasma colloid oncotic pressure, (2) capillary hydrostatic pressure, (3) interstitial oncotic pressure 

and (4) alveolar surface tension at the alveolo-capillary barrier is slufted away from the alveolar 

direction [5]. A recent study by our group in the same rat model, however, showed a reduction in 

the amount of surface-tension reducing surfactant components after 20 min of overinflation of the 

lungs without PEEP. Impainnent of the surfactant system could be prevented with 10 cm H20 of 

PEEP [6) which prevented the conversion of surface active tubular myelin-like fonns of surfactant 

(large aggregates) into nonactive components that represent small vesicular stmctures (small 

aggregates). Gross and Narine were the first to show that conversion of active into nonactive 

surfactant subfractions is depeudent on cyclic changes in surface area ill vih'o [7). Studies by 

Veldhuizen ef at. in vivo have confinned that conversion is dependent on the change in alveolar 

surface area associated with mechanical ventilation (8]. These studies suggest that the reduction in 

alveolar flooding by PEEP is partially caused by its preservation of the surfactant system suggesting 

that ventilation-induced surfactant changes playa role in the development of alveolar flooding. 

To fbrther elucidate the role of surfactant changes in the pathogenesis of ventilation-induced 

lung injury, we investigated the eftect of difterent doses of exogenous surfactant preceding 

Qverinflatioll of the lungs on oxygenation, lung mechanics and penneability of Evans blue dye. 
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lVIaterials and methods 

The study protocol was approved by the local animal committee, and the care and handling 

of the animals confonned with the principles approved by the Council of the American Physiologic 

Society. Sixty-six adult male Sprague Dawley rats (body weight 290-350 grams) were used. 

Sllidies olllhe effecls of exogellolls slIIiaclalll 

In the first set of experiments, 36 rats were divided randomly into six groups, anesthetized 

with 65% nitrous oxidel33% oxygen/2% enflurane (Ethrane', Abbott, Amstelveen, The 

Netherlands), and tracheotomized. A metal cannula was inserted into the trachea. The operation 

area was infiltrated ,vith 3.0 mglkg lidocaine (Xylocaine', Astra Pharmaceutica BY, RijS\vijk, The 

Netherlands). 

Four groups received, respectively, 1.5 ml of saline (saline group) or exogenous surfactant 

dissolved in 1.5 ml of saline at a dose of 50 (S50 group), 100 (S 100 group), or 200 (S200 group) 

mglkg body weight administered into the tracheal cannula over a 5-min period. During this period 

the animals were tumed to the supine, prone and both side positions and were breathing 

spontaneously. The surfactant used in this study is a natural surfactant isolated from minced pig 

lungs as previously described, which contains surfactant proteins Band C, but not surfactant protein 

A [9]. One group of animals did not receive any ultra-tracheal administration (group 45/0). All 

animals were then allowed to recover from anesthesia and those that were given intratracheal 

administration could resorb saline from the lung during the subsequent period of spontaneous 

breathing, 

Thirty minutes after tracheotomy, the animals were reanesthetised whit gaseous anesthesia 

(see previous description) and a polyethylene catheter (0.8 Il1In aD) was ulserted ulto a carotid 

artery_ After this surgical procedure, gaseous anesthesia was discontinued and anesthesia was 

replaced ,vith 60 mglkg pentobarbital sodium given ultra peritoneally (Nembutal'; Algin BY, 

Maassluis, the Netherlands) durn1g the remainder of the experiment. Muscle relaxation was attained 

with 2 mglkg pancuronium bromide given intramuscularly (pavtdon7
; Organon Technika, Boxtel, 

the Netherlands). After muscle relaxation, the anllJals were comlected for 20 min to a ventilator 

(Servo Ventilator 300, Siemens~Elema, Soll1a, Sweden) set in a pressure~controlled mode at a peak 

ulSpiratory pressure of 45 cm H20 ,vithout PEEP, a frequency of 25 breaths/min, an IIE ratio of 

1:2; and a fractional inspired oxygen tension of 1.0. 
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Blood samples taken from the carotid artery were measured 1, 10 and 20 min after starting 

mechanical ventilation (ABL505, Radiometer, Copenhagen, Denmark). 

After 20 min of mechanical ventilation, all animals were killed with an overdose of 

pentobarbital sodium through the perille vein. A sixth group of animals was killed immediately after 

tracheotomy in an identical way. Static pressure-volume diagrams were then recorded using 

conventional techniques [10]. For these measurements the thorax and diaphragm were opened. The 

animals were placed into a volume-and temperature-constant body box, and the lungs were 

reexpanded with pure nitrogen up to a pressure of35 cm H20 and subsequently deflated again. This 

procedure was perfonlled to reopen lung areas that became atelectatic after this surgical procedure. 

The lungs were then reinflated inunediately, starting from a pressure of 0 cm H20 and proceeding in 

steps of I cm H20 up to an intra-alveolar pressure of35 cm H20 and subsequently deflated in steps 

of I em H20. Tltis was done by changing the PEEP level on the ventilator while in continuous 

positive airway pressure mode (Servo Ventilator 300). Pressure changes in the body box were 

recorded (ValidYlle model DP 45-32, Vatidyne Engineering Co., Northridge, CA, USA) at a 

sampling rate of 10Hz using a (12-bit) analog-to-digital converter (DAS 1800, Keithley MetraB)1e, 

Taunton, MA) and stored in a computer. With the rat still in the body box, the pressure signals from 

the bodybox were calibrated for known volume changes inullediately after pressure- volume 

recordings, by u~ection of known volumes of air into the body box, using a precise syringe. The 

maximal compliance (CITU'\) was defined as the steepest part of the pressure-volume deflation curve, 

and was detennined separately for each animal [9]. The Gnrenwald index, defined as (2'V, + VIO) 

I2·VITU'{, where V5, VlO and VITU,{ are the lung volumes ltigher than fimctionaI residual capacity at 

transpulmonary pressures of5, 10 and 35 cm H20 was calculated [II]. Functional residual capacity 

was estimated by measuring total lung volume at a transpuhnonary pressure of 5 cm H20 (V5) as 

previously described [12). For tlris measurement the lungs and the heart were removed from the 

thorax. After dissection from the heart, the lungs were reexpanded with nitrogen up to a pressure of 

35 cm H20 to reopen lung areas that became atelectatic during excision. The lungs were thellieft to 

deflate agaulst a positive pressure of 5 ern H20, which was chosen to compensate for the loss of 

negative intra-thoracic pressure. The total weight of lungs (W) was registered and the lungs were 

then immersed in saline at a preset depth to measure the upward force (F). According to the 

principle of Archimedes, tlris force is caused by fluid displacement equal to the volume of the lungs. 
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y, was then calculated as 0.99·F -0.94·W [12]. 

