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Abstract 
Adverse drug reactions (ADRs) are one of the leading causes for the attrition of 

drug candidates in pharmaceutical industry during the drug discovery, preclinical drug 
development phases, and clinical use after marketing (1). Adverse drug reactions (ADRs) 
cause a broad range of clinically severe side effects including both highly predictable and 
dose dependent toxicities as well as relatively infrequent and idiosyncratic adverse 
events. Idiosyncratic drug reactions (IDRs) are normally very severe, potentially fatal, 
and usually detected only when the drug has been used by a large number of patients. 
These ADRs do not only result from increased internal drug exposure but also strongly 
depend on several drug- and patient-related risk factors (2). Excessive dose, drug 
accumulation and/or the formation of chemically reactive metabolites are major 
determinants for occurrence of (idiosyncratic) ADRs (3).  

The main focus of the present thesis is on the elucidation of risk factors in 
populations for the occurrence of ADRs of selected drugs. In order to provide an overview 
of the various factors which may play a role in the occurrence of ADRs, this chapter 
describes the present knowledge on ADRs and specifically on IDRs, the drug- and patient-
related risk factors, the role of metabolism and reactive metabolite formation in this type 
of toxicity and the strategies currently applied by pharmaceutical industry to minimize 
risks related to this issue during drug development programs. Specifically, the role of the 
polymorphic glutathione S-transferases (GSTs) in detoxification of reactive metabolites 
and hence risk factors for occurrence of drug toxicity will be discussed in Chapter 2. The 
final part of this chapter is presenting the aims and scope of the thesis.  

 
 

1.1. Adverse Drug Reactions (ADRs) 
 

1.1.1. Definitions of ADRs 

The World Health Organisation (WHO) defines adverse drug reaction as “a 
response to a drug that is noxious and unintended and occurs at doses normally used in 
man for the prophylaxis, diagnosis or therapy of disease, or for modification of 
physiological function”. Or, in summary, an adverse drug reaction is harm directly caused 
by the drug at normal doses, during normal use. 

ADRs are defined by Laurence (4) as: “A harmful or significantly unpleasant 
effect caused by a drug at doses intended for therapeutic effect caused by a drug at doses 
intended for therapeutic effect (or prophylaxis or diagnosis) which warrants reduction of 
dose or withdrawal of the drug and/or foretells hazard from future administration.” 
However, these definitions exclude medication errors as a source of adverse effects, as 
well as reactions due to contaminants or supposedly inactive excipients in formulation. 

Edwards and Aronson (5) proposed the following definition as the most 
complete one: “An appreciably harmful or unpleasant reaction, resulting from an 
intervention related to the use of a medicinal product, which predicts hazard from future 
administration and warrants prevention or specific treatment, or alteration of the dosage 
regimen, or withdrawal of the product.”  
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Modern drug therapy has brought significant benefits to mankind by 
contributing enormously in decreasing the suffering from severe diseases. It has 
undoubtedly made a great impact in improvement of medical treatment. However, 
successful drug development is often uncertain due to safety issues and toxicity which 
represent important causes of attrition of drug candidates during the drug discovery, 
preclinical and clinical drug development phases and is an important contributor to the 
currently poor productivity of pharmaceutical industry. Even after marketing, ADRs are a 
major complication as they are a considerable cause of patient morbidity and account for 
a significant number of patient deaths. They have become an important clinical problem 
and a constant concern of the public health systems. In a meta-analysis, the incidence of 
serious (6.7%) and fatal (0.32%) ADRs in US hospitals appeared to be extremely high and 
even suggested that ADRs were between the fourth and sixth commonest cause of death 
in the United States in 1994 (3). More recently, a study in the United Kingdom showed 
that 6.5% of hospital admission are due to ADRs, with a mortality rate of approximately 
2% (7). Besides the medical impact and serious health risks for patients, ADRs also have a 
high socio-economic impact. It has been suggested that patients who developed ADRs 
during hospitalization, were hospitalised an average of 1.2–3.8 days longer than patients 
who did not, with a substantial increase of the healthcare and treatment costs (8). 

ADRs represent one of the most common causes for pharmaceutical product 
recalls and black-box warning labels that can markedly restrict drug usage. As highlighted 
by Lasser et al., of a total of 548 drugs approved in the period from 1975 to 1999, 45 
drugs (8.2%) acquired one or more black-box warnings and 16 (2.9%) were withdrawn 
from the market (9). Examples of the drugs withdrawn from the market due to 
unacceptable safety profiles are shown in Table 1.   

A major problem is the fact that several types of ADRs, such as cardiotoxicity and 
hepatotoxicity, still can not be well predicted from (pre)-clinical studies. Therefore, 
increased emphasis has been placed on the identification of risk factors of potential ADRs 
in preclinical species and humans as early as possible in the overall 
discovery/development process. 
 

1.1.2. Classification of adverse drug reactions (ADRs) 

ADRs can be categorised in a number of ways based on their nature and 
mechanism (e.g. by severity, by body systems affected, or by frequency). The 
classification system is dynamic and being extended over time. The most common 
classification of ADRs is the one that distinguishes dose-related (type A – augmented 
effects of the drug action) and non-dose-related (type B – bizarre reactions) adverse drug 
reactions. There are other groups in this system of classification but these may also be 
considered as subclasses or hybrids of type A and B ADRs. These are type C ADRs 
(chronic reactions, dose- and time-related), type D (delayed reactions, time-related), type 
E (withdrawal, end of use reactions) and type F (unexpected failure of therapy) (5, 12). 
This classification with the characteristics, some examples and the management of these 
ADRs is shown in Table 2. 

Type A (augmented) reactions are the most commonly occurring reactions, 
accounting for 80 % of total ADRs. They are predictable, usually dose dependent and 
related to the pharmacological effect of the drug. Toxicity is due to an exaggeration of the 
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drug’s normal effect when given at the usual dose (e.g. respiratory depression with 
opioids and bleeding with warfarin). They are rarely life threatening and the adverse 
effect is reversible by dose reduction or discontinuation of the treatment (5, 13). These 
reactions can further be subdivided into those due to the exaggerated therapeutic 
response at the target site (A1 reactions) and those due to the additional ("secondary") 
�����������������������ȋ�ʹ����������ȌǤ�����ǡ�����Ⱦ-blockers, bradycardia and heart block 
are primary pharmacological adverse effects while bronchospasm is a secondary 
pharmacological adverse effect. The anti-inflammatory effects of nonsteroidal anti-
inflammatory drugs (NSAIDs) appear to be largely attributable to inhibition of 
cyclooxygenase 2 (COX-2), and their gastro intestinal side-effects to inhibition of 
prostaglandin synthesis in the gastric mucosa, mediated via cyclooxygenase 1 (COX-1), 
which represents an off-target adverse effect. Many type A reactions have a 
pharmacokinetic basis, e.g. impaired hepatic metabolism due to a drug-drug interactions 
or genetic defects of drug-metabolising enzymes, leading to increased plasma 
concentrations at normal dose. The likelihood of developing these adverse interactions 
increases with the number of drugs prescribed— if five drugs are given simultaneously 
the chance of an adverse interaction occurring is 50% (13). 

Type B (bizarre) reactions are unpredictable effects that are usually very rare 
and do not show classic dose-response relationships. These idiosyncratic reactions 
account for 5 % of all ADRs and are strongly dependent on the individual susceptibility. 
Idiosyncratic drug reactions (IDRs) are very serious, account for many drug-induced 
deaths and their exact mechanism is not known yet (14). They can not be predicted from 
the pharmacology of the drug and are often delayed. No predictable animal model is 
currently available so they are not observed in preclinical studies. They usually are only 
detected when the drug is prescribed to a large patient population. IDRs still remain a 
serious problem for the pharmaceutical industry. Many seem to have an immunological 
basis and genetic pre-disposition is likely to be an important factor, an understanding of 
which may help prevent such reactions in the future. 

Type C (chronic or chemical) reactions are those that can be predicted from the 
chemical structure of the drug or, more commonly, a drug metabolite (16) and are related 
to both dose and time of exposure. These reactions are well-described and can be 
anticipated. Chemical sub-structures that can lead to toxic metabolite formation are 
rationalized and this concept is incorporated into drug design. 

Type D (delayed) reactions show a delayed response and become apparent long 
after the use of a medicine. Examples are carcinogenicity and teratogenicity (16). These 
types of toxicities can be precluded in pre-clinical screening assays and may therefore be 
prevented in humans.  

Type E (end of use) reactions are associated with the treatment withdrawal of a 
medicine (end of dose reactions). They are uncommon and occur mostly when the 
treatment is stopped abruptly (16). 

Although rare, IDRs are a major issue for drug development. Current testing is 
not effective in predicting their risk. Predicting which drug candidates will cause a high 
incidence of IDRs would significantly decrease the costs and uncertainty in drug 
development. For this reason main focus of this thesis is better understanding of 
mechanism and predicting the risk of such reactions. 
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Table 1. Drugs withdrawn from the market for safety reasons* 

* Table adapted from (9–11). 

 
 

1.2. Idiosyncratic drug reactions (IDRs) 
Approximately 5 % of adverse drug reactions are idiosyncratic or type B, as 

described above (7). They refer to a group of ADRs that do not occur in most patients 
within the therapeutic dose range and cannot be explained by the known pharmaceutical 
properties of the drug (17). No current definition is perfect and by understanding the 
mechanism the term idiosyncratic would probably become obsolete. Clinical 
characteristics and circumstantial evidence suggest that immune-mediated toxicity is 
caused by reactive drug metabolites formation. Immune-mediated adverse drug reactions 
are thought to occur in response to drug-protein adducts that act as immunogens, driving 
antibody production, T-cell-mediated responses or cytotoxic immunity towards the drug 
in the target tissue (Figure 1). Generation of adducts requires the production of a reactive 
intermediates (RIs). Additionally, these reactive metabolites may induce disruption of 
ionic gradients and intracellular calcium stores and mitochondrial dysfunction and loss of 

Year of 
withdrawal 

Drug name Therapeutic class Reason 

1975 Aminopyrine Analgesic Agranulocytosis 
1976 Azaribine Dermatologic (psoriasis) Thromboembolism 
1978 Phenformin Diabetes melitus Lactic acidosis 
1980 Ticrynafen Antihypertensive Hepatotoxicity 
1982 Benoxaprofen Analgesic Hepatotoxicity 
1983 Zomepirac Analgesic Anaphylaxis 
1986 Nomifensine Antidepressant Hemolytic anemia 
1987 Suprofen Analgesic Flank pain syndrome 
1998 Terfenadine Antihistamine Fatal arrhythmia 
1991 Encainide Antiarhythmic Fatal arrhythmia 
1992 Temafloxacin Antibiotic Hemolytic anemia 

Kidney failure 
1993 Flosequinan Congestive heart failure Increased mortality 
1997 Phenolphthalein Over-the-counter laxative Carcinogenicity 
1998 Mibefradil 

  
Antihypertensive calcium 
channel blocker 

Drug interactions 
Fatal arrhythmia 

1998 Bromfenac Analgesic Hepatotoxicity 
1999 Astemizole  Antihistamine Fatal arrhythmia 
1999 Grepafloxacin Antibiotic Fatal arrhythmia 
2000 Cisapride Heartburn Fatal arrhythmia 
2000 Troglitazone  Antidiabetic Hepatotoxicity 
2001 Cerivastatin  Hypercholesterolemia Rhabdomyolysis 
2001 Rapacuronium Anesthesia Bronchospasm 
2003 Levomethadyl Opiate dependence Fatal arrhythmia 
2004 Rofecoxib Analgesic Hearth attack, stroke 
2005 Valdecoxib Analgesic Skin disease 
2008 Rimonabant  Cannabinoid type-1 receptor 

agonist 
Severe depression and suicide 

2009 Efalizumab Monoclonal antibody Progressive multifocal 
leukoencephalopathy 

2009 Benfluorex Anorectic and hypolipidemic 
agent 

Risk of heart valve disease 

2010 Sibutramine Oral anorexiant Cardiovascular events, stroke 
2010 Propoxyphene Opioid analgesic Heart attacks, stroke 
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energy production. This impairment of cellular function can culminate in cell death. 
Directly cytotoxic drugs, especially those involving the liver, are usually represented by 
metabolic idiosyncrasy as a result from aberrant drug metabolism or clearance, leading to 
the accumulation of toxic metabolites and inhibition of critical cell processes. Based on a 
lack of fever and rash and/or lack of immediate onset on rechallenge these reactions are 
related to non-immune idiosyncratic reactions. Genetic or environmental factors, either 
alone or in combination, could be responsible for the idiosyncratic nature of these IDRs. 
However, there is no clear picture of what metabolic pathways might be responsible for 
the idiosyncratic nature of these reactions, and these characteristics are not very strong 
evidence against an immune-mediated mechanism.  
            Unlike typical toxic responses to xenobiotic agents, idiosyncratic drug reactions:  
1) occur in a small fraction of people exposed to the drug,  

As mentioned, they have low frequency of occurrence: less than 1 in 5000 
individuals (18). Alternatively, drug-related hepatotoxicity is ranging from 1 in 10.000 to 
1 in 100.000 patients (19). This explains why IDRs are not detected during clinical trials 
and only appear once the drug is on the market and a large population is exposed to it. 
2) are typically unrelated to the drug's pharmacologic effect,  

For example, idiosyncratic hepatotoxicity is most often not related to a drug's 
pharmacological action (20). Liver injury induced by NSAIDs that are nonspecific 
inhibitors of COX-1 and COX-2 (e.g. diclofenac, sulindac) is not associated with their mode 
of action. The potential to cause idiosyncratic hepatotoxicity seems to apply to entire 
class of NSAIDs. On the other hand, trovafloxacin has caused serious hepatotoxicity in 
patients, whereas levofloxacin, an antibiotic in the same fluoroquinolone class, is without 
this liability. 
3) demonstrate no obvious relation to dose,  

Usually IDRs are considered as not dose-dependent. However, it has been 
observed that IDRs are rare for drugs given at a dose of 10 mg day-1 or less (21). Most 
drugs involved in idiosyncratic hepatotoxicity are “high-dose” drugs, given at more than 
100 mg day-1 (18). Important is that the critical exposure factor is not the administrated 
dose but the concentration of drug and/or drug metabolite present at the target organ; 
that could elicit the adverse event.   
4) occur with inconsistent temporal patterns in relation to drug exposure, 

There is often a delay between exposure to the drug and the onset of the IDRs 
(22). This delay can differ from drug to drug; varying from a few days, to weeks or even 
months depending on different types of IDRs. For example, common maculopapular 
rashes usually occur shortly after start of the treatment of nevirapine (23) while 
agranulocytosis more commonly occurs after one to three months of therapy of clozapine 
(24). Idiosyncratic hepatotoxicity typically occurs after a month or two of therapy, but for 
some drugs, such as troglitazone, the delay can be much longer and can occur after a year 
or more of treatment (25). Also, drug-induced lupus often requires a year or more before 
it becomes clinically evident. Reexposure usually leads to an immediate reaction, but in 
some cases the response is delayed and almost as long as that associated with the first 
adverse reaction (26). 
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Figure 1. Mechanisms underlying idiosyncratic toxicity (TI-Pharma ADR project). 

 
5) undergo adaptation or tolerance,  

Drug that causes idiosyncratic liver failure in a small number of patients, usually 
causes much higher incidence (>100-fold) of increased transaminases, which are 
generally an indicator of liver injury (e.g. troglitazone). However, in most patients this 
increase in transaminases is only temporal and returns to normal despite continued 
treatment with the drug  (27). Likewise, drugs that cause a lupus-like syndrome usually 
cause a much higher incidence of elevated antinuclear antibodies than the incidence of 
clinically evident autoimmunity (28). The mechanisms underlying adaptation is not yet 
discovered but appears to be common to various types of IDRs.  
6) most commonly target the skin, blood elements and the liver, 

The skin is probably the organ that is affected most frequently. Severe cutaneous 
reactions can occur, as Stevens-Johnson syndrome and toxic epidermal necrolysis. 
Besides this, three more common forms of idiosyncratic drug toxicity exist: anaphylactic 
reactions, blood dyscrasias (such as hemolytic anemia, agranulocytosis, idiosyncratic 
aplastic anemia) and hepatotoxicity, varying from asymptomatic increase in serum 
transaminases to fulminant hepatic necrosis (29). 
7) may have a genetic basis.  

Over the years, evidence has accumulated that many of IDRs depend on a 
combination of genetic factors. Genetic predispositions might explain the susceptibility of 
a small number of patients to a drug that is safe in the majority of individuals.  

The genetic factors can be categorized into two broad groups: genetic factors 
determining pharmacokinetics (drug metabolism and transporter genes responsible for 
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drug disposition) and genetic factors determining pharmacodynamic responses such as 
genes coding for drug targets, immune response genes, cytokines, etc. (30). More about 
genetic factors will be described later under Risk factors for IDRs. 
 

1.2.1. Theories regarding mechanisms of idiosyncratic reactions (IDRs) 

Although for most drugs the exact mechanism of IDRs is not known, there are 
several hypotheses which are proposed to explain them (3, 12, 14, 17, 31). Most 
hypotheses have in common that the reactions have a metabolic basis involving drug 
metabolism polymorphisms and/or that they arise from a specific immune response to 
the drug or its metabolite(s) (32). An explanation for the major hypotheses is given here: 
1. Metabolic mechanisms 

The first theory involves genetic polymorphisms at the level of drug-
metabolising enzymes. Drug metabolism can lead to the formation of RIs that can be toxic 
directly or by an immunological mechanism. A disbalance in rate of bioactivation of drug 
to RIs and rate of bioinactivation may lead to high degree of protein damage, resulting in 
toxicity. For example, individuals which are ultra-rapid metabolizers for CYP2D6 will be 
able to generate higher amounts of reactive intermediates if this enzyme is responsible 
for their formation. The enzymes involved in inactivation of these RIs, such as glutathione 
S-transferases (GSTs), quinone oxidoreductase (NQOI) or microsomal epoxide hydrolase 
(mEH), might also be deficient. The combination of these genetic factors might predispose 
individuals to IDRs (33). 
2. Hapten hypothesis 

Drugs are typically not immunogenic due to their low molecular weight. 
However, after bioactivarion to RIs and subsequent modification of proteins, the modified 
proteins can induce an immune response when present to the immune system (34).  

The mechanism of penicilin-induced allergic reactions is consistent with the 
hapten hypothesis due to the chemical reactivity of its lactam-ring. An example of a drug 
that is not chemically reactive but form reactive metabolites that are acting as haptens is 
tienilic acid that causes hepatotoxicity. It is important to note that not all of the drugs that 
are metabolised to reactive metabolites are causing IDRs and covalent binding does not 
necessary lead to toxicity (35, 36). 
3. Danger hypothesis 

According to the ‘Danger hypothesis’, covalent binding of RIs to protein as such is 
not sufficient to induce an immune response and cause IDRs. Simultaneous activation of 
the immune system by “danger signals” released from damaged or stressed cells is 
required. If a stress response (danger signal) is absent, immune tolerance will occur. 
Otherwise, cytotoxic T cells are activated, leading to up-regulation of co-stimulatory 
molecules and an immune response (Figure 2). 

The reactive metabolites associated with drugs that cause IDRs could, besides 
their ability to function as haptens, cause cell damage and thereby generate a danger 
signal (37). An example is tienilic acid, known to cause idiosyncratic hepatotoxicity, for 
which it was shown that rats treated with one or two doses developed cellular stress in 
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hepatocytes (38). Tienilic acid actually induced changes in hepatic gene expression of the 
genes involved in oxidative stress, inflammation, cytotoxicity, and liver regeneration. 

 

Figure 2. Danger hypothesis illustration for immune-mediated idiosyncratic hepatotoxicity. 
Adapted from  (39). 
 
 

4. Pharmacological interaction (PI) hypothesis 

The PI theory is an alternative for the hapten hypothesis and is based on the 
observation that some drugs are not reactive toward proteins and still can cause immune 
response. According to this hypothesis some T-cells can recognize the parent drug, rather 
than modified peptides as proposed in the hapten hypothesis. The PI concept implies that 
chemically inert drugs can bind to an immune receptor in the absence of metabolism. 
Subsequently, this may serve as a scaffold for T-cell receptors, which upon interaction can 
induce an immunological reaction. 

This hypothesis was merely based on the observations regarding 
sulfamethoxazole, but is also proposed to be applicable to lidocaine, celecoxib, 
mepivacain and carbamazepine (14, 40). 
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5. Inflammagen hypothesis  

This theory rationalizes the unpredictable nature of IDRs by the presence of 
inflammatory stress of a sufficient magnitude during drug therapy. This might 
temporarily lower the threshold for drug toxicity and consequently increases the 
susceptibility of the patient (41). In this situation, a drug dose that is in or even below the 
therapeutical range can still cause IDRs. Alternatively, the reversed mechanism is also 
proposed: a drug can increase the magnitude of a normally non-hazardous infection, 
resulting in idiosyncratic hepatotoxicity (42). 

Combined administration of the inflammagen (lipopolysaccharide (LPS)) at non-
hazardous doses and drugs related to idiosyncratic liver toxicity (i.e. diclofenac, 
trovafloxacin, ranitidine, chlorpromazine, amiodarone, halotane and sulindac) resulted in 
hepatotoxicity in rodents at doses that are otherwise non-toxic (42). 
6. Multifactorial hypothesis 

The multifactorial hypothesis is a rather general and encompassing one which is 
consistent with most of the other hypotheses mentioned above. This is rather a 
conceptual theory than a specific mechanism which assumes that IDRs result from 
multiple, discrete but necessary processes or conditions (18). Each factor has an 
independent probability of occurrence (Px), but all of them are required to precipitate an 
IDR. The product of the probability of these events is considered as the probability to 
develop IDRs: 

Probability (IDR) = P1 x P2 x P3 x P4… x Pn 
According to this hypothesis, an idiosyncratic reaction would only occur in an 

individual if all or significant part of critical factors occur within an appropriate and 
limited timeframe. These sub-processes include the exposure to a drug, physical-chemical 
properties of the drug (e.g. the ability to form reactive metabolites and the intrinsic risk 
for drug-drug interactions), genetic factors of the patient (e.g. polymorphisms in toxifying 
and detoxifying enzymes or transporters as well as genetic polymorphisms of the 
immune system, HLA genes), exposure to the environmental factors (e.g. inflammagens 
and metabolic inducers), diseases, and inflammation (18, 43). 
 

1.2.2. The role of drug metabolism in drug toxicity 

Once entering the body, lipophilic drugs are converted enzymatically to more 
hydrophilic metabolite(s) to enable elimination from the body (Figure 3). This often 
occurs in a two-step process involving phase I reactions (oxidation, reduction, and 
hydrolysis) which introduce or expose polar functional groups, followed by phase II 
reactions which are conjugation reactions, such as glucuronidation, sulfation, acetylation 
and glutathione conjugation. This generally results in the formation of inactive 
compounds that are more water soluble and easily excreted by the kidneys. The enzymes 
involved are present at high levels in the liver, intestine, and kidney.  
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1.2.2.1. Bioactivation  of drugs to reactive metabolites 

Sometimes, metabolism can lead to the bioactivation of drugs and RIs can be 
formed (Figure 3). It is generally believed that formation of these reactive metabolite(s), 
rather than the parent drug itself, is responsible for the occurrence of IDRs (44). Both 
phase I and phase II metabolic enzymes can be involved in the generation of reactive 
species. Reactive metabolites can be broadly classified as electrophiles, oxidants, and free 
radicals (45). However, the correlation between drug bioactivation and occurrence of 
ADRs is not simple: not all drugs that can undergo bioactivation are associated with ADRs, 
and drug bioactivation is not always a mandatory step in drug toxicity (3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Relationship between drug metabolism and toxicity. 
When reactive metabolites are not detoxified, interference with functional proteins, phospholipids 
and DNA can occur. If cellular repair is not sufficient, these interactions can result in drug toxicity. 

 
 
The most important enzyme system involved in bioactivation of drugs is the 

family of cytochrome P450 enzymes (46). CYP enzymes have high concentrations in the 
liver but are also present in many other organs. Due to this, local bioactivation can lead to 
hepatotoxicity and/or organ-specific toxicity. Other oxidative enzymes can play an 
important role in extrahepatic drug bioactivation. For example, myeloperoxidase in white 
blood cells has been shown to bioactivate a wide range of drugs such as clozapine and 
aminopyrine. Prostaglandin H synthase may also be responsible for bioactivation in 
extrahepatic tissues. Phase II or conjugation enzymes (s.a. uridine glucuronosyl 
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transferases (UGTs)) may also be important in the bioactivation and can lead to toxicity 
(47). Many NSAIDs are bioactivated by UGT to reactive acyl glucuronides which are 
considered responsible for their hepatotoxicity.  

The majority of reactive metabolites are electrophiles. Electrophiles are electron-
deficient and can be with delocalized centers of low electron density (soft electrophiles) 
or with highly localized centers of low electron density (hard electrophiles) (48). The 
common reason for toxicity of electrophiles is their high reactivity towards cellular 
nucleophilic groups in proteins. They show reactivity towards glutathione, leading to 
thiol depletion, or cellular macromolecules (proteins, lipids, nucleic acids), resulting in 
reversible modification, irreversible adduct formation, and irreversible loss of activity. 
The structure and chemical nature of electrophiles are important factors determining the 
selectivity of their reactions with target nucleophilic macromolecules. Soft electrophiles 
(s.a. quinones or polarized double bounds) tend to react with endogenous soft 
nucleophiles, such as thiol residues in glutathione or proteins, while hard nucleophiles 
(s.a. epoxides or alkyl carbonium ions) tend to react with hard nucleophiles, such as the 
side-chain amino group of lysine residues in proteins or basic groups in DNA. Dependent 
on the target protein affected, covalent binding to proteins can ultimately initiate 
apoptosis/necrosis or activation of the host’s immune system (often referred to as drug 
hypersensitivity or drug allergy). Chemical modification of DNA might lead to 
introduction of mutations that can lead to carcinogenicity (49).  

The second class of reactive metabolites are oxidants that can oxidise cysteine 
thiols in GSH, leading to the GSSG formation, and/or in proteins, giving rise to protein 
disulfides and GSH-protein mixed disulfides. Increased oxidation of protein thiol groups 
has been reported in hepatocytes to play a causal role in the observed paracetamol 
mediated toxicity (50). 

A third class of reactive metabolites, which can be linked to drug toxicity, are free 
radicals. Free radicals possess one or more unpaired electrons and they usually abstract a 
hydrogen atom from other molecules and can lead to lipid peroxidation, oxidative stress 
and subsequent toxicity (51). 

 

1.2.2.2. Bioinactivation - detoxification of reactive metabolites 

             Organisms contain a large number of defence mechanisms to detoxify reactive 
intermediates that are formed during drug metabolism. The endogenous GSH and 
enzymes such as glutathione S-transferases, epoxide hydrolases, quinone reductases and 
alcohol/aldehyde dehydrogenases are the most important (Table 3). Catalase, glutathione 
peroxidases and superoxide dismutases are responsible for detoxification of reactive 
oxygen species (45).  The nature and efficiency of the reactive metabolite bioinactivation 
is dependent on its chemical nature/reactivity, enzyme substrate-selectivity, tissue 
expression/localization and up-regulation of enzymes and co-factors. 

Conjugation of reactive intermediates with the thiol group of the cysteine residue 
of GSH is one of the most important detoxifying reactions in the cell and protects 
macromolecules from electrophilic attack (57). GSH conjugates are formed either non-
enzymatically or enzymatically by glutathione-S-transferases (GSTs). More detailed 
information on these polymorphic enzymes, their role in detoxification of reactive 
metabolites and correlation to ADRs will be given in Chapter 2. 
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Table 3. Enzymes involved in bioinactivation of reactive drug metabolites  

 
After conjugation, GSH conjugates are efficiently catabolised to the 

corresponding cysteine-��������������ɀ-glutamyltranspeptidases (cleaves the glutamate 
residue) and cysteinyl-glycine dipeptidases that are present in liver and kidneys. After 
acetylation of the cysteine moiety via cysteine-S-conjugate N-acetyl transferase, the 
corresponding mercapturic acids are formed which are actively excreted in urine (55). 
This is a reversible reaction, and mercapturic acids can be deacetylated again by N-
deacetylases. Other metabolic pathways of cysteine-S-conjugates also exist and some of 
the products are toxic.Ⱦ-elimination of cysteine S-conjugates can result in the formation 
of thiol compounds, which can be very reactive themselves or which may rearrange to 
form other highly reactive intermediates (s.a. thioketene, thiirane, and thioacylhalids). 
These metabolic pathways are shown in Figure 4 together with corresponding enzymes 

Enzyme  Type of RIs RI structure Reference 

Epoxide hydrolases Epoxide 

 

 

 

Arene oxide 

 

 

 

(52) 

Quinone reductases 

(NAD(P)H:Quinone 
Oxidoreductase 1) 

Quinones  

Quinoids 

 

X=O, NH, CH2 

 

  

 

(53) 

 

Alcohol/Aldehyde 
Dehydrogenases 

 

Ƚ-halocarbonyls 

 

 

 

ȽǡȾ-unsatured carbonyls 

 
 

 

 

(54) 

 

Glutathione S-
transferase 

 

Broad range of electrophilic 
substrates 

 

(55), (56) 
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(55). Thioether conjugates are useful biomarkers for a reflection of internal exposure to 
electrophilic chemicals (58). Measurement of GSH conjugation-related metabolites in 
human urine can contribute considerably to understanding of the molecular mechanisms 
underlying bioactivation processes.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Formation and possible metabolic pathways of glutathione S-conjugates to mercapturic 
acids and other, partially protein-reactive glutathione-mediated metabolites (thiol, thioketene). 
Adapted from (55). 
Steps are catalyzed by: (a) glutathione S-�����������Ǣ� ȋ�Ȍ� ɀ-glutamyltranspeptidase; (c) 
dipeptidases: cysteineglycine dipeptidase and aminopeptidase M; (d) cysteine conjugate N-
�����������������Ǣ�ȋ�Ȍ��������������������Ⱦ-lyase; (f) cysteine conjugate transaminase and L-amino 
acid oxidase; (g) cysteine conjugate S-oxidase; (h) N-deacetylase; (i) transaminases; (j) 3-
mercaptopyruvic acid S-conjugate reductase; (k) decarboxylase; (l) enzyme not yet characterized; 
(m) S-oxygenase; (n) uridine diphosphate-glucuronyl transferase; (o) S-methyl transferase; (p) 
decarboxylase; (q) 3-mercaptolactic acid S-conjugate oxidase; (r) sulfoxide reductase. 

 
 

1.2.3. Risk factors for occurrence of IDRs 

             Idiosyncratic toxicity is one of the least understood issues in toxicology. 
Understanding of the individual risk factors is necessary. These toxicities depend on 
several drug- and patient- related risk factors that are unique to individual (Figure 5). 
Drug-related risk factors include metabolism, bioactivation and covalent binding, and 
inhibition of key cell functions while patient-related risk factors include underlying 
disease, age, gender, comedications, nutritional status, activation of the innate immune 
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system, physical activity, and genetic predispositions (2). IDRs occur only when several 
risk factors converge. 

 

1.2.3.1. Exposure to drugs with idiosyncratic toxicity 

IDRs do not show a clear dose dependency. Some patients with high doses have 
no toxicity whereas other patients have severe toxicity at a low dose. However, some 
drugs have markedly higher potential to cause either dose dependent toxicity or IDRs 
than other drugs, and overall this is unrelated to overt pharmacological activity or clinical 
efficacy. Examples include neuroleptics (rank order of IDR risk clozapine > olanzapine, 
quetiapine); anxiolytics (IDR risk alpidem > zolpidem), antidiabetics (IDR risk carutamide 
> tolbutamide) and volatile anesthetics (rank order halothane > enflurane > isoflurane > 
desflurane) (59).  

Drug concentration in the plasma and/or target organ that are important for the 
critical exposure could be affected by genetic factors (e.g. level of metabolic enzymes) and 
environmental factors (e.g. concomitant food and drug intake). 
 

 
Figure 5. Risk factors for occurrence of IDRs can be drug- and patient-dependent. 
In either case, they can be apparent in the phenotype (e.g. histopathology in animal models or 
obesity in the patient) or occult (e.g. drug-adduct formation in animal models that does not present 
a phenotype, or a genetic predisposition in the patient). Adapted from (60). 

 
 

1.2.3.2. Chemistry of the drug and its bioactivation 

Although more relevant for type C ADRs, idiosyncratic toxicity is also considered 
to be caused by the presence of reactive functional groups of the drug, or most likely its 
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metabolite (61). Definition of chemical properties which may predispose to idiosyncratic 
drug toxicity would help preventing the marketing of high risk drugs (18).  

Formation of reactive metabolites and covalent binding of reactive metabolites to 
proteins is common property of drugs causing IDRs. The major enzymes involved in 
reactive/toxic metabolite generation are P450s (62, 63). The use of toxicophores within 
new therapeutic agents should be limited as an approach to minimize drug-induced 
toxicity (64).  

The result of covalent binding of RIs of drugs to proteins may be inhibition of 
critical cell processes introducing antigenicity. For example, valproate can cause fatal 
liver toxicity in rare cases due to the inhibition of mitochondrial function which is caused 
by the reactive 4-en- and 2,4-diene-valproate metabolites (65). 

 

1.2.3.3. Environmental and patient-related risk factors 

Pre-existing diseases (e.g. hepatitis, diabetes) are considered risk factors for 
developing IDRs.  Patients with HIV on antiretroviral drug therapy have an increased risk 
for idiosyncratic hepatotoxicity when they are co-infected with chronic hepatitis B virus 
and C virus (66, 67). Another established relationship between pre-existing disease and 
IDRs is the induction of severe hepatic injury and encephalopathy by salicylates in 
patients with Reye’s syndrome (68).  

Immune activation has also a significant role in IDRs development. Internal 
exposure to endotoxin or LPS during drug treatment can produce liver toxicity in animals 
treated with otherwise tolerated levels of drugs (42). For example, a nontoxic dose of 
ranitidine, diclofenac, and sulindac developed liver toxicity in rats treated with a non-
hepatotoxic dose of LPS (69–71). Ketoconazole and clozapine exhibited synergistic 
toxicity with LPS in both  mice and human  liver slices (72, 73). 

A large number of drugs which cause IDRs have clinically significant interactions 
with co-administered drugs and drug-drug interactions are therefore widely studied (74). 
As CYP3A4 is the major enzyme involved in drug metabolism, inhibition or activation of 
this enzyme is often the cause of drug-drug interactions (75). Also, nutritional 
supplements and herbal remedies are important and these, together with co-
administrated drugs should be taken into consideration when examining case studies for 
potential ADRs. 

Diet can influence on development of IDRs in two ways: drug-food interactions 
and overall nutritional status. For example, CYP3A4 activity is inhibited by 
furanocoumarins in grapefruit juice and can cause a large increase in exposure to drugs 
that are metabolised by this enzyme (76). On the other hand, it has been shown that 
fasting and malnutrition are enhancing the toxicity of APAP (type C ADR), possibly by 
depletion of hepatic glutathione (77). 

In general, the susceptibility to IDRs is age and gender dependent. For a number 
of the drugs, such as flucloxacillin, it is described that adults have an increased risk for 
hepatic injury (78). This might be due to decreased clearance, reduced hepatic blood flow, 
and drug-drug interactions as the average number of taken drugs increases with age. 
Young children appear to be more susceptible to valproate-linked IDRs due to age-
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dependent differences in drug metabolism enzymes that are involved in formation of 
toxic metabolite (79).  

 

1.2.3.4. Genetic factors 

Genetic factors also play an important role in individual susceptibility to IDRs. 
Identification of the predisposing genotypes sensitive to IDRs may improve drug therapy 
by facilitating pre-screening of carriers for specific genetic biomarkers. This might help 
avoiding that individuals predisposed to IDRs are administered with such drugs. 

Polymorphism or mutations in drug metabolizing enzyme and drug transporter 
genes which leads to unusual drug accumulation in the target organ are common 
mechanisms underlying severe ADRs (80, 81). As P450s are the major phase I drug-
metabolising enzymes, the influence of genetic polymorphisms of CYP2C9, CYP2C19, and 
CYP2D6 is well studied. These genetically determined P450s are involved in the 
metabolism of 20–30% of clinically used drugs (80, 82–84). Patients with CYP2C9*2 and 
CYP2C9*3 genetic variations, which encode for less active CYP2C9, are at an increased 
risk of bleeding with warfarin anticoagulant treatment (80). Some other examples are 
given in Table 4. 

Genetic polymorphisms of several phase II enzymes are also important and lead 
to serious effects if doses are not adjusted based on the patient genotype (80). For 
example, mutations in the gene encoding thiopurine S-methyltransferase (TPMP) 
predispose patients that are on the treatment with thiopurine drugs to severe 
hematologic toxicity. Also, patients homozygous for the UGT1A1*28 allele with reduced 
UGT1A1 activity, are at increased risk of diarrhoea and/or leukopenia with irinotecan 
anticancer therapy. Polymorphism of the N-acetyltransferase 2 (NAT2) gene 
differentiates slow acetylators as being more susceptible to toxicity associated with 
aniline-based drugs such as isoniazid, sulfamethoxazole, dapsone and procainamide (86–
88). Polymorphisms of GSTs and their consequences will be discussed in more details in 
Chapter 2. 

There is increased evidence that drug induced hypersensitivity reactions are 
determined by genetic polymorphism of human lymphocyte antigen (HLA). There are 
reports of a relationship between adverse reactions and HLA polymorphisms, particularly 
immune-mediated hypersensitivity reactions in the skin upon exposure to abacavir and 
carbamazepine (30). Abacavir-induced hypersensitivity reactions are strongly associated 
(odds ratio 960) with the HLA-B*5701 genotype (Figure 6), and to a lesser degree, a 
haplotypic Hsp70-Hom variant (89). A strong association (odds ratio 895) between HLA-
B*1502 and carbamazepine-induced toxic epidermal necrolysis in Han Chinese is 
described (90) although the same association was not observed in a European population 
(91). Also, an association exist between HLA-B*5801 and allopurinol-induced toxic 
epidermal necrolysis (92). 

Drugs can also cause changes in gene expression by epigenetic mechanisms that 
do not involve changes in the DNA sequence. Epigenetic effects, methylation of DNA and 
histone deacetylation, may be responsible for the occurrence of IDRs (93).  

 
 



General introduction 

27 

Table 4. Relationship between polymorphic drug metabolizing enzymes and certain ADRs 

Table adapted from  (81, 84, 85). 
 

 
1.3. Methods for the generation and detection of RIs 

            Despite all the research, drug-induced toxicities remain a serious problem in drug 
therapy and special attention is needed for safety assessment at the drug discovery stage. 
Although much of the safety-related attrition occurs in the course of preclinical safety 
evaluation, some adverse events fail to manifest in animals. Current hypotheses based on 
retrospective studies suggest that metabolic activation of drugs and formation of RMs is 
an initial step in many drug-induced adverse events, such as direct damage to target 
organs and immune-mediated toxicity. It is still not possible to accurately predict the 
potential for toxicity of a compound that has been shown to undergo metabolic activation. 
A combination of in vitro and/or in vivo methods is used in many pharmaceutical 
companies to profile novel drug candidates for their potential to form reactive 
intermediates and to assess their potential to cause ADRs. Predicting ADRs remains 

Enzyme  
 

Drug Adverse reaction 

Phase I (P450) enzymes    
CYP1A2 Typical antipsychotic Tardive dyskinesia 
CYP2B6 Methadone Higher post-mortem concentrations 
 Efavirenz Neuropsychological toxicity 
CYP2C9 Warfarin Haemorrhage 
 Tolbutamide Hypoglycaemia 
 Phenytoin Phenytoin toxicity 
 NSAIDs Gastrointestinal bleedings 
 S-acenocoumarol Serious bleeding events 
CYP2C19 Mephenytoin Neurotoxicity 
 Diazepam Prolonged sedation 
 Clopidogrel Increased risk of bleeding 
CYP2D6 Antiarrhythmic Arrhythmias 
 ȕ-Blockers Bradycardia 
 Tricyclic antidepressant Confusion 
 Opioids Dependence 
 Metoclopramide Acute dystonic reaction 
 Codeine Respiratory depression 

Fatal morphine toxicity in neonate 
 Tramadol Respiratory depression 
 Phenformin Lactic acidosis 
 Perhexiline Hepatotoxicity 
CYP3A4  Anti-leukemic agents Treatment-related leukaemia 
CYP3A5 Tacrolimus Nephrotoxicity in renal transplant 

recipients 
Phase II enzymes    
Plasma butyrylcholinesterase Succinylcholine Prolonged apnoea 
N-acetyltransferase Sulfonamides Hypersensitivity 
 Amonafide Myelotoxicity 
 Procainamide, hydralazine, 

isoniazid 
System lupus erythematosus 

Thiopurine methyltransferase 
 

6-Mercaptopurine, azathioprine Myelotoxicity, treatment-related second 
tumours 

Dihydropyrimidine dehydrogenase 5-Fluorouracil Myelotoxicity 
UDP glucuronosyl transferase 1A1 Irinotecan  Diarrhoea, myelosuppresion 
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challenging but these combined approaches may identify drug candidates showing 
unacceptable safety profiles, as shown in Figure 7 (3, 95).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Abacavir-induced hypersensitivity 
HLA-B*5701 restricted presentation of an immunogenic ligand. Adapted from (94). 
 
 
 

These decision schemes depend on the phase of drug research and the available 
input information. There is no universal scheme and individual research projects have to 
develop their own decision criteria on how to link experiments that are carried out to 
study reactive metabolites and toxicity outcomes in humans. In early research during 
drug design and optimisation, the ‘avoidance strategy’ is applied and medicinal chemistry 
efforts are such that compound design is avoiding RI formation while still maintaining 
acceptable pharmacological properties (Figure 7a). Anticipated daily dose and the 
urgency of the clinical need for a new treatment are also considered in this stage. In late 
preclinical or early clinical research, covalent binding (CB) are used for decision-making, 
for example if the extensive clinical safety database is needed (Figure 7b). Total dose, 
indication and existing preclinical toxicology data are taken into consideration in this 
decision scheme. In late preclinical or clinical phases, weight-of-evidence approaches 
where multiple data and end points that have some relationship to clinical safety (in vitro 
CB data, metabolic routes, animal tissue distribution data, in vitro safety data, etc.) are 
considered simultaneously, together with data on RI formation. The total sum of these 
data is considered in decision-making. 
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Figure 7. Decision schemes for handling bioactivation information in various stages of drug 
research: a) RM data in early research during drug design and optimization, b) CB data in late 
preclinical or early clinical research, and c) Weight-of-evidence approaches in late preclinical or 
clinical phases of research consider multiple data end points together with data on RM formation. 
Adapted from (3). 
*AE: adverse events; CB: covalent binding; CRM: chemically reactive metabolite; RM: reactive 
metabolite, SAR: structure–activity relationship. 
 
 
 

Methods for screening drug candidates for RI generation, identification of 
problematic compounds, and steps for minimizing the potential of bioactivation are 
developed in pharmaceutical companies. LC–MS/MS techniques are playing a dominant 
role in the detection, identification and quantification of reactive metabolites for both, in 
vitro and in vivo assessment during the drug discovery and development processes (Table 
5) and will be discussed further in more details. 
 

1.3.1. In vitro assessment of reactive metabolites formation 

Since formation of reactive metabolites play a crucial role in many types of drug 
toxicity, their quantification is an important factor in drug development. Because of their 
instability and reactive nature, and the relatively small quantities produced during 



Chapter 1                                                               

30 

metabolism, sensitive and specific approaches are required for their detection. The 
methods for the detection of RIs formation and testing the interaction potential with 
cellular macromolecules can be categorized into two types: (1) trapping methods using 
unlabelled drugs and nucleophilic trapping agents such as GSH and (2) covalent binding 
methods using radiolabeled drugs (96).  

 

1.3.1.1. Trapping experiments for the detection of electrophilic 
metabolites 

The most common strategy for the detection of electrophilic reactive metabolites 
is the use of a trapping agent, most commonly GSH, followed by liquid chromatography-
mass spectrometry (LC-MS). Nuclear magnetic resonance (NMR) analysis subsequently 
can reveal structural information of the bound electrophile which gives information on 
the bioactivating pathway involved (96). The advantage of trapping with GSH is its 
applicability in high throughput screening (HTS). However, it should always be 
considered that the information obtained is mainly qualitative and not necessarily 
predictive for toxicity on its own. This is because these studies in fact show the binding of 
reactive metabolites to a major detoxification element (GSH) rather than critical proteins. 
Nevertheless, trapping studies with GSH do provide qualitative insight in the production 
of reactive electrophilic metabolites, and allows structural optimization of drug 
candidates to minimize this problem. 

General trapping experiments consist of three components: the formation of the 
reactive metabolites, the trapping of electrophiles and the subsequent analytical 
procedures.  

 
1. Bioactivation (formation of reactive intermediates)  

For the in vitro generation of the electrophilic metabolites, incubations with 
human or rat liver microsomes are commonly performed in the presence of the 
cytochrome P450 co-factor NADPH with or without a regenerating system. Human liver 
microsomes (HLM) still account for the most popular in vitro model, providing an 
affordable way to give a good indication of the CYP and UGT metabolic profile (98). The 
activity of HLMs can vary substantially between individuals. This is solved by the 
application of commercially available pooled microsomes resulting in a representative 
enzyme activity (99). Individual human liver microsomes can also be used to screen for 
the inter-individual variability in the biotransformation of a drug. It is also possible to 
identify the critical CYPs involved in the biotransformation of the drug using individual 
HLMs by correlating the enzyme activity of a particular CYP, using a bank of human 
donors, to the metabolism of the drug. Although the most popular, liver microsomes do 
not completely represent in vivo situation. Results cannot be used for quantitative 
estimations of in vivo human biotransformation, because CYPs and UGTs are present in 
the microsomal fraction but there is no competition with other enzymes (e.g. NAT2, GST, 
and ST). 

