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Abstract

The bulk of familial breast cancer risk (,70%) cannot be explained by mutations in the known predisposition genes,
primarily BRCA1 and BRCA2. Underlying genetic heterogeneity in these cases is the probable explanation for the failure of all
attempts to identify further high-risk alleles. While exome sequencing of non-BRCA1/2 breast cancer cases is a promising
strategy to detect new high-risk genes, rational approaches to the rigorous pre-selection of cases are needed to reduce
heterogeneity. We selected six families in which the tumours of multiple cases showed a specific genomic profile on array
comparative genomic hybridization (aCGH). Linkage analysis in these families revealed a region on chromosome 4 with a
LOD score of 2.49 under homogeneity. We then analysed the germline DNA of two patients from each family using exome
sequencing. Initially focusing on the linkage region, no potentially pathogenic variants could be identified in more than one
family. Variants outside the linkage region were then analysed, and we detected multiple possibly pathogenic variants in
genes that encode DNA integrity maintenance proteins. However, further analysis led to the rejection of all variants due to
poor co-segregation or a relatively high allele frequency in a control population. We concluded that using CGH results to
focus on a sub-set of families for sequencing analysis did not enable us to identify a common genetic change responsible
for the aggregation of breast cancer in these families. Our data also support the emerging view that non-BRCA1/2
hereditary breast cancer families have a very heterogeneous genetic basis.

Citation: Hilbers FS, Meijers CM, Laros JFJ, van Galen M, Hoogerbrugge N, et al. (2013) Exome Sequencing of Germline DNA from Non-BRCA1/2 Familial Breast
Cancer Cases Selected on the Basis of aCGH Tumor Profiling. PLoS ONE 8(1): e55734. doi:10.1371/journal.pone.0055734

Editor: Paolo Peterlongo, IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Italy

Received September 14, 2012; Accepted December 30, 2012; Published January 31, 2013

Copyright: � 2013 Hilbers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the Dutch Cancer Society (grant UL 2009-4388). The funder had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: f.s.m.hilbers@lumc.nl

Introduction

The genetic landscape of breast cancer susceptibility known to

date is constituted by more than 30 gene loci. Mutations in some

of these, like BRCA1 and BRCA2, are extremely rare, but confer

high risks to breast cancer, others are common but only confer a

minor increase in risk. However, jointly these alleles explain less

than 30% of the familial breast cancer risk [1–3]. When

considering families with multiple cases of early-onset breast

cancer in which mutations in the known high-risk genes have been

excluded (hereafter: ‘‘BRCAX’’ families), an unknown, rare,

highly penetrant allele would appear to be the most parsimonious

genetic explanation. However, linkage studies have not discovered

any major breast cancer susceptibility gene since the identification

of BRCA1 and BRCA2. This suggests that these high-risk alleles are

too rare to be detected by linkage studies in unselected BRCAX

families.

Therefore, an important factor determining the success of a

genome-wide search for linkage in a set of BRCAX families is the

extent of underlying genetic heterogeneity. Simulation studies

have shown that study power drops sharply if mutations in the

sought-after new gene explain ,30% of the investigated families.

Selecting families based on a shared phenotype might lead to a

genetically more homogeneous group of families, which are more

likely to share variants in the same gene. A shared phenotype

might be defined by the presence of certain cancer types in the

family. For example, linkage analysis of non-BRCA1 breast cancer

families with a case of male breast cancer, led to the discovery of

the BRCA2 locus [4]. Also, certain histopathological features of

tumours might be used to identify subgroups. It has been shown

that breast tumours from BRCA1 and BRCA2 mutation carriers

show specific genomic profiles as determined by comparative

genomic hybridization (CGH) [5–10].

We recently described a specific array comparative genomic

hybridization (aCGH) profile in a subgroup of BRCAX breast

tumours [11]. This aCGH-profile is characterized by a gain of

almost whole chromosome 22, in combination with some other

specific changes, and was observed to be present in multiple breast
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cancer cases contained within six of the 27 analyzed BRCAX

families. We hypothesized that these six families might have

mutations in the same high-risk breast cancer gene. Here we

present linkage analysis of these six families as well as exome

sequencing of two family-members from each.

