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Modeling Remote-Sensing Reflectance and
Retrieving Chlorophyll-a Concentration in

Extremely Turbid Case-2 Waters (Lake Taihu, China)
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Abstract—Accurate assessment of concentration of chlorophyll
a (Chla) and correct identification of algal blooms by remote
sensing have previously been a great challenge in the optical-
ly complex Case-2 waters. In this paper, we used a large biooptical
data set to model the remote-sensing reflectance in an extremely
turbid and biologically productive Lake Taihu in China. The con-
ceptual three-band model [R−1

rs (λ1) − R−1
rs (λ2)] × Rrs(λ3)

(where Rrs represents remote-sensing reflectance just above the
water surface) to retrieve Chla concentration was calibrated
and validated, and a detailed assessment of its accuracy was
obtained. Water samples were collected for four seasons from
2006 to 2007 at 50 sites, covering different ecosystem types, and
contained three very variable optically active substances (tripton
7.9–281.7 mg · L−1, Chla 4.0–448.9 μg · L−1, and chromophoric
dissolved organic matter [aCDOM(440)] 0.27–2.36 m−1). Secchi
disk transparency ranged from 8 to 85 cm. The retrieval ac-
curacies (r2) of the optimal three-band model and the rela-
ted band-ratio method were 0.94 and 0.92, while the root
mean-square errors (RMSE) and relative errors (RE) were
15.1 μg · L−1 (37.3% accounting for the mean value) and
18.0 μg · L−1, and 44.4% and 60.2%, respectively. Applica-
tions of the three-band model using MERIS central bands
[R−1

rs (681) − R−1
rs (709)] × Rrs(754) also allowed accurate es-

timation of Chla, with r2, RMSE, and RE of 0.92, 17.0 μg · L−1,
and 48.1%, respectively. The establishment of a simple and robust
biooptical model with high retrieval accuracy and known error
budgets will help the rapid, accurate, and real-time assessment of
algal blooms using in situ and satellite remote-sensing techniques.

Index Terms—Absorption coefficient, chlorophyll a (Chla),
error budgets, Lake Taihu, remote-sensing reflectance.

I. INTRODUCTION

IN THE LAST 20 years, increased nutrient loadings, driven
by industrial development, human-population growth, and

changes in land use, have resulted in eutrophication and
increased phytoplankton concentrations in Lake Taihu in
China [1]. In recent summers, the accumulation of surface
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blooms of the cyanobacteria Microcystis spp. has impeded
normal operation of drinking-water plants for the large cities of
Wuxi and Wujing, and from May to October, particularly high
cyanobacterial concentrations have been recorded in Meiliang
Bay and Zhushan Bay within the lake. In particular, in early
June in 2007, a cyanobacterial bloom in Gonghu Bay polluted
the biggest drinking-water plant in Wuxi City, interrupting
water supply in Wuxi City for several days. Furthermore, the
cyanobacterial blooms in Lake Taihu pose additional potential
health risks, due to the toxic Microcystis spp., particularly in
summer [2]. Exposure to toxic Microcystis spp. could lead to
liver failure in wild animals, livestock, and aquatic life, as well
as human illnesses and mortality. Some reports suggest that the
incidence of human primary liver cancer in the eastern region
of China is related to the presence of microcystins found in
drinking water [3], [4].

Conventional chlorophyll-a (Chla) monitoring programs are
limited in their effectiveness in Lake Taihu, because they only
provide spatial distribution data of Chla concentration along
their routes during fixed cruises. The restricted temporal and
spatial aspects of such conventional ship-based water-sampling
programs are not adequate to report changes in phytoplank-
ton biomass. This is particularly problematic during bloom
conditions when the variability in phytoplankton density is
particularly high, with accumulations happening in time periods
as brief as several hours or within a single day, and when
there is frequent disturbance due to wind waves. The serious
2007 contamination of the water supply to Wuxi City was not
detected because the algal-bloom accumulation and deposition
were not recognized due to the low frequency and small area of
conventional sampling.

In order to mitigate the impacts of algal blooms and issue
warnings to drinking-water plants in Lake Taihu, it is therefore
essential to detect, monitor, and forecast the development and
movement of blooms using more detailed and effective tech-
niques. In some coastal and lake waters, the use of airborne
and satellite remote sensing has demonstrated to provide more
reliable temporal–spatial information about water quality and
the extent of the cyanobacterial blooms than does conven-
tional monitoring [5]–[9]. Thus, this approach was adopted for
Lake Taihu.

Lake Taihu is a large eutrophic shallow lake with high spa-
tial heterogeneity; different ecosystem types (algal-dominated,
macrophyte-dominated, and transition regions); complicated
dynamics of phytoplankton, particulate matter, and chro-
mophoric dissolved organic matter (CDOM); and variable
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Fig. 1. Distribution of transects and sampling sites.

biooptical properties [10]–[12]. Remote sensing is a poten-
tially powerful tool for studying phytoplankton dynamics and
managing water quality in the Lake Taihu by virtue of its
ability to resolve steep spatial gradients and temporal vari-
ability in optically significant constituents. However, despite
this potential, such an approach has not been widely used,
and the temporal–spatial variations of biooptical properties and
the concentrations of three optically active substances (trip-
ton, phytoplankton, and CDOM) in Lake Taihu remain poorly
characterized. As a result, most studies have focused on the
collection of data for optically active substances based on the
in situ measurement of the remote-sensing reflectance [13],
[14]. To address this need, the aims of this paper are as follows:
1) compare the variations of the concentrations and spectral
absorption coefficients of three optically active substances for
four different seasons; 2) model the remote-sensing reflectance
and discuss its spectral characteristics; 3) optimize a three-band
model to estimate Chla concentration; and 4) characterize the
error budget of the retrieval model.

