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Interplay between myosin IIA-mediated
contractility and actin network integrity
orchestrates podosome composition
and oscillations
K. van den Dries1, M.B.M. Meddens1, S. de Keijzer1, S. Shekhar2, V. Subramaniam1,2,

C.G. Figdor1 & A. Cambi1,2

Tissue-resident dendritic cells patrol for foreign antigens while undergoing slow mesenchy-

mal migration. Using actomyosin-based structures called podosomes, dendritic cells probe

and remodel extracellular matrix topographical cues. Podosomes comprise an actin-rich

protrusive core surrounded by an adhesive ring of integrins, cytoskeletal adaptor proteins and

actin network filaments. Here we reveal how the integrity and dynamics of protrusive cores

and adhesive rings are coordinated by the actomyosin apparatus. Core growth by actin

polymerization induces podosome protrusion and provides tension within the actin network

filaments. The tension transmitted to the ring recruits vinculin and zyxin and preserves overall

podosome integrity. Conversely, myosin IIA contracts the actin network filaments and applies

tension to the vinculin molecules bound, counterbalancing core growth and eventually

reducing podosome size and protrusion. We demonstrate a previously unrecognized interplay

between actin and myosin IIA in podosomes, providing novel mechanistic insights into how

actomyosin-based structures allow dendritic cells to sense the extracellular environment.
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A
ntigen-presenting dendritic cells (DCs) reside in periph-
eral tissues and patrol for foreign antigens while crawling
between surrounding cells and extracellular matrix

components. Although detailed knowledge of the molecular
players regulating the slow migration of DCs is still lacking,
actomyosin-based structures called podosomes1,2 allow DCs to
sense and remodel the extracellular matrix facilitating cell
protrusion3,4. Podosomes are circular structures with a dense
core of actin surrounded by a ring of integrins and adaptor
proteins, such as talin and vinculin, where actin network
filaments are also found5. Podosome spatial distribution
substantially differs between cell types, varying from circular
belts in osteoclasts to large clusters in macrophages and DCs6–8,
and within these mesoscale structures, individual podosome cores
seem connected by a filamentous actin network9. Recently, non-
muscle myosin IIA has also been associated with podosome
clusters in macrophages and DCs3,10,11. Myosin II activity was
shown be important in the formation of ring-like clusters of
podosomes in Rous sarcoma virus (RSV)-transformed baby
hamster kidney (BHK) cells12; however, this work specifically
describes the role of myosin II in the organization of higher-
ordered podosome clusters. Therefore, the exact role of the actin
network and myosin IIA in preserving the integrity of core and
ring at the single-podosome level remains unknown.

Podosomes are dynamic structures and display continuous
actin turnover within the core8,9. By applying atomic force
microscopy, podosomes have been shown to exhibit actomyosin-
dependent periodic stiffness oscillations in macrophages13.
Although their molecular determinants remain unknown,
these stiffness oscillations have been proposed to correspond to
the pushing activity of podosomes and may contribute to
podosome protrusiveness. This hypothesis is supported by data
obtained in DCs, where myosin IIA inhibition resulted in
decreased protrusive activity3. It remains to be established
whether, similarly to stiffness, the levels of the molecular
constituents of core and ring also fluctuate in time.

Podosome rings contain adaptor proteins such as vinculin, talin,
zyxin and paxillin, also found in focal adhesions (FAs). The
recruitment of these adaptor proteins to FAs has been shown to be
specifically controlled by myosin IIA-mediated contraction14,15.
Despite the fact that podosomes are much more dynamic than FAs,
the molecular kinetics of their components are unknown, and the
tension-mediated mechanisms driving the recruitment of adaptor
proteins to podosome rings remain elusive.

Here we investigated the role of the actin network and myosin
IIA-mediated contractility in the dynamic growth and shrinkage
of podosomes, which drives their protrusive behaviour while
probing the extracellular surroundings. We exploited primary
human monocyte-derived DCs, which in their immature state
spontaneously form numerous podosomes11,16. By applying
complementary microscopy techniques, we unravelled the
interplay between actin network integrity and myosin IIA-
mediated contractility that regulates podosome composition and
oscillations. Our findings provide novel mechanistic insights into
the dynamic behaviour of these adhesive and protrusive
structures that explain their role as extracellular matrix sensors
in tissue-resident DCs.

Results
Myosin IIA is not essential for actin core integrity. We have
previously shown that myosin IIA is the predominant myosin
isoform expressed by DCs that has an important role in PGE2-
mediated podosome dissolution11. Here we investigated the
contribution of myosin IIA-mediated contractility in the
regulation of podosomes under steady-state conditions.