To study the contribution of a single metabolic enzyme to the bioactivation 
pathway of the compound under investigation and production of reactive electrophiles, 
recombinant human CYPs and UGTs in supersomes are used. All common human CYPs, 
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co-expressed with NADPH-cytochrome P450 reductase and optionally cytochrome b5, 
and UGTs are offered in supersomes. The different genotypes of several CYP isozymes 
(e.g. CYP2C9*1, CYP2C9*2, and CYP2C9*3) are also commercially available which allows 
studies on the influence of different polymorphisms on the drug bioactivation. 

 

 

Table 5. Role of LC–MS/MS techniques in the detection, characterization and quantification of 
reactive metabolites in drug discovery and development. 

 
Table adapted from (97). 

 
 

Considering the fact that non-microsomal enzymes can also participate in 
bioactivation, different in vitro models exist that represent the in vivo situation better or 
support the activity of non-CYP enzymes, e.g. liver cytosol, liver S-9 fractions, hepatocytes, 
different liver derived cell lines, liver slices, isolated perfused livers, neutrophils  (98, 
100). The liver cytosolic fraction contains the soluble phase II enzymes, e.g., N-acetyl 
transferases, glutathione S-transferases, and sulfotransferases, while the liver S9 fraction 
contains both microsomal and cytosolic fractions, which provides a more complete 
representation of the metabolic profile, as they contain both phase I and phase II activity. 
However, the overall enzyme activity is lower in the S9 fraction compared to microsomes 
or cytosol, which may leave some metabolites unnoticed (98). 

Systems such as fresh or cryopreserved hepatocytes, primary cell cultures, liver 
slices and whole, perfused livers are well-established models used for investigative work. 
Most cell lines derived from hepatoma lose expression of the major phase I metabolizing 
enzymes, thus limiting the in vitro identification of metabolism-mediated drug toxicity. 
CYP450-transfected cell lines have also been shown to metabolize specific substrates and 
generate metabolite profiles qualitatively similar to those produced by isolated human 
microsome and supersome preparations. Lately, the incubation of liver slices in nutrient-
enriched media offers a powerful tool to study biotransformation in vitro (72). One of the 
advantages of liver slices over hepatocytes is that all the different cell types are present, 
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including their metabolizing enzymes, in their natural tissue-matrix configuration. 
Although an isolated perfused liver represent the best the in vivo situation, this model is 
not widely used. There are no human livers available for such studies and animal livers 
are not always the correct model for human drug biotransformation. This is a useful 
model only in cases in which bile secretion is of importance or when validation of other in 
vitro methods is required. 

An alternative for the use of human enzyme systems are bioengineered mutants 
of the highly active bacterial enzyme cytochrome P450 BM3 (CYP102A1) from Bacillus 
megaterium. Over the past years, increasing attention has focused on developing 
bacterial P450 variants with human-like metabolic activity to overcome limiting features 
of human P450s, such as low catalytic activity, instability, membrane-bound structure. 
Advantages of the bacterial P450 in comparison to human P450 are their stability, higher 
catalytic activity and their ability to be engineered towards the production of human-
relevant metabolites (101). Recently, several P450 BM3 mutants were obtained by a 
combination of random- and site-directed mutagenesis, and used to metabolize drugs 
(102, 103). It is also shown that the use of this drug-metabolizing mutants can be 
advantageous for drug bioactivation because of the generation of high quantities of 
human relevant reactive electrophilic drug metabolites (104, 105). This concept will be 
further used in this thesis. 

Electrochemistry has also been used to generate electrophilic reactive 
metabolites in the early stage of drug development process. This purely instrumental 
technique, with a simple set-up, enables generating reactive metabolite(s) in a “cleaner” 
medium, which prevents the further laborious isolation and purification steps in case of 
protein binding experiments. The potency of electrochemistry in trapping experiments is 
well established for clozapine, diclofenac, troglitazone by Madsen et al. (106–108). 
However, although electrochemistry in some cases has been shown to produce human-
relevant oxidation products, it cannot mimic all P450-dependent oxygenation reactions, 
such as hydroxylation of unactivated sp3 CH-groups, which are frequently occurring and 
synthetically challenging (109). Moreover, the regioselectivity of drug oxidation is often 
governed by the topology of the active site of P450s (or other enzymes), rather than the 
oxidation energies of the different positions, that limits practical application of this 
approach due to low physiological relevance of electrochemically generated metabolites. 

 
2. Electrophile trapping 

For the detection of electrophilic metabolites, a nucleophilic trapping agent has 
to be included in the incubations containing the drug of interest with the bioactivating 
system. If the conjugate formed of the reactive metabolite and the trapping agent is 
sufficiently stable, it is detectable in subsequent NMR or LC-MS analysis (Figure 8). A 
variety of trapping agents are used.  

Physiologically relevant tripeptide glutathione (GSH) is the most frequently used 
trapping agent. GSH reacts via the thiol group in the cysteine with soft electrophiles like 
ȽǡȾ-unsaturated ketones, quinones and quinone imines, as well as with medium hard 
electrophiles like epoxides, aryl halides and nitrenium ions (63). Reactions between 
reactive intermediates and GSH can be chemical or catalysed by glutathione S-
transferases. The corresponding GSH adducts are typically analyzed and characterized by 
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liquid-chromatography mass spectrometry (LC-MS). GSH adducts show a characteristic 
�������������� �������� ����������� ��� ������� ��� ͷ� ��� ȋ�������Ȍ� ���Ȁ��� ͳʹͻ� ��� ȋɀ-
glutamate) corresponding to the loss of the peptidic side chains of GSH and this has been 
exploited to develop sensitive and selective MS-based methodologies for the screening of 
GSH adducts; such as neutral loss (NL), precursor ion (PI) and multiple reaction 
monitoring (MRM) scanning techniques (110–112). Reported limitations according 
trapping experiments with GSH are the low capacity to trap hard electrophiles and the 
instability of some GSH conjugates (3). Moreover, the analysis of GSH conjugates with LC-
MS/MS has a limited selectivity since the characteristic neutral loss of 129 Da is also 
observed for some endogenous compounds that are present in biological matrices (96).    

To improve the selectivity and reliability and to make detection of electrophiles 
easier and more sensitive, several GSH analogues have been developed, including 
fluorescent-labelled analogues, radiolabeled analogues and stable isotope labelled GSH. 
An overview of the different glutathione-based trapping agents and methods are depicted 
in Table 6 (114–121). Unfortunately, these analogues are also exclusively reactive toward 
soft and medium hard electrophiles.  

Next to GSH, N-acetyl cysteine (NAC) can be used as alternative trapping agent. 
This adduct are also applicable as standards for analysis of in vivo samples (e.g. urine) 
since GSH adducts are in vivo degraded, ultimately resulting in mercapturic acids. 
Another advantage is that NAC conjugates may have the potential to generate more 
fragments from cleavages of the drug moiety providing critical information on structures 
of the reactive metabolites (122). However, the trapping might be less efficient, especially 
for conjugations of which the formation is catalyzed by GSTs (63). 

All these trapping agents react efficiently with soft and medium hard 
electrophiles. The trapping of hard electrophiles, like iminium ions, ketons and aldehydes 
requires hard nucleophilic trapping reagents (118). The cyanide anion (CN-) is often used 
for the trapping of iminium ions, while amines (methoxylamine and semicarbazide) are 
used for the trapping of ketons and aldehydes. Cyanide adducts also show a typical 
fragmentation pattern allowing the development of sensitive and selective MS 
methodologies such as neutral loss scanning (27 Da) (63, 123). Also, the sensitivity and 
specificity of the trapping experiments is enhanced when stable isotope labelling (13C15N-) 
is applied (63, 123). 

Bifunctional trapping agents that combine the properties of hard and soft 
nucleophilic trapping agents have been developed to capture both hard and soft 
�������������� ������������ ��������������Ǥ� ɀ-Glutamyl-cysteine-������� ȋɀ-GSK) contains 
both a soft nucleophilic moiety (cysteine) and a hard nucleophilic residue (lysine) and the 
obtained results, using furans as model compounds, suggested efficient trapping of both 
soft and hard reactive metabolites simultaneously and thus, these two types of 
electrophiles can be simultaneously analyzed by neutral loss MS scan, which is a 
significant improvement compared to the GSH trapping approach (124).  

 
3. Analytical procedure/strategies (methods) to detect formed conjugates  

The last step in the trapping experiments is the detection of the formed 
conjugates. Structural information can be obtained by the combination of LC-MS/MS and 
NMR.  
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Figure 8. Graphic representation of generation and characterization of RIs in trapping experiments. 
*Radioactively-labelled parent compound or trapping agent are applied in in vivo studies, and 
determination of trapped adduct(s) is subjected to other techniquessuch as scintillation counting. 
Adapted from (113). 

 
 
Because of its high sensitivity, LC-MS is the most often used analytical method. As 

mentioned, the most common MS/MS mode for screening of GSH conjugates is the neutral 
loss scan of 129 in combination with positive ionization. However, some conjugates like 
aliphatic and benzylic thioether conjugates may escape detection by 129 Da constant 
neutral loss scanning (111, 125). As an alternative approach, negative ionization-
precursor ion scan for the collision induced anion with an m/z ratio of 272 (GSH minus 
the H2S moiety) is used. All GSH adducts of acetaminophen and diclofenac were detected 
with the neutral loss approach, with the additional of previously unidentified adduct for 
troglitazone. However, the positive ionization-neutral loss approach provides more 
structural information (126).  

Even though LC-MS/MS is the most widely used approach for the analysis of drug 
metabolism, in most situations the entire molecular structure can not be unravelled. In 
these situations the additional use of NMR is required. NMR is less sensitive and requires 
high purity of the sample and high quant������������������������ȋ���������ͳ�Ɋ�����������ͳ�
mg for high quality spectra). However, recent improvements of NMR sensitivity, NMR 
magnets have become stronger (today ca. 600–800 MHz is standard),  made NMR a useful 
tool for the analysis of drug metabolites as  absolute amounts of sample required for 
analysis have become smaller (ca. 100 mM in biofluids or tissue extracts (127).  
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Application of LC–NMR hyphenated analytical system mitigates sample isolation and 
purification required when using NMR alone (128). 

Covalent binding to critical proteins is often considered the first step in the 
process ultimately leading to toxicity. For this reason it is important to screen compounds 
for their capability to form protein adducts. Trapping experiments and protein binding 
analysis are often complementary and together provide valuable information (96). 
However, it is still difficult to define what level of covalent binding could be considered as 
safe, and which level might cause toxicity (63). Based on data from a wide range of 
toxicants, a threshold of 50 pmol/mg microsomal protein was proposed previously (63). 
However, several other considerations, like the daily drug dose or concentration in blood 
and liver, should be considered for the final decision of how much covalent binding is 
permissible. 

 

1.3.1.2. Covalent binding analysis and detection of protein adducts   

Recent studies examining P450-mediated covalent binding of 18 drugs (nine 
hepatotoxins and nine non-hepatotoxins) to liver microsomes, S-9, and/or hepatocytes 
showed no correlation between extent of covalent binding and toxicity (35, 36). A number 
of examples that display a high degree of protein covalent modification, yet are not 
associated with a significant incidence of toxicity. This phenomenon is evident with the 
acetaminophen regioisomer, 3’-hydroxyacetanilide (AMAP), which forms GSH- and 
protein-reactive metabolites (129). However, AMAP does not exhibit the hepatotoxicity in 
vivo in mice observed with acetaminophen although level of covalent binding was 
comparable (130). Ex vivo, in mouse, rat and human precision-cut liver slices incubations, 
a marked species differences in APAP and AMAP toxicity were observed. It was shown 
that AMAP is toxic in rat and human liver slices and cannot be considered as non-toxic 
isomer of APAP (131).  

Despite this, in vitro studies with radiolabeled drugs remain the golden standard 
to quantify covalent binding of reactive metabolites. The production of radiolabeled 
analogues, of which 3H and 14C are the most commonly used, is expensive and time 
consuming, and is usually only available in the late stages of drug development. Covalent 
binding studies, in contrast to trapping experiments, provide quantitative information 
about the metabolic activation. They do not offer structural information regarding the 
metabolites (96).  

Nevertheless, it is important for the mechanistic understanding of the toxicity to 
identify the protein targets that are covalently modified by reactive metabolites (117). 
Mass spectrometry of intact protein or tryptic digests can reveal the presence of adducts 
on known proteins (132). The Hanzlik group uses isotopic variants of “model” toxic 
compounds, such as bromobenzene, thioacetamide and thiobenzamide, as probes of 
metabolism and covalent binding to proteins in vivo, in isolated hepatocytes and in 
enzymatic systems in vitro. Adducted proteins are localised on 2D gels by 
autoradiography and identified, along with their adducts, by modern methods of 
proteomic analysis based on HPLC-MS/MS. A large database of more than 300 proteins 
targeted by diverse reactive metabolites and this information is publicly available (133). 
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Table 6. Glutathione-based trapping agents and screening methods for RIs 

 
The sensitivity of MS might not be optimal to identify adducts in a method based 

on complete proteins (134). Moreover, no structural information about the covalent 
binding is obtained. For this purpose characterisation of peptide adducts is required 
(117). These experiments provide structural insight of specific haptens that are possibly 
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involved in the underlying mechanisms, as specific targets for adduct formation might 
discriminate between individual toxicities. In our laboratory, Boerma et al. used highly 
active P450 BM3 M11his enzyme for bioactivation of acetaminophen, clozapine and 
troglitazone in the presence of the model target protein human GSTP1-1. After digestion 
of the model protein, adducted and non-adducted GST peptides were analyzed by 
LCMS/MS. It was shown that P450 BM3 mutants with high capacity to activate drugs into 
relevant RMs can be employed to produce protein adducts to study the nucleophilic 
selectivity of highly reactive electrophiles (135). 

Different strategies have also been applied for the investigation and/or detection 
of drug protein adducts in vivo (149, 150). First, the isolation of drug-protein adducts 
from the tissue using chromatographic and/or electrophoretic techniques is required. 
Direct (semi)-quantitative analysis of protein adducts can be performed using 
radioisotope-based assays (when the drug is radio-labeled) or by immunological 
techniques (after raising antibodies against drug-protein adduct in animals) (151). 
Further digestion of proteins by proteases, with subsequent isolation and purification 
steps of the peptides, may facilitate adduct analysis. Adduct and/or drug moiety detection 
can be performed using different techniques but usually involves LC-MS/MS analysis. For 
example, on-line approach for the detection of covalent adducts to the cysteine-34 
residue of human serum albumin has been described measuring NAPQI (the reactive 
metabolite of acetaminophen) and CDNB adducted albumin (152). 

 

1.3.1.3. Mechanism-based CYP inhibition 

Sometimes, ultra-reactive metabolites are so reactive that they do not escape its 
site of formation. They covalently bind to the enzyme leading to mechanism-based 
inhibition as metabolism precludes enzyme inactivation (136, 137). Inhibition of CYP-
mediated drug metabolism is one of the causes of drug-drug interactions (DDIs) and can 
result in serious clinical consequences. Some fatal adverse reactions of drugs are 
mediated by metabolism-dependent DDIs, which have been responsible for the 
withdrawal of some drugs from the market. Co-administration of the calcium-channel 
blocker and potent CYP3A4 inactivator mibefradil and simvastatin in patients with 
hypertension has been associated with increased cases of myopathy including 
rhabdomyolysis. The mechanism-based inactivation of the CYP3A4-catalyzed metabolism 
of simvastatin by mibefradil results in elevated plasma concentrations of the statin that 
leads to myopathy or rhabdomyolysis (138, 139). Given the potential for such life-
threatening drug-drug interactions, the manufacturer of mibefradil announced a 
voluntary withdrawal of the drug from the market worldwide. 

CYP inhibition is now being investigated earlier in the drug discovery process to 
avoid costly failures in drug development. Screening for mechanism-based inhibition of a 
CYP isoform relies on the detection of changes in inhibitory activity with preincubation of 
the test compound in the presence or absence of NADPH in liver microsomes or 
recombinant CYPs followed by the addition of probe substrates. The metabolism of the 
probe substrate is measured and it was suggested by Berry and Zhao (140) that 
metabolism-dependent inhibitors show at least a 1.5-fold shift in IC50 after a 30 min 
preincubation. 
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Also, the influence of specific CYP isozymes in the formation of reactive 
metabolites can be studied by HLMs inhibition studies in the presence of isoform specific 
inhibitors. Table 7 lists the various probe substrates and inhibitors for the different CYP 
isozymes. 

 
 

Table 7. Recommended in vitro probe substrates and inhibitors for CYP isoenzymes. 

Table adapted from (141). 

 
 

1.3.2. In vivo assessment of reactive metabolites formation 

Although in vitro screening tools can assess the potential of novel compounds to 
be bioactivated to RIs, in vivo data on covalent binding of drug metabolites to GSH and/or 
proteins are relevant for risk assessment. While GSH adducts and/or their decomposition 
products, s.a. cysteine conjugates and mercapturic acids measured in vivo represent 
short-term exposure to reactive chemicals, protein adducts to albumin or hemoglobin 
better reflect chronic exposure to electrophiles (142).  

LC–MS techniques also play an essential role in the analysis of RIs formed in vivo 
in ADME studies in toxicology species and humans from late drug discovery to clinical 
development (Table 5). These results allow the confirmation of bioactivation pathways 
observed in liver microsomal incubations, the determination of reactive metabolites 
mediated by non-microsomal enzymes or multiorgan biotransformation reactions, which 

 
 Substrates Inhibitors 

Isoform  ‘Preferred’ ‘Acceptable’ ‘Preferred’ ‘Acceptable’ 

CYP1A2 
 

Ethoxyresorufin 
Phenacetin 

Caffeine 
Theophylline 
Acetanilide 
Methoxyresorufin 

Furafylline Į-naphthoflavone 

CYP2A6 Coumarin   Coumarin 
CYP2B6 S-Mephenytoin Bupropion  Sertraline 
CYP2C8 Paclitaxel  `glitazones'  
CYP2C9 
 

S-Warfarin Tolbutamide  
Diclofenac 

Sulphaphenazole  

CYP2C19 
 

S-Mephenytoin 
Omeprazole 

  Ticlopidine 
Nootkatone 

CYP2D6 
 

Bufuralol  
Dextromethorphan 

Metoprolol 
Debrisoquine 
Codeine 

Quinidine  

CYP2E1 Chlorzoxazone 4-nitrophenol  
Lauric acid 

 4-methyl pyrazole 

CYP3A4  

 
Midazolam 
Testosterone 

Nifedipine 
Felodipine 
Cyclosporin 
Terfenadine 
Erythromycin 
Simvastatin 

Ketoconazole 
Troleandomycin 

Cyclosporin 
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are usually not detected by in vitro screening methods (143), and the assessment of 
contribution of bioactivation to the total drug clearance in humans and toxicology species. 

To assess in vivo bioactivation of a given drug candidate, detection and structural 
identification of GSH adducts in bile samples has been shown using LC–MS and/or NMR 
after dosing a compound to bile duct cannulated rats. 3H-labeled compounds are used for 
quantitative determination of RIs by the radioactivity analyses of GSH adducts and 
protein covalent binding in liver tissues (144). To assess the exposure levels of reactive 
metabolites in vivo in toxicology species and humans, quantitative analysis of mercapturic 
acids of a given drug are performed. Mercapturic acids are important biomarkers and 
characterization of urinary mercapturic acid derivatives represents a classic approach for 
investigation of the metabolic activation of xenobiotics in vivo. The detection of 
mercapturic acid derivatives of diclofenac, felbamate and nevirapine in the urine of 
humans treated with these drugs has been described (145–147). For screening for 
unknown reactive drug metabolites formed in vivo, a method using constant neutral loss 
of 129Da in the negative ion mode combined with product ion scans (positive and 
negative mode) has been applied to detection of mercapturic acids in human urine (148). 

 
 

1.4. Aims and scope of the thesis 

A large proportion of the ADRs are considered to result from the formation of 
chemically reactive metabolites generated in humans. These metabolites can react with 
nucleophilic residues in proteins and other macromolecules, which may lead to ADRs or 
IDRs. Although the role of bioactivation to RIs has been reasonably well established and 
accepted, and methodologies like reactive metabolite trapping and covalent binding 
continue to develop in an attempt to detect the occurrence of bioactivation, the challenge 
remains to predict the likelihood for idiosyncratic toxicities. The identification of risk 
factors which determine which patients are susceptible for the occurrence of ADRs of 
certain drugs is necessary. Using a translational approach, from the molecule level to the 
patient, this TI-Pharma project aims to identify biomarkers and to develop tools for the 
early prediction of adverse drug reactions. The ability to identify adverse effects in an 
early stage of drug development will prevent much discomfort in patients and economic 
loss. 

Conjugation of reactive intermediates to GSH is an important detoxification 
mechanism that can be spontaneous or mediated by glutathione S-transferases (GSTs). 
Although the formation of GSH conjugates has been demonstrated in many in vitro 
studies for the drugs causing IDRs, the role of GSTs in catalysing GSH conjugation of 
reactive drug metabolites in vivo has remained relatively unexplored. An increasing 
number of GST genes are recognised as being polymorphic. Interestingly, genetic 
polymorphisms of GSTs have been associated with an increased susceptibility of several 
forms of cancers, alcoholic liver disease, and toxic hepatitis caused by chemicals and 
drugs. Several clinical studies have demonstrated an increased susceptibility to 
idiosyncratic drug-induced liver injury by the combined GSTM1-T1 double-null genotype. 
However, further proofs on the role of the GSTs and their polymorphic isoenzymes in the 
detoxification of reactive metabolites formed by bioactivation of drugs, in both, in vitro 
and clinical studies, are needed. 
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The main aim of this thesis was better understanding of the underlying 
mechanisms of the IDRs and identification of possible risk factors for individual 
susceptibility. Major goal of the thesis was to investigate the role of human GSTs in 
inactivation of electrophilic drug metabolites generated in in vitro studies using human 
liver microsomes and a drug-metabolizing bacterial P450 BM3 mutants as bioactivation 
systems. The second aim of the thesis was to investigate the effects of genetically 
polymorphic enzymes involved in bioactivation of drugs (specifically clozapine) and 
detoxification of reactive intermediates formed in vitro as well as in vivo by analysing 
urine samples of the patients on drug treatment.  

This chapter, Chapter 1, contains an introduction to ADRs and IDRs. The role of 
drug metabolism and formation of reactive metabolites, risk factors for occurrence of 
IDRs, and the strategies for the risk assessment for the novel drug candidates are  
described. An overview of the literature regarding polymorphic GSTs, their role in the 
detoxification of reactive metabolites and correlation of these polymorphisms with the 
occurrence of IDRs will be given in Chapter 2. 

Chapter 3 focuses on the role of human GSTs in the inactivation of reactive 
metabolites of clozapine formed by human and rat liver microsomes and a drug-
metabolizing bacterial P450 BM3 mutant, P450 102A1M11H, as bioactivation systems. 
We compared the ability of four recombinant human GSTs (hGSTA1-1, hGSTM1-1, 
hGSTP1-1, and hGSTT1-1) to catalyze the GSH conjugation of formed reactive metabolites 
by comparison of GST-catalysed conjugation reaction with non-enzymatic conjugation 
reaction. Similar approaches were used to investigate the effects of human GSTs on the 
GSH conjugate formation of diclofenac as described in Chapter 4.  

Several studies suggested variations among individuals in regards to enzyme 
activity due to hGSTP1-1 polymorphisms. In Chapter 5, we investigated if Ile105Val and 
Ala114Val mutations, resulting in four allelic variants of hGSTP1-1, affecting the ability of 
these enzymes to inactivate the reactive drug metabolites of paracetamol, clozapine, and 
diclofenac formed by bioactivation in vitro by human liver microsomes and drug 
metabolizing P450 BM3 mutants. 

Chapter 6 describes the application of Cytochrome P450 BM3 mutants for 
clozapine bioactivation and structural characterization of clozapine GSH conjugates. By 
screening of a library of BM3 mutants, a mutant was selected for the generation of large 
amounts of clozapine reactive metabolite to enable structural elucidation of all major 
human relevant GSH conjugates by NMR. 

In Chapter 7, involvement of individual human CYPs in the bioactivation and 
formation of clozapine reactive intermediates was investigated. Clozapine was 
investigated using fourteen commercially available recombinant human P450s and 
formation of reactive intermediates was quantified by using GSH and cyanide as 
nucleophilic trapping agents. We also studied the effect of specific inhibitors of P450 
isoenzymes in human liver microsomes, as well as bioactivation of clozapine in human 
liver microsomes from 100 different individuals. 

Chapter 8 describes the variability in clozapine metabolic profile and 
bioactivation in human liver slices incubations and patients’ urine samples. Metabolites of 
the bioactivation pathway of clozapine, urinary thioethers, reference standards were 
produced starting from corresponding GSH conjugates using enzymatic and simple 
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chemical synthesis. The metabolic profile of identified conjugates was comapared within 
individuals, both clozapine patients and liver donors, taking into account genotyping 
results for polymorphic GSTs. A preliminary association study was performed to 
investigate the role of genetic polymorphism of four hGST as risk factor for CLZ-induced 
agranulocytosis. 

In the last part of the thesis, Chapter 9, an overall summary will be given, 
including general conclusions and perspectives for future work. 
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Abstract 

Bioactivation of drugs to chemically reactive metabolites is often recognized as a 
risk factor involved in the pathogenesis of idiosyncratic drug reactions (IDRs). 
Glutathione S-transferases (GSTs) are considered to be the major phase II enzymes 
involved in the detoxification of electrophilic xenobiotics by catalyzing conjugation 
reactions to glutathione (GSH). An increasing number of studies have shown an 
association between genetic polymorphisms (especially deletions) of human GST genes 
and susceptibility to drug-induced idiosyncratic toxicity. For example, several clinical 
studies demonstrated an increased susceptibility to idiosyncratic drug-induced liver 
injury due to the combined GSTM1-T1 double-null genotype. In vivo animal studies have 
been described using knockout mice as a model for studying GST polymorphisms. In vitro 
studies have also been performed to investigate the role of GSTs in the inactivation of 
electrophilic drug metabolites. This review presents an overview of currently known 
genetic polymorphisms of GSTs, a summary of the studies on the role of GST 
polymorphisms in the detoxification of reactive drug metabolites and the implication of 
genetic polymorphisms for drug toxicities. The review substantiates still insufficiently 
proven importance of GST polymorphisms as a risk factor for the occurrence of 
idiosyncratic toxicity. 
 

1. Introduction 

Most drug-metabolizing enzymes are known to display genetic polymorphism (1, 
2). Mutations in the genes for drug-metabolizing enzymes may encode for enzyme 
variants with higher or lower activity. Furthermore gene deletions or introduction of 
premature stop codons can lead to the total or partial absence of the activity of related 
proteins. These genetic polymorphisms give rise to distinct subgroups in the population 
that differ in their ability to metabolize drugs (3). Many of the variations were only first 
identified by the occurrence of adverse reactions after normal doses of drugs to patients. 
In drug development, therefore, it is important to consider and predict the effect of 
genetic polymorphisms on the efficacy and safety of electrophilic candidate drugs and/or 
reactive metabolites (4). It has been hypothesized that idiosyncratic toxicity of drugs and 
other chemicals may be the consequence of genetic polymorphisms at the level of drug 
metabolism and the immune system. 

Glutathione S-transferases (GSTs) are known to be major detoxifying phase II 
enzymes in many organisms. GSTs catalyze the conjugation of glutathione (GSH) to 
electrophilic substrates in order to inactivate them and facilitate their extraction from the 
body, thereby preventing reactions to biomacromolecules which might lead to toxicity (5, 
6). In addition, they can reduce hydroperoxides to the corresponding alcohol and 
oxidized GSH, i.e. GSSG, which plays an important role in cellular protection against 
oxidative stress (7). An increasing number of GST genes are being recognized as 
polymorphic. In humans, marked inter-individual differences exist in the expression of 
class alpha, mu, pi and theta GSTs (8, 9). Genetic polymorphisms of GSTs have been 
associated with an increased susceptibility of several forms of cancers, alcoholic liver 
disease, and hepatitis caused by chemicals and drugs (10–14).  

Here, we will review the potential impact of GST polymorphisms on the 
occurrence of adverse events and, more specifically, the role of human GSTs in the 
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inactivation of chemically reactive drug metabolites. Several clinical studies suggested an 
increased susceptibility to idiosyncratic drug-induced liver injury due to the combined 
GSTM1-T1 double-null genotype (10, 12). Furthermore, knock-out and humanized animal 
studies provided additional information about consequences of GST polymorphisms for 
susceptibility to drug toxicity (15). Previously, only few in vitro studies have been 
performed to investigate the role of GSTs in the inactivation of electrophilic drug 
metabolites (16–19). Lately, however, the role of human GSTs in the GSH conjugation of 
reactive drug metabolites was more extensively studied using P450s as bioactivation 
systems (20, 21). Although still poorly understood, some of these findings clearly point to 
a role of these enzymes as a general protecting mechanism against different forms of 
toxicities and to potentially useful strategies to eliminate the latent risks of reactive 
metabolites in drug development (4). Genetically determined reduction in the ability to 
detoxify electrophilic reactive metabolites, which is expected among individuals with GST 
null genotypes, might play a role in determining or predicting the risk for ADRs related to 
some drugs.  

 

2. Glutathione S-transferases 

In nature, there are three major families of widely expressed proteins that 
display glutathione S-transferase activity. Two families comprise soluble enzymes that 
are not strongly related to each other, designated as cytosolic and mitochondrial GSTs, 
Figure 1(a) and 1(b) (22, 23). The third family is composed by the “membrane-associated 
proteins in eicosanoid and glutathione” metabolism (MAPEG enzymes), which comprise 
microsomal GSTs (24). There are certain similarities in the structural protein folding 
between cytosolic and mitochondrial GSTs (22), but no structural similarities to the 
MAPEG enzymes (25). 

The soluble GST enzymes of mammalian species are well characterized and have 
been divided into eight different classes: alpha, mu, pi, sigma, theta, omega, zeta, and 
kappa according to their amino acid sequence similarity, substrate specificity and 
primary and tertiary structures. The first seven are classified as cytosolic in mammalian 
species, whereas the kappa-class GSTs are expressed in the mitochondria and 
peroxisomes (11, 22, 26). Cytosolic GSTs are the major family and together with 
mitochondrial may play animportant role in defense against chemical and oxidative 
stress (5). Other classes of cytosolic GSTs are recognized in non-mammalian species, 
designated as beta, delta, epsilon, lambda, phi, tau and the “U” class (7, 27). 

The most abundant GST enzymes belong to the cytosolic families alpha, mu and 
pi. These cytosolic classes are encoded by genes which are assembled in clusters and are 
dimeric enzymes that contain two subunits of 22-25 kDa (28, 29). The expression pattern 
of GSTs is distinct in different organs. An overview of the tissue distribution of human 
GSTs is shown in Table 1. The expression pattern differs also between fetal and adult 
tissues. In embryonic and early fetal development GSTs are present in high amounts. 
GSTP1 is the most important GST isoform at these stages (30). Alpha-class GSTs are 
expressed during both periods, while GSTP1 expression levels reduce strongly at the end 
of the prenatal period. Furthermore, GST expression is also influenced by sex and age.  
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Figure 1. Ribbon diagrams of (a) cytosolic, (b) mitochondrial, and (c) microsomal GST dimers.  

 
 

2.1. Functions of GSTs in cellular processes 

GSTs are known to bind a wide variety of ligands. Next to catalyzing the 
conjugation of GSH to toxic electrophilic centers of endogenous and exogenous 
compounds and formation of the corresponding GSH conjugates, Figure 2, GSTs exert 
various other functions (31, 32). They also function as intracellular transport proteins for 
hydrophobic endogenous and exogenous ligands. GSTs exert peroxidase and steroid 
isomerase activities. Recently it was shown that GSTP1-1 can inhibit the c-Jun N-terminal 
kinase, an important defensive line against H2O2-induced cell death (7).  

 

2.1.1. Detoxification of xenobiotics through the mercapturic acid pathway 
GSTs major role constitutes phase II drug-metabolism where they contribute to 

the detoxification of a wide variety of electrophilic foreign compounds, such as epoxides, 
alkyl- and aryl-halides, isothiocyanates, ȽǡȾ-unsaturated carbonyls and quinones (39). 
These reactions usually follow phase I drug-metabolism reactions, mostly catalyzed by 
cytochrome P450, that introduce electrophilic centers. These electrophiles can be 
trapped by the endogenous nucleophiles, e.g. reduced GSH, in reaction that can be both 
spontaneous and/or catalyzed by GSTs (Figure 2I).  
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Table 1. Human GSTs and distribution in the tissues* 

*Data based on (33–38). 

 
The catalytic activity of GSTs is based on the fact that it can bind both 

hydrophobic electrophiles and GSH, and on the ability of the enzyme to lower the pKa of 
the sulfhydryl (-SH) group of GSH from 9.0 to ± 6.5 (39). The thiolate anion (GS-), in the 
binding site for GSH, has strongly increased nucleophilicity which leads to spontaneous 
reaction with electrophilic xenobiotics, bound at a nearby site (40). Using X-ray 
crystallography, it has been elucidated that a tyrosine or serine residue at their active site 
controls the stabilization of the thiolate anion (GS-) through hydrogen bonds (41, 42). 
While the GSH-binding site exhibits a high specificity for GSH, the substrate-binding site 
displays a broad specificity toward hydrophobic compounds resulting in a wide range of 
substrates. 

The formed GSH conjugate is removed from the cell drug transporters, e.g. multi-
drug resistance associated proteins. The GSH conjugates are then further catabolised by 
cleavage of the glutamate and glycine residue, as shown in Figure 3, to corresponding 
cysteine conjugates. Cysteine conjugates can be excreted in urine as mercapturic acid 
after acetylation. Dependent on the structure of the electrophile, cysteine conjugate might 
be cleaved to thiol by Ⱦ-lyase, the latter being further transformed to methylthio-
conjugates and related sulphur-containing metabolites (5, 6). The excretion of the sulfur-
metabolites has been proposed as a tool to assess extends of human exposure to 
electrophilic drugs and/or metabolites conjugating to GSH (43, 44). 

GST family Class Protein Organ 
Cytosolic Alpha GSTA1 

GSTA2 
GSTA3 
GSTA4 

testis ~ liver >> kidney ~ adrenal > pancreas 
liver ~ testis ~ pancreas > kidney > adrenal > brain 
placenta 
small intestine ~ spleen > liver ~ kidney > brain 

Cytosolic Mu GSTM1 
GSTM2 
GSTM3 
GSTM4 
GSTM5 

liver > testis > brain > adrenal ~ kidney > lung 
brain ~ skeletal muscle ~ testis > heart > kidney 
testis >> brain ~ small intestine > skeletal muscle 
brain, heart, skeletal muscle 
brain, heart, lung, testis 

Cytosolic Pi GSTP1 brain > heart ~ lung ~ testis > kidney ~ pancreas 
Cytosolic Sigma GSTS1 fetal liver, bone marrow 
Cytosolic Theta GSTT1 

GSTT2 
kidney ~ liver > small intestine > brain ~ prostate 
liver 

Cytosolic Zeta GSTZ1 fetal liver, skeletal muscle 
Cytosolic Omega GSTO1 liver ~ heart ~ skeletal muscle > pancreas >kidney 
Mitochondrial Kappa GSTK1 liver (mitochondria) 
Microsomal MAPEG MGST-I 

MGST-I-like I 
MGST-II 
MGSTIII 
LTC4S 
FLAP 

liver ~ pancreas > prostate > colon ~ kidney > brain 
testis > prostate > small intestine ~ colon 
liver ~ skeletal muscle ~ small intestine > testis 
heart > skeletal muscle ~ adrenal gland, thyroid 
platelets ~ lung > liver 
lung ~ spleen ~ thymus >> small intestine 
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Figure 2. Examples of GST catalyzed reactions: I) conjugation, II) reduction, III) isomerization, and 
IV) thiolysis. The substrates are: (a) CDNB, (b) dibromoethane, (c) aflatoxin B1-8,9-epoxide, (d) 
benzylisothiocyanate, (e) an o-quinone model, (f) CuOOH, (g) trinitroglycerin, (h) 
maleylacetoacetate, and (i) PGH2 (conversion to PGD2 is depicted), and (j) 4-nitrophenyl acetate. 
Adapted from (5). 



                                                                        GSTs as risk factor for IDRs  

55 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. Detoxification of xenobiotics and metabolism of glutathione conjugates through the 
mercapturic acid pathway.  

 

 

2.1.2. Bioactivation of xenobiotics by GSTs 

Besides detoxification, GSH conjugation also may play an important role in the 
production of cytotoxic, genotoxic or mutagenic metabolites from xenobiotics. Formed  
GSH conjugates can  be chemically unstable or act as a direct alkylating agents. Several 
GSH-dependent bioactivation reactions have been described and examples are given in 
Table 2: 

1) GSH conjugates of vicinal dihaloakanes can form electrophilic sulphur mustard. 
For example, the conjugation of dichloromethane results in a highly unstable S-
monochloromethylglutathione, which is able to bind covalently to DNA (6, 45, 46). 
1,2-dihaloethanes are also activated by initial GSH conjugation by forming an 
episulfonium intermediate formed by an intramolecular halogen-substitution. By 
modifying DNA these are leading to genotoxicity (46). Some alkenes, like 
butadiene and isoprene, first need activation by CYPs into an electrophile before 
their mutagenic potential is further increased by GST catalyzed formation of GSH 
conjugates (47); 

2) Ⱦ-lyase mediated bioactivation of cysteine S-conjugates and generation of 
reactive thioketenes, thionoacylhalides, thiiranes, and thiolactones in the kidney, 
which are involved in the selective nephrotoxicity of haloalkenes, such as 
hexachlorobutadien, tetrafluoroethylen, tetrachloroethene (48, 60); 

3) some xenobiotics are initially detoxified by GST-catalysed conjugation but 
undergoes spontaneous reversal of the initial conjugate to regenerate the toxic 
xenobiotic. For example, isothiocyanates are reversibly conjugated by GST with 
GSH to thiocarbamates which spontaneously degrade to their isothiocyanates 
that can be taken up again by the cell and reconjugated with GSH. This can lead 



Chapter 2                                                               

56 

finally to depletion of intracellular GSH and binding of isothiocyanates to 
proteins, which can result in cell death (49); 

4) release of toxic agents from organic precursors, like thiocyanates and 
nitrosoguanidines; Although under normal conditions the toxification ability of 
GSTs is described as undesirable, it can be beneficial in cancer chemotherapy in 
case tumor cells overexpress GST enzymes (61). TER286 (TLK286) is a cytotoxic 
drug, which is activated by GSTs through a Ⱦ-elimination reaction to yield an 
active analogue of cyclophosphamide, a nitrogen mustard, which then 
spontaneously yields aziridinium ring moieties that can alkylate DNA, Figure 4 
(50, 51). The prodrugs JS-K and PABA/NO are another examples which generates 
cytolytic nitric oxide upon metabolism by GST, Figure 4 (52). 

 

2.1.3. Binding of non-substrate ligands 

Several GSTs act as non-enzymatic binding proteins, ligandins, by interacting 
with hydrophobic compounds like bilirubin, steroid hormones, bile acids, fatty acids and 
thyroid hormones at a site different from the catalytic site (62–65). It has been proposed 
that this function prevents excessive accumulation of these compounds at the membrane 
or within the cell (66).  

 

2.1.4. Metabolism of endogenous compounds by GSTs 

It has been also proposed that several GST isoforms have certain metabolic 
functions in the synthesis of biologically important endogenous molecules (Table 2). Thus 
GSTs have a function in the biosynthesis of specific prostaglandins (PGs) and leukotrienes 
(LTs), which are mediators of inflammation and hypersensitivity. For example, MAPEG 
transferases are involved in synthesis of PGE2 (24), PGFʹȽ (53), and LTC4 (57). Certain 
cytosolic GSTs are also involved in prostanoid biosynthesis (Table 2). Several alpha-class 
GSTs catalyze reduction of PGH2 to PGFʹȽ (54, 69). Mu-class GSTs, M2-2 and M3-3 display 
activity towards PGE2 synthesis in human brain, (70). The sigma-class GSTs has shown to 
catalyze the isomerization reactions of PGF2 to PGD2 (55). In addition to synthesis, class 
alpha-, mu- and pi-GSTs also catalyse the conjugation of PGA2 and PGJ2 with GSH and 
these conjugates are then further eliminated from the cell by the MRP transporter (56). 

GSTs are also involved in synthesis of steroid hormones. Alpha-class GSTs, 
present in steroidogenic tissues, exhibit ketosteroid isomerase activity, catalyzing the 
��������������ȟ5-3-����������������ȟ4-3-ketosteroids, which is one of the steps in steroid 
synthesis (58, 71). 

The zeta-class GSTs is also involved in the degradation of phenylalanine and 
tyrosine by catalyzing the last step in their catabolism, cis-trans isomerization of 
maleylacetoacetate to fumarylacetoacetate (59). 
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Table 2. Bioactivation of xenobiotics and metabolism of endogenous compounds by GSTs 

  

 (Endogenous)substrates 
Metabolites and reactive 
intermediates Biological effects Enzyme Reference 

 

Bioactivation of foreign compounds by GSTs 

Dihaloalkanes: 
Dichloromethane, 
Dibromoethane and 1,2-
dihaloethanes 

S-haloalkylglutathione  
and formaldehyde 
Episulphonium anion 

Carcinogenic, genotoxic, 
DNA modifications   

GSTT1-1 (46) 

Butadiene and Isporene 
after bioactivation with 
P450s 

GSH conjugate of formed 
diepoxide Mutagenic GSTT1-1 (47) 

Haloalkenes: 
Hexachlorobutadiene, 
Tetrachloroethene  

Thioketenes, 
thionoacylhalides, 
thiiranes, thiolactones 

Nephrotoxic, 
nephrocarcinogenic 

����
ȀȾ-
lyase (48) 

Isothiocyanates (allyl-, 
benzyl-, phenethyl-) 
Isocyanates (methyl-) 

Thiocarbamates Intracellular GSH deplition; 
can lead to cell death  (49) 

TER 286 prodrug Nitrogen mustard Cytotoxic: treatment of 
malignant desease  

GSTs in 
cancer 
cells  

(50), (51) 

PABA/NO prodrug Cytolitic nitric oxide   (52) 

 

Metabolism of endogenous compounds by GSTs 

Arachidonic acid 

 Metabolism of 
eicosanoides 
(leukotrienes (LT) and 
prostaglandins (PG)) 

Physiological messengers, 
inflamation process 

MAPEG 
and 
cytosolic 
GSTs 

 

PGH2 PGE2 Inflamation process MAPEG 
GSTA3-3 (24) 

PGH2 PGFʹȽ Inflamation process 
GSTA1-1 
GSTA2-2 
MAPEG 

(53), (54) 

PGH2 PGD2 Signaling molecules 
GSTS1-1 
GSTA2-2 

(55) 

PGA2 
PGJ2 

Corresponding GSH 
conjugates 

Half-life regulation of 
prostaglandins 

GSTA1-1 
GSTM1-1 
GSTP1-1 

(56) 

LTA4 LTC4 Inflamation process MAPEG (57) 

Cholesterol Steroid hormones 
biosynthesis  Hormone-related issues 

GSTA3-3 
GSTA1-1 

(58) 

Phenylalanine Acetoacetate and fumaric 
acid 

Catabolism of phenylalanin 
and tyrosine GSTZ (59) 
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Figure 4. Activation of prodrugs TER286 (A) and PABA/NO (B) through the GST-catalyzed 
formation of a GSH-conjugate. Adapted from (50, 52). 

 
 
2.1.5. Protection against oxidative stress by GSTs 

During oxidative stress, reactive oxygen species are formed, such as O2Ȉ-, H2O2, 
����Ȉ��ǡ��������������������������������������ǡ�����������������ǡ��������������������
rise to mutagenic and cytotoxic degradation products (72). Protection against these by-
products of oxidative stress is provided by enzymatic systems like aldehyde 
dehydrogenase, alcohol dehydrogenase, and selenium-dependent glutathione peroxidase. 
Many GST isoenzymes, both soluble and MAPEG, have selenium-independent peroxidase 
activity using GSH as reductive cofactor (73). They catalyze the reduction of organic 
hydroperoxides to their corresponding alcohols and formation of oxidized glutathione 
(GSSG). GSTs are capable to reduce hydroperoxides of phospholipids, fatty acids, and DNA 
and can catalyse inactivation of electrophilic downstream products originating from lipid 
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peroxidation or protein oxidation, such as reactive aldehydes, 4-hydroxynonenal and 
acrolein (74, 75).  

 

2.1.6. Modulation of signaling pathways by GSTs 

GSTs are involved in the regulation of signaling pathways in the cells by protein-
protein interactions with important signaling tyrosine kinases, which are involved in the 
control of stress response, inflammation, cellular differentiation, proliferation and 
apoptosis (28, 29, 76). It is shown that GST-pi sequesters c-Jun N-terminal kinase 
(JNK)/stress-activated protein kinases (SAPKs) under normal conditions. In response to 
oxidative stress, GST-pi dissociates from JNK, which can lead to the initiation of apoptosis. 
GST-pi also controls apoptosis signaling pathways by interaction with TNF receptor 
associated factor 2 (TRAF2) (29, 77). Isoenzymes of alpha- and mu-classes are also 
suggested to inhibit the activation/ phosphorylation of c-Jun by JNK by binding the JNK-
Jun complexes, although less efficient than GST-pi class (29). Theta-class of GSTs are 
implicated in the inhibition of pro-apoptotic function of Bax (78), while omega-class GSTs 
interact with the calcium channel ryanodine receptors in skeletal and cardiac 
sarcoplasmic reticulum, indicating a protective role in mammalian cells from radiation 
damage and Ca2+ dependent apoptosis in cardiac muscle (79).  
 