Thereafter, the lungs were lavaged with saline!1.5 mM CaCh (30 mlJkg) five times. The 

percentage recovered lung lavage fluid was calculated. The obtained lavage fluid was first 

centrifuged at 400 X g (Beckman GPR, Beckman Instruments Inc., Palo Alto, CAl for 10 min at 

4"C to remove cells and cellular debris. The supematant of tins 400 X g fraction ( crude lavage) was 

then centrifhged at 40,000 X g for 15 min at 4"C (Beckman L8-70M) to separate a surface-active 

surfactant pellet (large aggregates) from a non-surf ace-active supematant fraction (small 

aggregates) [13]. The large aggregates were resuspended in 2 ml conversion buller (0.15 " 

NaCIIIOnb\1 Trisll n,,' CaCb/O.1 m" EDT A, pH 7.4) [II]. Total phosphorus of the small and large 

aggregates was detemnned by extraction of phospholipid [14] followed by subsequent phosphorus 

analysis [15]. Twenty nncroliters of crude lavage and the resuspension of the active surfactant part 

were used for biophysical analysis of minimal surface tension after 50 cycles on a pulsating bubble 

surfactometer (pBS; Electronetics Corporation, Tonowanda, New York) as described by 

Enhorning [16]. This apparatus records pressure across the surface of a bubble, expanded in the 

sample fluid and conmlUnicating with ambient air. The bubble pulsated within a sample chamber at a 

frequency of20 pulsations/nnn between defined radius limits. The sample temperature was set at 37 

"C. From the known pressure gradient across the bubble surface and the minimal bubble radius, the 

minimal surface tension was calculated according to the law of LaPlace (p ~ 2 y/r). 

Pel1Jleability studies 

To fhrther elucidate the exact mechanism of the effect of surfactant in HIPPV shown in the 

first part ofthe study, a second set of studies was perfonned. Thirty rats were randomly divided into 

five groups of six rats each and tracheotomized as described earlier. Identical to the way described 

earlier, three groups received exogenous surfactant at a dose of IO(), 20(), or 400 mg/kg body 

weight (groups S 100, S200, and S400, respectively) and one group did not receive any intratracheal 

instillation. After recovery from anesthesia and spontaneous breathing, a carotid artery was 

cannulated, and the animals were connected to the ventilator to receive mechanical ventilation. A 

fifth group of animals served as non-treated, nonventilated healthy controls (control group). 

Yascular pemleability was quantified by the extravasation of Evans blue dye over 19 min 

(Sigma, Steinheim, GemJany) winch correlates well with the extravasation of radiolabeled albumin 

at Ingh rates of plasma leakage [17]. The dye (30 mglml) was filtered with a 0.22 J.lm Millipore filter 
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(MILLEX-GY; Millipore Products Division, Bedford, MA) before use [18]. One minute after 

starting mechanical ventilation and after tracheotomy in the control group, Evans Blue dye (30 

mglkg) was injected through the penile vein. Nineteen minutes after iqjection of Evans Blue dye, the 

lungs were lavaged once with wann saline (30 mVkg). The lavage was centrifuged at 400 X g to 

remove cells and cellular debris. The Ingh amount of surfactant dissolved in the broncho-alveolar 

lavage (BAL) was shown to disturb photospectrometric measurements of concentration of Evans 

Blue dye. Pilot experiments (not reported) measuring the extinction of the chlorofonnlayer at 620-

lUll at various concentrations of Eval1s Blue dye in saline after Bligh Dyer extraction, demonstrated 

that Evans Blue dye does not dissolve in chlorofonn but completely dissolves in a water-methanol 

phase. Therefore, 1 ml BAL was used for extraction of phospholipid according to Bligh and Dyer 

[I4] to separate phospholipids in a chlorofonnlayer from Evans Blue dye in the water-methanol 

phase. 

After BAL, the tissue content of Evans Blue dye was deteOlrined by perfusing the lung 

circulation via the pulmonary artery with 20 IllI wanll saline (37 °C) to remove intravascular dye. 

For this purpose, the aorta was cut at the level of the diaphragm and the len auriculum was 

removed from the heart before lung vascular perfusion. Evans Blue dye was extracted from the 

lungs by incubation at room temperature for 3 days in 12 ml fomlamide (Sigma) in stoppered tubes 

[18]. 

The absorbance of water-methanol extracts of Evans Blue dye from BAL and of the 

foonamide tissue extracts of Evans Blue dye were detennil1ed against a water-methanol and 

fonllamide blank at 620-nm wavelength and by interpolation from a standard curve of Evans Blue 

dye in the range 0.5-10 flg/ml in water-methanol and fonnannde, respectively [I8]. It was 

demonstrated (data not reported) that after Bligh Dyer extraction there are no substances in the 

BAL of animals with lung edema not given Evans Blue dye that aftect the absorbance for water­

methanol at 620-llln. The total amount of Evans Blue dye milligrams recovered from the BAL and 

in the tissue was calculated. 

Statistical fflJalysis 

Intergroup comparisons were analyzed ,vith ordinary analysis of variance (ANaYA). 

Intragroup comparisons were analyzed ,vith repeated measures ANaYA If ANaYA resulted in a 

probability value <0.05, a Student-Newman-Keuls post-hoc test was perfonned. All data are 
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reported as mean ± SD. 

Results 

Table I gives data on arterial oxygen and carbon dioxide tensions over time in the five 

ventilated groups in the studies on lung limction. After 20 mll~ oxygenation decreased in the two 

groups that did not receive exogenous surfactant. Oxygenation was preserved over time in the 

group that received 200 mglkg body weight surfactant. 

The Gruenwald Index, C=, and y, (Table 2) in group S200 were comparable to the values 

in nonventilated controls. The amount of active surfactant in the BAL fluid was higher in group 

S200 than III all other groups. The resuspension of active surfactant in group S200 showed more 

surface activity than in the other groups, except for group SIOO. The minimal surface tension of the 

crude lavage fluid in group S200 was comparable to the control group but was lllcreased in aU other 

ventilated groups. 

