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1. MOTIVATION 

The case of Australia is a very interesting and particular one: with an ex-
tension of 7,741,220 Km

2
, which represents 5.2% of the total world area, (the 

sixth largest country in the World), it hosts 22,466,224 people (Official Austral-
ian Population Clock, September 20th., 2010), only about 0.32% of the total 
world population, which sets it in the 53th. position. Taking both measures to-
gether, this implies the Australian population density is one of 2.6 people per 
Km

2
, which makes it ranks as the seventh lowest density in the World. Australia 

is also one of the richest and most developed countries: by looking at the per 
capita GDP (nominal), it is within the first fifteen. Finally, its condition of an 
island as well as its special and very unique geography have shaped the distribu-
tion of population across space in a way that most people live by the coast (spe-
cially in the eastern one), leaving in the inner land an incredibly large empty 
space that may be called demographic desert. 

On the other hand, there is a large branch in the urban economic literature 
analyzing both theoretically and empirically the distribution of the population 
within an urban system as well as its evolution over time, most of it using Zipf’s 
and Gibrat’s Law as tools to describe it. On the theoretical side, Cordoba 
(2008), Duranton (2007), and Gabaix and Ioannides (2004) are good examples; 
on the empirical side, although the main target of the studies is USA (Beeson et 
al., 2001; Black and Henderson, 2003; Overman and Ioannides, 2001), several 
other countries have been chosen, such as China (Anderson and Ge, 2005), In-
dia (Sharma, 2003), Malaysia (Soo, 2007), Japan (Davis and Weinstein, 2002; 
Davis and Weinstein, 2008), France (Eaton and Eckstein, 1997), Austria 
(Nitsch, 2003), Germany (Bosker et al., 2007; Bosker et al., 2008; Brakman et 
al., 2004), Spain (Lanaspa et al., 2003; Lanaspa et al., 2004) and even some 
cross-country analysis (Rosen and Resnick, 1980; Soo, 2005). However, very 
little papers have looked at Australia in a detailed fashion, despite its special 
characteristics, already noted by Rosen and Resnick (1980). 

The present paper is thought to fill that (almost) empty space: it examines 
the whole Australian urban system in 1996 and 2001 in a detailed way display-
ing many features which set Australia far apart from other countries. While 
most of the results obtained for other countries show a Zipf coefficient around 
one, regressions in this paper show Australia has a much lower one, around 0.7, 
which means a more uneven population distribution among the cities of the 
system. When analyzing the relation between growth and city size, we also find 
Australia does not meet Gibrat’s law. In addition, special emphasis is set in the 
spatial dimension of both variables (size and growth) to test to which extent we 
can speak of spatial association in the urban system. Related to this, an explora-
tory as well as a confirmatory spatial analysis are carried out being the main 
conclusion that while sizes do not show any kind of autocorrelation, urban 
growth does appear to be spatially related. 

It is important to make a point regarding the methods used in this paper. 
While those employed in the non-spatial part are fairly common (i.e. adaptive 
kernel estimation or OLS regression), the ones that try to account for space 
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combine visualization tools (i.e. the Clustercart) with some of the most recent 
advances in spatial econometrics to try to offer correct estimates in presence of 
spatial autocorrelation. This kind of framework, although very useful to include 
spatial effects into the analysis, has rarely been used when looking at city size 
distribution. 

The remainder of the paper is organized as follows. Section 2 describes 
the data set, why it has been chosen this way and gives some very basic statis-
tics to get a first feeling. Section 3 analyses the Zipf’s relation in Australia, 
while Section 4 looks at the link between the city size distribution and urban 
growth, testing whether Gibrat’s law holds for the sample or not. An explorato-
ry spatial data analysis (ESDA) to urban population and growth is applied in 
Section 5 while the confirmatory analysis may be found in Section 6. Section 7 
closes the paper by adding some conclusions and pointing to further steps to be 
taken. 

2. DATASET 

Since the main purpose of this paper is to analyze the Australian urban 
system, the spatial unit used will be the Australian Bureau of Statistics’ (ABS) 
“Urban Center and Locality” (UC/L from now on), which groups Collection 
Districts (CD’s from now on, they are the smallest ABS’s spatial unit in the 
Australian Standard Geographical Classification) together to form defined areas 
according to population size criteria by using census counts. In broad terms, an 
Urban Center is considered to be a population cluster of 1.000 or more people 
while a Locality is a population cluster of between 200 and 999 people (thus it 
does not cover the entire Australia). Each UC/L has a clearly defined boundary 
and comprises one or more whole CDs

1
. The data set used for this paper con-

tains census counts from the 2001 Census of Population and Housing and 1996 
Census data based on 2001 Census geography. 

Both the choice of UC/L as unit and the adjustment between 2001 and 
1996 boundaries imply a drop in the final dataset size considered which makes 
the sample smaller than the total Australian population. We are using 86.42% 
and 88.39% of the total population in 1996 and 2001, respectively. 

In the rest of the paper we use the absolute population of city  ( ) divi-

ded by the mean (relative size or ) or the total population (share or ). 

This allows to relate each nucleus behavior to that of the whole distribution. 
Finally, there is an additional reason to use relative measures, and it is that, as 
Gabaix and Ioannides (2004) put it, “talking about steady-state distributions 
requires a normalization of this type”. 