II. MATERIALS AND METHODS

A. Study Site and Sampling Schedule

Optical measurements were made and water samples were
taken at 50 sites in different regions of the lake: transect 1
(sites 1–16) followed a semicircular route around Meiliang Bay
in the north, transect 2 (sites 17–29) originated in Gonghu Bay
and extended southwest across the lake center, transect 3 (sites
30–40) originated in Guanghu Bay and extended southwest
across the lake center, and transect 4 (sites 41–50) originated
in Xukou Bay and extended southwest across the lake, passing
south of Xishan Island (Fig. 1). Measurements and water sam-
ples were taken on four seasonal cruises: winter (January 7–9,
2006), spring (April 25–27, 2007), summer (July 28–August 1,
2006), and autumn (October 12–15, 2006).

In order to validate the three-band model and band-ratio
method used to estimate Chla concentration, an independent
data set (32 × 2 = 64 samplings) was obtained from two sam-
pling cruises in May (17–19) and October (16–18) in 2005.
The sample sites in these investigations were basically evenly
distributed over the Lake Taihu [15].

B. Sample Preparation

Samples for Chla were filtered on Whatman GF/C fiberglass
filters. The Chla and phaeophytin a (Pa) were extracted with
ethanol (90%) at 80 ◦C and analyzed spectrophotometrically at
750 and 665 nm with correction for Pa.

To obtain total suspended matter (TSM), water samples were
filtered through precombusted Whatman GF/C fiberglass filters
(450 ◦C for 4 h) to remove suspended organic matter, dried
(105 ◦C for 4 h), and weighed. The filters were recombusted
at 450 ◦C for 4 h and weighed again to obtain inorganic sus-
pended matter (ISM). By subtracting ISM from TSM, organic
suspended matter was obtained.

In order to separate the dry weight of tripton from the dry
weight of total particles, the dominant species of Microcystis
and Scenedesmus in Lake Taihu were cultured in the laboratory
to measure dry weight, Chla, and Pa concentrations in different
growth periods. Surface algal-bloom samples were collected
during calm-weather conditions and cleared using distilled wa-
ter to obtain the relative pure phytoplankton (excluding tripton).
Then, the sample was put under dark condition. Every three
days, the sample was collected to measure the dry weight,
Chla, and Pa concentrations. We found that a simple linear
equation could describe the relation between the dry weight of
phytoplankton and the sum of Chla and Pa concentrations

Cphytoplankton =0.09CChla+Pa(r2 = 0.98, n=31, p<0.001)
(1)

where Cphytoplankton is the dry weight of phytoplankton and
CChla+Pa is the sum of Chla and Pa concentrations. The con-
centration of tripton (CTripton) is obtained as the difference of
TSM (CTSM) and phytoplankton dry weight (Cphytoplankton).

C. Measurement of Remote-Sensing Reflectance and
Inherent Optical Properties

Downwelling radiance and upwelling total radiance mea-
surements were made by using an ASD field spectrometer (An-
alytical Devices, Inc., Boulder, CO) with a spectral response
range of 350–1000 nm and a spectral resolution of 3 nm.
The “above-water method” was used to measure water-surface
spectra [16]. An optical fiber was positioned at nadir on a
mount extending away from the boat to reduce the influence of
reflectance off of the vessel on collected spectra. The radiance
spectra from the reference panel, water, and sky were measured
at a height of approximately 0.3 m above the water surface
under clear-sky conditions. At each sampling site, the relevant
spectra were measured ten times to optimize the signal-to-
noise ratio and, thus, reduce the error of in situ measurements.
Each spectrum was sampled 90◦ azimuthally from the Sun and
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at a nadir viewing angle of 40◦. The water-leaving radiance
Lw(λ, 0+) can be derived from the following:

Lw(λ, 0+) = Lsw(λ, 0+) − rsky · Lsky(λ) (2)

where Lsw(λ, 0+) is the upwelling radiance from the water and
Lsky(λ) is the sky radiance measured at the same azimuth angle
and at 40◦ zenith angle. The rsky is the specular reflectance of
skylight at the air–water interface ranging from 0.022 for calm
weather to 0.025 for a wind speed of up to 5 m · s−1 [16]. A
constant value of 0.0245 was used in this paper.

The incident downwelling irradiance Ed(λ, 0+) was deter-
mined by measuring the radiance of the Lambertian reference
panel Lp(λ, 0+) as follows:

Ed(λ, 0+) = πLp(λ, 0+)/ρp(λ) (3)

where ρp(λ) is the reflectance of the reference panel that has
been accurately calibrated to 30%.

