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Abstract

Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause
Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal
abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related
disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of
these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin
licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative
capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS
patients and siRNA–mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy
number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of
primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts.
Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression
following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can
influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair
chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical
features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering
developmental impacts of licensing deficiency.
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Introduction

Replication in S phase initiates from replication origins, which

become ‘‘licensed’’ during G1 phase of the cell cycle [1,2,3,4].

Licensing commences with binding of the origin recognition

complex (ORC) followed by recruitment of the pre-replication

complex (pre-RC) proteins, CDC6, CDT1 and the MCM2-

MCM7 helicase [5]. ORC encompasses six components, ORC1 to

6. ORC2–5 represents the core ORC complex and ORC1

transiently associates with the complex in G1 but dissociates

during the transition from G1 to S phase [6]. ORC assembly and

origin licensing defines where replication initiates, although only

,10% of licensed origins are normally utilized for replication [7].

In addition to this essential function, there is increasing

recognition that loss of licensing proteins has additional impacts.

For example, the ORC subunits contribute to transcriptional gene

silencing in yeast and influence heterochromatin formation in

Drosophila, mouse and humans [8,9,10,11]. Recently, ORC

subunits were shown to associate with chromatin-bound hetero-

chromatin protein 1 (HP1) suggesting that they exert a direct effect

on heterochromatinisation rather than the impact being an

indirect consequence of impaired licensing [11]. Further, origin

licensing proteins localise to centrosomes and siRNA mediated

ORC1 depletion causes Cdk2 and cyclin E-dependent centriole

and centrosome reduplication [12,13,14]. MCM proteins also

localise to centrosomes and regulate centrosome copy number

[15].

Primary cilia are sensory organelles that grow from a basal

body, which represents a modified centriole [16,17]. Since cilia

and centrosome/centriole biogenesis are overlapping and inter-

dependent processes, there is a close relationship between defective

centrosome and cilia formation and/or function. For example,

pericentrin (PCNT), a core centrosomal protein can, at least in

some situations, cause impaired cilia function [18,19,20,21]. Cilia

can be either motile (often called flagellae) or immotile, such as

primary cilia. Primary cilia are found in most mammalian cell
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types and function as mechano- and chemosensory organelles by

using intraflagellar transport proteins to receive and transduce

extracellular signals [22,23]. Indeed, recent studies have shown the

dependence of several signalling pathways on primary cilia, of

which a prime example is Hedgehog (Hh) signalling. The binding

of the Hh ligand to Patched-1 leads to translocation of

Smoothened (Smo) to the ciliary membrane and activation of

the Gli1 and Gli2 transcription factors, which play central roles in

the Hh pathway [23]. However, other fundamental pathways

including Wnt signalling also function via cilia [24]. Importantly,

defects in primary cilia formation and/or function are associated

with multiple developmental disorders termed ‘‘ciliopathies’’ [17].

Recently, mutations in genes encoding ORC1, ORC4, ORC6,

CDT1, and CDC6 were identified in patients displaying Seckel

syndrome (SS) and/or Meier-Gorlin syndrome (MGS) [25,26,27].

SS, Majewski osteodysplastic primordial dwarfism (MOPD) type II

and MGS represent three disorders which share overlapping

clinical features that include pronounced microcephaly, severe

intrauterine growth retardation and post natal growth delay

[28,29,30]. Bone abnormalities are also commonly observed in

these disorders. However, although there are overlapping pheno-

types, each disorder is characterized by distinctive clinical features.

For example, MGS is characterized by severely reduced or absent

patellae and small/abnormal ears.

The identification of these genetic defects causing profound

developmental abnormalities has the potential to provide insight

into the underlying developmental processes. In our initial study

reporting mutations in ORC1 in SS/MGS patients, we showed

that cell lines derived from ORC1-deficient patients display an

impaired ability to sustain rapid replication and argued that this

might be causally related to the clinical manifestation [26]. The

identification of mutations in ATR, which encodes ataxia

telangiectasia mutated and Rad3 related (ATR) protein, also

functions during replication to maintain replication fork stability,

added to the notion that impaired replicative capacity might

underlie SS [31]. However, the fact that deficiency in ORC1 also

impairs centrosome stability and the close correlation between

centrosomal defects and microcephaly, raised the possibility that

additional impacts of licensing deficiency might contribute to the

clinical features observed in patients [14,32]. The aim of this study

was to examine the broader impact of loss of origin licensing

proteins with a consideration of their potential relevance to

developmental processes. Extending our initial analysis to cells

derived from MGS patients with mutations in additional licensing

components, we show that although all cell lines had reduced

licensing capacity, there was not a correlation between impaired

replicative capacity and clinical manifestations. However, we

found that siRNA of licensing components conferred modest

defects in centrosome and centriole copy number and organization

but importantly we observed marked defects in cilia formation and

its consequent signaling function. This represents an important

novel pathogenic mechanism potentially underlying the clinical

manifestations conferred by deficiency in licensing proteins. We

propose that impaired cilia formation represents an important

phenotype that should be considered in evaluating the clinical

manifestations of MGS, raising the possibility that MGS could be

considered as a ciliopathy.

Results

Patient cells with mutations in genes encoding origin
licensing components have diminished capacity to
activate replication origins

Cultured lymphoblastoid cell lines (LBLs) derived from MGS

patients with mutations in ORC1, ORC4, ORC6, CDT1 and CDC6

grow efficiently demonstrating that the mutations do not fully

abrogate origin licensing, which is essential for cell growth (the

mutations in these cell lines are described in Table S1). Since only

,10% of licensed origins are utilized during replication, it is likely

that even substantially decreased licensing capacity does not

grossly impair cell growth [2,33,34]. To assess origin licensing

capacity, we previously monitored the replication of Epstein-Barr

virus (EBV) episomes. EBV uses a viral replication origin (oriP;

origin-containing plasmid) with the host cellular ORC machinery

and demands a high licensing capacity for efficient replication

[35]. Using this assay with patient-derived ORC1-deficient

hTERT-immortalised fibroblasts, we previously reported dimin-

ished EBV replication compared to control fibroblasts [26]. Since

fibroblasts from MGS patients mutated in ORC4, ORC6, CDT1,

and CDC6 were unavailable, we adapted the assay to monitor

episome replication in patient-derived LBLs. Following transfec-

tion of EBV episomes into control and patient-derived LBLs, the

level of replicated episomal DNA was monitored by Southern

analysis (Figure 1A). Although episomal replication was less

efficient in LBLs compared to hTERT fibroblasts, ,5% of the

EBV plasmids underwent replication in control cells but this was

markedly reduced in ORC1, ORC4, ORC6, CDT1, and CDC6-

deficient LBLs. Efficient transfection was shown by the similar

level of digestion products in all samples. These results strongly

suggest that the mutations in origin licensing complex genes found

in MGS patients confer a reduced capacity to initiate replication

from EBV oriP.

Slow progression through S phase does not correlate
with the clinical phenotype in MGS

Cell lines derived from ORC1-deficient MGS patients progress

slowly through S phase, which, we proposed, might represent a

consequence of diminished origin firing and the necessity for active

replication forks to traverse greater distances [26]. To examine

further whether delayed S phase progression might be causally

related to the disease phenotype, we examined S phase progression

following a 30 min pulse label with bromodeoxyuridine (BrdU)

using patient-derived LBLs with mutations in ORC4, ORC6,

CDT1, CDC6 and ORC1, compared to control LBLs (Figure 1B).