Methods

Patients
Previously, we determined the aCGH profiles of 58 breast

tumours from 27 BRCAx families. A detailed description of the

original selection criteria of the BRCAx families is given in

Didraga et al. [11]. We selected six of these families in which the

tumours of multiple cases showed the 22-gain-like profile. The

pedigrees of these families are depicted in Figure 1a-f. The

occurrence of cancer was assessed through the index case and

whenever possible verified with pathology reports. The number of

breast cancer cases per family ranged from five to eleven, with a

mean age of onset of 54 years. No male breast cancer cases and no

ovarian cancer cases were reported. In total 46 breast tumours

were diagnosed in these families, of which four were second

primary tumours. One breast cancer case developed a kidney

tumour and another breast cancer case was diagnosed with colon

cancer. Other cancers that occurred in these families were liver

cancer (n = 3), stomach/oesophagus cancer (n = 3), colon cancer

(n = 2), melanoma (n = 1), cervical cancer (n = 1), prostate cancer

(n = 1) and two cancers of unknown type. All participants provided

written informed consent and approval of the medical ethical

committee at the Leiden University Medical Centre was obtained.

Linkage Analysis
The six selected families are part of a larger cohort of = 55

families, which were genotyped before by Oldenburg et al [12] for

a genome-wide linkage analysis study. In brief, all individuals from

whom DNA was available were genotyped using the Linkage

Mapping Set MD10 from Applied Biosystems consisting of 400

markers which results in a 10 centimorgan resolution. Genotypes

were called automatically using Genemapper software(Applied

Biosystems) and checked manually. Allele frequencies were

calculated based on one randomly chosen individual from each

family. The UNKNOWN program of the LINKAGE package

[13] was used to check for Mendelian errors. If after manual

reassessment of the raw data Mendelian errors could not be solved

these genotypes were changed to ‘‘untyped’’ (i.e., ‘‘0 0’’). We

performed a multipoint linkage analysis using Genehunter

software (version 2.1 B) [14]. We assumed a model with a

dominant susceptibility allele with an allele frequency of 0.003.

Breast cancer risk at age 80 for carriers of the risk allele was

assumed to be 0.85. For non-carriers we assumed a risk of 0.096.

Risks were modelled in seven age categories as described by

Easton et al. [15]. Under the assumption of homogeneity, the

LOD scores of the six families linked to the 22-gain profile were

added up. To define the limits of a linkage region we took the

maximum LOD score minus one as a cut-off.

Exome Sequencing
Genomic DNA was extracted from peripheral blood using

standard protocols. Samples were prepared according to the

manufacturers protocol (SureSelect All Exon (v1), Agilent Tech-

nologies) with some minor adjustments. In brief, for each

individual 5 mg DNA was fragmented using adaptive focused

acoustics (Covaris S-series single tube) in order to get fragments of

200–300 bp. Primer oligonucleotides for paired-end sequencing

(Illumina) were ligated to both ends of the fragment. Of each

sample 500 ng was then hybridized with 2.5 ml SureSelect Oligo

Capture Library for 20 hours. After multiple washing steps, the

captured DNA was amplified in order to get sufficient DNA for the

sequencing experiment. Paired-end flow cells were then prepared

on a cluster station according to the manufactures protocol

(Illumina), using one lane per sample. Sequencing was the

performed on a Genome Analyzer IIx (Illumina) with a paired-

end module, generating 75 base pair reads.

Data Analysis
Alignment of the reads was done using the GAPPSv3 pipeline.

Before alignment raw reads were filtered for adapter sequences

and low quality bases using the FastxToolkit [16]. Alignment to

the human reference genome (hg19, GRCh37) was done using

Stampy [17] which integrates BWA [18] for bulk alignment and its

own algorithm for complex regions. For detailed settings see Table

S1. Variants were called with VarScan [19]. Filter settings applied

a minimum coverage of 10 times at the variant position, and a

variant allele frequency of at least 30% of the reads. In the region

of the linkage peak we increased the sensitivity by calling variants if

the variant allele was supported by at least 15% of the reads.

Annotation of the variants was done using SeattleSeq (version

7.01, [20]). Assuming that causal variants are rare, we removed all

variants with an allele frequency .1% in either HapMap [21],

1000 genomes (phase 1) [22], exome variant server (v.0.0.11,

ESP5400, [23]) or our in-house variant database (containing 298

non-cancer exomes). In addition, variants that were found in a

homozygous state in at least one of the twelve individuals were

removed.