The remote-sensing reflectance above the water surface
Rrs(λ, 0+) is calculated as the ratio of water-leaving up-
welling radiance Lw(λ, 0+) to incident downwelling irradiance
Ed(λ, 0+). Some Rrs(λ, 0+) spectra were excluded from the
data set at sites with a thick algal bloom or macrophytes. A set
of 176 Rrs(λ, 0+) spectra was obtained in this paper.

The total absorption coefficient is the sum of the coef-
ficients of tripton [ad(λ)], phytoplankton [aph(λ)], CDOM
[aCDOM(λ)], and pure water [aw(λ)]

a(λ) = ad(λ) + aph(λ) + aCDOM(λ) + aw(λ). (4)

The absorption coefficient of pure water aw(λ) reported by
Smith and Baker [17] was used here. The coefficients ap(λ)
(the absorption coefficient of total particulate matter including
tripton and phytoplankton), ad(λ), and aph(λ) were determined
by the quantitative filter technique [18], where methanol was
used to partition the absorption of tripton and phytoplankton.
Water samples were first filtered through a 47-mm-diameter
Whatman fiberglass GF/F filter with 0.70-μm pores and,
then, refiltered through a 25-mm-diameter Millipore filter with
0.22-μm pores to measure CDOM absorption. The measure-
ment of the absorption coefficients of the three other compo-
nents was undertaken using a Shimadzu UV-2401PC UV-Vis
spectrophotometer; the detailed measurement process has been
described by Zhang et al. [12]. The ratios of phytoplankton ab-
sorption to Chla concentration and tripton absorption to tripton
concentration are defined as the specific absorption coefficients
of phytoplankton a∗

ph(λ) and tripton a∗
d(λ)

a∗
ph(λ) = aph(λ)/CChla (5)

a∗
d(λ) = ad(λ)/CTripton (6)

where CChla and CTripton are Chla and tripton concentrations.
Beam attenuation of particulate matter except for pure water

ct−w(λ) was measured in a 4-cm path length cuvette against a
reference of Milli-Q water between 350 and 800 nm at 1-nm
intervals by a standard detector using a Shimadzu UV-2401PC
UV-Vis spectrophotometer. The cuvette was positioned at a
relatively large distance (5 cm) from the detector as described

by Simis et al. [19]. The beam-attenuation coefficient was
obtained based on the following [20]:

ct−w(λ) = 2.303D(λ)/r (7)

where ct−w(λ) is beam-attenuation coefficient of particulate
matter except for pure water at wavelength λ(m−1), D(λ) is the
optical density at wavelength λ, and r is the cuvette path length
in meters. The factor of 2.303 was used to convert optical-
density values from a base 10 log to a natural log scale.

ct−w(λ) was expressed as the sum of the absorption and
scattering coefficients of all particulate matter and CDOM.
Because CDOM has no scattering, spectra of particle scattering
bp(λ) were obtained using the following:

bp(λ) = ct−w(λ) − ap(λ) − aCDOM(λ). (8)

The backscattering coefficient (bbp(λ)) of the particles is
calculated from the scattering coefficient of particles. The
backscattering probability (β = bbp/bp) is dependent on the
distribution of particles and on the refractive index. Sun et al.
[21] found β ranged from 0.010 to 0.028 with a mean value
of 0.018 ± 0.004 at 440 nm based on in situ measurement
of absorption, beam attenuation, and scattering coefficients of
64 sites using AC-S and HS-6 in Lake Taihu in 2006. Although
some studies showed that β can be weakly dependent on
wavelength [22], [23]. However, Whitmire et al. [24] found that
there was no significant spectral dependence of the spectral-
backscattering probability β for each of five wavelengths in the
range of 440–620 nm. Therefore, this paper took a mean β value
of 0.018, as observed in Lake Taihu [21]. However, later on,
we tested the impact of this assumption on the modeling and
retrieval accuracy (in Section III-D).

The backscattering coefficient of pure water is half of the
scattering coefficient. The scattering coefficient of pure water
is adopted as follows [25]:

bbw(λ) = 0.5bw(λ) = 0.00144
(

λ

500

)−4.32

. (9)

The total backscattering coefficient was the sum of the
backscattering coefficients of particles and pure water

bbt(λ) = bbp(λ) + bbw(λ). (10)

D. Modeling of Remote-Sensing Reflectance

The remote-sensing reflectance just beneath the water surface
Rrs(λ, 0−) is calculated from irradiance reflectance R(λ, 0−),
by dividing the latter by the so-called geometrical factor (Q),
which is a wavelength-independent estimate of the ratio of the
upwelling radiance Lu(λ, 0−) to the downwelling irradiance
Ed(λ, 0−)

Rrs(λ, 0−) = Lu(λ, 0−)/Ed(λ, 0−) =
Eu(λ, 0−)

Q · Ed(λ, 0−)

=
R(λ, 0−)

Q
=

f

Q
· bbt(λ)
at(λ) + bbt(λ)

. (11)
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TABLE I
SEASONAL COMPARISON OF OPTICALLY ACTIVE SUBSTANCES AND OTHER INDEXES

The last term in (11) is the so-called Gordon approximation
that relates the subsurface irradiance reflectance R(λ, 0−) to
total absorption and scattering in an optically thick medium.
Austin [26] proposed the factor of 0.544 for correlating radi-
ance just above the surface to radiance just beneath the surface.
Thus, remote-sensing reflectance just above the water surface
Rrs(λ, 0+) can be calculated as follows:

Rrs(λ, 0+) = 0.544Rrs(λ, 0−) = 0.544
f

Q
· bbt(λ)
at(λ) + bbt(λ)

.

