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Abstract

There is a growing interest in the Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) of microbes,
fungi and plants because they can produce bioactive peptides such as antibiotics. The ability to identify the substrate
specificity of the enzyme’s adenylation (A) and acyl-transferase (AT) domains is essential to rationally deduce or engineer
new products. We here report on a Hidden Markov Model (HMM)-based ensemble method to predict the substrate
specificity at high quality. We collected a new reference set of experimentally validated sequences. An initial classification
based on alignment and Neighbor Joining was performed in line with most of the previously published prediction methods.
We then created and tested single substrate specific HMMs and found that their use improved the correct identification
significantly for A as well as for AT domains. A major advantage of the use of HMMs is that it abolishes the dependency on
multiple sequence alignment and residue selection that is hampering the alignment-based clustering methods. Using our
models we obtained a high prediction quality for the substrate specificity of the A domains similar to two recently
published tools that make use of HMMs or Support Vector Machines (NRPSsp and NRPS predictor2, respectively). Moreover,
replacement of the single substrate specific HMMs by ensembles of models caused a clear increase in prediction quality. We
argue that the superiority of the ensemble over the single model is caused by the way substrate specificity evolves for the
studied systems. It is likely that this also holds true for other protein domains. The ensemble predictor has been
implemented in a simple web-based tool that is available at http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/.
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Introduction

In recent years the Non-Ribosomal Peptide Synthetases

(NRPSs) and PolyKetide Synthases (PKSs) have gained consider-

able interest as they can produce polypeptide- and polyketide-

based secondary metabolites that exhibit important pharmaceu-

tical and biological activities (see e.g. [1–7]). The Synth(et)ases can

be found in a wide variety of bacteria, fungi and plants, and

produce secondary metabolites that range from antibiotics to kill

competitors (like e.g. penicillin and erythromycin), to surfactants to

thrive in a biofilm environment (like e.g. surfactin) (for reviews see

[8–12]). NRPSs and PKSs are large multi-module/domain

proteins (protein-systems). The simplest NRPS module consists

of at least three core domains: an adenylation domain (A) that

selects, activates and loads the substrate (i.e. proteinogenic and

non-proteinogenic amino acids); a thiolation domain (T) -which is

also known as the peptidyl carrier protein- that covalently attaches

the substrate to the synthetase; and finally a condensation domain

(C) that catalyzes peptide bond formation. The three core domains

of the simplest PKS are: an acyl-transferase domain (AT) that

recognizes and loads small carboxylic acid building blocks such as

provided by malonyl-CoA or methylmalonyl-CoA; an acyl-carrier

protein (ACP) domain that resembles the T domain of NRPSs and

retains the building blocks; and a keto-synthase domain (KS) that

builds the polyketide chain via condensation. NRPSs and PKSs

finally have a fourth domain, the thio-esterase domain (TE) that

releases the assembled polypeptide and polyketide chains from the

synth(et)ase. The core domains are organized in functional

modules and multiple modules make up a kind of assembly-line

to construct linear, cyclic or branched secondary metabolites (for a

detailed description of the mechanism we refer to the excellent

reviews by [9,13–20]). In various cases other enzymes act on the

created polypeptide and polyketide chains to tailor the final

product (e.g. [21,22]). These other enzymes are usually associated

to the synth(et)ase complex and their genes are often organized in

the same gene clusters [23].

The structure and activity of the natural products produced by

NRPSs and PKSs are determined by the specific substrates that

are bound by the A and AT domains, respectively. Co-

crystallization of the malonyl-CoA-specific acyl-transferase

[PDB:1MLA] from Escherichia coli fatty acid synthase (FabD) and
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its substrate, enabled the identification of 13 active site residues in

the AT domain [24]. These residues were later proposed, together

with 10 adjacent residues, as the substrate specificity-conferring

residues by [25]. Similarly, the crystal structure of the phenylal-

anine-specific A domain [PDB:1AMU] of gramicidin synthetase A

(GrsA) [26] facilitated the identification of 10 residues that line the

active site pocket of the A domain, and later these were proposed

as a sort of substrate specificity conferring code for the A domain

[27,28].

Most substrate specificity prediction tools that have been

developed are based on the A and AT active site residues. The

tools include: NRPS–PKS [29], PKS/NRPS Analysis [30],

PKSDB [25], NPsearcher [31] and SBSPKS [32]. Other

prediction methods have also focused on the active site, albeit

that there was more variation in the number of residues that was

taken into account. For instance, the NRPS predictor tool that was

developed by [33], and that was later implemented in the

application CLUSEAN [34], based its prediction on 34 residues

in, and close to, the active site of the A domain. The accuracy of

various approaches that were available up to 2010 was analyzed

by [32]. The authors concluded that the NRPS–PKS interface of

their own SBSPKS tool could efficiently predict the substrate

linked to malonate- and methylmalonate-specific AT domains

with high specificity and sensitivity, and that the results were

comparable to those reported by Minowa et al. [35] for substrates

that are less common.

The classification and selection procedures described above rely

on multiple sequence alignment followed by clustering/classifica-

tion through Neighbor-Joining (NJ). Initial attempts to cluster the

A-domains according to substrate specificity using their whole

sequence and the NJ-algorithm were only partly successful [36,37].

In the case of the complete AT domains, the algorithm enabled

the separation of the clusters for the two main substrates; malonyl-

CoA (MC) and methylmalonyl-CoA (MMC). However, identifi-

cation of other substrate clusters appeared far more difficult as

they were ‘caught up’ within the two major clusters [17].