In the permeability experiments (Table 3), oxygenation was decreased in group 45/0 

after 20 min of HIPPY. Oxygenation after 20 min was preserved and significantly higher in 

groups S200 and S400 than in groups 45/0 and SIOO. The amount of Evans Blue dye 

recovered from the tissue was lower in controls than in aU ventilated groups; there was no 

significant difterence in the amount of Evans Blue dye recovered from the tissue in the 

ventilated groups. The amount of Evans Blue dye recovered from the BAL was significantly 

higher in group 45/0 compared with the control group and significantly lower in groups S200 

and S400 than in group 45/0. 
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Table 1. Data on Blood Gas Tension (IIlmHg) of the Fh-e Ventilated Groups during Ule Study Period in the 
Lung FIIDction EX1Jerimcnts. 

Time 4510 Saline S50 S100 S200 
(min) 

PaO, 
(mmHg) 

1 495.S±2S2 
, 

4SI.9±102.S'"" 51O.4±420t" 57S.7±25.4',§ 5S7.5± 25.4§ 

10 5IS.2±40.7 
, 

412.5±123.4t" 499.3±142.3 566.S±52.1 
, 

632.4±39.2 

20 307.5±IS6.St 322.Q±150.i 443.1±191.0 457.7±1I4.S 60S.4±37.7 

PaCO, 
(mmHg) 

1 22.6±4.1 24.7 ±3.0 24.4 ±5.4 23.7 ±4.0 23.6 ±2.i~ 

10 20.6±3.9 22.7±4.0 21.1 ±3.3 IS.9 ±2.7 IS.5±1.6 

20 23.7 ±4.4 2I.S±7.0 21.5±3.9 19.1 ±3.7 IS.2 ±2.6 

Values arc mean ± SD. Intergroup and intmgroupcomparisons ANOVA '\lth Studcnt-Nenl1laIl-Keuis post-hoc test if 
ANOVA P < 0.05. 
* Statistical significance \'erSlIS 1= 20 milL 
t Statistical significance verslls group 8200. 
t Statistical significance verSllS group Sioo. 
§ 8t.1tistical significance verj11S group 45/0. 
~ Statistical significance verslls t = 10 min. 
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Table 2. Recovery o[BAL Fluid and PoSUnortem Data for Crrm, Gruenwald index, Vs, Total Ltmg Weight, 
Total Phosphorus of Small Aggregates (SA) and L1rgc Aggregates (LA) and Minint:u Smface 

Tension (min. surf.Tens.) of Crude Lavage and Large Aggregate Resuspcnsion in the Lung 

FWlCuon Experiments. 

Group Control 45/0 saline S50 S100 S200 

Recovel), 74.6±4.7 76.614.2 73.3±2.9' 71.6±1.3' 75.614.7 S1.3±6.6 
BAL fluid ('Yo) 

C~'(IIIUkg) 3.9±O.7 2.3±O.5 2.5± 0.7' 2.9±O.6' 3.I±O.6 4.2±O.9§ 

Gruenwald O.47±O.l3 O.2S±O.OS" O.2S±O.\O" 0.23±O.O9" O.37±O.O7 O.52±O.21 
Index 

V, (ml) IS.214.1 6.Q±2.5' 4.1±2.4'U 7.4 ±3.2 9.2±2.9§ IS.4±3.5§ 

SA (mmol) O.S±O.4 1.3±O.3 1.2±O.2 'j 3.0±0.9'" 4.9±1.3'§ S.S±2.7'§ 

LA (mmol) 3.0 ±1.6 2.0±O.7' 2.6±I.O' 6.3±1.6§ 7.7±2.S' 17.0±6.5'§ 

Min. surf. 
Tens. crude 2S.S±6.5 40.0±I.S" 46.1±O.7''' 39.5±6.S" 37.7±7.7" 29.7±2.6 
(mN/m) 

Min. surf. 
Tens. LA 24.S±2.9 3S.4±5.9' 45.Q±3.2"l'i 14.S±lO't!§ 6.2±7.9t§ I.S±1.5t§ 
(mN/m) 

Values arc mean ± SD. Inler-group comparisons ANOVA ",111 Studcnt-Ne\\1llan-Keuls post-hoc test if ANaVA p < 
0.05. 

* Statistical significance versus group 8200. 

t Statistical significance versus group routrol. 

~ Statistic.l1 significance versus group 8100. 

§ Statistical significance versus 45/0. 

"i" Statistical significance versus group 850, 
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Table 3. Data on blood Gas Tension (mmHg) and PenneabiJity Indices in Ole Five Different Groups in tbe 

Pemleability Studies. 

Group Control 45/0 S100 S200 S400 

Time 
(min) 

PaD, 

(nuuHg) 535.9±24.3 514.4±51.4 538.2±47.3 542.9±22.6 

10 507.2±79.4 56I.S±3S.3 560.0±39.3 555.9±36.6 

20 2S0.1±114.I' 40S.4±154.5 555.9±31.1'§ 5S5.D±3S.l I§ 

PaCO, 

(mmHg) 26.9±2.7 24.D±1.4 27.5±4.1 27.0±S.l 

10 23.4±3.3' 19.6±1.6' 21.4±3.9' 20.0±1.4' 

20 2I.S±3.4' 20.D±2.7' 22.3±S.I' 19.4±2.I' 

Evans Blue 
O.ll±O.OS 0.64±O.OS' 0.6l±O.2S' O.5S±O.12' O.5S±O.l4' 

Tissue (lIIg) 

Evans Blue 0.O6±O.01 O.94±O.36' O.53±0.26 O.43±O.401 0.2S±O.151 
BAL(mg) 

Evans Blue 0.17±O.O4 1.5S±O.43' 1.14±O.44' I.OI±O.45" O.S3±O.21 I 
Total (mg) 

Values arc mean ±SD. Intergroup and intragroup comparisons ANOVA with Student-Nemnan-Keuls post hoc test if 

ANOYA P< 0.05 

* Statistical significance versus t "" 1 min. 

t Statistical significance versJls group control. 

t Statistical significance versus group 45/0. 

§ Statistical significance \'ers/fS group SIOO 
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Discussion 

This snldy demonstrates that exogenous surfactant at a dose of200 mglkg bodyweight given to rats 

before HIPPy prevents impainnen! of lung mechanics and oxygenation after 20 min of HIPPy. 

Moreover, surfactant at a dose of200 and 400 mglkg body weight significantly reduced the amount 

of Evans Blue dye recovered from the BAL fluid after 20 min of HIPPY. These data show that 

exogenous surfactant has a beneficial eftect on ventilation-induced lung injury. 

