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Abstract  
 
The paper presents numerical procedures to compute conditional frequencies on large scale maps 
and surveys comprising mostly qualitative data, much in the way commonly done for ballots but 
with sufficient generality and computational power to support simultaneous processing of  a large 
number of questionnaire entries, for categorical as well as for real-valued data. The procedures 
evaluate the conditional distributions, and identify main conditioning variables. Next, once the 
relevant determinants have been selected including one categorical treatment variable, matching 
is applied to estimate the treatment effect of this variable, and given this effect to identify the 
most effective treatment. Specifically, when characterizing the conditional distributions we 
address the curse of dimensionality inherent in the crossing of a large number of qualitative 
answers by focusing on highest frequency outcomes and by applying sorting routines from 
database management in computation. In case real-valued explanatory variables appear jointly 
with categorical variables, we make use of kernel smoothing, which allows among others for the 
representation of spatial correlation, under a window size that maximizes the goodness of fit.. The 
appendix describes the fully GAMS-controlled operation of the software tool, a new component 
of SOW-VU’s GRCP-package for grid level calculations, regression and classification. The tool 
also includesoptions for spatial interpolation, for projection of survey data on maps, and vice 
versa, as well as for calculations on recursive sequences of conditioning variables (Markov 
chains), so as to ease linkage of different surveys, construction of aggregate statistics at district 
level and navigation from one task to the next. 
 
 
 
Version 2 extends version 1 (Keyzer and Pande, 2008) with facilities for matching and calculation of optimal 
treatment. 
 



 



1. Introduction 
 
In opinion polls, individuals are asked about their preferred candidate or party as well as about 
their personal situation as well as their motives and opinions. On the basis of this information, 
analysts can report on how given voters’ characteristics such as age, sex, education and 
occupation, are distributed among candidates, and discuss changes in these distributions relative 
to earlier polls. Reporting will be on each characteristic separately or for two or three jointly. 
Combined these operations are known and will be referred to as polling. 
 
More in-depth studies also indicate how characteristics jointly affect preference for a particular 
candidate or party, using statistical methods such as cluster analysis, factor analysis and logit and 
probit regression, and support-vector classification so as to identify major determinants. 
Countless findings were obtained in this way. Yet, it would seem that, between the partial, 
descriptive approach and the multivariate, regression-type approaches, the option of a descriptive 
analysis is being skipped that jointly looks at a large number of answers, aiming at 
comprehensiveness. This motivates the development of the classification tool reported on in the 
present paper.  
 
Greater comprehensiveness is presumably important in this context, because the respondents 
answer many questions at the same time. Discussing averages and their distribution on a 
question-by-question basis, amounts to limiting attention to marginal probability distributions, 
while neglecting the interdependencies of the joint distribution. Conditioning on a few 
characteristics will only resolve this problem if the researcher has very good intuition and 
experience on which events and determinant variables to select, and which functional form to 
choose.  
 
Proposed approach 
 
Hence, we present an approach to compute conditional frequencies for a large number of 
variables from a database, typically a household survey or a geographical map. We propose to 
treat the full survey, or a large subset of it, as a joint empirical frequency distribution, from which 
conditional frequency distributions can be derived by partitioning the answers by say, S 
respondents indexed s into a vector of yK  dependent variables and a vector x of xK  independent 
variables, and the frequencies of y are taken conditional on x.  
 
In a spatial setting, these operations will be referred to as zoning, and deal with the overlays of  
various geographical maps for distinct characteristics of a common area as a survey, treating map 
pixels for which observations are available as the, obviously georeferenced, respondents. Hence 
zoning amounts to interviewing pixels, or equivalently, allowing them to vote for the class they 
are considered to belong to. Spatial interdependence can be accounted for also, by characterizing 
each point on the map in terms of the conditions prevailing in the (eight) adjacent pixels as well 
as in the point itself. Zoning can, therefore, be interpreted as polling, applied to pixels, as opposed 
to households or individuals.  
 
Clearly, the analysis can go beyond calculation of conditional frequencies in the sample. As the 
conditional frequencies are naturally interpreted as probability estimates, it becomes possible to 
compute the most probable characteristics associated to each x-value, which can be interpreted as 
winner of the election, as well as the runner up and so on. One may also calculate the edge of the 
winner over the runner up and other competitors, as a measure of stability.  
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These calculations in turn allow for further selection of subsets of variables, for instance stepwise 
selection to identify the subset of y-characteristics that yields the highest edge for this given 
combination x-characteristics, hence allowing for stepwise identification of the subset of 
characteristics y that discriminates best. Stepwise selection provides a bridge to common 
regression techniques that are less equipped than polling to deal with large number of 
characteristics in parallel, particularly for data are of categorical type. For example, ordered logit 
or probit analysis that can deal with categorical dependent variables on the left hand side but only 
accommodate very few categorical variables on de right-hand side, and even then without much 
flexibility as regards functional form specification. 
  
Furthermore, once a conditional frequency distribution has been obtained, polling may be applied 
for interpolation at households or grid points where an x- value but no y-value is available as well 
as for prediction of y under changed x, computing at each pixel for which x-value is available the 
corresponding y-value with the highest probability, its runner up, its edge and so on. 
 
Consequently, in case a conditional frequency distribution has been obtained from a household 
survey without georeferencing but the same x-values are also available in georeferenced form, 
possibly after downscaling of district data to pixel level, then zoning can be applied to this 
distribution as well. Hence, polling offers a tool to combine “people and pixels”. 
 
As endogeneity issues in estimation of effects are unavoidable, “matching” for categorical 
variables is also proposed. Under matching a new data set is created by coupling to every treated 
individual, possibly synthetic, a non-treated one with a similar probability as that of treatment and 
a similar characteristics profile. On this, basis the treatment effect can be estimated, and after this, 
the most effective treatment identified. 
 
 
Motivation 
 
The application of polling to household analysis and zoning is envisaged to serve as a descriptive 
tool, to be used ahead of further specification of parametric and semiparametric regression and 
classification models, also for variable selection. 
 
Furthermore, selection of determinant variables and specification of functional form become 
difficult when determinant variables are categorical (integer coded) only, as opposed to real-
valued, which is the case for most answers in surveys, because no flexible forms are available to 
start from, which allow for gradual focusing on major components. Indeed, when explanatory 
factors are categorical and their combination values large in number relative to the number of 
observations and the number of real valued variables, it is no longer possible to follow the 
common dummy variable approach that allows for one equation per binary factor and let all 
coefficients on the real-valued determinants differ freely across equations. The practice in such 
situations is to treat the binary factors as dummies in specified structural forms, say, on the 
intercept or on selected real-valued variables, with the inevitable consequence that the functional 
specification becomes arbitrary, since the range of possible forms soon gets too wide for an 
exhaustive assessment.  
 
Finally, there is a basic distinction when it comes to using the function in prediction between real-
valued and categorical explanatory variables. For real-valued variables out of sample prediction is 
a natural step, since the functional form is defined on a real domain, and the belief that the 
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function holds in between points of observation is the starting point of the whole exercise. By 
contrast, for categorical explanatory variables, a combination of values not appearing in the data 
amounts to a completely new phenomenon. Bagging and bootstrapping may to some extent 
enable the modeler to assess whether within the set of observed combinations, estimation on the 
basis of some can be extrapolated to others but it definitely says nothing about extrapolation to 
new so far unobserved combinations of factors. 
 
We conclude that there is little scope for identifying the correct functional form in the presence of 
more than two or three categorical variables and also that it is not meaningful to make predictions 
at out of sample values for categorical explanatory variables. This further justifies a procedure for 
stepwise selection as outlined above, since reducing the number of explanatory categorical 
variables will, unlike for real-valued variables, extend the domain of prediction. 
 
We remark that in case some of the x-characteristics are continuous (real-valued) as opposed to 
categorical, probability mass becomes likelihood and probabilities are recovered only after 
integration over the continuum. For example, if a subset of x-characteristics refers to latitude and 
longitude, aggregation from pixel to district will yield frequencies at district level. In addition, 
conditional likelihood densities at pixel-level can be estimated in this case, by definition of 
proximity measures (e.g. kernels) through which spatial correlation can be accounted for and 
spatial inference conducted. Kernel smoothing or nearest neighbor interpolation can be used for 
this purpose, leading to conditional density maps at pixel-level.  
 
One last point deserves attention, which motivates incorporation of matching approaches. It is the 
issue of endogeneity that can manifest itself for categorical just as for real-valued data. Consider 
a dependent variable, say, crop yield, a treatment variable, fertilizer application and a vector z of 
environmental conditions, soil quality and rainfall. The basic issue is to estimate correctly, how 
for given observed factors z, variation in x impacts on y. The main difficulty is due to the fact that 
unobserved factors ε , to the extent they correlate with variation in x, might explain the effect on 
yield, rather than variation in x itself. Hence, the main challenge is to disentangle the effect of the 
treatment x from that of unobserved ε . Clearly, this requires a priori information on the 
relationship between x and ε , which is of course problematic since ε  is not observable. There 
are basically two types of approach available: experimental and non-experimental. Experimental 
approaches design the variation in x so as to break any correlation between x and ε , the non-
experimental ones take x and ε  as given but try to account for their relation explicitly, on an a 
priori basis. Since most survey data are commonly obtained in non-experimental settings, it is 
important to allow for statistical method that can break the relationship between x andε  also in a 
setting with categorical data. The matching techniques to be considered mimic the randomized 
sample by creating a sample in which every object has the same fifty percent probability of being 
treated or not. Finally, once the average treatment effect has been estimated, the next step is to 
look for the treatment with the highest payoff and compare it with its competitors. 
 
 
Possible applications 
 
Before proceeding to further description of the tool proper, some examples may clarify possible 
applications. These examples seek to deal simultaneously with all covariate observations of a 
questionnaire comprising say, 50-100 different questions/measurements, linked through geo-
referencing to several maps and 30,000 observations. Each exercise starts with one, overarching 
question, such as: Who is my voter? Where do rural populations tend to settle? What is the best 



 
 
 
 

4 

cure to some illness? Indeed, finding a single question as unifying theme often is the key to 
coherence and success in empirical research. This question provides the theme to justify the 
proposal, and once the actual statistical investigation has been completed, to present the 
conclusions. Our tool seeks to help keeping the middle part, with statistical analysis, in tune with 
this theme, essentially by guiding the modeler from that question to practical numerical 
operations and empirical assessments. 
 

 
1.”Who is my voter?”: What is the frequency distribution of votes (w) over political parties (y), 
by educational level, sex, marital status, occupation, and voting district (x)?  
 
The calculations establish the dominant social profile of the voter for each party at an election.  
Total votes m (m for mass) cast on each party y are counted as real-valued numbers by summation 
over the weights w on individual observations (possibly dividing by a constant to obtain a mean). 
One-man-one vote corresponds to unitary weights. The “by”-defines the conditioning on x. 
Hence, x-classes consist of a crossing of the educational level (1=none, 2=primary, 3=secondary, 
4=tertiary) , sex (1=male, 2=female), marital status (1=single, 2=married/couple, 3=divorced, 
widow(er)), occupation (1=unemployed, 2=worker/employee, 3=employer) , voting district 
(alphabetical order), possibly also the vote at earlier elections. To establish dominance, the 
number of votes on party y by class x is calculated, and from there the frequency distribution of 
the votes expressed by every class x, for the top N largest parties in each class.  
 
Hence, y and x are integer coded vectors with character strings associated to their elements that 
make up the legend of the classification. Hence, the whole counting process boils down to 
obtaining array elements x ,ym , where x and y are integer coded vectors that actually define a long 
list of subscripts, and ranking the outcomes to establish dominance. This is straightforward in 
principle, and daily practice in marketing research among others, but there is a curse of 
dimensionality as a result of which looking up the m-value that corresponds to given x and y 
becomes far from straightforward as the dimensions of x and y grow larger. Yet, as the difficulty 
is not uncommon in, and actually the essence of database management, we can import practices 
from that field.  
 
Moreover, the key point distinguishing these frequency calculations from regular clustering and 
regression are that high multidimensional  ( x,y )  vectors (the questionnaire) can be processed, 
that the decision on conditioning as to what is x and what is y is perfectly free and 
interchangeable, and that while the variables are categorical, no measure of distance or proximity 
and no parametric form with dummy variables are required. This makes it possible to deal 
directly with the broad thematic question “what are the social and district characteristics of the 
people voting for me?”, albeit, of course, that the number of observations in every y-cell 
corresponding to given x will be limited and often zero.  
Furthermore, to present the data in a way that can be absorbed by the reader it is important that all 
outcomes (identity as well as frequency of observed votes and of votes for winning candidate and 
runner up) can readily be shown on geographic maps. We remark that the example given does not 
contain any real-valued variable z but if the votes can be geo-referenced through GPS, it becomes 
possible to differentiate the voting behavior socially, through an income or an age variable, or 
spatially within districts, or, alternatively, to conduct calculations at a higher, say, provincial 
level, with a continuous as opposed to discrete spatial differentiation of voting behavior across 
district boundaries within each province. A grid map rather than a district map is then needed to 
represent the outcomes spatially. However, as such a transition from coded (district) to mixed 
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coded and real-valued (province and co-ordinates) is seldom possible for qualitative variables, 
one is generally left with observations that cannot be compared across x. 
 
At a more general level, this illustrates the tradeoff between the compartmentalization into 
discrete classes whose frequencies are readily calculated but often turn out to be zero, against the 
generalization through simultaneous treatment of observations in wider categories (here the 
province) with a continuous differentiation inside each. In fact, through the transition to the 
continuum, probabilities turn into densities that can only be evaluated under some 
parametrization, which for given number of observations inevitably rests on untestable beliefs. 
Compartmentalization is more transparent and more easily interpretable but it gives up any 
possibility of learning from qualitative similarities. Our frequency calculations are intended to 
help in this process of shedding in a stepwise manner the less essential variables and categories, 
on empirical rather than on a priori grounds, so as to zoom in on key relationships that may be 
parametrized subsequently by some other method. 
 
2.”What does vegetation predict about the soil quality?”: What are the associations of land 
surface (w) between soil (y) and vegetation (x) characteristics? 
 
As conducting soil tests at many locations may be costly, it would be practical if vegetation 
characteristics could be used to predict where the soil conditions are most favorable for crop 
production. Soil maps are data sets describing various soil properties such as texture, chemical 
composition and permeability, each by a given number of classes. Similarly, vegetations can be 
characterized on maps by plant variety, density, size and variability, also in qualitative terms and 
possibly jointly with climatic variables (temperature, wind, rainfall, usually real-valued). 
Calculation of the conditional frequencies, with surfaces now playing the role of votes, makes it 
possible to determine what an observation on vegetation can predict about soil type, expressed as 
a frequency distribution of soil types that could correspond to it. 
 
Many other questions can be envisaged, for example “To which extent does application of soil 
classification system I match tally with the prediction of system II?”. In this assessment it will be 
natural to allow for real-valued variables such as climate. Such variables typically impact on a 
neighborhood whose range will be application specific, making it necessary to determine how 
wide the “windows of prediction” can be, that is how fast information should decay over space. 
Specifically, this amounts to finding the window size leading to predictions that best fit the 
observations.  
 
3. “How to live longest?”: What are, for given social conditions (x), the lifestyles and health care 
strategies (y) that prove most conducive to longevity (m)? 
 
We suppose that a longitudinal survey has recorded the age and cause of death of individuals, 
whose lifestyles and medical treatments were registered during their lifetime. These individuals 
can be classified by social condition (x), with a frequency distribution of longevity w under 
different (y) lifestyles (e.g. smoking or not), and health care strategies (e.g. frequencies of check 
ups). 
 
On this kind of data set, health care researchers and insurance companies study the effectiveness 
of various cures in fighting given diseases for different groups of patients. Yet, their actual 
interest is in answering the broader question on longevity, a real valued variable taken to be 
dependent on qualitative interventions y, for given conditions x. Hence, rather than choosing the 
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class with maximal conditional frequency of occurrence we are now interested in finding the 
class producing maximal life expectancy. 
 
Choosing mean longevity m by class as objective criterion (persons×years of life) to be 
maximized illustrates the use for decision support exercises where finding the most cost-effective 
strategy is the aim rather than predicting most probable outcomes. Of course, longevity could be 
weighted further, say, allowing for decay in value as the individual in the survey died at older 
age. Also, to the extent that expressing this value in monetary terms is deemed relevant and 
acceptable morally, costs could be subtracted, and the strategy with highest net benefit over total 
revenue selected. 
 
 
Module of the GRCP package 
 
The classification tool has been designed as an additional component of the GRCP-software 
developed at SOW-VU. The GRCP-software is a GAMS-controlled package for integrated data 
management and mapping, used to conduct Gridding, Regression and Classification exercises on 
large geographic and household-level data sets, such as GIS-maps and census-data, respectively 
(Keyzer, 2008; Norkin and Keyzer, 2009). The gridding part comprises arithmetic commands on 
basic data as well as a set of rule-based algorithms to conduct various types of computations on 
maps and surveys. A common gridding operation is to conduct constrained scaling, whereby 
district level data (Y) are being distributed over grid cells or census households in proportion with 
the known distribution of another variable (x), say, population, whose value at grid or household 
level is known, while maintaining specified bounds on the resulting values (y). The software also 
writes a SAS-program for display of maps with legends that is readily used for further display 
and processing of data. 
  
By contrast, the regression techniques in GRCP conduct the distribution by estimating via support 
vector (SV-)regression (quadratic programming) algorithms, also known as kernel learning (see 
Schoelkopf and Smola, 2002). Combining map and district data with survey data, these 
techniques are used to estimate the relationship between data x and y in the survey, but with the 
extension relative to standard SV-regression that that the estimated grid-map or census weighted 
mean at district level matches the observed district mean via additional constraints in the 
program. Their intended field of application is similar to that of poverty mapping (Elbers et al., 
2003) but the SV-approach in GRCP is different in that poverty mapping usually estimates a 
(parametric) relationship between y and x on the survey only, before applying it to the census or 
grid-map, whereas our technique imposes additional district information at the stage of 
estimation, which ensures that the eventual prediction will meet the district average. Another 
difference is that the regression is done with support-vector regression so as to allow for more 
flexibility and to account for interdependencies such as spatial autocorrelation. The classification 
facilities in GRCP apply similar SV-procedures to the case of limited dependent y-variables 
where they constitute the more flexible counterpart of standard logit and probit methods. 
 