                                                      
1 For more information, refer to: 

• Australian Standard Geographical Classification. July 2007, 

• Australian Bureau of Statistics website (www.abs.gov.au). 
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Finally, we conclude this section with a non-parametric analysis. Figure 1 
shows the estimation of the log of relative population density function for both 
1996 (dotted line) and 2001 (straight line) by means of an adaptive kernel à-la 
Silverman (1986)

2
. 

We may observe two main features in the figure: one dealing with the 
general shape of both kernels and the other regarding the evolution from 1996 
to 2001. The first one is that, in both years, most of the probabilistic mass is 
placed on the left of zero; provided it is log of the relative population, zero im-
plies the city whose population is average and then we can observe most of the 
Australian cities have a size far below the average one. In relation to the evolu-
tion, as one might expect from a short period of time, the main conclusion is 
there are not big differences. However, if some, one might notice the peak has 
moved rightwards. This, together with the fact the average city has grown, 
comes from the general growth of Australian population (6.1%): as more people 
exist, it is logical to think cities will be bigger. 

Figure 1. Kernel density plot 

 
Dotted line corresponds to 1996 and the straight one to 2001. 

3. ZIPF IN AUSTRALIA? 

3.1. Zipf’s Law 

A common procedure widely used in the literature to rapidly characterize 
an urban system is to test how well the sample fits a power law. The theoretical 
basis of this practice comes from the statistical definition of Zipf’s law, which 

                                                      
2 The kernel was estimated with R’s package “quantreg”, freely available in the CRAN reposito-

ries (http://CRAN.R-pro ject.org). 
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relates to the notion of Pareto distribution. An urban system is said to follow a 
power law if : 

S

a
SSizeP =)>(     (1) 

          After some easy algebra, from eq. 1 and the consideration of the empiri-
cal distribution, we have : 

 ii lnSAlnR =  (2) 

where  is a constant and  is the rank of city  (1 for the largest one, 2 for 

the second one, etc.), which is the common specification to test empirically 
Zipf's law. In (2), α can be understood as a measure of the degree of evenness in 
the system: extremely, if α = ∞ the graph is a vertical line around a size and 
every city has that size; opposite, if α = 0 the degree of unevenness is maxi-
mum. We call the “rank-size rule” when α is around 1 and, in such case, we 
consider Zipf's law holds, because the power law is just an approximation of the 
real Zipf's expression. As Gabaix and Ioannides (2004) put it: “even if Zipf's 
law holds perfectly, the rank-size rule would hold only approximately”. In this 
situation, the second largest city is half the size of the first one, the third largest 
one is one third the first one, and so on. 

In this section, some results on the power law for Australia are offered. 
Since (2) is invariant to increasing monotone transformations in Si , there is no 
difference between any of the three measures (absolute, relative and shares of 
the total) and hence only relative sizes will be extensively shown. 

3.2. Basic Zipf 

Figures 2(a) and 2(b) show the Zipf plots for both 1996 and 2001 for 
which expression (2) has been run and Table 1 displays the regression output 
for both years. As it can be observed, the standard error has been corrected fol-
lowing Gabaix and Ioannides (2004). 

The parameter α, indicating the way the population is distributed across 
the cities in the system, shows always as significant and around 0.74, which 
implies a distribution very unequal and sets Australia far from meeting Zipf’s 
law. Furthermore, there has been a decrease from 1996 to 2001, which would 
mean more inequality in the distribution. However, we cannot take this result as 
very sure since the time horizon is not long enough and urban evolution is a 
phenomenon which evolves basically in the long run. Also, this decrease in α 
might be due to the fact that we are taking only those settlements above 200 
people. Since the population is increasing over time, the minimum value will be 
always 200 (thought there do exist smaller settlements, which are not included 
in the sample) but the maximum may increase. This, everything else hold con-
stant, may cause this increase in the degree of unevenness. 

 

A iR i
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Figure 2. Zipf Plots 

(a) UC/L-2001 (b) UC/L-1996 

 
(c) UC-2001 (d) UC-1996 

 

Horizontal axis represents the logarithm of the relative population and the 
vertical one the logarithm of the rank. 

Table 1. Log of Australian relative population. OLS results 

 2001 

 Coefficient Std. Error -stat. p-value Adj. S.E. -Stat. 

 4.70264 0.00600962 782.5182 0.0000 - - 

 0.736492 0.00230305 319.7901 0.0000 0.036 -20.458 

 Unadj.  0.985003  Adj.  0.984994  

 1996 

t t

A


2R 2R

 Coefficient Std. Error -stat. p-value Adj. S.E. -Stat. 

 4.70875 0.00554564 849.0899 0.0000 - - 

 0.746700 0.00215998 345.6980 0.0000 0.036 -20.742 

 Unadj.  0.987139  
Adj. 

 
0.987131  

t t

A


2R 2R
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3.3. (Yet) more Zipf 

By looking at the two first plots in Figure 2, we can also observe the ac-
tual distribution does not exactly fit a straight line but there are several devia-
tions. Specially, there are downwards curves at the upper and lower extremes. 
These deviations from a straight line usually appear when not only the upper tail 
but the whole urban system is taken (when there is no cut-off), as Eeckhout 
(2004) states. Indeed, if we shorted the data-set so that only the biggest cities 
were considered (upper tail), the graph would look more like a straight line. 
Following Eeckhout (2004), this occurs because the underlying distribution is 
log-normal and not Pareto as it used to be assumed. Comparing Figure 2 (a)-(b) 
to Figure 2 (c)-(d) allows the reader to notice such phenomenon. 