Moreover, Yadav et al. [25] reported that five malonyl-specific

AT domains (including [PDB:1MLA]) did not cluster with the

majority of malonyl-specific AT domains. In another analysis, the

malonyl-specific RapC was found within the MMC clade [38]. As

mentioned before, residue selections have been made to improve

the prediction. For the A domain a selection was made from the

so-called core motifs [36,39,40,41] and then the selection was

further restricted to the active site residues [26,27,28]. Similarly in

the case of the AT domain, the selection was at first restricted to

the active site and some adjacent residues [24,25] and later

extended [31,32].

Although the tools perform well in predicting the substrate

specificity of the AT and A domains for many substrates, for some

substrates they perform less well [31,32]. These substrates include

for instance ethylmalonyl-CoA (EMC) and methoxymalonyl-CoA

(MOMC) which are being classified together with malonyl- and

methylmalonyl-CoA (MC and MMC) in the case of the AT

domains. In addition, the performance of the tools with respect to

new sequences depends critically on multiple sequence alignment

and the correct extraction of active site residues, which makes the

performance very sensitive to the quality of the new alignment. We

decided to evaluate the substrate specificity prediction for the AT

and A domains of PKSs and NRPSs. Similar to what others have

done, we used only AT and A domain sequences related to

experimentally validated substrate specificity. We have created

Hidden Markov Models (HMMs) to reduce the alignment

dependency in case of the allocation of putative substrate

specificities to AT and A domains that have not been experimen-

tally characterized. In particular, the use of these HMMs proved

to be a crucial step in achieving a high prediction accuracy. This

finding corroborates the success of two recent A domain substrate

prediction tools NRPSsp [42] and NRPS predictor2 [43].

Moreover, we found that the quality of the prediction could be

improved further by using ensembles of HMMs.

Materials and Methods

Sequence data
Sequence data from experimentally verified NRPSs and PKSs

of bacteria and fungi were taken from the reference databases

NRPSDB, PKSDB [29] and ASMPKS [44]. Additional sequence

data of experimentally characterized NRPS/PKS systems, as

found via literature searches in Pubmed, were taken from NCBI

[45] [http://www.ncbi.nlm.nih.gov] and UniProt [46] [http://

www.uniprot.org]. The list of sequences and the appropriate

literature references are given in sheet 1 of File S1 and File S2.

The list contained 213 AT domain sequences and 498 A domain

sequences, respectively. In case of the A domains, the dataset that

was recently published by [43] and was provided as supplementary

‘original’ and ‘new’ data (546 sequences), was added. The domain

sequences obtained from [43] were extended on basis of the

protein identifier and the related entries in the UniProt database.

To identify and extract the domain boundaries of the A and AT

core domains, the NRPS-PKS tool [29], the PKS/NRPS Analysis

tool [30] and ASMPKS [44] were used. The combined set of A

domain sequences is given in sheet 2 of File S2 (1044 sequences).

For testing purposes we downloaded the A domain sequence set

provided by [42] [http://www.nrpssp.com] (1546 sequences;

given in sheet 1 of File S3). However, this dataset contained

many sequences for which the function has been inferred on basis

of sequence alone (as can be concluded from the associated

information in the Uniprot database [46]), and it contained a

considerable number of sequences not related to NRPSs but to

enzymes such as D-alanine–poly(phosphoribitol) ligase and

Phenylalanine racemase (see sheet 2 of File S3). Besides, we found

a few verifiable erroneous annotations in the data-set.

Multiple sequence alignment
A multiple alignment of the AT domain sequences was made

using ClustalX [47] and of the A domain sequences using MAFFT

[48] (default settings). The most important feature we used to

judge the usefulness of the alignment was the homogeneity (i.e.

well aligned and low number of gaps) of conserved parts for all

substrate groups, as this feature enhances the comparability of the

substrate specific sequence models. To increase the homogeneity

of the alignment, the extending residues at the N-terminus and/or

C-terminus were removed and the reduced sequences re-aligned.

The procedure was repeated until either extensions or gaps were

absent from the N-terminus and C-terminus. The reduced and

aligned sequences are given in sheet 2 of File S1 and sheet 3 of File

S2. From the final alignments Neighbor-Joining (NJ) trees were

generated using ClustalX [47]. The NJ trees were visualized using

Dendroscope [49] or LOFT [50] and were rooted using the latter

program. The multiple sequence alignments and corresponding

neighbor joining trees can be found in raw format in the

‘Alignment’ and ‘NJtrees’ directories at http://www.cmbi.ru.nl/

bamics/supplementary/Khayattetal_2012_NRPSPKS/.

Selection of substrate specificity related residues
The residues of the aligned AT and A domain sequences were

numbered according to the AT domain of E coli FabD

[PDB:1MLA] [24] and the A domain of GrsA [PDB:1AMU]

Classifying NRPSs and PKSs with Ensembles of HMMs

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e62136



[26], respectively. Then, the conserved residues (100% identity)

were identified within each subset of sequences related to a

particular substrate and these were collected as reduced sequences

in separate files (see the ‘Alignment’ directory at http://www.

cmbi.ru.nl/bamics/supplementary/Khayattetal_2012_NRPSPKS/.).

For reasons of comparison, the previously identified sets of

characteristic residues according to [24,25,28,35] were also

collected in separate reduced sequence files. The following sets of

reduced sequences were considered in our analysis: i) sequences

composed of all positions (residues) that show absolute conservation

for at least one particular substrate, (a) including or (b) excluding all

positions that show conservation for all substrates; ii) sequences

composed of all positions (residues) that show absolute conservation

in at least half of the particular substrates (for the AT-domain). The

residues were extracted using Jalview [51]. Sequence conservation

was visualized using Weblogo [52] [http://weblogo.berkeley.edu/].