Despite their enhanced flexibility relative to pure parametric (i.e. not kernel based) estimation, all 
three approaches require the modeler to impose quite a few a priori restrictions ahead of any data 
analysis. For gridding, these are the gridding rules and for SV-regression and SV-classification 
the user has to keep the dimensionality of the x-vector limited to fit available quadratic 
programming software (usually to a number far below the number of observations), which as 
mentioned earlier forces an a priori selection of explanatory variables and functional forms 
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Computation 
 
The additional GRCP-module described in this paper defines a two-step computational technique 
that can be repeated arbitrarily often in a sequence, to process a survey while dropping redundant 
(non-observed) combinations of codes. The first step applies the crossing procedure common in 
GIS-packages to the answers given by an individual (or grid cell). In principle, this amounts to 
entering the j-th answer as j-th character in a string (word). By using ASCII characters, we can 
accommodate 256 different answers to each question. Hence, along the sequence of crossing 
operations various questions may be compressed into a single answer: two binary questions lead 
to four combinations, and eight to the 256 answers, fully exploiting the capacity of a single byte 
8-bit character. In all, we allow for two such questions for x and up to ten for y, leading to up to 
strings s s( y ,x )  of up to twelve characters describing the relevant characteristics of respondent s.  
 
At the second step, the polling is implemented via a dedicated algorithm that relies on the fact 
that as never realized combinations can be dropped, the actual number of combinations will never 
exceed the number of observations. The algorithm invokes a freeware lexicographic ranking 
algorithm to order the character strings built up from the pairs s s( y ,x ) . Once ordered, identical 
strings (votes) appear in blocks, and in the absence of real-valued variables z, the polling 
operation reduces to counting the number of votes in each, and eventually sorting these numbers 
in decreasing order. It is in general practical to conduct such pairs of steps in series, since this 
makes it possible to raise significantly the information processing capacity because each step 
drops all low frequency combinations, usually an overwhelming majority. Hence, all calculations 
are simple in principle.  
 
In case real-valued variables z appear also, we propose to use an optimization method that relies 
on kernel smoothing (e.g. Haerdle, 1993), which unlike the SV-methods of kernel learning and 
logit/probit estimation only involves a simple scanning over averaging operations and is, 
therefore, more stable in the common situation that there are few but some observations in several 
classes.   
 
 
Overview 
 
The paper proceeds as follows. Section 2 describes the frequency estimation and maximum 
likelihood prediction when all explanatory variables are discrete. Section 3 allows for the mixed 
categorical-real valued explanatory variables, and shows that the kernel smoothing formulation 
proposed for this case can be used to represent spatial correlation. Section 4 discusses various 
aspects of implementation including spatial interpolation and projection of survey data on maps, 
and vice versa, calculations on Markov chains with a recursive sequence of conditioning 
variables and matching for categorical variables. The Appendix, referred to as Appendix D for 
compatibility with earlier GRCP-documentation, describes the software and its use. It refers to 
the classification by crossing and polling as “zoning” to emphasize its design for application in a 
geographic setting. 
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2. Frequency estimation and maximum likelihood prediction with 
discrete explanatory variables only 
 
Let integer coded vector integer coded vector s 1s js Jsg ( g ,...,g ,...,g )=  the value of vector sy , 

and  s 1s rs Rsc ( c ,...,c ,...,c )=  denote the value of sx  at s, s 1,...,S= , while scalar sw  attributes a 
weight to (measures the mass of) the observation; hence, assuming sw 1=  leads to the counting 
of the number of observations (votes). Alternatively, non-unit weights can be used to measure, 
say, the spending by a consumer on a particular item. Thus, the triples s s s( y ,x ;w )  define the 
empirical joint distribution of ( y,x ) . Computations amount to evaluating conditional averages 
over this empirical distribution for given combinations of characteristics q ( g ,c )= , with g and c 
both vectors of the same dimensions as sg  and sc , i.e. counting the number of observations 
whose values s s( g ,c )  coincide with  ( g ,c ) . The mass of a class is now defined as: 
 

 o
gc

GC

gc ss S
S

1m w
n ∈

= ∑ ,                  (2.1) 

 
where 

GCSn  is the number of observations s, for which both the weight sw  is available and some 
some pair ( g',c') , i.e. for which information is available on all elements of the triple s s s( y ,x ;w ) . 
Division by 

GCSn  is introduced only to express mass as sample average, so as to keep it bounded 
with number of observations rising to infinity. 
 
Associated to this, we can also compute the conditional frequency: 
 

 
c

gc
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P
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,                   (2.2) 

 
where cG  is the set of possible combinations of codes g, for given c.  Formally, the polling 
facility computes a conditional frequency:  
 
 h s s h sP ( x ) Pr ob{ y q | x }= = , h 1,...,H= ,               (2.3) 
 
of the vector of (qualitative) characteristics s 1s js Jsy ( y ,..., y ,..., y )=  of observation s S∈  for 

given characteristic s 1s rs Rsx ( x ,...,x ,...,x )= , adopting the value h h1 hj hJq ( q ,...,q ,...,q )= , 
h 1,...,H= of discrete class values.  
 
Clearly, the number of possible combinations appearing in the sample can be very large. Rather 
than computing frequencies for each, the program identifies the N classes with highest 
probability, while amalgamating the remaining classes under the ( N 1)+ category ‘other’. It 
assigns rank 1,...,N=  to these classes in decreasing order. Hence,   is such that h



 satisfies:  
 
 

1h s h sP ( x ) P ( x )
+

≥
 

, 1,...,N= .       (2.4) 
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We note that (2.3)-(2.4) can be interpreted as a purely non-parametric regression of y on x. 
Clearly, rank 1=  predicts the “most likely” type sy  for given sx . The difference 

( )1h s h sP ( x ) P ( x )
+

−
 

 measures the robustness of this estimate, which in turn dominates number 
three, and so on until the N-th estimate. Reporting on the edge of the winner over the runner up 
and over the N-th estimator can be informative, over the runner up because it indicates the extent 
to which the prediction of a class may change with new observations, and over the N-th estimate 
because it indicates the extent to which the prediction is possible at all (if the N-th predictor 
performs almost as well as the winner, prediction is difficult). Hence, the procedure can be used 
to train an expert system. 
 
In addition, the estimation reports on the number (or mass) of observations of pairs s s( y ,x ) , 
inducing the modeler to strike a balance between precision of prediction, obtained through a more 
differentiated classification schedule, and the mass available to corroborate individual 
predictions, which is higher for cruder classifications. 
 
Yet, characterizing the actual statistical properties of the estimator requires assumptions on the 
data generating process of observations s s s( y ,x ;w ) . If these are iid, the conditional probabilities 
obey the multinomial distribution. For household samples, this could be a plausible assumption 
that would also make it possible to apply simulation techniques such as cross validation through 
bagging. However, the spatial context for which the facility is primarily designed suggests 
accounting for spatial dependencies as well. This aspect is considered in the next section 
 
As discussed at some length in the introduction, because of its capacity to treat multiple 
dimensional x and y in one round, the polling approach is well equipped to address the “reverse 
regression” or thematic question: “What is the best set of explanatory variables to explain the 
given dependent variable?” and since the computing conditional frequencies is the sole aim, there 
is no problem of reverse causation arising in this context. Moreover, rather than purely asking for 
a prediction at any given x without much warning when this is purely speculative, polling will 
attribute zero probability to combinations that were not observed.  
 
Finally, once the estimation has been conducted the frequency tables are readily used for 
maximum likelihood interpolation and prediction, by looking up the highest frequency are readily 
used for maximum likelihood interpolation and prediction, by looking up the highest frequency y-
value associated with given x. 
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3. Allowing for both categorical and real-valued explanatory variables 
 
So far, every respondent s received in return for the vote of mass sw  on pair gc, a mass equal to 
the class average gcm . Hence, there was full conservation of mass within each gc. Indeed, 
equation (2.1) is naturally interpreted as a (weighted) voting scheme whereby each observation r 
sends its vote to the “box” of the class it belongs to. In return, it receives the mass distribution 

rgxm of y associated to its rx , leading to the probability estimates 
 

 r

r

gxr
g

gxg

m
P

m
=
∑

,                          (3.1) 

 
of what the code might have been. To introduce the alternative with categorical x and real valued 
z, we imagine a situation whereby voters communicate via a radio transmitter. In the setup of 
(3.1) the vote of every respondent in district x is communicated to a district-x ballot office, that 
after the closing of the ballots processes all votes and returns the results in the form of a 
probability distribution r

gP , and the number (mass) of votes cast 
r

r
gxg

M m=∑ , as well as the 

number of voters 
gcSn . At the same time, the information is communicated to a central office that 

consolidates the results.  
  
Alternatively, one could imagine free communication, whereby every radio-transmitter can 
capture all messages from the own district and contains a device to process the votes at the level 
of the individual. The district office can now be dispensed of but the central office would still 
capture all messages, 
 
Now in democratic elections, unitary weights sw  would refer to people with the right to vote and 
zero to the others. Clearly, a company vote by shareholders would attribute other weights. More 
importantly, in our case where individuals receive information on the votes of all others, it would 
be possible to make the strength of the signal dependent on the proximity of the sender, socially 
or geographically but expressed as a proximity function of  real-valued variables s r( z ,z ) . 
 
This makes it possible to account for the fact that close neighbors may matter more for the own 
frequency distribution, and makes it possible to allow for spatial interdependence by letting votes 
decay with distance. To represent this proximity effect, kernel functions k offer a natural vehicle. 
For rz  denoting the real-valued “coordinates” of r (more generally a real-valued vector), every 
kernel function s s s r r rk(( y ,x ,z ),( y ,x ,z ))  has the property that it provides the elements of a 
matrix s s s r r rK [ k(( y ,x ,z ),( y ,x ,z ))]=  , called the Gram-matrix, which is positive semidefinite 
symmetric. We limit attention to a kernel function that has s s s r r rk(( y ,x ,z ),( y ,x ,z )) 0=  
whenever s s r r( y ,x ) ( y ,x )≠  and, moreover, is a mollifier density: 

r r r yx yx rk(( y,x,z ),( y ,x ,z )) ( z z )κ ψ= − , where yxψ  is a density (e.g. the normal density), and 

yxκ  a constant such that yx yx( 0 ) 1.κ ψ =  A kernel function measures the proximity of r from s and 

reaches its maximum at r sz z= . Hence, proximity between sz  and rz  is only positive within the 
same class: s s r r( y ,x ) ( y ,x )= , and the kernel function effectively varies with s r( z ,z )  only but 
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in a way that might be class-dependent. Practical applications of kernel smoothing and SV-
regression often drop the condition that kernel values should be zero when measuring proximity 
of observations belonging to different classes but these require significant a priori work to 
quantify such similarities. 
 
With a kernel smoothing specification, the vote reaching r when sent from s becomes subject to 
decay and equal to: 
 
 r

s s s s r r rw k(( y ,x ,z ),( y ,x ,z ))= .        (3.2) 
 
reflecting the loss of mass. Therefore, total mass distribution is computed for all for all g 
occurring in rx  as:   
 

 o
gxro

r
g s s s r r rs S

S

1m k(( y ,x ,z ),( y ,x ,z ))
n ∈

= ∑ ,   or S∈ ,                      (3.3) 

 
where oS denotes the set all sites for which full s s s( y ,x ,z )  observations are available. We 
remark that since the kernel was taken to be a density, (3.3) has the form of the well known 
kernel smoothed estimator (mollifier, see Ermoliev and Norkin, 1997; Keyzer and van 
Wesenbeeck, 2005) for joint likelihood densities, with observation specific weights. Noteworthy 
is also that, unlike in logit and probit regression, the dependent variable y appears on the right 
hand side as explanatory variable. Indeed, (3.3) can also be interpreted as a common (but class-
specific) kernel smoothing regression with (real-valued) dependent variable 1, whereby equation 
(3.3) generates r

gm  as a mean that can, since k is taken to be a mollifier density, also be written 
as: 

 r
o rgxro

gxr
g r gx s rs S

S

m ( z ) ( z z )
n
κ

ψ
∈

= −∑ . 

Therefore, with sample size 
gxrSn approaching infinity, one obtains  for an iid sample the 

unbiased estimate as the average function: 
 
 

r r r r

r
g r gx gx r gx |zm ( z ) ( z z )dz E wκ ψ= − =∫    

 
At a practical level, the formulation (3.3) has the advantage over both SV-classification and 
logit/probit estimation that it frees the modeler of the cumbersome task of having to specify 
functional forms with dummy variables for each and every possible event. However, function 
(3.3) is computationally less simple than might seem at first, because the discrete values it could 
adopt have to be looked up in a table that in principle contains one value for every possible 
combination of subscripts and may, consequently, become intractably large, hence the need for a 
tailor made algorithm.  
 
Associated to the mass calculation is the probability (actually the frequency) distribution of g 
occurring at r: 

  
r
gr

g r
gg

m
P

m
=
∑

.                               (3.4) 
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Moreover, the maximal likelihood classifier now differs across sites and can be obtained as: 
 
 r r

g gg arg max m= ,                                                                          (3.5) 
 
with associated mass r

r
g

m . Similarly, a second-best class can be computed, and so on. 

 
Finally, we mention the Nadaraya-Watson estimator that renormalizes the kernel value to avoid 
any loss in mass, within each class gc, i.e. replaces the denominator 

gxrSn  in (3.3) by 

o
gxr

s s s r r rs S
k(( y ,x ,z ),( y ,x ,z ))

∈∑ , leading to: 

 

o
gxro

gxr

r
g s s s r r rs S

s s s r r rg s S

1m k(( y ,x ,z ),( y ,x ,z ))
k(( y ,x ,z ),( y ,x ,z )) ∈

∈

= ∑∑ ∑
,   or S∈ ,        (3.6) 

 
which amounts to replacing the unweighted mean (2.1) by a kernel  weighted mean. 
 
 
Optimal window size 
 
The kernel function may be parameterized further, for instance by variation of the window size θ  
that could be adjusted so as to maximize the overall mass of, say, the correctly predicted winning 
classes according to: 
 
 r

* r
g ( )r

arg max mθ Θ θ
θ ∈= ∑  ,                  (3.7) 

 
for correctly predicted mass based on mollifier (3.5) (or, alternatively, the Nadaraya-Watson form 
(3.6)): 
 

 o
gx sro

r
g s s s r r rs S |y g

S

1m k(( y ,x ,z ),( y ,x ,z ))
n ∈ =

= ∑ ,   or S∈ ,                       

 
and [ , ]Θ θ θ= . In some applications, maximizing the overall mass difference between the 
correctly predicted winners and the runners-up may be more appropriate.  
 
For window size θ  going to infinity, the kernel density converges to uniform shape and 
calculates the same probabilities as in (2.1)-(2.4). This also is the case if there is no z  entering 
the kernel function or if the z-values are constant. Therefore, we may conclude that (3.3) offers a 
complete generalization of the polling in section 2. 
 
 
Maximum likelihood interpolation and prediction 
 
Turning attention from estimation at points where full observations s s s( y ,x ,z )  are available to 
interpolation, where only s s( x ,z )  is given, we remark that in terms of the radio-transmission 
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metaphor, availability of an observation amounts to sending a signal (the own vote), while 
obtaining the conditional distribution at r r( x ,z ) . Consequently, since the radio does not have to 
send before it can receive a signal, anyone with the same rx  and with not-too-distant rz  is in a 
position to obtain relevant information on distribution. Thus, (3.3) readily extends to the case of 
interpolation, with the mollifier-functions applied to s s( x ,z ) -values within the same census or 
map where no sy  observation is available, and to extrapolation at values outside the same census 
or map (here also the Nadaraya-Watson form could be used, and many other estimators): 
 

 o
gxr

xzw

r
g s r s s r rs S

S

1m k(( y ,x ,z ),( y ,x ,z ))
n ∈

= ∑ ,   xzwr S S∈ ⊆                       (3.8) 

 
where xzwS  is the subset of S with the points for which x, z and w are well defined (not missing). 
This computation can be followed by frequency calculations (3.4)-(3.5), subject, however, to a 
prediction error that is not reported. Actual interpolation or prediction of the classification itself 
will generally be so as to maximize the (probability) mass of correct choice: 
 
 r r

g gg arg max m= .          (3.9) 
 
Jointly, vote counting (3.8) and class ranking (3.9) constitute the basic framework for our 
computations.  
 
For given window size, the statistical properties of the mollifier are well known. For iid sample 
observations s convergence of the mass (3.8) obeys standard laws of the mean. The main issue is, 
therefore, to arrive at an iid data generating process. Moreover, the properties of the estimator 
with endogenous window size would need to be studied. 
 
 
Use in decision support 
 
Calculation of conditional frequencies is a purely descriptive operation. In the context of 
elections from Example 1, it measures the percentage of voters from category x opting for a 
particular candidate or party. However, for interpolation and prediction we have re-interpreted 
these frequencies as conditional probabilities, and in (3.8) postulated maximum likelihood as 
decision rule. The classic justification of this rule is that being right in prediction provides higher 
benefits than being wrong.  
 
However, there are settings, already mentioned in the health care example of the introduction on 
use in decision support, that go beyond this simple prediction of official scores. For example, we 
may consider the prediction problem by an undecided voter who seeks to find out what the own 
vote should be, as opposed to what others with the same characteristics would vote. Such a 
person will want to account for the extent to which the others liked the candidate they voted for, 
and discard, say, any votes made under political pressure. Such aspects can be included through 
the scalar mass w. Calculation of mass for each candidate followed by division through the total 
mass will obviously still yield a share but this will not be a frequency. Rather, it will become a 
value share acting as an expected utility weight in the person’s decision for whom to vote, 
learning lessons from the choices made earlier by peers (in the same x-class) and supposing that 
their choice was based on individual preferences that the predictor considers relevant for the own 
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decision. This makes it possible to avoid any dichotomy between model estimation and not so 
much what others with the same characteristic have voted, as opposed to the common two-stage 
approach of estimating a model by maximum likelihood, and using it in policy simulation 
afterwards, under maximization of say, expected utility. 
 