First, we used immunofluorescence microscopy to determine
the localization of myosin IIA and actin within DCs. As expected,
myosin IIA colocalizes with actin filaments at FAs and is present
in the podosome cluster, but apparently excluded from the
podosome core, suggesting that myosin IIA is associated with the
actin network (Fig. 1a). To investigate whether myosin IIA also
contributes to molecular tension within the podosome cluster, we
used an intramolecular FRET-FLIM-based vinculin tension
sensor (VinTS), which has recently been developed and applied
to detect tension forces at FAs17. When tension is applied to
VinTS, this protein is stretched and the FRET efficiency of the
mTFP1-Venus fluorophore pair decreases, thus resulting in
higher mTFP1 fluorescence lifetime values. A tension-
insensitive tail-less vinculin (VinTL), which cannot bind to
actin and is therefore unable to stretch, served as a negative
control. We transfected human DCs with either VinTS or VinTL
and measured the mTFP1 fluorescence lifetime in individual
podosomes. As shown in Fig. 1b, we found higher mTFP1
fluorescence lifetime values for VinTS compared to VinTL,
indicating that tension is applied to vinculin within individual
podosomes. To investigate whether the tension on vinculin is
myosin IIA-dependent we used the specific myosin inhibitor
blebbistatin (blebb). Blebb blocks myosin IIA in an actin-
detached state18, and the addition of 20 mM blebb dislocated
myosin IIA from the actin filaments (Supplementary Fig. S1).
Interestingly, the inhibition of myosin IIA contractility
completely released the tension on vinculin within individual
podosomes (Fig. 1b). As expected, the addition of blebb did not
decrease the lifetime of VinTL (Fig. 1b). Together, these results
indicate that myosin IIA is present at the podosome site and
provides tension within the podosome cluster most likely acting
on the actin network filaments.

Subsequently, we investigated whether myosin IIA-mediated
contractility is necessary for the integrity of podosome cores. For
this purpose DCs represent a unique cell system, as they bear
both podosomes and FAs, as indicated by the localization of bona
fide FA markers in unstimulated cells (Supplementary Fig. S2).
Rapid disassembly of FAs therefore served as an internal control
for the inhibition of myosin IIA-mediated contractility. We
quantified the number of DCs displaying FAs and podosomes
before and after treatment with 20 mM blebb, which in previous
studies has been shown to inhibit FA formation and
maturation14,19. We observed that upon myosin IIA inhibition
DCs rapidly disassembled FAs but retained podosomes for up to
30 min at least (Fig. 1c), demonstrating that podosome actin core
integrity is not dependent on myosin IIA-mediated contractility.

Myosin IIA controls actin core oscillations. To gain more
insight into podosome actin core dynamics we performed live-cell
imaging on cells transfected with green (GFP)- or red fluorescent
protein (RFP)-tagged actin-binding protein Lifeact20. We
observed minute-scale intensity fluctuations of Lifeact-GFP
(Fig. 2a), indicating that the actin content within the core of
individual podosomes oscillates in time. The amplitude and
duration of these oscillations appeared to be very heterogenic
among different podosomes but also over time within one
individual podosome, with cycle times ranging from 5 to 15 min
(Fig. 2b, Ctrl). As the actin core is thought to function as a
protrusive module, we investigated whether these actin core
oscillations correlated with a ‘pushing’ activity of the core onto
the underlying glass substrate. We therefore exploited internal
reflection microscopy (IRM), which visualizes the closeness of
contact between the ventral plasma membrane and the glass
substrate. Within an IRM image, intimate cell–glass contacts
appear as black regions, whereas less intimate contacts appear
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whiter. By simultaneously monitoring Lifeact-GFP fluorescence
intensity and the IRM signal, we found that higher actin
fluorescence intensity corresponded to darker regions, while low

actin intensity correlated with brighter regions in the IRM image
(Fig. 2a, Supplementary Movie 1a,b). This indicates that the
oscillations in core actin content directly correlate with changes
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Figure 1 | Myosin IIA-mediated contractility is not essential for podosome core integrity. (a) Myosin IIA is associated with FAs and podosomes.

Immature DCs were seeded on glass coverslips, fixed and stained with Texas Red-conjugated phalloidin and a fluorescent anti-myosin IIA mAb to visualize

actin and myosin IIA, respectively. Squares represent enlarged views of typical FAs and podosome (pod) areas. Scale bar, 10mm. (b) DCs were transfected

with either VinTS or VinTL and fluorescence lifetime was measured before and after 30 min of treatment with 20mM blebb. Shown is the frequency

distribution of the fluorescence lifetime of at least 800 individual podosome rings in 20 different cells and the Gaussian fit of the data. (c) Immature DCs

were seeded on glass coverslips and left untreated or stimulated with 20mM blebb for 5, 10, 20 and 30 min. Cells were subsequently fixed and stained with

Texas Red-conjugated phalloidin to quantify the number of podosome-bearing cells and the FA markers vinculin, talin, zyxin and paxillin to quantify the

number of FA-bearing cells. Mean±s.d. of the percentage of cells displaying podosomes or FAs for at least 100 cells per condition is shown. Statistical

analyses were performed by two-tailed Student’s t-test. **Po0.01, ***Po0.001.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2402 ARTICLE

NATURE COMMUNICATIONS | 4:1412 | DOI: 10.1038/ncomms2402 | www.nature.com/naturecommunications 3

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


N
or

m
al

iz
ed

 fl
uo

re
sc

en
ce

in
te

ns
ity

N
or

m
al

iz
ed

 in
te

ns
ity

BlebbistatinControl

Actin

IRM

Ctrl

Blebb

Y27632
Non-podosome

Podosome

Actin fluorescence Inverse IRM signal

B
le

bb

C
on

tr
ol

t= –5 s t= 0 s t= 70 s t= –5 s t= 0 s t= 70 s

0

1

2

3

N
or

m
al

iz
ed

 fl
uo

re
sc

en
ce

in
te

ns
ity

***

0

1

2

3

N
or

m
al

iz
ed

 c
or

e 
ar

ea

Ctrl

Bleb
b

Ctrl

Bleb
b

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
flu

or
es

ce
nc

e
in

te
ns

ity

R
el

at
iv

e 
flu

or
es

ce
nc

e
in

te
ns

ity

Time (s)

Control
Blebb

0 20 40 60 80

Time (min) Time (min)
0 5 10 15 20 25 0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Time (s)
0 20 40 60 80

Control
Y27632

Figure 2 | Myosin IIA-mediated contractility is essential for podosome core oscillations. (a) DCs were transfected with Lifeact-GFP to visualize actin.