(12)

Monte Carlo studies [20] have found that f is mainly a
function of solar-elevation angle that was reasonably well ex-
pressed as a linear function of μ0, the mean cosine of the
angles the photons make with the vertical just beneath the water
surface

f = 0.975 − 0.629μ0. (13)

The value of μ0 is dependent upon the solar elevation and the
proportion of direct and diffuse radiations. The value of μ0 is
calculated according to the sampling time, latitude, and solar-
altitude angle.

Q in (11) was inversely related to μ0. In theory, Q ranges
from 0.3 to 6.5 but is generally expected to be 3–4 [27].
Here, an empirical equation of Q = 2.38/μ0 was used to
calculate Q [6]. The mean values of f/Q in winter, spring,
summer, and autumn were 0.158, 0.153, 0.152, and 0.157,
respectively.

E. Data Analysis

The three sites with exquisitely high Chla concentrations
(> 500 μg · L−1) were excluded from the data sets in this
paper. Statistical analyses (mean value, linear and nonlinear
fitting) were performed with the statistical package SPSS 11.0

for Windows. The root mean-square error (RMSE) and relative
error (RE) of regression are calculated by the following:

RMSE =

√√√√
n∑

i=1

(xEst,i − xObs,i)2

n
(14)

RE =
(xEst − xObs)

xObs
× 100% (15)

where xEst,i and xObs,i are the estimated and measured values,
respectively, and n is the number of data points.

III. RESULTS AND DISCUSSION

A. Temporal and Spatial Variations in Optically
Active Substances

There was a large variation in concentrations of the three
optically active substances (TSM, Chla, and CDOM) and other
indexes (Table I), both within and between seasons, reflecting
the temporal–spatial heterogeneousness of the large shallow
lake.

The TSM concentration was significantly higher in winter
than in other three seasons (ANOVA analysis, p < 0.001). In
contrast, Chla concentration was significantly lower in winter
than in the other three seasons (ANOVA analysis, p < 0.001),
corresponding to the absence and presence of marked algal
blooms. Although there was no marked algal bloom in winter,
Chla concentration was still relatively high, with a mean value
of 16.5 ± 6.6 μg · L−1, demonstrating that Lake Taihu was a
highly eutrophic lake. The mean values of TSM, tripton, and
aCDOM(440) in winter were 2.95, 3.35, and 1.29 times of those
in other three seasons, respectively. However, the mean value of
Chla in winter was 0.34 times of that in other three seasons.

Some spatial differences were found for concentrations of
optically active substances. Overall, the concentrations of the
three optically active substances were higher in Meiliang
Bay and the north of the lake than in the south. The mean
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Fig. 2. Absorption spectra of tripton, phytoplankton, and CDOM and total absorption coefficients (lines represent different sites and cruises).

concentrations of Chla and CDOM in transects 1, 2, and 3
were significantly higher than those in transect 4 (ANOVA
analysis, p < 0.001) in all four seasons. However, the mean
concentration of TSM did not differ significantly among the
four transects in any season.

In summer and autumn, concentrations of TSM and Chla
were significantly higher in Meiliang Bay and the northern lake
regions where serious algal blooms occurred. In contrast, in
spring, the highest concentration of Chla was in the southwest
of the lake, near sites 39 and 40, where an intense algal bloom
occurred.

In winter, the Chla concentration remained at a relative low
level for the whole lake as compared to other three seasons.
In winter, the overall TSM concentrations were relatively high,
due to deformation and disappearance of submerged aquatic
vegetation and the marked sediment resuspension caused by
the significant wind-induced wave action prior to the sampling
dates. The mean wind velocity on January 4, 5, and 6 were
7.2, 5.6, and 6.6 m · s−1, respectively, based on the automatic
anemometer measurement of every 10 min in Taihu Lake
Laboratory Ecosystem Research Station, which was located in
the littoral of Lake Taihu.

In winter, there was no correlation between CTSM and CChla;
however, in the other three seasons, there was a significant
positive correlation (p < 0.001). This suggests that the in-
terdependence between TSM and Chla was quite strong in
spring, summer, and autumn due to the frequent algal blooms
which have a large contribution to TSM. TSM contained both
organic and inorganic particles. For those with algal bloom,
TSM contained a large amount organic matter in addition to
the inorganic matter.

B. Variation in Absorption Coefficients

The spectral absorption coefficients of tripton, phytoplank-
ton, CDOM, and the total absorption coefficient are shown in
Fig. 2.

