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To obtain reliable measures researchers prefer multiple-item questionnaires rather 

than single-item tests. Multiple-item questionnaires may be costly however and time-

consuming for participants to complete. They therefore frequently administer two-

item measures, the reliability of which is commonly assessed by computing a 

reliability coefficient. There is some disagreement, however, what the most 

appropriate indicator of scale reliability is when a measure is composed of two items. 

The most frequently reported reliability statistic for multiple-item scales is 

Cronbach’s coefficient alpha and many researchers report this coefficient for their 

two-item measure 1,2,3,4. Others however claim that coefficient alpha is inappropriate 

and meaningless for two-item scales. Instead, they recommend using the Pearson 

correlation coefficient as a measure of reliability 5,6,7,8. Still others argue that the inter-

item correlation equals the split-half reliability estimate for the two-item measure and 

they advocate the use of the Spearman-Brown formula to estimate the reliability of 

the total scale 9. As these recommendations are reported without elaborating, there is 

considerable confusion among end users as to the best reliability coefficient for two-

item measures. This note aims to clarify the issue. 

It is important to emphasize at the outset that it is not our intention in this 

paper to promote the use of two-item scales. Quite the contrary, having only two 

items to identify an underlying construct has been recognized as problematic for some 

time and we support the claim that using more items is better 10,11,12. The use of 

multiple, heterogeneous indicators enhances construct validity in the sense that it 
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increases the likelihood of adequately identifying the construct of interest. Also, 

assessments used for individual diagnosis, tracking or admission purposes that involve 

high-stakes decision making require ample information about the individual and this 

necessarily implies the application of long tests or inventories 12. However, in large-

scale health surveys for example, resource and survey time constraints often mean 

that only a limited number of items are available to assess a particular construct and 

it is not uncommon to find questionnaires having no more than two indicators to 

gauge a particular self-assessment. Further, it is a common situation facing 

researchers that poor quality items have to be removed from a limited item pool, 

resulting in scales with a small number of items, occasionally two. Our concern is 

how to best estimate reliability in this actual practice setting. We assume in our 

discussion that the available data are such that it is justified to calculate a reliability 

estimate. Hence we ignore empirical issues such as nonlinear relationships, notoriously 

non-normal distributions, small sample sizes and other complications that prohibit 

meaningful reliability calculation and inference.  

 For a reliability coefficient to accurately reflect the true reliability of a two-

item scale, the observations have to meet particular requirements. Classical test 

theory summarizes these requirements in measurement models 13,14. We briefly discuss 

these models and subsequently present data examples that meet their assumptions. 

This procedure allows us to evaluate the appropriateness of the reliability estimates 

for two-item scales. The results we report should be useful to researchers, not in the 

least because the issue frequently turns up in reviewers’ comments to submitted 

journal papers 9. 

 

Measures 

According to classical test theory, the observed score (y ) on an item is equal to the 

sum of a true score (τ ) and a measurement error (ε ). If the measure is unbiased, 

the expected value of the error is zero (i.e., ( ) 0E ε = ). If we have a summated two-

item scale and 
i
y  is the observed score on item i  and Y  

is the scale score, then  

 

1 2 1 1 2 2
( ) ( ),Y y y τ ε τ ε= + = + + +
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where it is assumed that 1 2
Cov( , ) Cov( , ) 0,

i
ε ε τ ε= =  meaning, respectively, 

that the errors are independent across items and that the true score and the errors 

are also uncorrelated. If 1
τ  and 2

τ
 
are measures of the same underlying true score, 

then the only difference between the two items is a matter of scaling or item 

difficulty. Hence we can think of a single true score τ  that is the same for the two 

items but where τ
 
is multiplied by different constants 

i
λ
 
for item 1 and item 2, or 

where different constants 
i
s
 
are being added to .τ  We therefore have 

 

1 1 1 2 2 2
and  .s sτ λ τ τ λ τ= + = +   

 

Such transformations to the true score obviously result in 1
τ
 
being unequal to 

2
τ
 
even though they are measures of the same true score ,τ  which is imperfectly 

measured only as a result of measurement error. Together, true score and 

measurement error, possibly subject to some transformation, constitute a 

measurement model. The major ones in test theory include parallel, (essentially) tau-

equivalent, and congeneric measures 13,14.  

The measures comprising a two-item scale are strictly parallel if 1 2
τ τ=  and 

1 2
Var( ) Var( ).ε ε=  These conditions imply that the amount of variation in the 

observed item score that is determined by the true score is the same for the two 

items and, additionally, that the expected values of the two items are equivalent. The 

assumption of tau-equivalence also implies that each person has a constant true score 

over items but the measurement error variances may vary across items, i.e., 

1 2
Var( ) Var( )ε ε≠ . Essentially tau-equivalence holds if each person’s true score for 

item 1 differs by an additive constant from the true score for item 2 (i.e., 1 2
s s≠ ). It 

implies that whereas the true scores differ across items, true-score variance is 

constant. The error variances however differ. Finally, congeneric measures assume 

that for each person the true score may vary across items but there is an additive 

and a multiplicative constant that relates the true scores across any two items. 