Shown are the intensities of the actin fluorescence and the inverse IRM signal (where values 41 mean tight contact, while values o1 mean loss of

contact between cell and substrate) at a podosome and a non-podosome area. Data were normalized to the average intensity. (b) Cells were transfected

with Lifeact-GFP or -RFP to visualize actin. Shown are the Lifeact-RFP fluctuations over time of three representative podosomes in untreated control

cells or in cells treated for 30 min with 20mM blebb. Also, Lifeact-GFP fluctuations of three representative podosomes are shown in cells treated for 30 min

with 20mM Y27632. Data are normalized to the average intensity. (c) DCs were transfected with actin-mCherry and subjected to FRAP analysis. Snapshots

from the FRAP time-lapse movies at 5 s before (� 5 s), directly after (0 s) and 70 s after photobleaching for untreated and blebb-treated cells are shown.

The white circle indicates the FRAP region that corresponds to a single podosome. (d) FRAP analysis of actin-mCherry within podosome cores without

(solid boxes) and with (open boxes) blebb. Shown are the average and standard deviation of the fluorescence recovery for at least 10 podosomes in five

different cells. FRAP data were background corrected and double normalized to correct for total bleaching of the image (see Methods). (e) FRAP analysis

of actin-GFP within podosome cores without (solid boxes) and with (open boxes) Y27632. Data are represented in the same way as in panel d.

(f) Representative images of podosome cores in fixed DCs, visualized by Texas Red-conjugated phalloidin, in the control situation (left) and after 30 min of

treatment with 20mM blebb. Scale bar, 5 mm. (g) Median±interquartile range of the actin core fluorescence intensity (left plot) and core area (right plot)

for at least 800 podosomes per condition. Statistical analyses were performed by two-tailed Student’s t-test. ***Po0.001.
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in the vertical distance between the membrane and the glass
substrate. These IRM signal fluctuations were specific for
podosome sites, as indicated by the stable IRM signal in
podosome-free areas. These results strongly suggest a direct
association between core actin oscillations and podosome
protrusive activity.

Next, we investigated the role of myosin IIA-mediated
contractility in podosome core oscillations by performing live
imaging on cells before and after blebb treatment. For live-cell
imaging experiments with blebb, cells were transfected with
Lifeact-RFP instead of Lifeact-GFP, as blebb is known to be
phototoxic in combination with blue excitation light21. Lifeact-
GFP and Lifeact-RFP showed similar fluctuations of podosome
cores (Supplementary Fig. S3a), indicating that both Lifeact
constructs could be used interchangeably. Subsequently, we
treated cells with blebb and found that Lifeact-RFP intensity
fluctuations were greatly dampened upon myosin IIA inhibition
(Fig. 2b; Supplementary Movie 2), demonstrating that myosin
IIA-mediated contractility is essential for podosome core
oscillations. The inactive (þ )� blebb enantiomer did not
influence Lifeact-RFP fluctuations (Supplementary Fig. S3a).

Myosin IIA-mediated contractility is regulated by myosin light
chain (MLC) phosphorylation catalysed by Rho kinase (ROCK)
and MLC kinase (MLCK)22,23. To investigate the role of MLC
phosphorylation in podosome core oscillations, we treated DCs
with the ROCK inhibitor Y27632 or the MLCK inhibitor ML7.
First, we found that, in contrast to blebb, myosin IIA still localizes
at podosomes in DCs stimulated with either Y27632 or ML7
(Supplementary Fig. S1), indicating that these compounds do not
significantly interfere with the actin-binding properties of myosin
IIA. However, and more importantly, both Y27632 and ML7 did
strongly affect Lifeact-GFP fluctuations in agreement with the
results upon blebb addition (Fig. 2b; Supplementary Fig. S3b;
Supplementary Movie S2), clearly demonstrating that podosome
core oscillations are regulated by myosin IIA-mediated
contractility, critically dependent on MLC phosphorylation.

Core actin polymerization is myosin IIA-independent. To
examine whether actin turnover within the core was affected by
myosin IIA inhibition, we performed fluorescence recovery after
photobleaching (FRAP) analysis on multiple individual podo-
somes in DCs transfected with actin-mCherry or -GFP. In
agreement with previous work in osteoclasts9, we observed
continuous actin turnover within the podosome core (Fig. 2c–e;
Supplementary Movies 3 and 4). Note that the FRAP recovery
curves are linear compared to conventional FRAP curves,
indicating that actin is delivered to the core at a constant rate
most likely through polymerization at the base. We found that
neither myosin IIA inhibition by blebb nor ROCK inhibition by
Y27632 influenced the fluorescence recovery (Fig. 2d,e;
Supplementary Movies 3 and 4), indicating that, in contrast to
actin core oscillations, core actin polymerization is not regulated
by myosin IIA-mediated contractility or by ROCK activity.
It should be noted that we did not monitor the recovery at time
scales longer than 1–2 min, due to the actin intensity fluctuations
that interfered with the FRAP curve.

