
Advanced Transport Satellite Protocol
Muhammad Muhammad, Firat Kasmis and Tomaso De Cola

German Aerospace Center (DLR)
Institute of Communications and Navigation

82234, Wessling, Germany
Email: {Muhammad.Muhammad, Firat.Kasmis, Tomaso.DeCola}@dlr.de

Abstract—Mitigation of Transmission Control Protocol (TCP)
performance degradation over satellite has been extensively
studied over the last two decades by the scientific community,
which has come up with a large set of protocol and architec-
ture solutions. This paper proposes a novel end-to-end (E2E)
transport layer protocol, namely Advanced Transport Satellite
Protocol (ATSP), which is built around consolidated control
theory concepts already infused in Active Queue Management
(AQM) control schemes. ATSP exploits the knowledge of the
bandwidth allocated to each terminal, as available from the
satellite network operator. Besides, the satellite network property
of being completely under control allows the joint collaboration
of sender, receiver and routers in order to acquire a complete
knowledge of the network status and eventually optimize the
overall performance. The performance analysis shows that ATSP
achieves a fair bandwidth share for all the satellite users and
outperforms TCP Hybla, which is optimized for satellite links,
in terms of throughput.

I. INTRODUCTION

Transmission Control Protocol (TCP) [1] performance
degradation over satellite links has been extensively studied by
the scientific community over the last two decades. The main
limitations of TCP reside in the congestion control mechanism
therein implemented which does not allow the full satellite
bandwidth exploitation because of the large bandwidth-delay
product (BDP). Besides, TCP interprets segment losses as con-
gestion signal, thus forcing the transmission rate to be reduced
by halving the congestion window. In order to cope with
these performance limiting factors, the scientific community
has exhaustively studied the dynamics of TCP over satellite
links and finally proposed a number of solutions, which aimed
at improving the throughput attained on satellite links. To
this end, several TCP variants like TCP Hybla [2] and TCP
FAST [3] have been proposed to improve the performance of
TCP in the presence of long delays and non-negligible link er-
ror ratios. Additionally, Satellite Transport Protocol (STP) [4]
is another transport protocol that was designed to perform well
over satellite links. Furthermore, the study of specific network
architecture was also carried out in order to keep the protocol
stack of end-users unchanged and to exploit the advantages
of enhanced TCP versions over satellite links. This concept
opened the door to the study of Performance Enhancing Prox-
ies (PEPs) [5], possibly implemented at different layers of the
protocol stack, from the data-link up to the application layer.
Particularly promising is the concept of connection-splitting,
which allows optimizing the performance of the transport layer
protocol over the satellite link by ”splitting” the native TCP

connection in the different network segments, allowing to use
a specialized transport protocol over the satellite portion.

In spite of the great effort done by the scientific community
in this field, no clear consensus on the most appropriate
transport layer solution to be adopted has been reached yet.
As a consequence, some properties of satellite networks have
not been completely explored or taken into consideration in
the definition of new TCP variants, thus opening the door
to additional investigations and, ultimately, to the design of
novel transport protocols. In particular, it is remarkable that,
unlike terrestrial domains, satellite networks are a closed
environment, controlled by the satellite network operator. As
such, it is possible to use optimized protocols throughout the
whole satellite network, by taking advantage of the status of
the overall network, as available from the network operator.
In other words, it is possible for satellite terminals, gateways,
and end-users to jointly collaborate to optimize the overall data
communication performance. To do this, it is feasible to exploit
the knowledge about the bandwidth allocated to each satellite
terminal and to tune the transmission rate at the transport layer
based on the network congestion status computed by the other
involved network entities. This can be achieved by leveraging
on the control theory concepts already successfully applied to
Active Queue Management (AQM) schemes and exploit the
output of these queue management techniques to adaptively
tune the dynamics of the transport layer protocol.