In addition, another feature of shortening the sample is that the line be-
comes steeper, that is, Zipf’s parameter (α) increases. We can confirm this if we 
consider only the Urban Centers (settlements above 1000 people) instead of 
Urban Centers and Localities (above 200 people). By doing such experiment, 
we observe how α increases from around 0.74 up to about 0.83 (still far from 
Zipf’s rule). 

Furthermore, inspired by Ellis and Andrews (2001), the Australian urban 
system is divided into seven sub-regions

3
 and Zipf’s analysis is performed again 

to try to verify their argument. Their idea is that, due to the fact Australia has a 
relatively small population spread over a large area, “transport costs and politi-
cal institutions may have induced multiple centers of economic activity”, lead-
ing to a nationwide urban system made up of several state rank-size relations 
where the largest city is a primate (much larger than the rest) and the rest meet 
Zipf’s Law. However, rank-size regressions were performed for each sub-
region, finding roughly the same results as in the general case. The largest α 
coefficient was 0.75 (Southern Australia in 1996), which is still far from the 
unity. This leads to the conclusion there is not such a regionalization of Zipf, 
but rather a mirroring of the general picture. 

Finally, we zoom out to the international context in Table 2. So far, we 
have described Australia as a different urban system; however, we have said 
nothing about other economies. Here our purpose is to confirm our suspects that 
it really shapes a different case. In order to compare results obtained for several 
different countries when applying a Zipf’s regression, we pick examples spread 
around the world with some apparent similarities, such as area (Canada), popu-
lation or GDP (Netherlands). As we can observe, Australia’s coefficient scores 
as the lowest one. Since they do not take the same number of cities, nor the 
same cutoff, one should not directly compare results, but yet this can be taken 

                                                      
3 Apparently, Ellis and Andrews divide it by States (which formally would make up 11 divisions, 
accounting for both States and Territories, according to Edwards (2001)). However, in this paper 
Australia has been divided only into seven sub-groups because of three reasons: the geoeconomic 
reasonability of the seven divisions, the small-sized the data sets would get otherwise and the fact 
the Australian Bureau of Statistics handles Urban Centers and Localities this way when offering 
the data. 
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as a sign that Australian population is distributed across the urban system very 
unevenly, especially when compared to other countries in the world. 

Table 2. International comparison 

Country coef. Year      n          Reference 

Algeria   1.351**   1998   62   Soo (2005) 

Australia   0.8234***   2001   703    

Brazil   1.1341**   2000   411   Soo (2005) 

Canada   1.2445**   1996   93   Soo (2005) 

China   1.3**   1999   2651   Anderson and Ge (2005) 

India   1.1876**   1991   309   Soo (2005) 

Japan   1.3169**   1995   221   Soo (2005) 

Malaysia   0.856***   2000   171   Soo (2005) 

Netherlands   1.4729**   1999   97   Soo (2005) 

USA   1.3781**   2000   667   Soo (2005) 

** Significant at 5% ; *** Significant at 1%. 

Data for other countries than Australia are taken from Junius (1999) and 
relate to 1990. Australia’s index has been calculated for 1996 using the Urban 
Centers only. 

This table tries to show the most comparable results, hence data from the 
UC sample are displayed for Australia and data from Soo (2005) are taken for 
USA. In the latter case, if we considered data from Gonzalez-Val et al. (2010) 
or Eeckhout (2004) instead, the coefficient happens to be much lower due to the 
fact these works use the whole distribution, which implies a much larger n. 

4. DOES SIZE MATTER FOR SPEED? THE GIBRAT’S LAW 

4.1. Gibrat’s Law 

So far, we have only analyzed the static relationship between size and 
rank and compared it over different points in time. Though the sample here is 
not the most suitable one for these purposes (only two years are certainly not 
enough to draw strong conclusions), it is also interesting to examine how an 
urban system has dynamically changed, if so. Traditionally, there are two ways 
in the literature to analyze dynamical processes in cities: the parametric and the 
non-parametric approach. The former consists of linear regressions à-la β-
convergence, as in growth and development theory, while the later uses Mar-
kov’s transition matrices or density kernels. Here we focus on the first one. 

||
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One question we might wonder about is whether the growth of a city de-
pends on its initial size or it is independent of it. The situation of no relation 
between the growth rate of the city and its initial size is called of proportionate 
growth and if that is the case, Gibrat’s Law is said to hold. The conceptual Gi-
brat’s expression to estimate is as follows: 

                                        ii ScS  =                  (3) 

where  represents the growth rate of the city . If Gibrat's law does not 

hold we can consider two possibilities: either there is a positive or a negative 
relationship between being big or not and growing fast or not. If such relation 
was positive, there would be a premium for bigger cities to attract people; on 
the contrary if smaller cities grew faster than bigger ones, the tendency would 
be to convergence among all of them. Finally, if there was proportionate 
growth, there would be no apparent relation between size and growth. 

Gibrat's analysis tells us information about the evolution and direction of 
the urban system, and there are several implications for each scenario regarding 
economic or landscape-planning policy which make this kind of analysis of 
special interest to real world. 

4.2. Gibrat and Australia: not quite good friends 

In order to test Gibrat’s Law, we consider two different specifications 
that we apply to the absolute and the relative populations, giving rise to the 
following four equations that we run: 

   96
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where the subindices refer to the year and  is the innovation term. The reason 
why we have considered two different definitions of size is for robustness pur-
poses. 