As inhibition of both myosin IIA and ROCK dampens core
actin oscillations but leaves core actin polymerization unaffected,
we hypothesized that the actin content at podosome cores should
increase upon myosin IIA inhibition. Because single-cell live
imaging does not provide sufficient statistics to test this
hypothesis, we used a custom-written quantitative image
analysis algorithm24 (Supplementary Fig. S4) to calculate the
core actin intensity of numerous podosomes, visualized by Texas
Red-conjugated phalloidin, on multiple fixed cells, with and

without blebb. Indeed, we found that the measured intensity of
the podosome cores is approximately 1.5 times higher after
myosin IIA inhibition when compared to control cells (Fig. 2f,g).
It is important to note that this increase in actin content was not
observed during single-cell live imaging (Fig. 2b, blebb), which
can most likely be attributed to fluorophore photobleaching
during prolonged imaging. The podosome core area did not
change significantly (Fig. 2g), suggesting that the elevated
intensity can be ascribed to a higher core actin density or an
increased core volume.

Myosin IIA is not essential for podosome ring integrity.
Podosome rings contain the adaptor proteins vinculin, talin,
zyxin and paxillin, which are also FA constituents. While myosin
IIA-mediated contractility has an essential role in the localization
and recruitment of these proteins in FAs14,15, it is unclear
whether similar mechanisms also operate in podosomes.

First, to understand the role of myosin IIA-mediated
contractility in preserving podosome ring integrity, we
performed immunofluorescence stainings for vinculin, talin,
zyxin and paxillin on fixed DCs with or without blebb and
observed that all four proteins remain present in podosome rings
even after prolonged treatment (Fig. 3a–d). Similarly, addition of
Y27632 or ML7 did not dislocate these components from the ring
(Supplementary Fig. S5). Analysis and comparison of numerous
individual podosomes showed that after myosin IIA inhibition
vinculin and zyxin levels do not change, whereas talin and
paxillin levels only slightly, but significantly, decrease (Fig. 3e).
These results indicate that, in sharp contrast with FAs, myosin
IIA-mediated contractility is not required for preserving
podosome ring integrity.

Myosin IIA controls podosome ring oscillations. To investigate
whether myosin IIA-mediated contractility may be involved in
the dynamic recruitment of individual ring components, we
analysed DCs transfected with GFP-tagged adaptor proteins by
time-lapse confocal microscopy. Surprisingly, we found that,
similarly to the cores, podosome rings exhibit oscillations, as
indicated by fluorescence intensity fluctuations of GFP-tagged
vinculin and zyxin over time (Fig. 3f; Supplementary Movies 5
and 6). These fluctuations were greatly dampened by ROCK
inhibition (Fig. 3g; Supplementary Movies 5 and 6), indicating
that myosin IIA-mediated contractility is essential for podosome
ring oscillations.

We subsequently examined the diffusion of individual ring
components by performing FRAP analysis of GFP-tagged adaptor
proteins in individual podosomes in the absence and presence of
Y27632 (Supplementary Fig. S6). This revealed that, despite the
inhibitory effect of Y27632 on the ring oscillations, the fluores-
cence recovery of the GFP-tagged adaptor proteins remains
unaltered, demonstrating that the diffusion of vinculin, zyxin,
paxillin and talin is not regulated by MLC phosphorylation.
Altogether, these data indicate that the ring oscillations and the
adaptor protein diffusion are controlled by a myosin IIA-
dependent and -independent mechanism, respectively.

Actin network drives core oscillations and ring integrity. The
actin network within the podosome cluster regulates podosome
stiffness oscillations13. Here we investigated the role of this
network in regulating podosome integrity and dynamics.

First, we studied the actin network’s contribution in regulating
podosome core integrity. In agreement with previous reports13,
the inhibition of actin polymerization with a low concentration of
cytochalasin D (cytoD) resulted in the immediate disruption of
the actin network, while podosome cores remained intact over a
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prolonged period of time (Fig. 4a; Supplementary Fig. S1).
Surprisingly, even after 20 min of cytoD treatment 40% of the
cells were found to bear podosomes (Supplementary Fig. S7a).
We subsequently investigated actin core oscillations, and found

that Lifeact-GFP intensity fluctuations were completely abrogated
directly after cytoD addition (Fig. 4b; Supplementary Movie 7),
indicating that oscillations of actin core levels critically depend on
proper actin polymerization. It should be noted that blocking
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Figure 3 | Myosin IIA-mediated contractility is not essential for podosome ring integrity. Immunolocalization of actin (red) with either (in green)

(a) vinculin, (b) talin, (c) zyxin and (d) paxillin in untreated control cells (upper row) or cells treated for 30 min with 20mM blebb (lower row). Actin was

stained by Texas Red phalloidin, whereas adaptor proteins were labelled by specific monoclonal antibodies and subsequently secondary antibodies

conjugated to Alexa488. Merged images are shown on the right. Images are representative of multiple cells from at least three similar experiments. Scale

bar, 2 mm. (e) Levels of vinculin, zyxin, talin and paxillin were measured in at least 800 podosomes per condition. Data are normalized to the average

intensity and blebb-treated levels are expressed relative to control levels. Shown are the median (middle line) and the interquartile range (upper and lower

whiskers). Statistical analyses were performed by two-tailed Student’s t-test. ***Po0.001. (f,g) DCs were transfected with vinculin-GFP or zyxin-GFP.