Similarly, in Example 3 of the introduction, we mentioned the longevity weigh as well as the net 
profit weight, and special allowance is to be made for the distinct property that profit can be 
negative. perform an expected profit maximizing choice that is based on peer experience. In a 
general decision support application, the reporting adjusts the labels of “mass”, “frequency”, into 
“profit” and “profitshare”, whereas for more biology oriented applications, we also provide an 
option with “fitness” and “frequency” as labels. 
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4. Endogeneity, and matching of categorical variables 
 
Endogeneity 
 
Consider a dependent variable, say, crop yield, a treatment variable, fertilizer application and a 
vector z of environmental conditions, soil quality and rainfall. The basic issue is to estimate 
correctly, how for given observed factors z, variation in x impacts on y. The main difficulty is due 
to the fact that unobserved factors ε , to the extent they correlate with variation in x, might 
explain the effect on yield, rather than variation in x itself. Hence, the main challenge is to 
disentangle the effect of the treatment x from that of unobserved ε . Clearly, this requires a priori 
information on the relationship between x and ε , which is of course problematic since ε  is not 
observable. 
 
There are basically two types of approach available: experimental and non-experimental. 
Experimental approaches design the variation in x so as to break any correlation between x and 
ε , the non-experimental ones take x and ε  as given but try to account for their relation 
explicitly, on an a priori basis. In practice, this a priori information is diffuse and hard to test and, 
consequently, several correction procedures co-exist. 
 
Experimental approaches 
 
Experimental approaches also fall in two categories. The first has x varying fast relative to any 
unobserved change in external circumstancesε . If in every experiment, the treatment x is 
trembling fast relative to the external environment, then this external environment will be 
reflected in the intercept, and ε  will only measure a weak kind of noise that can be taken to be 
independent of x and q. This essentially is the most common and naïve way of learning about the 
effect of one’s own actions.  
 
The second category applies when variation in treatment is slow, i.e. has a small number of 
realizations of sx , for the same given sz , then a single intercept cannot capture the effect of 
confounding unobserved variables. Randomization in this case seeks to break possible correlation 
between treatment sx  and unobserved conditions sε  through random assignments. For example, 
in case of a trial plot on a farm, suppose that unknown conditions apply to the plot where the trial 
is conducted, not to the seed. Then, the random assignment will be of dosage x to plots with 
known conditions (say location) q and unknown conditionsε . If in addition, the seeds possess 
unknown properties, there will also be a random assignment of seeds to dosage-plot 
combinations, possibly in two stages: stage 1 sampling the seeds from the storage up to the total 
quantity required and the stage 2 sampling from this quantity to plots and dosages.   
 
 
Non-experimental approach 
 
In the non-experimental setting, there is no opportunity for the researcher to vary the dosage 
under fixed circumstances. There are two main approaches available in this field, instrumental 
variable regression and matching, with some mixtures (Heckman, 2005b). 
 
Instrumental variable estimation postulates a structural equation where y depends on x and ε , and 
possibly also on a vector q independent of ε . It supposes that x “to a large extent” depends on an 
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observed vector z (relevance) that is independent from ε  (validity). If x depended on z with a 
perfect fit, this would imply its being fully dictated by it, leaving no room for any treatment 
decision. The IV/2SLS approach consequently expresses x in the structural equation as a linear 
function of z, a conditional expectation, as estimated in a first stage regression. While relevance 
can to some extent be tested, (with the limitation that the fit should neither be too good nor too 
bad), the independence assumption cannot be. Furthermore, since in a non-laboratory situation 
the object of treatment cannot be isolated from its environment, which consequently impacts on it 
directly as well as indirectly, it will often be difficult to exclude z from entering the structural 
equation as well, particularly once non-linear or semiparametric forms are being admitted. 
 
Alternatively, under matching a new data set is created by coupling to every treated individual a, 
possibly synthetic, non-treated one with a similar probability of treatment and a similar 
characteristics profile, and estimates the treatment effect on that basis. For categorical data, this is 
the relevant approach. Since most survey data are commonly obtained in non-experimental 
settings, it is important to allow for statistical method that can break the relationship between x 
andε , also for categorical data. The matching techniques to be considered do this by pairing to 
every quadruple ( ,q,x, )π ε  − with π  referring to payoff relative to non-treatment, a scalar, q to a 
vector of categorical circumstances, x 1=  to binary treatment − one  observation ( ',q',x', ')π ε  
with x' 0=  referring to non-treatment (a counterfactual), whose 'ε -value is arguably very similar 
to ε , because q'  (or some subvector of it) coincides with q. Hence, this mimics the randomized 
sample by creating a sample in which every object has the same fifty percent probability of being 
treated or not.  
 
We remark that the matching literature often relates to real-valued q. It applies propensity score 
techniques whereby for classes with common characteristics, the probability of being treated is 
estimated parametrically as a function of q or a subset of q. Next, within these classes every 
treated observation is matched with a non-treated one, whose probability of being treated comes 
closest. Hence the difference in probability serves as distance measure. In the sections below we 
operate in a similar way but express the distance as its converse, the vicinity, which we estimate 
in various non-parametric ways. 
 
Once the average treatment effect has been estimated, the next step is to look for the treatment 
with the highest payoff and compare it with its competitors. 
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5. Implementation  
 
5.1    Performance criteria 
 
Equation (3.8) applies the maximum probability mass as choice criterion for interpolation and 
prediction, based on training at the stage of estimation with a data set. This training is equivalent 
to choosing the classification that maximizes the mass of correctly classified observations relative 
to the (fixed) number of observations in total, i.e. maximizes the hit ratio. The equivalence holds 
because, as (3.8) determines the class that has highest mass of “votes”, selection of any other 
candidate than the winner will go against the preference of the largest number of voters, i.e. 
reduce the hit ratio most. Hence, the hit ratio is the main performance criterion to print when 
reporting on goodness of fit. This is the hit ratio of the winners.  
 
However, as mentioned in the introduction, to assess the robustness of this decision to follow 
these winners, it may be useful to learn about other criteria as well, such as the edge of the winner 
over the runner up. Results are given in total and by x-class.  
 
In addition, the user may want to find out how important accurate prediction actually is. For 
example, if y does not vary at all within a class x, there is one class only, and the runner up is not 
even defined. More generally, if there is little variation, a naïve or even biased estimator will 
come close the winner that maximizes the hit ratio. Hence, we also report on the edge over the 
winner over the least performing prediction among the N-best performing, excluding any 
predictions referring to classes not present in the data set. In addition, this edge between best and 
N-th estimator can also be used to describe the nature of the conditioning of y on x. A high value 
(on the unit interval) implies that the N-th estimator performs poorly and suggests that the relation 
is strong and well established. A moderate edge may mean that there are a few competing classes, 
which the estimator cannot easily discriminate amongst. A low edge means that the conditioning 
does not lead to clear answers. Note also that small edge already means that leave-one-out and 
“leave-few-out” would yield the same maximum likelihood classification. 
 
Comparing the edges for various conditionings is helpful in identifying the more robust 
relationships, in particular to find out whether x predicts y better than vice versa, as in the 
Granger causality tests (but without any claim that causality can be established in this manner). 
This may, for example, be helpful in the second example of the introduction, where it could be 
used to measure the extent at which two competing soil classifications are nested, i.e. one can 
more accurately predict the other than vice versa. 
 
5.2    Stepwise classification 
 
Since the classification tool is developed to assist at an intermediate stage of analysis in focusing 
on major events and in selecting major determinants, it should allow for a stepwise operation, 
with a variable composition of the x and y vectors, starting from a maximal number of 
characteristics (and hence of characters) and dropping the least discriminating ones at each step. 
This is implemented as follows. 
 
For x, where we admit two elements at most, there would never be more than two possibilities, 
conducting regression with conditioning on 1x  only and with conditioning on 2x  only. Therefore, 
stepwise selection can be conducted by separate commands and does not gain from introducing 
any dedicated procedure. Relative to the regression conditioned on 1x  and 2x  jointly, the single 
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dimensional x-conditioning will yield a better coverage of y in that there will be fewer classes 
without observations, and more observations per class. Hence, the averages will tend to vary less 
with rising number of observations. Regarding the hit ratios, by construction the number of y-
classes corresponding to every given x in the data will never become lower, making it more 
difficult to achieve correct prediction. At the same time, number of observations assigned to each 
x is not lower, neither is the mass. Whether the mean highest frequency and hence the hit ratio 
will become lower, very much depends on the extent to which the explanatory factor was 
adequate, and may, therefore, serve as a criterion to for selection of x characteristics, noting, 
however, that the edge over the runner up and other choices may have to be accounted for as 
well. 
 
For y, the number of possible combinations may be very large, and some control is useful, to 
avoid the need to build new crossings from scratch every time. For this, there is a “clearing”-
option, whereby the user can indicate from one computational round to the next whether any and 
if so which characteristics are to be disregarded and possibly replaced by another, while keeping 
the remaining ones in the string. Merely dropping a y-characteristic will, as for x, tend to reduce 
the number of unobserved cases and to raise the number of observations per class. Specifically, 
dropping y-characteristic j amounts to taking the marginal over that characteristic, i.e. to 
integrating it out. For steps 1,...,L=  with characteristic j



 dropped at step  , this reads: 
 
 

1 j 1 j 1 J 1 j 1 j j 1 Jj j

1
( g ,...,g ,g ,...,g )c ( g ,...,g ,g ,g ,...,g )cg G

m m
− + − +

+
∈

= ∑        
 

  ,  1,...,L=             (4.1) 

 
where jG  are the class values corresponding to characteristic j. The expression also shows that 
while the change in edges of the winner over others can be of any sign, the mass assigned to the 
correct class will never be lower.  
 
To verify this monotonicity property, note that as the assessment of correct prediction is less 
refined (it is unchanged the remaining characteristics but cancelled for j



), wrong prediction will 
be less frequent, whereas the total mass associated to the given x-value remains the same. Hence, 
the hit ratio, measured as the fraction of mass that is correctly classified, will never drop. This is 
the discrete, dependent variable counterpart of the assured improvement in fit in regression when 
the number of explanatory variables is increased.  
 
Conversely, insertion of an additional characteristic through crossing will never raise the hit ratio 
or the frequency of the most likely class, confirming that detail in y-classification needs to be 
reduced in a stepwise procedure until the main distinguishing factors remain (the parsimony- 
counterpart of the dropping of insignificant determinants in regression), or/and to be matched by 
adequate conditioning on x-side (the fit-counterpart of the search in regression for explanatory 
variables that give good r-square). These choices have to be made by the user, on the basis of the 
findings at each step. 
 
Yet, despite these reservations an additional control is provided, whereby the program, by trial 
and error, looks for the class combinations with the highest edge among all possible 
combinations, for an array (y,x,z) with at most eight(x, y) elements, while maintaining maximal 
probability search for given (x,z). Clearly, maximization of the edge is not as good a performance 
criterion as maximum likelihood but this search might help in finding good combinations. 
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Summing up, as the proposed approach  starting from a large number of crossings and gradually 
shedding some of the less discriminating factors until all cases of interest have an acceptable 
number of observations, and a reasonable hit ratio  is bound to remain a multi-criterion decision 
process weighing increase in hit ratio against the edge over competitors, the software leaves it to 
the user to specify the path along which variables are to be dropped, but also provides an 
admittedly theoretically questionable, automatic single criterion search for the best combination 
of characteristics. 
 
5.3    Markov chain 
 
Sequence of categorical variables q x y→ →  
 
Discarding the (real-valued) z-variables to begin with, we suppose that instead of the data set of 
triples s s s( y ,x ;w ) , we have  s s s s( y ,x ,q ;w ). Specific code values of variables y and x are denoted 
as before by g and c, and a given value of q is now denoted by d. We consider the computations 
that can be conducted with the commands for triples (here Pr refers to frequency calculation i.e. 
to a probability estimate): 
  

(i) joint conditioning on c and d: g|cdP Pr{ y g | x c,q d }= = = = ; 
(ii) single stage structural form  for g |c : g|cP Pr{ y g | x c }= = = ;  
(iii) reduced form g|dP Pr{ y g | q d }= = = ;   
(iv) single stage structural form  for c |d : c|dP Pr{ x c | q d }= = = . 
 

 
At this point data availability becomes important. We assume that the data are harmonized in that 
the subsets of points s with missing data are the same for x., q and w and discard any possibility 
of using different weights in evaluating (ii) and (iii). Then, we can use (iv) to evaluate directly the 
total effect of d on g along the Markov chain, according to: 
 
 g|d g|c c|dc

P P P=∑ .           (4.2) 
  
In terms of our voters’ metaphor, every voter s of type d chooses in the data set one x-value as 
specified by s s s s( y ,x ,q ;w ) , and all votes are transmitted from x to their eventual y-destination g. 
Hence, if data are harmonized, there is no mass lost in evaluation of chains through reduced 
forms. Consequently, the procedure also applies to a chain of any length longer than two, making 
it possible to generate probability matrices with elements a|bP  for each segment as well as for 
complete chains.  
 
Yet, goodness of fit measures are needed to choose between the specifications (i), (ii), (iii) and 
(ii)-(iv) combined that compete in “explaining” the same y. Moreover, reverse options that treat 
some elements of y as explanatory may have to be considered as well. 
 
 
Endogeneity 
 
In this connection, the “endogeneity”-literature in econometrics (e.g. Heckman, 2005a) has 
devoted much attention to the fact that good performance of a regression of y on x might be 
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attributable to a common causative factor q, while Granger’s causality analysis is on its part 
concerned with the comparison of x on y relative to y on x. Even though our current purely non-
parametric setting with categorical variables does not provide any test to decide on such issues, 
its goodness of fit measures (hit ratios and edges) can be used to compare performances, and help 
choosing the best form. 
 
At the same time, the frequency calculations have advantages. First, it circumvents a specification 
bias that occurs in parametric forms, due to correlation between independent variable x and the 
error in regression of y on x that tends to arise when x and y largely emanate from a common 
cause q. Instrumentalization amounts to regressing x on q and using the regressed value of x in 
the relationship with y, essentially to make it non-stochastic and hence uncorrelated with the error 
in regression of y on x. Since polling has no error in regression, this aspect becomes irrelevant. 
 
Yet, instrumentalization remains relevant, as it may help establishing to which extent x can be 
varied, with x possibly referring to changes in policy rather than the policy itself  The distribution 
of x at q could now be interpreted as indicative of the possibility to vary x, expressed as the 
frequency of various x-values observed in association to the now constant factor q. Alternatively, 
a reversed specification could be adopted, whereby the target outcome is treated as x and the 
policy as y. 
 
It appears that applying instrumentalization in the conditional frequency framework does not 
suffer from the limitations common in parametric regression, where it works well only as long as 
the fit of x on q is very good, in which case it adds little and has minor effect on coefficients, 
whereas it becomes misleading when this relationship is poor, because it replaces the information 
on x, the actual variable of interest by some (usually linear) transformation of q, of equal 
dimension as x.  Hence, ‘the cure can be worse than the disease’ Bound et al. (1993; see also 
1995). The problem occurs because instrumentalization discards underlying information on the 
conditional distribution of x. Hence, it does not arise in (4.2), where the full distribution is 
transmitted and no information is lost as the eventual mass allocation across g-values is 
unaffected when the full chain of segments is replaced by the reduced form.  
 
 
Missing data 
 
The discussion has taken the data set to have been harmonized across segments, and assumed a 
common weight on all variables along the chain. We now consider the case where some elements 
of s s s s( y ,x ,q ;w )  are missing, which is obviously essential since prediction (including 
interpolation) are all about filling data gaps. The hierarchy turns out to be from right to left. When 
either sw  is missing (i.e. has no measurement) or sq  is missing (i.e. the vector has missing data 
for at least one of its elements), the point has to be dropped both from prediction and from 
estimation. Predictions of x and y can be made for the remaining points on the basis of estimation 
on points where data are available for these. Therefore, a data harmonization command is 
provided (DATHARM) that drops observations when data are missing in a reference file.   
 
To illustrate the treatment of missing data further and in preparation for the case with the real-
valued z-variables, let us consider a single segment with weights available at all points, and 
suppose that x is a variable obtained through slicing from real-valued observations into a finite 
number of brackets. Our computations will now neglect all classes that have no observations on 
their bracket, and hence, for a fine slicing contain many classes with unobserved x, for which no 
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probability distribution will be available. This in a way addresses the common concern of making 
predictions on the effect of interventions that were never done before. Similarly, if q is the actual 
intervention, thought to affect y via x, it may happen that no observations are available on it for 
some sq  value, while s s( y ,x )  is observed. Then, the data harmonization eliminates all 
respondents s with this sq , and through it avoid a prediction for the associated x. At the same 
time, this reiterates that slicing limits the opportunity for inference and hence for prediction, and 
justifies considering the real-valued z-variables themselves. 
 
  
Sequence of categorical and real-valued variables ( q,u ) ( x,z ) y→ → ) 
 
We now consider a two-stage process with (y, x, z) in stage 2 and (x, q, u) in stage 2, and after 
harmonization with respect to missing data, an observation is now represented by 

s s s s s s( y ,x ,z ,q ,u ;w ) . Returning to the radio transmission of the voter’s metaphor, we may recall 
from section 3 that there was for the mollifier formulation (3.5) loss in mass within a class (g, c), 
while the Nadaraya-Watson calculations avoided this. 
 
However, extending the formulation with real-valued variables raises two issues. First, the 
eventual frequency distribution of y  at point s now becomes sensitive to the dropping or keeping 
of intermediate segments, even with Nadaraya-Watson estimation whereby the total mass in cg is 
maintained. Second, one has to decide whether to treat the variables z as exogenous or as 
predicted from stage 1, in the usual approach of instrumented regression. 
 