Table 3. Gibrat’s OLS 

Coefficients Estimate Std. Error -stat. P-value  

  2*     

   -0.105667  0.023231  -4.549   5.82e-06   ***  

   0.021011  0.003242  6.480   1.22e-10   ***  

  
2*  

   

   -0.051841  0.023542  -2.202   0.0278   **  

   0.013398  0.003294  4.067   5e-05   ***  

  
2*  

   

   -0.029546  0.008554  -3.454   0.000567   ***  

   0.004164  0.003331  1.250   0.211519    

  

2*  

   

   -0.009945  0.008533  -1.165   0.244    

   0.012964  0.003302  3.926   9.03e-05   ***  

*** significant at 1% level; ** significant at 5% level; * significant at 10% level. 
The estimated equations correspond to those especified in equations 4 to 7. 

Results are shown in Table 3. Just by a quick look at the p-values, we can 
already conclude it is not really clear Gibrat holds for this case. In fact, we may 
observe that in those three specifications where Gibrat’s law does not hold (β 
being statistically different from zero), the sign for the size parameter is posi-
tive. There is one more remark regarding this finding: the signs seem to be in 
line with the conclusions obtained in the Zipf analysis. In the previous section, 
we have seen the α coefficient for the size decreased from 0.75 to 0.74, imply-
ing a more uneven city system. This could be partly explained because of the 
faster growth of bigger cities, which widened the difference between them and 
the smaller ones, leading to greater inequality in terms of populations. 

5. WHERE? BRINGING SPACE INTO ACTION.  
EXPLORATORY ANALYSIS 

This paper was started by pointing to the uniqueness of Australia as an 
urban system, especially due to its particular geography. We have seen many 
facts confirming the first statement, but no word about the latter one yet. The 
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picture we have drawn of Australia is as follows. Although the average city size 
has increased by 8.45%, as many as 619 cities (out of 1559) decreased in popu-
lation from 1996 to 2001. Moreover, if we looked at relative sizes, it was 1089 
(out of 1559) cities that experienced a negative growth rate. This leaves us with 
a system becoming more uneven, with a few larger cities growing so as to push 
the average up, and many more cities declining in population. 

With those numbers in mind, now we would like to be able to detect 
where such changes have happened. In this section we provide tools to visualize 
the spatial dimension of these phenomena by means of what is called Explorato-
ry Spatial Data Analysis (ESDA) and look for patterns that we try to confirm 
later in Section 6 when we carry out the confirmatory analysis. But, before that 
comes, let us briefly explain the analytical framework that will help us go 
through the task. 

5.1.  Methodology 

A very useful concept to step forward in this direction is that of spatial 
dependence. Following Anselin (1988, p.11), “spatial dependence can be con-
sidered to be the existence of a functional relationship between what happens at 
one point in space and what happens elsewhere”. Translating that into our topic, 
if Australian geography played any role in explaining urban outcomes (in terms 
of either size or growth), we should be able to detect any type of spatial de-
pendence. We can express the idea of spatial dependence in our case by means 
of a functional form: 

 jiSfS ji )(=  (8) 

or                                         jigrhgr ji )(=                        (9) 

where gr is the growth rate of the population of a city. One common way to 
introduce space into the formal analysis and account for the functional relation 
in (8) is by means of the spatial weight matrix (W). It is an n by n matrix and is 
usually constructed considering relations of either physical contiguity or dis-
tance, although it can also be designed to express more complex spatial linkages 
such as economic or cultural distance, for instance. Every element wij of W re-
flects the spatial connection (or absence of it) between the observations i and j. 
To construct a spatial weight matrix based on contiguity, we need the space to 
be divided into polygons, not spattered with points. Since we are dealing with 
cities (which are considered to be points in a map), the first step is to convert 
the points into polygons. For that purpose, we define a Thiessen/Voronoi lattice. 

The matrices used here are binary in the sense that neighbors are 
weighted with 1 and the remainder receives a weight of 0. In this paper, we 
have used the queen criteria. Due to the great concentration of cities in the 
coast, especially in the East, the distance based weight matrix is not suitable for 
the Australian case as the average number of neighbors for everyone to have at 
least one is 623 (while the average in the queen case is 5.93). 
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Once we have obtained W, the next concept to introduce is that of spatial 
lag. Analytically, it is expressed as follows: 

Wyysl =)(      (10) 

where sl stands for spatial lag and  is a variable. As Moreno and Vayá (2000, 

p. 27) put it: “the spatial lag consists of a weighted average of the values in the 
neighbor regions, taking the weights as fixed and given in an exogenous way”. 
This lag can be understood as the analog for spatial econometrics of the time 
series' observation of the period t - 1 and in the same way the spatial depend-
ence would correspond to the serial autocorrelation. 

There are several tests to explore the presence of spatial dependence. 
Here we use the Moran's I (Moran, 1948) and Moran's scatter plot, two of the 
most common ways to test for the presence of spatial dependence. Moran's I can 
be seen as a measure of the correlation between each observation xi and the rest 
of regions to which it is spatially linked. 

There is one more analytical issue in relation to the global Moran's I: if 
the variable to be used is a rate, there is a variance instability problem (unequal 
precision) due to the use of rates as estimates for an underlying 'risk'. In order to 
correct for this problem, one can smooth the ratio by using several transfor-
mations proposed in the literature. Here we use the one following the Empirical 
Bayes (EB) principle, suggested by Assuncao and Reis (1999). Once the rate is 
transformed, the Moran's statistic can be applied as usual. 