Although slow S phase progression was observed in LBLs deficient

in ORC1 (as observed previously [26]), ORC4- and ORC6-

Author Summary

Meier-Gorlin syndrome (MGS) is a rare disorder conferring
small head circumference, primordial dwarfism, underde-
veloped ears, and skeletal abnormalities. Our previous
findings suggest that impaired DNA replication could
cause the developmental defects in these disorders. Here
we expand on those findings by showing that ORC1-
deficient cells from MGS patients and depletion of origin
licensing proteins also confer impaired centrosome and
centriole copy number. Unexpectedly, we show that they
also cause a striking defect in the rate of formation and
function of primary cilia, hair-like mechano-, and chemo-
sensory organelles. Finally we show that defects in cilia
function in this context are associated with impaired
cartilage formation in a model system. Our findings
support the possibility that a reduced efficiency in forming
cilia could contribute to the clinical features of MGS,
particularly the bone development abnormalities, and
could provide a new dimension for considering develop-
mental impacts of licensing deficiency.

Origin Licensing Proteins Impact Cilia Formation
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deficient cells, unexpectedly the CDT1-deficient LBLs showed a

similar rate to control LBLs. Further, CDC6-deficient LBLs

showed more rapid S phase progression. These findings argue

that, although impaired origin licensing capacity caused by

mutations in ORC genes may confer slow S phase progression,

diminished licensing capacity does not necessarily correlate with

this phenotype. LBLs proliferate relatively rapidly (compared for

example to patient fibroblasts). These findings are consistent with

previous studies that cells only use a small fraction of licensed

origins for normal growth. Although these findings do not rule out

the possibility that diminished replicative capacity might impact in

specific developmental situations, they demonstrate that the

residual licensing capacity can support the relatively rapid

replication observed in LBLs. Further, they reveal that impaired

S phase progression is not a universal feature of MGS patient cells

and does not correlate with the clinical manifestation of MGS. We,

therefore, next examined broader consequences of deficient origin

licensing.

Deficiency in origin licensing proteins impacts
centrosome and centriole copy number

Previous studies have shown that ORC1 localises to centro-

somes and that siRNA mediated depletion of ORC1 causes Cdk2

and cyclin E-dependent centriole and centrosome reduplication

[12,13,14]. In addition, ATR-deficient SS cell lines also show

supernumerary centrosomes [14,31]. Therefore, we examined

whether centrosome/centriole abnormalities are also observed in

ORC1-deficient patient cells. Using ORC1-P4hTERT fibro-

blasts, a cell line derived from an ORC1-deficient MGS patient

[26], we observed that ,5% of exponentially growing cells had

supernumerary centrosomes and/or displayed distal centrioles

(Figure 2A and 2B). Further, this phenotype was observed after

siRNA-mediated depletion of ORC1 and was rescued by

complementation following transfection of ORC-deficient cells

with ORC1 cDNA (Figure 2B). As a control for this analysis and

the subsequent work described below, we also examined primary

fibroblasts derived from an MOPD type II patient with

mutations in PCNT, which encodes pericentrin (PCNT), a

centrosomal protein and observed a substantial increase in cells

with supernumerary centrosomes consistent with a defect in a

core centrosomal protein [36] (Figure S1). Additionally, as

controls for the analysis below, we examined primary fibroblasts

derived from two Sensenbrenner Syndrome patients, which carry

distinct defects in genes encoding primary cilia intraflagellar

transport (IFT) proteins, namely WDR35 (also called IFT121) or

IFT43 [37,38]. Unexpectedly, these cell lines also showed an

enhanced fraction of cells with supernumerary centrosomes,

although less marked than in the ORC1 or PCNT-deficient lines

(Figure S1).

Since the quantification of centrosomes was more difficult to

undertake with non-adherent LBLs and since MGS patient

fibroblasts deficient in other licensing proteins are not available,

we used siRNA to deplete ORC1, ORC4, ORC6, CDT1, and

CDC6 in control hTERT fibroblasts and observed a similar

frequency of cells with multiple centrosomes (Figure 2C–2D).

Thus, impaired centrosome copy number is a general feature of

origin licensing deficiency, including loss of pre-RC complex

components, and is not specific to loss of ORC1.

Figure 1. Meier-Gorlin syndrome patients LBLs display impaired origin licensing capacity; some but not all lines show impaired S
phase progression. (a) EBV uses virally encoded EBNA-1, oriP and the host cell origin licensing complex for replication. ORC activity was assessed
by the replicative capacity of plasmid-294, which encodes OriP and EBNA-1 in a control LBL (C) and LBLs derived from MGS patients with mutations in
ORC1, ORC4, ORC6, CDC6 and CDT1. Following transfection of the EBV episome into LBLs and incubation to allow replication, episomal DNA was
extracted and examined after BamH1 or BamH1+Dpn1 digestion using plasmid-294 as a probe. Dpn1 degrades unreplicated plasmids that retain
bacterial Dam-dependent methylation. The EBV episome has a single BamH1 site causing linearization after digestion. Although replication of EBV is
less efficient in LBLs compared to hTERT immortalised fibroblasts, ,5% of the EBV plasmids underwent replication in control cells as shown by the
presence of full length episomes (band 1) after Dpn1+BamH1 digestion. The level in MGS patient LBLs is substantially reduced. For quantification, the
level of the full length plasmid band (1) was plotted relative to one of the Dpn1 digestion products (2) and normalised to that obtained in the control
(C). Efficient episomal transfection was shown by the similar level of digestion products in all samples. Results represent the mean of two
experiments. The reduction was highly significant (t-test, 1-tailed equal variance. Nomenclature used throughout: no significance (ns) P.0.05, *
P,0.05, ** P,0.01). (b) Control (C) and ORC1 LBLs were BrdU labelled for 30 min and incubated for the indicated times before fluorescence-activated
cell sorting (FACS). The percentage of early S phase cells was assessed. The rate of loss of BrdU+ early S phase cells represents the speed of S-phase
progression. LBLs with mutations in ORC1, ORC4 and ORC6 show an impaired rate of S phase progression; CDT1-deficient LBLs were similar to control
LBLs and the CDC6-deficient LBLs progressed more rapidly through S phase.
doi:10.1371/journal.pgen.1003360.g001
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Deficiency in origin licensing proteins ablates the
formation of primary cilia in fibroblasts

Since cilia develop from centrosomes/centrioles, we next

examined whether deficiency in origin licensing proteins affects

cilia development. Most mammalian interphase cell-types have a

single primary cilium which forms post-cytokinesis in G0/G1

phase and disassembles in two waves spanning the G1/S to G2/M

transition [39]. In fibroblasts, cilia can be visualised following cell

cycle exit [37,40]. Initially, we examined cilia formation in

hTERT immortalised fibroblasts grown to 70–80% confluency

following G0 entry induced by serum starvation. Cilia formed in

around 60% and 85% of control fibroblasts at 24 h and 48 h,

respectively. Strikingly, there was little detectable cilia formation in

ORC1-deficient patient fibroblasts up to 48 h post serum

starvation (Figure 3A and 3B). To further test whether this is an

absolute defect in cilia formation, control and ORC1-deficient

hTERT fibroblasts were serum starved for longer times; cilia

formation became more evident at these prolonged times but even

after 7 days only 40% of the cells formed cilia (Figure 3C). We

used siRNA depletion to examine the requirement for other MGS-

associated licensing proteins since we were unable to examine cilia

formation in LBLs. Control fibroblasts were subjected to siRNA-

mediated knockdown and cultured to examine cilia formation.