On the first score, irrespective of how z is arrived at, if the Nadaraya-Watson estimator is used, 
the sensitivity only occurs at the level of the grid cell or respondent, while at class level the 
estimation maintains fixed mass of the subset of observations 
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∈

= ∑∑
,   xzwr S∈ ,         (4.3) 

 
and hence a fixed frequency distribution within each class gc, implying that differences at the 
individual level average out within each class. This holds for every segment in the chain as well 
as for prediction of the probability distribution of sy  for given s s s s s( w ,q ,u ,x ,z ) , provided it has 
been harmonized with respect to missing data. We conclude that after due harmonization of data, 
the operations described in sections 2 and 3 can be conducted for Markov chains. 
 
Regarding the second point, as Nadaraya-Watson regression generally gives good fit, the 
estimation will tend to be relatively insensitive to whether first stage regression is conducted or 
not. Yet, both options are to be provided for. 
 
Finally, we remark that our discussion referred to vectors x and z. There is no necessity to treat all 
elements of these vectors in the same way. Clearly, if natural exogenous variables such as time or 
geographical co-ordinates belong to z, there is no point in instrumentalizing them. Specifically, 
the decision whether or not to instrumentalize some variable amounts to a choice between taking 
a conditional average or maintaining the empirical distribution.  
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5.4 Projection of survey data on geographic map, and vice versa 
 
From survey to map 
 
The frequency calculations process the data as they come, with correspondence to geographic 
entities registered on a geo-referenced file. This file, called locat.grd, is generated by the map-
downloading and geo-referencing facility of GRCP (van den Boom and Pande, 2007). It has to be 
present but the frequency calculations will be conducted also in case the geo-refencing on it is 
fully uninformative (all entries with same latitude and longitude with a unit administrative code).  
 
Clearly, meaningful geo-referencing is required when maps are to be produced. If the data 
supplied refer to a grid map already, the facility will use the locat.grd file for this purpose. 
Alternatively, if the files processed are geo-referenced survey data, the program needs two geo-
referencing files. Locat.grd, is now the file used by the classification program processing the 
survey; it will in general contain multiple entries with the same co-ordinates, and many 
coordinates will be absent. The other geo-referenced file, locatm.grd is used for building of 
geographic maps (and incorporated in the SAS-mapping routines). It has one entry (and one only) 
for every grid cell, for which it points to co-ordinates and administrative units at three levels, 
referred to as county CN, province PV, region RE.  
 
Next, to project the survey data on the map we must invoke an interpolation procedure of some 
kind. We must distinguish between classified data and real-valued data 
 
Regarding classified data, as produced by the zoning or available otherwise, one possibility is to 
apply mollifier calculations. For this, we consider z , a vector with the number of cells on the 
grid map as dimension and with latitude and longitude co-ordinates as first and second entry. We 
define a kernel ( )r r'k z ,z

    measuring proximity of r and r' , both elements of R , the set of grid 
cells on the map. Next, we proceed in two stages. First, for S  referring to the set of survey data 
on y (both direct and after interpolation), and rS  the subset of S: 
 
(i) Compute for each or  in the subset o rR { r R|S }= ∈ ≠ ∅  of sites with observations from the 
survey, the mass by y-class: 
 
 o

ro

r
g o os S c cg

M m ,                 r R
∈

= ∈∑ ∑ .                        (4.3) 

 
(ii) Determine for each or  the class with highest mass: 
 
 o or r

g g o og arg max M ,                  r R= ∈ .                        (4.4) 
 
Second, we turn to interpolation so as to obtain values at sites in R other than oR . For this, we 

apply a straightforward modification of (3.8), (3.9), but now for k  without reference to ( y,x ) -
values. 
 
Nearest-neighbor interpolation is the other option provided for projection of classified data. It 
directly assigns the class of the nearest neighboring cell with an observation available. Here, the 
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calculations proceed in four steps with (i) and (ii) as above, while the nearest neighbor 
calculations are: 
 
(iii) For all sites r in R the nearest neighbor site or  in oR is determined, for o

o ro

r*
r gM M= : 

   
 

o o o o

*
r r R r r rn arg max M k( z ,z )∈= 

  ,    if 
o o o o

*
r R r r rmax M k( z ,z ) 0∈ >

  and undefined otherwise (4.5) 
 
(iv) Assign this cell, if defined, to r: 
 
 rnr

og g ,                                 r R R= ∈ −                (4.6) 

 
r

* *
r nM M= . 

 
Hence, whereas the mollifier (3.8)-(3.9) chooses the class with the highest average mass 
“transmitted” to the destination r, nearest neighbor (4.5)-(4.6) chooses the class prevailing at the 
cell that transmits the highest mass. 
 
Note that allowance is made for the maximal kernel value remaining zero when observations are 
too distant. In this case, no assignment is made and the grid cell remains blank. To control for 
this, the command that defines z  has a factor on the window size of the kernel, enabling the user 
to vary the degree of concentration. In the extreme case, when the factor is put at zero, only the 
original data will be projected on the map and a dot-plot will be made (the size of the dots can be 
controlled within the SAS-macro supplied to the user). Hence, the nearest neighbor option is 
flexible, and reduces to standard nearest neighbor if the weights are unity. 
 
Step (iv) shows that the mapping in this case only generates two files, the classification g, and the 
mass M. These files have extension .gcdm/.hdrm and .grdm, respectively. They can be processed 
further in a separate, grid-oriented GRCP-application, with a directory structure of its own (after 
dropping the m-character in the extension using the projection from map to survey discussed 
next). The grid-based application should be kept separate because its vectors are of a dimension 
different from that of the survey files.  
 
We mention that, as for other GRCP-components, the program actually evaluating the map is a 
SAS-program automatically produced by the software that has access to all grid files and can 
easily be modified to produce other displays and to conduct further computations. 
 
Turning to projection of real-valued data, we suppose that in case there is more than one 
observation at a point, the “household data” should be interpreted as comparable measurements 
(i.e. the observation vector is taken to be weighted already) and, therefore, take an arithmetic 
average over observation at each point to obtain the value on the grid. After that spatial 
interpolation takes place using, either the mollifier (now as Nadaraya-Watson estimator) or 
nearest neighbor. 
 
Projection from geographic map to survey 
 
The reverse operation of projection from map to survey is available also. It assigns the 
geographic code or numerical value at a location to all the survey observations, as an additional 
attribute. This creates files with extension .gcd/.hdr and .grd from those with extension 
.gcdm/.hdrm and .grdm, to the extent available, while keeping both.  
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Furthermore, recall that if all data refer to grid cells, the locat.grd and the locatm.grd will 
coincide. In this case (Datatype = 1) the operation can be used as a “move” device to drop the m-
character, copying the .gcdm/.hdrm and .grdm files to .gcd/.hdr and .grd, and removing them 
afterwards, so as to maintain a fully GAMS-controlled file management. 
 
 
Projection from survey to census 
 
The regression and classification components of GRCP provide several options for prediction on 
a census (a full representation of the population) on the basis of a function estimated on a survey 
(a subset), subject to restrictions expressed a census-level. The zoning component can also be 
used for this, in two ways. One is to estimate conditional frequency y|x on the survey, and use it 
for prediction on the census, in another application with a longer x-vector. This has the 
disadvantage that real-valued variables z cannot be used in the prediction, even though they can 
be accounted for in estimation. The other way is to work with the (longer) census vectors from 
the start, assigning “no data” to all observations not in the census, while known weights 
determine the importance of each. After estimation on the basis of these data, interpolation can 
fill all data gaps, with x as well as z as conditioning variables. 
 
5.5.    Non-parametric matching for categorical treatment 
 
Matching specifies for every observation of an individual or object receiving a particular 
treatment, the performance of the corresponding non-treated. Through this it seeks to ensure that 
the sample is balanced in that for every category, every object has an equal probability of being 
treated or not. In case of discrete variables only, all non-treated objects all possess exactly the 
same characteristics and the non-treatment could equally well be represented as a weight. With 
respect to unobserved characteristics the idea would be that intra-class variation cancels out 
through averaging, whereas in between class variation can be addressed, to the extent known by 
subdivision of the sample into (sub-)classes. Limitation would be that there is no observable 
criterion for this subdivision and that a fine subdivision leads to subclasses with too few 
observations and also that the construct of the matching observation remains subjective, as it 
necessarily amounts to creating a counterfactual. Yet, as mentioned earlier, this creation is 
inherent in the inferring a treatment effect in a non-experimental setting. 
 
Whereas the ZONDIR command considers the frequency of association of profile y , possibly 
including treatment characteristics, for given x, both categorical variables, and identifies profiles 
with the highest frequency, the MATCH command singles out the C-th (i.e. last) element of profile 
y, taken to correspond to the treatment, with a net payoff π , and estimates non-parametrically for 
each observation where treatment is given, the net payoff of a reference treatment, i.e. of a 
partner observation for which no treatment is given.  
 
Next, the matching procedure identifies the treatment with largest positive effect, measured as 
difference between the payoffs, and shows the quantile distribution of this effect, the mean and 
the standard deviation, and same for worst effect. Clearly, to obtain the quantile distribution of a 
particular treatment, it suffices to conduct the exercise for this treatment only, by dropping other 
treatments from the selection (setting INDSEL(K)=0). 
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Programming steps 
 
We consider a data set s s s s{ x , y ,q ,z }  where sx  and sy  are vectors with categorical observations 
jointly describing the class, sq  is a categorical variable of single dimension referring to treatment, 
and sz  is a real-valued vector that enters the kernel measure. The programming steps are as 
follows: 
 
1. Specify KERNSET, with 4 variables at most to measure vicinity. This specifies the kernel 
function  r sk( z ,z ) . 
 
2 Designate the y-value of non-treatment by assigning INDSEL(K)=2, to the corresponding entry. 
 
3. Calculation: As there is no single-best matching technique, GRCP allows for choice so as to 
enable the use to assess the dependence of outcomes on the technique used. The estimator either 
considers all observations in the untreated group. Currently, options available include (i) nearest 
neighbor, (ii) mollifier and (iii) average.  
 
(i) Nearest neighbor selects among the observations for non-treated, the payoff s'w  of the nearest 
observation according to the kernel vicinity measure  r sk( z ,z ) . Hence, for given observation s, it 
chooses according to kernel function r sk( z ,z ) , 

s s sx ,y ,r S κ∈  the nearest observation r among those 
with the same values sx  and sy  as s, but with s sq κ= , corresponding to non-treatment. In case no 
match can be found the observation s is being discarded. 
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(ii) Mollifier on control group performs a Nadaraya-Watson kernel smoothing estimation for 
given sx , sy  and s sq κ=  referring to non-treatment: 
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(iii) Mollifier on all data performs a Nadaraya-Watson kernel smoothing estimation for given sx , 

sy  and all sq , but it assumes that this treatment variable is discrete valued, and that it also appears 
as first element in the vector z, where it is set at zero treatment for rz , i.e. 1rz 0= , which we 

denote as 0
rz  
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In this case the size of the window in the kernel becomes important, since for a small window the 
weights will become the same as for the mollifier on the control group, but far more expensive 
computationally. 
 
(iv) Average calculates the mean payoff: 
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=
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(v) Zeroref assumes that s 0π =  i.e. that sπ  already measures the gain from treatment. 
 
Next, the difference s s sδ π π= −   is calculated, whenever is defined, and summation for every 
c 1,...,C 1= −  yields the class totals for the gains.  
 
Finally, an exponential transformation of payoffs is provided for that takes all payoffs (i.e. not the 
net gains) to the power ρ , a parameter on the unit interval, with 1ρ =  corresponding to risk 
neutrality, while risk aversion is higher as the exponent gets closer to zero.  Yet, optimal choice 
still is on the basis of the expected gain in this transformed payoff relative to the counterfactual 
with no treatment, as opposed to expected value of the payoff itself. 
 
 
5.6 File management 
 
Application. An application is characterized by the constant S, the number of respondents in the 
survey or cells on the map, which fixes the length of the vectors to be operated on. Hence, in case 
of multiple data sources, multiple surveys are supposed to have been established to a common set 
of respondents and geographic data sets to have been projected on the same grid map. 
Respondents may have missing data, represented by a common integer (see Appendix D for 
details). Each application obeys a standard directory structure, for a specification of which we 
refer to the GRCP-manual. Here we only mention what is specific to the present tool. Projection 
of district level data (region, province, county) on the grid or on the survey can be done in the 
GRIDDAT-facility. 
 
Files extensions. There is now a need to distinguish various files under the same general label. 
Real valued files have extension .grd associated integer codes have extension .gcd and the 
headers with legends extension .hdr. Finally, the main result file with frequency distributions and 
report on goodness of fit comes with the extension .txt.  
 
File locations. All files labels (name without extension) explicitly specified to be kept, are in the 
subdirectory DAT, except the .gcd and .hdr files, which are in DATC. Other files are in 
WKRUN. 
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6. Conclusion 
 
Any regression technique might in principle be used to estimate relationship (3.8). The already 
available regression and classification components of the GRCP-package contain options for this 
but many other software tools could, obviously, be invoked as well. Those in GRCP rely on SV-
regression, and may, therefore, outperform other procedures, such as spline regression, in 
estimation of flexible forms, because of the kernel function’s capacity to adjust to any data set.  
 
However, in the multiclass context of the present paper, regression will often prove unsuccessful, 
and lead to large numbers of insignificant coefficients, due to lack of sufficient data points within 
the same s s( y ,x ) -class. This is where the calculation of conditional frequencies, and in other 
decision contexts of related “fitness” criteria, can play its role. The suggested mode of operation 
is to proceed in a stepwise fashion so as to shed uninformative variables and categories at each 
step, and zoom in gradually on key variables and interdependencies. More advanced 
classification techniques can be invoked after that. This is in general necessary to arrive at more 
general results than can obtained through the classwise counting of votes that the polling 
technique relies on, and which consequently, cannot conduct any statistical inference across 
classes. Particularly when the number of classes of individual variables is large, the mass will 
tend to spread too thin over them to lead to significant results.  
 
Regarding further research, the next step in developing the facility might be to account for 
asymmetries, referred to in the GIS-context as anisotropy, which would in terms of the metaphor 
imply that the loss of signal strength depends in addition to (kernel) proximity distance also on 
the direction of “winds” in the fields the message has to cross. This could be represented by 
extending the mollifier function with some parametric terms. Another possible extension, very 
natural in the context of polling would be to allow for bootstrapping and repeated sampling. 
Indeed, the mollifier expression is known to admit an adaptive representation as a moving 
average that could with appropriate smoothing allow for regular updates of the estimates. Finally, 
forms that allow for interpolation between classes should be looked into. 
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Appendix D: Zoning with Matching component of GRCP 
 
D.1 Scope 
 
The software refers to the polling operations as “zoning” to emphasize the GIS-context for which 
it mainly is intended, and to differentiate it from the already available classification component of 
GRCP.  
 
A major consideration in design has been to address the high dimensionality inherent in 
operations on the product of classifications both in computation and in presentation of results. 
Regarding computation, the evaluation of expressions such as (2.1) and (2.2), and (3.8) is difficult 
due to the large size of the associated arrays m and P, of dimension R J+ . These computational 
aspects are dealt with by use of sorting routines and dedicated (Fortran) program design and 
through options for stepwise classification. The presentation aspects are addressed by focusing on 
higher frequencies that select most important relationships, while information on significance is 
provided through indicators of how well the runner up and the N-th best perform, and by 
automated linkage to geographical maps that show the diversity, and by options for attribution of 
weights and for selection that should enable the user to pay sufficient attention to and focus on 
rare events. Specifically, the program generates:  
 
(i) Three pairs of gridmaps1 of frequencies of occurrence (extension .grd) with associated codes 
(extension .gcd for code file and .hdr for header file) at given sx  (possibly s s( x ,z ) ) for (a) the 

observed sy ; (b) the most likely class-value sg ; and (c) the second most likely class value. 
Codes generated on .gcd files and documented on .hdr files are trimmed at every operation, in 
that their rank replaces their input value. 
 
(ii) A text file (.txt) a GAMS-readable (.gms) file describing masses and conditional probabilities 
for the top N classes for every x. This is the main result file.  We briefly outline the contents for 
the example discussed in the next sections, under each of the five headings that follow: 
 

(1) Overall Classification     
The file POP1 associated to joint has the mass after all crossings, the files CLASRAIN and 
CLASSOIL below it have the masses by constituent part of the crossing.  
 
The ‘code =’ line that follows has the (newly defined) joint y-codes, followed by its overall 
frequency of occurrence, and the ranking of this frequency. 
 
Next, follow lines with the codes and labels as supplied originally to the crossing; frq is the 
fraction of mass allocated to this entry. 
 

   Name of mass file      Top mass   Total mass  
    joint  POP1               5111.8033    5777.6034 
         1 CLASRAIN      6587.3000    7555.4000 
         2 CLASSOIL       5821.7000    6585.8000 
  
 code =   1  frequency =   .0001 rank =   40 

                                                   
1 Here and in the sequel, grid points can be pixels on a map as well as respondents in a survey. 
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      1   1 SARI      Arid                          frq=   .0001 
      2   3 SLSC      Slight                       frq=   .0001 
 code =   2  frequency =   .0075 rank =   20 
      1   1 SARI      Arid                          frq=   .0056 
      2   4 MOCO    Moderate              frq=   .0054 

 
(2) Classification by x-class  
This is the key table with conditional frequencies that can also be used for prediction on other 
data sets with the same x-classes. It is as (1) but now by x-class and with additional 
information about how many y-classes were used in the top N, and how many would be 
required to achieve a given confidence level, i.e. cover a given fraction (here 95%) of the 
conditional distribution 

  
 top   5 frequencies     for 95% confidence   8 are needed  
 
 

(3) Overall fit 
After the tabulation of the conditional frequencies follows a report on the goodness of fit, 
with hit ratios (% of mass that correctly predicts y the class) for the winner, the runner up and 
the edge of the winner over the N-th best: 
 
           Mass Hitrt1   Hitrt2  Edge1-N  
  
        5777.60    .40      .20      .33     
 
(4) Frequency of occurrence of class in top N 
This part shows how often each constituent class of basic files CLASRAIN and CLASSOIL appeared in the 
top N.  
 