It is interesting to note that Moran's I is a global statistic and, as such, 
sum up in only one number the degree of spatial correlation among all the ob-
servations in the sample. However, it is not able to distinguish those situations 
in which such spatial correlation is homogeneously spread among the sample 
from those in which it is clustered in only a few observations. For that purpose, 
it is necessary to use local indicators of spatial association (LISA), which allow 
to decompose a global statistic of spatial correlation (such as the global Moran's 
I) into sub-indices for each observation, being very useful to identify clusters. In 
order to do that, the local test is computed for every observation in the sample, 
instead of computing a global measure of autocorrelation. Since the sample size 
may be large, the most common way to show the results is by means of a map 
in which different colors display different types of outcome. 

Here we use the local version of Moran’s I, proposed in Anselin (1995), 
whose expression is the following: 

jij

i
Jji

i

i
i zw
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z
I 
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2
    (11) 

where zi is the standardized Moran's I for observation i and Ji is the group i's 
neighboring observations. 

y
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It is possible to assume the standardized Ii is distributed as a standard 
normal. Once standardized, positive (negative) values may be regarded as clus-
ters of similar (dissimilar) values around the observation i. 

As in the global case, if the variable to be used is a rate, the same instabil-
ity in the variance is encountered. Then, there is a need to transform the variable 
in the same way as with the global Moran's I; namely the EB one. 

5.2.  Results 

Once we have set up the theoretical background, we can delve into the 
Australian dataset and make use of the proposed toolbox

4
. In this section, only 

those results for absolute log-population and absolute growth rate are shown in 
order to improve clarity, especially as the conclusions do not differ very much 
from the other specifications. 

Section 4 takes a deep look at the Zipf’s relation in the Australian system. 
Now we wonder whether the variable size displays spatial correlation. In order 
to do so, we apply Moran’s I to the absolute log-population. The effect seems 
clear: we cannot reject the null of no spatial correlation for both years 1996 and 
2001. The result is showed in Table 4, the p-value is clearly larger than 0.01, 
implying that even at the 1% significance level and the null cannot be rejected. 
If we observe the graph in Figure 3 (a), we can see how the points are spread 
across the four quadrants and the fitted line mingles with the horizontal axis. 
This suggests there is no clear pattern for the size in the spatial configuration of 
the city system or, in other words, that cities are located in space without fol-
lowing any law regarding their sizes. 

Table 4. Moran’s I 

Variable Moran’s I Standard Moran’s I P-value 

Log-population 1996 -0.001 -0.029 0.489 

Log-population 2001 0.013 0.922 0.178 

Absolute growth (EB transf.) 0.132 8.919 0.000 

Section 4 tests the Gibrat’s relation, which links the size of a city with its 
rate of growth, concluding there is no relation between both variables. Parallel 
to the Zipf’s case, we try to put this phenomenon in space and detect if the way 
nearby cities evolve has any influence on a city’s growth. The result, displayed 
in Table 4, seems to confirm the other side of the coin: Moran’s I shows enough 
evidence to reject the null of no autocorrelation. This means the statistic is sig-
nificantly different from zero. In fact, the sign is positive, implying the growth 
of a city and that of its nearby partners are positively correlated and, therefore, 
the growth tends to cluster in space giving room to the idea of loser and winner 

                                                      
4 The spatial analysis was carried out with the open source package STARS (Rey et al., 2006), 

freely available at the REGAL’s website : http://regionalanalysislab.org/index.php/Main/STARS 

and the free package GeoDa by Luc Anselin, available at the GeoDa Center for Geospatial Analy-

sis and Computation’s website (http://geodacenter.asu.edu). 
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areas. This relation can be observed graphically in Figure 3 (b): many points are 
located in the up-right and down-left quadrants, and the fitted line is clearly 
upwards. 

Figure 3. Moran’s scatter plots 

(a) Absolute Log-Population: 2001 Growth 

 

(b) EB transf. Absolute Population 

 
Horizontal axes represent the variable of interest and vertical ones its spatial lag. 

Since the first spatial approach does not support the idea of the sizes be-
ing spatially correlated, it does not make much sense to try to look for the exist-
ence of cities with similar sizes grouped nearby, that is of actual clusters in the 
variable size. However, we have found the growth to be spatially dependent, 
which means there is some degree of spatial association for cities with similar 
growth rates. Therefore, it is interesting to take one step forward and try to look 
for the hot and cold spots of the Australian urban growth. We use the local indi-
cators explained above (LISA) to do so. As said before, the usual way to present 
LISA results is by means of a map in which different colors imply different 
outcomes. 

Due again to the spatial characteristics of the Australian urban system, we 
propose to use what we come to call a ClusterCart, a new alternative way of 
visualizing LISA indices that proves helpful in this sort of geographical layouts. 
Basically, the ClusterCart is the result of embedding the cluster results from the 
LISA statistics into a standard cartogram. We explain this idea more in detail 
below. 