Changes in penneability of the alveolocapillary barrier to protein have been attributed to 

epithelial stretching. Equivalent pore radii indicate that the epithelium, rather than the endothelium, 

is primarily responsible for restricting solute transport from the capillaries across the alveolocapillary 

membrane into the alveolus [19,20]. As the epithelium is progressively stretched there is an opening 

of water-filled ChalllleiS between alveolar cells [21,22]. 

Important evidence regarding the role of capillary hydrostatic pressure in inducing edema in 

the HIPPY rat model comes from the efiect of 10 cm H20 PEEP, which was shown to reduce 

edema infiltration [1,3]. This eftect was attributed to hemodynamic alterations resulting from PEEP, 

which reduce filtration pressure over the alveolocapillary membrane [4]. Inflision of dopamine to 

correct the decrease systemic arterial pressure that occurs with PEEP ventilation was shown by 

DreyfilSs and Saumon to abolish partially the reduction in pu~nonary edema induced by PEEP [4]; 

however, tillS effect was only partial, and because pulmonary artery pressure was not recorded in 

their study it call1lOt be excluded that the transpulmonary filtration pressure after inllision of 

dopamine, was higher than in the animals ventilated ,vithout PEEP [4]. Therefore, the possibility 

that other factors contribute to the development of intra alveolar edema cannot be excluded. 

Loss of surfactant fUllction with an increase in surface tension at the air -liquid interface on 

the alveolar walls has been shown to direct the net driving force across the alveolocapillary 

membrane to the alveolar side, resulting in accumulation of intra-alveolar fluid and protein 

[5,23,24]. Based on such observations, a recent study by our group postulates a different 

mechanism for the eftect of PEEP on the reduction of lung penneability edema in HIPPY [6]. It 

describes the mechanisms of surfactant impainnent' after HIPPY, which include surfactant 

displacement trom the alveolar air-liquid interface into the small airways and increased conversion 

of active into non-active surfactant subtractions, and it shows that PEEP reduces such I-llPPV­

induced surfactant impainnent [6]. Surfactant preservation by PEEP reduces the contribution of 
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surface tension to fluid and particle transport across the alveolocapillary barrier, which is a diflerent 

explanation for the reduction in penneability edema induced by PEEP [6]. If this mechanism is valid, 

then exogenous surfactant preceding HIPPy should be able to reduce penneability edema after 

HIPPy. The current study shows that tillS is the case and that doses of 200 and 400 mglkg body 

weight of exogenous surfactant are able to reduce intraalveolar influx of Evans blue dye. This is a 

substantial amount given the nonnal total surfactant phospholipid pool size of 10 mglkg body 

weight in rats [25]. The current data demonstrate that, although peak inspiratory epithelial pore 

overstretching and capillary hydrostatic pressure are important detenllinants of pemleability edema, 

snrfactant actively stabilizes the fluid balance in the lung and protects the lung from pemleability 

edema at the level of the BAL-accessible space. Such Iindnlgs are consistent with recent findings in 

a model of mild surfactant pertubation by dioctyl sodium sulfosuccinate, willch was shown to 

nlitiate protenl infiltration [26], and previous findnlgs on the rate-limiting effect of 

supraphysiological amounts of (exogenous) surfactant on solute penneability of nonnoventilated 

rabbits [27]. The contribution of surface tension to fluid and particle transport across the 

alveolocapillary barrier appears to be most prominent on transudation across the a1veolo-capillary 

barrier, as demonstrated by the reduced Evans Blue dye in the BAL accessible space, and appears 

to be less prominent on exudation from the capillary, evidenced by the equal amount of Evans Blue 

dye recovered from the tissue. 

Once protenl infiltration has started, plasma-derived proteins dose-dependently nlhibit 

surfactant [28,29], resultnlg in a vicious cncle of more irdux of fluid and protein as a result of 

increased surface tension with further surfactant inactivation by plasma-derived proteins and more 

destabillsation of the smail airways. In the current study, exogenous surfactant at a dose of 200 

mglkg preceding HIPPy prevented a decrease in arterial oxygenation after 20 min of HIPPy and 

preserved the Gmenwald index, CJJU.'i. and V 5 at control values. These findings indicate that 

exogenous surfactant precednlg HIPPy is able to preserve nonnal end-expiratory lung stability even 

after 20 min of HIPPy. This end-expiratory alveolar stabilization attributable to exogenous 

surfactant is likely caused by a more advantageous protein-phospholipid ratio, which is a critical 

factor for HomIaI surfactant fimction [29]. There are two reasons for tIus more beneficial ratio. First, 

there was a lugher amount of surfactant present in the BAL-accessible space, as evidenced by the 

lugher amount of total phosphorus of surface-active large and nonsUlface-active small aggregates in 
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the animals given exogenous surfactant (Table 2). Second, the reduction in surface tension over the 

alveolocapillary banier towards nonnal levels by exogenous surfactant reduced influx of protein. 

The large aggregate resuspension of the group given 200 mglkg exogenous surfactant showed 

more potential to reduce surface tension than in nonventilated controls (Table 2). When the 

influence of surfactant inhibiting proteins in the BAL-accessible space was included, however, the 

net sllrface tension-reducing potential was nommlized to the level of controls, as evidenced by the 

nommlizatioll of the minimal surface tension of the crude lavage on the pulsating bubble 

surfactometer in group S200 (Table 2). 

Such disturbance of surfactant fimction may be the reason for repeated collapse and 

reexpansion of the lung and, thus, for ventilation-induced lung parenchymal damage [26]. It may be 

suggested, therefore, that surfactant changes are (partially) responsible for the lung parenchymal 

damage previously demonstrated in this animal model [2]. Such a relationship has been shown 

previously by Nilsson ef al. in prematurely delivered rabbits. It was shown that exogenous 

surfactant preceding mechanical ventilation ,vith both constant tidal volumes (10 ml/kg) and 

constant peak inspiratOIY pressures increases lung-thorax compliance and reduces epithelial lesions 

[31]. Further studies need to be conducted to test such a hypothesis in this HIPPV-induced lung 

injury model. 