CLASRAIN   
  
   1 SARI  .13 Arid                           
   2 MARI .48 Semi-Arid                      
   3 SHUM .32 Slightly Sub-Humid             
   4 MHUM .03 Moderately Sub-Humid           
   5 VHUM .03 Sub-Humid                      
   6 XHUM .01 Humid                          
  
 CLASSOIL   
  
   2 NOCO .18 No constraints                 
   3 SLSC .21 Slight                         
   4 MOCO .16 Moderate                       
   5 MNCO .24 Constrained                    
   6 SECO .10 Severe                         
   7 VSCO .08 Very severe                    
   8 XSCO .01 100% Severe                    
   9 WATE .03 Water                          
 
(5) Hit ratios by x-class 
As (3) but now by x-class  
. 
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The computed frequencies of occurrence h sP ( x )


 can be assigned for 
 

(i) estimation: computed on a given data set of observed s s( x , y ) ; 
(ii) interpolation:, applied to sites with unobserved sy  for given sx of the same 

geographical unit, based the conditional distribution evaluated under (i); in a survey 
context, this would rather be referred to as prediction. 

(iii) prediction: applied to given sx  of a different geographical unit, also based on (i). 

As a special case, if x is an administrative district zoning and y a one-dimensional vector with no 
more than n classes, the gridmap of ranks reduces to replication of the input map itself, 
illustrating the use of zoning as a simple GIS-facility for producing classified maps with legends, 
a frequency map by district, and tables of probabilities by district and class.  
 
Since it seems practical to keep the present appendix self-contained, there is some repetition of 
the explanation given earlier in Appendix A for gridding. As for the gridding, the zoning software 
operates from a GAMS-platform, which is used to generate ASCII input files for Fortran 
programs that perform the zoning and generate Excel-files and SAS-command files for automatic 
preparation of geographical maps. GAMS is used as job control language to generate commands 
in a user-written program. Besides specifying the control options, the GAMS program serves to 
access data at district (non-grid) level, either directly via INCLUDE statements for files, or 
indirectly, via the restart option (GAMS [jobname] r=[filename]) from earlier calculations. Actual 
zoning calculations are done by the Fortran executable ZONDIST that in turn writes SAS-
programs and Excel files for plotting of maps. Section 2.4 documents the major steps of such a 
program.  
  
New users are advised to prepare such a program by using an existing application as template. 
Allowing for control via a GAMS-program has the advantage over a pure screen driven 
application that the user is more flexible in preparing the data and that the program offers a 
transparent documentation of the full application. A DOS-script is used to run the 
GAMS/Fortran/SAS suite (see ZONDAT.BAT as example). 
           
SASZONE.SAS created in directory ..\WKRUN is an independent SAS-job (invoking 
application-specific macro’s) that is readily modified to perform other preprogrammed SAS-
functions, such as plotting of maps. The parameters concerning map plots can be specified via the 
GAMS job (see Zondat.gams as an example in D.5). 
 
D.2 Zoning  rules 
 
The zoning processes a given grid file according to a specified rule. Currently, two rules common 
in GIS-operations are available: slicing and crossing. Repeated call of these routines builds up a 
character string for further processing in other routines. The present section introduces these 
routines, the control of which is implemented via GAMS-macros, as follows. 
 
KERNM: specify the kernel function for spatial interpolation on map. This command is only 
relevant in case the data refer to geo-referenced survey observations with multiple observations at 
some sites and missing observations. Whenever needed, this command has to be given ahead of 
all others. The variables iz  entering this kernel necessarily comprise latitude and longitude, at 
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most two other variables, defined as vectors on the grid map. A radial basis kernel density 
function is specified (a radial basis kernel is up to a constant the product of normal densities i.e. 
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Factor γ  on default window size  oθ  is entered to modulate the distance over which interpolation 

can take place. Projections on map are conducted as follows. Based on a survey weight file sw , 

and a survey code file sg  associated with the various commands (CROSS, SLICE 
ZONDIR/ZONMOLL) the projection calculates the most probable code at each survey location r, 
and associated probability of this code. Next, it estimates these codes on the map by multiplying a 
site specific weight m

sw , by the interpolated the probability weighted mass at each grid point, 
where the probability weight is computed by kernel smoothed maximum likelihood or by nearest 
neighbor. For ASLICE the procedure is different, as the output is real valued and kernel 
smoothed averaging is done.  The command remains in effect until its next occurrence, where it 
can be redefined. 
 
CROSS: crossing. The aim of this step is to build a composite code inserting an integer-valued 
map within range 0-255 as overlay to a vector, by appending the character-value of the integer to 
a string. The first of the pair contains an integer code within the range 0-255; the second an 
ASCII code. Specifically, for code i on the first map laying within this range, the operation stores 
an ASCII code corresponding to the character in the n-th position in the ASCII-list, and the n-th 
operation stores as n-th character from the left. Hence, starting from step 2 the operation 
concatenates the new ASCII code with the string built up so far, with up to 10 characters. 
Operations are only conducted on the items selected. Therefore, the procedure can also be used to 
select some codes for further analysis. The macro CROSS defines this task. If, however, the 
number of selected codes exceeds 256, program terminates stating fatal error. Thus the user has to 
ensure that this upper bound is obeyed. 
 
CROSSOLD: crossing using file processed earlier. The macro operates exactly in the same way 
as CROSS but the user does not have to provide any further information on header labels and 
codes, since the file .hdr is already available. 
 
SLICE: slicing. Given a real-valued grid map sx  and a list of J real-valued class upper bounds jz  

ranked in increasing order, slicing creates an integer-valued code sy , by assigning a code 
according to: 
 
 s s j j 1y j if x [ z ,z ]+= ∈ . 
 
This code is subsequently appended to a character vector as for crossing.  
 
ASLICE: anti-slicing. Given an integer-coded grid map sj  with a real-valued number jz , 

associated to each code j, anti-slicing  creates a real-valued grid map sy , by assigning a real value 

jz and multiplying it by a given weight sw : 
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ss j sy z w= . 

 
This makes it possible to perform simple transformations on the weights. The macro defines this 
task, which generates a file for further processing in SLICE, or in the GRIDDAT program, where 
more detailed calculations can be conducted, generating real valued grid files that can be 
processed further in zoning. Also, if projection from survey to map is required, the maps will 
apply the weights w in case the mollifier is used for projection, which amounts to kernel 
smoothed (Nadaraya-Watson) regression, e.g. to produce poverty maps of incomes or income 
shortfalls (the regression will apply smoothing everywhere, overwriting observations. In fact, 
even when no projection is actually needed, copying Locat.grd to Locatm.grd while specifying 
DATATYPE=2, instructs the ASLICE command to order such regressions on the real-valued 
maps in the data set, without any classification. This command is independent and does not set 
any parameters for following commands. Finally, we remark that since ASLICE will produce a 
vector with a small number of real-valued values only, the associated maps (that seek to maintain 
equal mass among color-classes) will tend to combine several original variable classes together in 
one color-class. To visualize an antisliced variable without such loss of resolution the user can 
print the underlying coded variable, possibly after editing its legend to include the real-valued 
numbers. As in CROSS, the program will terminate stating fatal error if the number of unique 
codes in input exceeds 256.  
 
RECODE: recoding. Given a coded grid map sx , and integer-valued mapping m, by assigning a 
code according to: s sy m( x )= . The new file is available for further processing.  
 
 
DATHARM: harmonize missing data and scale. The command is only required in case a Markov 
chain is considered (see section 4.3). It compares two (pairs of) input files and treats data as 
missing if they are missing in the .gcd or in the .grd vector of file FLIN (one of both may be 
unavailable) or in the .gcd or in the .grd vectors of FLREF (one of both may be missing); it writes 
results on FLIN as FLOUT as .gcd and .grd files, if the original was available, possibly 
overwriting FLIN), using NODATIN, NODATREF and NODATOUT as the values for missing 
data, respectively. For FLIN, the valued .grd vector is multiplied by the scalar FACT on output 
(so as to allow for rescaling of weights). The command can also be used to harmonize the missing 
data codes on various files. If districts or any other fixed geographic information is to be treated 
as missing, this has to be implemented by applying the command to the weight file, missing data 
for all cells in a district will inactivate the district. Other preparatory activities can take place 
using the GRIDDAT facility. This command is independent and does not set any parameters for 
following commands. 
 
 
MAPTOSUR: projection from map to survey. This command performs assigns the geographic 
code or numerical value at a location to all the survey observations. Since all co-ordinates in the 
survey must necessarily appear on the map, and no visualization is required, there is no 
interpolation function here. All files available under the name provided, whatever their extension 
(.grdm, .gcdm or .hdrm) will be processed; there is no message issued if some of the files are 
missing. 
 
ZONDIR: estimation of conditional probabilities and interpolation. The large number of 
combinations of codes that will often result from crossing and slicing makes it necessary to select 
the most common ones (top N); in addition the frequency of occurrence of a code is computed 
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and can be printed. After a sequence of SLICE and CROSS/CROSSOLD calls, the overlay file is 
processed via commands specified in the macro ZONDIR. The large number of combinations of 
codes that will often result makes it necessary to allow for selection of the most common ones; in 
addition, the frequency of occurrence of a code is computed and can be printed.. Hence 
processing is with the instructions:  
 

i.          Compute the (weighted by sw ) frequency of occurrence of the resulting code within a 
given sx  (say, an administrative unit and a soil characteristic).  

ii.          Create a grid file with top TopN  frequencies indicated; and print the labels of these 
“winners”;  TopN 1+  will be the residual class. 

iii. Prepare file for creating vectors (maps) of the codes of the TopN 1+  classes , at sites 
with observations sy  and sx  (estimation); and possibly also at sites with observations 
on sx  only (interpolation). 

 
Calculations i.-iii. can be specified for: A: all map, R: region, PV: province, CN: county (as 
defined on file locat.grd); or <filename> given zone file of different name. 
 
In addition, the zoning computes the average fractions within each layer that makes up the 
composite generated by the crossing. For this, every CROSS and SLICE command provide a 
weight jsv , and say a crossing by administrative district, of, say pasture land (intensive/extensive) 
and crop land (cereals/root crops) will yield occurrence four combinations but also the area shares 
under each. Yet, the probability of occurrence of a combination, say, extensive pastures-root 
crops, is not necessarily equal to this fraction, because of complementarities and other 
interdependencies.  
 
Therefore, the facility separately computes the frequency of occurrence of the composite, and for 
each layer also the fractions making up the composite (here unlike for w only the frequency 
interpretation is admitted, as opposed to, say, profit rates). For land, these would be the fraction 
of intensive pasture versus the fraction of intensive pasture in total pasture, as well as the fraction 
of cereals versus the fraction of root crops in total crop land. For this, the user has to specify (not 
necessarily positive) weights sw  on the composite, jointly with the (non-negative) weights jsv  on 
the separate layers of the crossing. By analogy to (2.1), (2.2) the program calculates: 
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where cgS  is as before the subset of cells s with composite characteristic cg, and j

cgB  the code 
associated with the j-th element of y. Associated to this, we also compute the conditional 
probability  of finding code b in position j of y within composite cg: 
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These probabilities are reported for information only, and play no role in class choice. Here 
as well as in ZONMOL, the user can analyze as many as 5000 distinct combinations (far 
exceeding the limitation on unique codes in CROSS or ASLICE). However, the files 
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resulting from these procedures should not be used in subsequent CROSS or ASLICE 
without appropriate selection (to limit the number of distinct codes up to a maximum of 256) 
as fatal error will occur. 
 
APPLY: applying the estimated probability map to another region. The probabilities 
computed in a previous ZONDIR/ZONMOLL-call, are applied as a mapping to the sx  of 
another region, which, of course, requires sx  not to comprise any administrative district code, 
so as to predict the most probable typologies associated to the sites in that region where 
observations sx  are available. Just like ZONDIR, this command should be preceded by a 
sequence of CROSS/CROSSOLD and SLICE commands to supply the appropriate legends. 
The actual code or real values on the data files involved in these steps will not be used. 
 
AGGREG: computing aggregates. The probabilities computed in a previous ZONDIR-call, 
are written as GAMS-readable file for further processing in GRIDDAT. Just like ZONDIR, 
this command should be preceded by a sequence of CROSS/CROSSOLD and SLICE 
commands to supply the text-labels. The actual code or real values on the data files involved 
in these steps will not be used. 
 
In case real valued dependent variables appear in the zoning itself, as opposed to in the projection 
on the map (KERNM), the kernel has to be specified before the zoning with the mollifier. 
 
KERNSET: specify the kernel function for zoning. This command should be executed ahead of 
ZONMOL. For at most four real valued variables, possibly comprising latitude and longitude, a 
radial basis kernel density function is specified (a radial basis kernel is up to a constant the 
product of normal densities i.e. 
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where h refers to the class as defined by ( y,x )  and 

s s'h h 0κ =  unless s s s' s'( y ,x ) ( y ,x )= . In 
addition, a lower and an upper bound of the window size θ  are specified as well as the number 
of equidistant evaluations to be conducted to solve (3.8) approximately. Once specified the kernel 
definition remains in effect until a new call. The command also has a parameter to choose 
between mollifier (3.5) and Nadaraya-Watson (3.6). It also has one parameter specifying whether 
to write out the estimated observation-specific mass on a file, which makes it possible to use 
obtain a stage 1 instrumented estimate for the z-value in stage 2 (see section 4.3). 
 
ZONMOL: kernel smoothing with both integer and real x. As ZONDIR but invoking the kernel 
function and applying calculations of (3.3)-(3.8). This option can be time-consuming if there are 
many grid cells per class, since all pairs of cells in each class have to be considered.  ZONMOL is 
also to be used for instrumented estimation of z (see section 4.3), with the Nadaraya-Watson 
option activated, the dependent z-variable as weight, and the u-variables as determinants (see also 
KERNSET below). Similar to ZONDIR, user can analyze up to a maximum of 5000 distinct 
combinations. However, results files should be treated with caution when using as input files for 
subsequent analysis as fatal error may occur. 
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So far, the discussion was purely in terms of mass and frequencies. As mentioned in section 3, the 
tool is to serve applications beyond simple prediction. For this, it allows for 4 options (selected 
via the parameter CONTROLP), with the labels as indicated in the following table: 
  

    CONTROLP Criterion Ratio  
1. Probability Mass Frequency 
2. Net Profit Expected Profit Profit share  
3. Viability Fitness Fraction 

 
MATCH: Regarding the GAMS-commands, the sequence for matching starts with a KERNSET 
command. Next, the y-vector is built up via CROSS-commands as with ZONDIR. The treatment 
variable q should be the last crossing before the MATCH-command. Any crossing beyond it will be 
neglected. After this the user should select the matching method: 
 
   SET MATCHMETH 
       / 
       NEAREST     'nearest neighbor             ' 
       MOLLCON     'mollifier on control group   ' 
       MOLLALL     'mollifier on all observations' 
       AVERAGE     'average on control group     ' 
       ZEROREF     'Payoff as gain from treatment' 
       / 
       ; 
   
   SET METHOD(MATCHMETH); 
   METHOD(MATCHMETH)=NO; 
   METHOD('NEAREST')=YES; 
 
Finally, computations are initiated through the command: 
 
 $BATINCLUDE ..\LIBRARY\MATCH.gms PAYOFF X1 X2 FLOUT METHOD NODATA  
 
* PAYOFF: a real valued file with payoff observations (input)  
* X1 X2: x-variables, as in ZONDIR 
* FLOUT: Root of label for output files  
* METHOD: as selected 
* NRQUANT: number of quantiles for best treatment in print 
* RISKAV: risk aversion exponent 
* NODATA: symbol for missing data 
 
 
D.3 Grid files 
 
The basic data for analysis whether obtained from grid maps of geographic data, or as survey 
files. Since most components of the software are applicable irrespective of the datatype, we refer 
to both files as grid files. In the GAMS job, the scalar DATATYPE specifies this: 1 for spatial 
grid files, two for survey files. Grid files need a geo-reference that is communicated via up to 
three files with standard names: (i) locat.grd, (ii) locatm.grd, and (iii) locat_subset.grd, to be 
available in the DAT folder (they need not be referenced in the REFER set described below). the 
grid cells (survey respondents) should appear in the same order in all grid files, All 
georeferencing files relate these entries to latitude-longitude, and three types of administrative 
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mappings at three levels districts (top), provinces (middle) and counties(bottom)). These appear 
as the first five columns, A sixth column indicates whether the grid cell is on mainland (=1) or 
not (=0). 
 
When DATATYPE =1, the software assumes spatial analysis. In this case there is no need for the 
“locatm.grd” to be present in DAT folder, since the “locat.grd”, which should be there, already 
provides all necessary georeferencing. The third file, locat_subset.grd, can be used to analyze 
only a subset of a map but wants to provide some background color for the remainder. To 
represent this software will first expect “locat_subset.grd” that contains a lat lon entry with its 
administrative mapping for each pixel of analysis for the subset to be studied. If 
“locat_subset.grd” is not present in the DAT folder, the software then looks for “locat.grd” 
assuming the analysis grids cover the entire spatial map. In addition, the user should ensure that 
when a “locat_subset.grd” is created and placed in the DAT folder, a sister 
“locat_subset.sas7bdat” containing the actual mapping administration (a SAS data file) should 
also be created and placed in “Makemap\SASdat\”. If such a file is not present, maps will be 
produced assuming analysis grids cover the entire spatial map. Further the user should also ensure 
that irrespective of whether analysis grids are a subset of the entire map or not the SAS data set 
“locat.sas7bdat” should always be present in “Makemap\SASdat\”. Finally, a label name for 
background color, when it is requested, should be assigned via the GAMS job (as explained 
below). 
 