A cartogram is a map in which some thematic mapping variable is substi-
tuted for land area. As an example, Figure 4 (a) shows a standard cartogram of 
the Australian cities for a dummy variable of zeros. The polygons have turned 
to circles of the same size (due to the fact the variable each polygon represents 
is just a zero for each observation) which barely overlay each other. This pro-
duces an abstract representation which distorts the original shape of Australia 
but which, and this is why it is useful here, allows to see all the observations at 
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a glance
5
. It also shows a great illustration of why a clustergram is useful in this 

case: the vast majority of points are located on the east side of the island and 
they all stand very close to each other. As said before, this feature cannot be 
recognized by looking at a Voronoi map as the polygons on the east are too 
small to be noticed. However, since the clustergram gives the same size (still 
allowing to thematically color it) to every city, this fact can rapidly be discov-
ered and overcome. 

Figure 4. ClusterCart and its composition 

(a) Australian Cartogram (b) Bicolor LISA for growth 

  
 

Figure 4 (b) shows the ClusterCart. To build it up we have created a car-
togram using the cluster results so the light (dark) circles represent the cities 
with a high-high (low-low) outcome in the LISA and the transparent ones are 
the rest of the cities. 

By looking at Figure 4 (b), we can extract some insights about the urban 
dynamics in Australia. The first one is that a vast part of the dark circles are not 
by the coast, except for some of them located in the South

6
. This suggests the 

Australian population is moving outwards, there is a “push-out” effect that 
makes cities in the inland decline their population. The follow-up obvious ques-
tion is: “if population in Australia is growing over time and the inland is de-
creasing, where is growth taking place?” The answer can be found if we ob-
serve the lighter circles: basically, coastal and well-watered places are those 
displaying positive growth clusters, which is in line with the ideas stated in Hu-
go (2002). But, if we observe them more in detail, we can also detect most of 
the light clusters locate around some of the largest cities in the country: the one 

                                                      
5 The reason why the map becomes distorted is because now the points cannot cover each other 

and, for that to happen, they need to be slightly moved from their original position in a standard 

map to leave room so they all fit in. 
6 However, the reader should note those points are located by Tasmanian coast, not the Australian 

one. This is due to the fact that the ClusterCart tends to group all the observations without dis-

tinction between one or another island. 
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in the West is around Perth’s area, the one in the South around Melbourne’s and 
the one in the East corresponds to Brisbane. This leads to conclude that it is in 
big metropolitan areas, rather than uniformly around the country, where the 
phenomenon of urban growth is taking place. This result also links to the find-
ings in the non-spatial analysis of urban growth: we found that there seems to 
be a positive correlation between size and growth and, as it turns out when we 
spatially explore the data, the phenomenon of growth seems to be taking place 
in those areas where bigger cities are located. In addition, these results point to 
the power of larger cities to attract people around their orbits of influence, peo-
ple who might or might not live in the inner city but who interact with it (e.g. 
commute for work). Looking for the reasons underlying such phenomena are 
beyond the aim of this study, but it certainly represents an interesting road to 
walk down for future research. 

So far, this has only been a first attempt to explore whether space plays 
any role, but it does not provide any formal insight, nor tells anything about 
how Zipf’s or Gibrat’s analyses are affected. For the latter, we need to walk 
further and step into the confirmatory analysis. That is what next section is 
about. 

6. DOES SPACE ACTUALLY MATTER?  
CONFIRMATORY ANALYSIS 

One of the main results from the previous section is that while there is no 
apparent correlation between sizes, there seems to be spatial autocorrelation in 
the growth rates. If the former is true and there is some sort of spatial depend-
ence, OLS alone is not the best method to estimate coefficients (Anselin, 1988, 
p. 58-59). In this section, we try to confirm the directions pointed in the previ-
ous section and detect if space actually plays any role in the generating process 
by performing a test on the residual spatial autocorrelation and the robust LM 
test, to check if there is spatial autocorrelation in the regression analysis. Lastly, 
for those specifications that suggest there is a spatial autoregressive model, we 
estimate it by means of the GMM (Generalized Method of Moments) estimator 
developed by Kelejian and Prucha (1998). 

6.1.  Testing for space in the regression analysis 

The first step we take is to test against the possibility that the residuals of 
the OLS regression show spatial randomness. We do this by means of the Mo-
ran’s I test for spatial autocorrelation in the residuals suggested by Cliff and Ord 
(1981), in which the null is spatial randomness. The results for every specifica-
tion are shown in the first column of Table 5. As we can observe, the conclusion 
is clear: while most (three out of four) of the Zipf’s specifications show spatial 
randomness, as we cannot reject the null, we always do it when it comes to the 
Gibrat analysis, meaning that the residuals are not randomly distributed across 
space. However, one of the main issues of this test is the absence of a clear al-
ternative hypothesis. It is only useful when the null cannot be rejected, as it 
happens for the Zipf’s case, because then there is no need to go further in the 
spatial analysis. For this reason, we consider as not relevant to continue analyz-
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ing urban size in a spatial context and, from now on, we only focus on urban 
growth and Gibrat’s law

7
. 

Table 5. Tests on the Gibrat’s and Zipf ’s Analysis 

Model specification Moran res. test Rob. LM error test 

Zipf 

                DNR - 

                *** - 

                DNR - 

                DNR - 

Gibrat 

                *** *** 

         *** *** 

    *** *** 

 *** *** 

*** significant at 1% level; ** significant at 5% level; * significant at 10% level; DNR 
Do Not Reject the hypothesis of not significant. 
In the model specification, Moran Res. Test refers to the Moran’s residual test for spa-
tial autocorrelation; and Rob. LM Error Test to the LM robust test for an error model. 
 

In order to get a better insight about the underlying process, we perform 
the Lagrange Multiplier statistic for spatial dependence in the error. We use the 
variant which tests for the presence of spatial dependence in the error term and 
it is robust to the presence of a missing spatially lagged dependent variable

8
. 