Shown are the vinculin and zyxin level variations over time of randomly selected podosomes in (f) untreated control cells or (g) cells treated for 30 min

with 20mM Y27632. Data are normalized to the average intensity.
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actin polymerization by addition of Latrunculin A also abrogated
the intensity fluctuations (Supplementary Fig. S7b). Together,
these results indicate that impairment of actin polymerization
severely affected actin network integrity and actin core
oscillations.

To investigate whether the actin network also regulates
podosome ring integrity, we performed immunofluorescence
staining for vinculin, talin, zyxin and paxillin in adherent DCs
fixed at different time points after cytoD treatment and calculated
their fluorescence intensity levels from numerous podosomes on
multiple cells. Strikingly, we found that podosome ring integrity
was severely compromised after actin network disruption.
Addition of cytoD resulted in the immediate disappearance of
vinculin and paxillin from the rings (Fig. 5a,d,e). Furthermore,
although talin levels remained stable for a prolonged period of
time, they significantly decreased after 20 min of cytoD treatment
(Fig. 5b,e). While zyxin levels remained constant (Fig. 5c,e),
FRAP analysis of GFP-tagged zyxin before and after inhibition of
actin polymerization revealed that after actin network disruption

the slow fraction of zyxin became totally immobile (Supple-
mentary Fig. S8), indicating that zyxin diffusion within podosome
rings exclusively depends on actin polymerization. Inhibition of
actin polymerization by Latrunculin A (LatA) also disrupted the
actin network (Supplementary Fig. S1) and affected ring integrity,
as demonstrated by the immediate loss of vinculin upon
treatment (Supplementary Fig. S7c). These data clearly
demonstrate that the actin network within the podosome
cluster is essential for ring integrity, most likely providing the
tension necessary to recruit and retain the adaptor proteins at
podosome rings.

Podosome core growth drives vinculin and zyxin recruitment.
We showed above that podosome ring composition is mainly
regulated by the actin network. Therefore, we hypothesized that
podosome core growth induces tension within the actin network
that is transmitted to the ring to drive the recruitment of tension-
sensitive ring components. To test this hypothesis, we simulta-
neously monitored the fluorescent intensity fluctuations over time
of both Lifeact-RFP and each GFP-tagged adaptor protein for
many individual podosomes. Subsequently, the fluctuations were
correlated, and a linear as well as a nonlinear fitting analysis was
performed to determine the adaptor protein behaviour. The
intensity correlations of a single randomly chosen podosome for
each of the adaptor proteins are displayed in Fig. 6a–d. We found
that within a single podosome, vinculin and zyxin levels fluctuate
in complete concert with core actin levels (Fig. 6a,c), whereas
paxillin and talin intensity fluctuations are modest and less cor-
related (Fig. 6b,d). To note, ROCK inhibition also abrogated the
modest oscillations of paxillin and talin, as observed for vinculin
and zyxin (Supplementary Movies 8 and 9).

A combined analysis of numerous podosomes confirms that
the levels of the adaptor proteins differentially correlate with core
actin levels (Supplementary Fig. S9a). The fitting analysis as
summarized in Supplementary Table S1 and Fig. 6e shows almost
identical linear correlation values for vinculin (slope¼ 0.82 with
r¼ 0.91) and zyxin (slope¼ 0.85 with r¼ 0.95), whereas no
reliable fitting values were obtained for a nonlinear correlation.
For talin and paxillin, we found higher R2 values for the nonlinear
correlation, indicating a nonlinear behaviour for paxillin and
talin. These results clearly demonstrate that talin and paxillin
levels only increase when core actin levels are relatively low,
suggesting that these proteins are not controlled by actin-medi-
ated tension. By contrast, vinculin and zyxin levels increased
throughout the observed range of podosome core growth, sug-
gesting that tension-mediated mechanisms control their recruit-
ment to podosome rings.

To better define the nature of the concerted fluctuations of
vinculin in the ring and actin in the core, we cotransfected DCs
with Lifeact-RFP and vinculin-GFP, allowed them to adhere and
fixed them prior to confocal microscopy analysis. Whereas vin-
culin intensity did not correlate with the podosome core area
(Supplementary Fig. S9b), a clear correlation between vinculin
levels and podosome height was observed (Fig. 6f). This clearly
suggests that the longitudinal growth of the core induces tension
within the actin network, which then directly and specifically
drives the recruitment of tension-sensitive ring components like
vinculin and zyxin.

Discussion
In this study, we presented novel data about how podosomes may
allow DCs to probe the surrounding extracellular matrix while
migrating through tissues. We unravelled how the interplay
between myosin IIA and the actin network regulates podosome
composition and dynamics. First, we demonstrated that
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protruding oscillations of the core correlate with concerted
intensity oscillations of the actin in the core and vinculin and
zyxin in the ring. Second, we showed that myosin IIA controls
core and ring oscillations but, in sharp contrast to FAs, does not
influence podosome composition. Finally, we provided evidence
that core growth is the driving mechanism behind the recruit-
ment of tension-sensitive vinculin and zyxin but not of paxillin
and talin to the ring. Our work accentuates the actin network as
an essential infrastructure to preserve ring integrity and to
functionally link podosome protrusive (core) and adhesive (ring)
modules.