3. Polymorphic variants of glutathione-S transferases 

Most human GSTs are known to display genetic polymorphisms. Generally single-
nucleotide polymorphisms (SNPs) occur and for some enzymes gene deletions. The 
substitutions of the amino acid residues may cause changes in the substrate-binding site 
of GSTs resulting in lack or alteration of enzymatic activity toward several substrates (2, 5, 
80, 81). These GSTs, and in particular those lacking enzyme activity due to gene deletion 
(e.g. GSTM1*O, GSTT1*O), may be associated with increased sensitivity to toxic 
compounds. The most extensively studied GST polymorphisms occur in GST classes mu, 
theta and pi. Polymorphisms also affect the activity of GSTs from alpha, omega, kappa and 
zeta-classes, but the functional and toxicological implications of these polymorphisms are 
less well studied (9). Little is known about polymorphisms in MAPEG genes (82, 83). An 
overview of the soluble GST polymorphisms is given in Table 3. 

 

3.1. GST-alpha class polymorphisms 

The alpha-class genes are localized at chromosome 6p12 which encodes five 
functional genes, GSTA1-A5, and seven pseudogenes (84). GSTA1, GSTA2 and GSTA4 are 
widely expressed in human tissues, with highest concentration in the liver (5). GSTA3 is 
rarely expressed, selectively in steroidogenic tissue, while GSTA5 protein is normally 
undetectable. 

Five SNPs are described for GSTA1. One is a silent base substitution in the exon 5 
and the other four are localised on the proximal promoter (106). Two allelic variants, 
GSTA1*A and GSTA1*B, contain these four linked base substitutions, at positions -631G 
or T, -567T, -69C and -52G for GSTA1*A and -631G, -567G, -69T, -52A for GSTA1*B (84, 
85). The main effect of these polymorphisms is the low hepatic expression of GSTA1-1 in 



Chapter 2                                                               

60 

individuals homozygous for GSTA1*B (5, 37). Specifically, the -52 substitution is 
considered to be responsible for decreased promoter activity in GSTA1*B (28). Also, 
glutathionylation of anti-cancer agents like the nitrogen mustard analogues, 
chloroambucil, mephalen and thiotepa is less effective with GSTA1*B (107, 108). 
Consequently, patients with GSTA1*A/*A had a significantly higher rate of elimination of 
busulfan than those with heterozygous genotype (109). 

The GSTA2 locus consists of five polymorphic variants, GSTA2*A-E, with different 
SNPs reported at amino acid positions 110, 112, 196 and 210 (Table 3). The catalytic 
activity for three of the polymorphic variants does not seem to differ from wild-type. Only 
GSTA2*E containing Pro110Ser mutation was shown to have lower activity towards 
several substrates, e.g. 4-vinylpyridine, and cumene-, t-butyl- and arachidonic acid 
hydroperoxides. However, kcat/Km for CDNB were similar for all four variants (37, 86, 
110). 

An Ile71Leu substitution in GSTA3 was identified as polymorphism with low 
gene frequency exclusively in African populations (87). The GSH-conjugating activity of 
the leucine containing isoform was significantly reduced in a range of reactions due to a 
diminished affinity for GSH. This could be implicated in diseases caused by oxidative 
stress in steroidogenic tissue, where GSTA3-3 is selectively expressed. Polymorphisms in 
GSTA3 may also affect steroidogenesis. Although, the delta(5)-androsten-3,17-dione 
isomerase activity of GSTA3-3 was not affected, diminished stability of the L71 isoform 
could indirectly affect testosterone and progesterone synthesis in individuals carrying 
this allele. 

 

3.2. GST-mu class polymorphisms  

The genes of the mu class of GSTs (GSTM1-M5) genes are located at chromosome 
1p13.3. GSTM1 was found to have four polymorphic alleles, GSTM1*A, GSTM1*B, a null 
allele GSTM1*0 (GSTM1 null), and gene duplication GSTM1*1x2.  

The SNP at position 534 (G>C) results in the Lys173Arg substitution, resulting 
into the alleles GSTM1*A and GSTM1*B (28, 90, 111). The catalytic efficiencies of the 
enzymes encoded by these alleles appears to be similar (11, 90).  

The GSTM1 null allele is suggested to result from unequal crossing of loci of 
GSTM1 and GSTM2, due to the presence of two almost identical 4.2-kb regions flanking 
the GSTM1 gene (112). Approximately half of the Caucasian population, 67% of 
Australian, and 22% of Nigerian are homozygous deleted for this allele and, therefore, fail 
to express the protein (113, 114). The GSTM1*0 genotype was associated with an 
increased risk of developing some types of lung cancers, in particular adenocarcinomas 
(115, 116) and squamous cell carcinomas (117, 118). Also, a significant association with 
the risk of developing bladder cancer (119, 120), adenocarcinoma of the stomach and 
colon (121, 122), and pituitary adenomas (123) was demonstrated while some studies, on 
the other hand, did not show association (121, 124).  
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Class Allele Alterations in gene or in 
nucleotides 

Protein or amino acid 
affected Phenotype or genetic consequences References 

Alpha GSTA1*A 
GSTA1*B 
GSTA2*A 
GSTA2*B 
GSTA2*C 
GSTA2*D 
GSTA2*E 
GSTA3*A 
GSTA3*B 

-631T/G, -567T, -69C, -52G 
-631G, -567G, -69T, -52A 
328C, 335G, 588G, 629A 
328C, 335G, 588G, 629C 
328C, 335C, 588G, 629A 
328C, 335G, 588T, 629C 
328T, 335G, 588G, 629A 

 

“Reference” protein levels 
Low protein levels in liver 
110P, 112S, 196K, 210E 
110P, 112S, 196K, 210A 
110P, 112T, 196K, 210E 
110P, 112S, 196N, 210A 
110S, 112S, 196K, 210E 
71I 
71L 

WT allele 
Lower catalytic activity 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Decreased catalytic activity 
WT allele 
Deminished activity and stability 

(84, 85)  
(84, 85) 
(86) 
(86) 
(86) 
(86) 
(86) 
(87) 
(87) 

Mu 
 
 
 
 
 
 
 

GSTM1*0 
GSTM1*A 
GSTM1*B 
GSTM1*1x2 
GSTM3*A 
GSTM3*B 
GSTM3*C 
GSTM3*D 
GSTM3*E 
GSTM4*A 
GSTM4*B 

Gene deletion 
519G 
519C 
Gene duplication 
WT, reference intron 6 
3 base deletion in intron 6 
439G, 670A 
439T, 670G 
439T, 670A 
WT gene, 2517T 
2517C change in intron 6 

Gene deletion in intron 6 
173K 
173N 
Overexpression to WT 
WT, 147G, 224V 
Protein unchanged 
147G, 224I 
147W, 224V 
147W, 224I 
 “Reference” protein level  
Protein unchanged 

No protein/activity  
WT allele 
WT allele 
Ultrarapid activity 
WT allele 
Increased expression to WT 
Highest catalytic activity 
Changed catalytic activity 
Lowest catalytic activity 
WT allele 
Not determined 

(88) 
(89) 
(89) 
(90) 
(91) 
(91) 
(92) 
(92) 
(92) 
(93) 
(93) 

Pi 
 
 
 

GSTP1*A 
GSTP1*B 
GSTP1*C 
GSTP1*D 

313A, 341C, 555C 
313G, 341C, 555T 
313A, 341T, 555T 
313A, 341T 

105I, 114A, 185S 
105V, 114A, 185S 
105V, 114V, 185S 
105I, 114V 

WT allele 
Substrate dependent activity change  
Substrate dependent activity change  
Substrate dependent activity change  

(81), (94) 
(81), (94) 
(81), (94) 
(81), (94) 

Sigma 
 

GSTS1*A 
GSTS1*B 

IVS2 +11 A 
IVS2 +11 C 

“Reference” protein level  
Protein unchanged 

No functional change 
No functional change 

(5) 
(5) 

Theta 
 
 
 

GSTT1*0 
GSTT1*A 
GSTT1*B 
GSTT2*A 
GSTT2*B 
GSTT2P 

Gene deletion 
310A  
310C 
2732G 
2732A  
3255T 

Gene deletion 
104T 
104P 
139M 
139I 
196 Stop  

No protein/activity 
WT allele 
Decreased catalytic activity 
No functional change 
No functional change 
Inactive 

(5) 
(95) 
(95) 
(96) 
(96) 
(96) 

Zeta 
 
 
 

GSTZ1*A 
GSTZ1*B 
GSTZ1*C 
GSTZ1*D 

94A, 124A, 245C 
94A, 124G, 245C 
94G, 124G, 245C 
94G, 124G, 245T 

32K, 42R, 82T 
32K, 42G, 82T 
32E, 42G, 82T 
32E, 42G, 82M 

WT allele 
25% with DCA, 400% with FCA  
25% with DCA, 400% with FCA 
Lower conjugation activity 

(97), (98) 
(97), (98) 
(97), (98) 
(99) 

Omega 
 
 
 
 
 

GSTO1*A 
GSTO1*B 
GSTO1*C 
GSTO1*D 
GSTO2*A 
GSTO2*B 

419C, 464-IVS4+1 AAG 
419C, 464-IVS4+1deleted 
419A, 464-IVS4+1 AAG 
419A, 464-IVS4+1 deleted 
424A 
424G 

140A, 155E 
140A, 155 deleted 
140D, 155E 
140D, 155 deleted 
142N 
142D 

WT allele 
Unstable protein, higher activity 
No functional change 
Unstable protein 
WT allele 
No functional change 

(100), (101) 
(100), (101) 
(100), (101) 
(100), (101) 
(100), (101) 
(100), (101) 

Kappa GSTK1*A 
GSTK1*B 

-1308G, -1332G 
-1308T, -1332 G 

WT 
Altered transcription 

WT allele 
Changed expression level 

(102), (103) 
(102), (103) 

MAPEG MGST1*A 
MGST1*B 

598T (noncoding 3’) 
598G (noncoding 3’) 

WT 
Unchanged 

WT allele 
Not determined 

(83) 
(83) 

 LTC4S*A 
LTC4S*B 
FLAP*A 
FLAP*B 

444A (promoter) 
444C (promoter) 
no HindIII site in intron II 
7ĺ&�IRUPLQJ� HindIII site 

WT 
Increase in protein levels  
WT 
Unchanged 

WT allele 
Possible increased responsivness to 
aspirin 
WT allele 
Not determined 

(104) 
(104) 
(105) 
(105) 

 

Table 3. Overview of polymorphisms in human GSTs* 
 

*Table adapted from (5, 8). WT – wild-type. 
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GSTM1*1x2 is a variant, resulting from a duplication of the GSTM1 gene. This 
allelic variant was identified in a population in Saudi Arabia, with 3% of the population. 
This population shows ultrarapid GSTM1 activity that might result in an enhanced 
defensive effect against some carcinogens. However, the consequences of multiple GSTM1 
gene as a safety factor for the related diseases needs to be determined (90).  

Polymorphisms have also been identified for the GSTM3, and GSTM4 genes (5, 28, 
91, 125). The GSTM3 locus contains two alleles, A and B. Compared to the wild-type, 
GSTM3*A allelic variant, GSTM3*B contains a three base deletion in intron 6, showing a 
frequency of 0.16 in the Caucasian population  (91). This difference creates a recognition 
site for the YYI transcription factor in GSTM3*B, leading to increased expression of 
GSTM3*B (11). It was shown that GSTM3*A occur more frequently in patients with 
multiple cutaneous basal cell carcinoma and is associated with an increased risk for 
laryngeal squamous cell carcinoma, whereas GSTM3*B was putatively protective (126, 
127). Additionally, several SNPs in GSTM3 have been identified. These are the rare 
Gln174Trp substitution detected only in Southern Chinese subjects and the more 
commonly present Val224Ile substitution (92). These two polymorphisms form four 
distinct haplotypes (Table 3). GSTM*C isoform showed highest and GSTM*E the lowest 
activity for the range of tested substrates, e.g. CDNB, CuOOH, ethacrinic acid. Two other 
SNPs were discovered after GSTM3 promoter sequencing: A/C and A/G SNPs, 63 and 783 
bp upstream of the codon 1 start site, respectively (28, 128)Ǥ�����
���͵�Ϋ͵��������� ���
associated with increased expression of GSTM3, while there is no association between 
�Ϋͺ͵
� ���� ���� 
���͵� ����������Ǥ� 	��� ���� 
���Ͷ� ����ǡ� ��� ��P at position 2517 
(2517T>C) was identified in intron 6, for which it is shown to be associated with 
increased lung cancer risk (93).  

 

3.3. GST-pi class polymorphisms 

A single gene, located on chromosome 11, encodes the human GSTP1 variants. 
There are two SNPs identified for GSTP1, characterized by nucleotide transition 313A>G 
in exon 5 and  341C>T in exon 6, resulting in amino acid substitutions Ile105Ala and 
Ala114Val, respectively (5, 28, 81, 94). These amino acids appear to occur within the 
active site of the pi-class GST enzyme and the two SNPs lead to four functional allelic 
variants, identified as wild-type GSTP1*A (105Ile, 114Ala), GSTP1*B (105Val, 114Ala), 
GSTP1*C (105Val, 114Val), and GSTP1*D (105Ile, 114Val). The Ile105 allele is 
predominant, occurring in 60–80% of individuals, with homozygote wild type 
constituting approximately 50% of the population in Caucasians, 60–70% in Asians, but 
somewhat less than that in African Americans. The variant GSTP*B homozygote occurs at 
less than 10% except in African Americans, where it was found at a frequency of 19%. 
Data available for the codon 114 polymorphism indicate that this variant allele is less 
frequent than is the codon 105 variant (9). 

The substitution of isoleucine for the less bulkier and more hydrophobic valine 
residue at position 105 results in substrate-dependent variations of the enzyme activity 
toward electrophilic compounds (5, 28). The variant with 105Val exhibit higher efficiency 
in the conjugation reaction with polycyclic aromatic hydrocarbon diol-epoxides than the 
variant with 105Ile (81, 129), while it showed lower activity in GSH-conjugation of 1-
chloro-2,4-dinitrobenzene (CDNB) (129, 130). On the other hand, functional 
consequences of alanine to valine substitution at position 114, which is not located close 
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to the catalytic site, are not known, though it is suggested that they may augment the 
effect of the I105V polymorphism, e.g. cisplatin (131). 

Differences in chemotherapeutic response and cancer susceptibility for a wide 
variety of tumors including ovarian, breast, colon, pancreas and lymphoma are associated 
with the GSTP1 genotype (132). Patients with GSTP1*B allele had a diminished capacity 
to detoxify platinum-based anti-cancer agents, which makes them favorable for response 
rates due to the role of GSTP1 in cisplatin resistance via formation of platinum–GSH 
conjugates (133). Also, patients having the Val105 polymorphism,  GSTP1*B and GSTP1*C,  
had a better response to platinum-based chemotherapy and survived longer in acute and 
chronic myeloid leukemias, glioma, multiple myeloma, Hodgkin’s lymphoma, and cancers 
of the bladder, colorectum, esophagus, stomach, testicles and many other cancers (134–
138). 
 

3.4. GST-theta class polymorphisms 
Genes for both members of the theta class of GSTs are located on chromosome 

22q11.2. The GSTT1 has two functional alleles, GSTT1*A and GSTT1*B, and a null allele, 
GSTT1*0. The difference between the two functional alleles is caused by an SNP at 
position 310 (310A>C) in exon 3 of GSTT1, where the GSTT1*A contains a threonine 
residue and GSTT1*B has a proline residue at amino acid position 104 (Thr104Pro). This 
aminoacid substitution caused the decrease in catalytic activity of GSTT1*B compared to 
GSTT1*A, when methyl chloride was used as a substrate (95). The null polymorphism is 
likely to result of the unequal crossover of two highly homologous regions flanking the 
GSTT1 gene, thereby deleting a 54 kb fragment containing the complete GSTT1 gene (112, 
139). Individuals with a homozygous GSTT1 null genotype do not express any enzyme, 
with the result that the GSH conjugation of dichloromethane and ethylene oxide is not 
catalyzed by blood samples from this population (140). The gene frequency of GSTT1 null 
genotype differs significantly between different races and ethnic groups. This genotype is 
less frequent in the Caucasian population (13-31%) and Mexican Americans (11%) 
compared to the GSTM1 null genotype, but is comparable to the GSTM1 null genotype 
frequency in African Americans (22%) and Asian populations (generally 40-60%) (5, 28, 
112). GSTT1*0 genotype has been associated with an increased risk of several types of 
cancers, like the head, neck and oral cavity cancer, bladder cancer, meningioma, acute 
myeloid leukemia and squamous cell carcinoma (141, 142). The GSTT1 gene status has 
been correlated with a response to chemotherapy. Higher response to chemotherapy and 
a longer relapse-free survival was observed with patients having GSTT1*0 in breast and 
ovarian cancer, while, conversely, in follicular non-Hodgkin’s Lymphoma a significantly 
worse event-free survival was observed with this patients (143, 144). Possible 
involvement in metabolism/detoxifying of the anticancer agents used in the therapy still 
needs to be addressed. GSH concentration which might depend on GST activity is 
important for cisplatin binding and that way reducing availability of platinum-based 
therapy and/or inactivation of other anticancer drugs, like cyclophosphamide and 
Adriamycin (108). 

The GSTT2 gene also contains two functional polymorphic variants, and a 
pseudogene (GSTT2P) (96). The two functional alleles GSTT2*A and GSTT2*B differ by a 
single nucleotide substitution 2732G>A in exon 4, resulting in the substitution Met139Ile. 
The enzyme activity, however, does not seem to be affected (8, 11, 145). In addition, SNPs 
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in the GSTT2 promoter region resulted in different GSTT2 enzyme expression levels (-
537G>A, -277T>C, -158G>A, and -129T>C) (146, 147). It has been shown that these SNPs 
are associated with colorectal cancer risk (147). The pseudogene originates from two 
nucleotide transitions at positions 841 (841G>T) in intron 2, that could result in defective 
splicing, and 3255 (3255T>C) in exon 5 resulting in the substitution of 196Arg by a stop 
signal. 
 

3.5. GST-zeta class polymorphisms 

Identified polymorphisms of the GSTZ1 gene are three functional SNPs resulting 
in amino acid substitutions Glu32Lys, Gly42Arg and Thr82Met (Table 3). Different 
combinations of these SNPs determine four allelic variants GSTZ1*A (32Lys, 42Arg, 
82Thr), GSTZ1*B (32Lys, 42Gly, 82Thr), GSTZ1*C (32Glu, 42Gly, 82Thr), and GSTZ1*D 
(32Glu, 42Gly, 82Met) (8, 97, 98). In Caucasian population (n = 141) all three alleles were 
found, with frequencies of 0.09, 0.28 and 0.63 for GSTZ1*A, GSTZ1*B, and GSTZ1*C, 
respectively (97). The catalytic efficiency for GSH conjugation of dichloroacetic acid was 
higher for GSTZ1*A compared to the other variants and correlates  with the presence of 
Arg at position 42 (98, 99). GSTZ1*D, on the other hand, showed a reduced catalytic 
activity due to a high sensitivity to substrate inhibition (99, 148). GSTZ1-deficient mice 
which were used as a model to provide insights in metabolic deficiencies, showed an 
elevated urinary excretion of fumarylacetoacetate with occurring renal injury following 
phenylalanine and tyrosine overload (149). 

 

3.6. GST-omega class polymorphisms 

Three human GST-omega class genes have been identified: two actively 
transcribed, GSTO1 and GSTO2 lying on chromosome 10q25.1, and a reverse-transcribed 
pseudogene, GSTO3p on chromosome 3 (101). Several polymorphisms have been 
reported in the coding and noncoding regions of the GSTO-class genes  with four gene 
polymorphisms identified in many ethnic groups: GSTO1*A140D, GSTO1*E155del, 
GSTO1*E208K, and GSTO2*N142D (100, 150, 151).  GSTO1*A140D and GSTO2*N142D 
are two common polymorphisms, present at different frequencies in populations 
worldwide (151). The GSTO1*D140 allele shows higher frequencies in European 
populations (34-37%), than observed in Africans (4-21%) and Asians (15-20%) while for 
GSTO2*N142D similar allele frequencies were observed in Europeans (38-39%) and 
Asians (22-33%) and higher for African origin population (67-86%). On the other hand, 
GSTO1*E155del and GSTO1*E208K mutation frequencies never exceeded 10%, with no 
significant differences among populations (151). 

Two functional polymorphisms of GSTO1 have been identified: SNP resulting in 
an A140D amino acid substitution and one that alters a splice junction and causes the 
deletion of E155 (Table 3). The most frequent variant, GSTO1*C (140Asp, 155Glu), 
showed no functional changes towards GSH conjugation (CDNB conjugation). Specific 
activities that are not associated with other human GSTs were also characterised using 
representative substrates. Glutathione-dependent thioltransferase activity, measured 
towards hydroxyethyl disulfide (HEDS, was shown to be decreased. Glutathione-
dependent reduction of dehydroascorbate, which is the rate-limiting reaction in the 
biotransformation of inorganic arsenic, was measured towards monomethylarsonic acid 
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(MMA(V)) and was similar to that of wild-type (152). Deletion of residue E155 produces 
an unstable protein (GSTO1*B) which, in contrast, showed an increased enzymatic 
activity towards both CDNB and HEDS (101). Additionally, E155 deletion variant is linked 
to K208 allele, while E208K substitution on its own had no functional effect (100, 151). 
GSTO1*B has been shown to be a risk factor for Alzheimer’s Disease (AD) (100). 
Underlying mechanisms could be explained by three hypothesis based on decreased 
GSTO1-1 activities: the antioxidant activity of GSTO1-1 may protect brain tissue against 
oxidative stress; regulation of interleukin-ͳȾ� ����������� ������ ������ ���������
inflammation in AD; involvement in the arsenic biotransformation pathway might cause 
modulation of arsenic neurotoxicity. 

Several more non-synonimous SNPs have been described for GSTO1 (150). 
Polymorphisms resulting in Cys32Tyr and Ala236Val amino acid substitutions were 
observed only in Caucasian- and Mexican-American subjects, respectively, whereas SNPs 
that resulted in Ala140Asp and Glu208Lys changes were present in all four investigated 
American populations. A significant decrease in enzyme expression was observed with 
Cys32Tyr substitution, where substituted cysteine is in the active-site and responsible for 
the reduction reactions catalyzed by GSTO1 (150, 153). For Val236 allozyme expression 
was significantly increased, while expressions of the other proteins, Asp140 and Lys208, 
were similar to those for the wild type. For the Thr217Asn substitution, no significant 
difference was observed in GSH conjugation activity (CDNB), thioltransferase activity 
(HED) was decreased to 40% while for MMA(V) reductase activity this variant exhibited 
similar kinetics in comparison to wild type (152).  

The GSTO2 locus also appears to be highly polymorphic, with high number of 
reported SNPs (150). Although most of the SNPs are located in the noncoding sequence, 
four missense variants have been characterized in the coding region. The Asn142Asp 
substitution (GSTO2*B) is the most common polymorphism found in all populations and 
seems not to be associated with functional changes (100, 153). Val41Ile and Leu158Ile 
changes were observed only in African- and Caucasian-American subjects, respectively, 
while a Cys130Tyr polymorphism change in amino acid sequence was present in African- 
and Han Chinese American population (150). Expression levels of Tyr130 and Ile158 
variants were strikingly reduced, while for the Ile41 and Asp142 allozymes levels were at 
approximately 80% of the wild type. 
 

3.7. GST-kappa class polymorphisms 

For the GSTK1 gene, located at the 7q34 chromosome, no variation has been 
observed in the coding sequence. However, two SNPs were identified in the 5’ non-coding 
region of GSTK1, located at 1308 bp and 1032 bp upstream from the transcription start 
site, that appear to alter GSTK1 transcription (103, 154). The 1308 bp SNP was found in a 
Chinese population and involves a -1038G>T transition, while the SNP at -1032 (-
1032G>C transition) was only found in an African population (103). The genetic variance 
in the 5’ flanking region affects the regulation of GSTK1 gene expression and was recently 
found to be associated with better insulin secretion and fat deposition (103, 154). These 
observations provide the first functional insight into genetic factors that regulate hGSTK1 
expression which might associate with these metabolic diseases. 
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3.8. Polymorphisms of MAPEG members 

Several of the genes of the MAPEG members have been reported to show genetic 
polymorphisms (83, 104, 105).  A number of SNPs in MGST1 have been reported in 
healthy Japanese volunteers (82).  It has been also shown that MGST1 polymorphisms 
may be risk factors for colorectal cancer risk among Han Chinese (155). 25 variants in 
MGST3 have been reported in Pima Indians based on identified SNPs (156). However, 
confirmation of true alleles these SNPs reflect, and their biological consequences, still 
requires evaluation in larger populations and in other ethnic groups as no evidence was 
found for association with type 2 diabetes mellitus in selected diabetic and non-diabetic 
Pima Indians. 

����������������������������������������������������Ͷ������ǡ�ΫͳͲʹ
Ȁ�ǡ�����
Ϋ444A/C, and these appear to influence lung function (157) and to be associated with 
sensitivity to aspirin (104). In the FLAP gene, a number of SNPs have been shown in the 
population of Iceland  (158). A four-SNP haplotype was found to be associated with 
increased risk for myocardial infarction and stroke, and this was attributed to increased 
production of LTB4 (158).  

 

4. GST polymorphisms and adverse drug reactions (ADRs) 

By catalyzing the conjugation of electrophilic moieties to GSH, GSTs play a crucial 
role in the detoxification of reactive drug metabolites and other xenobiotics by 
preventing their binding to cellular proteins and modulating the by-products of oxidative 
stress (5). In this regard, genetically determined deficiencies in GSTs and by inference 
variability in the detoxification of reactive drug metabolites could lead to differences in 
the individual vulnerability towards IDRs. Individuals with GST null genotypes might be 
at higher risk for toxicity due to a lower detoxification capacity and a higher exposure to 
the reactive metabolites. 

Genetic polymorphisms of GSTs has been associated with an increased 
susceptibility to several forms of cancers (145, 159, 160), alcoholic liver disease (161), 
and chronic hepatitis C virus infection (162). In this way, the prominent role of these 
enzymes as a detoxification system in humans is well supported. An increasing number of 
studies is being performed to determine whether GSTs play a role in determining 
susceptibility to ADRs. For several drugs, GSTM1 and T1 null alleles have been associated 
with enhanced risk of hepatotoxicity (10, 163, 164). Several independent studies in 
animal models supported a role of GSTs in the prevention of chemically-induced 
hepatotoxicity (15, 165). In vitro studies were also performed to evaluate the ability of 
polymorphic GSTs to detoxify electrophilic drug metabolites (16, 20, 21). Below, the 
current status on the studies that are underlying the role of GSTs as a general 
detoxification mechanism of reactive drug metabolites is reviewed. Studies that are 
considering functional polymorphisms of GSTs as potential genetic markers for the 
occurrence of IDRs are also comprised. 
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4.1. GST polymorphisms as a risk factor for ADRs in human association case-
control studies 

Drug metabolism and formation of electrophilic reactive intermediates in the 
liver are considered to play an important role into drug-induced liver injury (DILI) (4). 
Genetic variation studies in DILI are usually focused on genes involved in drug 
metabolism, as polymorphisms in these genes might increase the formation or decrease 
the detoxification rates of reactive drug metabolites (166). Lucena et al. (10) investigated 
the role of GSTM1 and GSTT1 null genotypes in susceptibility to DILI in 154 Caucasian 
(Spanish) patients and a control group of 250 sex and age-matched healthy individuals 
administering a wide range of drugs. Individuals with a double-null genotype of 
GSTM1/T1 had a significantly higher risk for DILI compared with positive GSTM1 and/or 
GSTT1 genotype individuals (Odds Ratio (OR) = 2.70; P=0.003) (Table 4). Similar 
relationships were observed for DILI caused by antibacterials (n=44; OR=3.52; P=0.002) 
and non-steroidal anti-inflammatory drugs (n=19; OR=5.61 P=0.001). Patients with 
amoxicillin-clavulanate hepatotoxicity had a 2.81-fold increased risk (P=0.037). The 
effect of the double-null GSTM1-T1 genotype was consistent in cases of diclofenac- and 
nimesulide-induced hepatotoxicity among patients receiving NSAIDs (Table 4). These 
results suggested that the GSTM1 and GSTT1 double-null genotype is possibly associated 
with the DILI susceptibility for several drugs. However, low number of cases, e.g. only 4 
cases of diclofenac- and 5 cases nimesulide-induced hepatotoxicity were included. 
Therefore, additional studies are required to further support the protective role of hGSTs 
against drug-induced hepatotoxicity. 
An endogenous antioxidant deficiency, leading to idiosyncratic liver damage may occur as 
a consequence of cytosolic oxidant stress generated from drug metabolism or from 
oxidant stress directly generated in mitochondria. However, after re-analyzing the data, 
the investigators found no significant association between null genotypes and DILI from 
agents (e.g. cardiovascular therapy, endocrine therapy) other than anti-bacterials and 
non-steroidal anti-inflammatory drugs (n= 92; OR= 1.97; P <0.005) (data not shown, 
personal communication by Lucena) (167). Based on these results and the wide variety of 
mechanisms involved in hepatotoxicity, it is clear that the GST-genotypes do not explain 
all DILI cases, and that multifactorial and multigenic processes are involved in the DILI, 
including those involved in cellular signaling, adaptation, regeneration/repair processes 
and immunological components. 

It was shown recently that the double-null GSTM1 and GSTT1 genotypes was 
associated with troglitazone-induced plasma transaminase increases (164) and might be 
an important risk factor for troglitazone-induced hepatotoxicity.  A genotype analysis by 
Watanabe et al. (164) showed that 40% of the patients with hepatotoxicity (n=25) have a 
double-null GSTM1 and GSTT1 genotype vs. 15% of the patient control group (n= 85) (OR 
= 3.7; 95% CI: 1.354-10.066, P = 0.008). Therefore a deficiency in GST-dependent 
detoxication of reactive troglitazone metabolites (Figure 5) seems to be a risk for 
hepatotoxicity. However, since 15% of the control group, which was treated with 
troglitazone without developing toxicity, also possessed the same genotype, Satoh et al. 
(168) hypothesized that other mechanisms, such as immune-mediated reactions, should 
also contribute to the hepatotoxicity. The involvement of immune reactions supported by 
high correlation of HLA gene polymorphism to the idiosyncratic drug-induced adverse 
reactions including hepatotoxicity was implied to be concerned in the toxic mechanism of 
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troglitazone by a study of Ikeda et al. (169). Moreover, the double positive GSTM1 and 
GSTT1 genotype was found in 3 % of cases suggesting that the double null genotype 
combination is not solely responsible for the troglitazone-induced hepatotoxicity and that 
polymorphisms of unknown genes could also be involved (169).  

 
Table 4. GSTM1 and GSTT1 genotype distribution in DILI patients and in healthy controls.* 

 
*Table adapted from (10). 

 

 GSTM1 Genotype,  
n (%) 

GSTT1 Genotype,  
n (%) Nr. of active genotypes, n (%) 

 Null Active Null Active Two One None 
Patients (154)  
Controls (250)  
Statistics 
OR (95% CI)  
 
P value  

86 (55.8) 
113 (45.2) 

68 (44.2) 
137 (54.8) 

45 (29.2) 
58 (23.2) 

109 (70.8) 
192 (76.8) 

51 (33.1) 
97 (38.8) 
 
0.78  
(0.51–1.19) 
0.544 

  75  (48.7) 
134 (53.6) 
 
0.82  
(1.02–0.63) 
0.730 

28 (18.2) 
19 (7.6) 
 
2.70  
(1.45–5.03) 
0.003 

 
1.53 (1.02-2.30) 

 
0.085 

 
1.37 (0.87-2.15) 

 
0.394 

Anti-infectives for systemic use  
Antibacterials (n = 44)  
Amoxicillin-clavulanate (n = 32)  
Macrolides (n = 4) 
Quinolones (n = 3)  
Other (n = 5) 
 
Drugs for treatment of tuberculosis (n = 5) 
NSAIDs  
Acetylsalicylic acid (n = 1)  
Diclofenac (n = 4) 
Ibuprofen (n = 5) 
Indomethacin (n = 1)  
Naproxen (n = 1)  
Nimesulide (n = 5)  
Ketorolac (n = 1)  
Rofecoxib (n = 1) 
 
Central nervous system  
Antiepileptics (n = 4)  
Anxiolytics (n = 6) 
Antidepressants (n = 6) 
Other (n = 8) 
 
Cardiovascular system  
ACE inhibitors + ARAII (n = 6) 
 
Serum lipid reducing agents (n = 10)  
Other (n = 1) 
Drugs for peptic ulcer (n = 8) 
Antineoplastic agents, immunosupressive agents, 
and endocrine therapy  
Asparaginase (n = 1)  
Azathioprine (n = 4)  
Leflunomide (n = 2)  
Flutamide (n = 5) 
Herbal plants (n = 4)  
Other (n = 21) 

 
 
12 
1 
1 
1 
 
1 
 
0 
0 
3 
1 
0 
1 
0 
1 
 
 
0 
1 
1 
3 
 
 
1 
 
2 
1 
3 
 
 
1 
3 
0 
4 
1 
8 

 
 
14 
3 
0 
2 
 
4 
 
0 
2 
2 
0 
1 
1 
1 
0 
 
 
3 
4 
4 
5 
 
 
3 
 
6 
0 
5 
 
 
0 
0 
2 
1 
3 
9 

 
 
6 
0 
2 
2 
 
0 
 
1 
2 
0 
0 
0 
3 
0 
0 
 
 
1 
1 
1 
0 
 
 
2 
 
2 
0 
0 
 
 
0 
1 
0 
0 
0 
4 
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Figure 5. Bioactivation (P450s) and detoxification (GSTs) pathways of troglitazone. Detoxification 
of troglitazone reactive metabolites (shown in brackets) through GST-mediated GSH conjugation is 
shown. Adapted from (21). 
 
 

GSTM1 null, GSTT1 null and the double-null GSTM1 and GSTT1 genotype 
combinations seem also to be associated with the susceptibility for tacrine-induced 
hepatotoxicity (170). Tacrine is bioactivated to a reactive quinonemethide (171), as 
shown in Figure 6, GSTs might catalyze GSH conjugation of this metabolite so that it can 
be safely excreted from the body. Green et al. (172) observed that there was no significant 
difference in the frequency of GSTM1 null genotype in patients with tacrine transaminitis 
(n= 33) when compared to patients (n= 37) treated with tacrine who did not develop 
hepatic toxicity (OR= 1.1; 95% CI: 0.4-3.1). These results indicated that the GSTM1 status 
alone cannot be used clinically to predict individual susceptibility to tacrine transaminitis. 
Becquemont and Simon first suggested that GSTT1 null genotype may be a risk factor for 
tacrine-induced hepatotoxicity, although for the combined GSTM1-T1 null genotype no 
increased individual susceptibility was found (170). Later, the same group reported that 
neither GSTM1 nor GSTT1 alone could predict individual susceptibility to tacrine 
hepatotoxicity (12). However, the combined GSTM1-T1 null genotype was observed in 18 
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patients (13%; 95% CI from 7% to 18%) of whom 13 had an elevated plasma alanine 
aminotransferase (ALT), i.e. at least three times the upper limit of normal during the 
study period. It was concluded that the association of the GSTM1-T1 null genotype was an 
independent risk factor, which increases the susceptibility to tacrine hepatotoxicity.  

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Bioactivation of tacrine and formation of reactive quinonemethides. Adapted from (171). 

 
 
Buchard et al. investigated whether GSTP1, GSTT1 and GSTM1 polymorphisms 

reflect risk factors in APAP-poisoned patients by investigating the relation with the 
prothrombin time (PT), which is a sensitive marker for survival (173). A borderline 
association between a high PT level and a genetic profile with a GSTT1 homozygous 
deletion compared to two functional copies of the gene (P=0.05) was found. However, no 
association between GST genotype and ALT was demonstrated. This indicated that the 
frequency of a homozygous GSTP1*C in the APAP-poisoned patients was significantly 
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lower (P= 0.047) than in the control group, indicating that the GSTP1*C genotype may 
reduce the risk of being APAP poisoning.  

For anti-tuberculosis drugs (ATD), many contradictory results are reported (14, 
175–177). The value of GSTM1 and GSTT1 null genotypes as genetic predictors of ATD-
induced hepatotoxicity is, therefore, still unclear. The first-line ATD isoniazid, rifampicin 
and pyrazinamide are commonly associated with hepatotoxicity (178), although the exact 
molecular mechanism and involvment of GSTs are not clear (179). Isoniazid metabolism 
and formation of reactive metabolites, hydrazine, is considered to damage cellular 
macromolecules and lead to toxicity in the liver, as presented in Figure 7 (180). Oxidative 
stress was also shown to be involved in occurrence of isoniazid-induced hepatotoxicity 
(181, 182). Reduced glutathione levels and reduced GST activity of glutathione-S 
transferase, catalase and superoxide dismutase after isoniazid or hydrazine 
administration to rats indicated this (181). Besides GSTs, the N-acetyltransferase slow 
acetylator, without the NAT2*4 allele (183, 184), and the cytochrome P450 2E1 
homozygous wild type (185, 186) have all been reported as risk factors ATD-induced 
hepatotoxicity. The mechanisms of rifampicin- and pyrazinamide- are unknown and there 
is no evidence yet for the presence of toxic metabolites (180). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Izoniazid metabolism. Adapted from (180). 
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In an Indian population, Roy et al. (Table 5), showed that a GSTM1 null genotype 
predisposes individuals to ATD-induced hepatotoxicity with active tuberculosis (177). 
This polymorphic genotype was present in 52% of the patients, compared to 24% in the 
control group. Although a different frequency was observed for the GSTT1 null genotype 
between cases (15%) and controls (3%), this was not statistically significant (P>0.05) 
due to the small sample size. 

Huang et al. (14) observed similar results in a case-control study in a Taiwanese 
population, in which the role of genetic polymorphisms of GSTM1 and GSTT1 with several 
hepatotoxic drugs including anti-tuberculosis, antibiotics and NSAIDs were studied. 
Subjects carrying the GSTM1 null genotype had an increased risk only for ATD–liver 
injury (Table 5). A GSTT1 null genotype did not show a different frequency between case 
and control patients. 

 
 
Table 5. GSTM1 and GSTT1 genotype association with ATD-induced hepatotoxicity  
Study Genotypes Controls Cases Odds ratio  

(95% CI) P value 
 n % n % 
Roy et al. GSTM1 null 8 24 17 52 2.13 (1.25-3.50) <0.05 
(177) GSTT1 null 1 3 5 15 not significant >0.05 
Huang et al. 
(14) 

GSTM1 null 29 46 42 67 2.23 (1.07-4.67) 0.033 
GSTT1 null 25 40 24 38 not significant - 

Sun et al.  GSTM1 null 37 39 59 61 2.62 (1.45-4.75) 0.001 
(187) GSTT1 null 26 27 29 30 1.18 (0.61-2.29) 0.62 
Leiro et al. 
(176) 
 

GSTM1 null 12 34 25 41.7 0.73 (0.31-1.73) 0.47 
GSTT1 null 17 49 12 26.7 2.60 (1.08-6.24) 0.03 
GSTM1/T1 null 7 20 6 10 2.25 (0.70-7.32) 0.17 

Chatterjee et al. GSTM1 null 49 49 25 49.0 1.00 (0.51-1.97) 1 
(175) GSTT1 null 3 3 3 5.9 2.02 (0.39-10.39) 0.41 
 GSTM1/T1null 11 11 3 5.9 0.51 (0.13-1.90 0.39 
        

 
These data from these two studies were incorporated in a meta-analysis by Sun 

et al. (187) to increase the strength of the postulated genetic associations between the 
NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms and susceptibility to ATD-induced 
toxicity. A GSTM1 null genotype showed to be related to an increased risk of ATD-induced 
toxicity in tuberculosis patients, while there was no significant evidence for the GSTT1 
null genotype. The statistically non-significant results regarding the homozygous GSTT1 
polymorphism and ATD-induced hepatotoxicity in the individual studies may be due to 
the small sample size and low frequency of patients. It was concluded that re-evaluation 
and confirmation are still needed in a large-scale population study, and attempts to 
evaluate gene-to-gene and gene-to environment interactions on risk of ATD-induced liver 
injury should be encouraged in the future. 

In contrary, a case-control study by Leiro et al. (176) reported that patients 
(n=35) with active tuberculosis carrying homozygous GSTT1 null genotype had a 
significant association and might be a risk factor for ATD-induced hepatotoxicity in 
Caucasians, while no significant association between the GSTM1 null genotype and ATD-
induced hepatotoxicity compared to controls (n=60) was observed (Table 5).   

Chatterjee et al. (175) performed a larger prospective case-control study in an 
Indian population into possible associations between GSTM1 and GSTT1 null genotypes 
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with ATD-induced hepatotoxicity. Results showed that both GSTM1 and GSTT1 null 
genotypes individually, nor double-null genotypes were associated with ATD-induced 
hepatotoxicity in the Indian population (Table 5). These results are not in agreement with 
two previous studies in Asian populations (Taiwanese and Indian) and this could be 
attributed to various factors. The criteria for case and controls were not identical. 
Although on the same ATD therapy, the therapeutic regimen, dosage and disease severity 
could have been confounding factors in the studies. Asian populations show a high ethnic 
diversity. The genotype frequencies of GSTM1 and GSTT1 null in the normal Indian 
population are in the ranges (20–79%) and (8–22%), respectively (188, 189) and 
variation in sample studies and small sample studies could influence conclusions. 

 

4.2. GST polymorphism as a risk factor for idiosyncratic toxicity in in vivo 
animal studies  

4.2.1. Glutathione S-transferase knockout and transgenic mice as a model 
for toxicity 

Genetically modified animals have been used to examine the role of individual 
drug-metabolizing enzymes in vivo in the toxicity by xenobiotics. Cyp1a1, Cyp1a2, Cyp1b1, 
and Cyp2e1 knockout (null) mice were produced and used to examine in vivo metabolism, 
toxicity, and carcinogenesis (190). For example, double-null CYP2E1 and CYP1A2 mice 
showed the protection against APAP toxicity probably due to greatly diminished 
production of the toxic electrophile, NAPQI (191). On the other hand, the CYP1A2-null 
mouse was used to investigate the in-vivo contribution of CYP1A2 to clozapine 
pharmacokinetics and pharmacodynamics showing that CYP1A2 is the major 
determinant of clozapine clearance, mainly via the demethylation and has a negligible 
contribution to the N-oxidation (192). Cyp3a knockout mice showed increased sensitivity 
to the anticancer drug docetaxel, detoxified by CYP3a metabolism (193). Transgenic 
Cyp3a–/– mice expressing human CYP3A4 were used in the same study to determine the 
relative importance of intestinal versus hepatic Cyp3a in first-pass metabolism. This 
showed that expression of CYP3A4 in the intestine dramatically decreased absorption of 
docetaxel into the bloodstream, while hepatic expression aided systemic docetaxel 
clearance.  

Similar to the CYP knock-in and knockout mice, also several lines of knockout 
mice for cytosolic GSTs have been established and their phenotypes have been 
characterized (Table 6). This enabled to examine the contribution of the GST isoforms in 
vivo (15).  

Gsta3 null mice were used for testing the relationship between sensitivity to 
aflatoxin (AFB1) carcinogenesis and the level of this GST subunit (194). P450 metabolism 
of AFB1 forms reactive epoxide intermediates, which bind to DNA and induce mutations. 
AFB1-8,9-epoxide is inactivated by GST-catalyzed conjugation to GSH (Figure 8). Gsta3 is 
critical for protecting mice from AFB1 toxicity based on the enhanced sensitivity in 
newborn mice and in adult mice after liver injury that is closely related to a lower level of 
GST activity in the liver (195). This is also supported by the mGSTA3 protection against 
8,9-epoxide when transfected into hamster cells (196). Ilic et al. showed that Gsta3 null 
mice are much more sensitive to acute cytotoxic and genotoxic effects of AFB1 confirming 
that Gsta3 has an important role in the wild type mice (194). 
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Table 6. Summary of GST knockout mice and studied phenotype changes 

 
 

The Gsta4 null mice were used to investigate the role of this isoenzyme in the 
metabolism of 4-hydroxynon-2-enal (4-HNE), a lipid peroxidation (LPO) product that is a 
strong electrophile forming covalent adducts with proteins and, to a lesser extent, nucleic 
acids and phospholipids. The detoxification of 4-HNE is mainly, although not entirely, via 
conjugation to GSH and catalyzed by GSTs. Although many GSTs are capable to catalyse 4-
HNE reaction to GSH, specialized isoforms, exemplified by the murine mGSTA4-4, are 
carring out this function (e.g. specialised members of the Alpha class in mammals, Sigma 
and Delta in invertebrates and Pi in nematodes). The Gsta4 null mouse showed a reduced 
ability to conjugate 4-HNE, and had an increased steady-state level of this aldehyde in 
tissues (197). As hepatotoxicity of carbon tetrachloride (CCl4) has been suggested to be 
due to the generation of free radicals leading to membrane LPO, Dwivedi et al. performed 
studies to compare the hepatotoxicity of CCl4 in GSTA4-4 null ȋΫȀΫȌ���������������ȋΪȀΪȌ�
mice. CCl4-mediated hepatotoxicity in mGSTA4-4 knockout mice was accelerated by the 
initiation of rapid LPO leading to a marked increase in intracellular 4-HNE concentration. 
Also, it was observed that Gsta4-4 plays a significant protective role only during the early 
stages of this toxic insult (198). 