The creation of substrate specific Hidden Markov Models
It appeared that both the AT and A domain data-sets contained

many duplicate or near duplicate sequences. To ensure a balanced

coverage of the available sequence space, we removed the (near)

duplicate sequences. In this way a non-redundant set of 167 AT

domain sequences and 571 A domain sequences remained, as

indicated in sheet 2 of File S1 and sheet 3 of File S2. Substrate

specific Hidden Markov Models were created using HMMER

(version 2.3.2) [53] on basis of the alignment of the non-redundant

sets of reduced sequences. In this way 8 substrate specific AT-

domain HMMs and 39 substrate specific A-domain HMMs were

made. We will refer to these models as the single HMMs. To

enhance the predictive value multiple HMMs were generated for

those substrates that were well-represented in the datasets (i.e. 2–4

models for those sequences present at numbers $10 for AT and

$15 for A domains). The division was made on basis of the

observed grouping in the substrate specific NJ trees. We will refer

to the total of these models as an ensemble of HMMs. To estimate

the dependency of the various models on the composing

sequences, a leave one out cross validation was performed. For

every group of sequences a specific HMM was made on basis of all

members minus one, and that sequence was then scored with the

new model. The procedure was repeated until all sequences had

been left out once. The results of the analysis can be found in sheet

3 of File S1 (AT domains) and sheet 5 of File S2 (A domains).

Implementation of the predictive Hidden Markov Models
The HMMs were implemented in a straightforward manner

using Python. The associated web-tool can be found at [http://

www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/]. The tool pro-

vides the opportunity to paste or upload domain sequences and

select the appropriate HMMs to analyze these sequences. To

ensure a proper prediction it is essential to use only the sequence of

the A or AT domain from the complete NRPS or PKS sequence,

respectively. To identify and extract the domain boundaries from

the protein sequence of the complete system we advise to use the

search domain option in either of these tools NRPS–PKS [29],

PKS/NRPS Analysis [30] or ASMPKS [44]. The analysis results

are given in html format and contain the substrate annotation

related to the best scoring HMM together with the associated e-

value and similarity bit score. We observed that in case the bit-

score was below 325 (AT domains) or 625 (A domains) the

prediction became less reliable and therefore these bit-scores were

used as threshold. The HMM profiles for the AT and A substrate

groups were compiled in two separate substrate specific HMM

libraries that can be found in the ‘HMMs’ directory at http://www.

cmbi.ru.nl/bamics/supplementary/Khayattetal_2012_NRPSPKS/. A

representation of the presented workflow can be found in Figure S1.

Results and Discussion

A comprehensive set of AT and A domain sequences was

collected from reference databases and from the literature (see

methods, Figure S1, and sheet 1 of File S1 and File S2). After

removal of duplicate and near-duplicate sequences, whose

presence might bias the analysis, the set included 167 AT and

571 A domain sequences and represented 12 and 58 different

substrates, respectively. The published A- and AT-domain

substrate prediction methods are mostly based on a selection of

catalytic site residues. Therefore, the overall conservation of the

catalytic residues of the AT domain, as defined by [24], and of the

residues constituting the 10 core motifs (A1–A10) of the A domain,

as defined by [54] was determined for the complete set of

sequences (results in Figure 1). Many residues appeared completely

conserved whereas notable variations between groups of substrates

were observed for other residues. Moreover, some of the core

residues showed variability within particular groups of substrates.

Considering the difference in conservation patterns between the

residues, we decided to again evaluate the choice of the residues

that are taken into account for the de novo prediction of substrate

specificity.

Analysis of the acyl-transferase (AT) domains
The NJ tree that was created on basis of the alignment of all 213

initially collected AT domain sequences showed a clear separation

between the sequences related to malonyl-CoA and those related

to methylmalonyl-CoA (Figure S2). In contrast, sequences related

to methoxymalonyl-CoA and ethylmalonyl-CoA did not end up in

Figure 1. Frequency representations of conserved residues in
the AT- and A-domain. A) the active site residues extracted for the
AT domain and B) the 10 core motifs within the A domain. The
representations were made using Weblogo [52] on basis of the multiple
sequence alignment of all domains in the collected dataset and the 13
active site residues identified by [24] (i.e. 11, 63, 90–94, 117, 200, 201,
231, 250, 255) for the AT domain and the 10 core motifs identified by
[54] for the A domain.
doi:10.1371/journal.pone.0062136.g001
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distinct clades. This observation is in line with earlier findings

[17,25,38,55]. The above ‘separation’ problem observed when

using the complete domain sequences has been partly overcome

by limiting the number of aligned residues to the active site

residues [24,25,29,31,32], or to the conserved residues. The latter

were referred to as quantitative evolutionary traces in the method

of [35]. Based on the multiple sequence alignment and residue

selections as reported in literature, new NJ trees were generated

and the separation of the different substrate specificities into

distinct clusters was evaluated. The results are summarized in

columns 3, 4 and 5 of Table 1.

Remarkably, the most restricted set of residues, involving only

those related to catalysis [24], provided as good a separation as the

larger sets used by [35] and [25]. We compared the conservation

of the catalytic residues of the AT domain for every individual

substrate and found that it would be very hard or even impossible

to distinguish between some substrates on basis of these residues

alone (see the sequence logo’s of MMC, EMC and MOMC in

Figure 2). We therefore made two new residue selections by

identifying within the complete multiple sequence alignment all

those residues that were fully conserved within each group of

sequences related to a particular substrate (see methods and Figure

S3). Based on this collection of conserved residues, a NJ tree was

created and the clustering for the various substrates was inspected

(column 6 Table 1). The distinction between the various substrates

appeared not better or worse than that observed for the other sets.