In this light, this paper proposes a novel transport protocol
for satellite, called Advanced Transport Satellite Protocol
(ATSP), whose building blocks are distributed amongst the
network entities (sender, receiver, and router). The router
implements an AQM strategy to mark packets upon immi-
nent congestion detection; in turn, the receiver computes the
network congestion status based on the number of received
packets marked by the router. Finally, the sender, upon network
congestion notification, tunes the rate-based mechanism to
inject new packets into the network to avoid congestion losses.
As a consequence, the sender is able to distinguish packet
losses either due to congestion or to link errors and retransmit
the missed packets without having to reduce the transmission
rate, as it occurs in TCP implementations.

The work in this paper is organized as follows. In the
next Section, we will present an overview about the related
work in this research area. Section III will thoroughly clarify
ATSP and the idea behind its operation. Simulation results
and discussions will follow in Section IV. Finally, we will

Globecom 2012 - Symposium on Selected Areas in Communications

978-1-4673-0921-9/12/$31.00 ©2012 IEEE 3323

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/18460683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

conclude in Section V.

II. RELATED WORK

The study of TCP enhancements or design of new transport
protocols has been extensively documented in the scientific
literature, with particular attention to the possible counter-
measures to be taken to mitigate the effect of link errors
in satellite/wireless environments. In particular, the overall
TCP limitations and possible mitigation in satellite scenarios
are illustrated in [6] and [7]. Finally, an exhaustive survey
about the main congestion control alternatives to TCP (e.g.,
Westwood, Hybla, etc.) worked out so far is available in [8].

On the other hand, congestion detection and avoidance have
been thoroughly studied by proposing solutions implemented
mostly at the network layer, building on the main concepts of
control system theory. Actually, most of the network routers
employ drop-tail method [9] as a simple queue management
algorithm where all incoming datagrams are dropped once the
queue is filled to its maximum capacity. The most critical
problem is the global synchronization for all TCP streams
passing through this queue, which forces all TCP connections
to increase and decrease their rates simultaneously. Thus, the
queues at the router will either overflow and therefore packets
are dropped or be underutilized.

AQM mechanisms, aimed at controlling the rate of data
packets injected into a network, have been studied and
developed to avoid network congestion by monitoring the
occupancy of queue buffers implemented at the network
layer. Early versions of AQM algorithms, like Random Early
Detection (RED) [10], address the problems of drop-tail by
monitoring the average length of the queue and randomly
dropping packets once this average exceeds a certain threshold,
which occurs much before the buffer is full. Later on, the
introduction of Explicit Congestion Notification (ECN) [11]
allowed AQM algorithms to randomly mark (instead of drop)
the Internet Protocol (IP) datagrams as a sign of congestion.
Therefore, senders react to the marked packets by reducing
their rates, i.e., as if congestion had occurred. In particu-
lar, [12] surveys the most attractive AQM techniques, giving
also some insights about general congestion control concepts
being applied to the Internet. As far as RED concepts are
concerned, [13] provides an accurate analysis of the stability
implications in TCP/IP networks, whereas the use of ECN
concepts for protocol design is addressed in [14]. Cross-layer
optimization and interaction between transport and network
layer are instead discussed in [15]. Finally, the study of more
advanced AQM schemes based on robust controller design is
given in [16].

Although AQM techniques aid in minimizing the queues
length at the routers and thus avoid buffer overflow, they
require complex configuration. Studies [17]–[19] show that
setting the parameters of these methods, especially for RED,
is quite complex and usually done for a specific network setup.

To the best of the authors’ knowledge, the benefits of AQM
schemes and their interaction with optimized versions of TCP
for satellite networks have been only partially explored. Hence,

the main contribution of this paper is to propose a novel
transport protocol able to exploit the satellite link bandwidth,
by taking advantage of the rate allocation knowledge available
from the network operator and the congestion network status
information provided by an AQM strategy implemented in the
router.

III. ADVANCED TRANSPORT SATELLITE PROTOCOL

ATSP is tailored to operate over satellite links. This type
of communication channels is characterized by the high bit
error rate (BER) (throughout this work we will use the packet
erasure rate (PER)), long round-trip time (RTT) and low
bandwidth.