The absorption coefficient of CDOM approached zero near
700 nm and increased exponentially with decreasing wave-
length over the 350–700-nm range. In previous studies, hy-
perbolic fitting has been suggested as a better approach than
linear fitting [12], [28]. Thus, in this paper, hyperbolic fitting
was used to fit CDOM spectra for wavelengths of 300–600 nm,
considering that the CDOM absorption coefficient was near-
zero or negative over a wavelength range larger than 600 nm.
The mean and standard deviation of the spectral slope (S)
for CDOM absorption were 6.36 and 0.83 nm−1, respectively,
based on the 197 data points (50 sites × 4 seasons − 3 points
with high Chla). These values for the whole year were very
close to the values for winter and summer [12]. Therefore,
CDOM absorption can be expressed by

aCDOM(λ) = aCDOM(440)(λ/440)−6.36. (16)

The absorption coefficient of tripton decreased with increas-
ing wavelength in all four seasons (Fig. 2). Many studies have
shown that tripton has relatively stable absorption characteris-
tics, which can be described using an exponential function [29],
[30]. Considering that the absorption spectral shape of CDOM
and tripton was very similar in this paper, a hyperbolic fit of
the tripton absorption spectra was performed. Based on a large
data set of 727 samples, collected from different regions of
Lake Taihu from July 2004 to April 2007, it was found that
the hyperbolic model was more accurate in its representation
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Fig. 3. (left) Mean absorption spectra of tripton (ad(λ)), phytoplankton (aph(λ)), and CDOM (aCDOM(λ)) and (right) specific absorption coefficient spectra
of tripton (a∗

d(λ)) and phytoplankton (a∗
ph(λ)) (a∗

ph(λ) unit: m2 · mg−1; a∗
d(λ) : m2 · g−1).

of the tripton absorption than the simple exponential model
(unpublished data). The range of spectral slope values (Sd)
for tripton in the wavelength range 400–700 nm in this paper,
using hyperbolic fitting, was relatively narrow from 4.96 to
7.50 nm−1, with a mean value of 6.27 nm−1 and a coefficient
of variation of 6.1%. The mean values of the spectral slopes of
CDOM (6.36 nm−1) and tripton (6.27 nm−1) were very close.
For all four seasons, tripton absorption can be expressed as
follows:

ad(λ) = ad(440)(λ/440)−6.27. (17)

The absorption spectra of phytoplankton showed that the
pigments had two diagnostic absorption peaks, in the blue
wavelength (approximately 440 nm) and in the red wavelength
(approximately 675 nm) (Fig. 2). However, the absorption
coefficients of phytoplankton varied significantly in space and
time because of marked differences in pigment concentrations.
Phytoplankton absorption was very high at some sites during
the algal blooms in spring, summer, and autumn.

Total absorption spectra were very similar to those of tripton,
decreasing from 400 to 600 nm, except for several sites that had
serious algal blooms on the water surface (Fig. 2), indicating
the strong absorption by tripton in this shallow lake with its
high tripton concentration (7.9–281.7 mg · L−1). The mean
absorption of tripton, phytoplankton, and CDOM also showed
that tripton dominated the total absorption spectra [Fig. 3(a)].
Specific absorption spectra of phytoplankton in this paper
fell within the range found in a range of water bodies [29],
[31] but with a relatively low value as compared to the clear
oceanic waters due to high Chla concentration in Lake Taihu
[Fig. 3(b)]. Specific absorption coefficient of phytoplankton has
a tendency to decrease with increasing Chla concentration due
to the so-called package effect. The mean value of ad(443)
of 0.057 m2 · g−1 was higher than the one of 0.041 m2 · g−1

obtained by Babin et al. [31]. The difference can be partly
attributed to the different calculation method. We note that
Babin et al. [31] calculated specific absorption coefficient of
tripton using TSM concentration (including phytoplankton).
However, we calculated tripton concentration by excluding
phytoplankton. This effect is expected to be the most important
in eutrophic Lake Taihu where phytoplankton represents an
important fraction of TSM during algal bloom in summer.

Furthermore, the difference in the sources and mineral compo-
sition for coastal and lake waters may also cause the difference
in a∗

d(443).

C. Modeling of Remote-Sensing Reflectance

For each station, the above-water remote-sensing reflectance
was modeled according to (12) and (13). The total absorption
and backscattering were taken from the measured inherent
optical properties and application of (4), (8), (9), and (10).

The seasonal variation in remote-sensing reflectance is
shown in Fig. 4. The large variability in the concentration of the
three optically active substances and in their inherent optical
properties resulted in large spatial and temporal variabilities
in the magnitude of the modeled remote-sensing reflectance
spectra. The reflectance spectra were highly variable at different
sites and seasons. To validate the modeled Rrs(λ, 0+), Fig. 5
shows the comparison of measured and modeled Rrs(λ, 0+)
at two typical sites in July 2006. There was a very good
match of the measured and modeled Rrs(λ, 0+), suggesting
that it was reasonable and feasible to model remote-sensing
reflectance based on the measurements of the beam-attenuation
coefficient and the absorption coefficient in the laboratory.
However, the Rrs(λ, 0+) modeled was generally lower than
the measured value at shorter wavelengths, less than 550 nm;
this error being attributed to the uncertainty of scattering
and backscattering coefficients. The scattering coefficient was
calculated from beam-attenuation and absorption coefficients
measurement made with a spectrophotometer (8), and since
the spectrophotometer had an acceptance angle of 5◦, some
backscattered radiation was lost. Because the backscattering co-
efficient increased with decreasing wavelength, this loss term is
greater at shorter wavelengths, causing the modeled Rrs(λ, 0+)
to be generally lower than the measured value. The difference
in measured and modeled Rrs(λ, 0+) could also have arisen
from the errors in the observed Rrs(λ, 0+). Although the water
was placid in most cases, the potential for error due to skylight
reflection still existed. Furthermore, the reflectance of air–water
interface, which was slightly dependent on wind waves and set
as a constant in this paper, induced a potential error.