Gstm1-null mice were used to investigate role of the GSTM1 gene in toxicological 
responses to 1,2-dichloro-4-nitrobenzene (DCNB). Gstm1-null mice showed markedly 
lower ability for GSH conjugation, only 6.1 to 21.0% of the wild-type control to DCNB and 
26.0 to 78.6% of the wild-type control to 1-chloro-2,4-dinitrobenzene (CDNB) in liver and 
kidney cytosols. A single oral administration of DCNB to Gstm1-null mice resulted in 
larger AUC (5.1–5.3 times, versus the wild-type control) and higher Cmax (2.1–2.2 times, 

GST deletion Phenotype changes Reference 
  
Gsta3 � AFB1-DNA adducts (194) 
Gsta4 � sensitivity to paraquat (197, 198) 
 � sensitivity to CCl4  
 � protein carboxylation, mitochondrial disfunction, and ROS  
Gstm1 � activity towards DCNB development of methaemoglobinaemia (199-201) 
 �deficit in social behaviours  
 � APAP hepatotoxicity  
Gsto1 Marginal change in arsenic sensitivity (202) 
Gstp1/p2 � skin tumorigenesis (174, 203-206) 
 � lung tumorigenesis  
 � colon tumorigenesis  
 � APAP hepatotoxicity; altered JNK regulation  
 � myeloproliferation  
 � spontaneous tumours  
 � cisplatin nephrotoxicity  
 � protein S-glutathionylation  
 � cyclophosphamide-induced bladder toxicity  
 � MPTP sensitivity of dopaminergic neurons  
Gsts1 � allergic reactivity (207) 
 � severity and duration of delayed-type hypersensitivity reaction  
Gstt1 � activity toward GSTT substrates (208) 
Gstz1 � accumulation of tyrosine metabolites; dietary phenylanine lethal (149, 209) 
 � oxidative stress; enlarged liver, kidneys and spenic atrophy; dietary 

phenylalanine lethal 
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versus the wild-type control) for the plasma concentration of DCNB, and smaller AUC 
(9.4–17.9%) and lower Cmax (9.7–15.6%) for the plasma concentration of M0, a GSH-
related metabolite of DCNB, methylsulfone-N-acetyl metabolite. These results are 
suggesting that Gstm1-null mice is a good GSTM1 deficiency model for ADME/Tox studies 
(199). Further investigations showed that Gstm1-null mice are more susceptible to DCNB 
toxicity, as reflected by increased methemoglobinemia, after single dose administration 
(201). However, in repeated-dose studies of DCNB, the higher predisposition to 
methemoglobinemia was attenuated by adaptive responses. 

 
 

Figure 8. Bioactivation of aflatoxin B1 by Cytochrome P450 to genotoxic 8,9-epoxide. Mouse 
GSTA3-3 catalyzes detoxification of AFB1-8,9-epoxide to GSH. Adapted from (210). 

 
 
On the other hand, Gstm1- and Gstp1/p2-null mice showed protection against 

APAP toxicity (174, 200). Bioactivation of APAP, as shown in Figure 9, by cytochrome 
P450s to its reactive metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which can 
deplete GSH and bind covalently to proteins, which can lead to life threatening 
hepatotoxicity after overdosing (211). Detoxification of NAPQI by conjugation with GSH 
proceeds via non-enzymatic and enzymatic reactions catalyzed by GSTs (17). 
Unexpectedly, both Gstp1/p2-null and Gstm1-null mice were resistant to APAP-induced 
hepatotoxicity. Similar amounts of NAPQI covalent binding to liver proteins and APAP-
GSH conjugate concentration in bile were observed in both wild-type and Gstp1/p2-null 
mice, which suggested that Gstp1/p2 does not contribute to the GSH-conjugation of APAP 
but plays a novel and important role in APAP-induced hepatotoxicity (174). Although the 
exact mechanism is not elucidated, an increased constitutive c-jun N-terminal kinase 
(JNK) activity seems to cause the resistance in Gstp1/p2-null mice (205). Hepatic protein 
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expression profiles of Gstp-null and wild-type mice, using a proteomic approach, showed 
that there was no enhanced expression of other GST isoforms in the null mice compared 
with the wild-type (212). Moreover, some other proteins, members of the thiol specific 
antioxidant family of proteins, were expressed at a higher level, which could reflect the 
role of GSTP in cell signaling. Marked decrease in total GSH was also observed in both, 
wild-type and Gstm1-null mice, after administration of APAP, which means that the 
exposure to NAPQI was similar. This suggested that GSTM1 is also not involved in the 
enzymatic conjugation of NAPQI by GSH in vivo, consistent with the report of Gstp1/p2-
null mice (174). Measuring phosphorylation of c-JNK, which mediates the signal of APAP-
induced hepatocyte necrosis, implied that Gstm1-null mice are resistant to APAP-induced 
hepatotoxicity due to suppressed phosphorylation of JNK as a main mechanism, although 
other mechanism, e.g. GSTM1 acting as an upstream factor that induces JNK activation 
through phosphorylation of glycogen synthase kinase-͵Ⱦ�ȋ
��-͵ȾȌ������������-activated 
protein kinase kinase 4 (MKK4), cannot be ruled out. Overall this indicated a novel 
function of GSTM1 as a signal-modulating factor in APAP-induced hepatotoxicity. It needs 
to be investigated if the resistance to APAP-induced hepatotoxicity in Gstm1-null mice 
and role of GSTM1 as a signal modulating factor and not only as a conjugation enzyme is 
inconsistent with the occurrence of DILI in humans with GSTM1-null genotype as not all 
patients with GSTM1-null genotype are predisposed to DILI (13, 177). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Metabolic pathways of acetaminophen in humans after administration of clinically used 
doses. Adapted from (218). 
UGTs - UDP-glucuronosyltransferases; STs – sulfotransferases. 
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To better understand the role(s) of GSTP in carcinogenesis and drug resistance, 
as mentioned Gstp1/p2 null mice was developed in which the entire GSTP gene locus was 
disrupted (212). Mice characterization using aspecific substrate CDNB for hepatic 
cytosolic activity showed little change between wild-type and null mice, while there was 
no activity measured in null mice towards ethacrynic acid, a marker substrate for GST pi 
(212). Several studies were performed to investigate the role of GSTP in tumorigenesis 
using Gstp1/p2 null mice (213 - 216). For example, increased numbers of lung adenoma 
were found in Gstp-null mice after exposure to tabaco related carcinogens 
(benzo[a]pyrene (BaP), 3-methylcholanthrene (3-MC)) and urethane (8.3-, 4.3-, and 8.7-
fold increase for BaP, 3-MC, and urethane, respectively) (215). It was also shown that 
GSTP protects against cyclophosphamide-induced bladder toxicity by detoxification of 
acrolein, the major urotoxic cyclophosphamide metabolite (206). Cyclophosphamide-
induced bladder ulcerations were more numerous and more severe in Gstp-null mice.  

It was also tested if Gstm1- and Gstt1-null mice can be used as a human relevant 
model by measuring the activities of hepatic GSTs and comparing the results with those 
of GSTM1- and GSTT1-null genotypes in humans (207, 217). Fujimoto et al. showed that 
GST activity toward 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), DCM, and 1,3-bis(2-
chloroethyl)-1-nitrosourea (BCNU) in liver and kidney cytosols is significantly lower in 
Gstt1-null mice than in wild-type controls (207). Similar, the null genotypes of 
GSTM1/Gstm1 and GSTT1/Gstt1 significantly decreased GST activities in both human and 
mice liver towards p-nitrobenzyl chloride (NBC) and dichloromethane (DCM), 
respectively (217). These studies showed that comparison of hepatic GST-activities 
between humans and mice using genotype information might be valuable in using Gst-
null mice as potentially relevant models for humans.  

 

4.3. Role of polymorphic GSTs in in vitro detoxification of reactive drug 
metabolites 

As summarized in section 4.1, several clinical studies showed statistically 
significant associations of GST polymorphisms with the occurrence of ADRs. However, so 
far, relativelly few in vitro studies have confirmed the role of GSTs in the inactivation of 
the electrophilic metabolites of the drugs (16–21).  

It was shown that several rat and human GSTs catalyze the reaction between 
GSH and synthetical NAPQI, the reactive metabolite of acetaminophen (17). Based on the 
product formed, both GSH-conjugation and the reduction of NAPQI back to APAP were 
catalyzed to a certain extent. Using stop-flow kinetics, the rate of APAP-SG for 
spontaneous and enzymatically catalyzed conjugation was measured. GST-isoenzymes 1-
1, 2-2, and 7-7 were particularly active towards APAP-SG formation, while GST 4-4 was 
not active (Table 7). The ratio APAP-SG/APAP increased in the presence of GSTs in order 
7-7 >> 3-3 > 4-4 > 2-2 > 1-1. The reaction products of NAPQI with GSH were also 
measured in the presence of cysteine to test the ability of GST-isoenzymes to protect 
other nucleofiles against modification. The results obtained for rat isoenzymes were 
matching stop-flow kinetics data. Human GSTs were also evaluated this way and 
���������������������������� ���������Ɏ�ε�Ɂ�ε�ρǡ�������
�� Ɂ�����������������������������
(Table 8).  
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Table 7: The effects of rat GSTs on the conjugation of reactive drug intermediates  

 
 
 

Anticonvulsant valproic acid (VPA) endured a serious drawback in use due to a 
rare but fatal liver toxicity (219). Formation of reactive (E)-2,4-diene VPA by 
�������������� Ⱦ-oxidation and/or microsomal P450-catalyzed dehydrogenation is 
suggested to be responsible for toxicity, Figure 10. As support for this mechanism, the N-
acetylcysteine conjugate of (E)-2,4-diene VPA was found in the urine of VPA-treated 
patients, with 3-4 times higher levels in patients that developed hepatotoxicity (216). The 
conjugated double bonds of (E)-2,4-diene VPA are activated through formation of the 
corresponding CoA thioester to react with GSH (220, 221). This is also proven by the need 
to use N-acetylcysteamine thioester of (E)-2,4-diene VPA, which is structural mimic of 
corresponding CoA thioester. GSH conjugates were not formed in reaction involving GST, 
GSH, and (E)-2,4-diene VPA (18). The role of GSTs in GSH conjugation of (E)-2,4-diene 
VPA was studied using rat subcellular fractions as the source for GSTs (Table 7). In 
presence of GSTs, besides increased amounts of conjugation products, an additional GSH 
conjugate of valproic acid, 5-GS-2-ene VPA was found in vivo in bile of rats treated with 
valproic acid but not in non-enzymatic GSH-conjugation to its reactive diene metabolite, 
where only 5-GS-3-ene VPA was detected (18). 

Although being an effective therapy for refractory epilepsy, the use of felbamate 
has been limited due to the reports of hepatotoxicity and aplastic anemia. Formation of 
the reactive metabolite, 2-phenylpropenal, is considered to play a role in observed 
toxicities. It has been shown that detoxification of 2-phenylpropenal by GSH occurs in 
vivo by identification of the corresponding mercapturates in the urine of both rats and 

 

Substrate  Conjugate  Ref. 
APAP   Vmax  

(µmolmg-1s-1) 
Km (µM) kcat (s-1) kcat/Km (s-1M-1) Product 

formation (µM) 
(17) 

 None APAP-SG - - - - 7.2± 0.2  
 1-1 APAP-SG 1.8 ± 0.5 27 ± 10 90 ± 30 3 x 106 7.0 ± 0.2  
 2-2 APAP-SG 0.74 ± 0.06 1.3 ± 0.4 37 ± 3 3 x 107 7.6 ± 0.2  
 3-3 APAP-SG 0.10 ± 0.01 7 ± 1 5.1 ± 0.4 8 x 105 8.4 ± 0.2  
 4-4 APAP-SG - - - - 7.8 ± 0.2  
 7-7 APAP-SG 3.3 ± 0.3 7 ± 1 165 ± 13 2 x 107 9.8 ± 0.2  
Valproic 
acid 

  Product formation (nmol/mg protein) (18) 

 Boiled 
cytosol 

5-GS-(E)-2-ene 
VPA-NACA 

Trace      

  5-GS-(E)-3-ene 
VPA-NACA 

8.8 ± 0.5      

 Cytosol, 
untreated 

5-GS-(E)-2-ene 
VPA-NACA 

82.1 ± 10.9      

  5-GS-(E)-3-ene 
VPA-NACA 

121.3 ± 10.6      

 Boiled 
mitoplast 

5-GS-(E)-2-ene 
VPA-NACA 

Trace      

  5-GS-(E)-3-ene 
VPA-NACA 

4.9 ± 0.3      

 Mitoplast, 
untreated 

5-GS-(E)-2-ene 
VPA-NACA 

1.0 ± 0.3      

  5-GS-(E)-3-ene 
VPA-NACA 

8.3 ± 0.6      

 Partially 
purified GST 

5-GS-(E)-2-ene 
VPA-NACA 

1358.6 ± 126.5      

  5-GS-(E)-3-ene 
VPA-NACA 

2746.8 ± 50.6      
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patients (222). Dieckhaus et al. investigated the role of GST in the detoxification of 2-
phenylpropenal using isolated hGSTs (16). The rate of GSH conjugation to 2-
phenylpropenal was increased in the presence of hGSTA1-1, hGSTM1-1, and hGSTP1-1 
isoforms. The half-life of 2-phenylpropenal and other kinetic data showed that 2-
phenylpropenal is a substrate for all three isoforms tested, being best catalyzed by 
hGSTM1-1, followed by hGSTP1-1, and then hGSTA1-1 (Table 8). In GSH-depleted 
patients, the role of GST may become increasingly important and any GST polymorphisms 
resulting in a loss of activity may further promote felbamate toxicity. It was aslo shown 
that 2-phenylpropenal inhibits reversibly GSTP1-1 and irreversibly GSTM1-1. The 
irreversible inhibition of GSTM1-1 may be important in understanding the toxicities 
associated with felbamate as GSTM1-1 represents a potential target for 2-phenylpropenal 
haptenization in vivo, which may in turn mediate the observed idiosyncratic reactions.     

 

Figure 10. Bioactivation of valproic acid to (E)-2,4-diene VPA and formation of its GSH conjugates 
(18). 
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Substrate Conjugate  No GST hGSTA1-1 hGSTM1-1 hGSTP1-1 hGSTT1-1 Ref. 
APAP APAP Product formation   3.4 ± 0.07 3.4 ± 0.2 2.2 ± 0.1 1.3 ± 0.03 - (17) 
 APAP-SG (ρ�) 3.5 ± 0.07 5.3 ± 0.3 5.5 ± 0.3 7.4 ± 0.2 -  
 APAP-Cys  3.7 ± 0.08 1.7 ± 0.08 1.9 ± 0.09 1.3 ± 0.03 -  
Felbemate  T1/2 (h) 37.8±6.8 26.4±2.4 11.3±1.2 17.7±0.4 - (16) 
  Km (ρM) - 217±107 153±57 55±10 -  
  kcat/Km (min-1ρM-1) - 0.042±0.005 0.275±0.035 0.164±0.005 -  
Zileuton  T1/2 (h) 6.4±0.4 2.6±0.1 0.53±0.02 0.32±0.04 - (19) 
  Km (ρM) - - 48.3±3.7 89.9±0.8 -  
  kcat/Km (min-1ρM-1) - - 0.46±0.16 0.36±0.12 -  

Troglitazone Met1 Relative peak area 
(%) 

100 170*/170* 140 100 165* (21) 

 Met2  100 200*/105 280* 95 170*  
 Met3  100 150*/115* 100 90* 140*  
 Met4  100 120/120 185* 100 135*  
 Met5  100 220*/175* 165* 115 180*  
Clozapine Total (%) 100 ± 0.8 152 ± 3.5  274 ± 2.5  368 ± 1.5 Not active (20) 
 CG-1 Relative amounts  95.3 ± 0.7  77.8 ± 2.0 79.8 ± 0.5  17.5 ± 0.1 Not active  
 CG-3 (%) 4.7 ± 0.1  2.9 ± 0.1  1.5 ± 0.1  1.1 ± 0.0  Not active  
 CG-4  nd  nd  6.5 ± 0.2 0.2 ± 0.1  Not active  
 CG-5  nd  0.8 ± 0.1  nd  31.6 ± 0.1  Not active  
 CG-6  nd  18.5 ± 0.1  12.2 ± 0.1  49.6 ± 0.1  Not active  
Diclofenac Total Absolute amounts  2.5±0.2 (104.3±0.4) 3.4±1.3 15.9±2.3 21.7±2.6 125.8±4.0 (225) 
 M2 (ρ�) 0.45±0.2 (11.27±1.0) 0.34±0.04 2.39±0.2 13.32±2.1 13.63±3.0  
 M5  1.12±0.2 (63.01±5.8) 1.91±0.3 11.96±1.2 1.39±0.6 74.48±2.0  
 M6  0.64±0.1 (7.41±0.2) 0.64±0.2 0.74±0.2 1.28±0.1 8.78±0.2  
 M7  n.d. (17.0±0.8) n.d. n.d. n.d. 22.1±1.1  

 4’-OH-QI 
conjugates  2.22±0.4 (98.8±2.0)              2.90±0.6 15.1±1.6 16.0±1.5 119.0±8.0  

 M1  0.13±0.04 (3.34±0.4) 0.30±0.07 0.24±0.02 1.80±0.8 3.28±0.1  
 M3  0.15±0.02 (1.56±0.1) 0.15±0.03 0.41±0.06 3.57±0.21 1.95±0.1  
 M8  n.d. (0.63±0.1) n.d. n.d. n.d. 1.02±0.2  

 5-OH-QI 
conjugates  0.28±0.04 (5.53±0.5) 0.45±0.05 0.65±0.08 5.37±0.9 6.25±0.5  

Table 8: The effects of human glutathione S-transferases on the conjugation of drug reactive 
intermediates  

 

 

 
 
 
 

 

 
Zileuton is restricted for the treatment of asthma due to the severe 

hepatotoxicity that occurs in some of the patients. The mechanisms of toxicity most likely 
involves a sequence of biotransformation reactions forming 2-acetylbenzothiophene (2-
ABT) that is further oxidized to reactive metabolite(s) (Figure 11). The mercapturate of 
2-acetylbenzothiophene was identified in urine of rats dosed with zileuton (223). Joshi et 
al. investigated detoxification reaction between 2-ABT-S-oxide and GSH (19). All tested 
cytosolic GSTs, GSTA1-1, GSTM1-1, and GSTP1-1 catalysed this reaction (Table 8). 
Although GSTA1-1 did catalyse the reaction between 2-ABT-S-oxide and GSH, kinetic data 
were not much different compared to non-enzymatic reaction. The contribution by 
GSTM1-1 and GSTP1-1 was found to be similar. 

Incubations of GSTs with RIs can not be applied to highly reactive, short-lived 
reactive drug metabolites, such as nitrenium ions, or metabolites that are not available 
commercially or poorly accessible by organic synthesis. In these cases, the involvement of 
human GSTs in the GSH conjugation of reactive drug metabolites is studied by using 
cytochrome P450s as bioactivation system.  
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Figure 11. Zileuton bioactivation pathway. Adapted from (19). 

 
 
As mentioned in section 4.1, GSTM1-1/GSTT1-1 double-null genotype correlate 

statistically significantly with abnormally high levels of alanine aminotransferase and 
aspartate aminotransferase in troglitazone treated diabetic patients (164). Subsequently, 
in vitro studies were performed to demonstrate the activity of GSTM1 and GSTT1 in 
inactivation of reactive troglitazone metabolites formed by HLM (21, 224). The covalent 
binding levels (an index of reactive metabolite formation) of troglitazone and 
rosiglitazone were measured in vitro, using human liver samples with a diversity of P450 
phenotypes and GST genotypes (224). Addition of hGSTA1 or hGSTM1 significantly 
decreased the microsomal covalent binding for both troglitazone and rosiglitazone. Only 
for troglitazone the formation of a GSH adduct (Met2, Figure 5) of the reactive 5-
glutathionyl-thiazolidine-2,4-dione was increased, which means higher exposure to the 
reactive metabolite in null genotypes. Contrary to expectations, covalent binding of 
troglitazone in GSTM1 or GSTT1 null hepatocytes was lower compared to wild-type 
hepatocytes. ATP-depletion was only observed in GSTM1 and GSTT1 null hepatocytes and 
independent of phase I enzyme activities as CYP3A and CYP2C8 activities, which affect 
reactive metabolite formation, were comparable among the hepatocytes. Measurement of 
exposure to the reactive metabolite by trapping as M2 or direct measurement of 
cytotoxicity in GSTM1- and GSTT1-genotyped hepatocytes could thus assist a better 
prediction of troglitazone-induced hepatotoxicity. Okada et al. (21) investigated the direct 
involvement of recombinant human GST-isoforms in the GSH conjugation of reactive 
metabolites of troglitazone (Table 8). It was reported that addition of hGSTA1, hGSTA2, 
hGSTM1 or hGSTP1 increased the formation of five GSH-conjugates produced from 
troglitazone reactive metabolites after incubation with human liver microsomes. The 
addition of GSTT1 did not show any catalytic effect. GST-isoforms contributed differently 
to the GSH-conjugation of the individual reactive metabolites of troglitazone, and GSTM1 
was the most important GST-isoform in the GSH-conjugation of a specific reactive 
metabolite produced from the cytotoxic, quinone-metabolite of troglitazone (Met4, Figure 
5). Both studies indicate that the higher formation of particular reactive metabolites, 
which are conjugated specifically by GSTM1 and/or GSTT1, could be more important as 
the risk factor for hepatotoxicity in the individuals lacking these enzymes.  

In Chapter 3 of this thesis, we investigated the ability of recombinant human 
GSTs to catalyze the GSH-conjugation of the reactive nitrenium ion of clozapine (CLZ), 
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formed in vitro by human and rat liver microsomes and drug-metabolizing P450 BM3 
mutants (20). Purified P450 102A1M11H, a BM3 mutant, was selected because it is able 
to metabolise CLZ to all relevant metabolites at a much higher rate than human and rat 
liver microsomes (226). In the presence of three of the GSTs, i.e. hGSTP1-1, hGSTM1-1, 
and hGSTA1-1, total GSH-conjugation was strongly increased in all bioactivation systems 
tested. Results obtained in BM3-incubations are summarised in Table 8. Polymorphic 
hGSTT1-1 did not show any activity. Interestingly, the addition of hGSTs resulted in major 
changes in the regioselectivity of GSH-conjugation with all used bioactivation systems. 
Also, two GSH-conjugates which were previously only observed in in vivo studies were 
completely dependent on the presence of hGSTs (Figure 12). These results strongly 
suggest that genetic polymorphisms of hGSTP1-1 and hGSTM1-1 might contribute to the 
interindividual differences in susceptibility to clozapine-induced adverse drug reaction. 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 12. Role of hGSTs in the regioselective GSH-conjugation of the reactive nitrenium ion of 
clozapine (CLZ) formed by CYP450s. Adapted from (20). 
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A similar approach was used to test the effect of hGSTs on the inactivation of 
diclofenac (DF) reactive metabolites (Chapter 4) (225). Diclofenac was bioactivated using 
human liver microsomes and P450 CYP102A1, a drug metabolizing bacterial mutant to 
four reactive intermediates: quinone imines from two major hydroxy-metabolites, 4 㶅-
hydroxydiclofenac (4’-OH-DF) and 5-hydroxydiclofenac (5-OH-DF), a reactive o-imine 
methide formed by the oxidative decarboxylation of diclofenac, and a novel minor 
reactive metabolite that leads to chlorine substitution by GSH. The role of GSTs in 
conjugation reactions between these reactive intermediates and GSH was investigated 
(Table 8). Three of the tested hGSTs, i.e. hGSTA1-1, hGSTM1-1 and hGSTP1-, showed 
activity in detoxification of the diclofenac reactive metabolites, with hGSTP1-1 showing 
the highest and hGSTA1-1 the lowest activity, Figure 13. hGSTT1-1 did not show 
significant activity. hGSTP1-1 showed the highest activity towards reactive metabolites of 
5-OH-DF, while hGSTM1-1 catalysed mainly the formation GSH-conjugates of 4 㶅-OH-DF. 
hGSTs also catalyzed GSH-conjugation of the o-imine methide formed by oxidative 
decarboxylation of diclofenac as well as the substitution of one its chlorine atoms by GSH. 
hGSTP1-1 showed the highest activity for the formation of these conjugates. In summary, 
hGSTP1-1 was highly active in inactivating all four reactive intermediates that can be 
formed by P450s, and while not higly abundant in liver, it might play an important role in 
the protection of the gastrointestinal tract against DF-induced toxicity. On the other hand, 
deficiency of hGSTM1-1 might be a risk factor for DF-induced hepatotoxicity, particularly 
in conditions when cellular GSH becomes depleted and inactivation of reactive DF-
metabolites will be more dependent on GST-catalyzed GSH-conjugation. 

 

 
Figure 13. Role of hGSTs in the GSH-conjugation of the reactive intermediates of diclofenac. 
Adapted from (225). 
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We have also investigated the ability of four allelic forms of hGSTP1-1, resulting 
from Ile105Val and Ala114Val substitutions, to catalyze the GSH-conjugation of reactive 
metabolites of acetaminophen, clozapine, and diclofenac formed by their bioactivation in 
incubations by human liver microsomes and drug metabolizing P450 BM3 mutants 
(Chapter 5). The results suggested that differences in GSH-conjugation due to hGSTP1-1 
polymorphism, which was not higher than 30% of total GSH conjugates, might not result 
in differential susceptibility to adverse drug reactions caused by these drugs. Single 
mutation at residue 105 affected more the ability of the enzyme to catalyse GSH-
conjugation comparing to single mutation at 114. Interestingly, hGSTP1-1 allelic forms 
showed altered regioselectivity towards formation of individual GSH conjugates of 
clozapine, implying changes in binding orientation of the substrates due to the mutations. 

From all tested substrates in described in vitro studies, clinical studies were 
performed only for APAP and DF by now. Case control studies with large number of 
patients, correlating GST genotypes with susceptibility to side effects by these drugs are 
necessary to prove the true importance of these enzymes as a risk factor.  

 

 
5. Conclusion 

A number of clinical studies has shown associations between GST-genotypes and 
clinical outcomes. The link between genetic variants of GSTs with various malignancies 
has been examined in over 500 studies (141, 160). Correlation between GST-genotypes 
and susceptibility for diseases was also demonstrated for multiple sclerosis (227), 
Parkinson's disease (228), rheumatoid arthritis (229), asthma (230) and a few other 
diseases. Lately, several epidemiological studies in humans have also pointed to possible 
associations between GST-polymorphisms, such as GSTM1 and GSTT1 deletions, with 
increased risk for the occurrence of idiosyncratic adverse drug reactions (10, 12, 163, 
164). However, a direct relationship between an increased risk of drug-induced toxicity 
and GST-polymorphisms has not been established yet. Multifactorial and multigenic 
processes seems to be involved in complex ADRs including those involved in cellular 
signaling, adaptation and regeneration/repair processes. A better understanding of the 
factors affecting GST-expression and activity, accompanied by more incisive genetic 
analysis, may reveal further connections between GST genotypes and individual 
susceptibility to drug toxicity. At the same time, efforts are invested in evaluating 
detoxification mechanisms of reactive drug metabolites by GSTs in in vitro studies as well 
as in in vivo animal studies (16, 19–21, 199, 202). A better understanding of mechanisms 
of detoxification and the role of GSTs, as well as larger case studies with enough statistical 
power in well-defined patient groups-cases and controls for drugs causing idiosyncratic 
toxicities will help to confirm these relationships. 
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Abstract 

Conjugation of reactive drug metabolites to GSH is considered an important 
detoxification mechanism that can be spontaneous and/or mediated by glutathione S-
transferases (GSTs). In case GSTs play an important role in GSH conjugation, genetically 
determined deficiencies in GSTs may be a risk factor for adverse drug reactions (ADRs) 
resulting from reactive drug metabolites. So far, the role of GSTs in the detoxification of 
reactive intermediates of clozapine, a drug causing idiosyncratic drug reactions (IDRs), 
has not been studied. In the present study, we studied the ability of four recombinant 
human GSTs (hGSTA1-1, hGSTM1-1, hGSTP1-1, and hGSTT1-1) to catalyse the GSH 
conjugation of reactive metabolites of clozapine, formed in vitro by human and rat liver 
microsomes and drug-metabolising P450 BM3 mutant, P450 102A1 M11H. Consistent 
with previous studies, in absence of GSTs three GSH conjugates were identified derived 
from the nitrenium ion of clozapine. In presence of three of the GSTs, hGSTP1-1, hGSTM1-
1, and hGSTA1-1, total GSH conjugation was strongly increased in all bioactivation 
systems tested. Highest activity was observed with hGSTP1-1, whereas hGSTM1-1 and 
hGSTA1-1 showed slightly lower activity. Polymorphic hGSTT1-1 did not show any 
activity in catalysing GSH conjugation of reactive clozapine metabolites. Interestingly, 
addition of hGSTs resulted in major changes in the regioselectivity of GSH conjugation of 
the reactive clozapine metabolite, possibly due to the different active site geometries of 
hGSTs. Two GSH conjugates found were completely dependent on the presence of hGSTs. 
Chlorine substitution of the clozapine nitrenium ion, which so far was only observed in in 
vivo studies, appeared to be the major pathway of hGSTP1-1-catalysed GSH conjugation, 
whereas hGSTA1-1 and hGSTM1-1 also showed significant activity. The second GSH 
conjugate, previously also only found in in vivo studies, was also formed by hGSTP1-1 and 
to a small extent by hGSTA1-1. These results demonstrate that human GSTs may play a 
significant role in the inactivation of reactive intermediates of clozapine. Therefore, 
further studies are required to investigate whether genetic polymorphisms of hGSTP1-1 
and hGSTM1-1 contribute to the interindividual differences in susceptibility to clozapine-
induced adverse drug reactions.  

 

1. Introduction 

Clozapine (CLZ) is an atypical antipsychotic drug, lacking extrapyramidal adverse 
effects and used in the treatment of refractory schizophrenia and with treatment-
resistant patients (1-3). In spite of its advantages, an important side effect of CLZ is 
agranulocytosis occurring in 1-2% of the patients (2, 3). In addition, hepatotoxicity has 
been reported as a side effect of CLZ with 37% of the patients showing enhanced serum 
transaminases and 0.06% of the patients getting liver failure (4). So far, several in vitro 
studies have been performed to identify the mechanism of toxicity. Although the exact 
mechanism is not known yet, formation of reactive metabolites such as nitrenium ions 
has been proposed as a possible explanation for these ADRs (5-8).  

The large number of in vivo and in vitro studies, performed in humans and animal 
models, collectively show that CLZ undergoes extensive oxidative metabolism, followed 
by phase 2 reactions (7-12), as summarized in Figure 1. In human, N-demethylation and 
N-oxidation represent the major metabolic pathways. In addition, hydroxylation 
reactions have been demonstrated at positions 6, 7, 8, and 9 of the chlorinated ring of CLZ 
(9-11). These hydroxy-metabolites are subject to subsequent glucuronidation and 
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sulfation reactions, Figure 1. In vitro studies have shown that several human cytochrome 
P450s are involved in oxidative metabolism of CLZ: P450 3A4 and P450 1A2 are involved 
in N-oxidation, whereas P450 2D6, P450 1A2, and P450 3A4 are involved in N-
demethylation of CLZ (13). 

Next to these stable metabolites, CLZ is known to be bioactivated to reactive 
intermediates by myeloperoxidases and cytochrome P450s (6-8). In vitro incubations of 
CLZ with hepatic microsomes (human and rat) in the presence of GSH or human 
neutrophils and myeloid cells have shown formation of several GSH conjugates, with GSH 
conjugated at the 6-, 7-, and 9-position (6, 8), Figure 1. These conjugates might result 
from a reactive nitrenium intermediate which can be conjugated to GSH at different 
positions of the quinoid ring (6). In case of peroxidase- and P450-mediated bioactivation 
of CLZ, GSH conjugation mainly occurs at the 6-position of the chlorinated aromatic ring 
and to a lower extent to the 9-position (8). An additional minor GSH conjugate formed in 
vitro by human and rat liver microsomes was tentatively assigned to the 7-position (8). 
Two other GSH adducts were found only in vivo in bile of rats and mice, and were 
considered to be GSH conjugates resulting from still unidentified reactive intermediates 
(8). One GSH conjugate results from substitution of the chlorine by GSH. Identification of 
8-methylthio-deschloroclozapine (8-SCH3-desCLZ, Figure 1) in urine of patients (9), most 
likely resulting from initial substitution of the 8-chlorine by GSH, suggest that this 
bioactivation pathway is also represented in human. Another GSH conjugate found only in 
vivo was proposed to result from conjugation to the non-chlorinated ring of CLZ (8).  

Although formation of multiple GSH conjugates of CLZ has been demonstrated in 
many in vitro studies, the role of GSTs in catalysing GSH conjugation of reactive CLZ 
metabolites has remained unexplored. GSTs are a family of enzymes whose main role is 
detoxifying electrophilic xenobiotics forming stable and more hydrophilic GSH conjugates 
for easier excretion from the body (16-19). An increasing number of GST genes are being 
recognized as polymorphic. In humans, marked interindividual differences exist in the 
expression of class Alpha, Mu, Pi and Theta GSTs (20). Genetic polymorphism of GSTs has 
been associated with increased susceptibility of several forms of cancers, alcoholic liver 
disease, and toxic hepatitis caused by chemicals and drugs (21-25). Several clinical 
studies have demonstrated an increased susceptibility to idiosyncratic drug-induced liver 
injury by the combined GSTM1-T1 double-null genotype (22, 23).  

So far, only few in vitro studies have been performed to investigate the role of 
GSTs in inactivation of electrophilic drug metabolites (26-29). Several rat and human 
GSTs catalyze the GSH conjugation reaction of synthetical N-acetylbenzoquinoneimine, 
the reactive metabolite of acetaminophen (26). In case of valproic acid, it was found that 
non-enzymatic GSH conjugation to its reactive diene metabolite results in a single GSH 
conjugate. Addition of GSTs, however, resulted in a second GSH conjugate, which was also 
found in vivo in rats treated with valproic acid (27). For felbamate (28) and zileuton (29), 
the rate of GSH conjugation to their electrophilic metabolites, 2-phenylpropenal and 2-
acetylbenzothiophene, respectively, was increased in presence of all three studied human 
GST isoforms (hGSTA1-1, hGSTM1-1 and hGSTP1-1). 
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In all of these studies, the GST-incubations were performed in presence of a 
synthetical electrophilic drug metabolite. However, this approach will not be applicable 
to highly reactive, short-lived reactive drug metabolites, or metabolites which are not or 
poorly accessible by organic synthesis. Therefore, in the present study, the role of human 
GSTs in the GSH conjugation of reactive CLZ metabolites was studied in incubations of 
CLZ with human and rat liver microsomes and a drug-metabolising bacterial P450 BM3 
mutant (P450 102A1 M11H) as bioactivation systems. Purified P450 102A1 M11H was 
selected because it is able to bioactivate CLZ to all relevant metabolites at much higher 
activity than human and rat liver microsomes (12). The results demonstrate that hGSTs 
play an important role in inactivation of reactive metabolites of CLZ and explain the 
formation of several GSH conjugates previously only found in in vivo studies. 

 
2. Materials and methods 
2.1. Enzymes and plasmids 

The bacterial P450 BM3 mutant, P450 102A1 M11H, was prepared and purified 
as described previously (12). Rat liver microsomes were prepared according to protocol 
already used in our laboratory (30). Human liver microsomes (Lot No. 0710619), pooled 
from 50 donors, were obtained from Xenotech (Lenexa, USA) and contained 20 mg/mL 
protein. E. Coli XL-1 Blue cells containing the expression plasmids for human GSTA1-1, 
GSTM1-1 (B allele) and GSTP1-1 (A allele) were a kind gift from Prof. Mannervik 
(Department of Biochemistry and Organic chemistry, Uppsala University, Sweden). The 
plasmid pet20b-hGSTT1 (33), coding for human GSTT1-1 with a C-terminal his-tag, was a 
kind gift from Prof. Hayes (Biomedical Research Centre, University of Dundee, Scotland, 
UK).  

All other chemicals and reagents were of analytical grade and obtained from 
standard suppliers.   

 
2.2. Expression and purification of human GSTA1-1, GSTM1-1 and GSTP1-1 

Overnight precultures of E. Coli XL-1 Blue cells containing the expression 
plasmids for human GSTs were prepared in 5 mL LB medium supplemented with 50 
ρ�Ȁ�������������� ���� ��������� ͵ι�� ����ͳͷ� ���Ǥ�	��� ������ ������ ������� ����������ǡ�
ͷͲͲ����ʹ�������������������������ͷͲ�ρ�Ȁ����������������� inoculated with 5 mL of an 
���������� �������� ���� ������ ����� ������ ��� ͵ι�� ������ ��ͲͲ� �������� ͲǤ͵Ǥ� �������
expression was then induced by addition of IPTG to a final concentration of 0.2 mM and 
����������������������������������͵ι������ͳͷͲ����Ǥ�����������ing procedures were all 
�������� ���� ��� Ͷ� ι�Ǥ� ������ ����� ���������� ��� ��������������� ��� ͶͲͲͲ� �� ���� ͳͷ� �������Ǥ�
Pellets were resuspended in 10 mM Tris-HCl pH 7.8 containing 1 mM DTT and 0.2 mg/mL 
lysozyme and allowed to incubate for 1 hour. Cells were subsequently disrupted by 
sonication (Branson sonifier 250, 4x 30 sec, at 60% full power) and cell debris removed 
by centrifugation in an eppendorf centrifuge (50 min at 20 000 g). Lysate was incubated 
with a 50% slurry of GSH sepharose 4B (GE healthcare) on a rollerbank for 90 minutes. 
Nonspecifically bound proteins were removed by washing of the beads with three 
changes of 10 mM Tris-HCl pH 7.8 containing 1 mM DTT. GSTs were eluted with 50 mM 
Tris-HCl pH 8 supplemented with 10 mM GSH and 1 mM DTT. The GSH was subsequently 
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removed by repeated washing with 10 mM Tris-HCl pH 7.8 containing 1 mM TCEP in a 
Vivaspin 20 filtration tube (10,000 MWCO PES, Sartorius) at 4000 g. The washing 
procedure was continued until the GSH concentration was below 500 nM. Enzymes were 
aliquoted and stored at -ʹͲι�����������Ǥ 

Protein concentrations were determined according to the method of Bradford 
(31) with reagent obtained from Bio-Rad. The speciific activity of the purified GSTs was 
assayed according to Habig et al. (32). The specific activities of the purified recombinant 
������
���������������������������������������������ǣ�ʹͲǤͶ�ρ���Ȁ���Ȁ���������������
GSTA1-ͳǡ� ͷͷǤ� ρ���Ȁ���Ȁ��� �������� ���� 
���ͳ-ͳǡ� ʹǤͻ� ρ���Ȁ���Ȁ��� �������� ����
GSTP1-1. 
 
2.3. Expression and purification of human GSTT1-1 

E. Coli BL21 DE3 competent cells were transformed with pet20b-hGSTT1 by 
heatshock. For expression, 400 ml LB containing 50 µg/mL ampicillin was inoculated 
�����͵����������������������������������������������������͵ι������ͳͷͲ����Ǥ����
�����
added to the culture in a final concentration of 0.5 mM when OD600 reached 0.7. After an 
����������������� ����������������� � �����ǡ� ����������� ���������� ȋͶͲͲͲ� �ǡ� ͳͷ����ǡ� Ͷι�Ȍ�
and pellets frozen overnight at -ʹͲι�Ǥ 

��������������������������������������Ͷι�Ǥ������pellets were reconstituted in NaP 
buffer (50 mM sodium phosphate buffer pH 8, 0.2 M NaCl) supplemented with 0.2 mg/mL 
lysozyme. Following an incubation period of 30 minutes, cells were disrupted using a 
French Press (1000 psi, 3 repeats). Cell debris was removed by ultracentrifugation (120 
000 g; 70 minutes) and the sup��������������������������ͲǤͶͷ�ρm filter (Whatman). 

The GST was purified using Ni-NTA agarose (Sigma). A 50% slurry of Ni-NTA in 
NaP buffer was added to the lysate and incubated on the rollerbank for 2 hours. The 
solution was then applied to a disposable column (Pierce, Rockford, USA). Nonspecifically 
bound proteins were removed by extensive washing with NaP buffer fortified with 2 mM 
imidazole. His-tagged hGST T1-1 was eluted with NaP buffer supplemented with 250 mM 
imidazole and then dialysed overnight against NaP buffer. For storage, this buffer was 
exchanged for 25 mM Tris-HCl pH 7.7 containing 1 mM TCEP and 20% glycerol by 
repeated washing in a Vivaspin 20 filtration tube (10,000 MWCO PES, Sartorius) at 4000 
g and by overnight dialysis. Purified enzyme was stored at -80 ιC until use.  The protein 
concentration of purified hGST T1-1 was determined according to the method of Bradford 
(31) with reagent obtained from Bio-Rad. The activity of hGSTT1-1, using 1,2-epoxy-3-(p-
nitrophenoxy)propane as a substrate, was determined essentially as described (34). The 
specific activity of his-tagged hGSTT1-1 using 1,2-epoxy-3-(p-nitrophenoxy)propane was 
ͳǤͺ͵�ρmol/min/mg protein. 

 
2.4. Bioactivation of clozapine by P450 102A1 M11H in presence of GSH and 
human recombinant glutathione S-transferases 

Incubations using purified P450 102A1 M11H as bioactivation system were 
performed at a final enzyme concentration of 250 nM, as described previously (12). All 
incubations were performed in 100 mM potassium phosphate buffer (pH 7.4) and at a 
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final volume of ʹͷͲ�ρL.  The substrate CLZ was incub���������������������������ͷͲͲ�ρM. 
The final DMSO concentration from the CLZ stock-solution was less than 1% in the 
incubations. Non-enzymatic GSH conjugation was investigated at different GSH 
concentrations (0.0125, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, and 5 mM). Reactions were 
������������� ����������������ͷͲͲ�ρ��������ȋ����l concentration) and performed for 30 
minutes at room temperature. In this time period, product formation was linear as 
described previously (12). Reactions wer�� ��������������������������ʹͷ�ρL 10% HClO4, 
and centrifuged for 15 minutes at 4000 rpm. Supernatants were analysed by HPLC and 
LC-MS, as described below. 

Enzymatic GSH conjugation by recombinant human GSTs was investigated by 
adding ͺ�ρ��ȋ�������������������Ȍ��
���ͳ-1, hGSTM1-1, hGSTP1-1, or hGSTT1-1 to the 
incubations.  Incubations with hGSTs were performed in ��������� ��� ͳͲͲ� ρ�� ��� 
��Ǥ�
hGSTT1-1 was also incubated in presence of 5 mM GSH because of its lower affinity to 
GSH (33). Finally, hGSTs, showing activity in catalysing GSH conjugation of CLZ 
metabolites, were also tested at 0.25, 0.5, 1, 2, 4ǡ� ���� ͺ� ρ�� ��� ������������ ���������� ���
product formation with protein concentration. 

 

2.5. Bioactivation of clozapine by human and rat liver microsomes in 
presence of GSH and human recombinant glutathione S-transferases. 

To confirm that the catalytic effects of hGSTs, as observed in P450 BM3-
incubations, were also applicable for incubations with mammalian liver fractions, CLZ 
was also incubated with human liver microsomes and and rat liver microsomes, each at a 
final microsomal protein concentration of ͳ� ��Ȁ��ǡ� ͳͲͲ� ρ�� 
��ǡ� ���� ��� �������� ���
������������ͺ�ρ���
��Ǥ���������������������������������������������ͷͲͲ�ρ��������ȋ������
concentration) and w���� ���������� ���� ͵Ͳ�������� ͵� ιC. Reactions were terminated by 
������������ʹͷ�ρL 10% HClO4, and centrifuged to remove precipitated proteins (4000 rpm, 
15 min). Supernatants were analysed by HPLC and LC-MS, as described below. 
 
2.6. Analytical methods  

The metabolites of CLZ were analysed by reversed-phase liquid chromatography. 
�� ����� ͷ� ρm C18 column (150 mm x 4.6 mm i.d.) from Phenomenex was used as 
����������������ǡ����������������ͶǤͲ����έ�͵ǤͲ�����Ǥ�Ǥ����������������ȋͷ�Ɋ�Ȍ��ͳͺ�������
column (Phenomenex, Torrance, CA, USA). The gradient used was constructed by mixing 
the following mobile phases: solvent A (1 % acetonitrile, 99 % water, and 0.2 % formic 
acid); solvent B (99 % acetonitrile, 1 % water, and 0.2 % formic acid). The first 5 min 
were isocratic at 0 % solvent B; from 5 to 30 min the concentration of solvent B linearly 
increases to 100 %; from 30 to 35 min linear decreased to 0 % B and maintained at 0 % 
for re-equilibration until 40 min. The flow rate was 0.5 mL/min. Samples were injected at 
�����������������������ͷͲ�ρL. 

Samples were analyzed using LC-MS/MS for identification and UV/VIS detector 
on 254 nm for quantification. A standard curve of CLZ was used to estimate the 
concentrations of the formed GSH conjugates, assuming that the extinction coefficients of 
the GSH adducts are equal to that of CLZ. The standard curve of CLZ was linear between 1 
����ͳͲͲ�ρ�Ǣ� ���� �������������������������������������Ȁ������������������ ������ ͲǤʹ�ρ��
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(data not shown). The Shimadzu Class VP 4.3 software package was used for 
determination of peak areas in the UV chromatograms.  

For identification of metabolites an Agilent 1200 Series Rapid resolution LC 
system was connected to a hybrid quadrupole-time-of-flight (Q-TOF) Agilent 6520 mass 
spectrometer (Agilent Technologies, Waldbronn, Germany), equipped with electrospray 
ionization (ESI) source and operating in the positive mode. The MS ion source parameters 
were set with a capillary voltage at 3500 V; nitrogen was used as the desolvation and 
������������������������������������������������͵ͷͲ�ι�ǡ������������ͺ��Ȁ������������������
40 psig. Nitrogen was used as a collision gas with collision energy voltage of 25V. MS 
spectra were acquired in full scan analysis over an m/z range of 50–1000 using a scan 
rate of 1.003 spectra/s. The MassHunter Workstation Software (version B.02.00) was 
used for system operation and data collection. Data analysis was performed using Agilent 
MassHunter Qualitative analysis software.   

 
3. Results 

3.1. Role of GSTs in inactivation of CLZ metabolites formed by P450 102A1 
M11H  

It was previously shown that purified P450 102A1 M11H metabolizes CLZ to all 
metabolites produced by human and rat liver microsomes but at significantly higher 
levels (12). As shown in Table 1, when incubated in presence of 5 mM GSH, but in absence 
of hGSTs, approximately 30% of CLZ concentration was converted to nine metabolites of 
which four were GSH dependent, CG-1, CG-2, CG-3, and CG-4, consistent with the previous 
study (12). The characteristics and identity of the different metabolites found are listed in 
Table 2.  