Sanger sequencing and melting curve analysis (MCA)
Validation of variants was done using PCR following standard

protocols, followed by Sanger sequencing on an ABI3730XL

sequencer. To assess variant frequencies in familial breast cancer

cases and controls, high resolution melting curve analysis was

performed. Non-BRCA1/2 familial breast cancer cases (n = 531)

were obtained from the clinical genetics centre Leiden and healthy

controls (n = 458) were obtained from the Dutch blood bank,

Sanquin. PCR was performed in a 1:10:10 forward primer: reverse

primer: probe ratio in the presence of LC green (Idaho

Technology Inc.). Melting curves were assessed on a LightScanner

(Idaho Technology Inc.) for temperatures between 50uC and 90uC
and analyzed with Call-IT software (Idaho Technology Inc.). All

primer and probe sequences are available upon request.

Results

We previously analysed the breast tumours of 58 patients from

27 BRCAX families using aCGH [11]. Hierarchical clustering

identified several subgroups of BRCAX tumours, one of which

was characterized by a gain of chromosome 22. Remarkably, in 6

families, tumours from multiple patients displayed this chromo-

some 22 gain profile (Figure 1). Linkage analysis under homoge-

neity revealed a linkage peak with a LOD score of 2.49 on

chromosome 4 in these six families (Figure 2 and Figure S1). The

next highest linkage peak was 1.04 at 10q and no other linkage

peaks with a LOD score greater than 1.0 were detected.

A 25-Mb candidate region (chr4:40.000.000-65.000.000) was

defined as the region showing a LOD score greater than the peak

LOD score minus one. Two individuals per family were selected

for exome sequencing, usually at least second-degree relatives

(figure 1). (Details on coverage of the individual exomes can be

found in Figure S2 and S3.) This revealed on average 499 variants

in the candidate region that were shared by both individuals of a

Exome Sequencing of BRCAx Cases Selected with aCGH
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family. After removing intergenic and non-conserved variants in

non-coding regions, five variants remained (Table 1). However,

none of the genes carrying these variants were found to do so in

two or more families. Hence mutations in a single gene are less

likely to explain the linkage result. We then considered the

possibility that two or more genes in the chromosome 4 region

each fortuitously carries a high-risk mutation in one of the six

families. Of the detected variants, three synonymous variants in

three genes (FRYL, AASDH, PPAT) were not further examined,

because these variants are unlikely to affect protein function. A

missense variant in REST and a well-conserved 39UTR variant in

LNX1 were validated by Sanger sequencing. The LNX1 variant

was present in five of eight cases in family RUL070. The missense

variant in REST was detected in six out of seven cases in family

RUL079, however Grantham and conservation scores for this

variant were low (Grantham = 45, Phastcons = 0.00,

GERP = 23.56) and Polyphen [24] predicts it to be benign.

Finally, we examined the possibility that the six families shared

variants in a gene outside the linkage peak region (whole exome).

We first focused on variants that were likely to result in a truncated

protein (gained stop-codon, frameshift and splice-site variants). In

the six families we found in total 49 different, rare protein-

truncating variants in 48 genes. A number of genes showed a

protein-truncating variant shared by several families. However, all

these variants were present in regions whose sequences showed

large similarities with regions elsewhere in the genome. When

Figure 1. Pedigrees of the families in which multiple tumours showed the ‘‘22-gain-like’’ aCGH profile. Individuals affected with breast
cancer are represented by a filled square or circle. Individuals affected by another type of cancer are represented by a square or circle with a vertical
black stripe. Below the age at diagnosis and type of cancer can be found: B stands for breast cancer, Li or liver cancer, S for stomach cancer, Oes for
oesophagus cancer, C for colon cancer, M for melanoma, Cvx for Cervix cancer, K for kidney cancer, P for prostate cancer and U for type of cancer
unknown. Arrows point at the individuals at whose DNA was used for exome sequence. Individuals with tumours with and without the ‘‘22-gain-like
profile’’ are represented by ‘‘22+’’and ‘‘222’’.
doi:10.1371/journal.pone.0055734.g001
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examining the unprocessed sequence-reads of the families in which

the variants were not called, in most instances the variant could be

detected, but in fewer reads than the required threshold of 30%.