The corner stone of ATSP design is the knowledge of
the maximum transmission rate that a sender can use. This
information is available in satellite communications, because
users have contracts for the maximum allowed bandwidth with
the satellite operators. This permits an ATSP sender to faster
utilize the expensive link bandwidth that was paid for.

Additionally, the original joint collaboration among the
different network units (sender, router, and receiver) within an
ATSP system allows a better estimation of the network status
to perform rate control, based on information evaluated at the
destination. The router in our system should be able to mark
packets using the ECN field. These congestion notification
marked packets are counted, in an interval, at the destination
(which plays an active role within an ATSP system) and a
congestion rate is estimated and fed to the sender in addition
to the lost packets, if any. As a result, the source will reset
its rate proportionally to the maximum allowed value and
send the lost packets with the new ones. Moreover, the sender
will increase its rate, for every RTT, based on the cumulative
congestion information and the maximum transmission rate.
In the following subsections, we will present in detail the
functionality of each entity within an ATSP system.

A. Router
The router functionalities will be implemented in a satellite

gateway for ATSP, where all the incoming traffic is directed
to the bottleneck of the system, the satellite link. This gateway
shall implement an AQM algorithm and have a limited queue
size. The role of the AQM mechanism in the ATSP system is
vital, since it performs the strategy of marking packets based
on the way it foresees and is willing to control congestion.

As mentioned earlier, configuring RED parameters is usu-
ally very complex. Therefore, this work considers using the
Proportional Integrator (PI) controller as an AQM mechanism
to target a referenced queue size at the satellite gateway.
Studies like [20], [21] and [22] have shown that PI controllers
outperform RED mechanisms and they are easier to configure,
because of their limited number of parameters. Interested
readers are referred to [21] for a better understanding of the
PI algorithm.

The PI controller has two main parameters, namely, the
proportional gain Kp and the integral gain Ki. Additionally,
there is the sampling time T .

3324

Knowing the reference queue length qref (i.e., the setpoint of
the PI controller) that the router should maintain, the queueing
time for a packet in the router is d = qref

C , where C is the
capacity of the bottleneck link. Therefore, in order to process
all the packets, the sampling time is set to T = d

qref
= 1

C .
Further, to configure the Kp and the Ki parameters, we

use the Integrated-Time-Squared-Error method (from [23]) in
order to define a performance index:

J(Kp,Ki) =

∫ T

t=0
t · e2(t,Kp,Ki) dt, (1)

where t · e(t,Kp,Ki) is the weighted error of the actual
and the reference queue length. Finally, what is desired is
a lower performance index J , because this leads to a stable
performance and to a close to setpoint output of the PI
controller.

B. Receiver

An ATSP receiver plays a significant role in congestion
and rate control, since it does the measurements and counts
congestion notifications. It also controls the dynamics to set
these values. As a result, an ATSP receiver is controlled by
two variables, namely α and β:

• α is the number of packets that forces the receiver to
transmit the measured congestion rate ρ. α determines
the delay of the congestion notification generation;

• β is the amount of increase in the congestion rate when
receiving a marked packet from the AQM. β should
be very small to avoid a drastic drop in the sender’s
transmission window.

For our implementation we set α = 20 and β = 10−3

empirically. ρ is computed at the receiver side using:

ρk,i = ρk,i−1 + ζi · β, (2)

where ζi is the amount of the marked packets in the i − th
interval of α packets in the k − th RTT-cycle and ρk,0 =
0. Additionally, the destination informs the sender about the
lost/dropped packets in every sent Selective Acknowledgment
(SACK), which is also used for congestion notification, i.e.
every α packets.