Strikingly, depletion of ORC1, ORC4, ORC6, CDT1 and CDC6

resulted in dramatically impaired cilia formation similar to ORC1-

deficient patient cells (Figure 3D). It is noteworthy that this striking

deficiency was observed in the entire cell population although only

,5% of cells showed abnormalities in centrosome/centriole copy

number. Thus, it is unlikely that the impact of ORC1 on

ciliogenesis can be a direct consequence of impaired centrosome

biogenesis. Expression of GFP-tagged ORC1 cDNA in ORC1-

deficient hTERT fibroblasts fully complemented the defect in cilia

formation in GFP-expressing cells detected with anti-GFP

antibodies (Figure 3E). To verify that the findings were not due

to any impact of the licensing proteins on the ability to enter G0/

G1 phase, we monitored the number of G2, mitotic, active G1 and

S phase cells in control, ORC1-deficient hTERT fibroblasts and

following all siRNA treatments and observed a similar rate of cell

cycle exit under all conditions (Figure S3).

In summary, these findings provide strong evidence that loss of

origin licensing proteins substantially delays, although does not

fully ablate, the ability to form primary cilia.

ORC1-deficient patient cells show impaired sonic
hedgehog signalling

Primary cilia function in many different organs to coordinate

and transduce signals, including Sonic hedgehog (Shh) and Wnt-

regulated pathway signalling, since they are enriched for specific

receptors [16,41]. Since Shh signalling plays a major role in many

developmental processes and since its activation can be monitored

in primary fibroblasts, we evaluated whether ORC1 deficiency

impacts upon Shh signalling. Cellular responses to secreted Shh

ligand are mediated by two trans-membrane proteins, Patched-1

receptor (Ptch-1) and Smoothened (Smo), a pseudo-G protein

coupled receptor. Shh ligand binds initially to Ptch-1, which

alleviates its suppression of Smo. Smo activation triggers

translocation of Gli2 to the nucleus where it regulates the

transcription of Shh-pathway response genes, including Gli1, Ptch1

and Hhip. SAG is a chlorobenzeothiophene-containing Shh

pathway agonist that functions downstream of Ptch-1 by binding

Figure 2. Deficiency in origin licensing proteins results in increased centrosome and centriole copy number. (a–b) Exponentially
growing cells were stained with anti-c-tubulin and anti-Centrin2 to allow visualisation of centrosomes and centrioles, respectively. Cells with .2
centrosomes or .4 centrioles were scored (b). Note that previous studies with ATR-SS cells were carried out using nocodozole to accumulate M
phase cells but this analysis was carried out without nocodozole addition to avoid any impact of this drug on spindle assembly17. The inset picture (a)
shows the types of abnormalities observed. I: normal G2 phase centrosomes and centrioles in control hTERT fibroblasts. ORC1 deficient (ORC1 P4
hTERT) fibroblasts have defects that include II: supernumerary centrosomes and centrioles, III: highly multiple centrioles, IV: centrioles distal from the
centrosome. Control-hTERT-immortalised fibroblasts were subjected to ORC1 siRNA and analyzed as above. Analysis was also undertaken in ORC1-
deficient hTERT fibroblasts and in ORC1-hTERT fibroblasts following transfection with ORC1 cDNA. Similar findings were observed using a distinct
antibody to mark centrioles (Figure S1). (c–d) Control fibroblasts were treated with the indicated siRNA and examined as in (b) and by Western
Blotting to measure knockdown efficiency using the indicated antibodies.
doi:10.1371/journal.pgen.1003360.g002
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directly to Smo. Treatment with SAG, therefore, causes accumu-

lation of Smo at the cilia. To assess whether the diminished ability

to form cilia following loss of ORC1 affects Shh signalling, we

examined Smo localisation at cilia following treatment with SAG.

We utilised patient derived primary fibroblasts to allow the

inclusion of IFT43-, WDR35-, and PCNT-deficient primary

fibroblasts as controls. At 72 h post serum starvation in the

absence of SAG, we observed that the majority (.80%) of control

fibroblasts have formed cilia (Figure 4A; detected using acetylated-

tubulin antibodies) but Smo was localised in a diffuse pan nuclear

manner (Figure 4B i). When SAG was added for the final 24 h,

Smo localised to the cilia, with ,50% of the cells showing

colocalised acetylated-tubulin and Smo (Figure 4B and 4C).

IFT43-, WDR35- and PCNT-deficient fibroblasts formed cilia at a

similar level to wild-type control cells after serum starvation,

although the acetylated-tubulin staining pattern was frequently

abnormal (Figure 4D). This is consistent with previous findings

that cilia form at close to normal levels in IFT43- and WDR35-

deficient patient cells [37,38]. Although one study has shown that

PCNT is required for ciliogenesis, subsequent work using a

hypomorphic mouse strain suggested that PCNT was essential for

olfactory cilia assembly but dispensable for ciliogenesis in non-

neuronal epithelial cells [19,20]. The normal level of cilia

formation here may reflect the latter finding or the fact that

PCNT function is not fully abrogated in the patient cells. In

contrast to wild-type control cells, Smo localised at the cilia in a

detectable fraction of non-SAG treated cells in the three patient-

derived cell lines suggesting some potential functional deficiency

(Figure 4C). In the presence of SAG, the fraction of cells with Smo

localised at the cilia increased slightly but for IFT43- and more

markedly PCNT-deficient cells, the fraction with co- localised Smo

remained below the level in control cells (Figure 4C). Additionally,

in these three cell lines (IFT43, WDR35 and PCNT) the staining

for Smo appeared non-uniform compared to that observed in

control cells exposed to SAG (Figure 4D). These findings are

consistent with the impact of IFT43 and WDR35 on retrograde

intraflagellar protein transport (but normal anterograde transport),

a downstream step in cilia function, rather than on cilia formation

or Smo activation. PCNT deficiency in fibroblasts confers a

distinct phenotype with most cells forming cilia normally but with

diminished or abnormally co-localised Smo without or with SAG.

This substantiates the findings described above that cilia formation

is only modestly compromised by PCNT deficiency and demon-

strates that cilia function is more markedly impaired.