The current data show that there is an iIilportant interaction between mechanical ventilation 

and surfactant changes in inducing lung iI~ury. Such changes occur in a model of acute lung injury 

of prematurely delivered animals characterized by an immature surfactant system [30] and, as our 

data show, in a model of acute lung injury in adult animals, in which surfactant changes are induced 

by mechanical ventilation itself [6). It has now been demonstrated that high amounts of exogenous 

surfactant have a beneficial eftect on lung function and, possibly, survival in patients with acute 

respiratory distress syndrome [31]. Our data suggest that administration of high amounts of 

exogenous surfactant may beneficially influence further impaimlent of lung function attributable to 

mechanical ventilation in such patients by protecting the healthy lung areas not yet affected by the 

disease process. 

Our data show that administration of exogenous surfactant preceding 20 min of 

overinflation of the lungs without PEEP reduces Evans blue dye in the HAL-accessible space 

and preserves end-expiratory lung stability. These data indicate that exogenous surfactant 
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changes have a beneficial effect on ventilation-induced lung injury. 
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Summary and Conclusions 

As outlined in Chapter 1 the acute respiratory failure (ARF) is characterised by respiratory 

dysfunction including hypoxemia, low hlllg compliance, cnlargement of functional right-to-Ieft shunt, 

decreased functional residual capacity, atelectasis, and pulmonary edema. In ARF a shortage of 

surfactant at the alveolar level is observed. It has been suggestcd that the capillary leakage combined 

with damage to the alveolar epithelium leads to an immediate, or moderately slow, loss of active 

surfactant by inactivation or depletion from thc alveoli and the small airways. Nonnally, the loss of 

active surfactant wilI be compensated by release of stored surfactant from type II cells. However, when 

the balance between production/release and loss/inactivation of surfhctal1t favors the latter, the surface 

tension will rise at the air liquid intcrface leading to higher retracting forces of the alveoli. TIlerefore, an 

alveolus \vith surfactant impainnent would be predisposed to cnd-expiratory alveolar collapse and prone 

to be affccted by shear forces. It is shown that these "shear forces" contribute to a great extent to 

ventilation-induced hmg injury. Therefore, the treatment of ARF should include prevention of end­

expiratory alveolar collapse by a protective mode of mechanical ventilation, which is nowadays called 

TIle Open Lung Concept. Additionally, perfluorocarbons can be used to eliminate the air liquid intcrfuce by 

filling the hmg with a fluid that is capable to maintain gas exchange at the alvcolar capillary mcmbrane, 

thereby providing fluid·fil1ed alvcoli which can not collapse ("fluid PEEP"). Fil11lly, the most rational therapy 

would be to replenish the active surfactant at the alveolocapillar), membrane with exogenous sUr£1ctant. TIle 

literahlre conceming these issues is briefly reviewed in Chapter 1. In the first part of this thesis 

(Chapters 2 to 6) we investigated sonte aspects of the treatment strategies in ARF, and in the second 

part (Chapters 7 to 9) we studied some preventive strategies for ARF. 

Chapters 2 and 3 show the effect of The Open Lung Concept during pressure-controlled time­

cycled mechanical ventilation, and high frequency oscillatOl), ventilation, on lung fUllction. TIle aim of 

the study in Chapter 2 was to demonstrate that under well-dcfined conditions, commercially available 

ventilators allow settings which are as effective as high frequency oscillatory ventilation with respcct to 

improve lung fimction. It was shown that in lung-Iavaged rats, pressure-controlled time-cycled 

ventilation in combination with a recruitment maneuver results in the same level of oxygenation, carbon 

dioxide elimination, protein infiltration and lung mechanics as high frequency oscillatory ventilation. In 

another shldy, pressure-controlled time-cycled ventilation was compared with high frequcncy oscillatory 

ventilation to obsen'e their ability to prescrve the fUllction of exogenous sur£1ctant in lung-Iavaged rats 

(Chapter 3). TIle results show that pressure-controlled time-cycled ventilation \"ith sufficient level of 

PEEP and small driving pressure amplitudes is as effective as high frequency oscillatory ventilation, 

when applied to fully aerated lungs, to prevent protein influx and conversion of active into nonactive 

surfactant aggregates. Both these studies indicate that achieving and maintaining alveolar expansion is 

more important than the type of mcchanical ventilation 

In Chapter 4 exogenous surfactant therapy, mechanical ventilation with high PEEP, and partial 

liquid ventilation were compared for their effect on gas exchange, lung mechanics, lung injury, protein 

leakage into the alveoli and surfactant system, in a model of acute lung injury. TIle results show that the 

145 



SUJUJUwy and conclusions 

three strategies opened up the lungs and kept them open, as indicated by the high levels of oxygenation, 

but the impact on protein infiltration, lung injury, and surfactant composition differed markedly. Only 

with exogenous surfactant therapy was there an improvement in all variables. 

The studies in Chapter 5 and Chapter 6 used an established model of ventilation-induced lung 

injury (VIL!) with high inspiratory lung volumes at peak inspiratory pressures of 45 em H20 without 

PEEP. In Chapter 5 it was investigated whether exogenous surfactant might be used to re-establish the 

surfactant function after VILI, and in Chapter 6 whether the combination of perfluorocarbon with gas 

ventilation (partial liquid ventilation; PLy) might also be used as an alternative therapy to treat VILI. 

The results show that both exogenous surfhctant and PLY therapy re-established gas exchange and lung 

mechanics after VILI. However, with exogenous surfactant lung mechanics \vere improvcd to ncar 

healthy values. 

TIllis we have shown that established alveolar collapse can be treated by the above- mentioned 

therapies. In the subsequent studies we investigated preventive strategies for acute respiratory f.1i1ure. 

Chapter 7 briefly describes how to manage TIle Open Lung Concept. TIlis stratcgy produces a 

ventilatory condition which saves the lung from further damage, allows a reduction of Fi02, promotes 

the resorption of interstitial and intrapulmonary edema, and finally reduces the pulmonary artery 

pressures by overcoming the hypoxic puhnonary vasoconstriction. 

To evaluate whether TIle Open Lung Concept can prevent acute respiratory failure, tltis mode 

was compared with conventional settings of ventilation in an animal model of surfactant deficiency 

(Chapter 8). TIle results show that keeping the lung open during surfactant depletion prevented a 

decrease in gas exchange, attenuated the deterioration in lung mechanics, and prcvented an increase in 

protein leakage. The prevention of protein leakage is of spccial importance in surfactant~deficient lungs, 

because the low amount of remaining surfactant mak~s it more vulnerable to protein inhibition. 