C. Sender

An ATSP sender increases and decreases its transmission
rate based on the congestion status of the network that is
signaled by the receiver. This is done using four variables:

• w
.
= transmission window. It maintains the number of

outgoing packets per RTT;
• Λ is the accumulated congestion rate, within an RTT-

cycle;
• Θ is the last measured RTT;
• Wmax

.
= maximum transmission window size, which is

related to the maximum transmission rate, is set to the
BDP of the satellite link and determines the maximum
value of w an ATSP sender can use, which is the
bandwidth the user has paid for.

First, in order for an ATSP sender to minimize burstiness
and avoid buffer overflow at the router, it transmits the packets
in w spaced by:

sk =
Θk

wk
, (3)

along the complete k − th RTT-cycle (Θk).
On the other hand, the receiver will notify the sender

about the instantaneous network congestion status whenever
α packets are received.

1) Rate Decrease: After receiving the congestion informa-
tion (in a SACK) from the destination and measuring Θ, the
congestion rate Λ is incremented using:

Λk = Λk + ρk,i, (4)

where ρk,i is the i−th received congestion rate measured from
α packets in the k− th RTT (check Section III-B). Then, the
sender reduces its w by the received ρk,i with:

wk = wk−1 − (ρk,i · wk−1). (5)

and sends the new and the lost packets (if any) in the new
window wk.

2) Rate Increase: Every RTT-cycle, an ATSP sender in-
creases its w (thus its rate) based on the accumulative conges-
tion rate and the maximum window size as follows:

wk = min

{
Wmax, wk−1 +

(1− Λk) ·Wmax − wk−1

Nk

}
,

(6)
where w0 = α (see Section III-B) and N is the slowness
factor that increases upon the increase of Λ and tries to halt
w from inflating. It is calculated as follows:

Nk = I + Λk · h, (7)

where I is the initial increase in a network with no congestion
and h determines how strict the protocol reactions are upon
congestion. Further, the smaller I gets, the bigger w grows in
(6). From protocol experiments, we set I = 3

2 and h = 100
to avoid bursty start-ups.

After every rate increase, Λ is set back to 0 for measuring
the congestion rate of the next RTT-cycle.

IV. SIMULATION AND RESULTS

Our proposed protocol, ATSP, is implemented in NS-2 [24]
with the purpose of testing its functionalities and foreseen
goals, as well as to compare its performance to TCP Hybla,
which is optimized for satellite links.

Figure 1 represents the simulation environment with N
sources (Si) and destinations (Di), where i = 1, 2, ..., N ,
connected to the routers R1 and R2, respectively. The links
between the sources and R1 and between the destinations and
R2 are error free and have data rates of 100Mbps and one way
delay of 5ms, whereas the only bottleneck link in the scenario
is between R1 and R2 with C = 10Mbps and propagation
delay of 290ms. Thus, the total RTT accounts for 600ms,
emulating a geosynchronous (GEO) satellite link. Finally, the
buffer size at R1 is set to 800 packets.

3325

The sources are assumed to have always something to send,
that is a bulk file transfer is used with unlimited size. In our
simulation, we limit the number of ATSP sources (N) to 3.
This is due to the time consuming computation of the Kp and
Ki parameters of the PI controller. Further, in this work, we
will present preliminary results, which show that our solution
is a promising mechanism for satellite networks.

Fig. 1. Simulation environment

Equation (1) allows us to compute the performance index
(J) and thus choose our desired Kp and Ki. For the PI
controller, we set qref to 300 packets. Hence, since J is
Kp and Ki dependent, this can be an optimization problem
for multidimensional functions. Additionally, since we are
searching for a minimum performance index we use the
Downhill Simplex Algorithm (DSA) to find our desired values,
which are Kp = 2.607 × 10−5 and Ki = 2.508 × 10−5

that correspond to N = 3 senders.
Within the following sections we ran multiple simulations

and each simulation will reveal some properties of ATSP. In
addition, the design goals are exposed as we further proceed.