We succeeded in reducing the statistical noise induced by greater

numbers of identical residues in small substrate specific sets of

sequences by limiting the selection of residues to those that were

conserved in at least 3 (out of 7) substrate specific sets of sequences.

By doing so, the resulting NJ tree showed a perfect distinction for 6

of the specific substrates, including MOMC, and this was better

than reported before (Table 1 column 7).

Analysis of the adenylation (A) domains
The NJ algorithm did not suffice to cluster many A domain

related substrate groups in separate clades when a multiple

sequence alignment of the complete set of domain sequences was

used (Figure S4). This observation is in line with the findings of

[27]. Figure 3 depicts the residues of the catalytic site, as defined

by [26], for the various substrates related to the A domain. Similar

to the case of the AT domain, the figure implies that a selection of

only the active site residues of the A domain should provide a

separation into sub-groups for different substrates, but probably

would not be sufficient to predict specificity more precisely. To

compare the predictive potential of the residue sets that have been

proposed in the literature, these sets were extracted from the

complete sequence and a NJ tree was made after their alignment.

However, the NJ algorithm failed to create clear clusters for many

of the A domain related substrate groups (not shown).

Rationale for the Creation of Substrate Specific Hidden
Markov Models (HMMs)

In the early studies of [27,28] on the classification of A domains,

the low number of available A domains of experimentally

Table 1. AT domain classification on basis of the NJ-algorithm for various selected sets of residues.

AT Domain

Substrate
$

Complete
this study

13 residues
Serre et al.

23 residues
Yadav et al.

92 residues
Minowa et al.

165 or 146a*

selected residues 37b* selected residues

MC (92) 1, 0.96, 0.95, 0.98, 0.90, 1,

MMC (83) 1, 1, 1, 1, 0.96, 1,

2MBuC (2) nsc 1 1 nsc 1 1

IBuC (3) 0.66 0.66 0.66 0.66 0.66 1

PC (3) 1 1 1 1 1 1

MOMC (12) nsc nsc nsc nsc nsc 1

EMC (12) nsc nsc nsc nsc nsc nsc

The first column lists the different substrate groups and gives the number of represented sequences between brackets. The values in columns 3, 4 and 5 were calculated
on basis of the residues identified by [24], [25] and [35], as indicated. The two major substrate groups MC (malonyl-CoA) and MMC (methylmalonyl-CoA) were
reasonably well distinguishable in all trees. However, the factual accuracy of the MC and MMC prediction is lower than 1 as all of the ‘minor’ substrate specific AT
sequences fall within the both clusters. Abbreviation: nsc, not in a single cluster.
$ For substrate abbreviations see the legend of Figure 2. The initial complete dataset was used to compose the Table (i.e. including the near duplicate sequences),
excluding the sequences related to BzC (2), 3MbuC (1), AC (1), CH (1), and CP (1).
a* 165 conserved positions (100% identity) in at least one of the substrate groups; 146 conserved positions in case the residues are removed that are conserved
throughout all substrate groups; b* Conserved positions (100% identity) in at least three of the substrate groups (do not include global identical).
doi:10.1371/journal.pone.0062136.t001

Figure 2. Frequency representation of the active site residues
within the AT domain per substrate. The Malonyl CoA (MC) specific
AT domain can be separated from the rest on basis of a clearly distinct
conserved residues (box A) and likewise can the 2-Methylbuteryl-CoA
(2MBuC), the Benzoyl-CoA (BzC), the Isobuteryl-CoA (IBuC) and the
Propionyl-CoA (PC) specific AT domains (box B); For the MMC,
Methylmalonyl-CoA (MMC), the Ethylmalonyl-CoA (EMC) and the
Methoxymalonyl-CoA (MOMC) specific AT domains the conserved
active site residues are almost indistinguishable (box C). The sequence
representations were made using weblogo [52].
doi:10.1371/journal.pone.0062136.g002
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determined substrate specificity obscured the inherent imperfect-

ness of classification by NJ. The imperfect classification predom-

inantly seems to arise from the fact that the precise positioning of

residues within a multiple sequence alignment, which is extremely

important in case conserved residues are to be selected, appeared

very sensitive to the variability within the set of aligned sequences.

To circumvent the positioning problem of single sequences we

decided to create substrate specific Hidden Markov Models, which

are far less sensitive to this phenomenon. Although initially a

multiple sequence alignment is used to create them, the

classification of a new query sequence does not require a priori

alignment. Substrate specific HMMs were created after a multiple-

sequence alignment of the complete set of sequences within the

non-redundant dataset on basis of the aligned sequences related to

a particular substrate (see methods). We used the complete

alignment to create the HMMs to reduce potential noise caused by

small sample sizes and to increase the comparability of the HMM

scores. Then, as a first test, each sequence within the non-

redundant AT and A domain datasets was scored with all eight

profiles in the AT- and thirty nine profiles in the A- substrate

specific HMM libraries, respectively. The scores were compared

and it appeared that in most cases the correct HMM provided the

highest score.

Substrate specific HMM-based classification of AT
Domains

The results of the HMM analysis of the AT domain sequences

are given in sheets 3 and 4 of File S1 and are summarized in

Table 2. The HMMs that were generated on basis of the aligned

reduced domain sequences were tested against the complete

domain sequences. A comparison of the results given in Table 1

and Table 2 makes clear that in the case of the AT domains the

HMM-based approach improved the predictive power significant-

ly with respect to that reported for the NJ-based approach.