When DATATYPE =2, the software assumes survey analysis. In this case the software expects 
both “locat.grd” as well as “locatm.grd” to be present in DAT folder. For this data type option, 
“locat.grd” contains one lat lon entry with corresponding administrative mapping for each survey 
observation with order following that of respondents of the roster, while “locatm.grd” contains 
one lat lon entry for each pixel on the spatial map of the study area. If within this application, the 
user wants to display only a subset of resulting spatial maps with some background color, the 
software will first expect “locatm_subset.grd” that contains one lat lon entry with its 
administrative mapping for each pixel of the selected portion of the map. If “locatm_subset.grd” 
is not present in DAT folder, the software then looks for “locat.grd” assuming display of the 
results cover the entire map. The user should therefore ensure that when a background is needed a 
corresponding “locatm_subset.grd” be created and placed in the DAT folder. Further, a sister 
“locatm_subset.sas7bdat” (a SAS data file used for mapping purposes in Makemap) should also 
be created and placed in “Makemap\SASdat\”. If such a file is not present, maps will be produced 
assuming that display covers the entire map. The user should also ensure that “locatm.grd” 
covering the entire spatial map and corresponding SAS data set “locat.sas7bdat” (and not 
“locatm.sas7bdat”) should always be present “DAT” and “Makemap\SASdat\” folders 
respectively. Finally a label name for background color, when it is requested, should be assigned 
via the GAMS job (see below).   
Next, we turn to the establishment of reference variables stored as grid files (resp. census files), 
defined in the set REFER, which obviously differs by application. Unlike in gridding, the list of 
files in the set REFER that appear below does not have to be comprehensive. It includes the files 
kept permanently in the subdirectories DATC, for integer valued maps and their headers 
(extensions .gcd and .hdr), and DAT for real-valued maps (extension .grd) as opposed to those in 
WKRUN (working space). While integer values maps (.gcd files with respective .hdr files) 
referred to in REFER set can be used by commands such as ASLICE and CROSS, real valued 
maps (.grd files) are used as input by SLICE. 
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SET REFER  'Reference variables             ' 
 / 
 NOFIL     ' no file                    ' 
 F1        ' unit file                  ' 
 SOILS     ' soils                      ' 
 RAINFALL  ' rainfall                   ' 
 TEMPERAT  ' temperature                ' 
 TEMPZON   ' temperature zones          ' 
 SOILZON   ' soil zones                 ' 
/; 
 
The file labels may be up to 10 characters long, excluding the extension, and hence more 
differentiated than in GRIDDAT, where only the first 4 characters matter; the entries NOFIL and 
F1 are mandatory and should be in the first two positions of the set REFER. 
 
A RECODE step can be used to transform original code files and their labels into the form 
required by a particular application.  
 
Actual testing of availability of input files is done at time of execution only and non-availability 
stops the execution in ZONDIST.EXE. 
 
D.4 The commands:  
 
Program execution is controlled through a sequence of $BATINCLUDE-statements for SLICE 
and CROSS/CROSSOLD, completed by a single $BATINCLUDE for ZONDIR or ZONMOL 
followed by APPLY and/or AGGREG; the commands ASLICE, RECODE and DATHARM can 
be executed separately.  
 
ZONMOL must be preceded by the command KERNSET. If projection on the map is required, 
KERNM should be entered as first command. Projection from survey to map is a final step after 
execution of other commands. It is activated by setting the parameter RULEM {0=no projection 
1=mollifier 2=nearest neighbor), in case the data are of survey type (DATATYPE=2) and 
therefore in need of this mapping, since they do not cover the whole map already. Before these 
commands the rule for projection is to be specified using KERNM. The projection will be 
conducted for all operations, until a next KERNM command inactivates it. Finally, the 
MAPTOSUR command specifies the reverse projection. Processing follows the order of the 
commands. Files are available for subsequent ZONDIR commands, unless they have been 
overwritten explicitly. To check the sequence, the user can consult the file ZONINP.TXT in 
subdirectory WKINP. Here follows the list of commands (GAMS-subroutines to control 
execution of Fortran program) in alphabetical order. 
 
subroutine AGGREG: 
 1. Name of file (input) to obtain the y|x association from 
 2. Name of x1-file (input) for which frequency and ranking calculations 
    are to be conducted (A,M,R,PV,C or <filename>), where A = all; M = 
    mainland code 1 (i.e. excluding water); R, PV or CN region, province or 
    county level. 
 3. Name of second zone file (input) for which frequency and ranking 
    calculations are to be conducted  
 4. Fil10: the filename (at most first ten characters will be used); four 
    files will be generated, with suffixes .hdr (header),.gcd (integer grid 
    file with codes),(real valued gridfile with frequencies).grd and .gms  
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    (GAMS readable file with district aggregates). 
 5. Header for index set 
 
subroutine APPLY: 
 1. Name of file (input) to obtain the y|x association from(it will be 
    dealt with as if it was result from direct zoning). 
 2. Name of x1-file (input) for which frequency and ranking calculations 
    are to be conducted (A,M,R,PV,C or <filename>), where A = all; M = 
    mainland code 1 (i.e. excluding water); R, PV or C region, province or 
    county level. 
 3. Name of second zone file (input) for which frequency and ranking 
    calculations are to be conducted  
 4. Fil10: the filename (at most first ten characters will be used); four 
    files will be generated, with suffixes .hdr (header),.gcd (integer grid 
    file with codes),(real valued gridfile with frequencies).grd and .gms  
    (GAMS readable file with district aggregates). 
 5. Header for index set 
 6. TOPN: computations are done for at most the TOPN-highest (by district) 
    frequencies.  
 7. NLEV: maximal number of classes in SAS-maps (<9) 
 8. NODATA: code indicating non-availability of data  
 9. INTERPOL: 0/1 if interpolation is needed 
 
subroutine ASLICE: 
 1. Real valued file with weights (w, no sign restriction), to be used for 
    conversion(input file) 
 2. Integer valued file(input file) 
 3. Index set of class labels 
 4. Vector with codes in index set as appearing on the grid file 
 5. Vector with selection (0/1) from index set 
 6. Vector with conversion constants 
 7. Name of file with output values (real) as selected  
 8. NLEV: maximal number of classes in SAS-maps (<9) 
 9. NODATA: code indicating non-availability of data  
 
 
subroutine CROSS: 
 1. Real valued file with weights (v≥ 0) to be used for fractions (input 
    file) 
 2. Integer valued file   (input file) 
 3. Index set of class labels 
 4. Vector with codes in index set to be assigned to the class 
 5. Vector with selection from index set 
 6. Name of output file with selected codes; if NOFIL is entered, no file 
    is written   
 7. NLEV: maximal number of classes in SAS-maps (<9) 
 8. NODATA: missing data code on input file to be kept for output  
 9. CLEAR: release the overlay directly (=2) or  
    after the next ZONDIR/ZONMOL (=1), not at all (=0), create a file      
    containing original codes with .ocd extension (=4)  
 
subroutine CROSSOLD: 
 1. Real valued file with weights (v≥ 0) to be used for fractions (input 
    file) 
 2. Integer valued file   (input file) 
 3. Name of output file with selected codes; if NOFIL is entered, no file 
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    is written   
 4. NLEV: maximal number of classes in SAS-maps (<9) 
 5. NODATA: missing data code on input file to be kept for output  
 6. CLEAR: release the overlay directly (=2) or  
    after the next ZONDIR/ZONMOL (=1), not at all (=0)  
 
subroutine DATHARM:  
1. Name of input file(s) excluding the extension  
2. NODATA: missing data code on input file  
3. Name of reference file(s) excluding the extension  
4. NODATA: missing data code for reference file 
5. FACT: factor to multiply .grd of input file with 
6. Name of adjusted input file(s) (output) 
7. NODATA: missing data code on output  
 
 
subroutine KERNM: 
 1. Index list input files 
 2. Rule: mollifier(1), nearest neighbor(2), or no projection (0)  
 3. Factor on window size. 
 4. Site specific weight file (input, F1 unit weight) 
 
subroutine KERNSET: 
 1. Index set with file names. 
 2. THETALO: Lower bound on window size. 
 3. THETAUP: Upper bound on window size. 
 4. NTHETA: Number of evaluations at different window sizes. 
 5. EDGETH: Edge or absolute maximization for mollifier  
  6. MOLL: 1= unscaled, 2= Nadaraya Watson 
 7. FLOUT: save estimated mass on this file (not if NOFIL is specified)    
            
subroutine MAPTOSUR: 
 1. Index set with input file names (.grdm extension) 
 
subroutine RECODE: 
1. Code file   (input) 
2. Index set of  class labels 
3. Vector with codes in index set as appearing on the grid file 
4. Vector with selection (0/1) from index set 
5. Code file   (output) 
6. Index set of  class labels (input) 
7. Vector with codes in index set as on the grid file (input) 
8. Vector with selection (0/1) from index set 
9. Mapping: parameter defined in index set %2 providing 
   destination code in 6. 
 
subroutine SLICE: 
 1. Real valued file with weights (v≥ 0) to be used for fractions (input 
    file) 
 2. Integer valued file   (input file) 
 3. Index set of class labels 
 4. Vector with codes in index set to be assigned to the class 
 5. Vector with selection from index set 
 6. Vector with upper bounds on classes 
 7. Name of output file with selected codes; if NOFIL is entered, no file 
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    is written   
 8. NLEV: maximal number of classes in SAS-maps (<9) 
 9. NODATA: code indicating non-availability of data  
10. CLEAR: release the overlay directly (=2) or  
    after the next ZONDIR/ZONMOL (=1), not at all (=0)  
 
subroutine ZONDIR (or ZONMOL): 
 1. Real valued file with weights (w, no sign restriction) for frequency 
    calculations(input file) 
 2. Name of x1-file (input) for which frequency and ranking calculations 
    are to be conducted (A,M,R,PV,C or <filename>), where A = all; M = 
    mainland code 1 (i.e. excluding water); R, PV or C region, province or 
    county level. 
 3. Name of second zone file (input) for which frequency and ranking 
    calculations are to be conducted  
 4. Fil10: the filename (at most first ten characters will be used); four 
    files will be generated, with suffixes .hdr (header),.gcd (integer grid 
    file with codes),(real valued gridfile with frequencies).grd and .gms  
    (GAMS readable file with district aggregates). 
 5. Header for index set 
 6. TOPN: computations are done for at most the TOPN-highest (by district) 
    frequencies.  
 7. NLEV: maximal number of classes in SAS-maps (<9) 
 8. NODATA: code indicating non-availability of data  
 
Subroutine MATCH: 
1. PAYOFF: a real valued file with payoff observations (input)  
2. X1 X2: x-variables, as in ZONDIR 
3. FLOUT: Root of label for output files  
4. METHOD: as selected 
5. NRQUANT: number of quantiles for best treatment in print 
6. RISKAV: risk aversion exponent 
7. NODATA: symbol for missing data 
 
 
Any .gcd written by ZONDIST.EXE will also have a .hdr file corresponding to it. This .hdr file is 
an ASCII-file the labels of which can be modified by the user but the integer codes corresponding 
to these labels may, of course, not be altered, since they correspond to the codes appearing on the 
.gcd file. The index sets containing the actual labels for zoning must either be entered in the 
GAMS job or read directly from .hdr file that can be edited freely by the user. The latter is 
specified in the GAMS-command by referring to any user-specified index set with a single class. 
 
In case of projection from survey to map, files are generated with extensions .hdrm, .gcdm and 
.grdm, with vectors of length equal to the number of cells in the map, as opposed to the files 
without .hdr, .gcd and .grd that have length equal to the number of household respondents. 
 
Subroutine MATCH needs particular attention. Matching produces several files that project an 
optimal intervention on individual sample points, even for those where no payoff or treatment 
measurement is available. The results below are calculated for each ( x, y ) separately, and are 
referred to as a class. The larger category x is referred to as x-class.  
 
An optimal choice is made both for the class and the x-class. At points where no observation is 
available on y  while x is observed, the optimal choice for the x-class can be made, not for the 
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class itself. Hence, the command also provides for prediction/interpolation. The incidence of 
wrong choices being reported on in the .txt file, and projected back to survey level through .gcd 
and .grd files that contain, as in ZONDIR, one vector each, for codes and real values, 
respectively. The calculated payoffs can be compared with the observed ones that are entered as 
input file. A set of output files from MATCH command are in the following (when output file 
name specified in the MATCH command is FLOUT) 
 
.gcd and .hdr 
FLOUT                  most frequent treatment in this class 
FLOUT1                 best treatment in this class 
FLOUT2                 runner up in this class 
FLOUT3                 best treatment in this x-class 
 
.grd 
FLOUT                  average payoff of the treatment in this class 
FLOUT1                 payoff of best treatment in this class 
FLOUT2                 payoff of runner up in this class 
FLOUT3                 %cases best payoff < observed payoff in this x-class 
FLOUT4                 %cases best payoff is optimal in this x-class 
FLOUTg                 payoff difference of observation from its match 
FLOUTs                 standard deviation of best treatment in its class  
 
.txt 
FLOUT                   report file 
 
D.5 Example 
 
Here follows an example of such a sequence. The practical way of using the facility is to start 
with the sample program ZONDAT.GMS provided in the subdirectory SRC, and modify it to fit 
the problem at hand. This program contains the full GAMS-program of the example in this 
section.  
 
Set definitions for administrative levels (CN = districts, PV = provinces, and R = regions) and 
correspondence between administrative level (between CN to PV and PV to R) are required by 
ZONDAT.GMS. These can be defined as separate .gms files, stored in “../DECLARATIONS” 
folder and included in ZONDAT.GMS as follows: the first three include statements include CN, 
PV and R set definitions while the last file includes correspondence from CN to PV and from PV 
to R): 
 
$INCLUDE '..\Declarations\CN.gms' 
$INCLUDE '..\Declarations\PV.gms' 
$INCLUDE '..\Declarations\R.gms' 
$INCLUDE '..\Declarations\CN_PV_R.gms' 
 
These set definitions and the correspondences can be written into ZONINP.txt via the following: 
 
PUT '* Number of countries  R ' / CARD(R):5:0 /; 
PUT '* Number of provinces  PV ' / CARD(PV):5:0 /; 
PUT '* Number of districts  CN ' / CARD(CN):5:0 ; 
 
PUT / '* country codes R and rank' ; 
LOOP(R, 
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     PUT / @2 R.TL:<3:0, @19, ORD(R):2:0, @23, R.TE(R) ;   
     ); 
PUT / '* province codes PV and rank' ; 
LOOP(PV, 
     PUT / PV.TL:<4:0, @19, ORD(PV):2:0, @23, PV.TE(PV) ; 
     ); 
PARAMETERS 
  POPCN(CN)    "population by county" 
  ; 
 
POPCN(CN) = 1; 
 
PUT / '* county codes and rank' ; 
LOOP(CN, 
     PUT / CN.TL:14:0,@15, ORD(CN):6:0, @23, CN.TE(CN):20:0, " ",     
POPCN(CN):8:2; 
     ); 
 
In addition, the list of files to be kept in the subdirectory DAT as opposed to WKRUN is written, 
as specified by the index set REFER: 
 
SET REFER  'Reference variables             ' 
 / 
 NOFIL     ' no file                    ' 
 F1        ' unit file                  ' 
 SOILS     ' soils                      ' 
 RAINFALL  ' rainfall                   ' 
 TEMPERAT  ' temperature                ' 
 TEMPZON   ' temperature zones          ' 
 SOILZON   ' soil zones                 ' 
/; 
 
These filenames are then written into ZONINP.txt (for later reference by the Fortran code) via the 
following: 
 
PUT / '* number of files in REFER '; 
PUT / CARD(REFER):3:0; 
 
PUT / '* files kept in subdirectory DAT as opposed to WKRUN' ; 
LOOP(REFER, 
    PUT / REFER.TL:14:0,@15, REFER.TE(REFER):20:0; 
    ); 
 
A file path should also be specified for various files that the Fortran may utilize. The root 
directory is specified via the string being put into FADDRESS.TXT. For relative root directory, 
“..\” should be put. 
 
FILE ZONDAT /..\WKOUT\ZONDAT.log/;  
 
 FILE FADDR /..\WKINP\FADDRESS.TXT/;  
 PUT FADDR / "..\"; 
 PUTCLOSE FADDR; 
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ZONHEAD.GMS contains file path specification for ZONINP, and SETX1, as well as file 
relevant parameters of ZONINP.txt and ZONDAT.log. All file path names can be made relative. 
 
$INCLUDE '..\SRC\zonhead.gms' ; 
 
The options to control various visual parameters of the maps via map macros should now be 
defined. For further details of the specification, see van den Boom and Pande (2007) 
 
The set ‘COLORS’ contains a list of color combinations that are available map plots. The names 
of the set elements are standard and should be from the list of color schemes specified in van den 
Boom and Pande (2007). When chosen ‘DEFAULT’, a version of ‘GREEN_RED’ is implicitly 
specified.  
 
   COLORS      'SAS colors' 
     / 
      GREEN_RED                ‘from green to red’    
      DEFAULT                  ‘use default’  
      RED_BLUE                 ‘from red to blue’ 
      GREEN_RED_BLUE           ‘from green to blue via red’  
     / 
 
Additional colors can be added to the set and used via subset selection and only one element can 
be selected. For example, the following selects GREEN_RED as the color scheme. 
 
COLORS(' GREEN_RED ') = YES; 
COLORS('DEFAULT') = NO; 
COLORS(' RED_BLUE') = NO; 
COLORS(' GREEN_RED_BLUE ') = NO;        
 
The set ‘BACKGROUND’ contains possible label names of the background pixels, if any 
background coloring is requested by the user. Background specification requires that the output 
maps generated by any of the jobs of GRCP are subset of some bigger map. Correspondingly, it 
will require another locat file called “locat_subset.grd” in the DAT directory as well its SAS data 
set counterpart, named as “locat_subset.sas7bdat,” in the SASDAT directory of ‘MAKEMAP’ 
folder. ‘BACKGROUND’ specification then paints the map difference between the two (the 
bigger map and a subset of it) by a standard color and is named by the selected element of the set 
in the legend of the map. Similar to the selection of color scheme, only one element can be 
selected.  
 