Neither true-score nor error variances need to be equal. Hence the congeneric case 

implies that 1 2
λ λ≠  and that 1 2

Var( ) Var( )ε ε≠ . 
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Reliability estimates  

To evaluate the implications for reliability, we present an example for each of the 

measurement models. The observed score for each of the two items 
1
y
 
and 

2
y
 
is the 

sum of a true score, possibly subject to some linear transformation (
i
λ ), and an error 

term, possibly multiplied by some factor (
i

ελ ) but with an expected value of zero. 

The scale score Y  is equal to their unweighted sum. In our example of parallel 

measures we assume that the observed item score is .8
i
λ =  times the true score, 

with Var( ) 1,
i
τ =  and we multiplied the error by 

21 .8 .6.
i

ελ = − =  This still 

implies that 1 2
τ τ=  and that 1 2

Var( ) Var( ).ε ε=
 
The summary statistics and the 

reliability calculations are presented in Table 1.  

 

Table 1 about here 

 

 As can be seen in the top part of the table, the means and the variances of the 

parallel items are the same. If we square the correlation between the true score and 

the scale score ( .883,
Y
r
τ
=  so 

2 .780)
Y
r
τ
= , we obtain the true reliability that is 

identical to the calculation of Cronbach’s coefficient alpha 1 2
( .780).

y y
α =  This 

finding is consistent with the definition of reliability as the proportion of the variance 

in the observed scale score that is explained by variation in the true score. The 

Pearson correlation between 1
y
 
and 2

y
 1 2
( .640)
y y
r =  is seen to be lower than the 

reliability of the two-item scale. The coefficient equals the squared correlation 

between the true score and a single item score and it thus represents the amount of 

variation in a single item that is determined by the true score. Hence the Pearson 

correlation is not an adequate measure of the reliability of a two-item scale. Rather, 

one can think of it as representing the reliability of a one-item test.  

If two items are parallel, the inter-item correlation represents the correlation 

between one half of the test with the other half, i.e., the split-half reliability of the 

scale 9. Given this correlation, we may easily convert a split-half reliability into a 

reliability that has the coefficient alpha interpretation using the Spearman-Brown 

formula, given in Table 1 
1 2

( .780)
y y
ρ = . For two-item scales this estimate is 

equivalent to standardized coefficient alpha based on standardized items. It is not 

true however, as some authors have suggested, that for two-item scales the 

Spearman-Brown coefficient is the equivalent of coefficient alpha 15. This is only true 
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if 1 2
Var( ) Var( )ε ε= , as is the case if the items are parallel in the true score sense of 

parallel measures. 

When measures are tau-equivalent, then 1 2
τ τ=

 
but the assumption that 

1 2
Var( ) Var( )ε ε=  is relaxed. To make the error variances differ, the error terms 

were multiplied by different constants. As can be seen in Table 1, the variances of 

the items are no longer identical. However, the squared correlation between the true 

score and the scale score 
2( .850)
Y
r
τ
=  again equals coefficient alpha 1 2

( .850).
y y
α =  

Similar results go for essentially tau-equivalent measures. The inclusion of an additive 

constant affects the item means but it is irrelevant for their variances and 

covariances. As reliability is a variance-accounted-for statistic, it is unaffected by 

unequal additive constants.  

Coefficient alpha is an estimate of the reliability of a sum of parallel or 

(essentially) tau-equivalent measures 14. Hence it assumes that the two items measure 

the same construct on the same scale, with the only variance unique to an item being 

completely comprised of measurement error. The implication of this restrictive 

assumption may be gauged by examining the results for congeneric measures, that 

relax both the assumption that 1 2
τ τ=  and that 1 2

Var( ) Var( ).ε ε=  Table 1 

presents two examples. The results were obtained by multiplying both the true score 

and the error terms by different constants.  

 The first example shows that for congeneric measures coefficient alpha 

1 2
( .441)

y y
α =  may be substantially smaller than the squared correlation between the 

true score and the scale score 
2( .690)
Y
r
τ
= . That is, coefficient alpha is a lower-

bound estimate that always underestimates the true reliability of a scale when 

measures are congeneric 14,16,17. For a two-item scale the Spearman-Brown coefficient is 

always larger than coefficient alpha (See Table 1), except for the case when

1 2
Var( ) Var( )ε ε= . The Spearman-Brown formula assumes that the split-halves are 

parallel measures. If this assumption is violated the formula does not hold and the 

coefficient may either underestimate (Table 1: congeneric example 1) or overestimate 

(example 2) the true reliability of the composite scale. 