Human primary DCs represent an excellent cell system to
compare and contrast podosomes and FAs, as these cells spon-
taneously form both adhesive structures. Interestingly, blebb
concentrations sufficient to quickly disassemble FAs did not affect
the percentage of cells with podosomes. In fact, actin as well as
vinculin, talin, zyxin and paxillin still localized to podosomes in

blebb-treated cells. We hypothesize that this podosome-distin-
guishing feature to preserve integrity independently of myosin
IIA-mediated contractility is caused by their unique molecular
architecture, consisting of a protrusive actin core and an adhesive
ring connected by an actin network. Only by stably connecting
the ring and the core are the actin filaments within podosomes
able to function as a tension transmission system that preserves
ring integrity without myosin IIA-mediated contractility. The
connection of the actin network to the ring most likely occurs
through talin and vinculin, whereas the main players cross-link-
ing the network filaments to the core are still debated.

We have previously shown that increased myosin IIA activity,
induced by PGE2, causes rapid global podosome dissolution in
DCs11. More recently, supervillin-induced myosin IIA
contractility was shown to enable podosome dissolution in
macrophages25. Furthermore, Labernadie et al.13 showed that
myosin IIA activity is essential for periodic podosome stiffness
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oscillationsand myosin IIA inhibition has been reported to reduce
the length of podosome protrusions in DCs3. Our finding that
myosin IIA-mediated contractility is essential for core oscillations
further extends those studies, demonstrating that podosome core
dynamics is tightly controlled by myosin IIA activity: while low
myosin IIA activity renders podosomes static and nonprotrusive,
enhanced myosin IIA activity causes podosome dissolution. We
propose that in a steady-state situation cycli of MLC
phosphorylation and dephosphorylation regulate myosin IIA-
mediated contractility within the actin network. This is
reminiscent of the oscillatory ROCK-dependent actomyosin
activity observed in embryonic tissue development26. Based on
previous results from our laboratory, we speculate that the MLC
phosphorylation cycli might be tightly regulated by the local
balance in Rho GTPase activity controlled by cAMP11. How
myosin IIA mediates podosome shrinkage/dissolution remains
unclear, but its contractile activity could mechanically counteract
actin polymerization-induced growth of the podosome core.
Additionally, myosin IIA could directly unbundle and
depolymerize the actin filaments27,28, thereby inducing
podosome core instability, resulting in podosome shrinkage/
dissolution. Interestingly, we here showed for the first time that
besides core oscillations, oscillations in the levels of specific ring
components also exist and depend on myosin IIA-mediated
contractility, indicating that podosome core and ring oscillations
are coupled.

We here demonstrated that the actin network has an essential
role in the integrity and dynamics of both core and ring. This
network was initially described as a diffuse actin staining
colocalized with podosome rings and named the actin ‘cloud’9.
Later, correlated high-resolution scanning electron microscopy/
fluorescence microscopy clearly suggested that the observed
‘cloud’ represents an actin network between the podosome
cores29. Integrin-deficient osteoclasts are unable to form this actin
network30, suggesting that integrins or adaptor proteins associate
with the network. Our work clearly demonstrates that the actin
network is indeed associated with the adaptor proteins, serving as
a functional link between core and ring.

By correlating adaptor protein levels with core actin levels, we
found that vinculin and zyxin levels concertedly fluctuate with
actin levels. Instead, paxillin and talin levels only increase with
actin levels that are relatively low and do not further increase
when the core actin reaches a critical level. These results indicate
that the core vertical growth differentially regulates adaptor
protein recruitment, as though podosome growth resembles FA
assembly31. Combined with the finding that the actin network is
essential for podosome ring integrity, our results put forward the
actin network as a myosin-independent tension transmission
system within the podosome cluster that is essential to recruit and
retain adaptor proteins within the ring.

Talin binds integrin beta tails32 and only upon tension-
mediated stretch exposes multiple vinculin binding sites33.
Paxillin binds to the integrin alpha tails34 and undergoes
tension-mediated phosphorylation to also recruit vinculin14.
Both talin and paxillin are recruited to integrins independently
of myosin IIA-mediated contractility14,19, whereas vinculin
recruitment is myosin dependent35,36. Zyxin is mechanosensitive
and recruited to actin filaments upon mechanical forces and actin
stretch37,38. Based on this notion and the novel data presented
here, we propose a model that delineates the relative contribution
of the actin network and myosin IIA-mediated contractility in
regulating podosome oscillations (Fig. 7). In small podosome
cores, paxillin and talin are already present at their maximum
level. At this stage, vinculin and zyxin levels are relatively low, as
the tension on the actin network is still low. As podosomes
vertically grow by actin polymerization at the base of the core

(owing to the impenetrable glass substrate), tension is generated
within the actin network and transmitted to talin and paxillin,
thereby further driving the recruitment of the tension-sensitive
vinculin and zyxin to reinforce the podosome and facilitate its
protrusive activity. Vinculin binds to talin and paxillin, whereas
zyxin seems recruited to actin filaments more proximal to the
core, as disruption of the actin filaments by cytoD did not displace
zyxin from the ring. Alternatively, vinculin could also bind to the
actin filaments proximal to the core; however, this explanation
seems unlikely. First of all, talin and paxillin, classical vinculin
binding partners, directly bind to the integrins close to the plasma
membrane32,34. Second, superresolution microscopy of FAs has
revealed that vinculin specifically binds within a very short
distance from the plasma membrane, being detected in the same
layer as talin and paxillin39.