 BACKGROUND  'Background label'  
    / 
    NONE                     'none     ' 
    unpopulated              'unpopulated'  
    SWEET                    'sweet'        
    / 
     
The set “Anno_sel” contains the kind of annotates that a user want to show on requested maps. 
These element names are standard and created within map macros facility (van den Boom and 
Pande, 2007). Here subsets can be selected in a manner similar to the selection of color schemes 
but with possibility of multiple selection. The order in which any subset appear on the map, in 
case of when annotates overlap, follow the order in which the elements of this set is specified.  
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   Anno_sel  'Annotate selection option in makemap'   
    / 
    anno_CN                       ' put district annotates'  
    anno_PV                       ' put provincial annotates'  
    anno_R                        ' put regional  annotates'  
    anno_ML                       ' put mainland annotates'  
    none                          ' put no annotates'  
     / 
     
The following two sets “Adm_sel” and “Selection” allow sub-map plots by CN, PV, R, or ML 
codes. The elements of “Adm_sel” are standard, and only one element can be selected in a 
manner similar to color scheme selection.  
 
    Adm_sel   'Administrative selection option in makemap'  
    /   
    CN_sel         'select districts'  
    PV_sel         'select provinces'  
    R_sel            'select regions'   
    ML_sel         'select mainland'               
    None             'select none'   
    / 
     
The elements of the selection set identify which units with in the administrative definition 
selected above are to be selected. It should therefore be ensured that the elements in the selection 
set belong to the selected administrative definition. Each element of this set can have a maximum 
of 14 characters that can be used to specify either a single identifier or a range of identifiers. First 
two characters are not considered part of numeric identification. In defining a range, follow first 
two characters by the lower limit, then a “-” and then the upper limit. All the elements in the set 
are then considered for sub-map selection, including those in the range (if included as one of the 
set elements).  
 
    Selection   'Admin number selection option in makemap' 
    / 
    sl200             'unit 200' 
    sl201-400         'a collection of 200 units from 201 to 400'  
    / 
     
The following two sets control the kind of plotting procedure and the kind of plotting device used 
by map macros. Option “gplot” within set “Plotproc” should be used when a plot of two variables 
on the same map is requested. For further information on these options, refer to (van den Boom 
and Pande, 2007). 
 
    Plotproc   " which plotting procedure to use in the makemap" 
    / 
    gplot       'procedure gplot'  
    none        'none'     
    /                     
     
    Device    " which device to use" 
    /  
    gif_win2     'gif_win2'    
    win          'win'  
    none         'none'     
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    / 
 
In order to demonstrate the selection of certain administrative units in creating maps, the 
following will select CN (district) values that are 200, and from 201 to 400. However, the user 
should ensure that the values defined in set ‘Selection’ are valid values available for CN (that 
there are districts with values 200, and 201-400).   
 
Adm_sel('CN_sel') = YES ;   
Adm_sel('PV_sel')= NO ;   
Adm_sel('R_sel')= NO ;     
Adm_sel('ML_sel')= NO ;     
Adm_sel('none')= NO ; 
 
The following options, defined as scalars, specify 1) NLEV: number of levels for the legend in a 
requested map, 2) ENLARGE: whether a sub-map after requesting selection via the set 
“Adm_sel” and “Selection” should resize to the map area, 3) lsopt: factor on line thickness of 
requested annotates on a map, 4) POSITION: where should the legend appear, 5) dpi: the 
resolution of the map, 6) DECIM: the precision of the numbers appearing in the legend, 7) 
scale_gr: scaling of the map within the plotting area, and 8) scale_px: factor on the height of the 
pixels in the maps. In order to invoke default values of all these options except NLEV, -1 should 
be assigned. For option NLEV default value of 8 levels is assigned whenever NLEV is assigned a 
value less than equal to 0. For further details on these options and its’ various possible values, 
readers are referred to (van den Boom and Pande, 2007). 
 
SCALAR NLEV, ENLARGE, lsopt, POSITION, dpi, DECIM, scale_gr, scale_px ;    
    
 
NLEV = - 1 ; 
ENLARGE = -1 ;     
lsopt = 0.1 ;  
DECIM = -1 ;   
POSITION = -1 ;  
dpi = -1 ;  
scale_gr = -1 ;                               
scale_px = -1; 
 
Next, the data type must be specified: 
 
SCALAR DATATYP ' Data type: 1=gridmap 2=survey'; 
 
DATATYP = 1; 
 
If DATATYP=2, the program expects either NLEV=0 (no maps), or if NLEV is positive, a pair 
georeferencing files to be available: locat.grd for zoning calculations over the survey, and 
locat2.grd, for mapping of the survey to a grid map, after spatial interpolation. 
 
We also specify index sets and parameters of the zoning itself. 
 
SET CLTEMP 'Temperature classification' 
           / 
    CLD    ' Cold     ' 
    MOD    ' Moderate ' 
    HOT    ' Hot      ' 
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           /; 
 
The selection and coding are communicated via parameters. The code number should be the one 
appearing in the data set 
 
PARAMETER CODTEMP (CLTEMP) ' Codes for temperature classification ' 
             /  
    CLD      2         
    MID      3 
    HOT     10 
             /; 
 
Selection is done by the entry itself. 
 
PARAMETER SELTEMP (CLTEMP) ' Selection for temperature classification ' 
             /  
    CLD      1         
    MID      0 
    HOT      1 
             /; 
 
The upper bounds are also communicated via a parameter 
 
PARAMETER CLS(CLTEMP) ' Bounds for temperature classification ' 
             /  
    CLD      5.         
    MID     16. 
    HOT     50. 
             /; 
 
SET CLSOIL 'Soil classification' 
    / 
    SND   ' Sand     ' 
    CLY   ' Clay     ' 
    RCK   ' Rock     ' 
    /; 
 
PARAMETER CODSOIL (CLSOIL) ' Codes for soil classification ' 
             /  
    SND      7         
    CLY      3 
    RCK      2 
             /; 
 
PARAMETER SELSOIL (CLSOIL) ' Selection for soil classification ' 
             /  
    SND      1         
    CLY      0 
    RCK      1 
             /; 
 
Also, some control parameters have to be set. The local ones are communicated directly as 
parameter in a BATINCLUDE; the global ones that now follow are set in the main program and 
keep their value until they are set at a different value. 
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The number of top combinations that the user wants the program to write in a txt file when 
executing ZONDIR should be specified via NTOP scalar. 
 
SCALAR NTOP 'Top N'; 
 NTOP = 5; 
 
The number of levels that can be displayed in various maps should be specified by NLEV. 
Another similar scalar NLEV0 with value 0 can also be defined and used in case the user wants a 
routine not to produce any output maps. 
 
SCALAR NLEV 'Number of levels in SAS-printing'; 
 NLEV = 10; 
SCALAR NLEV0 'No SAS maps'; 
 NLEV0 = 0; 
 
A numeric value for representing no data value should also be defined via a scalar called 
NODATA. 
 
SCALAR NODATA   ' entry for nodata';   
 NODATA = -9999; 
 
If the user wants to interpolate over missing values during any procedure, scalar INTERPOL 
should have value 1. 
 
*SCALAR INTERPOL ' interpolate 0/1 '; 
INTERPOL = 0; 
 
* Print control (global i.e. remains active until new assignment) 
 
  CONTROLP = 1;  
 
To control operations ZONDIR or ZONMOL, scalar CONFID specifies the confidence level in 
the sense that classes are identified in ascending order of their mass upto this fraction of total 
mass.  
* Confidence level as: ' number of classes needed to reach …' (global) 
  CONFID = .95; 
 
The KERNSET-command is needed in preparation of the operation ZONMOL. As parameter is 
has a set with 4 elements pointing to filenames. Reserved names are VOID1-VOID4 (unit values 
for unused elements), LAT and LON (latitude and longitude as available from LOCAT file). If 
the filename appears in REFER it will be expected to be available on DAT otherwise on 
WKRUN. 
 
SET ZVAR ' File names and description real valued variables' 
             /  
    LAT          'Latitude            ' 
    LON          'Longitude           ' 
    VOID1        'void                ' 
    VOID2        'void                ' 
            /; 
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The KERNSET routine that prepares for ZONMOL needs to be preceded by three scalars that 
define the lower, and upper bounds of the multiplication factors on a Gaussian reference 
bandwidth as well as the number of iterations requested by the user to reach some agreeable 
window size. However, the user should be careful in defining THETALO as well as NTHETA 
because high THETALO or NTHETA may become computationally expensive.  
* Specifying kernel window size 
  THETALO = .1; 
  THETAUP = 2.; 
  NTHETA = 3; 
 
In order to specify mollification for the KERNSET subroutine, the scalar MOLL should be 
appropriately assigned. MOLL = 1 indicates that mollifier weights should be assigned on grid 
cells (survey files). These computed weights override any weight file specification provided in 
the GAMS job. The Nadaraya Watson option differs from mollifier in that it normalizes the 
weights to let them sum to unity. In either case, in view of the high computational requirements 
of mollification , users are recommended to use MOLL = 0 when fast computation is required.     
 
* Mollifier (1= mollifier, 2= Nadaraya Watson) 
  MOLL = 2; 
 
The user should, via the parameter EDGETH indicate whether maximization should be of 
absolute mass of correct maximum likelihood predictions (EDGETH = 0) or of their edge over 
second best (EDGETH = 1): 
 
  EDGETH = 0; 
 
A second edge parameter, unrelated to the first, controls the stepwise selection. For each given 
combination of variables, it performs a maximum probability estimation but it in addition selects 
the combination of (y,x)-elements that maximizes the edge value: EDGESL = 0 keep all; 
EDGESL = 1 select from all possible combinations; EDGESL = 2, select from combinations as 
supplied by the user, on file WKINP\Edgesl.txt ; this file can be obtained by editing 
WKINP\Edgesl.txt as produced under a run with EDGESL=1:  
 
   EDGESL = 0; 
 
The KERNM-command (counterpart of KERNSET used for mapping and only needed if this 
command is used) defines the rules for projection from survey to map.  The set must have 4 
elements.Specify the index set for KERNM-command (counterpart of KERNSET used form 
mapping and only needed if this command is used). The set must have 4 elements. Reserved 
names are VOIDM1-VOIDM4 (unit values for unused elements), LATM and LONM (latitude 
and longitude (available from LOCATM file). Since this command is needed when survey point 
observations are spatially interpolated, specifying CNM or PVM or RM (but never to specify 
more than one at a time) will yield spatial interpolations that are constrained by CN or PV or R 
boundaries, respectively. If filename appears in REFER it will be expected to be available on 
DAT otherwise on WKRUN. 
 
SET ZVARM ' File names and description real valued variables' 
             /  
    LATM         'Latitude            ' 
    LONM         'Longitude           ' 
    CNM          'CN constrained      ' 
    VOIDM2       'void                ' 
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            /; 
 
Corresponding to survey interpolation onto a map (when using KERNM routine), the scalars 
RULEM and THETAM are also needed to specify the kind of interpolation and the multiplication 
factor on the Gaussian reference bandwidth respectively (the latter only used when mollifier is 
used as the interpolation technique). However, care should be taken in defining THETAM 
because with high THETAM computation may be slow. Therefore, are therefore recommended to 
use RULEM = 0 in case they desire quicker results. 
  
* Specify rule and kernel window size for mapping on grid 
  SCALAR RULEM,THETAM; 
 
  THETAM = 1.; 
  RULEM = 1;  {0=no projection 1=mollifier 2=nearest neighbor) 
   
Finally, in order to name the operations that are realized by invoking routines ZONDIR, 
ZONMOL, APPLY or AGGREG, the following sets should be named. Every operation should 
have a set of its own,    
 
* Result set: only the label and name matter (up to 30 characters 
* for long label 
SET RESIND 'Where do most farmers live?' 
    / 
    NORES 
    /; 
 
SET RESIND2 'Where do most farmers live?' 
    / 
    NORES2 
    /; 
 
Now commands (here $ is used as shorthand for $BATINCLUDE ..\LIBRARY\ in the actual 
GAMS-program, where each command must be entered on a single line) can be entered. 
 
* KERNM: defines the kernel functions for mapping on grid 
* %1 Index list input files 
* %2 Rule (0=no projection, 1=mollifier, 2=nearest neighbor)  
* %3 Window size factor (e.g. 1.=default, 0.= dot plot)  
 
$KERNM.gms ZVARM RULEM THETAM  
 
The following SLICE command generates a map in the “Makemap\Pict” folder (since NLEV >0). 
The resulting map figure generated will be named after the output file name with a title “Result 
from slicing”, while the legend of the map will follow the name specified for the set CLASPOP 
(the set that defines the names of various classes). For DATATYPE = 2 (i.e. data of type survey), 
SLICE also uses the weight matrix generated by the KERNM operation above to display the 
winning class among neighboring points for which survey observation(s) are available. Winner is 
the class that has most influence on a pixel. Hence, this operation conducts a spatial interpolation 
between survey data points.    
 
* SLICE: converts from real to coded file on the basis of class bounds 
* %1 v weights 
* %2 Real valued file   (input file) 
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* %3 Index set of class labels 
* %4 Vector with codes in index set as appearing on the grid file 
* %5 Vector with selection (0/1) from index set 
* %6 Parameter that specifies the bounds 
* %7 Name of output file; if NOFIL is entered, no file is written   
* %8 NLEV number of levels in SAS-printing 
* %9 NODATA code for 'no data'  
* %10 CLEAR whether to drop the information from the character string 
*    0=keep/1=drop after next ZONDIR or ZONMOL/2=drop immediately 
 
$BATINCLUDE ..\LIBRARY\SLICE.gms POP1 POP1 CLASPOP CODPOP SELPOP BNDPOP 
POPCL NLEV NODATA "2" 
 
The following SLICE doesn’t produce any map, as the number of levels that are input into the 
subroutine is NLEV0 (which is assigned 0). 
  
* second slice  
$BATINCLUDE ..\LIBRARY\SLICE.gms LGP1 RFL1 CLASRAIN CODRAIN SELRAIN RAINBND 
RAINFIL NLEV0 NODATA "0" 
 
Now turning to ASLICE below, a map named SLICEFIL.gif will be produced (since NLEV>0) 
with a title “Result from Antislicing”, and a legend title named after the title of the set 
CLASRAIN.    
 
* ASLICE: converts from code to real valued map (Antislice) 
* %1 Real valued file   (input file) 
* %2 Index set of class labels 
* %3 Vector with codes in index set as appearing on the grid file 
* %4 Vector with selection (0/1) from index set 
* %5 Parameter that specifies the bounds 
* %6 Name of output file 
* %7 NLEV number of levels in SAS-printing 
* %8 NODATA code for 'no data'  
 
$ASLICE.gms RAINFIL CLASRAIN CODRAIN SELRAIN RAINBND SLICEFIL NLEV NODATA  
 
 
 
* DATHARM: harmonize data availability by dropping all observations with  
* any missing; multiply by factor 
* %1 name of input file  
* %2 NODATA: missing data code for input file  
* %3 name of reference file (input) 
* %4 NODATA: missing data code for reference file 
* %5 FACT: factor to multiply .grd of input file with 
* %6 name of adjusted input file (output, none if NOFIL is entered) 
* %7 NODATA: missing data code on output 
 
$DATHARM SCC1 NODATA CEO1 NODATA SCC1 NODATA FACT  
 
The following CROSS routine also generates a map. Since CROSS is generally used to update 
the classes selected in a variable for further analysis, the resulting figure is aptly titled “Result 
from selection”.  
 
* CROSS: crosses by extending the y-part of the character string 
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* %1 weights  
* %2 name of coded file (input) 
* %3 Index set of class labels 
* %4 Vector with codes in index set as appearing on the grid file 
* %5 Vector with selection (0/1) from index set 
* %6 Name of output file if NOFIL is entered, no file is written   
* %7 NLEV number of levels in SAS-printing 
* %8 NODATA code for 'no data'  
* %9 CLEAR whether to drop the information from the character string 
*    0=keep/1=drop after next ZONDIR or ZONMOL/2=drop immediately 
 
$CROSS.gms CEO1 SCC1 CLASSOIL CODSOIL SELSOIL CROSSFIL NLEV NODATA "0" 
 
The following ZONDIR produces a total of 6 maps or 3 pairs of maps in case DATATYPE = 1 
(data are of type gridmap) holds. The first pair of maps, named ZOUT1.gif and ZOUT1c.gif, 
reports on observed y-class combinations at each pixel of the map and its frequency of occurrence 
corresponding to the x observed for that pixel, hence their titles “Classification” and “Frequency 
of observed classes”, respectively. The legend of these maps will now be titled after the set title 
of RESIND defined above, which also names the operation that this ZONDIR is part of. Other 
two pairs of maps that will be generated are {ZOUT11.gif, ZOUT11c.gif} and {ZOUT12.gif, 
ZOUT12c.gif} that report on most frequent y-classes and their observed frequencies; and second 
most frequent classes and their frequencies, respectively. While the legend title of all these maps 
remain the same and are named “Where do most farmers live?”, the map titles are {“Most 
frequent class”, “Highest class frequency”}, and {“Second most frequent class”, “Second highest 
class frequency”}, respectively. In case DATATYPE = 2 (data are of type survey), ZONDIR only 
outputs two maps: ZOUT1.gif (titled “most frequent class”), and ZOUT1c.gif (titled “weight of 
influence”). Unlike the case of DATATYPE = 1, these maps only report the most frequent y class 
in ZOUT1, while ZOUT1c reports on the weight of influence those winning y-classes have in 
their neighborhood, and require KERNM as preparatory step. 
 