The bias of the coefficient is the difference between the true reliability and the 

estimate obtained by using either the Cronbach’s alpha or the Spearman-Brown 

formula. To examine the biases for both tau-equivalent and congeneric measures, we 

multiplied the true score and the error terms by 1.6 × 109 different values for 
i
λ  and 
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i

ελ . The values were obtained by generating all possible combinations of 1 2 1
, , ελ λ λ  

and 
2

ελ , each of which is equidistantly spaced in the interval [0,1], a distance .005 

apart. For tau-equivalent measures 1 2
 λ λ= .  

 

Figure 1 about here 

 

Figure 1 displays the relationships between the mean and the standard 

deviation of the bias and the two-item Pearson correlation. The graph and the bias 

formula below the graph indicate that coefficient alpha is unbiased when measures 

are at least tau-equivalent, hence if 1 2
 λ λ= . The Spearman-Brown coefficient is 

found on average to slightly overestimate the true reliability if the two-item scale has 

tau-equivalent items. The same figure also shows that if items are congeneric, 

coefficient alpha tends to have a much larger bias than the Spearman-Brown 

statistic. Also, whereas the Spearman-Brown coefficient becomes progressively more 

precise and, by and large, more unbiased as the correlation between the two 

congeneric items increases, the underestimation of coefficient alpha remains 

substantial even if the inter-item relationship is strong.  

Hence we have the seemingly contradictory result that the coefficient with the 

strongest assumptions performs better than the coefficient with more relaxed 

assumptions if the assumptions in question are violated. This apparent paradox is 

reconciled by the observation that coefficient alpha is a lower bound of the true 

reliability and that, in the two-item case, the Spearman-Brown estimate is always 

greater than or equal to alpha. The underestimation by coefficient alpha is, on 

average, larger than the misestimation by the Spearman-Brown statistic. We may 

therefore conclude that, as the conditions of essentially tau-equivalence typically fail 

to fit actual data encountered in practice, the Spearman-Brown formula is a more 

appropriate reliability coefficient to report for a two-item scale. 

Given the inter-item Pearson correlation the Spearman-Brown reliability 

coefficient is easy to calculate by hand using 1 2 1 2 1 2
2 / (1 ).

y y y y y y
r rρ = +  For two-item 

scales, the Spearman-Brown statistic may also be expressed as  

 

1 2 1 2

1 2

1 2 1 2

1 / 1 1 / ,
(1 ) (1 )

y y y y

y y

y y y y

r r

r r
ρ

     = + +     − −      
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where the term 
1 2 1 2
/ (1 )

y y y y
r r−  represents a ratio of the proportion of the 

variance in a single item explained by the true score (i.e., the individual item’s 

reliability) to the proportion unexplained, turning the Spearman-Brown coefficient 

into an aggregate measure of such information. This representation of 
1 2y y
ρ

 
is 

equivalent to the Hancock-Mueller reliability coefficient H  for a two-item scale, 

under the restriction that the factor loadings of the two items are constrained to be 

equal (i.e., tau-equivalence constraint), implying that the squared standardized factor 

loadings equal the Pearson correlation 18. Under the assumption of a tau-equivalent 

pair of two items, the largest eigenvalue is simply 1 2
1

y y
r+  and the item’s variance 

explained by the common factor thus equals 1 2
(1 )/ 2

y y
r+ . It is important 

mentioning in this context that without equality constraint the underlying construct 

is not properly identified in factor analysis such that a unique factor solution cannot 

be recovered. Constraining the loadings of the two items to be equal is justified only 

if the assumption of tau-equivalence is satisfied. Unfortunately, there is no way to 

test this assumption with only two items, as there are too few observed covariances. 

What is equally stringent for a two-item scale is the classical test theory 

assumption that the items are locally independent. The principle of local 

independence means that there should not be any correlation between the items after 

the effect of the underlying construct is partialled out, i.e., the correlation between 

the residuals should be zero 13,19. In other words, the items should only be correlated 

through the construct the scale is measuring. An example of local dependence arises 

when two items have highly similar item wordings. Participants may respond to the 

second item in the same way as to the first item without regard to the underlying 

construct. That is, their responses are linked for reasons beyond a common construct 

and influenced by a specific factor having little to do with the latent factor of 

interest. Local dependence must be guarded against because its occurrence inflates 

the reliability estimates and it may thus give a fake impression of the quality of the 

scale.  

We know of no statistical procedure for detecting violation of the local 

independence assumption if the scale has only two items. Violation arises primarily 

from two items that share variance even after extracting a common factor. For a pair 

of two items, however, one single factor completely accounts for the inter-item 

covariance. Hence the items are necessarily statistically independent once the 
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common factor has been extracted from the observed covariance. This does not imply 

that the items are locally independent however. It only means that is not possible to 

test this assumption for a scale with two items. This is yet another issue that argues 

against the use of two-item scales.  