A. A Closer Look at ATSP
The purpose of this simulation is to highlight some aspects

of the ATSP working mechanism. We used N = 3 in the
network topology shown in Figure 1. First, as it can be clearly
seen in Figure 2(a), ATSP allows the three senders to fairly
share the bandwidth of the bottleneck link as the sources
are introduced into the network one after the other. More to
the point, whenever a new sender starts using the network,
the other senders drop their rates as fast as possible to give
space for the newcomer. Please note that the total measured
throughput of the 3 senders does not sum up to the bottleneck
capacity (10Mbps), because of the protocols overhead, which
is excluded from calculations.

B. Deactivating an ATSP Sender
In this simulation, we use the same configuration as pre-

viously, but we stop the third sender at time t = 45 s,
see Figure 2(b). The purpose of this test is to investigate
the behavior of ATSP after providing additional capacity on
the bottleneck link. As the still-alive sources are competing
for the released capacity the overall throughput is dropped
significantly after taking sender three out. This is due to the
small amount of packets per sender injected into the network

in case of congestion notification. Nevertheless, this decrease
does not last long, as the other senders realize this gap and
fill it as fast as possible.

C. Measuring Fairness

In order to finalize the work on ATSP running solo in the
network, we run simulation of 3 senders with the optimal
PI parameters and calculate the fairness index. Jain’s fairness
index [25] is a criterion used to determine the fair share of
resources among users in a shared computer system:

F =

(
N∑
i=1

xi

)2

N ·
N∑
i=1

x2
i

, (8)

where xi is the throughput of flow i. F should lie in the
interval [0, 1], where 1 means that the protocol is 100% fair.

The fairness for 3 ATSP senders using (8) from the simula-
tion was calculated over time. The result showed that F ≈ 1
with very small drop to 0.9 at t = 3 s for 2 s.

D. Injecting Cross Traffic

In this simulation, we introduce plain Constant Bit Rate
(CBR) traffic on the same bottleneck link with ATSP to mon-
itor its performance with foreign data transport mechanism.

Figure 2(c) represents the case when the CBR traffic is
given 4Mbps of the bottleneck link capacity. As shown, ATSP
senders fairly share the remained capacity among themselves.
Similarly, when the CBR traffic is allocated quarter of the
bandwidth, the three ATSP senders find no problem to regulate
their rates to the new situation, as seen in Figure 2(d).

E. Comparing to TCP

Due to the sensitivity of ATSP and TCP to the configuration
parameters of the AQM mechanism, in our case the PI
controller, it is not fair for both protocols to run together
through the same AQM router. Thus, we run these simulations
separately in two different networks but with the same prop-
erties and each router is configured according to the operating
protocol. We use the same network topology as in Figure 1
with N = 3, but the senders are interchanged between TCP
and ATSP with RTT set to 500ms. The following simulations
will compare the two protocols in two scenarios. First, we turn
one of the sources off at t = 40 s. Secondly, we allow random
packet drop with PER value of 10−3 on the bottleneck link.

Since basic TCP variants are optimized to work in terrestrial
networks, we choose TCP Hybla [2] that is optimized for
satellite environments.

For ATSP, we used the PI controller as an AQM mechanism
at R1 with the previously derived parameters. Further, we
tested TCP Hybla with the router (R1) implementing drop-
tail, RED, and PI techniques. The best performance of Hybla
was achieved with PI with parameters from [21] as this
configuration is specific for TCP flows. All buffers had a
maximum capacity of 800 packets.

3326

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
[M

b
p
s]

Time [s]

ATSP 2
ATSP 3

ATSP 1+2+3

ATSP 1

(a) 3 ATSP senders

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
[M

b
p
s]

Time [s]

ATSP 1
ATSP 2
ATSP 3

ATSP 1+2+3

(b) 3 ATSP senders and shutting 1 down

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

Th
ro
ug
hp
ut
[M
bp
s]

Time [s]

ATSP 1
ATSP 2
ATSP 3

UDP
ATSP+UDP

(c) 3 ATSP senders and 1 CBR flow of 4Mbps

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Time [s]