The test considers the following structure for the error term: 

 u = ρW u + ε  (12) 

                                                      
7 Although there is one Zipf’s specification rejecting the null, for the sake of focus on one issue 

(urban growth), we do not consider it any further in the analysis. 
8 The computations were performed with the R package ’spdep’, freely available at the        

CRAN website (http://cran.r-project.org) and PySpace, also open-source available at 

http://geodacenter.asu.edu/software. For more information on the latter one, see Rey and Anselin 

(2007). 
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and the hypothesis considered as null is ρ = 0. Thus, if we reject it, we may say 
there is spatial autocorrelation in the error term. 

Although it would also be desirable to test for the presence of a missing 
spatially lagged dependent variable as well, there is one reason why we have 
not. The usual procedure to estimate a model with a spatial lag is by means of 
the two steps least squares (2SLS) procedure, which uses instrumental variables 
(IV’s) to correct for the endogeneity created by the dependent variable spatially 
lagged on the right hand side. Kelejian and Prucha (1998) set the conditions for 
this method to work and, as assumption 7b in their paper implies (p. 105), it 
requires at least one of the explicative variables (excluding the constant term) 
be significant. Since the main goal of Gibrat’s analysis is to check whether size, 
as the only explicative variable, explains any of the growth, we cannot ensure 
ex-ante that is significant and thus that the 2SLS works. For this reason, we 
discard the introduction of a spatial lag in the equation. 

The results of the LM test are shown in the second column of Table 5. As 
we can observe, the conclusion is clear as well: there seems to be an error mod-
el behind the scenes generating the data we actually see. This points to be the 
case for both specifications (the one considering the initial size and the one 
using the average of both periods) as well as for absolute and relative popula-
tions. Last, due to the choice of the robust variant of the test, the conclusions 
about the existence of the error model remain the same even in presence of a lag 
model as well, which is important here, given the particularities outlined above. 
Accounting for the spatial error structure and analyzing whether it has any im-
plication in the final conclusions we may draw about Gibrat’s law are the aims 
of the next subsection. 

6.2.  Introducing a spatial error model in the Gibrat analysis 

We now turn to the actual modeling of the spatial effects the ESDA sug-
gested and some tests performed before seem to point out. The equations to be 
estimated are the same as in equations 4 to 7 but now we substitute the innova-
tion term by the one specified in equation 12. 

The procedure we use to estimate the model is that proposed in Kelejian 
and Prucha (2010). They introduce a new class of consistent GM (Generalized 
Moments) estimators for the autoregressive disturbance process that allows for 
heteroskedastic innovations and, unlike the version in Kelejian and Prucha 
(1998), permits statistical inference in the autoregressive term. Although in tests 
not reported we have not found evidence of heteroskedasticity, the possibility to 
examine the statistical significance of the error parameter has led us to adopt 
this method. The spatial counterpart of Table 3 is presented in Table 6. There 
are in particular two key points to comment about it. 

The first one relates to the robustness of the significance of the spatial pa-
rameter. The estimate of ρ proves to be statistically different from zero in every 
specification, which can be interpreted as an argument to state there is actually a 
spatial error model for Gibrat’s law and that space plays a role in urban growth 
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for Australia. The error term may be seen as a black box which captures to 
some extent the relevant variables that were not included in the regression as 
well as other measurement errors. In our estimates, the sign of such parameter is 
always positive, implying a process of positive spatial autocorrelation, which 
means similar values of the residuals tend to locate close to each other giving 
rise to a clustering pattern. 

Table 6. GM Consistent Estimator with Heteroskedastik Disturbances 

Variable Coefficient Std. error t-Statistic p-value  

 

 -0.07160020 0.02125529 -3.36858218 0.000774 *** 

 0.01627260 0.00306525 5.30874311 0.000000 *** 

 0.34144198 0.03663266 9.32069863 0.000000 *** 

 

 -0.02075664 0.02148717 -0.96600127 0.334194  

 0.00907776 0.00308730 2.94035387 0.003327 *** 

 0.35340532 0.03617795 9.76852859 0.000000 *** 

 

 -0.03688607 0.00815158 -4.52501874 0.000006 *** 

 0.00062126 0.00319667 0.19434565 0.845931  

 0.36342201 0.03580290 10.15063088 0.000000 *** 

 

 -0.01876152 0.00853607 -2.19791072 0.028102 ** 

 0.00879073 0.00309128 2.84372391 0.004517 *** 

 0.35351934 0.03619188 9.76791865 0.000000 *** 

*** significant at 1% level; ** significant at 5% level; * significant at 10% level. 
In the model specifications, the names refer to equations 4 to 7 and the term ρˆ to that in 
equation 12. 

The second one is that, although space proves to be significant via the er-
ror term, the main conclusions we withdrew in the OLS section do not change. 
Initial on averaged urban size is still statistically significant and, hereby, Gi-
brat’s law does not hold when we account for spatial effects in the error term. In 
fact, the coefficients look very similar from one specification to the other one, 
being the parameter for the size also greater than zero, which means a positive 
relationship between size and urban growth; again, bigger cities grow faster. 
This is important because it is not always the case: the estimation by OLS of a 
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model with spatially correlated errors may lead to conclude some parameters 
are significant when in fact they are not. However here, we have found how 
even when we consider such effects, the size of the city seems to be related to 
growth. We take these results as an extra argument for the deviation from Gi-
brat in Australia in the period analyzed. 