Finally, the relationship between bias and the Pearson correlation visualized in 

Figure 1 should not be taken to mean that it is desirable to use items with as strong 

as possible association. An increase in correlation between two items may be 

accompanied by a decrease in content validity, i.e., the extent to which a construct is 

represented by the items. Items should be univocal, that is, measure one and only one 

thing that completely accounts for their covariation, and as heterogeneous as possible 

within the limits of the definition of what one is trying to measure rather than 

maximum homogeneous in the statistical sense.  

 

Conclusion 

The Pearson correlation is not an adequate measure of the reliability of a two-item 

scale. Rather, one may call that the reliability of a one-item test. Cronbach’s alpha is 

an accurate estimate of reliability under rather restrictive assumptions. As these 

conditions are typically too much to expect from a composite scale, coefficient alpha 

almost always underestimates true reliability, sometimes rather substantially 14,16,17. 

Obviously, the same goes for statistics that are the equivalent of coefficient alpha for 

two-item scales such as Guttman’s lambda-2. Although they are often close in size, 

for two-item measures the Spearman-Brown coefficient is never lower than coefficient 

alpha and almost always higher. It is also on average less biased, especially if the 

correlation between the items is relatively strong. Hence the most appropriate 

reliability coefficient for a two-item scale is the Spearman-Brown statistic that 

together with standardized coefficient alpha, its equivalent for two-item measures, is 

offered by software such as SPSS, SAS and R.  

 To avoid any misinterpretation, we emphasize again that it would be 

inappropriate to cite this study as a justification for using two-item scales. True-score 

theory indicates that, all other things being equal, more items lead to better 

construct representation and the primary way to make measures more reliable is to 

increase the number of items 10,12. If, however, research design or off-design 

circumstances dictate that the scale has only two most likely congeneric items, then 

it is best to report the Spearman-Brown reliability estimate.   
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Table 1 Measures and calculation of reliability for two-item scale  

Measure Item scores ( )
i

E y
 

Var( )
i
y

 1 2
Cov( , )y y

 
Pearson 

 

1 2y y
r

Cronbach 

1 2y y
α

 

Spearman-Brown 

1 2y y
ρ

 

True reliability 

2

Y
r
τ  

Parallel 
1 1
.8 .6y τ ε= +

 
0 1 .640 .640 .780 .780 .780 

 
2 2
.8 .6y τ ε= +

 
0 1      

         

Tau-equivalent 
1 1
.8 .6y τ ε= +

 
0 1 .640 .749 .850 .857 .850 

 
2 2
.8 .3y τ ε= +

 
0 .730      

         

Essentially 
1 1
.8 .6 1y τ ε= + +

 
1 1 .640 .749 .850 .857 .850 

tau-equivalent 
2 2
.8 .3y τ ε= +

 
0 .730      

         

Congeneric 
1 1
.8 .6y τ ε= +

 
0 1 .160 .444 .441 .615 .690 

 
2 2
.2 .3y τ ε= +

 
0 .130      

         

 
1 1
.8 .6y τ ε= +

 
0 1 .480 .716 .797 .834 .813 

 
2 2
.6 .3y τ ε= +

 
0 .450      

         

 
1 2

Y y y= +
 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 21 2

Cov( ) 4Cov( ) 2

Var( ) Var( ) 2Cov( ) 1Var( ) Var( )

y y

y y y y y y

y y

y y y y r
r

y y y y ry y
α ρ= = =

+ + +×

 

1 2 1 2

1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2

Substituting into gives

As

(arithmeticmean) (geometricmean)

4Cov( ) Var( ) Var( )
Var( ) Var( )

22 Var( ) Var( ) 2Cov( )

y y y y

y y y y y y

r

y y y y
y y

y y y y

ρ

ρ ρ α
+

= ≥ × → ≥
× +

 



 

 

Figure 1 Mean and standard deviation of the bias of Cronbach’s coefficient alpha and the Spearman-Brown coefficient by Pearson correlation 

for tau-equivalent (dashed lines) and congeneric (solid lines) items 
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1 2y y
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1 2y y
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 2

1 2

1 2

1 2 1 2

( )
bias

Var( ) Var( ) 2Cov( )y y y y y y

λ λ
α

− −
=

+ +
 

 2

1 2

1 2 1 2 1 2

1 2 1 2

( )
bias ( )

Var( ) Var( ) 2Cov( )y y y y y yy y y y

λ λ
ρ ρ α

− −
= + −

+ +

 

 

1 2y y
ρ

ρ

1 2y y
α

 

1 2y y
ρ

 

1 2y y
α

 

1 2y y
ρ

 

1 2y y
α

 

 1 2y y
ρ

 

1 2y y
α