��������������������ͳͲͲ�ρ��
���������������������������abolites C1 to C-5 did 
not change significantly indicating that the activity of P450 102A1 M11H is not influenced 
���
��Ǥ���� ��������ǡ� ��� ͳͲͲ�ρ��
��� �������������� ������ �������� ��� ������������������
GSH conjugates were found; the concentration of GSH conjugate CG-4 was too low to 
quantify. However, the total concentration of GSH conjugates was only 4.8-fold lower 
�������������������ͷ����
��ǡ�������������������������ͳͲͲ�ρ��
�������������������������
fraction of the reactive intermediates is trapped by GSH. To test this hypothesis, the 
dependence of the non-enzymatic GSH conjugation on GSH concentration was 
investigated using concentrations ranging from 0 and 5 mM. As shown in Figure 2, 
�������� Ͳ� ���� ͳͲͲ� ρ�� ��� 
��ǡ� ���� �������������� ��� 
��-conjugates increased almost 
linear with increasing concentration of GSH. At GSH concentrations higher than 1 mM, 
only relatively small increases in concentration of GSH conjugates was observed 
suggesting that at the high GSH concentrations the reactive intermediates are trapped 
almost quantitatively.  Assuming that the observed saturation curve in Figure 2 is 
described by the equation y = a*(1-e-b*x), the maximal yield of GSH-conjugates would be 
͵ͺ� ρ�� ��� ����������� 
��� �������������Ǥ� � 	���� ����� ��� ��� ���������� ����� ��� ͳͲͲ� ρ�� 
�� 
approximately 18 % of the reactive intermediates formed is trapped non-enzymatically 
by GSH, whereas at 5 mM GSH approximately 85% is trapped by GSH. 

To investigate whether hGSTs are able to catalyse formation of GSH conjugates, 
incubations were performed ��� ��������� ��� ͺ� ρ�� �
��� ���� ͳͲͲ� ρ�� 
��ǡ� ��� �����
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previously (29). At this low GSH concentration, hGST activity will still be close to maximal, 
whereas the competing non-enzymatic reaction will be minimized.  

 
Table 1.  Effect of glutathione concentration on concentration of metabolites formed in incubations 
of clozapine with bacterial P450 102A1 M11H mutant in absence of human GSTs. 
                                                        
                                            Concentration of ����������������������ȋρ�Ȍ a 
        
                            ͳͲͲ�ρ��
��  5 mM GSH 
        
GSH-conjugates 
CG-1   5.9 ± 0.2  26.3 ± 0.5 
CG-2   0.3 ± 0.2  1.4 ± 0.1 
CG-3   0.5 ± 0.2  3.0 ± 0.2 
CG-4   n.d. b  1.2 ± 0.1 
CG-5   n.d.  n.d. 
CG-6   n.d.  n.d. 
CG-7   n.d.  n.d. 
CG-8   n.d.  n.d. 
---------------------------------------------------------------------------------- 
Other metabolites   
C-1     18.8 ± 0.3  19.5 ± 0.9 
C-2     84.5 ± 0.5  88.2 ± 1.6 
C-3   1.6 ± 0.2  2.1 ± 0.1 
C-4   2.7 ± 0.1  2.9 ± 0.1 
C-5   3.3 ± 0.2  2.8 ± 0.2 
        
Total   118 ± 1.9  147 ± 3.8 
        
a Concentration of metabolites formed after 30 minutes of incubations of 200 nM P450 102A1 
�ͳͳ�������ͷͲͲ�ρ���������������������������ͳͲͲ�ρ�����ͷ����
��Ǥ� 
Quantification was based on peak areas in the LC-UV-chromatograms using a standard curve of 
clozapine, assuming that the extinction coefficients of the substrate and the metabolites at 254 nm 
are identical.  
b �Ǥ�Ǥǡ�����������������ȋ������������������ǣ�ͲǤʹ�ρ�ȌǤ 
 
 
 
3.1.1. Effect of human GST P1-1 

As shown in F������͵�ǡ�������������ͺ�ρ���
��P1-1 to the incubation of CLZ with 
�ͶͷͲ���͵�����ͳͲͲ�ρ��
�����������������������������������������������
SH conjugates. 
Addition of hGSTP1-1 resulted in the formation of significant amounts of four additional 
GSH conjugates, CG-5, CG-6, CG-7, and CG-8.  Amounts of CG-1, CG-2, and CG-3 did not 
change significantly. By assuming that extinction coefficients of all GSH conjugates at 254 
nm are equivalent, the total amount of GSH conjugates was increased 3.7-fold by hGSTP1-
1 when compared to corresponding incubations in absence of hGST, Table 3.  CG-6 and 
CG-5 were the major GSH conjugates in presence of hGSTP1-1, representing 49.6 and 
31.6% of the total amount of GSH conjugates, respectively, Table 3. 
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Figure 2. Dependence of non-enzymatic GSH conjugation of reactive clozapine metabolites formed 
����ͶͷͲ�ͳͲʹ�ͳ��ͳͳ����
����������������Ǥ�������ǣ�������������Ͳ����ͳͲͲ�ρ��
��Ǥ 
 

 
LC-MS analysis of CG-6 showed a protonated molecular ion [M + H]+ of m/z 

598.3 ([CLZ-SG – Cl + H]+). The MS/MS of this ion displayed product ions of m/z 580.3 
([CLZ-SG – Cl – H2O + H]+); m/z 541.2 ([CLZ-SG – Cl – C3H7N (piperazine ring) + H]+); 
m/z 469.2 ([CLZ-SG – Cl – glutamic acid + H]+); m/z 412.2 ([CLZ-SG – Cl – glutamic acid – 
C3H7N(piperazine ring) + H]+); m/z 325.2 ([CLZ-SG – glutamic acid – glycine – 
C3H7NO(GSH-moiety) + H]+) and 268.1 ([CLZ-SG – glutamic acid – glycine – C3H7NO(GSH-
moiety) – C3H7ȋ����������� ����Ȍ� Ϊ� �ȐΪȌǤ� ����� ��� ���� ɀ-glutamyl moiety ([M+1-129] +) 
giving m/z 469.2 and scission of the S-CH2 linkage with hydrogen transfer to the CLZ 
thiyl moiety 9 [M+1-273]+ giving m/z 325.2 are typical characteristics for this GSH 
adduct. Based on the identical m/z value and fragmentation pattern, this product is 
identified as C-8 glutathionyl deschloroclozapine, which previously was only found in bile 
of rat and mice administered CLZ (12).  This product was not found in incubations in 
absence of P450 BM3 or NADPH, and therefore should represent a GSH conjugate of an 
oxidative CLZ metabolite. Formation of C-8 glutathionyl deschloroclozapine can be 
rationalised by enzymatic substitution of the chlorine-atom of the CLZ nitrenium ion by 
GSH, followed by reduction by NADPH and/or GSH to restore aromaticity. 

LC-MS analysis of the second major GSH conjugate, CG-5, showed a protonated 
molecular ion [M + H]+ of m/z 632.2 [CLZ-SG + H]+ and therefore apparently corresponds 
to a regioisomer of CG-1 and CG-3, which both result from addition of GSH tot the CLZ 
nitrenium ion. CG-5 showed the following fragmentation pattern: m/z 614.2 ([CLZ-SG – 
H2O + H]+); m/z 575.2 ([CLZ-SG – C3H7N(piperazine ring) + H]+); m/z 503.2 ([CLZ-SG – 
glutamic acid +H]+); m/z 446.1 ([CLZ-SG – glutamic acid – C3H7N(piperazine ring) + H]+); 
m/z 359.1 ([CLZ-SG – glutamic acid – glycine – C3H7NO(GSH-moiety) + H]+) and 302.1 
([CLZ-SG – glutamic acid – glycine – C3H7NO(GSH-moiety) – C3H7N (piperazine ring) + 
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H]+).  Because CG-1 and CG-3 were previously identified by 1H-NMR as GSH conjugates at 
the C-6 and C-9 positions of the nitrenium ion, CG-5 might correspond to an adduct to the 
C-7 position, the only remaining position on the chlorinated ring, or a GSH conjugate to 
the non-chlorinated ring, as suggested previously (8).  
 
 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. HPLC-UV chromatograms of incubations of clozapine using bacterial P450 102A1 M11H 
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The two minor GSTP1-1 dependent adducts CG-7 (tret 15.4 minutes) and CG-8 
(tret 15.4 minutes), Fig. 3A, showed protonated molecular ions of m/z ratio 903.3 and 
584.2, respectively, and did not show a chlorine isotope pattern. CG-7 most likely 
represents a secondary metabolite of CG-6, resulting from addition of an additional 
glutathionyl group. CG-8 most likely results from chlorine substitution of the 
corresponding nitrenium ion of desmethylclozapine (C-2), the major metabolite of CLZ, 
Table 1.  

 

3.1.2. Effect of human GST A1-1 

	������ ͵�� ������ ���� ������� ��� ͺ� ρ�� �
���ͳ-1 on GSH conjugation of reactive 
metabolites of CLZ.  Similar to GSTP1-1, a significant amount of CG-6 was produced 
although to a 5-fold lower extent. Only minor amounts of CG-5 were produced by 
hGSTA1-1. In contrast to hGSTP1-ͳǡ� ��������� ��� ͺ� ρ�� �
��A1-1 resulted in a 25% 
increase of CG-1, the major GSH conjugate in absence of hGST. By assuming equivalent 
extinction coefficients for each GSH conjugate, the total amount of GSH conjugates was 
increased by 52% by the addition of hGSTA1-1. 

 

3.1.3. Effect of human GST M1-1 

��� ������ ��� 	������ ͵�ǡ� ��������� ��� ͺ� ρ�� �
���ͳ-1 to P450 102A1 M11H 
incubations resulted in a more than 2-fold increase in the amount of CG-1. Furthermore, 
hGST M1-1 catalysed the formation of CG-6 at amounts comparable to that formed by GST 
A1-1. Interestingly, GST M1-1 also produced significant amounts of GSH adduct CG-4, 
which was also found as a minor metabolite in incubations in presence of 5 mM GSH, 
Table 1, and in trace amounts in incubations with hGST P1-1, Table 3.  LC-MS-analysis of 
this GSH conjugate also showed a protonated molecular ion [M + H]+ of m/z 632.2 [CLZ-
SG + H]+, and a fragmentation pattern highly similar to that of the other GSH conjugates 
with the same molecular weight: m/z 614.2 ([CLZ-SG – H2O + H]+); m/z 575.2 ([CLZ-SG – 
C3H7N(piperazine ring) + H]+); m/z 503.2 ([CLZ-SG – glutamic acid +H]+); m/z 446.1 
([CLZ-SG – glutamic acid – C3H7N(piperazine ring) + H]+); m/z 359.1 ([CLZ-SG – glutamic 
acid – glycine – C3H7NO(GSH-moiety) + H]+) and 302.1 ([CLZ-SG – glutamic acid – glycine 
– C3H7NO(GSH-moiety) – C3H7N (piperazine ring) + H]+). CG-4 might also correspond to 
an adduct to the C-7 position, or a GSH conjugate to the non-chlorinated ring, as 
suggested previously (8).  

Because of its ability to catalyse formation of CG-1, CG-4 and CG-6, the total 
amount of GSH conjugate was increased 2.7-fold, assuming extinction coefficients of GSH 
conjugates are comparable. 

 

3.1.4. Effect of human GST T1-1 

������������ͺ�ρ��
����ͳ-1 did not show any effect on the formation of CLZ GSH 
����������ǡ���������������������ͳͲͲ�ρ���r 5 mM GSH (data not shown). The role of this 
enzyme was therefore not further evaluated.  
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3.2. The effects of hGST concentration on GSH conjugation of CLZ metabolites  

Three of the GSH conjugates, CG-4, CG-5, and CG-6, were only found in 
incubations of CLZ with P450 102A1 M11H when hGSTs were added to the incubation, 
Table 3. To study the effect of protein concentration of hGST on the formation of these 
GSH conjugates, incubations were performed at hGST concentrations ranging from 0.25 
��� ͺ� ρ�Ǥ� 	������ Ͷ�� shows the effects of different concentrations of hGSTs on the 
formation of GSH conjugate CG-6. For hGSTP1-1, hGSTA1-1, and hGSTM1-1 formation of 
CG-6 was linear with the concentration of hGST. GSTP1-1 showed the highest activity, 
being approximately 5 times more active than the other two isoenzymes. GSTM1-1 and 
GSTA1-1 showed similar activity. 

Formation of the GSH adduct CG-5 was only catalyzed by GSTP1-1 and, at 40-fold 
lower activity, by GSTA1-1, Table 3. When varying the concentration of hGSTP1-1, the 
amount of CG-5 was proportional to the hGSTP1-1 concentration, Figure 4B.  In case of 
hGSTA1-1, CG-5 formation was proportional to GST concentration at concentrations 
������������ʹ�ρ�Ǥ������������ ��� lower activity compared to GSTP1-1, at concentrations 
lowe�������ʹ�ρM GSTA1-1, this GSH conjugate was below the level of detection.  

Formation of GSH conjugate CG-4 which was only produced to a significant 
extent by GSTM1-1 also increased with GSTM1-1 concentration, although not linearly, 
Figure 4C. At the lowest GST concentration, the amount of CG-4 was below the level of 
detection. 

 

3.3. Role of hGSTs in inactivation of CLZ metabolites formed by human and rat 
liver microsomes 

Table 3 shows the effect of hGSTs on the GSH conjugation of reactive CLZ 
metabolites formed by human and rat liver microsomes.  In both human and rat liver 
microsomal incubations, hGST P1-1 was the most active enzyme in catalysing GSH 
conjugation, increasing the total amount of GSH conjugates 3.7-fold and 2.4-fold, 
respectively, when compared to the corresponding incubations in absence of hGST.  By 
adding hGST P1-1, CG-6 and CG-5 again appeared to be the major GSH conjugates, 
consistent with the observations with P450 102A1 M11H incubations. Addition of hGST 
A1-1 or hGST M1-1 to the microsomal incubations increased the total GSH conjugation to 
approximately the same extent, from 34 to 53%, with slightly higher activity for GST M1-
1.  In case of human liver microsomes incubations, significant amount of CG-4 was 
already found in absence of recombinant hGSTs, consistent with previous studies (8). 
This GSH conjugate, which was originally assigned to C-7 of the chlorobenenoid ring, was 
previously proposed to be a product of microsomal glutathione S-transferase (8). 

 

4. Discussion 

It is generally accepted that the ADRs caused by CLZ are the result of the 
bioactivation to reactive metabolites in the different target tissues. The mild 
hepatotoxicity observed in 37% of patients treated with CLZ might be the result from 
local bioactivation by hepatic P450s, whereas the idiosyncratic agranulocytosis might 
result from myeloperoxidases-mediated bioactivation in neutrophils and their bone 
marrow precursors. Based on the observation that in presence of GSH the same GSH 
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conjugates are produced in both P450 and peroxidase-mediated reactions, a common 
reactive intermediate is implicated in both types of adverse drug reactions (8).  As 
reactive intermediate, a nitrenium ion was proposed, formed by a two-electron oxidation 
pathway. In microsomal incubations, the nitrenium ion can be trapped chemically by GSH 
leading to several GSH conjugates. The principle GSH conjugate results from GSH addition 
to the C-6-position while a minor conjugate was assigned to GSH addition to the C-9 
position. Furthermore, a third conjugate with identical mass was tentatively assigned to a 
conjugate to the C-7 position (8). Furthermore, two GSH conjugates were only identified 
in in vivo in bile of treated rats and mice, and were considered to involve an unknown 
reactive intermediate. 

Although GSH conjugation of reactive CLZ metabolites has been observed in 
many in vitro studies, the role of the cytosolic GSTs has not yet been investigated. 
Because several cytosolic GSTs are known to be polymorphic, genetically determined 
deficiency in GSTs might be considered as a risk factor for drug-induced idiosyncratic 
drug reactions if these enzymes play an important role in GSH conjugation of reactive 
intermediates. The results of the present investigation, as summarized in Table 3, clearly 
show for the first time that hGSTs have a significant activity in catalysing GSH conjugation 
of reactive CLZ metabolites formed by cytochrome P450. The most active human GST in 
all experiments appeared to be hGSTP1-ͳǡ������ǡ����ͺ�ρ�ǡ���������������͵Ǥ-fold increase 
in the total amount of GSH conjugates formed in incubations with P450 BM3 and human 
liver microsomes. This increase is only slightly lower than the 4.8-fold increase observed 
by raising the GSH concentration 50-����ǡ� �����ͳͲͲ�ρ�����ͷ���ǡ�������ͳǤ� �������� hGST 
P1-1, hGSTM1-1, and hGSTA1-1 were able to catalyse GSH conjugation, Table 3.  Although 
their activity appeared to be lower than that of hGST P1-1, when measured at equal 
concentration, the role of GSTA1-1 and GSTM1-1 in vivo might be more important due to 
their 13- and 8-fold higher protein concentration in the liver, Table 4 (36, 37) and the fact 
that the enzymatic GSH-conjugation is proportional to the concentration of GST, Figure 4. 

 
 

Table 4. Estimated concentration of individual GST-isoenzymes in human liver (adapted from Van 
Ommen et al., (36) 

 Hepatic GST concentration 

 ȋρ�Ȁ��������������������Ȍ (mg/gr liver)a ρ�b % 

hGST A1-1 20.3 1810 ~ 72 45 

hGST A2-2 10.7 952 ~ 38 24 

hGST M1-1 12.1c 1080 ~ 43 27 

hGST P1-1 1.5 133 ~ 5.3 3.3 

hGST T1-1 0.3 26.7 ~ 1.1 0.7 

����������������������������������������������������������������ͺͻ�ρ�������������������Ȁ�����������
(37). 
b Estimated using a hGST molecular weight of 25 kD and assuming 1 gr liver/mL. 
c Sum of GST M1a-1a and GST M1b-1b which are indistinguishable in their catalytic properties (38).   
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Figure 4. Effect of different GST-concentrations on formation of GSH-adducts form in incubation of 
clozapine with bacterial P450 M11.: (A) Influence of concentration of hGSTP1-1, A1-1 and M1-1 on 
formation of CG-6; (B) Influence of concentration of hGST P1-1 (scale: left axis) and A1-1 (scale: 
right axis) on formation of CG-5; (C) Influence of concentration hGST M1-1-concentration on 
formation of CG-4. 
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Two of the active GSTs, hGSTP1-1 and hGSTM1-1, are known to be genetically 
polymorphic. Individuals lacking the gene of hGSTM1-1 therefore theoretically might 
have an increased risk for CLZ-induced hepatotoxicity. For hGSTP1-1, four alleles have 
been described resulting from the polymorphic substitutions I105V and A113V (40, 41).  
However, it remains to be established whether these polymorphic substitutions affect the 
ability of hGSTP1-1 to inactivate the reactive nitrenium ion of CLZ. Because hGSTT1-1 did 
not show any activity in catalysing GSH conjugation, deficiency of this GST is not likely to 
be a risk factor for CLZ. The clinical relevance of these GST polymorphisms to CLZ-
induced ADRs, however, still remains to be confirmed in case-control studies. 

Next to an increase in the total amount of GSH conjugation of reactive CLZ 
metabolites, addition of the hGSTs also resulted in striking changes in regioselectivity of 
GSH conjugation, Table 3. Consistent with previous studies, in absence of GSTs in all 
bioactivation systems used, the major GSH conjugate formed was the adduct at the C-6-
position of CLZ (CG-1), whereas the adduct at the C-9 position (CG-3) was a minor adduct. 
In presence of hGSTP1-1, however, the major GSH conjugate observed appeared to be C-8 
glutathionyl deschloroclozapine (CG-6), representing approximately 50-60% of the total 
of GSH conjugates. The formation of this GSH conjugate can be rationalised by a 
substitution reaction of the chlorine of the nitrenium ion of CLZ, followed by a reduction 
reaction, presumably by GSH and/or NADPH, Figure 5. In absence of NADPH or P450-
enzyme fraction this GSH conjugate was not found, excluding a direct chlorine-
substitution reaction on CLZ itself. Next to hGSTP1-1, also hGSTA1-1 and hGSTM1-1 were 
able to catalyse this substitution reaction, at apparently 5-fold lower activity, Figure 3. 
From the fact that CG-6 was observed only in bile of clozapine-treated animals, but not in 
in vitro microsomal incubations, it was previously concluded that this GSH conjugate was 
derived from a distinct pathway of bioactivation in vivo (8). The present study, however, 
clearly demonstrates that CG-6 most likely originates enzymatic GSH conjugation of the 
reactive CLZ nitrenium ion. Although the present in vitro incubations were performed at 
low GSH concentration to minimize non-enzymatic GSH conjugation, the fact that CG-6 
and CG-4 were found in bile of rats and mice in amounts comparable to that of CG-1 (8), 
show that GSTs contribute significantly to GSH conjugation in vivo. Furthermore, C-8 
methylthio deschloroclozapine and C-7 methylthio clozapine are the only thioethers so 
far identified in urine of man treated with CLZ (9, 10), and are most likely resulting from 
catabolism of CG-6 and CG-4, respectively. The fact that formation of both CG-6 and CG-4 
are completely dependent on presence of GSTs, suggest that GSTs play an important role 
in GSH conjugation of reactive CLZ metabolites in man (9). However, the excretion of 
products derived from GSH conjugates in urine of CLZ-treated patients still remains to be 
further characterized. The highly sensitive LC/MS/MS-methodology recently developed 
for analysis of N-acetyl-L-cysteine conjugates of CLZ and other drugs might be useful in 
human studies when high analytical sensitivity and selectivity is required (39). In the 
latter study, human urine was spiked with N-acetyl-L-cysteine conjugates of CLZ 
generated by incubating rat liver microsomes in presence of N-acetyl-L-cysteine 
conjugates. Unfortunately, no urine-samples of CLZ-treated patients were analysed, 
which would have shown the actual urinary profile of N-acetyl-L-cysteine conjugates of 
CLZ. Consistent with the present study, no N-acetyl-L-cysteine conjugate was found 
resulting from chloro-substitution of the CLZ nitrenium ion (39), confirming the 
dependence of conjugating enzymes for this specific regioisomeric conjugate. 
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The results summarized in Table 3, show that four GSH conjugates are formed 
with m/z 632, consistent with GSH conjugates 3a-d described previously (8). GSH 
conjugate CG-4 was found in incubations of CLZ with human liver microsomes in absence 
of cytosolic GSTs, and therefore most likely corresponds to GSH conjugate 3b which was 
found by Maggs et al. (8) in incubations of CLZ with human and rat liver microsomes (8). 
This GSH conjugate was tentatively identified by these authors as the thioether 
substituted ortho to the chlorine, i.e. C-7 glutathionyl clozapine, and was suggested to be 
a product of enzymic GSH conjugation by the microsomal glutathione S-transferase (8). 
As shown in Table 3 and Figure 4C, hGSTM1-1 is also contributing to formation of CG-4. 
As mentioned above, a methylthio-adduct at the C-7 position of clozapine has been 
identified in urine of man (9,10) supporting the relevance of this metabolic pathway for 
man. 

Figure 5.  Role of hGSTs in the regioselective GSH conjugation of the reactive nitrenium ion formed 
by cytochrome P450. Structures of CG-4 and CG-5 were tentatively assigned in reference (8).   

 
 
The fact that CG-1, CG-3 and CG-4 all represent GSH conjugates in which GSH is 

bound to the chlorinated ring, implicates that the fourth GSH conjugate with m/z 632, CG-
5, results from GSH conjugation to the non-chlorinated ring. This GSH conjugate therefore 
most likely corresponds to conjugate 3d of Maggs et al., which was only found in vivo in 
bile of clozapine-treated rats and mice (8). In the present study, CG-5 was found at 
significant amounts (18 to 32% of total of GSH conjugates) when CLZ incubations were 
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performed in presence of hGSTP1-1 and at much lower amounts in presence of hGSTA1-1, 
Table 3. GSH conjugation to the non-chlorinated ring of CLZ might be explained by 
reaction to the CLZ nitrenium ion, involving delocalization of the positive charge to the 
non-chlorinated ring, or by a distinct P450-dependent reactive intermediate such as an 
arene oxide. The fact that aromatic hydroxylation to the non-chlorinated ring was not 
observed in the present in vitro incubations and has never been found in previous in vitro 
and in vivo studies (10, 11) seems to rule out involvement of arene oxides and suggests 
that all GSH-conjugates originate from a common reactive nitrenium ion, as illustrated in 
Figure 5. Therefore, the different regioselectivity in GSH conjugation observed is most 
likely a reflection of the different binding orientation of the nitrenium ion in the active-
sites of these GSTs. 

In summary, the results of the present study indicate that at least three hGSTs 
are able to catalyse the GSH conjugation of the reactive CLZ nitrenium ion resulting in 
different regioisomeric GSH conjugates, Figure 5. Genetically determined deficiency of 
hGST or drug-drug interaction at the level of hGST, therefore, might be risk factors for 
adverse side effects associated with CLZ-treatment. Case-control studies correlating GST-
genotypes with susceptibility to CLZ side-effects however remain to be performed. The 
fact that several GSH conjugates are formed only in presence of hGST implicates that 
analysis of corresponding thioethers (N-acetyl-L-cysteine- and/or thiomethyl-conjugates) 
in urine of CLZ-treated patients might support these case-control studies. 
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Abstract 

Idiosyncratic adverse drug reactions due to the anti-inflammatory drug 
diclofenac have been proposed to be caused by the generation of reactive acyl 
glucuronides and oxidative metabolites. For the oxidative metabolism of diclofenac by 
cytochromes P450 at least five different reactive intermediates have been proposed 
previously based on structural identification of their corresponding GSH-conjugates. In 
the present study, the ability of four human glutathione S-transferases (hGSTs) to 
catalyse the GSH-conjugation of the different reactive intermediates formed by P450s 
was investigated. Addition of pooled human liver cytosol and recombinant hGSTA1-1, 
hGSTM1-1, and hGSTP1-1 to incubations of diclofenac with human liver microsomes or 
purified CYP102A1 M11 L437N as model system significantly increased total GSH 
conjugation. Strongest increase of total GSH-conjugation was observed by adding 
hGSTP1-1, whereas hGSTM1-1 and hGSTA1-1 showed lower activity. Addition of hGSTT1-
1 did only show a minor effect. When considering the effects of hGSTs on GSH-
conjugation of the different quinoneimines of diclofenac, it was found that hGSTP1-1 
showed the highest activity in GSH-conjugation of the quinoneimine derived from 5-
hydroxydiclofenac (5-OH-DF). hGSTM1-1 showed highest activity in inactivation of the 
quinoneimine derived from 4 㶅-hydroxydiclofenac (4 㶅-OH-DF). Separate incubations 
with 5-OH-DF and 4 㶅-OH-DF as substrates confirmed these results.  hGSTs also catalyzed 
GSH conjugation of the o-imine methide formed by oxidative decarboxylation of DF as 
well as the substitution of one of the chlorine atoms of DF by GSH. hGSTP1-1 showed the 
highest activity for the formation of these minor GSH-conjugates.  These results suggest 
that hGSTs may play an important role in the inactivation of DF quinone imines and its 
minor reactive intermediates especially in stress conditions when tissue levels of GSH are 
decreased. 

 
1. Introduction 

Diclofenac (DF) is a nonsteroidal anti-inflammatory drug (NSAID) which is 
widely prescribed to treat inflammation and pain in diseases like rheumatoid arthritis 
and acute muscle pain. The major toxic side-effect of DF is gastrointestinal injury which is 
clinically presented as ulceration and bleeding of the stomach and small intestines (1, 2). 
Furthermore, 15% of patients regularly taking DF develop elevated levels of liver 
enzymes in plasma (3, 4). About 6.3 per 100 000 users develop severe liver injury with an 
8% case fatality rate (5). Although the exact mechanism underlying the idiosyncratic 
hepatotoxicity of DF remains to be established, bioactivation to protein-reactive 
metabolites and subsequent immune-mediated reactions are hypothesized to play an 
important role (6, 7). 

The combined results of the large number of studies addressing the bioactivation 
of DF show that DF shows a very complex pattern of bioactivation, involving multiple 
reactive intermediates and multiple bioactivating enzymes (8, 9). Quantitatively the most 
important pathway of bioactivation of DF is glucuronidation by UGT2B7 to a protein-
reactive acyl glucuronide (10). However, the fact that inhibitors of UGT increased rather 
than decreased cytotoxicity of DF in hepatocytes, whereas inhibitors of P450 were 
protective, suggest that protein modification by oxidative metabolites of DF might be 
more critical for acute cytotoxicity than modification by its acyl glucuronide (11). In an 
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association study it was shown that the UGT2B7*2 allele was associated with an eight-
fold increased risk of DF hepatotoxicity (12).  Although the authors considered this as an 
high activity allele, based on in vitro studies with 4-hydroxyestradiol (13), a more recent 
study showed that UGT2B7*2 was actually more than ten times less active than wild-type 
UGT2B7*1 in the acyl glucuronidation of the NSAID flurbiprofen (14). In case UGT2B7*2 
has also lower activity for DF, the higher susceptibility of this genotype might be 
explained by the higher contribution of P450-bioactivation. 

Although inhibition of formation of protective prostaglandins is generally 
regarded is the underlying mechanism of the more frequently occurring gastrointestinal 
injury caused by NSAIDs, it was shown recently that tissue-specific knock-out of P450 
reductase in intestines strongly protected mice against intestinal toxicity of DF (15). 
Therefore, bioactivation by P450s might also play an important role in gastrointestinal 
side effects of DF. 

Based on the structures of the various GSH-conjugates identified in incubations 
of DF with human liver microsomes or recombinant P450s at least five different oxidative 
bioactivation mechanisms for DF have been proposed, as summarized in Figure 1. 4'-
Hydroxydiclofenac (4’-OH-DF), which is the major oxidative metabolite of DF in 
microsomal incubations and which is formed specifically by CYP2C9, is further oxidized 
to diclofenac 1',4'-quinone imine (DF-1',4'-QI) that can react to GSH by both addition and 
chlorine-substitution reactions (16, 17). Similarly, 5-hydroxydiclofenac (5-OH-DF), which 
is a minor metabolite of DF formed mainly by human CYP2C8 and CYP3A4 (18, 19), is 
further oxidized to diclofenac 2,5-quinone imine (DF-2,5-QI) that reacts to GSH by 
addition reactions to two regioisomeric GSH-conjugates, M1 and M3 (16). CYP2C9 was 
also proposed to also produce a reactive arene oxide, diclofenac-2',3'-oxide (DF-2',3'-
oxide), as an explanation for the formation of 2'-hydroxy-3'-(glutathione-S-yl)-
monoclofenac (20). A fourth oxidative bioactivation pathway of DF, which appears to be 
mainly catalysed by CYP3A4, involves oxidative decarboxylation to a reactive o-imine 
methide (DF-IM, Figure 1), which reacts to GSH to form 2-(2,6-dichlorophenylamino)-
benzyl-S-thioether glutathione (DPAB-SG) (21, 22). Finally, a GSH conjugate was 
identified in which one chlorine of DF was substituted by GSH (23, 24). Three reactive 
metabolites were recently proposed in which the chlorine of DF is activated by the 
electron-withdrawing ortho-nitrogen-atom formed by dehydrogenation (forming 
electrophilic o-imine methide), N-oxygenation or one-electron oxidation, Figure 1 (24). A 
reactive radical intermediate of DF was previously proposed as mechanism for 
horseradish peroxidase-dependent inactivation of acetylcholinesterase (25). Because 
P450s do also contain peroxidase activities, a similar mechanism might be applicable for 
DF-bioactivation. 

Although the studies described above all have shown that the oxidative reactive 
intermediates of DF react to GSH non-enzymatically, it has not yet been reported whether 
these reactions can be catalyzed by human glutathione S-transferases (hGSTs). The 
activity of several hGSTs is strongly genetically determined due to gene deletions (null 
alleles) and single nucleotide polymorphisms (26). Several in vitro studies have shown 
that purified and recombinant hGSTs can significantly increase GSH-conjugation of 
reactive metabolites of acetaminophen (27), valproic acid (28), felbamate (29), zileuton 
(30), clozapine (31) and troglitazone (32) which supporting the hypothesis that 
genetically determined deficiency of GSTs might be risk factors for drug toxicity. An 
association study by Lucena et al. reported that patients carrying a double GSTT1-M1 null 
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genotype were at 8.8-fold increased risk to develop idiosyncratic drug-induced liver 
injury when using NSAIDs (33). However, in this study only four cases of DF-induced 
hepatotoxicity were included. Therefore, additional studies are required to further 
support the protective role of hGSTs against DF-induced hepatotoxicity. 

 
 

 
 
 

 
 
 

 

 

 

 

 

 
 

Figure 1. Cytochrome P450-dependent bioactivation of diclofenac (DF) to reactive intermediates, 
and structures of identified GSH-conjugates. M1, 4-glutathion-S-yl-5-hydroxy-diclofenac; M2, 3'-
glutathion-S-yl-4-hydroxy-diclofenac; M3, 6-glutathion-S-yl-5-hydroxy-diclofenac; M4, 2'-hydroxy-
3'-glutathione-S-yl)monoclofec;  M5,  2'-glutathion-S-yl-4'-hydroxy-deschlorodiclofenac; DPAB-SG, 
2-(2,6-dichloro-phenylamino)benzyl-S-thioether glutathione; DDF-SG, 2'-glutathion-S-yl-
deschlorodiclofenac. 
 

 
The aim of the present study was to investigate whether human GSTs, hGSTA1-1, 

hGSTM1-1, hGSTP1-1 and hGSTT1-1 might be involved in catalysing GSH-conjugation of 
the different reactive intermediates formed by oxidative metabolism of DF by human 
liver microsomes (HLM). In addition, purified drug-metabolizing CYP102A1 mutants 
were used as alternative bioactivating system for DF. The advantage of using purified 
soluble bacterial CYP102A1-mutants as biactivating system is that reactive intermediates 
formed cannot not be scavenged by other proteins as will be the case when using 
microsomal enzymes. Also, the study of the activity of individual hGSTs on GSH 
conjugation will not be confounded by microsomal GST present in liver microsomes (31). 
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Furthermore, because of its relatively high specific activity only a low concentration of 
this bioactivating enzyme is required, minimizing trapping of reactive intermediates by 
the CYP102A1-mutant itself.  The results of this study indicate that the different hGSTs 
studied showed differential effects, depending on the nature of reactive intermediate 
involved. 
 

2. Materials and methods 
2.1. Materials  

DF sodium salt was obtained from Sigma (Steinheim, Germany), whereas 4’-OH-
DF and 5-OH-DF were from Toronto Research Chemicals (North York, Canada). All other 
reagents and chemicals were of analytical grade and obtained from standard suppliers. 
Human liver microsomes (HLM; 20 mg/ml protein) pooled from 50 donors were 
purchased from Xenotech (lot no. 0710619). Escherichia coli XL-1 Blue cells containing 
the expression plasmids for human GST A1-1, M1-1 (B allele), and P1-1 (A allele) were a 
kind gift from Prof. Bengt Mannervik (Department of Biochemistry and Organic chemistry, 
Uppsala University, Sweden). The plasmid pet20b-hGSTT1 coding for human GST T1-1 
with a C- terminal his-tag, was a kind gift from Prof. John D. Hayes (Biomedical Research 
Centre, University of Dundee, Scotland, United Kingdom). All other chemicals and 
reagents were of analytical grade and obtained from standard suppliers. 

Pooled human liver cytosol was prepared from pieces of human liver tissue 
kindly provided by Prof. Geny M.M. Groothuis (Department of Pharmacy, University of 
Groningen, The Netherlands). The characteristics of the human liver donors are described 
elsewhere (34).  Liver samples were homogenized in two volumes (w/v) of icecold 100 
mM potassium phosphate buffer, (KPi buffer, pH 7.4). Liver cytosol was obtained by 
differential centrifugation according to standard procedures. Pooled human liver cytosol 
was prepared by combining cytosol of ten individuals.  The specific activity of cytosolic 
GSTs was assayed according to Habig et al. (35) and was 447 nmol/min/mg cytosolic 
protein using 1 mM CDNB as substrate. Protein content of the pooled human liver cytosol 
was 21.5 mg/mL using bovine serum albumin as protein standard. 
 

2.2. Expression and purification of human GSTs and drug metabolizing 
CYP102A1-mutants. 

Human GSTA1-1, GSTM1-1, GSTP1-1, and GSTT1-1 were expressed and purified 
as described previously (31).  The specific activities of the purified recombinant hGSTs 
������ ͳ��� ����� ��� �� ���������� ����ǣ� ʹͲǤͶ� ρ���Ȁ���Ȁ��� �������� ���� 
STA1-1, 55.6 
ρ���Ȁ���Ȁ��� �������� ���� 
���ͳ-ͳǡ� ���� ʹǤͻ� ρ���Ȁ���Ȁ��� �������� ���� 
���ͳ-1. The 
specific activity of hGSTT1-1 was determined using 1,2-epoxy-3-(p-
nitrophenoxy)propane as a substrate as described (36) ���� ���� ͳǤͺ͵� Ɋ���Ȁ���Ȁ���
protein. 

Drug-metabolising mutants of CYP102A1 were used as model system to generate 
reactive metabolites of DF in presence of GSH and hGST. Although CYP102A1M11H was 
previous shown to be able to bioactivate DF to all human-relevant reactive intermediates, 
the levels of the GSH-conjugates were relatively low (37). Therefore, first a library of 
drug-metabolising CYP102A1-mutants was screened to identify a mutant with higher 
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product formation. The details of the library of CYP102A1-mutants used can be found 
elsewhere (38, 39). Mutant CYP102A1 M11 L437N, which was identified as the most 
active mutant, was purified by HIS-select nickel affinity chromatography, as described 
previously (37). The P450 concentrations were determined according to the method of 
Omura and Sato (40). 
 

2.3. Oxidative bioactivation of Diclofenac in the Presence of GSH and Human 
Recombinant GSTs. 

�	�ȋͷͲͲ�ρ�Ȍ����������������������������������������������������������ʹ���Ȁ���
and with CYP102A1-mutants at concentration of 500 nM. Incubations were performed in 
100 mM potassium phosphate buffer (KPi buffer, pH 7.4) and in an incubation volume of 
ʹͷͲ�ρ�Ǥ��he non-enzymatic GSH conjugation was first investigated in incubations of DF 
with CYP102A1-mutant in presence of different concentrations of GSH (0.0125, 0.025, 
0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10 and 20 mM). All reactions were initiated by the addition of 
an NADPH regenerating system constisting of 0.5 mM NADPH, 20 mM glucose-6-
phosphate and 2 Units/mL glucose-6-phosphate dehydrogenase (final concentrations). 
��������������������������� ����ͳ���������ʹͶι�� �������ͳͲʹ�ͳ-���������������͵ι�� ����
HLM. The reactions were terminated by adding an equal volume of ice cold methanol 
containing 2% (v/v) of 50 mM ascorbic acid in water, and centrifuged for 15 min at 
14000 rpm. The supernatants were analyzed by HPLC and LC-MS/MS, as described below. 
Enzymatic GSH conjugation catalysed by recombinant human GSTs was investigated by 
������� ͺ� Ɋ�� ȋ������ �������������Ȍ� �
�����ͳ-1, M1-1, P1-1, or T1-1 to the incubations. 
������������ ����� �
���� ����� ���������� ��� ���� ��������� ��� ͳͲͲ� Ɋ�� 
��ǡ� ������� ����
hGSTT1-1 which was incubated in the presence of 5 mM GSH because of its lower affinity 
to GSH (36). ������������ ��� ͷͲͲ� ρ�� �	� ����� ʹ� ��Ȁ��� ���� ����� ����� ���������� ���
presence of 4 mg/mL pooled human liver cytosol (PHLC) since the hepatic cytosolic 
protein content is two times that of the hepatic microsomal content  (40 mg microsomal 
protein/gr liver vs 81 mg microsomal protein/gr liver) (41). Based on previous 
������������������
��������������������������ǡ�������������������������������Ͷͷ����ͷͲ�ρ��
of GST/gr liver (42, 43), the total concentration of GSTs at 4 mg cytosolic protein/mL is 
estimated to be appr���������� Ǥ� ��� ͺǤͳ� ρ�ǡ� ������ ��� ������ ��� ���� ͺ� ρ�� ����� ���
incubations with recombinant human GSTs. 

The bioactivation of 4’-OH-DF and 5-OH-DF was also investigated individually by 
�������������� ������ ��������������	������������� ��� ͳͲͲ�ρ������� ͷͲͲ������� ��P102A1 
�ͳͳ��Ͷ͵�����������������ͳͲͲ�ρ��
��ǡ����������������������������������������������
��������� ��� ͺ� ρ�� �
���Ǥ� � ������������ ��� Ͷǯ-OH-DF and 5-OH-DF were terminated by 
adding an equal volume of ice cold methanol containing 2% (v/v) of 50 mM ascorbic acid 
in water, centrifuged for 15 min at 14000 rpm and analyzed by HPLC and LC-MS/MS, as 
described below. 

 

2.4. Analytical methods 

Samples of incubations were analyzed by reversed phase HPLC using a 
Symmetry Shield RP18 column (C18; 4.6 x 100 mm; 3.ͷ�ρ�Ǣ�Waters) as the stationary 
phase. A SecurityGuard Cartridge system (C18; 4.0 x 3.0 mm; Phenomenex) was used to 
protect the column. Analytes were eluted by a binary gradient, composed of solvent A 
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(1% acetonitrile, 0.2% formic acid, 98.8% water) and solvent B (99% acetonitrile, 0.2% 
formic acid, 0.8%water). Total flow rate was 0.5 mL/min (in case of UV detection) or 0.4 
mL/min (in case of mass spectrometric detection). The gradient was programmed as 
follows: 0–5 min: isocratic at 0% solvent B; 5–30 min: linear increase from 0% to 100% 
solvent B; 30–35 min: linear decrease from 100% to 0% solvent B; 35–40 min: isocratic 
at 0% solvent B.  A UV/Vis detector set to 254 nm was used to detect and quantify DF and 
its formed metabolites. Peak areas were determined for quantification using Shimadzu 
Class VP 4.3 software. A standard curve of DF was used to estimate the concentrations of 
metabolites assuming that the extinction coefficients of DF and its metabolites were 
similar. The standard curve of DF when detected by UV/VIS was linear between 0 and 
ͷͲͲ�ρ�Ǣ� ���� ������������������������������������	������Ȁ������������������ ������ͳ�ρ��
(data not shown). Stock solutions of GSH-conjugates of DF were prepared by 
concentration of a large scale incubation of DF, GSH and CYP102A1 M11 L437N (data not 
shown). By assuming the same extinction coefficient for DF and DF-metabolites, standard 
curves were constructed by serial dilution of calibrated stock solution of each GSH-
conjugate. 

LC-MS/MS operating in the positive mode was used for the identification of the 
formed metabolites of DF using the same separation conditions as for HPLC analysis. An 
Agilent 1200 Series Rapid Resolution LC system connected to a hybrid quadrupole time-
of-flight (Q-TOF) Agilent 6520 mass spectrometer (Agilent Technologies) with an 
electrospray ionization (ESI) source was used to acquire spectra at a rate of 1.003/second 
over an m/z range of 50 to 1000. The MS ion source parameters were as described 
previously (31). LC-MS/MS system was operated using MassHunter Workstation 
Software version B.02.00, while data analysis was performed using Agilent MassHunter 
Qualitative Analysis software. The standard curves of DF and calibrated solutions of GSH-
���������������	����� ���������������Ͳ�����ͳͲͲ�ρ���������������������-MS/MS.  The 
limit of quantitative detection of DF and DF metabolites by LC-MS/MS was estimated to 
be 20 nM based on peak areas of extracted ion chromatograms of each metabolites (data 
not shown). 

 

3. Results 

3.1. Selection of drug metabolising mutant of CYP102A1 as a model for 
oxidative bioactivation of DF 

Although it was shown previously that CYP102A1 M11H was able to bioactivate 
DF to all human relevant oxidative metabolites, the yields of GSH-conjugates were 
relatively low (37). Therefore, it was investigated whether other mutants of CYP102A1 
were more efficient in bioactivation of DF. When screening a library of drug-metabolizing 
mutants of CYP102A1, which previously showed a wide diversity in activity and substrate 
selectivity (38, 39), the most active mutant appeared to be CYP102A1 M11 L437N being 
almost 2-fold more active than CYP102A1 M11H, Figure 2A. CYP102A1 M11 L437N 
contains one extra mutation, L437N, compared to CYP102A1M11H which was used in 
previous studies (24, 37). For all mutants 4-OH-DF was the major metabolite, whereas 5-
OH-DF was formed at 4-fold lower activities, Figure 2B.  CYP102A1 M11 L437N was 
selected as biocatalyst to bioactivate DF to study the ability of human GSTs to catalyze 
GSH-conjugation of P450-dependent reactive intermediates. In absence of NADPH-
regenerating system, NADPH consumption measurements in incubations of DF with 
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CYP102A1-mutants showed complete NADPH consumption within two minutes, 
explaining the relatively low conversion of DF and the low yields of GSH conjugates 
reported previously (37). By adding an NADPH regenerating system, a more than 8-fold 
increase in GSH conjugates formation was observed in the presence of 5 mM GSH. Also 
the percentage of DF that was metabolized was increased from 8 to 75% (data not 
shown). Therefore, all subsequent incubations were performed in presence of NADPH-
regenerating system. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. A) ��������� ��� �� �������� ��� ����� ������������� �������� ��� ���ͳͲʹ�ͳ� ����� ͷͲͲ� ρ�� ���
diclofenac as substrate; B) Profile of metabolites produced by a library of drug metabolizing 
��������������ͳͲʹ�ͳ������ͷͲͲ�ρ����������������������������Ǥ 
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 As shown in Table 1, eight different GSH conjugates were formed in incubations 
of DF with purified CYP102A1 M11 L437N when incubated in presence of 5 mM of GSH. 
By comparison with GSH conjugates formed in incubations with 5-OH-DF as substrate, 
three of the conjugates could be attributed to GSH-conjugation to DF-2,5-QI, the quinone 
imine formed from 5-OH-DF, Figure 1. Two conjugates with m/z of 617,08 correspond to 
M1 and M3, as characterized previously (13). The third GSH-conjugate, in this paper 
assigned M8, was identified as a double conjugated GSH-conjugate which can be 
rationalized by secondary oxidation of M1 and/or M3 to their corresponding quinone 
imines and subsequent GSH-addition, see Figure 3.  By comparison with GSH conjugates 
formed in incubations 4'-OH-DF as substrate, four of the conjugates found in incubations 
of DF with CYP102A1 M11 L437N could be attributed to GSH-conjugation to DF-1',4'-QI, 
the quinone imine formed from 4'-OH-DF, Figure 1. The GSH-conjugate with m/z 617,08 
corresponds to M2, which was characterized previously (16). The GSH-conjugate with 
m/z 583,13, here as assigned M5, can be rationalized by chlorine-substutution of DF-
1',4'-QI followed by reduction by NADPH and/or GSH (17). Two double conjugated GSH-
conjugates, assigned M6 and M7, can be rationalized by addition and chlorine-
substitution to the quinoneimine preceding M5, see Figure 3.  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Metabolic scheme rationalizing the formation of primary and secondary GSH-conjugates 
in incubations of diclofenac with drug metabolizing mutant CYP102A1 M11 L437N. 
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Next to the GSH-conjugates derived from the quinone imines of 5-OH-DF and 4'-
OH-DF, a GSH-conjugate with m/z of 557,132 was found in incubations of DF with 
CYP102A1 M11 L437N. The mass of this conjugate corresponds to that of DPAB-SG, 
which results from the reactive imine methide DF-IM formed by oxidative 
decarboxylation of DF (21, 22). 