When using HMMs for the classification of AT domains, the

data indicate that it is not necessary to make a selection of residues

to achieve an overall high accuracy (i.e. 93% is predicted correctly;

see columns 2-4 in Table 2). In fact, three out of the six false

predictions involved a substrate that lacked a prediction model

and could thus not be appropriately predicted with any of the

schemes. We observed a clear variability in HMM scores for

various sequences with the same substrate specificity (sheet 3 File

S1). This implied that the models included another strong

sequence signature besides that related to the specific substrate.

Given the nature of sequence evolution it is clear that the

additional signature should include the residues that signify the

evolutionary kinship. In fact, when we subdivided the sequences

related to substrates EMC, MC, MMC and MOMC, in 2-4

groups on basis of their evolutionary relationship as derived from

the grouping in the substrate specific NJ trees, and then made

HMMs accordingly (i.e. we made an ensemble of HMMs for those

substrates), we found that the prediction performance further

increased (columns 5-7 in Table 2). To test the sensitivity of the

individual models in the ensemble towards the constituent

sequences we performed a Leave One Out cross validation

(columns 8-10 in Table 2). For the main substrate groups MC and

MMC the cross validation makes clear that the related sequence

models cover the known sequence variability well. Remarkably,

the models for the minor substrate groups, which were based on

fewer sequences, proved either sensitive (i.e. 2MBuC, BzC, EMC,

iBuC and MOMC) or not at all (PC). At the same time, we

observed that the sequences in the latter set were far less divergent.

This actually explains the good cross-validation performance. The

cross validation thus indicates that the models related to the minor

substrates can certainly be improved in case more and diverse

sequences are added. Yet our analysis also implies that at present

the given ensemble of HMMs almost perfectly represents the

currently validated AT domain sequence space.

Figure 3. Frequency representation of the active site residues
within the A domain per substrate. A) The A-domains were
clustered according to common conserved residues as indicated by
black boxes) (see e.g. [33]). B) The newly identified substrates have been
placed on basis of the motif. For proteinogenic amino acids the three-
letter code was used. The non-proteinogenic amino acids are indicated
by the following abbreviations: aad, 2-amino-adipic acid; abu, 2-amino-
butyric acid; allo-thr, allo-threonine; B-ala, beta-alanine; bht, beta-
hydroxy-tyrosine; B-lys, beta-lysine; bmt, (4R)-4[(E)-2-butenyl]-4-methyl-
L-threonine; dab, 2,4-diamino-butyric acid; dhab, 2,3-dehydroaminobu-
tyric acid; dhb, 2,3-dihydroxy-benzoic acid; dhpg = dpg, 3,5-dihydroxy-
phenyl-glycine; dht, dehydro-threonine = dhbu = 2,3-dehydroaminobu-
tyric acid; fN5horn, N5-hydroxyornithine; hpg, 4-hydoxy-phenyl-glycine;
hpg2Cl, 3,5-dichloro-4-hydroxy-L-phenylglycine; iva, isovaline; masp,
methyl-aspartate; mpro, methyl-proline; orn, ornithine; pheac, pheny-
lacetate; pip, pipecolic acid; sal, salicylic acid; sar, sarcosine. The
sequence representations were made using Weblogo [52].
doi:10.1371/journal.pone.0062136.g003
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Substrate specific HMM-based classification of A
Domains

The results of the HMM analysis of the A domains are given in

sheet 4 of File S2 and are summarized in Tables 3 and 4. We

found that the use of whole domain sequence based HMMs

provided an accuracy of prediction that was better than achieved

when using a limited set of selected residues as reported by [28],

[35] and [31] (not shown). The inability to discriminate between

certain substrates based on the supposed active site residues is

reflected in the similarity of some of the sequence logos for the

extracted active site residues that line the substrate binding pocket

of the A domain (see Figure 3). Recently, two other groups have

used HMMs and Support Vector Machines ([42] and [43],

respectively) to diminish the alignment dependence and improve

the prediction quality of the substrate specificity for A domains.

We compared the performance of our single HMMs with the

performance of the related tools NRPSsp [42] and NRPS

predictor 2 [43] using those sequences that were used to construct

the other predictors and that were shared with our dataset (as

indicated in sheet 4 of File S2). In fact, our dataset includes all the

data used to train the latter tool. We found that the recovery of

correct links between sequence and substrate was somewhat higher

using the single HMMs than using the published tools (see

Table 3).

We also observed differences between the three predictors for

both the number of recognized (i.e. covered) sequences and the

number of correctly assigned in the case of various substrates. We

attribute this phenomenon to the way substrate specificity evolves

in NRPSs and PKSs, and the fact that the predictors have been

trained on different sets of sequences. In case the NJ trees that

were constructed on basis of the alignments for the AT as well as

for the A domains (Figure S2 and Figure S4) are taken as

representative for the sequence evolution of NRPSs and PKSs, the

occurrence of the same substrate specificity in different clades of

the tree should be interpreted as the consequence of a

diversification of function between closely related homologous

domains or even orthologous domains so that they acquired the

same function as more distantly related homologous domains (i.e.

the formation of analogs within a set of homologs). Such an

evolutionary path inevitably has a negative effect on the predictive

power of single sequence models in case the residues that were

conserved due to evolutionary kinship outnumber the residues that

have been conserved due to identical substrate specificity. The

difference between these numbers will be especially large in case

only a relatively small number of sequences from particular

evolutionary branches are used to build the sequence models. For

instance, we have based the substrate specific sequence models in

all cases on a limited set of sequences (,5–50). As a consequence,

our models should perform well (i.e. yield high HMM scores) for

evolutionary related sequences and perform less well for sequences

that followed another evolutionary route towards the same

substrate specificity.