Finally, ORC1-deficiency results in dramatically impaired cilia

formation (as described above) and hence few cells have localised

or accumulated Smo either without or with SAG treatment

(Figure 4A and 4C). However, assessment of the fraction of ciliated

cells that showed co-localised Smo after SAG revealed that ORC1

deficiency, whilst compromising cilia formation, did not affect the

ability to localise Smo in the reduced number of ciliated cells

(Figure 4E). IFT43, WDR35 or PCNT deficiency conferred a

Figure 3. Deficiency in origin licensing proteins dramatically impairs cilia formation. a–b) Control (C) or ORC1-deficient cells were induced
to enter G0 by serum starvation for 24 or 48 hr and processed to identify cilia using anti-acetylated tubulin and anti-c-tubulin antibodies to mark the
entire cilia or the basal body, respectively. Lower panel shows that in ORC1-hTERT fibroblasts immunostaining with a-acetylated tubulin reveals
extended perinuclear microtubular arrays around the centrosome in distinction to the ordered alignment in control cells and as reported for other
cilia defective cells [56]. c) Control (C) or ORC1-deficient hTERT cells were monitored for long term cilia formation as above after the indicated
numbers of days of serum depletion. d) Origin licensing proteins were knocked down with siRNA in control hTERT cells, serum starved for 24 hrs then
analysed for cilia formation as above. Although a marked defect is observed in cilia formation up to 48 h post serum starvation, cilia can form in
around 50% of the cells when examined 4–5 days post serum starvation. e) ORC1-P4 hTERT cells were transfected with empty plasmid or plasmid
expressing GFP-tagged ORC1 cDNA and positive cells detected with anti-GFP antibodies. The percent of GFP+ cells, representing those that have
been successfully transfected, with cilia was assessed as in panel (d). ORC1 cDNA expression resulted in rescue of the defect in cilia formation. Figure
S2a shows cilia formation in a gfp+ versus gfp2 cells.
doi:10.1371/journal.pgen.1003360.g003
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distinct phenotype with only a modest impact on cilia formation

but clearly aberrant Smo localisation (Figure 4F). This strongly

suggested that ORC1-deficiency dramatically impairs cilia forma-

tion (at 72 h post serum starvation) but the function of the cilia

that do form is normal for ability to localise Smo. PCNT-deficient

cells, however, show a distinct phenotype with only around a

quarter of the ciliated cells showing accumulated Smo, providing

further insight into the impact of PCNT deficiency on cilia

function. Transfection of GFP-tagged ORC1 cDNA into ORC1-

deficient hTERT fibroblasts complemented the lack of Smo

localisation in GFP-expressing cells detected with anti-GFP

antibodies (Figure 4G). A failure to localise Smo at the cilia was

also observed following siRNA of ORC1, ORC4, ORC6, CDC6

and CDT1 (Figure 4H), mainly due to the greatly reduced cilia

formation. In the cells that did form cilia Smo localisation was

detectable, although somewhat reduced (Figure 4I).

Shh signalling results in the transcriptional up-regulation of

Gli1, providing a further assay to monitor cilia function. Using

quantitative Real Time-PCR (q-RT-PCR) we assessed the change

in Gli1 transcript levels in control, ORC1, PCNT or IFT43 patient

cells either without or with SAG treatment. Control cells showed a

greater than tenfold increase in Gli1 transcript levels after SAG but

no change was observed in the patient cells examined (Figure 4J).

Finally, since 40% of ORC1-hTERT cells formed cilia at

prolonged times (7 days) post serum starvation, we examined

whether this correlated with functional Shh signalling assessed by

Gli1 transcript levels. Indeed, at 10 days post serum starvation,

Gli1 levels were substantially increased suggesting that the cilia that

form at prolonged times in ORC1-hTERT cells are functional for

Shh signalling (Figure 4K).

We conclude that an impaired ability to form cilia caused by

ORC1-deficiency impacts upon Shh signalling. However, the

impaired response is a consequence of diminished cilia formation

rather than function. In contrast, IFT43- and PCNT-deficient

fibroblasts show altered or impaired cilia function although the

ability to form cilia is not dramatically impaired.

Diminished ORC1 impairs the cilia-dependent response
to PDGF

The cellular response to a specific isoform of platelet-derived

growth factor (PDGF), which is recognised by a receptor located in

cilia, represents another cilia-dependent response which links to

cell cycle entry and subsequent DNA replication [42]. Two major

PDGF ligand isoforms and their corresponding receptors have

been identified. PDGF receptor a (PDGFRa) specifically localises

to primary cilia, is upregulated in serum-starved cells, and

responds to the PDGF-AA ligand isoform [43]. In contrast, the

PDGFRb receptor, which responds to the PDGF-BB isoform,

localises predominantly on the cell membrane. A primary role of

PDGF signalling is to promote cell cycle entry from G0 [44]. We

exploited PDGF-AA and –BB to examine cilia function following

cell cycle exit and re-entry. This system was exploited since it

allows the impact of ORC1 deficiency on membrane dependent

versus cilia dependent signalling to be assessed. Following growth

to 70–80% confluency and serum starvation for 48 h (conditions

promoting cilia formation), cells were treated with PDGF-AA or

BB isoforms for 11 or 24 h. Cell cycle re-entry was monitored as

the percentage of BrdU positive (BrdU+) cells by immunofluores-

cence (IF). Whilst control fibroblasts showed a similar ratio of

BrdU+ cells when exposed to PDGF-AA or -BB, ORC1-deficient

fibroblasts showed substantially diminished BrdU+ cells following

PDGF-AA addition (Figure 5A and 5B). A similar result was

observed in cells deficient in IFT43, WDR35 or PCNT consistent

with the known role of these proteins in cilia protein transport

(IFT43 or WDR35) or cilia function (PCNT), as demonstrated

above. Examination of ORC1 siRNA in control fibroblasts

demonstrated a similarly impaired response to PDGF-AA

(Figure 5C). Furthermore, siRNA mediated depletion of ORC4,

ORC6, CDT1 or CDC6 similarly diminished the response to

PDFG-AA without impact on the PDGF-BB response (Figure 5C).

Finally, we examined the cellular localisation of PDGFR-a and

PDGFR-b confirming that PDGFR-a localises to cilia whilst

PDGFR-b showed a pan-cellular localisation (Figure 5D). Nota-

bly, PDGFR-a localised to the few cilia that formed in ORC1-

deficient cells, consistent with the notion that these cilia were

functionally normal.

Collectively, these data demonstrate that the defect in cilia

formation caused by depletion of origin licensing proteins impacts

upon the cilia-dependent response to growth signals.

Impaired cilia formation also causes delayed S phase
entry following cell cycle exit and re-entry by serum
addition

Previously, we observed that ORC1-deficient fibroblasts show

delayed S phase entry after cell cycle exit and re-entry following

serum addition [26]. We concluded that this phenotype could be

due to a ‘licensing checkpoint’ that precludes S phase entry until a

critical level of origin licensing in G1 is achieved [26,45,46].