Figure 4 shows the concentration dependence of the non-enzymatic GSH 
conjugation of reactive DF metabolites when performing incubations with GSH 
concentrations ranging from 0 to 20 mM. At all GSH-concentrations, approximately 90% 
of the total conjugates is formed through the 4’-OH-DF bioactivation pathway.  Assuming 
that the observed saturation curve in Figure 4 is described by the equation y = a x (1 – e-

bxȌǡ�ͳͷ�Ɋ���������� the maximal yield of GSH conjugates at infinitive GSH concentration 
indicating that approximately 30% of the initial DF concentration was converted to 
��������� �������������� ������ ���� �������� ����������� ����������Ǥ� ��� ͳͲͲ� Ɋ�� 
���
approximately 2.1 % of the reactive metabolites are trapped whereas at 5 mM GSH 
66.0 % is trapped. To study the effect of hGSTs on GSH-conjugation subsequent 
������������������������������ͳͲͲ�ρ��
��ǡ�������������
����ͳ-1 which was incubated 
at 5 mM GSH because of its lower affinity to GSH (36). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. GSH-concentration dependence on the non-enzymatic GSH conjugation of reactive DF-
metabolites formed by drug metabolizing mutant CYP102A1 M11 L437N. The increase in the peak 
area was investigated for 4’-OH-DF, 5-OH-DF and total GSH conjugates when the concentration of 
GSH was changed from 0.0125 to 20 mM. Each point represents the mean ± S.D. (n = 2). 
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3.2. Effect of human GSTs on GSH-conjugation of reactive metabolites of DF 
formed by CYP102A1 M11 L437N. 

To study whether addition of hGST enzymes increased the GSH conjugation of 
reactive DF metabolites formed by purified CYP102A1 M11 L437N, incubations were 
�����������������������������������������ͺ�Ɋ���
���Ǥ As shown in Table 2, addition of 
hGSTs A1-1, M1-1, and P1-1 to incubations of DF with CYP102A1 M11 L437N resulted in 
a significant increase in GSH conjugation when compared to incubations without added 
hGSTs. hGST P1-1 and hGST M1-1 were found to be the most active in GSH conjugation, 
resulting in 8.7-fold and 6.4-fold increase in total GSH-conjugation, respectively. Addition 
���ͺ�ρ���
���ͳ-1 only showed 1.4-fold increase in GSH-conjugation. hGST T1-1, which 
was incubated in presence of 5 mM GSH, showed an approximately 20% increase in the 
formation of GSH conjugates.   

As shown in Table 2, addition of the different hGSTs to the incubations resulted 
in significant changes in the profile of the individual GSH-conjugates.  When considering 
the GSH-conjugates derived for DF-1',4'-��ǡ� ��� ���� ��������� ����� ��������� ��� ͺ� ρ�� ���
hGSTP1-1 and hGSTM1-1 both increased GSH-conjugation approximately 7-fold. In 
incubations with hGSTM1-1 conjugate M5 represented 80% of the DF-1',4'-QI-dependent 
GSH-conjugates, indicating a very strong preference for the chlorine-substitution 
pathway, Figure 1. The less active hGSTA1-1 also showed an increase of formation of M5. 
�����������ǡ����������������ͺ�ρ��
���ͳ-1 conjugate M2, which is formed by GSH-addition, 
represented 83% of DF-1',4'-QI-dependent GSH-conjugates indicative for a strong 
difference in regioselectivity, consistent with previous observations with the reactive 
intermediate of clozapine (31). 

hGSTP1-1 was found to have the highest activity in inactivation of DF-2,5-QI 
showing an almost 20-fold increase in GSH-conjugation when compared to the non-
enzymatical GSH-conjugation. The sum of M1 and M3 ����������������������ͺ�ρ��
���-1 
was almost equal to that formed in presence of 5 mM GSH, implicating that addition of 
this enzyme i��������������������������������ͳͲͲ�ρ��
����������ͷͲ-fold.  For hGSTM1-1 
and hGSTA1-1 a 2.3-fold and 1.6-fold increase was found respectively.  For both hGSTP1-
1 and hGSTM1-1 conjugate M3 was the major GSH-conjugate formed. For hGSTA1-1 
conjugate M1 appeared to be the major DF-2,5-QI-derived conjugate. 

DPAB-SG, the conjugate formed via the decarboxylation bioactivation pathway 
(18, 19)ǡ� ���� ����� ������ ��� ����� ���� �������������� ��� ������������ ����� ͳͲͲ� ρ�� 
��Ǥ��
Table 3 shows the peak areas of the extracted ion chromatograms (EIC) of m/z 557,13.  
Again hGSTP1-1 appeared to be the most active enzyme, resulting in an 27-fold increase 
of formation DPAB-SG. hGSTM1-1 and hGSTA1-1 were less active, showing 6.6-fold and 
2.90-fold increase of this GSH-conjugate. hGSTT1-1 showed only a 25% increase of DSAB-
SG formation. 

Recently, deschlorodiclofenac glutathione (DDF-SG) was identified as a minor 
P450-dependent GSH-conjugate of DF (24). In the present study, this conjugate with m/z 
567.13 was found only in bioactivation reactions of DF in the presence of hGSTs, Figure 5. 
Due to the low abundance of this metabolite, peak areas of the EIC of m/z 567.13 were 
used to quantify the relative amounts formed by the different GSTs. hGSTP1-1 was the 
most active enzyme in catalysing formation of this conjugate, being approximately 18.6- 
and 2.5-fold more active than hGSTA1-1 and hGSTM1-1, respectively. 
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3.3. Effect of human GSTs on GSH-conjugation of reactive metabolites of 4'-
OH-DF and 5-OH-DF formed by CYP102A1 M11 L437N. 

Because multiple reactive intermediates are formed from DF, which may 
�����������������������������
���ǡ��������������������������������������ͳͲͲ�ρ�����Ͷǯ-
OH-DF and 5-OH-DF as substrates. As shown in Figure 6, with both substrates the 
strongest increase in amounts of GSH-conjugates were found in incubations in which 
hGSTP1-1 was added, consistent with the incubations with DF as substrate.  With 4'-OH-
DF as substrate, hGSTP1-1 increased total GSH-conjugation almost 7-fold, Figure 6A, 
whereas in case of 5-OH-DF a more than 9-fold increase was found, Figure 6B. 
Interestingly, the total amount of 5-OH-DF-related GSH-conjugates formed in presence of 
ͳͲͲ� ρ�� 
��� ���� ͺ� ρ�� �
���ͳ-1 even surpassed the amount formed in incubations 
containing 5 mM GSH, Figure 6B. This implicates that addition of hGSTP1-1 increased the 
trapping efficiency of DF-2,5-QI by GSH more than 50-fold. As was found in incubations 
with DF as substrate, the GSH-addition reaction, forming conjugate M2, appeared to be 
the major pathway of inactivation of DF-1',4'-QI by hGSTP1-1, Figure 6A.  

 
 

Table 3. Influence of human glutathione S-transferases on formation of GSH-conjugates DPAB-SG 
(m/z 557.13) and DDF-SG (m/z 567.13) after P450-dependent bioactivation of diclofenac. 
        
                          DPAB-SGa  DDF-SG b    
                         (m/z 557,13)  (m/z 567,13)   
        
Bioactivation of DF by CYP102A1 M11 L437N 
1ͲͲ�ρ��
��          100         n.d.     
   + hGSTA1-1           288         100     
   + hGSTM1-1           663                                                  748   
   + hGSTP1-1        2712       1864   
5 mM GSH                            6084         n.d.   
   + hGSTT1-1        7929         n.d. 
-------------------------------------------------------------------- 
Bioactivation of DF by human liver microsomes (HLM) 
ͳͲͲ�ρ��
��           n.d.         n.d.     
   + hGSTA1-1           n.d.         n.d.     
   + hGSTM1-1               5          24     
   + hGSTP1-1               9        149    
5 mM GSH                             108         n.d.     
   + hGSTT1-1            99         n.d.      
        
a. Values represent percentages of peak areas of EIC of m/z 557.13 with the peak area of the incubation of 

���ͳͲʹ�ͳ��ͳͳ��Ͷ͵�������ͳͲͲ�ρ��
����������ͳͲͲΨǤ 
b. Values represent percentages of peak areas of EIC of m/z 567.13 with the peak area of the incubation of 

CYP102A1 M11 L437N with hGSTA1-ͳ�����ͳͲͲ�ρ��
����������ͳͲͲΨǤ 
n.d., below limit of detection. 
 
 
 

For hGSTM1-1 the strongest effect on GSH-conjugation was observed in 
incubations with 4'-OH-DF as substrate, Figure 6A.  A 4.5-fold increase of total of GSH-
conjugates from DF-1',4'-QI was found, which was mainly due to the chlorine-substitution 
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pathway leading to GSH-conjugate M5.  In incubations with 5-OH-DF as substrate, 
hGSTM1-1 did not show a significant effect on GSH-conjugation.   Addition of hGSTA1-1 
and hGSTT1-1 to incubations of purified CYP102A1 M11 L437N with 4'-OH-DF and 5-OH-
DF did not show significant effects. 

 
 

 
 

Figure 5. Effect of hGSTs on the formation of DDF-SG in incubations of DF with CYP102A1 M11 
L437N and GSH. Traces represent extracted ion chromatograms (EIC) of the exact mass of DDF-SG 
ȋ�Ȁ��ͷǤͳʹǡ�ȏ�Ϊ�ȐΪȌǤ�����������������������������������������������ͳͲͲ�ρ��
���and absence or 
������������ͺ�ρ�ǣ��
���ͳ-1, hGSTM1-1 and hGSTP1-1.  

 
 

3.4 Effect of hGSTs and pooled human liver cytosol on the formation of GSH 
conjugates in incubations of DF with HLM. 

In Table 2, the effect of addition of hGSTs on amounts of GSH conjugates in 
����������������	������������������Ǥ����������������ͳͲͲ�ρ�����
���������������������
hGSTs relatively low concentrations of GSH-conjugates were found. The econdary GSH- 
conjugates M6, M7 and M8 were not found, which may explained by the significantly 
lower activity of the microsomal P450s. GSH-conjugate M5 was the only conjugate found 
with m/z of 583. The fact that this conjugate was identical to that formed from 4'-OH-DF 
seems to rule out the involvement of DF-2',3'-oxide as a reactive intermediate. Compared 
�������������������������	���������ͳͲʹ�ͳ��ͳͳ��Ͷ͵������ͳͲͲ�ρ��
�������������������
higher ratio of conjugate M5 to M2 was found. Also, increasing GSH-concentration from 
ͳͲͲ� ρ�� ��� ͷ� ��� ����� ���������� ���� ������ ��� 
��-conjugates only 4-fold. These 
observations might be explained by the involvement of microsomal GST in inactivation of 
the reactive DF-metabolites. When adding ͺ�ρ��hGSTs to the HLM-incubations, hGSTP1-1 
was found to be the most active enzyme in catalyzing GSH conjugation consistent with the 
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results obtained with CYP102A1 M11 L437N as biocatalyst. The total amount of GSH-
conjugates was increased 4-fold when compared to incubations in absence of hGSTP1-1. 
Similar to the incubations with purified, hGSTP1-1-catalyzed GSH-conjugation of DF-1',4'-
QI formed M2 as major metabolite, whereas DF-2,5-QI was mainly conjugated to M3. The 
������������ͺ�ρ���
���ͳ-1 to incubations with HLM increased the total GSH conjugation 
about 2.3-fold. Influence of hGSTA1-1 was not significant and hGSTT1-1 again did show 
only a minor effect significant activity.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  GSH conjugation of reactive metabolites formed in incubations of  CYP102A1 M11 L437N 
�����ͳͲͲ�ρ��Ͷǯ-OH-DF (A) and 5-OH-DF (B) in the absence and presence of hGSTs. The substrates 
were incubated for 60 min with 500 nM CYP102A1 M11 L437N. Relative quantification was 
performed by integrating peaks of LC-UV chromatograms and assuming that the extinction 
coefficients of the different GSH conjugates at 254 nm are identical. The insert in (A) shows a 
magnification of the incubation with low yields of GSH-conjugates. 
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Addition of 4 mg/mL pooled human liver cytosol (PHLC) to the incubations of DF 
with HLM increased total amount of GSH-conjugates 1.7-fold, which was determined by 
an increase of GSH-conjugates derived from DF-1',4'-QI.  No significant increase in GSH-
conjugates derived from DF-2,5-QI was observed. 
 

4. Discussion 

An association study of Lucena et al. suggested that the double null genotypes of 
hGSTM1 and hGSTT1 might lead to an almost 9-fold increased risk for NSAID 
hepatotoxicity (33). However, only four of the 19 cases of NSAID-induced hepatotoxicity 
in this study were related to use of DF. The role of genetic polymorphism of hGSTs in DF-
induced liver toxicity therefore requires confirmation by further expanding the 
association studies or by supporting mechanistic studies.  In the present study, for the 
first time the ability of hGSTs to catalyse the inactivation of P450-dependent reactive 
intermediates of DF is shown, by using a purified drug metabolizing mutant of bacterial 
CYP102A1 and HLM as bioactivation systems. Using these enzyme fractions all 
metabolites of DF that have been reported in previous in vitro studies could be identified, 
including the GSH-conjugates of four different reactive intermediates of DF. The only 
GSH-conjugate that could not be found in incubations of DF with both HLM and the highly 
active CYP102A1 M11 L437N was conjugate M4 which was previously proposed to result 
from GSH-conjugation to DF-2',3'-oxide (20). However, the assignment of the structure of 
M4 was only based on LC-MS/MS fragmentation and not supported by NMR-analysis. A 
GSH-conjugate of DF with exactly the same mass, m/z 583, was also found at the same 
time by another group (17).  This GSH-conjugate, in the present study assigned M5, was 
shown to results from chlorine-substitution of DF-1',4'-QI by GSH, followed by reduction, 
Figure 1. Therefore it is likely that the structure of M4 was incorrectly assigned and that 
DF-2',3'-oxide is not a relevant reactive intermediate of DF. 

When using mutant CYP102A1 M11 L437N as biocatalyst to produce the human-
relevant reactive intermediates of DF, it was found that three of the four hGSTs studied 
were able to significantly catalyse the formation of GSH conjugates. When tested at 
������������������ͺ�ρ�ǡ��������������������������peared to be hGSTP1-1 which was able 
to strongly increase the amounts of GSH-conjugate of all four different reactive 
intermediates of DF. In particular, GSH-conjugation of the reactive quinoneimine formed 
from 5-OH-DF, DF-2,5-QI, was increased to levels equal to those formed at 50-fold higher 
GSH-concentration. When bioactivation studies were performed with 5-OH-DF instead of 
DF, a similar increase in GSH-conjugation by hGSTP1-1 was observed.  Whether hGSTP1-
1 plays an important protective role in human liver against reactive DF-metabolites is not 
very likely, however. Firstly, compared to the Alpha- and Mu-class GSTs, hGSTP1-1 has a 
relatively low expression level in adult human liver, which is estimated to be between 2 
�����ρ� (42, 43). This hepatic amount of hGSTP1-1 appears to be restricted to bile duct 
cells, Kupffer cells, macrophages and endothelial cells while hepatocytes appear to be 
devoid of hGSTP1-1 (44). Much more abundant GSTs in the adult human liver are 
hGSTA1-1, hGSTA2-2 and hGSTM1-1, which have hepatic concentrations of 
approximately 70-110, 20-35 and 30-Ͷͷ� ρ�ǡ� ������������ (42, 43). Therefore, although 
their specific activity is lower than that of hGSTP1-1, their much higher hepatic 
concentration and localization in hepatocytes implicate that they may contribute to 
inactivation of reactive DF-metabolites to a much higher extent.  As shown in Table 2, the 
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addition of pooled human liver cytosol (PHLC) to the microsomal incubations, also 
resulted in 1.7-fold increase in GSH-conjugation. Based on the previous quantification of 
human GSTs in liver cytosol (42, 43), the total concentration of GSTs in the incubations 
���������������Ͷ���Ȁ����������������������������������Ǥ����ͺǤʹ�ρ�Ǥ� ������������������
significant increase in GSH-conjugates of DF-2,5-QI was found supports the very low 
concentration of GSTP1-1 in human liver cytosol. 

Although expression of hGSTP1-1 is low in hepatocytes, it is abundantly 
expressed in the bile duct and in extrahepatic tissues (44). It is highly expressed in the 
epithelia of the gastrointestinal tract. Interestingly, it was shown recently that P450-
dependent bioactivation might play an important role in the gastrointestinal toxicity of 
DF in mice (15). The number intestinal ulcers caused by DF was significantly reduced in 
intestinal epithelium-specific P450 reductase knockout mice, and in mice pretreated with 
grapefruit juice, which is known to inhibit intestinal P450s. In human, CYP3A4 is the 
major intestinal enzyme, accounting for 80% of total immunoquantified P450s (45). 
CYP3A4 is considered to play a major role in the bioactivation of DF to 5-OH-DF, which is 
further activated to DF-2,5-QI both enzymatically and non-enzymatically (19).  DF-2,5-QI 
appears to be responsible for the majority of covalent binding to proteins as shown by 
immunochemical and mass spectrometric methods (19, 24). Therefore, hGSTP1-1, which 
is highly active in inactivating DF-2,5-QI and is highly expressed in intestinal epithelia 
might play a crucial role in protection against gastrointestinal toxicity of DF.  Therefore it 
remains to be established whether genetic polymorphisms of hGSTP1-1 might determine 
susceptibility to the gastrointestinal side-effects of DF. 

The association study of Lucena et al. in 2008 suggested that combined null 
genotype of hGSTM1-1 and hGSTT1-1 strongly increased risk for idiosyncratic liver injury 
by NSAIDs, including DF (33). In the present study is was found that hGSTM1-1 was 
specifically active in catalysing GSH-conjugation of DF-1',4'-QI, the quinoneimine formed 
from the major metabolite 4'-OH-DF, Table 2 and Figure 6A. Also, similar increases in 
GSH-conjugation were observed for the minor bioactivation pathways leading to DPAB-
SG and DDF-SG, Table 3. The lower effect of hGSTM1-1 and other GSTs in the incubation 
with HLM, when compared to those with CYP102A1 as bioactivating enzyme, may be 
explained by the fact that significantly lower concentrations of reactive intermediates are 
formed.  In addition, microsomal GST might contribute to catalysis of GSH-conjugation, as 
was observed in similar bioactivation studies with clozapine (31). The fact that hGSTM1-1 
significant increased of GSH-conjugation of several reactive DF-metabolites seems to 
support the hypothesis of Lucena et al. that the null genotype of hGSTM1-1 is associated 
with increased risk for NSAID hepatotoxicity (33).  ������������ͺ�ρ���
���ͳ-1, however, 
showed only a relatively small increase in GSH-conjugation of the quinone imines of DF, 
Table 2 and Figure 4. Considering the fact that hepatic concentration of hGSTT1-1 is 5.4 
ρ�Ȁ�������������������� (46), corresponding to a hepatic concentration of approximately 
ͳͷ�ρ�ǡ����������������������������������������������
���ͳ-1 results in strongly reduced 
inactivation of reactive DF-metabolites.  However, it cannot be excluded that GST T1-1 
expression may modulate susceptibility to hepatotoxicity in ways unrelated to 
detoxification of electrophiles. Other GSTs have been shown to interfere with signal 
transduction pathways by protein-protein interaction and by S-glutathionylation of 
proteins (47). For example, both hGSTP1-1 and hGSTA1-1 can suppress JNK signalling, 
whereas hGSTM1-1 can bind to and inhibit apoptosis signal-regulating kinase 1. These 
non-catalytic functions may explain why GSTP knock-out mice appeared to be resistant to 
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hepatotoxicity of acetaminophen (48), which was unexpected because GSTP was shown 
to be highly active in the detoxification of synthetical N-acetylbenzoquinoneimine, the 
reactive intermediate of acetaminophen (26). 

In conclusion, the results of the present study show that several hGSTs have the 
ability to catalyse the GSH-conjugation of several P450-dependent reactive intermediates 
of DF. The fact that hGSTP1-1 was highly active in inactivating all four reactive 
intermediates that can be formed by P450s, this enzyme might play an important role in 
the protection of the gastrointestinal tract against DF-induced toxicity. Deficiency of 
hGSTM1-1 might be a risk factor for DF-induced hepatotoxicity, particularly in conditions 
when cellular GSH becomes depleted and inactivation of reactive DF-metabolites will be 
more dependent on GST-catalyzed GSH-conjugation. However, because not all 
homodimers and heterodimers of GSTs which are present in human liver were included 
in the present study, additional studies are required to quantify the protective role of 
polymorphic GSTs against reactive metabolites of DF. Furthermore, cellular cytotoxicity 
models in which levels of specific human GSTs are manipulated by transfection, specific 
knock-out or pharmacological inhibitors might give further insight in the protective role 
of GSTs in a cellular context. 
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Abstract 
Recent association studies suggest that genetically determined deficiencies in 

GSTs might be a risk factor for idiosyncratic adverse drug reactions resulting from the 
formation of reactive drug metabolites. hGSTP1-1 is polymorphic in the human 
population with a number of single nucleotide polymorphisms that yield an amino acid 
change in the encoded protein. Three allelic variants of hGSTP1-1 containing an Ile105Val 
or Ala114Val substitution, or a combination of both,  have been the most widely studied 
and showed different activity when compared to wild-type hGSTP1-1*A (Ile105/Ala114). 
In the present study, we studied the ability of these allelic variants to catalyze the GSH 
conjugation of reactive metabolites of acetaminophen, clozapine, and diclofenac formed 
by bioactivation in in vitro incubations by human liver microsomes and drug 
metabolizing P450 BM3 mutants. The results show that effects of change of amino acid at 
residue 105 and 114 on conjugation reactions was substrate dependent. A single 
substitution at residue 105 affects the ability to catalyze GSH conjugation, while when 
both residue 105 and 114 were substituted the effect was additionally enhanced. Single 
mutation at position 114 did not show a significant effect. The different hGSTP1-1 
mutants showed slightly altered regioselectivities in formation of individual GSH 
conjugates of clozapine which suggests that the binding orientation of the reactive 
nitrenium ion of clozapine is affected by the mutations. For diclofenac, a significant 
decrease in activity in GSH-conjugation of diclofenac 1',4'-quinone imine was observed 
for variants hGSTP1-1*B (Val105/Ala114) and hGSTP1-1*C (Val105/Val114). However, 
since the differences in total GSH conjugation activity catalysed by these allelic variants 
were not higher than 30%, interindividual differences in inactivation of reactive 
intermediates by hGSTP1-1 are not likely to be a major factor in determining 
interindividual difference in susceptibility to adverse drug reactions induced by the drugs 
studied. 

 

1. Introduction 

Glutathione S-transferases (GSTs) are a superfamily of dimeric phase II enzymes, 
which play an important role in the cellular defense system (1, 2). The human GSTs 
exhibit broad catalytic dive�����������������������������������������������������ǣ�Ƚ�ȋalphaȌǡ�Ɋ�
(muȌǡ�Ɏ� ȋpiȌǡ�ɐ� ȋsigmaȌǡ�Ʌ� ȋthetaȌǡ�Ɉ� ȋkappaȌǡ�ɍ (omega) and �z (zeta)  and microsomal 
GSTs (3).  The major role of these GSTs is to catalyze the conjugation of reduced 
glutathione (GSH) to electrophilic compounds and the reduction of organic 
hydroperoxides, thereby preventing cytotoxicity or mutagenicity. Furthermore, 
upregulation of GSTs in tumor tissues can contribute to resistence against alkylating 
antitumor agents (2). It is well established that many drugs are bioactivated by 
cytochrome P450s to short-lived reactive metabolites that may be responsible for 
adverse drug reactions (ADRs) (4). The balance between the rate of formation of these 
highly reactive metabolites and their inactivation by GSH conjugation, which may be 
catalyzed by GSTs, will determine the level of protein adduct formation and may 
determine the risk for ADRs (4, 5).  

In humans, several GSTs are known to be genetically polymorphic due to point 
mutations, gene deletion and gene duplication (1, 6). Therefore, interindividual variations 
in the GSTs due to genetic polymorphism have been proposed as potentially important 
factors determining susceptibility to cancer and ADRs (7-10). One of the polymorphic 
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GSTs, human GSTP1-1 (hGSTP1-1). is highly expressed in most extrahepetic tissues 
(11,12) and overexpressed in many tumor forms (1,2,9).  Because hGSTP1-1 has high 
activity in the inactivation of many environmental carcinogens and antitumor agents, its 
genetic polymorphisms have been subject of many studies to test whether they might 
affect susceptibility of individuals to different types of cancer and the efficacy of 
chemotherapy (6, 9). For hGSTP1-1, a number of single nucleotide polymorphisms (SNPs) 
have been identified that yield an amino acid change in the encoded protein, i.e. Ile105Val 
(13), Ala114Val (14), Asp147Tyr (15), Phe151Leu (16), and Gly169Asp (17). Four allelic 
forms of hGSTP1-1, resulting from combinations of the first two SNPs, have been subject 
to most studies so far. The variants that result from polymorphisms at position 105 and 
114 are hGSTP1*A (Ile105/Ala114), hGSTP1*B (Val105/Ala114), hGSTP1*C 
(Val105/Val114) and hGSTP1*D (Ile105/Val114). The allele frequencies of the genotypes 
in Caucasian poulations are: hGSTP1*A, 0.685; hGSTP1*B, 0.262, and hGSTP1*C, 0.0687 
(18). Although frequently tested in in vitro studies the occurrence of allele hGSTP1*D 
remains to be established. 

The effect of the mutations at position 105 and 114 of hGSTP1 has been studied 
in vitro using approximately thirty different electrophilic drugs and model substrates, 
including 1-chloro-2,4-dinitrobenzene (CDNB), ethacrynic acid, chlorambucil, thiopeta, 
acrolein and diol epoxides of several polycyclic aromatic hydrocarbons (PAHs), see 
supplementary Table S1. However, the activity of hGSTP1-1 variants in inactivation of 
very short-lived reactive drug metabolites, which can only be tested in presence of a 
bioactivating system, has not yet been evaluated. In the present study, the effect of 
GSTP1-1 allelic variants on the GSH-dependent inactivation of the highly reactive 
metabolites of acetaminophen (APAP), clozapine (CLZ) and diclofenac (DF) was studied 
because in vitro studies have shown that hGSTP1 showed high activity in inactivation of 
the reactive metabolites of these drugs formed by cytochrome P450s (19-21). 

 APAP is bioactivated by cytochrome P450 to N-acetyl-p-benzoquinone imine 
(NAPQI), a highly reactive intermediate which covalently binds to proteins, thereby 
causing hepatotoxicity (4, 22). Among the GSTs investigated, GSTP1-1 was the most active 
catalyst in GSH-conjugation of synthetical NAPQI in both rats and humans (19). Although 
GSTP1-1 is expressed in only low amounts in human liver (12), a recent clinical study by 
Buchard et al. suggests that homozygous carriers of the hGSTP1*C variant have a 
decreased risk for APAP hepatotoxicity (23). However, it has not been tested whether 
GSTP1-variants differ in the activity in inactivation of NAPQI.  

The use of the antipsychotic drug CLZ is restricted because of the risk of life-
threatening agranulocytosis and hepatotoxicity, both of which are considered to the 
result of bioactivation to a reactive nitrenium ion by myeloperoxidase and cytochrome 
P450s, respectively (24-26). The nitrenium ion of CLZ is efficiently inactivated by GSH, 
forming multiple regioisomeric GSH conjugates as summarized in Table 1. Dragovic et al. 
showed that hGSTP1-1 has high activity in the inactivation of reactive nitrenium ion by 
catalyzing both chlorine-substitution and GSH-addition reactions, Figure 1 (20). GSTP1-1 
is highly expressed in white blood cells (27) and hence polymorphism of GSTP1-1 might 
be a risk factor for occurrence of agranulocytosis in case mutations strongly affect the 
inactivation of the nitrenium ion. 
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Figure 1. Reactive intermediates of acetaminophen (a), clozapine (b) and diclofenac (c,d) and 
identified structures of GSH-conjugates formed by wild-type hGSTP1-1. NAPQI, N-acetyl-p-
benzoquinoneimine; DF-1',4'-QI, diclofenac 1',4'-quinoneimine; DF-2,5-QI, diclofenac 2,5-
quinoneimine. 
 

 
Treatment with the nonsteroidal anti-inflammatory drug DF is associated with 

serious gastrointestinal injury and rare cases of idiosyncratic hepatotoxicity (28,29). 
Although the exact mechanisms of these ADRs remain to be established, formation of 
reactive metabolites by cytochrome P450s is considered to play an important role in the 
onset of these toxic events (29,30). Based on the structure of GSH-conjugates identified in 
microsomal incubations at least four different reactive intermediates have been proposed 
for DF. Quantitatively the major ones are quinoneimines resulting from dehydrogenation 
of 4’-hydroxy diclofenac and 5-hydroxy diclofenac, Figure 1 (31). Minor GSH-conjugates 
result from a quinonemethide formed via oxidative decarboxylation (32), and an as yet 
unidentied reactive intermediate resulting in chlorine substitution of DF (33). We 
recently showed that hGSTP1-1 has high activity in catalysing GSH-conjugation of all 
reactive intermediates. Because hGSTP1-1 is abundantly expressed in the gastrointestinal 
tract, polymorphisms of hGSTP1-1 might be risk factor for the occurrence of 
gastrointestinal injury in case the amino acid substitutions influence GSH-conjugation of 
the different reactive intermediates formed by P450s.  

The aim of the present study was to investigate whether the allelic variants of 
hGSTP1-1 have different activity in the GSH conjugation of reactive metabolites generated 
by P450s in incubations of APAP, CLZ, and DF. Because the reactive intermediates of CLZ 
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and DF can be conjugated to GSH at different positions, Figure 1, also the effect of the 
mutations on regioselectivity of GSH-conjugation will be studied, which might be 
indicative for different binding orientations. Reactive intermediates were generated using 
human liver microsomes (HLM), and purified drug metabolizing mutants of bacterial 
CYP102A1 as bioactivation systems. The CYP102A1 mutants were selected because of 
their ability to produce human relevant GSH conjugates at high activity and to circumvent 
interference of microsomal GSTs (5, 20). 
 

2. Materials and methods 
2.1. Enzymes, plasmids and chemicals  

The bacterial CYP102A1 mutants CYP102A1 M11H, CYP102A1 M11H Phe87, and 
CYP102A1 M11 L437N were prepared and purified as described previously (20, 35, 36). 
Human liver microsomes (HLM), pooled from 50 donors, were obtained from Xenotech 
(Lenexa, United States) and contained 20 mg/mL protein. Escherichia coli XL-1 Blue cells 
containing the expression plasmid for human GSTP1-1, was kind gift from Prof. 
Mannervik (Department of Biochemistry and Organic chemistry, Uppsala University, 
Sweden). All other chemicals and reagents were of analytical grade and obtained from 
standard suppliers. 

 

2.2. Site directed mutagenesis of hGSTP1-1 isoforms 

Three variants of wild type hGSTP1-1 (hGSTP1*A), namely hGSTP1*B (Val105, 
Ala114), hGSTP1*C (Val105, Val114) and hGSTP1*D (Ile105, Val114), were constructed 
by site directed mutagenesis. The single mutants hGSTP1*B and hGSTP1*D were 
constructed using the expression vector pKKD-hGST P1-1 as the template. The double 
mutant hGSTP1*C was constructed by introducing Ile104Val mutation in pKKD-
hGSTP1*D (Ile105, Val114). The mutations were introduced by the Quikchange 
mutagenesis protocol using the following forward primers:   
Ile104Val :   CGC TGC AAA TAC GTC TCC CTC ATC TAC                

Ala113Val : C ACC AAC TAT GAG GTG GGC AAG GAT GAC 

The mutated amino acid position is indicated in bold. The reverse primers were 
exactly complementary to the forward primers. After mutagenesis, the presence of right 
mutations was verified by DNA sequencing (Service XS, Leiden, The Netherlands).  

 

2.3. Expression and purification of hGSTP1-1 enzymes  

Human GSTP1*A and its variants hGSTP1*B, hGSTP1*C and hGSTP1*D were 
expressed in E. coli XL-1 Blue cells. pKKD expression plasmids containing the different 
hGSTP1-1 genes, were transformed into E.coli XL-1 Blue cells. Expression and purification 
were essentially conducted as previously described (20). Purity of the enzymes was 
checked by SDS-polyacrylamide gel electrophoresis on a 12% gel with Coomassie staining 
as well as by reversed-phase liquid chromatography using a method adapted from 
Jenkins et al. (37). 
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Protein concentrations were determined according to the method of Bradford 
(38) with reagent obtained from Bio-Rad. The specific activity of the purified GSTs was 
assayed according to Habig et al. (39). The specific activities of the purified recombinant 
human GSTP1*A and its polymorphic variants using CDNB as a substrate were as follows: 
ʹͲǤͳ�Ɋ���Ȁ���Ȁ����������������
���ͳȗ�ǡ�ͳͲǤ�Ɋ���Ȁ���Ȁ����������������
���ͳȗ�ǡ�����
ͻǤʹ�Ɋ���Ȁ���Ȁ����������������
���ͳȗ������ͳǤ͵�Ɋ���Ȁ���Ȁ����������������
���ͳȗ�Ǥ 

 

2.4. Bioactivation of the drugs and GSH conjugates formation in the presence 
of hGSTP1-1 variants 

Incubations were performed using purified CYP102A1 M11H as bioactivation 
system for APAP (34). Mutant CYP102A1 M11H Phe87 was used for CLZ (35) and 
CYP102A1 M11 L437N for DF (21) as we have shown that these enzymes have high 
activity and selectivity for bioactivation to reactive intermediates. CLZ and APAP 
incubations were performed at a final enzyme concentration of 250 nM while for DF 
incubations were performed at a final BM3 concentration of 500 nM. All incubations were 
�������������ͳͲͲ�������������������������������ȋ���ǤͶȌ����������������������ʹͷͲ�Ɋ�Ǥ�
���������������������������������ͷͲͲ�Ɋ�Ǥ�����������������oncentration from the stock 
solutions was not more than 2% in the incubations. The allelic variants of hGSTP1-1 were 
���������� ������� ��� ͲǤʹͷǡ� ͲǤͷǡ� ͳǡ� ʹǡ� Ͷǡ� ���� ͺ� Ɋ������� ���� ��� ���������� ��� ������������ ����
linearity of product formation with protein concentration and to compare their activities. 
�� ������ �������������� ��� ͺ� Ɋ�� ��� ���� �������� ��������� ��� �
���ͳ-1 was used in the 
incubations to investigate enzymatic GSH conjugation of the other substrates. Incubations 
with hGSTP1-1 were performed in the presen������ͳͲͲ�Ɋ��
��Ǥ�������������������������
������������������ͲǤͷ����������ȋ�������������������Ȍ�������������������͵Ͳ��������ʹͶι�ǡ�
as described previously (20). For the other substrates, an NAPDH regenerating system 
(final concentrations: 0.5 mM NADPH, 20 mM glucose-6-phosphate and 2 units/mL of 
glucose-6-phosphate dehydrogenase) was used to start the reaction and incubations 
were performed for 60 min ���ʹͶ�ι�Ǥ���������������������������������������������������
�������������������ʹͷ�Ɋ�����ͳͲ�Ψ����-cold HClO4. ������������	�ʹͷͲ�Ɋ�����-cold methanol 
with 2% 50 mM ascorbic acid in water was added to stop incubations. All samples were 
centrifuged for 15 min at 14000 rpm. The supernatants were analyzed by HPLC and LC-
MS, as described below. 

Incubations were also per������� ������ ���� ��� �������������� ������Ǥ� ͷͲͲ� Ɋ��
���������������������ͳͲͲ��������������ǡ����ǤͶǡ�����͵Ͳ������������͵ι�������ͳ���Ȁ���
�������������������ǡ�ͳͲͲ�Ɋ��
������� ��� ����������������������������ͺ�Ɋ���
���ͳ-1. 
Reactions were started with 0.5 mM NADPH (final concentration). For DF and APAP, 
��������������������������� ���ͳͲͲ��������������ǡ����ǤͶǡ������ ����������������ʹͷͲ�Ɋ��
����� ������ ��������������� ��� ͷͲͲ�Ɋ�� ���������ǡ� ʹ���Ȁ�������������� ��������ǡ� ͳͲͲ�Ɋ��

��������������������������������������ͺ�Ɋ���
��P1-1. Reactions were initiated by the 
addition of NADPH regenerating system (final concentrations: 0.5 mM NADPH, 20 mM 
glucose-6-phosphate and 2 units/mL of glucose-6-phosphate dehydrogenase) and were 
��������������Ͳ��������͵ι�Ǥ�������������������������� depending on the substrate as 
described above and centrifuged at 14000 rpm for 15 min to remove precipitated 
proteins. 
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2.7. Analytical methods 

The analyses of the GSH-conjugates were performed by reversed-phase liquid 
��������������� ������ �� ����� ͷ� Ɋ�� �ͳͺ� ������� ȋͶǤ� �� ͳͷͲ���Ȍ� ��� ����������� �����ǡ�
������������	������������������������̻���ͳͺ�͵Ǥͷ�Ɋ���������ȋͶǤ���ͳͲͲ���Ȍ���������Ǥ�
For incubations of CLZ and DF, a gradient method was used where two mobile phases 
were mixed: eluent A (1% acetonitrile, 99% water, 0.2% formic acid) and eluent B (1% 
water, 99% acetonitrile, 0.2% formic acid). The gradient used was: 0 to 5 min isocratic at 
0% eluent B; 5 to 30 min a linear increase to 100%  eluent B; 30 to 30.5 min linear 
decrease to 0% eluent B;  30.5 to 40 min isocratic re-equilibration at 0% solvent B. The 
flow rate was 0.5 mL/min. For analysis of metabolites of APAP, an isocratic method was 
used with a mobile phase consisting of 18% methanol, 82% water, and 0.1 % 
trifluoroacetic acid (TFA) and a flow rate of 1 mL/min. Samples were injected at an 
��������������������ͷͲ�Ɋ������������������������Ȁ��������������������������������ʹͶ͵����
(APAP) or 254 nm (CLZ, DF). Quantification is based on the substrate standard curves, 
assuming that the extinction coefficients of the GSH adducts are equal to that of the 
substrate.  

All metabolites were identified using an Agilent 1200 Series Rapid resolution LC 
system was connected to a hybrid quadrupole-time-of-flight (Q-TOF) Agilent 6520 mass 
spectrometer, equipped with electrospray ionization (ESI) source and operating in the 
positive mode as described in Dragovic et al. (20). The characteristics of the GSH-
conjugates analyzed in the incubations are tabulated in Table 1. 

 

 
Table 1. Characteristics of the GSH conjugates formed by bioactivation of the drugs used in this 
study. 
           
Abbreviation GSH conjugates                            tret (min)       m/z       
                                                                                                                                                                                          ([M+H]+) 
           
Clozapine      
CG-1  6-(glutathione-S-yl)-clozapine                             14.3                       632.23  
CG-3  9-(glutathione-S-yl)-clozapine                            14.0                       632.23  
CG-4  7-(glutathione-S-yl)-clozapine NI                           13.5                       632.23  
CG-5  (1-4)-(glutathione-S-yl)-clozapine                            14.6                       632.23  
CG-6  8-(glutathione-S-yl)-deschloroclozapine                            11.8                       598.27 
Diclofenac      
M1  5-hydroxy-4/6-(glutathione-S-yl)-diclofenac         19.7                       617.09  
M2  4’-hydroxy-3’-(glutathione-S-yl)-diclofenac        20.0                       617.09  
M3  5-hydroxy-4/6-(glutathione-S-yl)-diclofenac        20.4                       617.09  
M5  4’-hydroxy-2’-(glutathione-S-yl)-diclofenac       19.7                       583.13  
DPAB-SG                     2-(2,6-dichlorophenylamino)-benzyl-                                    21.7                       557.13  
                                         S-thioether glutathione              
DF-SG  2’-(glutathione-S-yl)-deschlorodiclofenac                           19.5                       567.14  
Acetaminophen 
APAP-SG 3-(glutathion-S-yl)-acetaminophen  
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3. Results 

3.1. Activity of hGSTP1-1 variants in inactivation of clozapine nitrenium ion 

Consistent with previous results, addition of hGSTP1-1 to incubations of CLZ 
with CYP102A1 M11H Phe87 resulted in major changes of the profile and concentrations 
of GSH conjugates (20). For each of the allelic variants of hGSTP1-1, the increase in 
formation of GSH conjugates CG-4, CG-5 and CG-6 was proportional with the hGSTP1-1 
��������������������������������ͲǤͷ����ͺ�ρ��ȋ��������������ȌǤ�������ʹ�������������������
������������ͺ�ρ������
�TP1-1 variants. The amount of the total GSH conjugates of CLZ 
was increased 2.4 to 2.7-fold, when compared to the non-enzymatic conjugation. 
However, none of the three variants showed a statistically significant difference 
compared to wild-type hGSTP1*A. As shown in Figure 2A, the variants only showed 
slightly different profiles of GST-dependent GSH conjugates. For hGSTP1-1*B and 
hGSTP1-1*C CG-6 was produced at 2-fold higher amount than CG-5. For mutants hGSTP1-
1*A and hGSTP1-1*D conjugate CG-6 was produced at 2.7- and 2.5-fold higher amounts, 
respectively, than CG-5. The minor GSH conjugate, CG-4, was increased with the highest 
activity by hGSTP1*B and hGSTP1*C being 2 times higher comparing to hGSTP1*A, after 
subtraction of non-enzymatic conjugation. 

As can be seen from Table 2, the variants of hGSTP1-1 enzyme also did not show 
significant differences in total GSH conjugate formation when bioactivation reactions 
were performed with HLM which might be due to the almost 4-fold lower amounts of 
GSH-conjugates formed. However, similar differences in the ratio of GST-dependent 
conjugates CG-6 and CG-5 were observed. Again, hGSTP1-1*A and hGSTP1-1*D produced 
conjugate CG-6 at relatively higher amounts than CG-5. The effect on relative amount of 
CG-4 could not be confirmed because this conjugate is mainly produced by the 
microsomal GST present in HLM (19). 

 

3.2. Activity of hGSTP1-1 variants in inactivation of reactive metabolites of 
diclofenac 

As shown in Table 2, all hGSTP1-1 variants showed very high activity in 
catalysing GSH-conjugation of reactive DF metabolites when using CYP102A1 as 
bioactivating system. The total amount of GSH-conjugates was increased 7- to almost 9-
fold.  hGSTP1*A and hGSTP1*D showed the highest activity for the formation of total GSH 
conjugates. When corrected for the non-enzymatic conjugation hGSTP1*B and hGSTP1*C 
appeared to have 20% and 30% lower activity, respectively, compared to the other 
variants.  

DF is bioactivated by CYP102A1 to different reactive intermediates, of which 
diclofenac 1',4'-quinoneimine (DF-1'4'-QI), formed via 4'-hydroxylation, and diclofenac 
2,5-quinoneimine (DF-2,5-QI), formed via 5-hydroxylation, are quantitatively the major 
ones. As shown in Table 2, the GSH-conjugation of DF-1'4'-QI was more affected by the 
polymorphic mutations with hGSTP1*C exhibiting the lowest activity in formation of the 
corresponding GSH-conjugates M2 and M5. When correcting for the non-enzymatic 
reaction, hGSTP1*C showed almost 40% lower activity when compared to the wild type 
hGSTP1*A. Activities of hGSTP1*B and hGSTP1*D were 22% and 17% lower, respectively. 
No differences in the ratio of M2 and M5 were observed, Figure 3A.  
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A)   

 

 

 

 

 

 

 

 

B)  

 
 

 

 

 

 

 

 

Figure 2. ����������ͺ�ρ������
���ͳȗ�ǡ��
���ͳȗ�ǡ��
���ͳȗ�ǡ������
���ͳȗ��������������������������
of GSH-conjugation of the nitrenium ion of CLZ.  CLZ was bioactivated to reactive metabolites using 
CYP102A1 M11H Phe87 mutant (A) or HLM (B).  