Therefore, we also made multiple HMMs to represent single A

domain related substrates, like we did earlier for the AT domains.

Again we found that the ensemble of HMMs clearly out-

performed the single HMMs (i.e. combining a higher coverage

and a higher accuracy). In fact, it is well known that ensemble

methods can be used for improving prediction performance,

provided that the classifiers are independent [56]. We tested the

ensemble on the dataset of 1546 A domain sequences collected by

[42] and found that the percentage of covered sequences dropped

slightly from 96% to 88%, which might indicate that the coverage

of the sequence space by the ensemble HMMs could be improved

by addition of more sequences (see Table 3). The performance was

better than the reported performance of NRPSsp, which was

actually trained on this dataset. Nevertheless, the numbers should

be interpreted with some care as the dataset contained many

sequences for which the link between substrate and experimental

evidence is not traceable. In addition, the set contained a

considerable number of sequences not related to NRPSs but to

enzymes such as D-alanine–poly(phosphoribitol) ligase and Phe-

nylalanine racemase. In fact a substantial number of the sequences

that scored above threshold, and thus reduced the coverage,

related to the alanine-ligase (see sheet 2 of File S3).

Table 2. AT domain classification on basis of HMMs.

single HMMs ensemble of HMMs ensemble of HMMs LOO

Substrate
$ c f at c f at c f at

MC (69) 65 1 3 69 0 0 60 3 6

MMC (63) 63 0 0 63 0 0 62 1 0

2MBuC (2) 2 0 0 2 0 0 0 2 0

BzC (2) 2 0 0 2 0 0 0 1 1

IBuC (3) 3 0 0 3 0 0 2 1 0

EMC (11) 9 2 0 11 0 0 4 7 0

MOMC (10) 8 0 2 9 1 0 6 4 0

PC (3) 3 0 0 3 0 0 3 0 0

Other (4)# 0 3 1 0 3 1

Correct (%) 92.8 3.6 3.6 97.0 2.4 0.6 84.0 11.7 4.3

The first column lists the different substrates and between brackets the number sequences that were analyzed. The Table lists the number of correctly (c, bold) and
falsely (f) classified sequences and the number of sequences that scored above threshold (at, grey and in italics). The values in columns 2, 3 and 4 were derived from the
use of a single HMM per substrate, and the columns 5, 6 and 7 relate to the prediction made using an ensemble of multiple HMMs per substrate. The values in columns
8, 9 and 10 relate to the Leave One Out cross validation.
$ The set contained 167 non redundant sequences. See the legend of Figure 2 for the systematic name of the various substrates.
# The category ‘other’ sequences includes those specific for 3MbuC, AC, CH and CP as only one sequence has been experimentally identified and thus no reliable model
could be made.
doi:10.1371/journal.pone.0062136.t002
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The performance of the ensemble predictor appeared substrate

dependent (data in Table 4). The published tools performed less

well, but predominantly on only a limited number of substrates

(results listed in sheets 4, 6, 7 and 8 of File S2). For instance, the

predictor NRPSsp performed poorly for ala, glu and phe. This is

probably caused by the fact that their training data for ala and phe

contained many enzyme sequences not related to NRPSs and the

glu-related sequences contained a few erroneous annotations (see

sheet 2 of File S3). In the case of NRPS predictor 2, the predictor

lacks a number of sequence models like that related to 2,3-

dehydroaminobutyric acid (dhab/dht) and 2,4-diamino-butyric

acid (dab).

We performed a Leave One Out cross validation to establish the

sensitivity of the various models towards the constituent sequences

(results in sheet 5 of File S2 and summarized in Tables 3 and 4).

We found that the overall performance clearly dropped when

removing a sequence from each model (Table 3). This is indicative

of an imperfect coverage of the total sequence space by the as yet

experimentally validated A domain sequences. We observed that

some substrate models proved rather sensitive to the constituent

sequences whereas others were not, very similar to what we found

with the AT domains (sheet 5 in File S2). In most cases this

difference reflects the divergence in the sequences that constitute

the model. Given the proposed evolutionary path of the A domain

sequences, this kind of sensitivity is actually inevitable. In various

cases there is only a single representative sequence with a

particular substrate specificity among several evolutionary closely

related sequences with a different substrate specificity. The cross

validation makes clear that several models can certainly be

improved in case more and diverse sequences could be added. Yet

our analyses at the same time imply that the given ensemble of

HMMs best represents the currently validated A domain sequence

space.

Implementation
To enable substrate predictions based on the HMMs that we

have used, a simple web tool was implemented. The tool allows a

user to paste or upload a single sequence or a set of sequences and

then to run a particular set of HMMs. The tool requires the

domain sequence as input, which can be obtained by using the

search domain option in either of these tools NRPS–PKS [29],

PKS/NRPS Analysis [30] or and ASMPKS [44]. The ensemble of

HMMs is used to generate a substrate prediction based on the best

scoring model. The implementation and appropriate use is

described in the methods section. The tool can be found at

[http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/].