However, we noted that the assay involved conditions that

corresponded to those described above for monitoring cilia

function except that serum was employed to promote cell cycle

entry rather than PDGF isoforms. We, therefore, considered it

possible that our previous findings might predominantly reflect

impaired ciliogenesis and/or ciliary function rather than a

‘licensing checkpoint’. To examine this, we monitored S phase

entry using BrdU labelling following cell cycle exit and re-entry

after serum re-addition in IFT43-, WDR35-, or PCNT-defective

fibroblasts. Strikingly, all three lines showed delayed S phase entry

compared to control fibroblasts, a phenotype similar to that

observed in ORC1-deficient cells (Figure 5E). Next, we used

siRNA-mediated depletion in control fibroblasts to examine the

requirement for additional origin licensing components. Strikingly,

Figure 4. Recruitment of Smo to cilia is deficient in ORC1-deficient fibroblasts. a–f) Primary fibroblasts with the indicated deficiency (ORC1,
IFT43, WDR35 or PCNT) were induced to enter G0 phase following serum depletion for 48 hr. The Shh pathway agonist SAG was then added for a further
24 hr. a) shows the percentage of cells with cilia after 3 days serum starvation. b) In control cells in the absence of SAG Smo is localised diffusely in the
nucleus but not at the cilium. In the presence of SAG a strong uniform Smo staining is visible along the length of the cilium marked with acetylated-
tubulin or extending from the basal body marked by c-tubulin. c) Shows the percentage of cells with cilia and co-localised Smo with or without SAG
treatment. d) Examples of abnormal Smo localisation at the cilium: (i) accumulation at distal tip, basal body and weakly along shaft, (ii) localised to distal
tip only, (iii) localized to distal tip and partially along cilium shaft, (iv) localised to distal tip only, (v) accumulation at basal body, (vi) non-uniform
distribution along length of cilium. e) Shows the percentage of ciliated cells with co-localised Smo. f) shows the percentage of ciliated cells with
abnormally localised Smo. g) the percentage of cells with Smo localisation at the cilia following transfection of ORC1-hTERT cells with GFP-taggedORC1
cDNA. Positive GFP cells were detected with anti-GFP antibodies. Smo localisation is quantified in GFP+ cells. Images of Smo localisation in Gfp+ cells is
shown in Figure S2. h and i) percentage of cells with Smo at cilium (h) or percentage of ciliated cells with co-localised Smo (i) following the indicated
siRNA. j and k) qRT-PCR analysis of Gli1 transcript levels in the indicated cells with or without SAG for 24 h (j) or (k) following 7 days serum starvation.
doi:10.1371/journal.pgen.1003360.g004
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whereas fibroblasts treated with control siRNA commenced S

phase entry within 4–6 hrs following serum addition, entry was

delayed in cells subjected to siRNA of MGS-associated licensing

proteins (Figure 5F). Interestingly, in this assay the defect was less

marked following cell cycle exit at 7 days post serum starvation,

consistent with the notion that functional cilia can form in this

context after prolonged times in the ORC1 deficient cells (Figure

S4). These findings provide strong evidence that this assay

monitors cilia function in response to growth factors. Although

the contribution of a licensing checkpoint cannot be eliminated

Figure 5. Deficiency in origin licensing proteins impairs cilia function in response to platelet-derived growth factor (PDGF). a–b)
Fibroblasts were induced to enter G0 phase following serum depletion for 48 hr. PDGF-AA or –BB and BrdU was then added and the percentage of S
phase cells, monitored as BrdU+ cells, was estimated by immunofluorescence 11 (a) and 24 hr (b) later. The receptor for PDGF-AA is located in cilia
whilst the –BB receptor is on the cell membrane. c) Analysis as in a) following the indicated siRNA. d) Cellular localisation of PDGFR-a or b. Anti-
PDGFR-a or –b antibodies were used to examine the localisation of the two PDGF isoforms in control (C) or ORC1-P4 hTERT cells. PDGFR-a localised to
the cilia, identified using anti-acetylated tubulin in control and ORC1-P4 cells although fewer cilia formed in the latter cells. PDGFR-b showed pan
cellular localisation but did not co-localise with the cilium. e) Cells were induced to enter G0 phase following serum depletion for 48 hr. Serum was
then re-added and the fraction of BrdU+ S phase cells monitored at the indicated times. The top panel shows the results with a control (C) primary
fibroblasts, 48BR, primary fibroblasts from Sensenbrenner syndrome patients (IFT43-mutated and WDR35-mutated), PCNT defective fibroblasts and an
ORC1 deficient line MGS cells. Both Sensenbrenner syndrome lines and PCNT cells showed a delayed S phase entry, similar to ORC1 defective MGS,
compared to the control primary line. f) Analysis of a control hTERT immortalised cell line either without knockdown (C), treatment with control siRNA
oligonucleotides (siC) or with oligonucleotides specific (si) for ORC1, ORC4, ORC6, CDC6 or CDT1. Knockdown efficiency was assessed and was similar
to that observed in Figure 2. Note that the control hTERT immortalised line (C) enters S phase more rapidly that the primary fibroblasts line making it
difficult to allow a direct comparison between the S phase entry kinetic defects observed in the Sensenbrenner syndrome primary lines in (e).
doi:10.1371/journal.pgen.1003360.g005
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and, indeed, the two mechanisms are not mutually exclusive, the

data obtained with the IFT43 WDR35 and PCNT-defective

fibroblasts demonstrate that cilia dysfunction can significantly

impair cell cycle progression.

ORC1-deficient patient cells are impaired in an in vitro
model system for chondrogenesis

MGS patients display pronounced cartilage and bone defects,

including markedly small ears, small or absent patella, microgna-

thia, delayed bone age, and short slender ribs. Coupled with the

established role of cilia in chondrogenesis, we examined the

chondrogenic potential of ORC1-deficient MGS cells [47,48]. A

model system for chondroinduction using fibroblasts, which share

a common mesenchymal origin with chondroctyes, necessitates

cell cycle exit and subsequent association of single cells into

aggregates upon exposure to a chrondrogenic matrix [49,50]. The

size distribution of aggregates formed in ORC1-defective and

IFT43-defective fibroblasts was smaller than those formed in

control fibroblasts (Figure 6A–6B). Vascular Endothelial Growth

Factor A (VEGFA) is induced during chondroinduction and

chondrogenesis. Using semi-quantitative RT-PCR, control fibro-

blasts showed enhanced levels of two VEGFA transcript isoforms

following culture upon the chondrogenic matrix (Figure 6C and

6D). Both ORC1-defective and IFT43-defective fibroblasts

exhibited enhanced endogenous levels of the smaller isoform

(isoform c), which diminished rather than increased upon

chondroinduction (Figure 6C and 6D). The larger VEGF isoform

(a) similarly increased in control but not in ORC1-defective or

IFT43-defective cells following chondroinduction. In converse to

VEGFA, type 1 collagen (COL1A1) is normally transcriptionally

down regulated during chondroinduction (Figure 6E). Using qRT-

PCR to monitor COL1A1 transcript levels, we observed that they

were high in control fibroblasts, decreased at 24 h following

culture upon the chondrogenic matrix and reduced to one fifth of

the level in uninduced cells by 72 h; in contrast, in ORC1- and

IFT43-deficient fibroblasts the COL1A1 levels were not decreased

at 24 h and less substantially decreased at 72 h (2 to 2.5 fold

decreased for ORC1-deficient cells (Figure 6E). Changes in

VEFGA transcript levels were also examined in control hTERT

cells following siRNA knockdown of the other MGS-associated

origin licensing proteins, including ORC1 (Figure 6F). The results

obtained following transfection with control oligonucleotides were

similar to those shown for control hTERT cells (Figure 6C and 6F)

showing an increase in VEGFA transcript isoforms following

culture upon the chondrogenic matrix. In contrast siRNA

mediated knockdown of ORC1, ORC4, ORC6, CDT1 or

CDC6 resulted in high endogenous levels of VEGFA with either

no change or a decrease after chondroinduction, which resembled

the response seen in the patient cells. (Figure 6C, 6F and 6G).