Chapter 9 presents a shldy on the effect of exogenous surf.:1.ctant therapy before acute 

respiratory failure was induced by hmg overinOation without PEEP. It was demonstrated that high 

doses of exogenous surfactant, preceding ARF, preserved lung mechanics and gas exchange, and 

reduced infiltration of Evans blue dye into the alveolar spaces. TIlesc data suggest that large amounts of 

exogenous surfactant may lintit further impainnent of lung function due to mechanical ventilation in 

patients with acute respiratory failure. 

TIle work presented in this thesis contributes to the knowledge that treatment and prevention of 

cnd-expiratory alveolar collapse may beneficially influence functional impainnent of the lung due to 

mcchanical ventilation in patients suffering from acute respiratory f.1ilure. 
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Santenvatting en Conclusies 

Zoals besehrevcn in Hoofilstuk 1, wordt Aeuut Respiratoir Falen (ARF) gekenmerkt door 

respiratoire dysfunctie met als belangrijkste kenmerken hypoxic, verlaagde eompliantie van de long, 

vcrgrotil1g van de functiollele rechts-links shunt, verlaagde functionele residua Ie capaeiteit, atelectase cn 

pllimonaal oedeem. Bij ARF is er sprake van een tekort aan sllrfc1.ctant op alveolair niveau. 

Tegemvoordig wordt verolldersteld dat de eapilaire penneabiliteit gecombilleerd met de schade aan het 

alveolairc epitheellcidt tot een aeuut danwel geleidclijk verlies van aetief surfactant, door inactivatie en 

verlies van surfactant uit de alvcoli naar de kleinere 11Iehtwegen. In de nonnale situatie zal dit verlies 

worden gecompenseerd door afgifte van opgeslagen surfhctant uit de type II eel. Eehter wallneer het 

cvellwieht tussen aanmaakl afgifte enerzijds en verliesl afbraak anderzijds doorslaat naar de 

laatstgenocmde zal dit cen stijging van de oppervlakte spanning aan de lucht-vloeistof overgang 

veroorzakeu. Deze stijging van de oppervlakte spannillg veroorzaakt vcrhoogde retractieve kraehten 

welkc op de alveolus\Vatld aangrijpen. Het bovengenoemde proces maakt meteen duidelijk waarom een 

alveolus met een gestoord sur£1ctant systeem bloot staat aan eind- expiratoire collaps en de daaruit 

voortvloeiende "shear" krachten. Het is aangetoond dat "shear" kraehtell een van de belangrijkste 

veroorzakers zijn vall beademings-gei'llduccerde longsehade. De therapie yoor ARF zal daarom ook 

gerieht zijn om deze eind-cxpiratoir collaps te voorkomen door eell "beschennende" vonn van 

mechanische beadcming toe te passen, zoals omschreveu in "Het Open Long Concept". Daarnaast kall 

er gebmik gemaakt worden van pcrflllOfcarbol1en, die de lucht-vloeistof overgang elimineren cn 

tegelijkertijd gasuitwissclil1g over de alveolair- capilair membraan mogelijk maken. Bij dit laatste proces 

worden de alveoli gevuld met vloeistof zodat ze niet kUlUlen samel1vallen ("vJoeibarc PEEP"). Tenslotte 

is de meest voor de hand liggende therapie om alveolaire collaps te voorkomen, het aanvullen op 

alveolair niveau met exogeen SUIT.1etant. In Hoofilstuk J van dit proefschrift \vordt een kort literatuur 

overzieht gegeven over ARF en de behandelings mogcJijkheden. In het eerste deel van dit proefsehrift 

(hoofdstukken 2-6) wordt ollderzoek beschreven over verschiHende behandeling strategicen voor ARF. 

In het twcede decl (hoofdstukkcn 7-9) \\'ordt cell korte uitcenzetting gegevcll van enkele onderzoeken die 

deze strategicen preventieftoepassen. 

Hoold~tllk 2 en 3 laten het effect zien van "Het Open Long Concept" toegepast, tijdens druk 

gestuurde tijd gereguleerde mechanische beademing en "high frcqueney oscillatory" beademing op de 

longfulletie. Dc doelstelling van de studie in Hoofilstuk 2 was het aantonen dat de thans commerciecJ 

verkrijgbare ventilatoren net zo effectief zijn in het verbeteren van 10l1gfunctic als "high frequcncy 

oscillatory" ventilatoren. Dc resultaten lieten zien dat er geen versehil was tussell druk gestuurde tijd 

gcreguleerde mechanische beadcming gecombineerd met cell openingsprocedure cn "high frequency 

oscillatory" velltilatic met betrekking tot de oxygenatie, koolstofdioxide uitwas, ciwit-illflux en 

iongmechanica. In de volgende studie (Hoofdstuk 3) werd het effcct op exogccn surfactant bestudeerd 

tussen beide be.1demingsvonnen. De resultaten toollden aan dat, in volledig gcopende longen, druk 

gestuurdc tijd gercguleerde mcchanische bcademing met voldoende PEEP en kleine dmk amplitudes nct 

20 effectief is als "high frequency oscillatory" be.1deming, in het voorkomen van zowel eiwit-influx als 

van de omzctting van aetieve in niet-actieve sUr£1ctant aggregatcn. Beide studies lieten zien dat het 

openen en open houden van alveoli belangrijker is dan de beademingsvonn. 
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In Hoofdstuk .; werden I) exogeel1 toegcdiend surfhctallt, 2) mcchanische ventilatie met hoge 

PEEP dmkken en 3) particle vloeistof beademing met elkaar vergeleken in cen model van acute 

longschade, waarbij vooral gelet werd op het effect op de gasuitwisseling, longmechanica. longschade, 

alveolaire eiwit-influx en surfactant inactivatic. Aile 3 de therapiecn blekel1 instaat de long te openen cn 

open te houden, wat te zien was aan de hoge arterieele zuurstofspalllllngs waardcn. \Vel \verd onderling 

een duidclijk verschil gezien tussell de eiwit-illflux, de longschade en surfactant omzetting. Een 

verbetering van at de bestudeerde variabclen werd alleen bij surfactant therapie waargenomen. 