 

 

What concerns the GSH-conjugation of DF-2,5-QI,  only hGSTP1*D appeared to 
have 25% higher activity than wild-type hGSTP1*A, whereas hGSTP1*C and hGSTP1*B 
showed similar activity. As shown in Figure 3B, small changes were observed in the 
regioselectivity of GSH-conjugation of DF-2,5-QI since the relative amount of GSH-
conjugate M1 was slightly higher in variants hGSTP1*A and hGSTP1*D. No significant 
differences were observed between the hGSTP1-1 polymorphic variants for the formation 
of the minor GSH conjugates DF-SG (m/z 567) and DPAB-SG (m/z 557) which are formed 
by the two minor bioactivation pathways (data not shown) (32,33). 

��� ����� ��� ���� ��� �������������� ������ǡ� ��������� ��� ͺ� ρ�� ��� �
��-variants 
increased the total GSH-conjugation of reactive metabolites of DF about 4-fold, Table 1.  
No significant differences were observed between the activities and regioselectivities of 
the hGSTP1-1 variants, which may be explained by the lower levels of reactive 
intermediates produced and the analytical error, Figure 4.  The fact that GSH-conjugation 
of DF-1'4'-QI is increased to a smaller extent by hGSTP1-1, whereas a significantly 
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different ratio of conjugates M2 and M5 was found, point to contribution of microsomal 
GST in the HLM incubations, Figure 4B. Again no significant differences were observed 
between the polymorphic variants of hGSTP1-1 for the formation of DF-SG and DPAB-SG 
(data not shown). 
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Figure 3. ����������ͺ�ρ���
���ͳȗ�ǡ��
���ͳȗ�ǡ��
���ͳȗ�ǡ������
���ͳȗ�����������������������������
GSH conjugation of DF-1',4'-QI (A) and DF-2,5-QI (B), using CYP102A1 M11 L437N mutant as 
bioactivation system. 
 

 

3.4 Activity of hGSTP1-1 variants in inactivation of acetaminophen reactive 
metabolites  

���� ��������� ��� ͺ� Ɋ�� ��� �
���ͳ-1 mutants to the incubation of APAP with 
���ͳͲʹ�ͳ��ͳͳ�ǡ��������������������ͳͲͲ�ρ��
��ǡ��������������������������������������-
SG about 10-fold, Table 2. Variants hGSTP1*A, hGSTP1*B and hGSTP1*D did not show 
statistically significant differences in conjugation of NAPQI. Only hGSTP1*C showed a 
15% decreased activity compared to hGSTP1*A. When using HLM as bioactivation system, 
however, no significant differences were found in the activity of the hGSTP1-1 variants. 
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Figure 4. ����������ͺ�ρ���
���ͳȗ�ǡ��
���ͳȗ�ǡ��
���ͳȗ�ǡ������
���ͳȗ�����������������������������
GSH conjugation of DF-1',4'-QI (A) and DF-2,5-QI (B), using human liver microsomes as 
bioactivation system. 

 
 
4. Discussion 

Because hGSTP1-1 is highly expressed in normal extrahepatic tissues and 
overexpressed in many tumors types, in some cases in response to antitumor drugs. 
Therefore, a large number of studies have been performed to investigate whether genetic 
polymorphism of hGSTP1-1 has consequences for the inactivation of carcinogenic 
diolepoxides of PAHs or alkylating antitumor drugs, such as thiotepa and chlorambucil, 
since these might be revelant for susceptibility to carcinogenesis and efficacy of 
antitumor treatment. Table 3 summarizes the relative activities observed for the hGSTP1-
1-variants with amino acid substitutions Ile105Val and/or Ala114Val when compared to 
wild-type hGSTP1-1*A, which is set at 100% for all compounds. The data shown in Table 
3 are based on the kcat/Km-values reported because this enzyme kinetical parameter will 
most likely the most relevant parameter to describe differences in enzyme activity at the 
low, physiologically relevant, concentrations of reactive carcinogens and toxicants. Only 
data is shown of studies in which at least three of the hGSTP1-1 variants were compared; 
for a more complete list see Table 4. 
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The results of the present study show that the amino acid substitutions Ile105Val 
and Ala114Val have differential effects on the activity of hGSTP1-1, dependent on the 
reactive intermediate involved, consistent with the previous studies which have been 
performed with chemically stable electrophilic compounds, see Table 3. For CLZ no 
significant differences were observed in the total rate by which the CLZ nitrenium ion is 
conjugated to GSH by hGSTP1-1. The only significant effect which was observed in both 
CYP102A1 and HLM incubations was a slight change in regioselectivity in GSH-
conjugation to the CLZ nitrenium ion. In both hGSTP1*B and hGSTP1*C, which share the 
Ile105Val substitution, an increase in the relative amount of GSH-conjugates CG-4 and CG-
5 was found while substitution of chlorine by GSH and formation of CG-6 was decreased, 
Figure 2. Although no association studies have been carried out yet to study the role of 
hGSTP1-1-polymorphism as risk factor for CLZ-induced agranulocytosis, the present data 
see to rule out that genetically determined differences in hGSTP1-1 activity in white 
blood cells might determine susceptibility. 

As shown in Tables 2 and 3, variant hGSTP1-1*B and hGSTP1-1*C both showed a 
significant decreased total activity in GSH-conjugation of reactive metabolites of DF, 
which could be mainly attribited to a decreased GSH-conjugation of DF-1',4'-QI, which is 
quantitatively the major reactive intermediate formed.  Both hGSTP1-1*B and hGSTP1-
1*C contain amino acid substitution Ile105Val which was also shown to be detrimental 
for the GSH-conjugation of the antitumor agents chlorambucil and thiotepa, and for the 
general GST-substrate CDNB but benificial for the catalysis of GSH-conjugation of 
ethacrynic acid and several carcinogenic diolepoxides of PAHs, Table 3. According to the 
available crystal structures of hGSTP1*A, hGSTP1*B and hGSTP1*C (42, 43), amino acid 
residue 105 is localized in the H-site of hGSTP1-1 and can affect enzyme activity in 
several ways, dependent on the substrate.  First, the Ile105Val substitution can affect the 
shape of the active-site, because the Val105 has more conformational freedom than 
Ile105. For large substrates, Val105 can point away from the active site, which allows the 
accommodating of larger substrates, such as BPDE, for catalysis (42).  Also, amino acid 
residue 105 is close to residue Tyr109, which for some substrates plays an important role 
in the catalytic mechanism of hGSTP1-1 by stabilizing the intermediate complex (44). 
Furthermore, substitution Ile105Val has shown to affect the 
hydrophobicity/hydrophilicity of the H-site of hGSTP1-1 by influencing the number of 
active-site water molecules which can affect substrate binding and/or product release 
(45).  Which of these mechanisms contribute to the decreased GSH-conjugation of DF-
'1,'4-QI and the slight change in regioselectivity of GSH-conjugation of CLZ-nitrenium ion 
is not known. 

A recent association study has shown that the frequency of hGSTP1*C-allele was 
significantly lower in APAP-poisoned patients than in insensitive patients, which suggests 
that this genotype may reduce the risk of APAP-hepatotoxicity (23). The results of the 
present study shows that the hGSTP1*C variant had the lowest activity in catalysing the 
GSH-conjugation of NAPQI, Table 1. However, this activity was only 15% lower than that 
of hGSTP1-1*A, which is not likely to be of toxicological relevance, also considering the 
fact that the current study was performed at reduced GSH-concentration, to minimize 
non-enzymatic GSH-conjugation, and that hGSTP1-1 is expressed in the human liver only 
to a significant extent in the biliary tree (11).   

In conclusion, the results of the present study show that the amino acid 
substitutions Ile105Val and Ala115Val in hGSTP1-1 have only relatively minor effect on 
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the activity of GSH-conjugation of the reactive metabolites of APAP, CLZ and DF. 
Differences in the rate of inactivation of their reactive intermediates are, therefore, 
unlikely to play a role in the susceptibility to their toxic side-effects.  However, in recent 
years it has been shown that GSTP1-1 also can directly influence signalling pathways 
underlying stress response, apoptosis, inflammation, and cell proliferation by protein-
protein interaction and protein glutathionylation (46). Interestingly, it was recently 
shown that only variants hGSTP1-1*A and hGSTP1-1*C were able to reactivate the 
antooxidant enzyme peroxiredoxin VI, whereas variants hGSTP1-1*B and hGSTP1-1*D 
were without effect, suggesting that these polymorphisms may influence human 
population susceptibility to oxidant stress (47). Therefore, these factors rather than 
interindividual differences in the rate of GSH-conjugation of reactive drug metabolites by 
hGSTP1-1 can play a role in susceptibility to adverse drug reactions induced by the drugs 
studied. 
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Abstract 

In the present study, a site-saturation mutagenesis library of drug metabolizing 
BM3 M11 with all 20 amino acids at position 87 was applied as biocatalyst for the 
production of stable and reactive metabolites of clozapine. Clozapine is an atypical 
antipsychotic drug where formation of reactive metabolites is considered to be 
responsible for several adverse drug reactions. Reactive intermediates of clozapine can 
be inactivated by GSH to multiple GSH conjugates, by non-enzymatic and glutathione S-
transferase (GST) mediated conjugation reactions. The structures of several GST 
dependent metabolites have not yet been elucidated unequivocally. The present study 
shows that the nature of amino acid at position 87 of BM3 M11 strongly determines both 
activity and regioselectivity of clozapine metabolism. Some mutants showed preference 
for N-demethylation and N-oxidation, whereas others showed high selectivity for 
bioactivation to reactive intermediates. The mutant containing Phe87 showed both high 
activity and high selectivity for the bioactivation pathway and was used for the large scale 
production of GST dependent GSH conjugates by incubation in presence of recombinant 
human glutathione S-transferase P1-1. Five human relevant GSH adducts were produced 
at high levels enabling structural characterization by 1H-NMR. This work shows that drug 
metabolizing BM3-mutants, in combination with GSTs, are very useful tools for the 
generation of GSH conjugates of reactive metabolites of drugs in order to enable their 
isolation and structural elucidation. 
 

1. Introduction 

Cytochrome P450 (P450s) are involved in the metabolism of approximately 80% 
of the drugs currently on the market (1, 2). In some cases drugs can be oxidized by P450s 
to electrophilic reactive intermediates, which subsequently can react with nucleophilic 
functional groups in biomolecules such as proteins and DNA. Also, stable metabolites 
might possess pharmacological activities that might be responsible for undesired adverse 
drug reactions. It is for these reasons that also the characterization of the biological 
properties of major metabolites is considered to be important for drug safety assessment 
(3). Therefore, methods are required to obtain the relevant drug metabolites in sufficient 
yield to allow structural elucidation and to study their pharmacological and toxicological 
properties. Metabolite production can be achieved by organic synthesis, electrochemical 
oxidation of parent drug and by biosynthesis using specific P450s. In particular, mutants 
of the bacterial cytochrome P450 BM3 (P450 BM3) are considered to have good 
perspective for the large scale production of human relevant drug metabolites, as this 
very stable enzyme possesses the highest activity ever recorded for a P450 (4). By 
combinations of site-directed and random mutagenesis many BM3 mutants have been 
obtained which are able to convert drugs and drug-like molecules to human relevant 
metabolites (5-8). In our previous work, four mutants of BM3 have been evaluated as 
biocatalysts for the bioactivation of several drugs to reactive intermediates (9). Drugs 
tested were acetaminophen, diclofenac and clozapine (CLZ), and formation of reactive 
intermediates was analyzed by measurement of GSH conjugates. For all drugs tested, 
most stable metabolites and reactive intermediates were produced at much higher 
activity by the BM3 mutants than by human and rat liver microsomes, supporting their 
potential for use in characterization of toxicologically relevant metabolites (9).  
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Recently, the highly active drug-metabolizing mutant BM3 M11 was used to 
investigate the role of human glutathione S-transferases in the inactivation of CLZ (10).  
CLZ is an atypical antipsychotic drug showing a low incidence of extrapyramidal side 
effects combined with excellent antipsychotic efficacy in schizophrenic and manic 
treatment-resistant patients (11-13). Approximately 1-2% of patients develop 
agranulocytosis. Enhanced serum transaminases were monitored with 37% of the 
patients while 0.06% of the patients had liver failure (14).  It is still unknown which 
factors predispose part of the patient population to these forms of CLZ toxicity. Based on 
the identification of several GSH conjugates, formation of a reactive nitrenium ion by 
peroxidases, hypochlorite and P450s has been proposed as a possible explanation for 
these ADRs (15-18).  In vitro and in vivo studies of CLZ have shown the formation of four 
GSH-conjugates with identical mass with MH+ ion at m/z 632.2 and one deschlorinated 
GSH conjugate with MH+ ion at m/z 598.3. All conjugates can be explained by direct 
conjugation of GSH at different positions of a reactive nitrenium ion and by chloro-
substitution of the nitrenium ion followed by reduction, see Figure 1 (10, 17). 
Unequivocal structure determination by 1H-NMR has been published for only two of the 
glutathione conjugates of CLZ (15, 16, 19). The major GSH conjugate (CG-1, Figure 1) was 
found to be conjugated at position 6 of the chlorinated aromatic ring, whereas a minor 
GSH conjugate (CG-3, Figure 1) was found to be conjugated at position 9 (15, 16). A third 
GSH conjugate with a MH+ ion at m/z 632.2 was only identified in in vitro incubations 
with human and rat liver microsomes and was tentatively assigned to position 7 (CG-4, 
Figure 1).  Two GSH-conjugates, with MH+ ion at m/z 632.2 and 598.3, were first 
discovered in bile of treated mice and rats and were originally proposed to originate from 
unidentified reactive intermediates formed in vivo (17).  However, we recently 
demonstrated that these GSH conjugates, CG-5 and CG-6 in Figure 1, are formed at high 
levels when CLZ incubations with purified BM3 M11 and human liver microsomes were 
supplemented with human glutathione S-transferases (10). Three of the four tested 
human glutathione S-transferases (hGSTs) showed strongly increased total GSH 
conjugation and also resulted in formation of different regioisomeric GSH conjugates of 
CLZ, Figure 1 (10).  

For two of the GSH conjugates that have been found previously, the structure has 
not been elucidated by NMR. Conjugate CG-4, which was found in incubations of CLZ with 
human liver microsomes, was tentatively assigned as conjugate at position 7 (17). GSH 
conjugate CG-5, which was identified in bile of rats and mice, was proposed to result from 
GSH conjugation to the non-chlorinated ring (17). The aim of the present study was to 
identify the structures of these GSH conjugates by 1H-NMR, by performing large scale 
incubations of CLZ with selective BM3 M11-mutants in presence of glutathione S-
transferase.  Because GST P1-1 appeared to be the most active hGST in the formation of 
enzyme-dependent GSH conjugates (10), this enzyme was selected for large scale 
production of GSH conjugates.   

Although BM3 M11 was previously shown to produce high levels of CLZ 
metabolites, the most abundant metabolites appeared to be N-demethylclozapine and 
CLZ N-oxide (9, 10). As a consequence, also GSH conjugates derived from these 
metabolites were produced, which strongly complicates isolation of CG-4 and CG-5. 
Recently, we showed that by changing the active site residue at position 87 of BM3 M11 
the regioselectivity of testosterone hydroxylation was strongly modified (20). 
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Therefore, in the present study, we first evaluated the effect of mutation at 
position 87 on the regioselectivity of CLZ metabolism in order to identify the most 
suitable biocatalyst for the bioactivation of CLZ and subsequent structural 
characterization of the formed GSH conjugates. The results show that the nature of the 
residue at position 87 strongly influences regioselectivity of CLZ metabolism and that by 
using a more selective P450 BM3 M11-mutant all five human relevant GSH conjugates of 
CLZ could be produced in high levels, enabling structural elucidation by 1H-NMR. 
 

2. Materials and methods 
2.1. Materials  

           All chemicals were of analytical grade and obtained from standard suppliers.  
 

2.2. Library construction  

Site-directed mutants of BM3 M11 at position 87 were constructed by mutagenic 
PCR using the Stratagene QuikChange XL site–directed mutagenesis kit (Stratagene, La 
Jolla, CA, USA) using 20 complementary pairs of mutagenesis primers (20). The 
mutagenic PCR was applied to a pBluescript vector containing the gene of the drug 
metabolizing BM3 M11, flanked by EcoR1 and BamH1 restriction sites. BM3 M11 contains 
mutations R47L, E64G, F81I, F87V, E143G, L188Q, Y198C, E267V, H285Y and G415S 
when compared to wild-type BM3 (9). The sequence of the forward primer was as 
follows: 5’-GCA GGA GAC GGG TTA XXX ACT AGT TGG ACG CAT-3’. The XXX represents 
the codon that was used to introduce the specific mutation at position 87. The reverse 
primer for the mutagenic PCR was a 34-mer 5’-CAT GCG TCC AAC TAG TYY YTA ACC CGT 
CTC CTG C-3’ in which the YYY is the reverse complement of codon XXX. The underlined 
bases indicate a new SpeI digestion site. The following codons (XXX) were used: Ala, GCC; 
Arg, CGG; Asn, AAC; Asp, GAC: Cys, UGC; Gln, CAG; Glu, GAG; Gly, GGG; His, CAC; Ile, AUC; 
Leu, CUG, Lys, AAG; Met, AUG; Phe, UUC; Pro, CCC, Ser, UCC; Thr, ACC; Trp, UGG; Tyr, UAC, 
and Val, GUG.  After mutagenic PCR, the plasmids were digested with EcoR1 and BamH1 
restriction enzymes and the genes of mutated BM3 M11 were cloned into a pET28a+ 
vector, which encodes for a N-terminal His-tag. The desired mutations in the P450 
domain were confirmed by DNA sequencing (Baseclear, Leiden, The Netherlands).  
 

2.3. Expression, isolation and purification of enzymes  

Expression of the P450 BM3 M11 mutants was performed by transforming 
competent E.coli BL21 cells with the pET28+-vectors, as described previously (20). 
Proteins were purified using Ni-NTA agarose, after which P450 concentrations were 
determined using carbon monoxide (CO) difference spectrum assay. Purity of the 
enzymes was checked by SDS-PAGE electrophoresis on 12% gel and Coomassie-staining.  
Protein purity was higher than 98% in all samples obtained. 

Human GST P1-1 was prepared and purified as described previously (10). 
Protein concentration was determined according to the method of Bradford (21) with 
reagent obtained from Bio-Rad. The specific activity of the purified GST was assayed 
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according to Habig et al. (22). The specific activity of the purified recombinant human GST 
P1-ͳ�������������������������������ʹǤͻ�ρ���Ȁ���Ȁ����������Ǥ 
 

2.4. Metabolism of CLZ by BM3 M11-mutants in presence of human GST P1-1 

Incubations using BM3 M11 mutants as bioactivation system were performed at 
a final enzyme concentration of 250 nM, as described previously (9). All incubations were 
performed in 100 mM potassium phosphate buffer (pH 7.4) and at a final volume of 250 
ρL. The substrate CLZ was incub���������������������������ͷͲͲ�ρM. GST P1-ͳ�ȋͺ�ρ�Ȍ�����

���ȋͳͲͲ�ρM) were added to the incubations in order to trap reactive CLZ nitrenium ion. 
Reactions were initiated by the addition of a NADPH regenerating system (0.2 mM 
NADPH, 1 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, final 
concentrations) and performed for 30 min at room temperature. In this time period, 
product formation was linear, as described previously (9). Reactions were terminated by 
��������� ��� ʹͷ� ρ�� ��� ͳͲΨ� ����4, and centrifuged for 15 min at 14000 rpm. The 
supernatants were analyzed by reversed-phase liquid chromatography using a Luna 5 Pm 
C18 column (150 mm x 4.6 mm i.d.; Phenomenex, Torrance, CA, USA) as stationary phase, 
���������� ��� �� ͶǤͲ� ��� έ� ͵ǤͲ� ��� �Ǥ�Ǥ� ��������� ������ ȋͷ� Ɋ�Ȍ� �ͳͺ� ������ �������
(Phenomenex). The gradient used was constructed by mixing the following mobile 
phases: eluent A (0.8 % acetonitrile, 99 % water, and 0.2 % formic acid) and eluent B 
(99 % acetonitrile, 0.8 % water, and 0.2 % formic acid). The first 5 min were isocratic at 
0 % eluent B; from 5 to 30 min the percentage of eluent B linearly increases to 100 %; 
from 30 to 35 min linear decrease to 0 % B and maintained at 0 % for re-equilibration 
until 40 min. The flow rate was 0.5 mL/min.  

Samples were analyzed using LC-MS/MS for identification and using UV/vis 
detection at 254 nm for quantification. The Shimadzu Class VP 4.3 software package 
(Shimadzu, Kyoto, Japan) was used for determination of peak areas in the UV 
chromatograms. A standard curve of CLZ was used to estimate the concentrations of the 
metabolites, assuming that the extinction coefficients of the metabolites at 254 nm are 
equal to that of CLZ. UV/vis spectra of clozapine and its metabolites, as determined online 
by diode array detection (180-400 nm), all showed similar spectra with maxima at 240, 
260 and 295 nm [data not shown]. The standard curve of CLZ was linear between 1 and 
ͳͲͲ�ρ�Ǣ�������������������������� ���������������Ȁ������������������������ͲǤͳ�ρ��ȏ�����
not shown].  

For identification of the metabolites, an Agilent 1200 series rapid resolution LC 
system was connected to a hybrid quadrupole-time-of-flight (Q-TOF) Agilent 6520 mass 
spectrometer (Agilent Technologies, Waldbronn, Germany), equipped with an 
electrospray ionization (ESI) source and operating in the positive mode. The MS ion 
source parameters were set with a capillary voltage at 3500 V; nitrogen was used as the 
desolvation and nebulizing gas a�� �� ��������� ���� ������������ ��� ͵ͷͲι�ǡ� ������� ���� ͺ�
L/min and nebulizer 40 psig. Nitrogen was used as a collision gas with collision energy of 
25V. MS spectra were acquired in full scan analysis over an m/z range of 50 to 1000 using 
a scan rate of 1.003 spectra/s. The MassHunter Workstation Software (version B.02.00, 
Agilent Technologies) was used for system operation and data collection. Data analysis 
was performed using Agilent MassHunter Qualitative analysis software.  

 



Generation of reactive intermediates 

167 

2.5. Preparative scale biotransformation  

The CLZ GSH conjugates produced on a preparative scale by large scale 
incubation with the most selective BM3 M11 mutant as biocatalyst. A 5 mL reaction 
volume ���������������������������ȋͳ�ρ�Ȍǡ����� ȋͷͲͲ�ρ�Ȍǡ�
���ȋͳͲͲ�ρ�), GST P1-1 (8 
ρM), and an NADPH regenerating system (0.2 mM NADPH, 1 mM glucose-6-phosphate, 
0.4 U/mL glucose-6-phosphate dehydrogenase) was prepared in potassium phosphate 
��������ȋͳͲͲ���ǡ����ǤͶȌǤ������������������������������������������������ʹͷι�Ǥ��� achieve 
�������������������������ǡ�������������������������������������������������ͶͲ�ρ�����
ͳʹͲ�ρ���ͳͳ����ͺǡ�ʹͲ�ρ�����ʹͷ����
��ǡ�ͷͲͲ�ρ����������������������ating system and 
ͳͲͲ�ρ�����ʹͲͲ�ρM GST P1-1. The final incubation volume was 8.4 mL. The reaction was 
terminated by adding 0.84 mL of 10 % HClO4 and centrifuged for 15 min at 14000 rpm. 
The supernatant was applied to a Strata X C-18 solid-phase extraction column 
(200mg/3mL, Phenomenex). The column was washed with 5 ml of H2O to remove salts 
and proteins. CLZ and its metabolites were subsequently eluted using 2 mL of methanol. 
The sample was evaporated to dryness and reconstituted in 2 mL of eluent A (0.8% 
acetonitrile, 99% water, and 0.2% formic acid). The sample was applied by manual 
injection on a preparative chromatography column Luna 5 Pm C18(2) column (250 mm x 
100 mm i.d.) from Phenomenex, which was previously equilibrated with 100% eluent A. 
A flow rate of 2 mL/min and a gradient using eluent A (0.8% acetonitrile, 99% water, and 
0.2% formic acid) and B (99% acetonitrile, 1% water, and 0.2% formic acid) was applied 
for separation of formed CLZ metabolites. The first 10 min were isocratic at 0% eluent B; 
from 10 to 65 min, the percentage of eluent B increased linearly to 65%; from 65 to 70 
min further increase of eluent B to 100%; from 70 to 80 min, there was a linear decrease 
to 0% B, and re-equilibration was maintained until 120 min. Metabolites were detected 
using UV detection (254 nm) and collected manually. Collected fractions were first 
analyzed for purity and identity by the analytical HPLC and LC-MS/MS methods as 
described above. The samples were evaporated to dryness under nitrogen stream and 
dissolved in 1 mL deuterium oxide to exchange acidic hydrogen atoms by deuterium 
atoms. Samples were evaporated to dryness in the vacuum concentrator, the residues 
were redissolved in 500 PL of methyl alcohol-d4 and 1H-NMR spectra were recorded at 
room temperature. 1H-NMR-analysis was performed on Bruker Avance 500 (Milan, Italy), 
equipped with cryoprobe. 1H-NMR measurements were carried out at 500.23 MHz. 
 

3. Results 

3.1. Expression of BM3 M11 mutants  

A saturation mutagenesis library with a different residue at position 87 of BM3 
M11 was recently created in our laboratory (20). All 20 mutants were expressed in E.coli 
BL21 with pET28+-vectors; the P450 quantification was done by CO difference spectrum. 
For the mutants Pro87, Asp87 and Ser87, the reduced CO difference spectra only showed 
a peak at 420 nm, suggesting that these amino acids negatively affect the folding and/or 
stability of BM3 M11. The mutant containing Asn87 showed a significant peak at 420 nm 
with intensity of almost equal to that at 450 nm. Mutants containing Met87, His87 and 
Gly87 showed a small shoulder at 420 nm next to the peak at 450 nm. All other mutants 
only produced peaks with maxima ranging from 448 nm to 450 nm (20). 
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3.2. Activity and regioselectivity of metabolism of CLZ by BM3 M11-mutants  

When CLZ was incubated at analytical scale with the 20 different BM3 M11 
mutants in presence of GSH and hGST P1-1, 13 different metabolites were found in total 
(Table 1), which is consistent with our previous studies (9, 10). Five of the metabolites 
result from N-oxidation (C-1), N-demethylation (C-2) and piperazine ring cleavage (C-3), 
and combinations of these (C-4 and C-5), Figure 1. In total, eight different GSH conjugates 
were found resulting from bioactivation of CLZ to reactive intermediates.  Five of these 
GSH conjugates result from addition reactions of the CLZ nitrenium ion with GSH (CG-1, 
CG-3, CG-4, CG-5) and chlorine-substitution (CG-6). The LC-MS/MS spectra of these five 
GSH-conjugates are tabulated in Table 2; the assignment of the fragments have been 
described elsewhere (9, 10, 17). GSH conjugates designated CG-2 and CG-8 were found to 
be secondary GSH conjugates, resulting from bioactivation of N-demethylclozapine to its 
corresponding nitrenium ion and subsequent addition (CG-2) and chlorine-substitution 
(CG-8). CG-7 corresponds to a di-GSH conjugate that most likely results from GSH 
conjugation to the GSH containing nitrenium ion formed after chlorine substitution of the 
CLZ nitrenium ion, Figure 1. 

As shown in Table 1, the nature of amino acid residue at position 87 has strong 
influence on both the activity and regioselectivity of formation of CLZ metabolites. As 
indicated in the last column, the highest activity was generally observed with mutants 
containing apolar amino acids at position 87. The mutants containing Ala87, Val87 and 
Ile87 showed the highest activity, followed by Phe87 and Trp87. Mutants containing 
Leu87, Met87, Gly87 and Pro87 showed only very low activity (<6% conversion). Among 
the mutants containing polar uncharged residues, Tyr87 and Gln87 were the most active, 
showing 25.7% and 9.4% conversion, respectively. The mutants containing negative 
charged residue Asp87 and Glu87 had low activity with 7.4% and 2.4% conversion, 
respectively.  For the mutant Asp87, no total activity could be calculated, as the P450 
concentration could not be measured. The mutants containing positive charged residue 
His87, Arg87 were poorly active in the metabolism of CLZ (<2% conversion). The 
mutants having Lys87, Ser87, and Thr87 at position 87 did not show any activity. 

Figure 2 shows the effect of amino acid residue 87 on the relative amounts of the 
stable metabolites formed via pathways a, b and c (Figure 1) and the relative amounts of 
GSH conjugates resulting from bioactivation of CLZ (pathway d, Figure 1).   

For all the mutants the major stable metabolite was N-demethylclozapine (C-2) 
followed by CLZ N-oxide (C-1), Figure 2A. Significant differences were observed in the 
ratios of C-2 to C-1. In case of mutants containing Ile87, Leu87, Met87 and Glu87, N-
demethylation was up to 10-fold more abundant than N-oxidation. In contrast, with 
mutants containing Phe87, His87, Asp87, Gly87 and Gln87 the ratio of N-demethylation to 
N-oxidation ranged from 1.2 to 2. The other stable metabolites (C-3, C-4 and C-5) 
represented only minor metabolites for all the mutants. 

As illustrated in Figure 2B, the metabolic profile of the formed GSH adducts 
appears to be relatively constant for all the active mutants, supporting the hypothesis 
that all GSH conjugates originate from the CLZ nitrenium ion (10). In all cases, GSH 
conjugate CG-6 is the major metabolite and accounts for on average 41 ± 5 % of the total 
GSH conjugates. Considering the fact that conjugate CG-7 most likely also originates from 
the same intermediate nitrenium ion (Figure 1), the chlorine substitution pathway 
represents 47 ± 4% of the total GSH conjugation in presence of hGST P1-1. GSH conjugate 
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CG-5, which was tentatively assigned to the conjugate in which the GSH moiety is 
attached to the non-chlorinated aromatic ring, represents on average 25 ± 3% of the GSH 
conjugates. Conjugate CG-1, which is the major conjugate formed in non-enzymatic GSH-
conjugation, represents on average to 22 ± 2% of the GSH conjugates. GSH conjugates CG-
3 and CG-4, as shown in Figure 1, represented less than 2% of the total of GSH conjugates. 
GSH conjugate CG-8 that most likely results from the chlorine substitution of the 
nitrenium ion of N-demethylclozapine represents 3.5 ± 2.3% of the total GSH conjugates. 

 

Figure 2. Relative amounts of CLZ metabolites formed by CYP102A1 M11H mutants with different 
amino acid residues at position 87. Incubations were carried out for 30 minutes in presence of 100 
ρ��
�������ͺ�ρ��������������������
����ͳ-1. (A) relative amounts of stable CLZ-metabolites (C-
1 to C-5) and total of GSH-conjugates (CG-total); (B) relative amounts of individual GSH-conjugates. 

 
 
The secondary GSH conjugates, CG-2 (MH+ ion at m/z 618.23) and CG-8 (MH+ ion 

at m/z 584.25) derived from N-demethylclozapine, and CG-7 (MH+ ion at m/z 903.35) 
derived from CG-6 (MH+ ion at m/z 598.27), have not been found in human studies and 
therefore were not further characterized. 

To select the most appropriate BM3 M11 mutant for large scale production of 
GSH conjugates, it was investigated which mutant showed a combination of high overall 
activity and high selectivity towards the bioactivation pathway (route d in Figure 1).  
Figure 3 shows the ratio of total of GSH conjugates to stable metabolites for each active 
mutant, ranked from low to high ratio. 
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As shown in Figure 3, for the four most active mutants, having active site amino 
acids Ala87, Val87, Tyr87 and Ile87, less than 35% of the total of metabolites represented 
GSH conjugates.  For mutants containing Gln87, Phe87 and Gly87, however, 
approximately 80% of the metabolites found were GSH conjugates, indicating that for 
these mutants bioactivation to CLZ nitrenium ion (route d, Figure 1) is the major pathway 
of metabolism.  Because the mutant containing Phe87 has the highest activity, this mutant 
was selected for large scale production of GSH conjugates for structural elucidation by 1H-
NMR. 

 

Figure 3. Percentage of total of GSH-conjugates formed in incubations of CLZ with BM3 M11 
mutants with different amino acid residues at position 87, ranked in order of activity. Numbers 
below each bar represent the activity of the BM3 M11 mutants relative to the most active mutant 
BM3 M11 Ala87. 

 
 

3.3. Effect of human GST A1-1 

Figure 4 shows the preparative HPLC chromatogram, with UV-detection at 254 
nm, obtained after large scale incubation of CLZ with mutant Phe87.  

After isolation of the individual metabolites by preparative HPLC, their purity 
and identity was first analyzed by analytical HPLC and LC/MS/MS method, resulting in 
the assignment of metabolites and parent compound as presented in Figure 5.  By hourly 
additions of enzymes and cofactors, over 90% of CLZ was converted, according to the 
strong decrease in parent compound. Based on the peak areas approximately 98% of the 
metabolites found were GSH conjugates.  This higher percentage of GSH conjugation, 
compared to the analytical scale incubations, can be explained by further bioactivation of 
the stable metabolite C-2, producing CG-8 and CG-2. The low yield of CLZ N-oxide (C-1) 
might be explained by non-enzymatic reduction of the N-oxide by NADPH and GSH that 
was added hourly to the incubation (18). 

For the five primary GSH conjugates of CLZ, having MH+ ion at m/z 632.23 (CG-1, 
CG-3, CG-4 and CG-5) and MH+ ion at m/z 598.25 (CG-6), 1H NMR spectra were recorded 
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to identify the position of GSH conjugation. Figure 5 shows the signals of the aromatic 
hydrogen atoms of the CLZ-moiety of these GSH conjugates. The correlation spectroscopy 
(COSY) spectra of these signals, which were recorded to facilitate the assignment of the 
aromatic hydrogen atoms as shown in Table 2, are shown in Figure 6-8. The signals of the 
aliphatic hydrogen atoms were consistent with the glutathionyl moiety (data not shown). 
 

Figure 4. Preparative HPLC-UV chromatogram of metabolites obtained by large scale incubation of 
CLZ with BM3 M11 Phe87 in presence of hGST P1-1 and GSH. 
 

 
Figure 5A shows the 1H-NMR spectrum of conjugate CG-1, which is the major 

GSH conjugate formed in absence of glutathione S-transferases (9, 10).  This conjugate, 
which eluted after 32.5 min in the preparative HPLC (Figure 4), was previously identified 
as C-6 glutathionyl clozapine. The spectrum shown in Figure 5A is in full agreement with 
the 1H-NMR spectra of C-6 glutathionyl clozapine which was identified previously as the 
major GSH conjugate formed by peroxidases and electrochemical oxidation of CLZ (15, 16, 
19). Two doublets at 6.96 and 7.23 ppm correspond to the protons at positions 9 and 7, 
with a small coupling constant of 2.5 Hz due to proton in the meta-position. Fischer et al. 
previously assigned doublet at 6.96 ppm to H7 and the signal at 7.23 ppm to H9 (15). 
Madsen et al., however, assigned doublet at 6.96 ppm to H9 and the signal at 7.23 ppm to 
H7 (19). Which signal corresponds to which proton could not be determined 
unequivocally, only based on chemical shift and coupling pattern (16). However, this does 
not affect the identification of the position of GSH conjugation because each theoretically 
possible GSH conjugate is expected to have its own unique combination of multiplicity 
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and coupling pattern. Therefore, for signals that could not be assigned unequivocally to 
specific aromatic protons, two possibilities are shown in Table 2. The assignments before 
the slashes correspond to the first possibility, whereas the assignments after the slashes 
correspond to the second possibility, according to the COSY spectra (Figure 6). 

 
 

 

 
 
 
 
 

 

Figure 5. Aromatic regions of the 1H-NMR spectra of clozapine GSH-conjugates. The conjugates 
were obtained by purification by preparative HPLC of metabolites formed by BM3 M11 Phe87, GSH 
and hGSTP1-1. (A) CG-1, C-6 glutathionyl CLZ; (B) CG-3, C-9 glutathionyl CLZ; (C) CG-4, C-7 
glutathionyl CLZ; (D) CG-6, C-8 glutathionyl deschloroclozapine; (E) CG-5, C-2 glutathionyl CLZ or C-
3 glutathionyl CLZ. 
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Figure 5B shows the 1H-NMR spectrum of purified CG-3, which eluted at 32.2 min 
with preparative HPLC. This conjugate was previously found to be a minor GSH conjugate, 
with MH+ ion at m/z of 632.2, in incubations of CLZ with liver microsomes and BM3 M11 
when incubated in absence of glutathione S-transferases (9, 10). The spectrum shown in 
the Figure 5B can only be explained by conjugation of GSH at the C-9 position of clozapine. 
Two signals at 6.83 and 7.02 ppm showed only a coupling of 8 Hz and are therefore 
assigned to the neighboring H6 and H7 protons. The COSY spectrum of conjugate CG-3 
(Figure 7A) was identical to that of C-9 glutathionyl clozapine as published previously 
(16). The corresponding chemical shifts and coupling constants for the observed signals 
are given in Table 2. 

Two more conjugates having a MH+ ion at m/z 632.2 eluted at retention times 
30.9 min and 33.1 min (Figure 4) and appeared to correspond to conjugates CG-4 and CG-
5 (10).  On the basis of the order of elution and small differences in fragmentation 
patterns in LC-MS/MS (17), the structure of these GSH conjugates were previously 
tentatively assigned to C-7 glutathionyl clozapine (CG-4) and a conjugate with GSH bound 
to the non-chlorinated ring (CG-5). However, so far no 1H NMR spectra have been 
reported confirming the exact positions. Spectra for this two conjugates are shown in the 
Figure 5C and 5E, respectively.  

Figure 5E shows the 1H-NMR-spectrum of the aromatic region of CG-5, which is 
found at high levels when GSH conjugation is catalyzed by GST P1-1 (Figure 4).  This 
spectrum can only be explained by conjugation of GSH at position 2 or 3 of the non-
chlorinated aromatic ring. In each conjugate in which the non-chlorinated aromatic ring 
is not substituted, two triplets are found corresponding the protons H2 and H3 that are 
both strongly coupled by two ortho-protons, Figure 5A-D. These typical triplets could not 
be found in the spectrum of CG-5 (Figure 5E), indicating that one of these protons is 
substituted. Furthermore, the signals at 6.96, 7.37 and 7.45 ppm could be attributed to 
protons H6, H9 and H7 of the chlorinated ring, according to the COSY-spectrum (Figure 7B). 
This confirms that addition of the GSH is at the non-chlorinated aromatic ring. Although 
the loss of characteristic triplets show that GSH is conjugated to position 2 or 3, the 1H-
NMR and COSY-spectra could not differentiate between positions 2 or 3 for GSH binding. 
When GSH is bound at the 2 position, the signal at 6.85 ppm will correspond to proton H3, 
because this signal has a ortho-coupling of 8.5 Hz due to H4 and a weak coupling of 1.5 Hz 
due to the meta proton in position 1. The doublet with ortho-coupling of 8.5 Hz at 6.78 
ppm corresponds to H4, coupled by H3, whereas the doublet with weak coupling of 1.5 Hz 
at 6.95 ppm would correspond to H1 by meta-coupling by proton H3.  When GSH is bound 
at the 3-position, the signal at 6.85 ppm will correspond to proton H2, because with ortho-
coupling of 8.5 Hz due to H1 and a weak coupling of 1.5 Hz due to the meta proton in 
position 4. The doublet with an ortho-coupling of 8.5 Hz at 6.78 ppm corresponds to H1, 
coupled by H2, whereas the doublet with a weak coupling of 1.5 Hz at 6.95 ppm 
corresponds to H4 by meta-coupling by proton H2. 

Conjugate CG-4 is the fourth GSH conjugate with MH+ ion at m/z 632.2, and was 
previously tentatively assigned to C-7 glutathionyl clozapine (10). However, theoretically 
this can also represent a conjugate with GSH bound to one of the other positions of the 
non-chlorinated aromatic ring.  This GSH conjugate eluted at 30.9 min with preparative 
HPLC, Figure 4. Because this conjugate is produced at very low yield, several large scale 
incubations were performed to obtain enough material to record a 1H-NMR-spectrum 
with sufficient signal-to-noise ratio. Although this small amount of the conjugate 
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appeared to be contaminated by an unknown compound, the COSY-spectrum allowed us 
to solve the spectrum, despite the strong contaminant signal at 7.10 ppm, (Figure 5C, 
Figure 8A).  Based on these spectra this GSH conjugate is identified as C-7 glutathionyl 
clozapine, consistent with the previous proposals (10, 17).  Firstly, two triplets at 7.04 
and 7.37 could be assigned to the protons H2 and H3. Two sharp singlets at 7.01 and 7.03 
ppm are attributed to isolated protons that do not have ortho- or meta-coupling. If GSH 
was bound to position 7, protons at position 6 and 9 would lose their ortho and meta 
couplings by H7. Two signals centered at 7.28 and 7.07 ppm represent proton H1 and H4, 
which showed both ortho- and meta-coupling by H2 and H3, Table 2. Although the signal 
at 7.07 partially overlaps with the signal of the impurity, the COSY-spectrum confirmed 
that signal centered at 7.07 ppm is a doublet with ortho-coupling.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 6. COSY NMR-Spectrum of the aromatic region of C-6 glutathionyl clozapine (CG-1). 
Absolute assignment of protons was not possible, therefore each signal is indicated by two 
assignments corresponding to the two possible solutions. Assignments before the slash correspond 
to solution 1; assignments after the slash correspond to solution 2. 
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The fifth GSH-conjugate for which a 1H-NMR spectrum is recorded is CG-6, which 
was the major GSH conjugate found in the incubations in presence of hGST P1-1, and 
which showed a MH+ ion at m/z 598.25 by LC-MS/MS-analysis. In the preparative HPLC 
system used, this GSH conjugate eluted at 27.6 min, Figure 4. Figure 5D and Figure 8B 
show the 1H-NMR and COSY spectra obtained. Two triplets centered at 7.04 and 7.35 ppm 
with small meta-couplings correspond to the protons H3 and H2 at the non-chlorinated 
aromatic ring. The signals centered at 7.00 and 7.30 ppm correspond to protons H1 and 
H4, as demonstrated by the combination of both ortho and meta coupling by protons H2 
and H3.  The signals at 6.82, 7.01 and 7.12 ppm correspond to protons H6, H7 and H9 
respectively, based on the coupling patterns and COSY-spectrum (Figure 8B). On the basis 
of this spectrum and mass spectrum it was confirmed that this conjugate correspond to C-
8 glutathionyl deschloroclozapine. 

 

4. Discussion 

Currently, there is an increasing interest in developing novel methodologies to 
produce human relevant drug metabolites on a large scale in order to enable structural 
characterization of metabolites and test their pharmacological and toxicological 
properties. One of the approaches is to make use of genetically engineered cytochromes 
P450s that are developed for the catalysis of regio- and stereoselective hydroxylation of 
chemicals at high activity. In particular the bacterial cytochrome P450 BM3 from Bacillus 
megaterium has high potential as a biocatalyst for these purposes because this enzyme is 
the most active P450 discovered so far and because the substrate selectivity and 
metabolic profile can be manipulated by site-directed and/or random mutagenesis (6, 7).  
One of the BM3 mutants that show high activity in drug metabolism is BM3 M11, which 
contains 10 different amino acid substitutions compared to wild-type BM3. This BM3 
mutant was shown to be highly active in metabolizing a variety of drugs to human 
relevant metabolites, including reactive intermediates (5, 9, 10). Recently, we have 
performed a saturation mutagenesis study in which the active-site residue at position 87 
was mutated to all 20 possible amino acids (20). In BM3 M11 the residue at this position 
is Val87, which was introduced at an early stage of the mutagenesis process, to expand 
the substrate selectivity to drug metabolism (23). In the saturation mutagenesis study in 
which all amino acids were evaluated at position 87, we recently demonstrated that the 
type of amino acid at position 87 has strong effect on substrate selectivity when 
comparing a series of alkoxyresorufins (20). In this study it was also demonstrated that 
the nature of the amino acid at position 87, strongly influences the regioselectivity of 
testosterone hydroxylation of BM3 M11. 

In the present study, the library of BM3 M11 mutants with different amino acids 
at position 87 was evaluated with CLZ as substrate.  CLZ is a drug that can be metabolized 
by peroxidases and P450s to multiple metabolites, including reactive nitrenium ions that 
might be involved in adverse drug reactions associated with CLZ therapy. BM3 M11 has 
been shown to produce high levels of most human relevant metabolites of CLZ, which are 
represented in Figure 1. All metabolites can be explained by four different initial 
oxidative pathways: N-demethylation (a), N-oxidation (b), piperazine-ring opening (c) 
and dehydrogenation to a reactive nitrenium ion (d). Although BM3 M11 with residue 
Val87 produced significant amounts of reactive nitrenium ion (as identified as GSH 
conjugates), the major pathways of metabolism are N-demethylation and N-oxidation, 
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which explain approximately 70% of the total of metabolites.  The aim of this study was 
to investigate whether residue 87 also controls the regioselectivity of CLZ metabolism, 
and to investigate whether a mutant could be identified with higher selectivity toward the 
bioactivation to the toxicologically relevant CLZ nitrenium ion. A more selective P450 
BM3 mutant would be more useful for the generation of high levels of CLZ GSH-
conjugates that still require structural confirmation by 1H-NMR.  So far, the structure of 
only two of the GSH-conjugates shown in Figure 1 has been elucidated by 1H-NMR and 
mass spectrometry. However, the structures of the GSH-conjugates found in bile of rats 
and mice, and which also have MH+ ions at m/z 632.2 (17) have not yet been 
characterized by 1H-NMR. 