Collectively, this analysis using an established model culture

system for chondrogenesis with IFT43-defective cells provides

evidence that chondroinduction requires cilia function. Whilst

ORC1-defective fibroblasts show a milder defect, their response to

chondrogenic matrix is clearly abnormal. Furthemore, siRNA

mediated silencing of the other MGS genes, ORC4, ORC6, CDT1

or CDC6 was also clearly associated with an aberrant chondroin-

duction phenotype. Together, this highlights a novel link between

defects in pre-RC components and programmed differentiation of

clinical relevance to chondrogenesis in MGS.

Discussion

Defects in origin licensing proteins confer MGS (and in some

instances SS), which is characterised by a range of clinical

features including severe microcephaly, small ears, small/absent

patellae, and defects in bone development [25,26]. Origin

licensing proteins have a canonical function in licensing

replication origins during G1 for replication in S phase

[1,2,3,4]. Taken together with the fact that mutations in ATR,

which functions to maintain replication in the face of DNA

damage, also cause SS, this raised the possibility that the clinical

features might be a direct consequence of insufficient replicative

capacity. Previously, we observed that ORC1-deficiency caused

slow progression through the S and G1 phase and proposed that

a failure to sustain rapid replication during critical developmental

stages might underlie the clinical manifestations [26]. Here, we

show that cells derived from MGS patients with defects in

additional licensing components (ORC4, ORC6, CDT1 and

CDC6) have diminished origin licensing capacity. However,

although slow S phase progression was observed in some lines, it

was not a consistent phenotype. Coupled with the fact that such

patient LBLs grow efficiently (and LBLs are rapidly growing

cells), this suggests that diminished licensing capacity in MGS

does not dramatically impede cell growth even under rapidly

growing conditions and does not correlate with clinical pheno-

type. Since only ,10% of licensed origins are utilised during

normal replication, it is likely that efficient replication can pursue

even with markedly reduced licensing capacity. Although we

cannot eliminate the possibility that impaired replicative capacity

might contribute in some cell types to the disease phenotype, we

examined the consequences of additional impacts of origin

licensing deficiency.

Extending our findings following siRNA-mediated silencing of

ORC1, we show that loss of additional licensing proteins (ORC4,

ORC6, CDT1, and CDC6) also confer a subtle defect in

centrosome and centriole copy number [14]. Further, as a novel

and unexpected finding, we demonstrate that such defects

dramatically impact upon cilia formation. Although only a

subfraction of cells depleted for licensing proteins have supernu-

merary centrosomes/centrioles, there is a marked defect in cilia

formation affecting the entire population. Indeed, cilia failed to

form in some cells where centrosome numbers appeared normal

(data not shown). Thus, the defect in ciliogenesis in patient cells

cannot be a direct consequence of defective centrosome biogen-

esis. Previous studies have suggested that ORC1 regulates

centriole and centrosome copy number via interactions with

Cyclin E [14]. Additionally, ORC1 is localised to centrosomes via

a process involving Cyclin A. However, it is unclear how such a

model would exert a major impact upon cilia formation. Thus,

these two phenotypes (the impact on centrosomes versus cilia) may

be the consequence of distinct aspects of deficiency in origin

licensing proteins and it is currently difficult to disentangle

whether defective cilia arise as a consequence of a direct role of

origin licensing proteins in cilia formation or are a downstream

consequence of dysfunctional centrosome/centriole organisation.

Although ORC1 localises to centrosomes in control cells, we have

not yet been able to assess whether there is any lack of function or

malfunction of ORC1 at centrosomes in patient cells. Unexpect-

edly, we observed that Sensenbrenner syndrome cells, which have

a known defect in intraflagellar transport, also display impaired

centrosome and centriole stability (Figure S1). Thus, the connec-

tion between cilia, centrosomes and centrioles is complex and

multiple proteins are likely required for their efficient biogenesis.

We demonstrate that depletion of origin licensing components

does not affect the kinetics of cell cycle exit upon serum starvation

making it unlikely that the findings can be explained by an

impaired ability to exit the cell cycle (Figure S3). Importantly,

however, cilia do form in licensing deficient cells but do so
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substantially more slowly. Interestingly, pre-replication complex

formation and ciliogenesis both occur during G0/G1 phase and it

is possible that signalling via interactions with Cyclin A or E delays

appropriate signals to initiate the latter processes.

An important consideration is whether these novel and

unexpected consequences of deficiency in origin licensing proteins

contribute to the clinical features of MGS. As one step towards

evaluating this, we exploited a cell based model for chondrogen-

esis. Although this assay involves the differentiation of fibroblast

cells into chrondrocyte-like cells and, thus, may not fully represent

the in vivo differentiation process, chrondrogenesis in vivo necessi-

tates a similar process involving cell cycle exit and response to

differentiation factors. Importantly, this model system allows use of

patient derived material. Strikingly, we show that this differenti-

Figure 6. ORC1 Meier-Gorlin syndrome and IFT43 Sensenbrenner syndrome fibroblasts exhibit impaired chondroinduction. a–b)
Phase contrast images (406) of control (C) hTERT, ORC1-deficient MGS (ORC1-P4hTert) and IFT43-mutated Sensenbrenner (IFT43) patient derived
fibroblasts at 0 hr and 24 hr following addition to aggrecan coated plates. Size distribution of aggregates from control (C), ORC1 and IFT43 fibroblasts
following 24 hr micromass culture in aggrecan coated plates (n = 350 aggregates scored per line). Larger aggregate size was a feature of control
fibroblasts following chondroinduction compared to ORC1 and IFT43 cells. c–d) Semi-quantitative RT-PCR amplification of VEGFA isoform a (upper
band) and isoform c (lower band) either uninduced (Und) or during chondroinduction. Both isoforms were induced in control fibroblasts (C) upon
chondroinduction. Whilst IFT43 cells exhibited higher endogenous levels of VEGFA isoform c, it was not maintained upon chondroinduction. Isoform
a also was not induced after chrondroinduction. Similar findings were observed for ORC1 cells, although the high endogenous level of isoform c
reduced less dramatically than that in IFT43 cells but did not increase in as in control cells. ELP4 was used as an amplification control. Panel (d) shows
the combined quantification for isoforms a and c from the above panel. Similar findings have been observed in three independent experiments. e)
Type I collagen represents a negative marker for chondroinduction as its levels decrease as differentiated chondrocytes secrete a specific extracellular
matrix. Consistent with this, COL1A1 levels, as monitored by quantitative RT-PCR were found to decrease in control fibroblasts (C) during
chondroinduction. Interestingly, both ORC1 and IFT43 defective patient derived cells exhibited similar levels of endogenous COL1A1 compared to
control but by 48 h, the levels had less dramatically diminished compared to control cells. The results represent the mean of three experiments. f–g)
Analysis of a control hTERT cell line treated with control siRNA oligonucleotides (siC) or with oligonucleotides specific (si) for ORC1, 4, 6, CDC6 or CDT1.
Cells were uninduced (Und) or induced on a chondrogenic matrix then assayed for VEGFA expression as detailed in (c–d). Panel (g) shows the
combined quantification for isoforms a and c from the above panel. Similar findings have been observed in two independent experiments.
doi:10.1371/journal.pgen.1003360.g006
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ation process is defective in IFT43-defective Sensenbrenner

syndrome cells, which are impaired in intraflagellar transport

providing strong evidence that the differentiation step involves

cilia-dependent signalling. Importantly, we observe that ORC1

deficient patient cells and siRNA mediated silencing of the other

pre-RC MGS genes (ORC4, ORC6, CDT1 and CDC6) in control

fibroblasts also exhibit specific impairments in this assay. These

findings provide a further demonstration that licensing proteins

impact upon cilia function and yield potential novel insight into

how deficiency in origin licensing proteins might impact upon

skeletogenesis.