Conclusions

It has been argued that the accuracy of the substrate specificity

prediction tools for the A and AT domains of NRPS and PKS

systems was mainly limited by the relatively low numbers of

experimentally characterized A and AT domains [32]. Our

current work shows that this is only partially true. Previous

classification efforts were based on the extraction of particular

active site residues [25,27,28,33] and thereby rested on the

assumption that the A and AT domains are all adopting folds and

active site geometry similar to those of the structural models

[PDB:1AMU] and [PDB:1MLA]. However, this is not necessarily

the case [57]. Therefore, it is not per definition straightforward to

identify the correct active site residues from a multiple sequence

alignment only.

The set of sequences that we collected allowed for the creation

of substrate specific HMMs that could resolve the specificity for

Table 3. Quality of A domain substrate specificity predictions using HMMs and SVMs.

data
$

correct false Above threshold coverage Correct of covered

NRPSsp P>K’ 86 7 7

K (77) 90

NRPSpredictor2 R>K’ 85 8 7

K (79) 90

single HMMs K’ 93 4 3

K (88) 95

ensemble HMMs P>K’ 99 1 0.3

R>K’ 96 3 0.7

K’ 97 2 0.6

K 92 4 4 (96) 96

P 85 3 12 (88) 96

LOO 66 13 21 (79) 84

Substrate specificity predictions were made for various sequence data-sets using the published tools NRPSsp [42], NRPSpredictor 2 [43], and our single and ensemble of
HMMs. Column 1 indicates the predictor that was tested and Column 2 the data that was used to test. Columns 3 and 4 provide the percentage of correct and false
predictions below the set threshold, respectively, and column 5 the percentage of predictions that scored above threshold. Column 6 gives the fraction of sequences
from the complete non-redundant data-set that received an annotation. Column 7 provides the fraction of correctly annotated sequences within the set of sequences
that was provided with an annotation.
$ To test the coverage and check the validity of the predictions, the four predictors were applied to the non-redundant reference dataset of experimentally validated
substrate specific A domain sequences collected by us from the reference databases, literature and from [43] (set K = 571 sequences). To compare the performance, the
predictors were applied to those sequences that are shared between data-sets. We found 392 sequences to be shared between the data-set used to train NRPSsp [42]
and our non-redundant set (P>K’), and 405 sequences to be shared between the data-set used to train NRPSpredictor2 [43] and our non-redundant set (R>K’). In this
case, K’ indicates that the sequences related to a substrate for which no model was present in either of the predictors, were left out in the comparison. The ensemble of
HMMs was also applied to the dataset provided by [42] (P). To test the sensitivity of the ensemble models with respect to the removal of constituent sequences a Leave
One Out cross validation was performed (LOO).
doi:10.1371/journal.pone.0062136.t003
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known sets of A and AT domains with higher accuracy. Moreover,

the prediction procedure does not depend on the correct

alignment of the new sequence and selection of particular residues.

The accuracy is mainly limited by the fact that for several

substrates the HMMs are biased as a result of the limited set of

substrate specific input sequences that could be used to create

them. It is therefore to be expected that the power of the approach

will increase when more experimentally characterized sequences

can be incorporated into the models. In addition, we argue that

singular HMMs are not sufficient due to the nature of the

evolutionary path towards substrate specificity and the presence of

homologous analogs. We show that the ensuing classification

problem can be solved by using ensembles of HMMs for the same

substrate. These ensembles can be optimized when the constituent

HMMs are made evolutionary path specific

The ability to identify substrate specificity of the A and AT

domains will not only aid the identification of the final bioactive

peptides and polyketides produced by the NRPSs and PKSs, but

can also help to rationalize product engineering within the cell by

implication of those residues that affect the specificity and those

metabolites whose concentration will affect product formation.

Supporting Information

Figure S1 Representation of the classification work-
flow.

(TIF)

Figure S2 Neighbor Joining tree of the acyl-transferase
domains.

(TIF)

Figure S3 Illustration of the criteria that were applied
for residue selection in the AT domain.

(TIF)

Figure S4 Neighbor Joining tree of the adenylation
domains.

(TIF)

File S1 Substrate prediction of AT domains and related
data. In sheet 1 the annotated AT domain sequences and related

PMID references are given. In sheet 2 the set of reduced and

aligned AT domain sequences are given. The final columns

indicate whether the sequences were included in creating the

substrate specific HMMs. In sheet 3 the results of the HMM and

LOO analysis are given. Sheet 4 summarizes the analysis results.

(XLSX)

File S2 Substrate prediction of A domains and related
data. In sheet 1 the annotated A domain sequences and related

PMID references are given. In sheet 2 the combined set of

validated A domain sequences is given. Duplicate and near-

Table 4. A domain classification with an ensemble of HMMs.