The delicate balance between actin polymerization in the core
and myosin IIA activity in the ring facilitates core oscillations.
Consequently, as core and ring are coupled via the actin network,
ring oscillations also take place. The core–ring connection most
likely provides the feedback necessary to tightly coordinate cell
migration. Podosome oscillations could therefore be instrumental
for immature DCs undergoing slow, protease-dependent
mesenchymal migration through tissues40,41 to probe and sense
the extracellular environment42,43.

In summary, our study highlights the central role of the actin
network in orchestrating podosome core and ring dynamics and
emphasizes the plasticity of the actomyosin apparatus in
engineering adhesion structures, like FAs and podosomes, with
similar molecular components but distinct characteristics and
function.

Methods
Preparation of human DCs. DCs were generated from peripheral blood mono-
nuclear cells as described previously44,45. Monocytes were derived either from buffy
coats or from a leukapheresis product. Plastic-adherent monocytes were cultured in
RPMI 1640 medium (Life Technologies) supplemented with foetal bovine serum
(FBS, Greiner Bio-one), 1 mM Ultra-glutamine (BioWhittaker), antibiotics
(100 U ml� 1 penicillin, 100 mg ml� 1 streptomycin and 0.25 mg ml� 1 amphotericin
B, Gibco), IL-4 (500 U ml� 1) and GM-CSF (800 U ml� 1) in a humidified, 5%
CO2-containing atmosphere.

Antibodies and reagents. The following antibodies were used: mouse anti-
vinculin, mouse antitalin (Sigma-Aldrich), mouse antipaxillin (BD Transduction
Laboratories), goat antizyxin (Santa Cruz Biotechnology, Inc.) and rabbit anti-
myosin IIA (Biomedical Technologies, Inc.). Texas Red-conjugated phalloidin
(Invitrogen) was used to stain F-actin. The following inhibitors were used: cytoD
(2.5 mg ml� 1, Sigma-Aldrich) and blebb (20 mM, Sigma-Aldrich), (þ )� blebb
(20 mM, Cayman), Y27632 (20 mM, Selleck) and ML7 (20 mM, Tocris Bioscience).

Immunofluorescence. Cells were seeded on fibronectin-coated coverslips, left to
adhere for 4 h and stimulated or left untreated. The cells were fixed in 3.7% (w/v)
formaldehyde in PBS for 10 min. Cells were permeabilized in 0.1% (v/v) Triton
X-100 in PBS for 5 min and blocked with 2% (w/v) BSA in PBS. The cells were
incubated with primary Ab for 1 h. Subsequently, the cells were washed with PBS
and incubated with Alexa Fluor 488-labelled secondary antibodies for 45 min.
Finally, cells were incubated with Texas Red-conjugated phalloidin for 30 min and
washed with PB prior to embedding in Mowiol (Sigma-Aldrich). Cells were imaged
on a Leica DMRA fluorescence microscope with a 63� PL APO 1.3 NA oil
immersion lens and a COHU high-performance integrating CCD camera (COHU,
San Diego, CA) or a Zeiss LSM 510 microscope equipped with a PlanApochromatic
X63/1.4 NA oil immersion objective. Images were analysed using Fiji software.

Transfection and live-cell imaging. Transient transfections were carried out with
the Neon Transfection System (Invitrogen). Cells were washed with PBS and
resuspended in 115ml Resuspension Buffer per 0.5� 106 cells. Subsequently, cells
were mixed with 5 mg per 1� 106 cells per transfection and electroporated. Directly
after, cells were transferred to WillCo-dishes (WillCo Wells bv.) with prewarmed
medium without antibiotics or serum. After 3 h, the medium was replaced by a
medium supplemented with 10% (v/v) FCS and antibiotics. Prior to live-cell
imaging, cells were washed with PBS and imaging was performed in RPMI without
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Phenol red to avoid autofluorescence. Transiently transfected cells were imaged on
a Zeiss LSM 510 microscope (see above). The samples were excited with a 488-nm
(GFP) argon and a 543-nm (RFP) NeHe laser. For IRM, we used a 633-nm NeHe
laser. For dual colour imaging and IRM experiments, images were acquired
sequentially to prevent bleed through. Images were acquired every 15 s at 371C. For
live-cell imaging experiments with blebb, cells were transfected with lifeact-RFP or
actin-mCherry and exclusively excited with a 543-nm NeHe laser to prevent
photoinactivation46 and phototoxicity21 of blebb in combination with blue
excitation light.