Thus, we considered all these variants to be false-positive findings

resulting from sequence read-mapping errors. Indeed, the only

one of these variants that we followed up by Sanger sequencing

was a splice-site mutation in FANCD2. FANCD2 is a Fanconi

Anaemia gene and therefore a candidate breast cancer gene.

However, upon re-sequencing, this variant was not present in

FANCD2, but in a region with a similar sequence elsewhere on

chromosome 3 near EMC3 (data not shown).

After removing the variants resulting from read-mapping errors,

21 truncating variants remained (see table S2). All were present in

only one of the six families. Of these variants a frameshift

mutation, c.811delT, in HAUS3 was potentially interesting,

because HAUS3 has been reported to be somatically mutated in

a lobular breast tumour [18]. Sanger sequencing showed that five

out of seven breast cancer patients in RUL079 had this deletion.

High resolution melting curve analysis of this specific variant did

not reveal any additional carriers among 531 familial breast

cancer cases. However, three individuals in a group of 458 healthy

controls were found to carry the c.811delT, dismissing it as a high-

risk breast cancer allele.

We also took into account possibly damaging missense variants.

This was defined as missense variants with either a Grantham

score .100, a GERP conservation score .3, a PhastCons

conservation score .0.7 or a ‘‘probably damaging’’ PolyPhen2

prediction. Due to the large number of variants remaining

(n = 657), following up all variants with Sanger sequencing was

deemed impractical. We therefore selected variants with a function

in DNA integrity maintenance, because the majority of breast

cancer susceptibility genes identified to date have a function in this

pathway (table 2). Again, no genes were found to have a variant in

more than one family. However, some individual families showed

possibly damaging variants in genes (n = 8) involved DNA damage

repair or chromosome segregation, shared by both assayed

individuals. One of these variants, present in RBMX, could not

be validated. However, a variant in HLTF, p.S378T, was present

in five out of five cases of family NIJM008. This variant was

selected because of a high GERP conservation score (3.15). The

PhastCons conservations score, however, was only 0.21 and this

variant was predicted to be benign by Polyphen2. Sanger

sequencing showed that the remaining six variants, in CASC5,

CUL9, MUTYH, SMC6, TTK and XRCC2, had a poor or moderate

co-segregation with disease (Figure S4). Interestingly, the variant in

XRCC2 was also detected in an Australian family and therefore

further analysed in an international mutation scanning effort [25].

A significant association between rare XRCC2 variants and

familial breast cancer was reported. However, a large validation

study was not able to confirm this association [26].

Discussion

The landscape of genetic risk factors for breast cancer is known

to be diverse, ranging from rare high-risk alleles, like BRCA1 and

BRCA2, to common polymorphisms that only confer a minor

breast cancer risk increase. The large proportion of familial breast

cancer cases that is not explained by the genetic risk factors known

Figure 2. Linkage on chromosome 4 for the families in which multiple tumours showed the ‘‘22-gain-like’’ aCGH profile. The LOD-
score was calculated under the assumption of homogeneity. The dashed lines indicate the maximum LOD-score -1interval. The X-axis shows the
position on chromosome 4 in centimorgan and the markers with a LOD score .0 are indicated. The highest LOD score of 2.49 was located at marker
D4S405.
doi:10.1371/journal.pone.0055734.g002

Table 1. Well conserved or coding variants in the linkage region on chromosome 4.

Variant Gene Family Effect rs-number PhastCons1 GERP1

Chr4:g.48545947T.C FRYL RUL070 Synonymous - 1.00 1.33

Chr4:g.54327036_54327037insATT LNX1 RUL070 39 UTR 57366823 0.97 4.56

Chr4:g.57248742A.C AASDH RUL070 Synonymous 146114987 1.00 20.43

Chr4:g.57261623G.A PPAT RUL070 Synonymous - 0.22 25.98

Chr4:g.57797037G.T REST RUL079 Missense2 138787075 0.00 23.56

1Phastcons and GERP are both regional conservation algorithms ranging from 0 to 1 and 212.3 to 6.17 respectively (1 and 6.17 being most conserved).
2Grantham = 45, PolyPhen prediction = Benign.
doi:10.1371/journal.pone.0055734.t001
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to date are thought to have a very heterogeneous basis [1–3]. Both