These modeled spectra were very close in magnitude, shape,
and spectral features to the typical reflectance spectra previ-
ously measured in Lake Taihu [14]. Remote-sensing reflectance
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Fig. 4. Remote-sensing reflectance in four different seasons (lines represent different sites.)

Fig. 5. Comparison of measured and modeled remote-sensing reflectance just
above the water surface Rrs(λ, 0+) from two sites in July 2006.

is proportional to the ratio of spectral backscattering to the sum
of spectral absorption and backscattering of all optically active
substances (12). Spectral reflectance peaks and local minima
were generally inversely related to the total absorption spectra.
In general, reflectance peaks occurred at around 560, 650, and
700 nm (Figs. 4 and 5). Reflectance minima occurred at short
wavelengths near 400 nm due to strong absorption by partic-
ulate and dissolved substances (Fig. 2) and near 800 nm due
to pure-water absorption. As the modeled reflectance spectra
were calculated from the measured absorption and backscat-
tering coefficients, the effect of bottom reflectance to the total
reflectance was eliminated. However, the bottom reflectance
might affect the in situ measured reflectance, particularly in the
typical macrophyte-dominated regions (Xukou Bay and East
Lake Taihu) [11]. For example, previous studies [13], [32] got
the significant error of Chla concentration and water quality in
the two bays (Xukou Bay and East Lake Taihu) based on in situ
measured and remotely derived Rrs(λ, 0+).

In turbid Lake Taihu, absorption by dissolved organic matter
and tripton and scattering by particulate matter contributed
most to reflectance in the range of 400–500 nm, and a com-
mon characteristic of reflectance spectra in this range was low
sensitivity to the variation of Chla concentration. As a result,

Fig. 6. Position of remote-sensing reflectance peak near 700 nm versus Chla
concentrations.

the blue-to-green ratio Rrs(440)/Rrs(550) could not be used
to estimate CChla in waters studied. Therefore, the difference
in measured and modeled Rrs(λ, 0+) at short wavelengths had
no effect on CChla estimation in Lake Taihu. A peak in the
green range near 550–570 nm (Figs. 4 and 5) was due to the
minimal absorption of all algal pigments (Fig. 2), and scattering
by ISM and phytoplankton cells controlled the magnitude of
reflectance in this range. At around 675 nm, the reflectance
minimum was due to phytoplankton absorption, particularly in
sites with high pigment concentration. However, reflectance
in this range was strongly affected by tripton concentration,
in addition to Chla concentration in turbid Lake Taihu, which
decreased the correlation between Rrs(675) and CChla. A local
minimum around 625 nm was due to phycocyanin absorption.
This pigment is present primarily in cyanobacteria, and thus, a
local reflectance minimum at 625 nm has often been used to
monitor cyanobacterial blooms in eutrophic lakes [8], [9].

A marked peak was recorded near 700 nm, which corre-
sponded to the decrease of particle scattering and the increase
of pure-water absorption. The position of this peak shifted
toward longer wavelengths with increasing Chla concentration.
Fig. 6 shows that peak position was closely related to CChla
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Fig. 7. Retrieval model of Chla concentration and comparison of measured and estimated values using the three-band reflectance model (37.3% in the bracket is
the percentage of RMSE accounting for the mean CChla).

concentration. This shows that, in addition to Chla absorption,
scattering by tripton played a significant role in controlling
reflectance in this spectral region. The red-shifting of the
reflectance peak position near 700 nm with increasing Chla
concentration was observed in other productive turbid waters
[33], [34].

Our measurements in Lake Taihu were performed over a
wide range of biooptical characteristics of water in different
seasons at different solar zenith angles (ranging from 15◦

to 77◦). However, the standard deviation of the f/Q values
estimated was less than 2.5%, with a mean f/Q value of
0.1553, which was very close to the value reported in Case-1
waters [35]. Although both f and Q were largely dependent on
solar zenith angle and the inherent optical properties of water,
f/Q was basically independent of solar zenith angle. These
results suggest that, for the nadir viewing the geometry of our
measurements in these Case-2 waters, the observed variability
in the quantity f/Q was not very large and not markedly
different from Case-1 waters.

D. Retrieval Model of Chla

Obtaining accurate information on the temporal–spatial vari-
ation of Chla concentration and algal blooms in Lake Taihu is
critical for water-quality monitoring, understanding the mecha-
nisms of eutrophication, and for issuing warnings to safeguard
the drinking-water plants surrounding Lake Taihu. However,
the application of currently operational satellite Chla algo-
rithms, such as MERIS, in the extremely turbid waters of Lake
Taihu often results in erroneous retrievals.

In previous studies of Lake Taihu, single-band, band-ratio,
and one-order derivative methods were used to estimate CChla

[13], [14]. In contrast, in this paper, a three-band reflectance
model was used to estimate CChla under conditions of high
turbidity and high algal biomass. This model was tested on its
accuracy and ability to perform for all seasons.