ATSP 1
ATSP 2
ATSP 3

UDP
ATSP+UDP

(d) 3 ATSP senders and 1 CBR flow of 3Mbps

Fig. 2. Throughput of multiple ATSP senders; upper: 3 ATSP senders; lower: 3 ATSP senders with 1 CBR flow

Regarding the first simulation, the results shown in Fig-
ures 3(a) and 3(b) reflect that the Hybla version of TCP
requires some time to fully utilize the released capacity after
dropping out the third source. However, it is able to keep the
stable synchronization of the flows. On the contrary, ATSP
keeps its common behavior by trying to rapidly fill in the gap.

Finally, in the last simulation as the link drops packets (see
Figures 3(c) and 3(d)), the throughput of TCP Hybla greatly
degrades on link errors, whereas ATSP does not reduce its
transmission rate and sends the lost datagrams that are notified
in the SACK with the new ones in the next window (w).
Hence, it keeps the average transmission rate stable as the
throughput of TCP Hybla is reduced on average.

V. CONCLUSION

We presented a novel end-to-end (E2E) transport protocol
for satellite links. Our new protocol, namely ATSP, takes
advantage of some freely available information in a satellite
network, like the maximum allowed transmission rate that
permits a faster link utilization. Further, it requires all the
network units to have a joint collaboration for a better network
status estimation. More to the point, the sender will inject
packets into the network whenever an RTT-cycle finishes.
Additionally, it will decrease its rate every time a SACK
is received from the destination containing congestion rate

information. On the other hand, the router marks packets using
AQM techniques for which an active destination counts and
estimates the congestion rate that is fed back to the sender,
forcing it to carefully react to congestion alerts. Finally, the
simulation results showed that ATSP is able to fully utilize the
bottleneck link bandwidth in short time and fairly share the
capacity among its own connections also with cross traffic
(CBR flows). Compared to satellite variants of TCP, like
Hybla, ATSP average transmission rate is higher on average.

ACKNOWLEDGMENT

The authors would like to thank Dr. Matteo Berioli for his
valuable time and fruitful discussions.

REFERENCES

[1] Information Science Institute University of Southern California. (1981,
Sep.) Transmission Control Protocol. IETF RFC. [Online]. Available:
http://www.ietf.org/rfc/rfc793.txt

[2] C. Caini and R. Firrincieli, “TCP Hybla: a TCP Enhancement for Hetero-
geneous Networks,” International Journal of Satellite Communications
and Networking, vol. 22, no. 5, p. 547566, Sep. 2004.

[3] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
Architecture, Algorithms, Performance,” IEEE/ACM Transactions on
Networking, vol. 14, pp. 1246–1259, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2006.886335

[4] T. R. Henderson and Y. H. Katz, “Satellite Transport Protocol (STP): An
SSCOP-based Transport Protocol for Datagram Satellite Networks,” in
Proceedings of 2nd Workshop on Satellite-Based Information Systems,
Budapest, Hungary, Oct. 1997, pp. 23–34.

3327

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

ATSP 1
ATSP 2
ATSP 3

(a) ATSP

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

Hybla 1
Hybla 2
Hybla 3

(b) TCP Hybla

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

ATSP 1
ATSP 2
ATSP 3

(c) ATSP

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 [M

bp
s]

Time [s]

Hybla 1
Hybla 2
Hybla 3

(d) TCP Hybla

Fig. 3. Throughput comparison of ATSP and TCP Hybla; upper: shutting down a sender at t = 40 s, lower: with PER of 10−3 on the bottleneck link

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby.
(2001, Jun.) Performance Enhancing Proxies Intended to Mitigate
Link-Related Degradations. IETF RFC. [Online]. Available: http:
//tools.ietf.org/html/rfc3135

[6] M. Allman, S. Dwakins, D. Glover, J. Griner, D. Tran, T. Henderson,
J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and
J. Semke. (2000, Feb.) Ongoing TCP Research Related to Satellites.
IETF RFC. [Online]. Available: http://tools.ietf.org/rfc/rfc2760.txt

[7] M. Allman, D. Glover, and L. Sanchez. (1999, Jan.) Enhancing
TCP Over Satellite Channels using Standard Mechanisms. IETF RFC.
[Online]. Available: http://www.rfc-editor.org/bcp/bcp28.txt

[8] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP,” IEEE Communications Surveys Tutorials,
vol. 12, no. 3, pp. 304 –342, May 2010.