Voor de studies beschreven in Hoqfdstukken 5 en 6 werd gebmik gemaakt van een bestaand 

expcrimenteel modcl vall bcademings geYnduceerde longschade door middel van hoge piek-inspiratoirc 

longvolumes zonder PEEP. In Hoofdslllk 5 werd onderzocht of cxogeen surfhctant gebmikt kan worden 

om de surfactant funetie te herstellen in ventilatie geYnducccrde longschade. Vervolgens werd in 

Hoofdslllk 6 gekeken of partieie vloeistof beademing eell alternatief kan zijn voor de behandeling van 

ventilatie gC'jnduceerde longschadc. Bcide therapieell blekcn de gasuitwisscling en de longmcchanica tc 

verbetercn, cehter aileen bij exogcen surfhctant verbetcrdc de longmechanic-a tot "gezonde" waarde. 

De voorafgaande studies hebben laten zien dat bestaande alveolaire col1aps behandeld kan 

worden door middel vall de hierboven bcschreven therapiecn. In het volgellde gedeelte zal preventievc 

toepassing van deze therapieen voor ARF bestudeerd worden 

In HoofilsllIk 7 wordt kort uiteengezet hoe "Het Open Long Concept" in de praktijk kan worden 

toegcpast. Dit concept behelst eell beademingsstrategie waarbij het voorkolllen van additionele 

longschade voorep staat met daarbij cell verlaging van de inspiratoire zuurstof toediening, rcsorptie van 

il1terstitiecl en intrapulmonaal oedeem, met uiteindelijk cen verlaging vall de pulmonale arterieele dmk 

door het overwinnen van de hypoxische puhnonale vasoconstrictie. 

In Hoofdstuk 8 werd onderzocht of acuut rcspiratoir falen voorkomen kan worden door het 

toepassen van "Het Open Long Concept" tijdens de surf.:1ctant depletie in catten. Door het openhouden 

van de long gedurcnde surfactant depletie werd 1) een vcrIaging van de gasuitwisseling vooorkomen. 2) 

de achteruitgang in long mechanica beperkt en 3) geen toename van ciwit lekkage gezien, zoals gezien 

werd in de controle groep. Hct voorkomen van de ciwit lekkage is vooral van beJang in longcn met een 

vcnninderde surfactant concentratie, omdat dan deze kleinc hoeveelhedcn sun.1ctant gcInactiveerd 

worden door de aanwezige plasma eiwiten. 

Tenslotte werd in Hoofdsluk 9 onderzocht of het toedienen van surfactant ARF kan voorkoll1cn 

in het model van beademillgs geYnducecrde longschade. De resuitaten toonden aan dat cell hoge dosis 

exogeen surfactant, de long mechanica en gasuitwisseling instandhoudt en dat de instroom van Evans 

blue kleurstof naar de alveoli venninderde in vergelijking met een contrale groep. Derhalve menen wij 

dat de toediening van cen hoge dosis exogeen surfactant de verdere achtemitgallg van dc longfunctie die 

ten gevolge van kunstmatige beademing in ARF patienten optrecd gunstig k-an beTnvloeden. 

In conclusie, het werk dat gepresentcerd wordt in dit proefschrift draagt bij aan het inzicht dat 

behandeling en preventie van eind~expiratoire alveolaire collaps, cen gunstig effect heeft op de 

longfunctie, die door mechanische beademillg vcnninderd is in patienten met acuut respiratoir falen. 
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Resumen y Conclusiones 

En el Capitulo 1 se incluyc ulla deseripci6n de la insuficiencia respiratoria aguda (IRA), la 

cual se caracteriza por la presencia de disnea, hipoxemia, baja distcnsibilidad pulmonar, incremento en 

los "cortocircuitos" illtrapuhnonares de derecha a izquierda, disminucion en la capacidad funcional 

residual, atclectasias yedema pulmonar no cardiogenico. Sc ha obscrvado quc durante la IRA existe 

un deficit de surfactallte a nivel alveolar. Se ha propuesto que la filga capilar en combinacion con dano 

al epitelio alveolar conduce a una perdida inmediata 0 progresiva de surt1.ctante activo, ya sea por 

inactivacion 0 deficit en cl alveolo y vias aereas. En condiciones normalcs la perdida de surfactante 

activo sera compcllsada por la liberacion de surfhctante almacenado en las celulas alveolares tipo II. 

Sin cmbargo, cuando cl balance entre produccionlliberacion y IH~rdidalinactivacion dc surfhctallte 

favorece a cste idtimo, la tension de superflcie alveolar a nivel de la interfase aircMliquido se 

incremcnta producieudo elevadas fuerzas de retrace ion alveolar. Par 10 tanto, un alveolo COil deficit de 

surfactante estanl prcdispuesto a colapsarse al final de Ja espiracion y propenso a ser afectado por 

fuerzas de traceion. Se ha demostrado que estas fherzas dc tracdon contribuycn en gran medida al 

dana pulmonar inducido por la ventilacion mccanica. Por 10 tanto, el tratamiento de Ia IRA debe 

incluir prevencion del coJapso alveolar al final de la espiracion mediante un modo de ventilacion 

mecanica que protcja al pulmon contra las fUCrz.1s de traccion. DidIo modo vel1tilatorio debc incluir 

una maniobra que pcrmita reacrear (abrir) las unidades alvcolares colapsadas, esto se logra mediante el 

incremcnto de las presioncs en la via aerea hasta que sobrepase el punto de apertura alveolar. Una vez 

que todos los aiveolos se encucntran reacreados (abiertos), las presiones en la via acrca deberan 

reducirse al nivel minimo necesario para contra res tar las fherzas de retraccion alvcolar y mantel1er 

dichos alveolos abiertos durante cI periodo espiratorio. A cste modo vcntilatorio se Ie ha denominado 

"Open Lung Concept". Aunado a este modo de ventilacion, otra terapia que evita el colapso alvcolar al 

final de la espiraeion es por la elilllil1anci6n de Ia il1ter£1se aireMliquido a nivci alveolar mediante la 

aplicacion de pcrfluorocarbonos. El perfluorocarbono manticne al alveolo Ileno de liquido el cual 110 

podra colapsarse al final de la espiraci611 ("PEEPMliquido") permitiendo cl intercambio gascoso a nivcl 

de Ia membrana alveoloMcapiiar. Finalmcnte, eI tratamicnto bttsico de la IRA cOl1siste en restituir el 

surfactal1te activo a nfvcl de la membrana alveolo capilar mediante surfactant exogeno. En el Capitlllo 

1 se describcn algunos de estos aspectos basados en una revision de la literatura. 

En la primera parte de esta tesis (capltllios 2M6), nosotros investigamos algunos aspectos sobre 

las medidas de tratamiento de la IRA, y en la segul1da parte (capillilos 7-9) estudiamos algunas 

medidas para prevenir la IRA. 