FLIM experiments. Frequency-domain FLIM experiments on transfected DCs
were performed using a Nikon TE2000-U inverted wide-field microscope and a
Lambert Instruments Fluorescence Attachment (LIFA; Lambert Instruments,
Roden, The Netherlands) for fluorescence lifetime imaging. A light-emitting diode
(Lumiled LUXEON III, lmax¼ 443 nm) modulated at 40 MHz was used to excite
mTFP1. Fluorescence detection was performed by a combination of a modulated
(40 MHz) image intensifier (II18MD; Lambert Instruments) and a CCD camera
(CCD-1300QD; VDS Vosskühler, Osnabrück, Germany) with 640� 512 pixels.
The emission of mTFP1 was detected through a narrow emission filter (475/20 nm;
Semrock, Rochester, NY, USA) to suppress any fluorescence emission from the
Venus fluorophore. FLIM measurements were calibrated with a 1-mM solution of
pyranine (HPTS), the fluorescence lifetime of which was set to 5.7 ns47. All FLIM
images were calculated from phase stacks of 12 recorded images, with exposure
times of individual images of cells ranging from 500 to 1000 ms. For acceptor
photobleaching measurements, a USH-102DH 100 W mercury lamp (Nikon) was

used. Directly after FLIM image acquisition the light-emitting diode was used to
take an mTFP1 image as a reference image for the localization of single podosomes.
Regions of interest were selected using the mTFP1 image and FLIM values were
calculated for individual podosome rings.

FRAP measurements. FRAP was performed on a LSM510 meta confocal laser
scanning microscope (Zeiss, Germany) with an X63, 1.4-NA oil objective. GFP
fluorescence was excited at 488 nm (argon laser), while the emission was collected
with a 500–550-nm bandpass filter adjusted through mirrors. FRAP experiments
were performed using a 2.1-mm diameter circular region of interest in individual
podosomes. Photobleaching was performed operating at 100% of laser power by
scanning the bleached ROI for two iterations, yielding a total bleach time of 0.10 s
and an average fluorescence loss of B50%. Recoveries were collected with time
intervals of 400 ms using 488 nm excitation. Fluorescence intensity data for the
bleached ROI and a control ROI were calculated using Fiji software. After back-
ground correction and normalization to t0 using a method that is known as double
normalization48, the single postbleach curves were fitted with the following model:
IðtÞ¼ y0 þA1eð� t/t1Þ þA2eð� t/t2Þ , where y0 is the mobile fraction, –A1 and –A2 are
the fractional contributions of the two subpopulations and t is the time from the
moment of bleaching. The halftime recovery values were calculated with
t1/2 ¼ ln 2�t.

Podosome height analysis. DCs were co-transfected with Lifeact-RFP and
vinculin-GFP, subsequently seeded on a WillCo-dish for 24 h and finally fixed with
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fluctuates, reflecting their variable protruding activity over time. In small podosome cores, paxillin and talin are already present at their maximum level.

At this stage, vinculin and zyxin levels are relatively low, as the tension on the actin network is still low. As podosomes grow vertically by actin

polymerization at the base of the core (owing to the impenetrable glass substrate), tension is generated within the actin network and transmitted to talin

and paxillin, thereby further driving the recruitment of the tension-sensitive vinculin and zyxin to reinforce the podosome and facilitate its protrusive

activity. Vinculin binds to talin and paxillin, whereas zyxin seems recruited to actin filaments more proximal to the core since disruption of the actin

filaments by cytoD did not displace zyxin from the ring. Only by stably connecting the ring and the core are the actin filaments within podosomes able to

function as a tension transmission system that preserves ring integrity without myosin IIA-mediated contractility. The connection of the actin network to

the ring most likely occurs through talin and vinculin, whereas the main players cross-linking the network filaments to the core are still debated (unknown

cross-link protein). Additionally, proteins such as alpha-actinin are present to further organize and cross-link the actin filaments. Myosin IIA cross-links

the actin network filaments and is essential for core shrinkage by either generating contractility or directly unbundling and depolymerizing the actin

network, thereby inducing podosome core instability. The delicate balance between actin polymerization in the core and myosin IIA activity in the ring

facilitates core oscillations. Consequently, as core and ring are coupled via the actin network, ring oscillations also take place.
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3.7% formaldehyde. Z-stacks with 100-nm slices of double-positive DCs were
collected using a 543-nm NeHe laser to excite RFP on a LSM510 meta confocal
laser scanning microscope (Zeiss, Germany) with an X63, 1.4-NA oil objective. On
average 27 images (that is, 2.7 mm in z-depth) were taken to ensure that all Lifeact-
RFP signal within the podosome cluster was collected. The vinculin-GFP images
were taken using a 488-nm argon laser with the pinhole completely opened to
collect all the fluorescence emitted by vinculin-GFP. Next, the Lifeact-RFP z-stacks
were used to calculate a z-profile of every single podosome. Podosome height was
determined as the number of images between the membrane focal plane and the
focal plane where the RFP signal was lower than twice the background. Finally, the
number of images was correlated to the average intensity of the corresponding
vinculin-GFP signal from the same podosome.

Correlation analysis. Fluctuations in fluorescence intensity were simultaneously
monitored for both actin and each adaptor protein in time for many different
individual podosomes. Subsequently, values were background corrected and nor-
malized to the average. Values were plotted in a box plot and fitted with a linear
(y¼ axþ b, where a is the slope and b is the intercept) and a one-phase decay
(y¼ y0Aeð� k�xÞ þA, where A is the plateau and k is the rate constant) fit using
GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, CA,
USA).

Statistical analysis. Statistical analysis was carried out with GraphPad Prism and
Microsoft Excel. Data are presented as mean±standard deviation for column
graphs and median±interquartile range for box plots. A Student’s t-test was used
for comparison of two groups. Statistical significance was defined as Po0.05.
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