segregation analysis [27–29] and the fact that no major high-risk

breast cancer genes have been identified since BRCA2 suggest that

additional high-risk alleles are much rarer than mutations in

BRCA1 and BRCA2. Exome sequencing might be a very useful tool

to identify these very rare high-risk alleles. However, finding novel

disease alleles among thousands of not-pathogenic variants might

be more complex in a common and genetically heterogeneous

disease like breast cancer, than in the rare Mendelian phenotypes

in which exome sequencing has been very successful to date [30].

Therefore selecting a genetically more homogeneous patient

subgroup seems crucial.

We hypothesized that by selecting BRCAX families with a

similar phenotype, we would enrich our study population for

families with germline mutations in the same gene. In this study six

BRCAX families in which the majority of tumours show a

previously identified aCGH profile [11] were selected. Linkage

analysis in these families showed a peak on chromosome 4, which

suggested that these families might share a genetic aetiology.

Massively parallel sequencing after whole-exome capture was

performed on two individuals per family, but no genes were

identified in which more than one family showed a likely

pathogenic variant after assessing the predicted effect on the

protein and co-segregation. Nonetheless, we did detect multiple

possibly pathogenic variants in genes that encode for DNA

integrity maintenance proteins outside the linkage peak region.

However, none remained as likely causes of familial clustering of

breast cancer because of poor co-segregation or relative high

frequency of the specific variant in a control population.

It is important to realize that, by enriching our samples for the

coding regions of the DNA, we might have missed relevant

variants in the promoter, deep intronic regions affecting splicing or

in regulatory regions further away from the causal gene. However,

such mutations seem to represent only a minority of the mutation

mechanisms in the known disease-related genes, as recorded in

OMIM and other public databases [31]. It seems less likely

therefore, that all families in our study population were due to such

mutations. In addition, variants outside the coding regions are

much harder to interpret functionally, and a whole-genome

sequencing approach would have resulted in thousands of variants

of uncertain clinical significance.

Multiple studies have shown that aCGH classifiers can be built

to distinguish BRCA1 and BRCA2 tumours from sporadic tumours

and each other [5–10]. These studies suggest that tumours of

patients with mutations in the same gene also share a somatic

genetic aetiology. Alvarez [32] and colleagues found that part of

the BRCAX tumours showed aCGH profiles similar to those of

BRCA1 tumours. A large proportion of these tumours turned out

to have hypermethylation of BRCA1. Some studies that performed

aCGH profiling on BRCAX tumours find similarities with profiles

of BRCA2 tumours [33,34], suggesting that either a cause of

BRCA2 inactivation in these tumours has yet to be detected or that

inactivation of a number of genes can lead to a similar aCGH

profile. It might be that patients with the 22-gain profile do not

share mutations in the same gene, but in the same pathway. In

order to detect an enrichment of deleterious variants in a specific

pathway, a large number of familial patients with 22-gain tumours

will need to be sequenced, preferably in conjunction with gene

expression profiling of tumours; however it will be challenging to

collect sufficient numbers samples for such an effort.

Another possibility is that patients with a 22-gain tumour have

mutations in a moderate risk gene.

Muranen et al. [35] have shown that specific aCGH features

occur significantly more often in tumours of patients with a

CHEK2*1100delC mutation. This suggests that also moderate risk

germline mutations can lead to a homogenous phenotype. By only

assessing variants that are shared by both family members and

discarding variants that show poor co-segregation, we may have

missed variants in a moderate risk gene. In addition, moderate risk

variants might have an allele frequency of more than 1% as has

been shown to be true for the CHEK2*1100delC mutation in some

populations [36]. However without using these selection criteria, it

would not have been possible to limit possibly interesting variants

to a number that is manageable to follow-up. Therefore a study

design that includes exome sequencing in a very limited number of

familial cases is underpowered to detect moderate risk variants.