En los estudios il1c1uidos en los Capllulos 2 y 3 se muestra el efccto del "Open Lung Concept" 

en la fUl1cion pulmonar durante Ia ventilacion mecfmica ciclada por tiempo y controlada por presion, y 

la vel1tilaci6n oseilatoria de alta frequeneia. EI objetivo del estudio deserito ell el Capitulo 2 fue; 

demostrar que bajo condiciones bien definidas, ventiladores comerciales permiten ajustes en la tccnica 

vcntilatoria, los cllales son tan efectivos como la ventilaeion oscilatoria de alta frequencia con respecto 

a la mejoria de la funciol1 puhnonar en en un modclo de lesion puhnonar aguda. Se demostro que Ia 

ventilacion dclada pDf ticmpo y controlada por presi6n, en combinaeion con una maniobra de 

rcaereacion alveolar resu1to cn el mismo nivcl de oxigenacion, eliminacion de bioxido de carbon~, 
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infiItracion de proteil1as al alveolo, y mecallIca puhnonar que la ventilacion oscilatoria de alta 

frequellcia. En otro estudio, la ventilacion ciclada por tiempo y controlada por presion fue comparada 

con Ia ventilacion oscilatoria de alta frequencia en 1a prcsen'acion del surfactantc exogeno (Capitulo 

3). Los resultados mllestran que en ratas sometidas a lavado pulmonar, la ventilacion eiclada por 

tiempo y controlada p~r presion con suficientc nivel de PEEP y corta amplitud entre las presiones 

illspiratorias y espiratorias, es tan efectiva como la ventilaeion oscilatoria de alta frcquencia cuando se 

aplica en pulmones completamente aereados, previniendo la infiltraci6n de proteinas al alveolo y Ia 

transformaci6n de surfactante de componentes activos en componentes no activos. Estos capitulos 

indican que obteniendo la reapertura alveolar y manteniendo los alveolos abiertos durante todo cI cicio 

ventilatorio es mas importante que el tipo de ventilaci6n mectl.l1ica. 

En el estudio descrito en el Capftllfo " se utilizo un modele de lesion puhnonar aguda para 

comparar; la terapia con surfactante exogeno, la ventilacion mecanica con altos nivcles de PEEP, y la 

ventilaci6n parcialliquida, en su crccto sobre el intercambio gaseoso, la mecanica pulmonar, la lesion 

pulmonar, cI infiltrado de proteinas al alveolo, y la composicion de surfhctante. Los resultados 

mostratroll que las tres estrategias lograron "abrir" los pulmones y iograron mantenerlos "abiertos", 

como 10 indico el elevado nivel de oxigenacion, sin embargo, el impacto sobre Ia infiltracion de 

proteinas, Ia lesion pllimonar y la composicion de surfactante difirio marcadamente. Soiamente con la 

terapia a base de surfactantc exogeno Imbo mejoria en todas las variables. 

En los estudios descritos en el CapItulo 5 y CapItulo 6 usamos un modelo establecido de 

lesion puhnonar inducida por la ventilacion mecanica (LlVM) el cual consiste en ventilar con altos 

volumencs inspiratorios a altas presiones inspiratorias de 45 em I-hO sin PEEP. En el estudio descrito 

en cl Capltlllo 5 investigamos si Ia terapia con surf.:1ctante exogeno puede scr usada para reestablecer 

la funcion del surfactante perdido 0 inactivado despues de la LIVM, y en eJ estudio descrito en el 

Capitulo 6 estudiamos si la combinacion de perfluorocarbonos COil ventilacion mecanica (ventilacion 

parcial Hquida) puede ser utlizada para tratar la LIVM. Los resultados mostraron que tanto la terapia 

con surfactante exogeno como la vcntilacion parcial Hquida reestablecierol1 eI intercambio gaseoso y 

la mecanica pulmonar despues de la LIVM. Aun mas, la terapia con sllrfactante exogeno mejoro la 

medlllica puhnonar a valores cercanos a los rcgistrados en animales sin dafio pulmollar. 

En los capftulos descritos hasta ahora hemos mostrado que el colapso alveolar pllede ser 

tratado con las terapias mencionadas anterionnente. En los siguientes tres capftulos mostraremos 

estrategias para prcvcnir la IRA. 

En el Capltufo 7 se describe la tecnica del "Open Lung Concept". Esta estrategia produce una 

condicion ventilatoria que proteje al puhnon de un mayor dafio, pennite una reduccion de la fmccion 

inspirada de oxigeno, promucve la reabsorcion de edema intcrsticial e intraalveolar, y finahnente, 

reduce las presiones dc la arteria pulmonar debidas a vasoconstriccion pulmonar por hipoxia. 

Para evaluar si cl "Open Lung Concept" puede prevcnir IRA, se comparo esta tecllica con la 

ventilacion convencional en un modele animal de deficiellcia de surfhctante (Capitulo 8). Los 

resultados muestran que manteniendo cI pulmon "abierto" durante la deficiencia de surfactante se 

previno la dismillucion en cI intercambio gaseoso, sc atenuo el dcterioro en la mecfmica pulmonar, y 
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se previno el infiltrado de protclnas al alvcolo. En pulmolles deficicntes de surfactante es mu)' 

importante prevenir la infiltraci6n de proteinas debido a que la escasa calltidad de surfactante 

remanente cn el pulman esta propenso a ser inhibido por las protcinas. 

Nosotros estudiamos en el Capitulo 9 el efeeto de la terapia con surfactantc ex6geno antes dc 

que 1a IRA fuera inducida por sobredistensi6n pulmonar sin PEEP. En este estudio demostramos que 

altas dosis de SUIT.1ctantc exogeno admillistrado antes de la IRA, preservo la mecfm.ica pulmonar y el 

intercambio gascoso, ademas redujo cJ infiltrado dc colorante azul de Evans dentro del espacio 

alveolar. Estos datos sugieren que grandes cantidades de surf.:1ctante exogcno podrian limitar el dana 

pulmonar debido a la ventilacion mecanica en pacicntes con rnA. 

EI trabajo presentado en esta tesis contribuyc al conocimiento sobre el tratamicnto y 

prevencion del colapso alveolar al final de la espiracion, eI cual pucde tener un cfeeto bene fico Cil el 

impedimento dc la funcion pulmonar debido a ia ventilacion medmica ell pacientes que desarrolian 

insuficiencia respiratoria aguda. 
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