Recently, a conceptual model containing remote-sensing re-
flectance in three spectral bands in the red and near-infrared
(NIR) range of the spectrum was suggested for retrieving Chla
in turbid productive waters [33], [34], [36]

Chla = A ×
[
R−1

rs (λ1) − R−1
rs (λ)2

]
× Rrs(λ3) + B (18)

where A and B are constants that are dependent on the specific
inherent optical properties, and the three wavelengths have to
be determined a priori or a posteriori.

The three-band reflectance model was originally developed
for estimating pigment contents in terrestrial vegetation. Recip-
rocal reflectance in the first spectral band λ1 should be most
sensitive to CChla. Rrs(λ1) is also affected by absorption
by tripton, CDOM, and water as well as backscattering by
all particulate matter. The effect of backscattering and the
absorption by tripton and CDOM can be minimized using a
second spectral band, where Rrs(λ2) is minimally sensitive
to absorptions by phytoplankton, tripton, and CDOM. Rrs(λ3)
is minimally affected by phytoplankton, tripton, and CDOM,
and the total absorption the third band is a measure of the
absorption by water. Based on these assumptions, the spectral
ranges of three bands are restricted to 660–690, 700–750, and
730–750 nm, respectively. We refer to Dall’Olmo and Gitelson
[36] and Gitelson et al. [34] for a detailed description and ex-
planation of this choice of bands. Some studies showed that the
three-spectral-band reflectance model [R−1

rs (λ1) − R−1
rs (λ2)] ×

Rrs(λ3) was more precise than the band-ratio method.
In order to find the best three bands by which to estimate

Chla concentration in Lake Taihu, the combinations of any
three wavelengths of λ1 from 660 to 690 nm, λ2 from 700 to
750 nm, and λ3 from 730 to 750 nm were used for correlation
with CChla using the remote-sensing reflectance modeled. The
optimal band combination was judged by RMSE in this paper.
Linear correlation showed that the three-band reflectance model
[R−1

rs (690) − R−1
rs (703)] × Rrs(759) gave the lowest RMSE,

the highest correlation coefficient (r2 = 0.94), and estimation
precision. The resulting Chla estimation model and the compar-
ison of measured and estimated CChla are shown in Fig. 7. The
RMSE and the mean RE were 15.1 μg · L−1 (37.3% from the
mean CChla) and 44.4%, respectively. Although [R−1

rs (690) −
R−1

rs (703)] × Rrs(759) gave the lowest RMSE, the correspond-
ing RE was slightly larger than the lowest value of 42.5%.
The measured and estimated values for CChla were distributed
along the 1:1 line, indicating that the three-band reflectance
model [R−1

rs (690) − R−1
rs (703)] × Rrs(759) could be used for

the eutrophic turbid waters of Lake Taihu.
From (11) and (12), it can be concluded that the error sources

for modeled remote-sensing reflectance are derived from the
f/Q and the backscattering probability (β). However, for the
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TABLE II
COMPARISON OF RETRIEVAL EQUATION OF THREE-BAND MODEL

AND PRECISION FOR FIVE DIFFERENT VALUES OF THE

BACKSCATTERING PROBABILITY (β)

Fig. 8. Comparison of measured and modeled [R−1
rs (690) − R−1

rs (703)] ×
Rrs(759).

three-band model, f/Q is independent on the wavelength and
will be eliminated in the model, thus has no effect on retrieval
precision of CChla. In this paper, the values of 0.012, 0.015,
0.021, and 0.024 (33% standard deviation as compared to
0.018) were used to check the sensitivity of the three-band
model to β for Chla retrieval precision. Table II shows the
fitting equation, r2, RMSE, and RE of CChla estimation using
the different β values. The variation of β only had a slight
effect on the RMSE and RE of CChla precision. The maximal
deviation of RMSE and RE were 1.9% and 2.1%, respectively,
using 0.012 as β value as compared to the model using 0.018.
Furthermore, the different β value only changed the linear slope
but not the intercept of retrieval model. The results suggested
that the three-band model developed in this paper was not
sensitive to the uncertain parameters and could be used to CChla

estimation.
Furthermore, Fig. 8 shows the comparison of measured

and modeled [R−1
rs (690) − R−1

rs (703)] × Rrs(759) in order to
further validate the three-band model using the remote-sensing
reflectance modeled. Measured and modeled [R−1

rs (690) −
R−1

rs (703)] × Rrs(759) were linked by a highly significant
linear relationship (r2 = 0.90), with a slope close to 1.0
(0.935) (Fig. 8). This analysis further showed that the modeled
Rrs(λ, 0+) can be used to estimate CChla based on the three-
band model as compared to measured Rrs(λ, 0+) spectra in
other studies [33], [34], [36].

To compare the precision of the three-band reflectance model
with other methods, the band-ratio method was also used to
estimate CChla. To find the optimal spectral bands of the band-
ratio method, the ratios of any two wavelengths from 350 to
800 nm were used for correlation with CChla. Linear correlation

showed that the ratio of Rrs(713)/Rrs(674) gave the highest
determination coefficient (r2 = 0.92) and the lowest RMSE
(18.0 μg · L−1) (Fig. 9). The three-band reflectance model
[R−1

rs (690) − R−1
rs (703)] × Rrs(759) was more precise than the

band-ratio method Rrs(713)/Rrs(674) as has been validated
in other Case-2 waters [33], [34]. The three-band model with
spectral bands optimized for inland waters, with Chla ranging
from 4.4 to 217.3 μg · L−1 [36] and from 107 to 3078 μg · L−1

[33], allowed accurate estimation of Chla when applied to Lake
Taihu, in spite of this lake having a very different composition
of optically active substances (Chla, tripton, and CDOM).