ensemble HMMs LOO

Substrate
$ c f at c f at

aad (10) 10 0 0 9 0 1

abu, iva (17/12)* 15 1 1 8 3 1

ala (46) 45 1 0 26 8 12

b-ala(4) # 4 0 0 0 0 4

arg (7) 7 0 0 2 1 4

asn (20) 20 0 0 13 0 7

asp (15) 15 0 0 9 0 6

bht (6) 6 0 0 5 1 0

bmt (2) *# 2 0 0 0 2 0

cys (27) 26 0 1 19 2 6

dab (10) # 10 0 0 9 0 1

dhab, dht (4) # 4 0 0 4 0 0

dhb, sal (12) 12 0 0 12 0 0

dhpg, dpg (8) 8 0 0 8 0 0

fN5H-orn (4) *# 4 0 0 4 0 0

gln (10) 10 0 0 6 3 1

glu (16) 16 0 0 12 3 1

gly (30) 29 1 0 20 5 5

his (2) *# 2 0 0 0 0 2

horn (3) # 3 0 0 1 1 1

hpg, hpg2Cl (21/15) 21 0 0 12 0 3

hyv-d (3) # 3 0 0 0 0 3

ile (13) 13 0 0 10 3 0

leu (41) 37 4 0 31 7 3

lys (8) 8 0 0 0 0 8

b-lys (3) *# 3 0 0 2 0 1

me-asp (4) *# 4 0 0 4 0 0

orn (12) 12 0 0 6 1 5

phe (15) 14 1 0 4 5 6

phe-ac (3) *# 3 0 0 3 0 0

pip (8) 8 0 0 3 2 3

pro, me-pro (20) 20 0 0 14 1 5

ser (33) 29 3 1 25 4 4

thr, allo-thr (34) 34 0 0 30 2 2

trp (14) 14 0 0 5 2 7

tyr (18) 18 0 0 9 6 3

val (34) 33 1 0 24 4 6

ambiguous (15) 5 4 6 - - -

other (19) *#& 0 4 15 - - -

The first column lists the different substrates and the number of sequences
analyzed (between brackets). The second column lists the number of correctly
classified sequences by our ensemble of HMMs, for the non-redundant
reference dataset of experimentally validated substrate specific A domain
sequences collected from reference databases, literature and from [43] (set
K = 571 sequences). The third column gives the number of sequences that
received a false annotation (f), and the fourth column gives the number of
sequences that scored above treshold (at, grey and numbers in italics). Columns
five, six and seven provide the same information but then related to the Leave
One Out cross validation.
$ See the legend of Figure 3 for the systematic name of the various substrates.
The category ‘other’ includes those substrates that are represented only once in
the domain sequence dataset. They include: 2-oxo-isovaleric-acid, 3-methyl-
glutamate (3-me-glu), 4-propyl-proline (4ppro), 2-amino-9,10-epoxy-8-

Table 4. Cont.

oxodecanoic acid (aeo), alaninol, alle, alpha-hydroxy-isocaproic acid, an, (S)-2-
amino-8-oxodecanoic acid (aoda), l-capreomycidine (cap), d-lysergic acid (d-
lyserg), hydroxyl-asn, hmp-D, LDAP, MeHOval, N-methyl-phenylalanine
(mephe), N-methyl valine (meval), N-(1,1-dimethyl-1-allyl)tryptophan, phenyl-
glycine (phg), s-nmethoxy-tryptophan, (4S)-5,5,5-trichloro-leucine (tcl), valinol
(vol).
*, # and &: For particular substrates no representative models were present in
one or more of the predictors that were compared in Table 3 (*, NRPSsp; #,
NRPS predictor 2; &, ensemble HMMs). Ideally the related sequences should
obtain a score above threshold.
doi:10.1371/journal.pone.0062136.t004
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duplicate sequences were identified and marked. In sheet 3 the

non-redundant set of reduced and aligned AT domain sequences

are given. The final column indicates whether the sequences were

included in creating the substrate specific HMMs. In sheet 4 the

results of the HMM analysis are given and in sheet 5 the results of

the LOO cross validation. Sheet 6 summarizes the analysis results

for the non redundant data-set. Sheets 7 and 8 summarize the

analysis results for the non-redundant data that were used to

construct the predictors and that were shared.

(XLSX)

File S3 Substrate prediction of A domains for dataset
taken from Uniprot. In sheet 1 the annotated sequence data as

provided by [42] [http://www.nrpssp.com] are given. In sheet 2

the results of the HMM analysis are given. The annotation data

related to supposedly wrong predictions and predictions below

threshold were looked up and evaluated. Sheet 3 summarizes the

analysis results. Sheet 4 provides an overview of the sequences that

were present in both the non redundant data-set as well as the

data-set from [42].

(XLSX)
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43. Röttig M, Medema MH, Blin K, Weber T, Rausch C, et al. (2011)

NRPSpredictor2--a web server for predicting NRPS adenylation domain

specificity. Nucleic Acids Res 39: W362–367.

44. Tae H, Kong EB, Park K (2007) ASMPKS: an analysis system for modular

polyketide synthases. BMC Bioinformatics 8: 327.

45. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, et al. (2012)

GenBank. Nucleic Acids Res 40: D48–53.

46. the-Uniprot-Consortium (2012) Reorganizing the protein space at the Universal

Protein Resource (UniProt). Nucleic Acids Res 40: D71–D75

47. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple

sequence alignment with Clustal X. Trends Biochem Sci 23: 403–405.

48. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in

accuracy of multiple sequence alignment. Nucleic Acids Res 33: 511–518.

49. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, et al. (2007)

Dendroscope: An interactive viewer for large phylogenetic trees. BMC

Bioinformatics 8: 460.

50. van der Heijden RT, Snel B, van Noort V, Huynen MA (2007) Orthology

prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinfor-
matics 8: 83.

51. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment

editor. Bioinformatics 20: 426–427.
52. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence

logo generator. Genome Res 14: 1188–1190.
53. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.

54. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular Peptide Synthetases

Involved in Nonribosomal Peptide Synthesis. Chem Rev 97: 2651–2674.
55. Eustaquio AS, McGlinchey RP, Liu Y, Hazzard C, Beer LL, et al. (2009)

Biosynthesis of the salinosporamide A polyketide synthase substrate chlor-
oethylmalonyl-coenzyme A from S-adenosyl-L-methionine. Proc Natl Acad

Sci U S A 106: 12295–12300.
56. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33: 1–39.

57. Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide

synthetase multi-enzymes. Microbiology 150: 1629–1636.

Classifying NRPSs and PKSs with Ensembles of HMMs

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e62136