[9] D. E. Comer, Internetworking with TCP/IP, Volume 1: Principles,
Protocols and Architectures, 4th ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2000.

[10] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transanctions on Networking,
vol. 1, pp. 397–413, August 1993. [Online]. Available: http:
//dx.doi.org/10.1109/90.251892

[11] K. Ramakrishnan, S. Floyd, and D. Black. (2001, Sep.) The Addition
of Explicit Congestion Notification (ECN) to IP. IETF RFC. [Online].
Available: http://tools.ietf.org/rfc/rfc3168.txt

[12] S. Ryu, C. Rump, and C. Qiao, “Advances in Internet Congestion
Control,” IEEE Communications Surveys Tutorials, vol. 5, no. 1, pp.
28–39, 3rd. Quarter 2003.

[13] L. Tan, W. Zhang, G. Peng, and G. Chen, “Stability of TCP/RED
Systems in AQM Routers,” IEEE Transactions on Automatic Control,
vol. 51, no. 8, pp. 1393–1398, Aug. 2006.

[14] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One More Bit
is Enough,” IEEE/ACM Transactions on Networking, vol. 16, no. 6, pp.
1281 –1294, dec. 2008.

[15] J. Wang, L. Li, S. Low, and J. Doyle, “Cross-layer Optimization in

TCP/IP Networks,” IEEE/ACM Transactions on Networking, vol. 13,
no. 3, pp. 582 – 595, Jun. 2005.

[16] Q. Chen and O. W. W. Yang, “Robust Controller Design for AQM
Router,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp.
938 –943, May 2007.

[17] W.-C. Feng, D. Kandlur, D. Saha, and K. Shin, “A Self-Configuring RED
Gateway,” in IEEE Proceedings of INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies,
vol. 3, New York, NY, USA, Mar. 1999, pp. 1320 –1328.

[18] D. Lin and R. Morris, “Dynamics of Random Early Detection,”
SIGCOMM Computer Communications Rev., vol. 27, pp. 127–137, Oct.
1997. [Online]. Available: http://doi.acm.org/10.1145/263109.263154

[19] V. Firoiu and M. Borden, “A Study of Active Queue Management
for Congestion Control,” in IEEE Proceedings of INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies, vol. 3, Tel Aviv, Israel, Mar. 2000, pp. 1435 –1444.

[20] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A Control Theoretic
Analysis of RED,” in IEEE Proceedings of INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 3, Anchorage, AK , USA, Apr. 2001, pp. 1510 –1519.

[21] ——, “On Designing Improved Controllers for AQM Routers Support-
ing TCP Flows,” in IEEE Proceedings of INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 3, Anchorage, AK , USA, Apr. 2001, pp. 1726 –1734.

[22] ——, “Analysis and Design of Controllers for AQM Routers Supporting
TCP Flows,” IEEE Transactions on Automatic Control, vol. 47, no. 6,
pp. 945 –959, Jun. 2002.

[23] N. Killingsworth and M. Krstic, “PID Tuning Using Extremum Seeking:
Online, Model-free Performance Optimization,” Control Systems, IEEE,
vol. 26, no. 1, pp. 70 – 79, feb. 2006.

[24] “The Network Simulator NS-2.” [Online]. Available: http://www.isi.
edu/nsnam/ns/

[25] R. Jain, W. Hawe, and D. Chiu, “A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,”
DEC Research Report TR-301, Tech. Rep., 1984.

3328