A good balance between stringent selection criteria (to limit the

number of variants for follow-up) and not excluding too many

potentially interesting variants is difficult to find. An excess of rare

genetic variants due to recent explosive growth of the human

population has been observed [37,38]. This makes it difficult to

interpret the effect of a very rare variant on breast cancer risk

Table 2. Possibly damaging or well conserved variants in genes encoding proteins involved in DNA integrity maintaince.

Gene Variant GranthamGERP1 PhastCons1 PolyPhen2 Function

CASC5 p.I26L 5 4.53 0.999 Probably damaging Spindle-assembly checkpoint signaling and chromosome
alignment

CUL9 p.S2328F 155 5.03 0.989 Possibly damaging Regulates the subcellular localization of p53 and subsequent
function

HLTF p.S378T 58 3.15 0.208 Benign Error-free postreplication repair of damaged DNA

MUTYH p.I223V 29 5.43 1 Benign Oxidative DNA damage repair

RBMX p.Y357H 83 5.66 1 Probably damaging Regulation of programmed cell death in breast cancer and
homologous recombination

SMC6 p.R403W 101 2.65 0.998 Probably damaging DNA damage repair via homologous recombination

TTK p.R185W 101 4.04 0.004 Probably damaging Chromosome alignment, centrosome duplication and critical
mitotic checkpoint

XRCC2 p.R91W 101 4.48 0.742 Probably damaging DNA damage repair via homologous recombination

Variants were selected if either of these criteria was met: Grantham score.100, GERP conservation score.3, PhastCons conservation score.0.7, or a ‘‘Probably
damaging’’ Polyphen2 prediction.
1Phastcons and GERP are both regional conservation algorithms ranging from 0 to 1 and 212.3 to 6.17 respectively (1 and 6.17 being most conserved).
doi:10.1371/journal.pone.0055734.t002

Exome Sequencing of BRCAx Cases Selected with aCGH

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e55734



outside the family it was originally detected in. For example, the

missense variant we detected in XRCC2 was also found in an

Australian BRCAX family [25]. Whereas we had initially

dismissed this variant because it did not show convincing co-

segregation with disease, the fact that Park et al. had also found a

protein-truncation variant in XRCC2, prompted a mutation scan

of a large population of familial breast cancer cases and controls.

This detected a significant association between familial breast

cancer and XRCC2 [25]. However, an even larger international

validation of these results was unable to confirm this association

[26]. This leaves the possibility that some very rare XRCC2 alleles

are true breast cancer susceptibility alleles, but conferring only

moderate risks, which would require huge association studies to

demonstrate. This example emphasizes the importance of

international collaboration and sharing of data, both in the

variant selection and in the validation phase.

In conclusion, we did not find evidence for mutations in a rare

high-risk gene in a subgroup of BRCAX cases defined by an

aCGH profile. Although, we cannot rule out that these families

have mutations in genes belonging to the same pathway or in a

non-coding region. Exome sequencing efforts in large cohorts of

BRCAX cases are needed to definitively unravel the genetic basis

underlying the aetiology of unexplained familial clustering of

breast cancer and its link with tumour characteristics.

Supporting Information

Figure S1 Parametric LOD scores of the individual
families in the linkage region on chromosome 4. The X-

axis shows the position on chromosome 4 in centimorgan.

(TIF)

Figure S2 Percentage of CCDS exon bases covered at
least 106per individual. CCDS = consensus coding sequence.

(TIF)

Figure S3 Mean coverage of CCDS exons per individual.
CCDS = consensus coding sequence.

(TIF)

Figure S4 Segregation of selected variants within the
families (a–d). Individuals carrying or not carrying a specific

variant are indicated with a ‘‘+’’ or with a ‘‘2’’respectively. The

p.Y357H variant in RBMX, which was detected by massive

parallel sequencing in family Nijm006, could not be validated by

Sanger sequencing.

(TIF)

Table S1 Description of the data analysis settings. Software

versions used in the data analysis including details on settings.

(DOC)

Table S2 Truncating variants all detected in only one of the six

families. Truncating variants with an allele frequency ,1% in

HapMap [21], 1000 genomes (phase 1) [22], exome variant server

(v.0.0.11, ESP5400, [23]) and our in-house variant database. All

variants were present in only one of the six families. * Splice site

affected at position c.2418+2 ** Splice site affected at position

c.982-1

(DOC)
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