E. Retrieval Model Validation

In order to further understand the applicability of the three-
band model, we presented the evaluation of the performance of
the three-band model using an independent data set including
two investigations. CChla ranged from 1.6 to 202.0 μg · L−1

with a mean value of 29.6 ± 36.6 μg · L−1, which fell into
the range CChla used to develop the model. Comparisons of
the measured and estimated CChla by the three-band model
and the band-ratio model are shown in Fig. 10. Measured and
estimated CChla by the three-band were in good agreement
with a highly significant linear relationship (r2 = 0.92 and a
slope of 0.967 close to 1.0). The RMSE and percentage of
RMSE accounting for the mean CChla of validation data set
were lower than those of calibration data set (Figs. 7 and
10), suggesting that the performance of the three-band was
accepted. Compared to the three-band model, the performance
of the band-ratio method had a larger RMSE and RE (1.45 and
2.01 times of the three-band model, respectively). One of the
reasons for the better performance of the three-band model,
compared to the band-ratio method, was that the three-band
model completely removed interferences due to backscattering
by means of Rrs(λ2) and Rrs(λ3).

The three chosen bands basically fall into the range of
MERIS channels (channels 8, 9, and 10: 681/8, 709/10, and
754/8 nm, respectively), which would make it possible to esti-
mate Chla accurately using MERIS imagery. The determination
coefficient, RMSE, and the mean RE were 0.92, 17.0 μg · L−1,
and 48.1%, respectively, using the central bands of MERIS
imagery [R−1

rs (681) − R−1
rs (709)] × Rrs(754), which gave high

retrieval accuracy.
Although the algorithms presented in this paper are de-

rived for typical band settings of satelliteborne instruments
like MERIS, it will still be quite challenging to investi-
gate the applicability in actual MERIS or MODIS images of
Lake Taihu. A major source of concern is the robustness of the
algorithms for imperfect atmospheric correction over turbid wa-
ters [37], [38]. Small errors in the derivation of aerosol loading
and the angstrom coefficient at near-IR wavelength typically
translated in significant deviation for normalized water-leaving
radiance at shorter wavelengths [39]. At present, the black-
pixel assumption widely used in Case-1 waters for atmospheric
correction was inappropriate in productive Case-2 waters with
higher sediment or Chla concentration. However, once the
atmospheric correction procedures over extremely turbid waters
have improved, the three-band algorithm might turn out to
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Fig. 9. Retrieval model of Chla concentration and comparison of measured and estimated values using the band-ratio method (44.4% in the bracket is the
percentage of RMSE accounting for the mean CChla).

Fig. 10. Comparison of measured and estimated Chla concentration (CChla) of the three-band model and band-ratio method based on an independent data set
(31.4% and 45.7% in the bracket are the percentages of RMSE accounting for the mean CChla).

be a rather robust algorithm for Chla retrieval, because the
offsets in the Rrs(λ), due to errors in the atmospheric correction
procedure, are partially counterbalanced by taking Rrs ratio’s in
a narrow wavelength interval (681–754 nm).

IV. CONCLUSION

Effective remote retrieval of Chla is a major challenge in
turbid and eutrophic Case-2 waters such as Lake Taihu in
China. Although several previous studies have provided reliable
detection of Chla in Case-1 waters, many studies were not
able to fully support accurate identification, monitoring, and
forecasting of future locations of algal blooms in optically
complex Case-2 waters. The retrieval accuracy of Chla in
Lake Taihu depends to a large extent on the accuracy of, and
consistency among, the in situ data used in the development,
validation, and improvement of the applied remote-sensing bio-
optical algorithms. In this paper, biooptical measurements from
four different seasons, with large temporal–spatial variability
in the concentration of three optically active substances and
inherent optical properties, were used to model the variation
of remote-sensing reflectance. We found that the three-band
model [R−1

rs (690) − R−1
rs (703)] × Rrs(759) in the red and NIR

wavelengths, where impact from CDOM and tripton absorp-
tions on reflectance was minimal, could be used to retrieve Chla
with better performance than the band-ratio method widely
used in previous studies. The wavelengths proposed for the
three-band algorithm correspond well to the MERIS bands and

provide a good basis for satellite monitoring of phytoplankton
blooms in Case-2 waters from MERIS. It was noteworthy that
the three-band model using MERIS central bands [R−1

rs (681) −
R−1

rs (709)] × Rrs(754) also allowed accurate estimation of
Chla in the range of Chla from 4.0 to 448.9 μg · L−1 from
four different seasons, suggesting that MERIS imagery could be
used to monitor Chla not only in waters with low-to-moderate
Chla concentrations (as has been done in previous studies) but
also in extremely turbid and hypereutrophic waters. However,
successful application of this algorithm to satellite data depends
heavily on the accuracy of the atmospheric correction in the
red–NIR region over lakes. This might pose new challenges to
the positioning NIR bands in future missions and characteriza-
tion of land influences on atmospheric correction over relatively
small lakes like Lake Taihu.
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