Microcephaly represents a further clinical characteristic of

MGS/SS. Significantly, several genetic defects that cause primary

microcephaly represent centrosomal proteins. Moreover, PCNT,

which is mutated in MOPD II, is a centrosomal protein with a

characterised role in ciliogenesis [19,20]. Significantly, we show

here that PCNT-deficient patient derived cells also display a defect

in cilia function. There is strong evidence that microcephaly can

arise from a failure to efficiently expand the pool of neuronal

progenitor cells via a process that necessitates a timely switch from

asymmetric to symmetric cell division [32]. The centrosome is

critical in promoting this switch through regulation of the

orientation of the cleavage plane furrow. It is possible that cilia

function is also required during this early stage of neurogenesis.

Moreover, Shh signalling also has an important role during

neurogenesis and disruption of cilia function leads to cerebellar

defects [51,52,53].

Collectively, our studies raise the possibility that MGS should be

considered as a ciliopathy. However, some of the clinical features

of MGS are distinct to other ciliopathies [16,54,55]. For example,

kidney dysfunction is frequently observed in ciliopathy disorders

and has rarely been reported in MGS. Whilst abnormalities in

brain superstructure are frequently observed in ciliopathies,

microcephaly is not a consistent feature and is not a feature of

Sensenbrenner syndrome. However, skeletal defects are common-

ly seen in ciliopathies, as typified by Sensenbrenner syndrome. In

assessing this, it is important to appreciate that the cilia defect

caused by origin licensing deficiency is not absolute and cilia can

form albeit substantially slower than in control cells. Moreover, the

cilia that form, in contrast to those arising in Sensenbrenner

syndrome or PCNT deficient cells, appear to be functionally

normal. Thus, it is likely that the impact of impaired cilia

formation may depend upon cell type; in those situations where

rapid signalling is required, such as during neurogenesis, the

impact of delayed cilia formation could be significant whilst in

other tissues, such as kidney, where ciliated cells may be long lived,

the impact might be less consequential. Finally, other aspects of

licensing deficiency may also contribute to the clinical manifesta-

tions. Subtle differences in function could, when combined, have

profound clinical manifestations making it difficult to untangle

linear relationships. Nonetheless, the defect in timing of cilia

formation reported here is striking and, as we show for PDGF

signalling, can contribute to altered DNA replication kinetics.

Thus, our findings represent a novel dimension to the consider-

ation of the developmental impact of pre-RC licensing component

deficiency.

In summary, we report here that defects in multiple licensing

proteins that arise in MGS patients cause modest defects in

centrosome and centriole copy number but marked defects in the

rate of cilia formation and consequently cilia function. We provide

novel examples of how signalling via cilia can affect cultured cells

including impacts on sonic hedgehog signalling, PDGF-mediated

cell cycle progression, and chondroinduction.

Materials and Methods

Cell culture
LBLs utilized are control (GM2188), deficient in ORC1

(ORC1-P1/CV1759), ORC4 (GM018380), ORC6 (GM020744),

CDT1 (GM020792) and CDC6 (GM013107) Mutations are given

in [25,26]. LBLs were grown in RPMI medium supplemented

with 15% foetal calf serum (FCS), penicillin, and streptomycin.

Primary human fibroblasts utilized were control (1BR), Orc1-

deficient (Orc1-P4) [26], IFT43 (CL10-00031) [37] WDR35

(CL10-00021) [38] and PCNT (ASB). hTERT derivative fibro-

blasts were control (1BR3hTERT or 48BRhTERT) and Orc1

(ORC1-P4hTERT). Fibroblasts were grown in MEM with 15–

10% FCS, 1% non-essential amino acids (NEAA) and 1%

antibiotics. ORC1, ORC4, ORC6, CDT1, CDC6 and control

siRNA was carried out using the appropriate Smartpool

(Dharmacon, Lafayette, Colorado) and Metafectene Transfection

Reagent (Biontex, Munich, Germany).

Immunofluorescence
Cells grown on coverslips were fixed with 3% formaldehyde for

10 min and permeabilized in 0.5% Triton-X100. For BrdU

staining, DNA was denatured in 2 N HCl for 30 min. After

antibody treatment and staining with 4,6-diamidino-2-phenylin-

dole (DAPI), coverslips were mounted in Vectashield mounting

medium (Vector Laboratories, Burlingame, California). Samples

were incubated with primary antibodies for BrdU (BU20A),

CenPF, CPAP, phospho-H3 (Santa Cruz, Santa Cruz, Califor-

nia), Centrin 2 (a kind gift from Dr E. Scheibel), c-tubulin,

acetylated-tubulin (Sigma, St. Louis, Missouri), phospho-Rb (Cell

Signaling, Beverley, Massachusetts), anti-GFP (Invitrogen) and

Smoothened (Abcam, Cambridge UK). Secondary antibodies

were from Sigma.

S phase progression assay
BrdU-labelled cells were fixed in 70% ethanol (-20uC), treated

with 2 M HCl in PBS for 20 min, washed in PBS/1% FCS,

incubated in 0.1 M Na-tetraborate for 2 min, re-washed in

PBS/1% FCS and incubated with FITC-conjugated monoclonal

anti-BrdU antibody solution (Santa Cruz, Santa Cruz, Califor-

nia). Finally, cells were stained with 10 mg/ml propidium iodide

and 0.5 mg/ml RNase in PBS for 30 min. Analysis was

performed on a FACScan (Becton Dickinson, Franklin Lakes,

New Jersey) or a FC500 (Beckmann Coulter, Indianapolis,

Indiana). Identification of cell compartments was as previously

described [26].

Cilia formation assay
Fibroblasts were grown to 70–80% confluency followed by

serum starvation in MEM containing 0.5% (primary cells) or 0.1%

(hTERT immortalized cells) FCS for 1–7 days to promote entry

into G0. Cells were processed for immunofluorescence as above

and cilia visualized with anti-acetylated tubulin and c-tubulin

antibodies.

Shh pathway assay
Fibroblasts were serum starved for 2–3 days in MEM containing

0.1% FCS. Then MEM with or without 1 mM SAG (Smoothened

agonist, Calbiochem, Billerica, Massachusetts) was added for a

further 24 hrs. Cells were processed for immunofluorescence as

above. Cilia or the basal body were identified by antibodies against

acetylated-tubulin and c-tubulin then Smoothened staining at the

cilium assessed.
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Cilia function assay
Fibroblasts were serum starved for 2–3 days in MEM containing

0.5% (primary cells) or 0.1% (hTERT cells) FCS. Then MEM

with FCS or with 50 ng/ml PDGF-AA, PDGF-AB or PDGF-BB

(Sigma, St. Louis, Missouri) was added. S-phase cells were

identified by labeling with 10 mM BrdU (Becton Dickinson,

Franklin Lakes, New Jersey) and processed for immunofluores-

cence as above.