* ZONDIR: direct zoning (for qualitative variables only, no z-variables) 
* %1 weights 
* %2 Parameter 1 indicating for which district frequency and ranking 
*    calculations should be conducted (A/M/R/PV/CN or <filename>) 
* %3 Name of second zone file (input) for which frequency and ranking 
*    calculations are to be conducted  
* %4 name output files (excl extensions)  
* %5 Header 
* %6 TOPN  
* %7 NLEV of levels in printing 
* %8 NODATA code for 'no data'  
* %9 INTERPOL interpolate  
 
$ZONDIR.gms POP1 CN POPCL ZOUT1 RESIND TOPN NLEV NODATA INTERPOL  
 
The following APPLY routine applies the most frequent y-classes as computed in the previous 
ZONDIR operation (and stored in ZOUT1.txt) and corresponding to x-variables CN and POPCL. 
An output map called ZFLOUT2 is created with a map title “Prediction” and a legend title 
corresponding to the set label of RESIND. 
 
* APPLY: Applies mapping to new x-conditioning 
* %1 File (.txt) to obtain the y|x association from 
* %2 Parameter 1 indicating for which district frequency and ranking 
*    calculations should be conducted (A/M/R/PV/C or <filename>) 
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* %3 Name of second zone file (input) for which frequency and ranking 
*    calculations are to be conducted  
* %4 name output files (excl extensions)  
* %5 Header for results 
* %6 NLEV of levels in printing 
* %7 NODATA code for 'no data'  
 
$APPLY.gms ZOUT1 CN POPCL ZFLOUT2 RESIND NLEV NODATA  
 
* AGGREG: aggregates to district file (level indicated) 
* %1 File (.txt, .hdr input) to obtain the y|x association from 
* %2 File (.gms, output)   
* %3 Parameter indicating for which district frequency and ranking 
*    calculations should be conducted (A/M/R/PV/C or <filename>) 
* %4 Name of second zone file (input) for which frequency and ranking 
*    calculations are to be conducted  
* %5 Header for results 
 
$AGGREG.gms ZOUT1 CN POPCL ZFLOUT2 RESIND 
 
 
* MAPTOSUR: assigns map values to survey data 
* %1 Name of input file on map   (input file) 
 
$MAPTOSUR.gms SCC1 
 
 
* KERNSET: defines the kernel functions and the mollifier operations 
* %1 Name of z1-file (input) for which frequency and ranking calculations 
*    are to be conducted (F1, LAT, LON or <filename>), where F1 = unit 
*    values ; LAT = latitude; LON = longitude. 
* %2 THETALO: Lower bound on window size. 
* %3 THETAUP: Upper bound on window size. 
* %4 NTHETA: Number of evaluations at different window sizes. 
* %5 EDGETH: Edge (0=no 1=yes) 
* %6 MOLL: 1=mollifier 2=Nadaraya Watson 
* %7 FLOUT: output file for estimated weights (mass) (NOFIL = no file 
*    written) 
 
$KERNSET.gms ZVAR THETALO THETAUP NTHETA EDGETH MOLL FLOUT 
 
With prior invocation of KERNSET above, ZONMOL produces mollified maps that are similar 
in content to those produced by ZONDIR.  
 
* ZONMOL: kernel smoothed zoning with y x and z (real-valued) variables 
* %1 W-weights 
* %2 Parameter 1 indicating for which district frequency and ranking 
*      calculations should be conducted (A/M/R/PV/C or <filename>) 
* %3 Name of second zone file (input) for which frequency and ranking 
*    calculations are to be conducted  
* %4 name output files (excl extensions)  
* %5 Header 
* %6 TOPN  
* %7 NLEV of levels in printing 
* %8 NODATA code for 'no data'  
* %9 INTERPOL interpolate (0/1)  
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$ZONMOL.gms POP1 CN POPCL ZOUT2 RESIND2 TOPN NLEV NODATA INTERPOL  
 
 
The following lines lead to a matching operation. The treatment variable is assumed to be the one 
used in the last CROSS operation (which is HCTPXASc (poverty head count)). Note also that 
matching also requires the user to specify which class values of the treatment variable is “non-
treatment” or control value. This is done for the treatment variable in this example by specifying 
a value of 2 in . The other classes of the treatment variable are then (varying degree of) treatment 
values. The additional y variables are built up via prior SLICES and CROSSES. 
 
First we show the last CROSS with corresponding class definitions for clearer discourse: 
 
*--------------------------------------------------------------------- 
*HCTP 'Head count poor’ 
 
SET CLASHCTP 'Head count poor' 
             /  
    HCLO   'low poverty  '    
    HCME   'medium poverty ' 
    HCMH   'medium-high poverty ' 
    HCHI   'High poverty   ' 
             /; 
 
PARAMETER CODHCTP (CLASHCTP) 'Head count classification ' 
             /  
    HCLO    1       
    HCME    2       
    HCMH    3       
    HCHI    4       
           /; 
              
PARAMETER SELHCTP (CLASHCTP) 'Selection for HEADCOUNT classification ' 
             /  
    HCLO    1 
    HCME    2 
    HCMH    1 
    HCHI    1 
           /; 
 
PARAMETER BNDHCTP (CLASHCTP) 'Bounds for HEADCOUNT classification ' 
             /  
    HCLO         20.         
    HCME         35. 
    HCMH         60. 
    HCHI         100. 
            /; 
*--------------------------------------------------------------------- 
 
$BATINCLUDE ..\LIBRARY\CROSS.gms F1 HCTPCL CLASHCTP CODHCTP SELHCTP 
HCTPXASc NLEV NODATA "0" 
 
Now follow matching-specific definitions: 
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SET MATCHMETH 
/ 
NEAREST     'nearest neighbor                ' 
MOLLCON     'Nadaraya Watson on control group' 
MOLLALL     'Nadaraya Watson on all' 
AVERAGE     'Average treatment               ' 
ZEROREF     'Payoff as gain from treatment   ' 
/ 
; 
   
SET METHOD(MATCHMETH); 
METHOD(MATCHMETH)=NO; 
METHOD('MOLLCON')=YES; 
 
* Risk aversion exponent 
SCALAR RISKAV; 
RISKAV = 1.; 
 
{4. Matching 
The y-vector is built up via CROSS-steps as with ZONDIR. The treatment 
variable should be in the last crossing before the MATCH command. Any 
crossing beyond it will be neglected in calculation. 
Next, the matching is initiated through the command: 
} 
 
SET RESIND6 'matching ' 
    / 
    NORES6 
    /; 
 
Finally the MATCH command, where the payoff file is defined by ASCO (Arsenic 
contamination) and the x variable files are PV (provinces) and POPDCL (population density 
classes): 
 
$BATINCLUDE ..\LIBRARY\MATCH.gms ASCO PV POPDCL ZOUT4 RESIND6 METHOD 
NRQUANT RISKAV NODATA 
 
The command above then generates the following set of files: 
  
.gcd and .hdr files: 
ZOUT4                  most frequent treatment in this class 
ZOUT41                 best treatment in this class 
ZOUT42                 runner up in this class 
ZOUT43                 best treatment in this x-class 
 
.grd files: 
ZOUT4                  average payoff of the treatment in this class 
ZOUT41                 payoff of best treatment in this class 
ZOUT42                 payoff of runner up in this class 
ZOUT43                 %cases best payoff < observed payoff in this x-class 
ZOUT44                 %cases best payoff is optimal in this x-class 
ZOUT4g                 payoff difference of observation from its match 
ZOUT4s                 standard deviation of best treatment in its class  
 
.txt file: 
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ZOUT4                      report file 
 
Finally, the closing line of the GAMS program. 
* closing line 
PUT ZONINP / "#"; 
 
Grid files are stored under DAT or WKRUN depending on whether they appear in REFER; code 
and header files in DATC or WKRUN; result and debug files appear under WKOUT. Input 
generated by GAMS is kept in WKINP.  
 
This completes a zoning operation. Several of such operations can be conducted in a single 
GAMS-job.  
 
Packing 
 
An example is now presented for Bangladesh that demonstrates how different Arsenic 
concentration levels vary with different land use categories and different elevation levels. By 
conditioning such a map on population density, one can also identify the most (or second most) 
likely combination for observed population densities. Given three variables with multiple classes, 
combinations on such maps may become intractable, making it difficult to isolate combinations 
of interest. The exercise, therefore, calls for a stepwise procedure that retains tractability. 
 
For this, we consider an example of step-wise “packing”, whereby a sequence of 
ZONDIR/ZONMOL commands is used to cross a number of files with categorical data. The 
intent is to create a “packing” of these three variables conditioned on province and population 
density maps (ppl/sq.km.) and isolate a subset of observed category combinations of these three 
variables of interest. All the maps are at 30 arc seconds with 841 rows and 601 columns with 
approximately 174310 active cells (i.e those cells that have values). They  are obtained as real 
valued map, and the “SLICE”-command is used to classify them into categories. Such 
categorization also makes a case for robust instrumentalization (see Section 4.3). For Arsenic 
concentration the classification is: 
 
Range(µg/l) Class label Class characteristics 
0. – 10.          Safe Safe for human consumption 
10. - 50. Low Low harm 
50. - 100. Medium Medium harm 
100. - 300. High High harm 
300. - 500. Very high Very high harm 
 
Table1. Typical class definition used in SLICE 
 
“SLICE” operation yields the map operation shown in Figure 1. Already classified maps can be 
used as input maps via the CROSS command. The other two categorical maps are also shown in 
Figure 2. 
 



 
 
 
 

56 

 
 
Figure 1. An Example of “SLICING” a real valued map to a categorical map: Arsenic concentration. 
 
 
 

 
 
Figure 2. Categorical variable maps to be packed, along with Arsenic concentration category map shown 
in Figure 1. 
 
With categorical maps available, “packing” is performed in a sequential manner. As a final result 
it produces y=classified maps of{Arsenic concentration, land use and elevation} to be “packed” 
conditioned on x=classified maps of{province and population density}.  
First, a pair of elevation and land use categorical maps, y1, is considered with conditioning of 
categorical maps as x. “CROSS” or “SLICE” with drop option (=0) should be operated on 
variable maps of interest before invoking “ZONDIR” at any  level of “packing”. Figure 3 shows 
the output categorical map generated by the first ZONDIR. We remark that the labels of various 
observed combinations are long already and that subsequent ZONDIR operation will make them 
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even longer.  Therefore, some relabeling will usually be needed eventually, to keep the headings 
of maps and tables interpretable. 
 
 

 
 
Figure 3. Elevation-Landuse “packed” map. It shows various combination categories that exist 
throughout the study area. 
 
This relabeling can be effectuated by copying the .gcd and .hdr files that correspond to 
combination codes appearing in Figure 3 from ‘..\WKRUN’ folder to the ‘..\DATC’ folder. It is 
then renamed and used as another categorical map in the next invocation of ZONDIR. This 
implies that the user should now include this filename in the “REFER’ set of ‘ZONDAT.gms’ as 
well. Upon relabeling the observed combination categories in the .hdr file (now in DATC folder) 
as shown in Table 2 (only the first 3 of the 8 combinations are shown), the relabeled Figure 3 is 
shown in Figure 4. Note that labels that are replaced in .hdr file are not the labels that appear in 
the map above, but are program generated. These labels appear under the heading ‘* Index list’ of 
the .hdr file. However, their order of appearance follows the order in which the labels appear in 
the legend of the map above. 
 
Labels in .hdr file Original Labels New labels 
DLOW_AF1_ 
 

Less than 10 m                 
Dryland/Cropland/Pasture 

LEAG 
 

DRLO_AF1_ 
 

Less than 10 m 
Grassland/Forests              

10AG 
 

DMED_AF2_ 
0 

Low altitude 
Dryland/Cropland/Pasture 

MEGF 
 

 
Table2. Relabeling .hdr file in DATC folder, for elevation-landuse “pack”, from program generated 
labels to user-specific ones.  This relabeled .hdr file will be used in another ZONDIR operation to achieve 
next level of packing. 
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Figure 4. Display of relabeled elevation-landuse “pack”. The figure is the same as Figure 3 except that the 
the legend has been relabeled via changes made in the .hdr file in the DATC folder. 
 
Figure 4 has been created by using “CROSS” procedure of the renamed .gcd file with another 
.gcd file containing one. Such a “CROSS” operation can be used to demonstrate or check the 
changes made in .hdr in ‘..\DATC’ folder or as a precursor to a “ZONDIR” to invoke changes 
made in the .hdr file in DATC folder. 
The map of Arsenic concentration can now be packed on top of the combination map of elevation 
and landuse (produced by the previous “ZONDIR” operation and  now available as a gcd file in 
DATC folder) using another invocation of “ZONDIR”, with the same conditioning variables. 
However such a packing leads to 35 distinct observed combinations. This may be cumbersome as 
a user may only want to use a selected few of these combinations for display as well as further 
analysis. Suppose that we want to display only those combinations that correspond to high or 
very high arsenic concentration classes. Selection of certain classes can be achieved by making 
appropriate changes under the heading “* Selection” of the .hdr file, by keeping 1 for classes that 
need to be selected and 0 for the others, a subset is obtained.  
Now by (1) renaming the .gcd and .hdr output files of “ZONDIR” that correspond to observed 
combinations, (2) relabeling certain classes that are of interest, (3) placing them in ‘..\DATC’ 
folder, (4) selecting those classes that are of interest via changes in .hdr file and (5) including the 
renamed file name in ‘REFER’ set of “Zondat.gms”; we operate a “CROSS” similar to the one 
that generated Figure 4. The resulting combination map appears in Figure 5a. Note that the .gcd 
and .hdr output files that will now be created as a result of this “CROSS” will only contain those 
combinations that have been selected, while those classes that have been dropped will now appear 
as “missing”.     
Similar result can also be obtained by reordering the classes in the .hdr file (placed in DATC 
folder) to let the classes that a user wants to display appear first, which leads to (1) later classes 
will be given a label (called “other classes”), and (2) the order in which these classes appear 
(except “other classes’) on the map will follow the order specified in the .hdr file. Having 
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reordered the hdr file, “CROSS” operation yields Figure 5b. Note that the classes that were not 
selected in Figure 5 now appear as “other classes” in Figure 5b. Specifically, .hdr file contains 3 
kinds of specifications for observed combinations. The first, appearing under the heading “ * 
Index list” is where labels for observed combinations is defined that appear in the map. The 
second, appearing under the heading “* Codes” is the location where codes for various observed 
combinations are specified that appear in corresponding gcd file. Finally, the third location, 
appearing under “* Selection” is where the selection should be done. Care should be taken to 
reorder all three specifications in the same manner. Codes appearing in the gcd file should always 
remain untouched. 

 
Figure5. Output maps from “CROSS” operations on outputs of “packing” processes. a) Example of 
selecting specific category combinations obtained at one level of “packing” that will be used at the next 
level. b) Example of selecting all for the next combinations but displaying only specific categories by 
reordering the entries in .hdr file in DATC folder. Both figures display almost the same level of 
information but one carries on only a part of available combinations from one level of “packing” to the 
next (i.e. Figure 5a) while the other carries on all the available category combinations. 
 
With each step of packing process, an analysis file (output file with extension.txt, say ZOUT.txt) 
is created. This analysis file reports on marginal as well as conditional frequency of occurrence of 
various y combinations (“packed” combinations) “upto” that step of packing. However, the 
combinations that correspond to the non-selected categories of contributing variables in previous 
steps (via prior CROSSs) are excluded from this analysis file. Thus, the analysis files of another 
packing step with underlying data of Figure 5a as a base file will be different from when the 
underlying data of Figure 5b is a base file.  
In general, the ZOUT file has a header followed by three sections that comment on overall 
frequencies, conditional frequencies and the hit ratios of the most likely combinations. The 
header “Frequency calculations via ..” contains: (a) number of data points, (b) number of data 
points that has observations for conditioning variables, (c) maximum number of classes for each 
conditioning value that will be stored, (d) total number of observed categories for “each” of the 
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conditioning variables, (e) distinct number of y-classes that are observed in the data set, (f) total 
number of observed “combination” categories of conditioning variables, and (g) total number of 
variables that are active in the analysis. The header is followed by a section “(1) Overall 
Classification” which provides (a) a summary of how much mass is explained by the maximum 
allowed number of combinations in comparison to the total mass, (b) overall (not conditioned) 
frequency of occurrences of all observed y combinations in the data set along with the ranks of 
such combinations (by frequency of occurrence). The next section on conditional frequencies “(2) 
Frequencies by x-class” provides for “each” conditioning value of x (a) the categories of 
variables constituting that x-combination, (b) total mass of observed categories for “each” 
element of the y-variable for that x-combination, and (c) y-variable “combination” values and 
their frequencies, upto user-specified maximum number of top combinations, that appear for that 
x-combination. It is followed by section on “Report on Goodness of Fit” that includes (a) “(3) 
Overall fit” that reports on total mass of observation (which is equal to total number of 
observation if weight files used in analysis is always a unit file), and the fraction of mass 
explained by the winning and runner-up y-combinations, (b) “(4) Frequency of occurrence of 
class in top   5” that reports on the “overall” frequency of occurrence of various categories that 
appear in user-specified top N categories for “each” of the y-variables, and finally (c) “(5) Hit 
ratios by x-class” reports on mass, and the hit-ratio of the winner y-combination (conditioned on 
individual observed x-combinations) as well as the hit-ratio of the runner-up y-combination 
(conditioned on the same x-combination) with the difference in the frequencies, called Edge1-N, 
between the two. 
Continuing in such a fashion, one may pack multiple variables. Based on what changes have been 
made in the .hdr file, either partial or all the combinations can be taken forward to the next level 
of packing. This helps in not only reducing the number of combinations under consideration by 
user intervention but also to geographically focus onto areas that have category combinations of 
interest (as shown in Figure 5a). Finally, Figure 6 summarizes the operations.  
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Figure 6. Flowchart overview of the “packing” process. 
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b) Copy output gcd and hdr file to DATC folder 
c) Go to DATC folder and rename the transferred files 
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Alphabetic list of commands 
 
AGGREG 
APPLY 
ASLICE 
CROSS 
CROSSOLD 
DATHARM 
KERNM 
KERNSET 
MAPTOSUR 
MATCH 
RECODE 
SLICE 
ZONDIR 
ZONMOL 
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