7. CONCLUSIONS AND FUTURE STEPS 

The present paper examines in both exploratory as well as confirmatory 
way the Australian urban system for the years 1996 and 2001. To do so, it uses 
the largest data set available so that the whole distribution (starting at 200 peo-
ple) is covered and three different measures of the city size are used, namely the 
absolute population, the relative one and the size as a share of the total popula-
tion. Also, for the confirmatory part, it applies some of the most recent devel-
opments in spatial econometrics. Australia is a very unique example of low 
population density, and its very special geography has shaped the distribution in 
a way that makes it very appealing for the urban researcher. 

We first characterize the data set, and it already shows that, despite the 
short period chosen, some noticeable changes can be perceived. Then Zipf’s 
analysis is carried out in order to test if the ‘rank – size’ parameter is around 
one, but the evidence points to a much lower value (around 0.74), which implies 
a very uneven distribution of the population over the system and confirms what 
we had already sketched about Australia being a very unique case. A low pa-
rameter is related to a situation in which the sizes of the larger cities differ a 
great deal from the smaller ones. Moreover, we can observe how, from one year 
to another one, such coefficient has even decreased, deepening the inequality 
across cities. 

After having realized Zipf does not hold for Australia, we examine the 
dynamic processes behind the city system to examine the relation between 
growth and size by means of Gibrat’s law. We use different specifications to 
conclude that we cannot talk about proportionate growth in Australia for the 
period of study. City size coefficient always appears to be significant for popu-
lation growth. In addition, there is a positive relation between both variables, so 
larger cities tend to grow faster than smaller ones. If we couple results from 
these two sections, we can visualize a system where, from 1996 to 2001, popu-
lation has concentrated more in bigger cities, which increase their size more and 
more while the gap between them and the smaller ones tends to widen. 

One of the main goals of this work is to explore the role space plays in 
urban population distribution and how the particular geography of Australia 
influences the outcome of its cities. The following step then has been to bring 
the spatial dimension into the analysis. To do so, we begin with an exploratory 
spatial data analysis (ESDA) procedure in which we try to determine whether 
there is any degree of global spatial dependence. The main conclusion is that 
although urban sizes are not spatially correlated, growth rates do show associa-
tion in space. We then try to locate clusters of high and low growth by means of 
LISA indicators and an alternative visualization tool we call ClusterCart. This 
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step shows declining cities are located mainly in the inland while the growing 
centers tend to cluster around large cities by the coast. 

We follow the exploratory by the confirmatory analysis. To do so we per-
form some tests and, when suggested, we estimate spatial models. First we ana-
lyze the residuals of the OLS regressions and that allows us to rule out the pres-
ence of any sort of spatial dependence in the Zipf’s analysis. However, we re-
ject the null of spatial randomness in the Gibrat’s specification. We then per-
form the LM test for the existence of a spatial error, finding it relevant. The next 
step we take is to include an autoregresive structure in the error term. We esti-
mate it with the GMM procedure suggested by Kelejian and Prucha (2010) and 
find the spatial parameter significant for every specification. However, this does 
not change the main conclusions regarding Gibrat’s law. 

The main picture we can draw after this study has a non-spatial and a spa-
tial side, and we can find some similarities between both views. On the non-
spatial world, Zipf’s analysis sheds a very uneven distribution of people across 
the urban system, with city sizes more diverse than in other countries in the 
world. Moreover, Gibrat’s approach sketches a link between larger size and 
faster growth. Once we go down on surface to the spatial world, we also find a 
very unequal distribution of cities across the Australian geography and a very 
unbalanced but space-led distribution of growth among cities. 

In order to conclude the paper, here we suggest two directions which 
could be followed to expand the study of Australia. The first one would be to 
take the data set further back in time and the second one to dig into the causes 
which give rise to this outcome. Although they certainly give useful infor-
mation, two points in time with a five-year lag in-between are certainly not 
enough to study long-term processes such as the evolution of a city system. 
That is why this paper should be seen rather as a static picture. Covering more 
years would bring the whole movie and would surely shed more light about the 
dynamical processes underlying the result pictured here. On the other hand, this 
study is rather descriptive in the sense that it focuses on characterizing Australia 
and on withdrawing systematic patterns in the way Australian cities are config-
ured but it falls short in explaining why such trends and distributions are so. 
Mining possible explanatory variables to get deeper into the causes would sure-
ly be of great interest. 
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KANGOUROUS, VILLES ET ESPACE : UNE APPROCHE  
EXPLORATOIRE DU SYSTÈME URBAIN AUSTRALIEN 

Résumé - Cet article tente de dégager les caractéristiques du système urbain 
australien en 1996 et 2001. La première partie propose une approche descrip-
tive du système urbain australien. La seconde partie examine la validité des lois 
de Zipf et de Gibrat pour les villes. Aucune de ces lois n’est validée. En 
s’appuyant sur les développements récents en économétrie spatiale (Heteroske-
dastic Consistent GM Estimation), une analyse exploratoire des données spa-
tiales est utilisée pour étudier la répartition spatiale de la taille et de la crois-
sance des villes. 

Mots-clés : SYSTÈME URBAIN AUSTRALIEN, LOI DE ZIPF, LOI DE   
GIBRAT, ANALYSE EXPLORATOIRE DES DONNÉES SPATIALES. 