Centrosome analysis
Cycling fibroblasts were processed for IF as above and

centrosomes or centrioles visualized with anti-c-tubulin and anti-

Centrin-2 antibodies, respectively.

EBV origin licensing assay
16107 cells were transfected with 10 mg OriP and EBNA-

containing plasmid p294 using Calcium Phosphate. Plasmid

DNA was isolated after one population doubling using a

modified Hirt extraction procedure. Plasmid DNA was linearised

with BamHI alone or together with DpnI. DNA was repurified

with a Minelute column (Qiagen) and electrophoresed in 0.7%

agarose in the absence of ethidium bromide. DNA was blotted

onto an H+ membrane and probed with random prime a-

dCTP32 labeled p294 (Rediprime II, GE Healthcare, Chalfont

St. Giles, UK).

Immunoblotting
Cells were lysed for 1 h in IPLB (50 mM Tris-HCl, 150 mM

NaCl, 2 mM EDTA, 2 mM EGTA, 25 mM NaF, 25 mM b-

glycerolphosphate, 0.1 mM NaOrthovanadate, 0.2% Triton X-

100, 0.3% NP-40, plus protease inhibitor cocktail (Roche, Basel,

Switzerland) at 4uC and centrifuged at 13,000 rpm for 10 min.

The insoluble pellet was resuspended in IPLB containing 300 mM

NaCl and incubated for 30 min at 4uC. 10 U/ml of Benzonase

nuclease was added, followed by incubation at RT for 30 min, and

sonication for 15 min in a sonicating waterbath. ORC1 antibodies

raised against the N or C terminus (N17 and H80 respectively),

Orc4 (L-15), Orc6 (FL-252), Cdc6 (180.2), Cdt1 (H-300) and HP1

(FL191) were from Santa Cruz Cruz (Santa Cruz, California).

Histone H3 (tri-methyl K9, ab8898) was from Abcam (Cambridge

UK).

Chondroinduction
Patient-derived hTERT immortalized fibroblasts were chon-

droinduced by seeding in micromass culture (26105 cells/well)

onto 24 well plates coated with the chondrogenic proteoglycan

aggrecan (Sigma-Aldrich). Plates were prepared using 20 mg of

aggrecan/well, dried overnight at around 37uC. Aggregate sizes

were measured using light microscope images (406magnification)

using Adobe Photoshop (arbitrary units, lower cut-off point at the

single cell size approximately).

Semi-quantitative RT-PCR (26 cycles) for VEGFA was

performed using the ProtoScript AMV LongAmp Taq RT-PCR

Kit (New England Biolabs) using the following primer sets:

VEGFA:

Forward: 59-GTCTTGGGTGCATTGGAGCC-39

Reverse: 59-CCTCGGCTTGTCACATCTGC-39

ELP4:

Forward: 59-AAGAGGATCCTGCCAACATTT-39

Reverse: 59-AGGATTGGATCCATCAAATCC-39

qRT-PCR for COL1A1 analysis was carried out using the

QuantiFast SYBR Green PCR Kit and the following QuantiTect

Primers (Qiagen):

COL1A1 (NM_000088): Hs_COL1A1_1_SG (cat no.

QT0037793).

GAPDH (NM_002046): Hs_GAPDH_1_SG (cat no.

QT00079247)

Reactions containing 12.5 ml SYBR Green PCR Master Mix,

2.5 ml 106 Primer assay mix, 5 ml RNAse-free water and 5 ml

template cDNA to a final volume of 25 ml were prepared in

duplicate. Cycling was carried out using the Stratagene Mx3005P

QPCR System. Cycling conditions: reactions were heated to 95uC
for 5 minutes, followed by 40 cycles of 95uC for 10 seconds and

60uC for 30 seconds. Reactions were then heated up to 95uC for a

further 1 minute and incubated at 55uC for 30 seconds. For

siRNA-mediated knockdown, Smartpool (Dharmacon, Lafayette,

Colorado) oligonucleotides were transfected using Metafectene-

Pro Transfection Reagent (Biontex, Munich, Germany) and

48 hrs later cells were seeded onto aggrecan coated plates in

duplicate for chondroinduction as described above.

Supporting Information

Figure S1 Sensenbrenner syndrome and PCNT deficient

fibroblasts have an increased centrosome copy number. a)

Exponentially growing primary fibroblasts with the indicated

deficiency (ORC1, IFT43, WDR35 or PCNT) were stained with

anti-c-tubulin to allow visualisation of centrosomes. Cells with .2

centrosomes were scored as defective. In a previous study, we

showed that PCNT deficient cells have increased supernumerary

centrosomes [36]. In this previous study, nocodozole was added to

prevent cell cycle progression and it was possible, that this

treatment enhanced centrosome abnormalities. In this study,

exponentially growing cells were scored without nocodozole

treatment. b–c) Exponentially growing cells were stained with

anti-c-tubulin and anti-CPAP to allow visualisation of centrosomes

and centrioles, respectively. Cells with .2 centrosomes or .4

centrioles were scored as defective. An example of multiple

centrosomes/centrioles in ORC1 deficient cells is shown in c).

(TIF)

Figure S2 Complementation of the defect in ciliogenesis and

Smo localisation in ORC1-deficient patients cells expressing Gfp+-

ORC1 cDNA. ORC1hTERT fibroblasts were transfected with

GFP-tagged ORC1 cDNA and either cilia formation (panel a) or

Smo localisation to cilia after SAG addition (panel b and c)

examined in cells assessed to be GFP+. To detect GFP positive cells

anti-GFP antibodies were utilised. The asterisk denotes GFP+ cells.

In panel A, a GFP+ cell is shown together with rescued cilia

formation. In panel B, two GFP2 cells are shown with no cilia

formation or smo localisation. In panel C, two GFP+ cells are

shown. Smo localisation at the cilia is evident in both cells with a

zoomed overlay shown in the right panel. Although Smo and GFP

both stain in the red channel, the Smo localisation can be

distinguished above the GFP background staining.

(TIF)

Figure S3 Cell cycle exit after serum withdrawal. Control and

ORC1 deficient fibroblasts or control cells treated with the

indicated siRNA were depleted of serum for the times indicated

then processed for immunofluorescence. G2 phase cells were

detected with antibodies raised against CenPF, mitotic cells with

phospho-Histone H3, active G1 with phospho-Rb and S phase

with BrdU. Both cell populations exited the cell cycle with similar

kinetics.

(TIF)

Figure S4 Cells were induced to enter G0 phase following serum

depletion for 7 days. Serum was then re-added and the fraction of

Origin Licensing Proteins Impact Cilia Formation
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BrdU+ S phase cells monitored at the indicated times. The delay in

S phase entry seen in ORC1 deficient cells is diminished after

starvation for 7 days.

(TIF)

Table S1 The mutations in genes encoding origin licensing

components in the MGS patients. The table describes the

mutations in the MGS patients and some of their clinical features.

(PDF)
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