As shown in Table 1, changing the amino acid residue at position 87 of BM3 M11 
has strong effects on the total activity and regioselectivity of CLZ oxidation.  The mutants 
Ala87, Val87, and Ile87 were found to be the most active, as was found previously with 
alkoxyresorufins and testosterone (20). These mutants have a small and apolar residue in 
position 87. This seems consistent with the previous hypothesis that replacement of the 
bulky Phe87 in wild type BM3 by smaller amino acids creates space for the bulky 
substrates that allows better positioning with respect to the activated oxygen species, 
resulting in higher activities and coupling efficiencies (24-26). However, in the present 
study relatively high activities were also found in the BM3 M11 mutants containing the 
relatively bulky amino acids Phe87, Tyr87 and Trp87. Previously, replacing Phe87 by 
Tyr87 in wild-type BM3 was found to be detrimental for activity towards long-chain fatty 
acids, probably by disruption of the hydrophobic interaction by the phenol-group.  In case 
of BM3 M11 the presence of these bulky amino acids apparently is less restrictive for 
bulky substrates because in presence of Phe87 and Tyr87 both testosterone (20) and CLZ 
are metabolized at high activity. Apparently, by the combination of ten mutations present 
in BM3 M11 the topology of the active site and/or substrate access channel has changed 
significantly, explaining the much wider substrate selectivity compared to wild-type BM3. 

As shown in Figure 2A, the nature of amino acid 87 has strong effect on 
regioselectivity of CLZ metabolism.  When considering the stable metabolites that are 
formed via pathways a, b and c (Figure 1), the major metabolite with all mutants was N-
demethylclozapine (C-2), although the N-oxide (C-1) was also produced at significant 
levels.  However, the ratio of N-demethylation to N-oxidation appeared to be quite 
dependent on the nature of amino acid residue at position 87. For example, for the 
mutants containing Leu87 and Ile87, N-demethylation was almost 10-fold higher than N-
oxidation.  In the mutant containing Phe87, N-demethylclozapine and CLZ N-oxide were 
formed in almost the same amount. However, the relative contribution of N-oxidation in 
all incubations might be somewhat underestimated, because all incubations were 
performed in presence of GSH which is known to reduce CLZ N-oxide back to CLZ (27).  
Therefore, in case of Phe87 N-oxidation of CLZ might even be higher in absence of 
reductive agents. In case of the human P450s, it has been shown that CYP1A2 
preferentially metabolizes CLZ by N-demethylation, whereas CYP3A4 is mainly 
responsible for production of CLZ N-oxide (27).  However, the factors that determine the 
ratio of N-demethylation and N-oxidation are still unclear. Different presentation of the 
piperazine N-methyl group to the oxidative species at the active site might explain why 
some human P450s preferentially catalyze N-demethylation, whereas others 
predominantly catalyze N-oxidation. 
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One of the aims of the present study was to identify mutants with high activity 
and selectivity for bioactivation of CLZ to the reactive nitrenium ion. As shown in Figure 
2A several mutants produced high levels of GSH conjugates (CG-total), indicative for 
relative high selectivity in the formation of the reactive nitrenium ion. Other mutants 
showed strong preference in catalyzing formation of N-demethylclozapine and CLZ N-
oxide. However, from the results it is unclear what features of the amino acid side-chain 
determines selectivity for bioactivation.  For example, the BM3 M11-mutant containing 
the bulky Phe87 showed high selectivity and activity in formation of GSH conjugates, 
whereas the mutants containing the bulky Tyr87 and Trp87 preferentially catalyzed 
formation of stable metabolites. Future detailed protein modeling studies including those 
evaluating protein dynamics and substrate mobility might help to rationalize the different 
regioselectivities observed. Figure 2B shows the relative amounts of the different GSH 
conjugates that are formed in incubations of CLZ with BM3 mutants in presence of 
recombinant hGST P1-1. Consistent with our previous study, the major pathway of GST 
P1-1 catalyzed GSH conjugation is substitution of the chlorine-atom of the CLZ nitrenium 
ion (10). The resulting GSH bound nitrenium ion is subsequently reduced by NADPH or 
GSH, to form CG-6, or further conjugated to GSH, to form CG-7 (Figure 1). The fact that 
with all mutants the same ratio of GSH conjugates is formed strongly suggests that all 
form from the same reactive intermediate. 

Mutant Phe87 was selected for large scale biosynthesis of GSH conjugates 
because this mutant combined high activity with high preference for the bioactivation 
pathway, Figure 3. Previous studies, aiming at the characterization of GSH conjugates of 
CLZ, showed that non-enzymatic GSH conjugation to the CLZ nitrenium ion, formed by 
peroxidases or electrochemically, mainly produced a GSH conjugate bound at the C-6 
position of CLZ and minor amounts of conjugate bound at the C-9 position. The structures 
of these two GSH conjugates have been elucidated by 1H-NMR.   However, in vivo studies 
with rats and mice have shown that in bile two major GSH conjugates are excreted that do 
not correspond to these two conjugates (17). Also, incubations with rat liver microsomes 
showed small amounts of a fifth GSH conjugate with MH+ ion at m/z 632.2 (17).  It was 
initially concluded that these GSH conjugates might originate from as yet unidentified 
reactive intermediate produced in vivo. However, we recently demonstrated that these 
alternative GSH conjugates probably are resulting from GST catalyzed inactivation of the 
CLZ nitrenium ion (10). By using mutant Phe87, we were able to produce significant 
amounts of all GSH conjugates, for which the structures were not yet elucidated 
unequivocally by 1H-NMR.  Because four GSH conjugates were found with MH+ ion at m/z 
632.2, it was previously concluded that for at least one of the conjugates, GSH is bound to 
the non-chlorinated aromatic ring of CLZ. The present study shows that conjugate 
designed CG-5, which is a major product in presence of hGST P1-1 has the GSH moiety 
bound to the non-chlorinated ring at the position  2 or 3 (Figure 5).  For the minor 
conjugates CG-4, we were able to confirm binding at the 7 position, as it was tentatively 
assigned based on fragmentation pattern in LC-MS/MS (17). 

In conclusion, the present study shows that mutation of residue 87 in drug 
metabolizing mutant BM3 M11 has strong influence on activity and regioselectivity of CLZ 
metabolism. Using a mutant that combined high activity and high selectivity for CLZ 
bioactivation, we were able to produce sufficient amounts of as yet tentatively assigned 
GSH conjugates to characterize their structures by 1H-NMR. This study confirms the high 
potential of BM3 mutants as tool to characterize human-relevant metabolites. 
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Abstract 

Clozapine is known to cause hepatotoxicity in a small percentage of patients. 
Oxidative bioactivation to reactive intermediates has been proposed as possible 
mechanism. However, in contrast to their role in formation of N-desmethylclozapine and 
clozapine N-oxide, the involvement of individual P450s in the bioactivation to reactive 
intermediates is much less well characterized. The results of the present study show that 
six out of fourteen recombinant human P450s were able to bioactivate clozapine. CYP3A4 
and CYP2D6 showed the highest specific activity. Enzyme kinetical characterization of 
these P450s showed comparable intrinsic clearance implicating that CYP3A4 would be 
more important because of its higher hepatic expression compared to CYP2D6. Inhibition 
experiments using pooled human liver microsomes confirmed the major role of CYP3A4 
in hepatic bioactivation of clozapine. By studying bioactivation of clozapine in human 
liver microsomes from 100 different individuals, an 8-fold variability in bioactivation 
activity was observed. In two individuals bioactivation activity exceeded N-demethylation 
and N-oxidation activity. Quinidine did not show significant inhibition of bioactivation in 
any of these liver fractions, suggesting that CYP2D6 polymorphism is not an important 
factor in determining susceptibility to hepatotoxicity of clozapine. Therefore, 
interindividual differences and drug-drug interactions at the level of CYP3A4 might be 
factors determining exposure of hepatic tissue to reactive clozapine metabolites. 
Previously, we have shown that hGSTs, specifically polymorphic hGST M1-1, have a 
significant role in catalyzing GSH conjugation of reactive metabolites of clozapine formed 
by cytochrome P450s. Combination of interindividual variability in the activity of these 
enzymes due to genetic polymorphism and/or drug-drug interactions might explain high 
risk of the small group of patients to severe clozapine toxicity. 

 
1. Introduction 

Clozapine (CLZ) is an atypical antipsychotic drug, which causes fewer 
extrapyramidal side effects than other neuroleptics (1-3). However, because of its risk for 
severe agranulocytosis it is recommended only as a second line drug for patients with 
schizophrenia who do not respond to typical neuroleptic drugs (2, 3). Next to 
agranulocytosis, mild hepatotoxicity has been reported as a side effect of CLZ in 37 % of 
patients. However, in 0.06 % of patients it may progress to liver failure (4). Although the 
exact mechanism is not known yet, formation of reactive metabolites has been proposed 
as a possible explanation for these adverse drug reactions (5-8). 

Analysis of urinary metabolites of clozapine-treated patients has shown that 
clozapine is extensively metabolised by P450s (9, 10). Several studies have been 
performed in order to identify the role of individual P450s in the oxidative metabolism of 
CLZ to its major metabolites, N-desmethylclozapine (DMCLZ; C-2) and clozapine N-oxide 
(CLZ-NO; C-1), see Figure 1 (7, 11-16). The combined results of these in vitro studies 
showed that both CYP1A2 and CYP3A4 are playing major roles in the biotransformation 
of CLZ to these two metabolites. In vivo studies point to a major role of CYP1A2 in the 
pharmacokinetics of CLZ (17). Furthermore, the involvement of polymorphic CYP2D6 and 
its role in the formation of unidentified metabolites other than N-demethylclozapine and 
N-oxide using cells that specifically express CYP2D6 was also described (18). No 
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association has been found for metabolizer status with regard to debrisoquine (CYP2D6) 
or (S)-mephenytoin (CYP2C19) (19, 20).  

Several studies have shown that CLZ is bioactivated by human liver microsomes 
(HLM) to a reactive nitrenium ion (7, 8, 21, 22). Furthermore, formation of an iminium ion 
resulting from dehydrogenation of the piperazine-ring of CLZ was demonstrated using 
cyanide as trapping agent, which is able to trap hard electrophiles (23-25). So far no 
bioactivation studies have been performed using recombinant human P450 isoenzymes 
because in none of previous studies GSH or cyanide was included to trap reactive 
intermediates. Therefore, the aim of the present study was to identify the isoenzymes of 
human P450s which are involved in the hepatic bioactivation of CLZ. The formation of 
reactive intermediates of CLZ was determined by quantifying GSH conjugation in 
incubations with individual recombinant human CYPs and by performing inhibition 
studies in incubations with pooled HLM using P450-isoform selective inhibitors. 
Formation of reactive intermediates was measured by using GSH and cyanide as trapping 
agents to measure the formation of nitrenium ions and iminium ions, respectively. Finally, 
to study the interindividual variability in hepatic biotransformation and bioactivation of 
CLZ, incubations were performed with HLM of 100 individuals was quantified.  

 
 

 
Figure 1. Metabolic scheme of identified oxidative metabolites of clozapine formed by cytochrome 
P450s. Structures of proposed reactive nitrenium and iminium ions are shown between brackets, 
and are based on identified structures of adducts to GSH and cyanide. 
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2. Materials and methods 
2.1. Materials  

Supersomes containing cDNA-expressed human cytochrome P450 (CYP) 
enzymes were purchased from BD Biosciences (Breda, Netherlands). These enzymes 
were CYP1A1 (Lot No. 35400), CYP1A2 (Lot No. 21667), CYP2A6 (Lot No. 33769), 
CYP3A4 (Lot No. 38275), CYP3A5 (Lot No. 44743), CYP1B1 (Lot No. 26314), CYP2B6 (Lot 
No. 62543), CYP2C8 (Lot No. 62556), CYP2C9*1(Arg144) (Lot No. 41274), CYP2C18 (Lot 
No. 11301), CYP2C19 (Lot No. 62542), CYP2D6*1 (Lot No. 38273), CYP2E1 (Lot No. 
44748) and CYP2J2 (Lot.No. 456264). Human liver microsomes (HLM; Lot No. 0710619), 
pooled from 50 donors, were obtained from Xenotech (Lenexa, USA) and contained 20 mg 
protein/mL. DMCLZ and CLZ-NO were purchased from Sigma Aldrich (Netherlands). 7-
Hydroxyclozapine (7-OH-CLZ; C-6) and 9-hydroxyclozapine (9-OH-CLZ; C-7) were 
prepared by the Udenfriend reaction as described previously (26). All other chemicals 
and reagents were of analytical grade and obtained from standard suppliers.  Expression 
and purification of human GSTP1-1 was done as described previously (22). Protein 
concentrations were determined according to the method of Bradford (27) with reagent 
obtained from Bio-Rad (München, Germany). The specific activity of the purified 
recombinant human GST P1-1, which was assayed according to Habig et al. (28), was 27.9 
ρ���Ȁ���Ȁ����������ǡ��������������������������Ǥ� 
 

2.2. Incubations of CLZ with recombinant human P450s 

Incubations with recombinant human P450 were performed at CLZ 
concentrations of 10 and 100 PM (22). Duplicate incubations were performed in 100 mM 
potassium phosphate buffer (pH 7.4) at a final volume of 200 PL. The individual cDNA-
expressed CYP1A1, CYP1A2, CYP2A6, CYP3A4, CYP3A5, CYP1B1, CYP2B6, CYP2C8, 
CYP2C9*1, CYP2C18, CYP2C19, CYP2D6*1, and CYP2E1 were incubated for 30 minutes at 
37 oC with CLZ at a final P450 concentration of 50 nM. Formation of reactive nitrenium 
ion was determined by including 100 PM GSH and 8 PM GSTP1-1 in the incubations. 
GSTP1-1 was previously shown to be highly active in conjugation of the CLZ nitrenium 
ion (22). Besides GSH, potassium cyanide (1 mM) was also used as trapping reagent to 
detect formation of the reactive iminium ion resulting from oxidative bioactivation of the 
piperazine ring (24). All incubations were initiated by the addition of 500 PM NADPH 
(final concentration).  After 30 minutes, the reactions were terminated by the addition of 
20 PL 10% ice-cold HClO4. To precipitate denaturated proteins, the samples were 
centrifuged for 15 min at 14000 rpm. The supernatants were analysed by HPLC, as 
described below. 

 

2.3. Determination of enzyme kinetic parameters of oxidative metabolism of 
CLZ. 

For the most active recombinant P450s and HLM, the enzyme kinetic parameters 
of product formation were determined. First the ranges were determined where the 
enzyme activity is still linear with enzyme concentration and incubation time. Based on 
these experiments, enzym concentrations used were were 50 nM recombinant P450 and 
1 mg microsomal protein of HLM. Incubation time was 15 minutes.  The incubations were 
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performed using CLZ concentrations ranging from 1 to 1000 PM. Specific activities were 
calculated and plotted against substrate concentrations. Enzyme kinetic parameters Km 
and Vmax were determined by nonlinear regression according to the Michaelis-Menten 
equation, using GraphPad Prism software (San Diego, CA).  
 

2.4. Inhibition of metabolite formation in incubations of CLZ with pooled 
human liver microsomes by isoenzyme-specific inhibitors of P450s 

The contribution of individual P450s in metabolite formation were also studied 
by incubating CLZ with pooled HLM in presence or absence of specific inhibitors of 
individual P450 enzymes. The final concentration of HLM was 1 mg protein/mL. 
Incubations were performed in 100 mM potassium phosphate buffer (pH 7.4) and at a 
final volume of 250 PL. The concentration of CLZ was 100 PM and the final concentration 
of DMSO in incubations (used for stock solution of CLZ) was less than 1%. GSH 
conjugation was performed in addition of 100 PM GSH and 8 PM GSTP1-1. P450 selective 
inhibitors, furafylline (FURA, 10 PM), ketoconazole (KTZ, 2 PM and 20 PM), 
sulfaphenazole (SPZ, 10 PM), tranylcypromine (TCP, 25 PM), quinidine (2 PM), and 
diethyldithiocarbonate (DDC, 20 PM), were used to investigate the involvement of 
CYP1A2, CYP3A and CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, respectively. 
These inhibitors and inhibitor concentrations have been previously shown to offer 
isoenzyme-selective inhibition (29-32). All inhibitors except DDC were dissolved in 
methanol and the final concentration of the solvent in the incubations was not exceeding 
1 %. DDC was dissolved in water. Reactions were initiated by the addition of 500 PM 
NADPH (final concentration) and incubated for 30 min at 37 qC. Incubations containing 
the mechanism-based inhibitors furafylline, tranylcypromine, and DDC were 
preincubated for 15 min in the presence of NADPH before addition of CLZ. The reactions 
were terminated by the addition of 25 PL of 10 % HClO4 and centrifuged for 15 min at 
14000 rpm. The supernatants were analyzed by HPLC and LC-MS, as described below. 
Control incubations without CLZ were performed under the same conditions to ensure 
that the presence of inhibitors did not interfere with the quantification of formed 
metabolites. Incubations without inhibitor were performed as a control as well. All 
incubations were performed in duplo.  
 

2.5. Incubations of CLZ with individual human liver microsomes  

Liver microsomes were prepared of liver pieces from 100 individuals from a liver 
bank (approved by the Ethical Review Board) established at the Department of 
Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden as described 
previously (33). Protein contents were determined according to the method of Bradford 
(27) with reagent obtained from Bio-Rad using bovine serum albumin as standard. The 
microsomes were stored in potassium phosphate buffer (100 mM, pH 7.4) at -ͺͲι��������
use.  

Incubations with HLM obtained from 100 individuals were performed for 30 min 
���͵ι��������������������������������ͲǤͳ����������������������Ȁ��ǡ��������������������ͷ�
mM GSH. The concentration of CLZ was 100 PM. The reaction was initiated with 0.5 mM 
NADPH and terminated by perchloric acid, as described above. Incubations were also 
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performed in presence of 2 PM quinidine to investigate the involvement of CYP2D6 in the 
bioactivation of clozapine.  
 

2.6. Analytical methods 

All samples were analysed by reversed-phase HPLC as described previously, 
using LC-MS/MS for identification and UV/Vis detection at 254 nm for quantification of 
formed metabolites (22). Standard curves of commercially available DMCLZ and CLZ-NO 
references were used for quantification of these two metabolites. A standard curve of CLZ 
was used to estimate the concentrations of the formed GSH and cyanide conjugates, 
assuming that their extinction coefficients are equal to that of CLZ.  
 

3. Results 

3.1. Oxidative metabolism of clozapine by pooled human liver microsomes  

Previously, CLZ was shown to be metabolised by pooled HLM to both CLZ-NO, 
DMCLZ and GSH conjugates (21, 22). Consistent with these studies, CLZ-NO (C-1) and 
DMCLZ (C-2) were the major stable metabolites formed by pooled HLM, Figure 2. In total 
six GSH conjugates of CLZ were found in incubations of HLM in presence of GST P1-1. The 
structure of conjugates CG-1, CG-3, CG-4, CG-5 and CG-6 are shown in Figure 1. According 
to its m/z value of 452.18 (2+), conjugate CG-7 represents a secondary metabolite of CG-6, 
resulting from the presence of an additional glutathionyl group. In addition, two minor 
stable metabolites were formed resulting from partial degradation of the piperazine ring, 
CLZ-C2H2 (C-3) and CLZ-C3H4 (C-4). Analysis by the highly sensitive LCMS-Q-TOF 
instrument revealed the formation of two minor peaks with the m/z value of 343.14 (C-6, 
and C-7), eluting between 15.5 and 18.5 minutes which correspond to hydroxylated CLZ 
metabolites (Figure 3). Only C-6 could also be detected by UV-detection, Figure 2. Using 
the references obtained by the Udenfriend reaction (26), the metabolites correspond to 7-
hydroxyclozapine (C-6) and 9-hydroxyclozapine (C-7). 
 

3.2. Effect of isoenzyme-selective inhibitors on metabolism of clozapine by 
pooled human liver microsomes  

Figure 4 shows the effect of the isoenzyme-selective inhibitors on the formation 
of DMCLZ, CLZ-NO and total of GSH conjugates by pooled HLM. The results obtained are 
expressed as % of control HLM incubation in which no inhibitor was added.  

The only inhibitor showing very significant inhibition of CLZ bioactivation was 
KTZ, which reduced the formation of total GSH conjugates ��� ͷͺǤͺ� Ψ� ��� ʹ� ρ�Ǥ� ��� ��
�������������� ��� ʹͲ� ρ�ǡ� ���� ���������� 
��� ������������ ��� ǤͲ� ΨǤ� ���� ���� ����
inhibited formation of GSH conjugates only to a low extent, 18.0 and 19.3 %, respectively. 
Results for inhibition of individual conjugates formation were matching these for total 
GSH conjugates, Figure 4B. These results indicate that CYP3A4 is the major isoenzyme 
involved in bioactivation of CLZ by pooled HLM. 
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C-7

Figure 3. Extracted ion chromatograms of m/z 343,14 of incubations of CLZ with HLM, 
recombinant human CYP3A4 and CYP2D6. C-1, clozapine N-oxide; C-6, 7-hydroxyclozapine; C-7, 
unidentified; C-8, 9-hydroxyclozapine. 

 
 

Inhibition studies on formation of the two major stable metabolites of CLZ, 
revealed involvement of CYP1A2 and CYP3A4 in the N-demethylation and mainly CYP3A4 
in the N-oxidation of CLZ. FURA inhibited the demethylation by 36.2 % while KTZ 
reduced the forma�����������������ʹ͵Ǥ�Ψ�����ͶͶǤʹ�Ψ����ʹ�����ʹͲ�ρ�ǡ�������������Ǥ�����
and SPZ only slightly changed formation of DMCLZ, 9.3 and 6.8 %, respectively while TCP 
and DDC did not inhibit formation of this metabolite. Only KTZ showed significant 
inhibition on formation of CLZ-��ǡ�ͳǤͻ�Ψ���������������������ʹ�ρ������ͻǤ�Ψ����ʹͲ�ρ�Ǥ�
All other inhibitors did not show any effect on N-oxidation of CLZ.  

 

3.3. Oxidative metabolism of clozapine by recombinant human P450 enzymes 
Oxidative metabolism of CLZ by recombinant human P450s were determined at 

���������� ��������������� ��� ͳͲ� ����ͳͲͲ�ρ�����Ǥ� ���� ͳͲ� ρ�� �������������� ��������� ����
therapeutically relevant hepatic concentrations level of CLZ (34, 35) ��������ͳͲͲ�ρ������
commonly used in previous in vitro studies (11-16). Serum concentrations of CLZ extend 
������������͵�ρ������������������������������������(34, 35). Taking into account that 
hepatic tissue concentrations are ten times higher, the clinically relevant hepatic tissue 
concentrations were estimated to range up t��͵Ͳ�ρ��(36). The specific activities by which 
each metabolite was formed by the individual recombinant P450s are shown in Table 1. 
All metabolites, which are formed by HLM, were also represented in incubations with 
recombinant P450 enzymes as shown in Figure 1. 
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3.3.1. Bioactivation of clozapine 
Figure 5 shows the relative activities of individual recombinant human P450s in 

bioactivation of CLZ using GSH and potassium cyanide as trapping agents.  Six of the 
recombinant P450s were able to bioactivate CLZ to variable extent. At both 10 and 100 
PM CLZ, CYP3A4 appeared to be the most active enzyme, followed by CYP2D6. 

CYP1A1, CYP1A2, CYP3A5, and CYP1B1 all showed less than 20% of the activity 
of CYP3A4 activity at these two substrate concentrations. CYP2A6, CYP2B6, CYP2C8, 
CYP2C9, CYP2C18, CYP2C19, and CYP1E2 did not show any measurable formation of GSH 
conjugates. Specific activities (nmol/min/nmol P450) for formation of total GSH 
conjugates are given in Table 1 while details of the individual GSH conjugates are 
presented in Table 2. The ratios of the three formed GSH conjugates did not significantly 
change between the different enzymes, suggesting that all GSH conjugates are formed 
from the same reactive intermediate, as proposed previously (37).  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of CYP450 inhibitors on the metabolism of clozapine by HLM to: A) clozapine N-
oxide (CLZ-NO), N-desmethylclozapine (DMCLZ) and total of GSH conjugates (CG-1, CG-4, CG-5 and 
CG-6); and B) individual GSH conjugates. Data are expressed as % of control activity and represent 
mean of duplicate determinations.  
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When incubations of CLZ with individual P450s were performed in the presence 
of potassium cyanide, a cyano adduct of the clozapine iminium ion with m/z 352.13 was 
observed. As shown in Figure 5B, the highest activity was found CYP2D6 and CYP2C18. 
CYP1A2, CYP2A6, and CYP3A4 showed approximately % of CYP2D6 activity, respectively. 
All other CYPs had very low or no activity. Specific activities (pmol/min/pmol P450) of all 
P450s for formation of cyanide conjugate are given in Table 1.  
 

 
Figure 5. Formation of GSH- and cyanide-reactive metabolites of clozapine by recombinant human 
P450s. Rates of formation were measured as total of GSH conjugates (CG-1, CG-5 and CG-6) (A) and 
cyanide adduct (B) when ���������������ͳͲ�ρ������ͳͲͲ�ρ�����Ǥ�������� ���������� ���������of 
duplicate measurements and are given as %, where 100 % correspond to the activity of the most 
active enzyme.  

 

 
3.3.2. Formation of stable metabolites of clozapine by recombinant human 
P450s 

The results from incubations with CLZ concentration of 100 PM (Figure 6A) 
show that specific activity of DMCLZ formation was highest with CYP2D6 and lower with 
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CYP1A2, CYP3A4, CYP2C18, and CYP2C19, being 27, 16, 17, and 16 % of CYP2D6 activity, 
respectively. CYP1A1, CYP3A5, CYP1B1, CYP2C8, and CYP2C9 showed very low activity, 
while the other P450s were inactive. At 10 PM CLZ incubations, highest activities of N-
demethylation were observed with CYP2D6, CYP2C18 and CYP2C19, respectively.  

 

 
Figure 6. Formation of clozapine N-oxide (CLZ-NO) and N-desmethylclozapine (DMCLZ) by 
recombinant human P450s. Rates of formation of DMCLZ (A) and CLZ-NO (B) when incubated with 
ͳͲ� ρ�� ȋ����� ����Ȍ� ���� ͳͲͲ� ρ�� ���� ȋ������ ����ȌǤ� ������� ���������� ���� ����� ��� ����������
measurements and are given as %, where 100 % correspond to the specific activities 
(pmol/min/pmol CYP) of the most active enzyme (Table 1). 

 
 
CYP3A4 exhibited the highest catalytic activity with respect to CLZ N-oxidation, 

followed by CYP1A2 and CYP2D6 which showed 66 and 29 % of CYP3A4 activity at 100 
PM CLZ, respectively, Figure 6B.  CYP3A5, CYP1B1, and CYP2C19 were less efficient 
having only 15, 11, and 10 % of CYP3A4 activity, respectively. CYP1A1, CYP2C8, CYP2C9, 
and CYP2C18 showed. CYP2A6, CYP2B6, and CYP1E2 did not mediate any measurable 
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conversion of CLZ. In 10 PM incubations, CYP1B1 and CYP2C19 activity increased to 35 
and 30 % of CYP3A4 activity, respectively while CYP1A2 activity decreased to 24 % of 
CYP3A4 activity. Specific activities (pmol/min/pmol P450) of all CYPs for both stable 
metabolites are given in Table 1.  

Using the highly sensitive LCMS-Q-TOF instrument two minor hydroxy 
metabolites with m/z of 343,14 were also produced by the recombinant human P450s 
(Figure 3). Due to low yields, evaluation of the enzymes involved in their formation was 
determined based on LC/MS peak areas. The metabolite with the retention time at 18.2 
min, which was identified as 7-hydroxyclozapine (C-6) was produced mainly by CYP1A1 
in 10 PM CLZ incubations while in 100 PM CLZ incubations CYP1A2 was the most 
important for its production. The second hydroxy metabolite which was identified as 9-
hydroxyclozapine (C-7), and having retention time at 20.7 min, was produced mainly by 
CYP3A4. It was also found in small quantities in incubations with CYP1A1, CYP1A2, 
CYP2B6, CYP2C18, CYP2D6, and CYP2E1. 

 

3.4. Enzyme kinetic characterization of P450-dependent metabolism of 
clozapine by pooled human liver microsomes and recombinant human 
CYP2D6 and CYP3A4 

The enzyme kinetic parameters of pooled HLM and two most active CYP enzymes 
for the bioactivation of CLZ (CYP3A4 and CYP2D6) were determined by varying CLZ 
substrate concentrations from 1 to 1000 PM. For both recombinant CYPs substrate 
inhibition was observed at concentrations above 250 PM (data not shown). The enzyme 
kinetic parameters for these isoenzymes were therefore estimated from the initial part of 
the substrate-velocity plots; the last two points at 750 and 1000 PM were excluded. The 
KM and Vmax values and the intrinsic clearance, Vmax/KM, of the P450 enzymes are shown in 
Table 3. 

In the pooled HLM incubations, the enzyme kinetic parameters for total GSH 
conjugate formation were 125.7 PM and 1266 nmol/min/mg protein for KM and Vmax 

values, respectively. For CLZ N-demethylation a KM of 268.5 PM and Vmax of 3215 
nmol/min/mg protein was found.  For CLZ N-oxidation these values were 250.1 PM and 
2130 nmol/min/mg protein, respectively, Table 3. These results led to the 1.1 and 1.2-
fold higher intrinsic clearance (Vmax/KM) for total GSH conjugates than for DMCLZ and 
CLZ-NO, respectively. The KM and Vmax values for DMCLZ and CLZ-NO are somewhat 
higher than previously determined in literature (11, 15, 16), although higher values (>300 
PM) have also been reported for N-oxide formation (15, 16). Also, our results are in 
agreement with Zhang et al. (11) who showed that KM values for DMCLZ and CLZ-NO are 
similar. When comparing enzyme kinetic parameters of recombinant CYP3A4 and 
CYP2D6, both KM and Vmax values for the formation of total GSH conjugates were 
somewhat higher for CYP3A4 (30.3 PM and 3.1 nmol/min/nmol CYP) than those 
determined for CYP2D6 (21.9 PM and 2.8 nmol/min/nmol CYP). Because of its lower KM 
value, a 26 % higher intrinsic clearance was found for CYP2D6.  

Concerning the stable metabolites, the KM for N-demethylation was about 2-fold 
higher for CYP3A4 (47.6 PM) than for CYP2D6 (25.3 PM) while for the Vmax values it was 
opposite, 19.9 nmol/min/nmol CYP for CYP3A4 and 32.8 nmol/min/nmol CYP for 
CYP2D6. This resulted in a 3.1-fold lower intrinsic clearance for CYP3A4. For CLZ-NO 
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formation, CYP3A4 displayed somewhat higher KM and Vmax values (92.7 PM and 9.5 
nmol/min/nmol CYP) than CYP2D6 (84.1 PM and 6.1 nmol/min/nmol CYP), resulting in a 
29 % increase of intrinsic clearance.  
 

3.5. Interindividual variability in clozapine bioactivation by human liver 
microsomes 

To investigate the interindividual variability in microsomal biotransformation of CLZ, 
��������������������������������������������������������������������������ͳͲͲ�Ɋ�Ǥ�����
amounts of the formed metabolites (DMCLZ, CLZ-NO, and total GSH conjugates) are 
displayed in Figure 7, with the samples ranked from highest to lowest GSH-conjugate 
formation. The total of GSH conjugates formation varied over an 8.3-fold range (0.26-2.16 
Ɋ�Ǣ��������ͲǤʹ�Ɋ�Ȍǡ���������������������������������������ͷǤͳ-fold range (0.43-2.19 
Ɋ�Ǣ��������ͲǤͻͷ�Ɋ�Ȍ��������-NO over a 9.4-fold range (0.17-ͳǤͷͻ�Ɋ�Ǣ��������ͲǤͷͲ�Ɋ�ȌǤ�
The larger variation for CLZ-NO formation than for DMCLZ is in agreement with previous 
results obtain with liver fractions obtained from fourteen individuals by Zhang et al. (11).  
Interestingly, two HLM-fractions, indicated by stars in Figure 7, showed very high GSH 
conjugate formation when compared to formation of DMCLZ and CLZ-NO. When 
correlating formation of GSH-conjugates to DMCLZ and CLZ-NO relatively low 
correlations were found: DMCLZ vs. total CLZ-SG, r2 = 0,384; CLZ-NO vs. total CLZ-SG, r2 
= 0,624.  The low correlations might be explained by the fact that multiple P450s are 
involved in these metabolites, as shown in Figures 4 and 5.  Because inhibition of CYP2D6 
had only minor effect in pooled HLM, also inhibition studies with quinidine were 
performed to investigate if in any of the liver fractions CYP2D6 plays a significant role in 
bioactivation of CLZ.  The treatment of the panel of human liver microsomal samples (n = 
100 subjects) with quinidine did not show significant inhibition of the formation of total 
GSH conjugates (data not shown). 
 

4. Discussion 

Bioactivation of CLZ to reactive metabolites in the different target tissues is 
generally accepted as a cause for its ADRs. Occasional cases of liver injury in patients 
treated with CLZ might be the result from local bioactivation to a reactive nitrenium ion 
by hepatic P450s (8). In addition, bioactivation of CLZ to a reactive iminium ion, which 
can be trapped by cyanide, in microsomal incubations, as has been described (23-25), 
might contribute to hepatotoxicity. Although these reactive CLZ metabolites has been 
demonstrated in many in vitro studies using HLM, only very limited information is 
available on the role of individual P450s in bioactivation of CLZ (7).  
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Figure 7. Metabolism of CLZ by different individual human liver microsomes at substrate 
concentration of 100 ɊM. Concentrations of total of GSH conjugates (A), DMCLZ (B) and CLZ-NO (C) 
��������������������͵Ͳ��������������������������ͲǤͳ���Ȁ������������ͳͲͲ�ρ���������������������ͷ�
mM GSH. Two individuals with high bioactivation activity compared to N-demethylation and N-
oxidation are marked by grey column and asterix. 

 

 
Several previous studies already described involvement of individual human 

CYPs in formation of the stable metabolites DMCLZ and CLZ-NO (11-16). The first studies 
performed evaluated only a limited number of recombinant human CYPs. The most 
recent study of Zhang et al. (11) was the most complete in which 14 commercially 
available CYPs and three flavin-containing monooxygenases were evaluated. The results 
of the present study are consistent with those of Zhang et al: N-oxidation of CLZ was 
catalyzed mainly by CYP3A4 and by CYP1A2 to a lesser extent, whereas N-demethylation 
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was catalysed by several enzymes of which CYP2D6 displayed the greatest catalytic 
activity. As CYP1A2 and CYP3A4 are implicated as the major enzymes involved in CLZ 
biotransformation, it was concluded that the variability in activity of these two enzymes 
in individuals is responsible to large extent for the observed differences in the profile of 
pharmacokinetic drug interactions (11). However, because in none of these previous in 
vitro studies GSH was included to study formation of GSH-conjugates, the bioactivation 
pathway has been overlooked so far.  

As shown in Figure 7, bioactivation of CLZ, when quantified by the total of GSH 
conjugates, appears to be a relatively important pathway when compared to N-
demethylation and N-oxidation pathways. DMCLZ formation which is the major pathway 
of CLZ metabolism was on average only 1.6-fold higher than bioactivation. In the set of 
100 HLM fractions, two individuals even showed higher activity of bioactivation when 
compared to N-demethylation and N-oxidation pathways. To determine which P450s 
contribute to the bioactivation pathways, studies with recombinant P450s and enzyme-
specific inhibitors were performed. As shown in Figure 5A, recombinant human CYP3A4 
showed the highest specific activity in the formation of GSH conjugates, whereas also 
relatively high activity was observed with recombinant CYP2D6. Lower bioactivation 
activity was observed with CYP1A1, CYP1A2, CYP3A5, and CYP1B1. When using cyanide 
as trapping agent, CYP2D6 also seems to be the most active enzyme involved in the 
bioactivation of CLZ to reactive iminium ion, with CYP2C18 also showing high activity, 
Figure 5B. When determining enzyme kinetic parameters for the three pathways of CLZ 
metabolism, it appeared that CYP2D6 displayed a 1.3- and 3.1-fold higher intrinsic 
clearance for GSH conjugates and DMCLZ, respectively, when compared to CYP3A4. For 
CLZ-NO the difference in intrinsic clearances was 1.4-fold higher for CYP3A4 comparing 
to CYP2D6.  

Although CYP2D6 showed relatively high specific activity in all three oxidative 
pathways of CLZ-metabolism, Table 1, the CYP2D6-specific inhibitor quinidine did not 
show significant inhibition of these pathways in incubations of CLZ with pooled HLM and 
any of the 100 individual HLM fractions (data not shown). These results support previous 
observations of Pirmohamed et al. (7) in which no significant difference was observed in 
covalent protein binding between incubations of microsomes of a limited number of 
individuals which were genotyped as poor en extensive metabolisers of CYP2D6. Also, no 
significant differences in the pharmacokinetic parameters of CLZ were observed between 
poor and extensive metabolizers of debrisoquine (20), suggesting that the genetic 
polymorphism of CYP2D6 has little clinical relevance for CLZ pharmacokinetics and CLZ 
bioactivation.  

Considering the fact that CYP3A4 is on average almost 20-fold more abundant in 
HLM than CYP2D6 (38), whereas its intrinsic clearance in CLZ-bioactivation is only 
slightly lower than CYP2D6, we conclude that CYP3A4 is most likely the major enzyme 
involved in hepatic CLZ bioactivation. This is supported by the fact that only the CYP3A4-
specific inhibitor ketoconazole was able to cause significant inhibition of bioactivation of 
CLZ by pooled HLM, Figure 4. These results are consistent with the observation of 
Pirmohamed et al. that ketoconazole significantly inhibited the formation of GSH-
conjugates and protein-adducts (7). Our studies also show involvement of CYP3A4 in N-
demethylation and N-oxidation of CLZ as reported previously (11, 15).  The important 
role of CYP3A4 for CLZ pharmacokinetics is supported by the observations that 
erythromycin, a substrate and inhibitor of CYP3A4, leads to higher serum concentrations 
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of CLZ (39), whereas induction of CYP3A4 by carbamazepine treatment increased 
metabolism of CLZ (40). 

Genetic polymorphisms of CYP3A4, but also the interactions with other 
xenobiotics that influence its activity might cause interindividual differences that could 
lead to the susceptibility for CLZ adverse drug reactions. Although it appears that CYP3A4 
is without common functional polymorphisms (41), it has been demonstrated that 
nonsynonymous alleles for CYP3A4 encode enzymes with altered catalytic properties (11, 
42, 43). Inducers that increase the activity of CYP3A4 (39, 40) could be more important 
than genetic polymorphism of this enzyme for the individual variability in CLZ 
bioactivation.  

In conclusion, the results of the present study show that CYP3A4 is the main 
enzyme involved in the bioactivation of CLZ in human liver microsomes. Although two 
recent studies showed that clozapine was not cytoxic in human cell lines transfected with 
CYP3A4 (44, 45), down regulation of Nrf-2 by siRNA resulted in cytotoxicity of clozapine 
in CYP3A4-transfected HepG2-cells (44). This may be rationalized by the reduced activity 
of protective phase II-enzymes such as hGSTs.  We have shown previously that several 
hGSTs, including polymorphic GST M1-1 and GST P1-1, have a significant activity in 
catalyzing GSH conjugation of reactive CLZ metabolites formed by cytochrome P450s (22). 
Therefore a high activity of bioactivation by CYP3A4 in combination with reduced activity 
of protective hGSTs might explain high susceptibility of part of the patients to hepatotoxic 
effects of CLZ.  
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Abstract 

Clozapine (CLZ) is an atypical antipsychotic drug associated with idiosyncratic 
agranulocythosis and hepatotoxicity which are believed to result from bioactivation to a 
reactive nitrenium ion by myeloperoxidase and P450s, respectively. The risk factors 
determining the susceptibility to these toxic side effects still remain to be elucidated. 
Although it has been shown that clozapine undergoes extensive metabolism in patients, 
little data is available on the variability in bioactivation and bioinactivation, as reflected 
by GSH-related metabolites. In the present study, the interindividual variability in 
biotransformation was investigated in incubations of CLZ with precision-cut liver slices 
from 14 liver donors, and by analyzing urine samples of 34 patients treated with CLZ. 
Also the role of genetic polymorphism of four human glutathione S-transferases (hGST) in 
the variability of GSH-related metabolites was studied. 

The results confirm the extensive biotransformation of CLZ observed previously. 
More than 40 phase I and phase II metabolites of CLZ were identified in both urine and 
slice incubations and showed significant differences in profiles between individuals.  
Eleven of the urinary metabolites were derived from GSH-conjugates and reflect internal 
bioactivation of CLZ. Only methylthio- and cysteine-conjugates of CLZ and its major 
metabolites N-desmethylclozapine and clozapine N-oxide were detected by LC-MS/MS 
analysis; the anticipated N-acetylcysteine conjugates, however, could not be detected. 
Three of the urinary GSH-related products identified are dependent on catalysis by 
human hGSTs. However, due to the extremely large variability in amounts and profiles of 
GSH-related metabolites, no correlation was found with polymorphic alleles of hGSTM1, 
GSTT1, GSTP1 and GSTA1.  Urinary GSH-related metabolites of CLZ, therefore, do not 
seem useful biomarkers for quantitative biomonitoring of internal exposure to reactive 
CLZ-metabolites. 

By genotyping these four GSTs in groups of CLZ-treated patients with and 
without history of agranulocytosis, it was observed that in the group of the susceptible 
patients the GSTM1/GSTT1 double null genotype was overrepresented. A larger scale 
association study is required to validate whether this combination of genotypes is an 
important risk factor for CLZ-induced agranulocytosis. 
 

1. Introduction 

Clozapine (CLZ) is an atypical antipsychotic medicine, effective in the treatment 
of refractory schizophrenia (1, 2). Limiting side-effects associated with CLZ-use are 
development of agranulocytosis, with an incidence of 0.4-0.8 % (3). Furthermore, 
increased serum transaminase were observed in 37 % of the patients and liver failure 
occurred in about 0.06 % of the patients (4). Mechanistic in vitro  studies suggest that 
formation of reactive metabolites such as nitrenium ions play an important role in the 
pathogenesis of agranulocytosis and adverse hepatic effects (5–7). Therefore variability 
in activity of the enzymes involved in bioactivation and inactivation might be important 
factors determining interindividual susceptibility for these adverse drug reactions. 

The collective in vitro and in vivo studies performed show that CLZ undergoes 
extensive oxidative biotransformation, followed by the phase 2 conjugation reactions, as 
summarized in Figure 1. In in vitro studies with human liver microsomes (HLM) and 
recombinant human cytochrome P450s (CYPs) the major metabolites of CLZ are 
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desmethylclozapine (DMCLZ) and clozapine N-oxide (CLZ-NO) (8-10). Both CYP1A2 and 
CYP3A4 were shown to play major roles in the formation of these metabolites. 
Bioactivation of CLZ to nitrenium ion in HLM or human neutrophils and myeloid cells has 
been demonstrated by measuring formation of GSH conjugates (5-7). In the neutrophils 
and myeloid cells, bioactivation of CLZ is catalyzed by the highly expressed 
myeloperoxidase (MPO) (5,7). In human liver microsomes CYP3A4 was recently 
identified as the major isoenzyme involved in the hepatic bioactivation of CLZ (10).   

Several studies have investigated the metabolic profile of CLZ in healthy 
volunteers and/or patients (11–16). In serum, next to CLZ typically only DMCLZ and CLZ-
NO were found as major metabolites (12). However, it was shown that DMCLZ and CLZ-
NO together accounted for only 14% of the dose in patient urine (14). The first attempt to 
elucidate the complete metabolic pattern of CLZ in human urine and feces was performed 
with six volunteers which were given a single dose of 50 mg of radiolabeled 
[14C]clozapine (13). In total seven metabolites were identified in urine and feces. The 
four major urinary metabolites, accounting for 60% of the dose, were identified as 8-
deschloro-8-hydroxy-clozapine (8-OH-DMCLZ; 11% of dose), its glucuronide (8-OH-
DMCLZ-O-Gluc; 8% of dose), 7-hydroxy-desmethylclozapine sulfate (7-OH-DMCLZ-O-Sulf; 
6.8% of dose) and CLZ-NO (5% of dose). In addition, a quaternary ammonium 
glucuronide of CLZ (CLZ-N+-Gluc) was identified as metabolite in feces (14) and urine 
(15). However, because of the limited resolution of the chromatographic system used, still 
a significant amount of the excreted radioactivity could not be accounted for. Schaber et 
al. identified an additional ten metabolites in urine of three CLZ-treated patients by using 
a combination of chromatographic techniques (16). These minor metabolites resulted 
from combinations of N-oxidation, N-demethylation, hydroxylation at positions 6, 7, 8 
and 9 of the benzodiazepine structure, and sulfation and glucuronidation of the oxidative 
metabolites, Figure 1. In addition, a metabolite was detected in which the piperazine ring 
of CLZ was partially degraded to an ethylenediamine derivative (EDA-BZD, Figure 1).  

Using a panel of liver microsomes of 100 individuals, it was recently 
demonstrated that bioactivation of CLZ to nitrenium ion was quantitatively a relatively 
important metabolite in vitro when compared to N-oxidation and N-demethylation and 
was varying 8-fold based on the level of GSH-conjugates formed (10). However, 
metabolites derived from the GSH-conjugates of CLZ were not detected in urine and feces 
in the studies of Dain et al. (13) and Schaber et al. (16). In contrast, four different 
thioethers of CLZ were previously detected by GC-MS in basic extracts of a large volume 
of urine of CLZ-treated patients (11). Two of the identified thioether metabolites, 8-
methylthio-deschloroclozapine (8-CH3S-CLZ) and 8-methylthio-deschloro-
demethylclozapine (8-CH3S-DMCLZ) which can be rationalized as degradation products 
of 8-deschloro-8-glutathionyl-clozapine (8-GS-CLZ) and 8-deschloro-8-glutathionyl-
desmethylclozapine (8-GS-DMCLZ), respectively, which are formed via the chlorine-
substitution of the nitrenium ions of CLZ and DMCLZ (17). Two minor thioethers 
corresponded to methylthio- and methylsulfone-conjugates resulting from an addition 
reaction of GSH to the nitrenium ion of CLZ, most likely at the 6-position since this is the 
major GSH-conjugate found in in vitro incubations (6). Previously, we showed that the 
chlorine-substitution reaction of the CLZ nitrenium ion is fully dependent on the presence 
of glutathione S-transferases (hGSTs) (17). Therefore, genetically determined deficiency 
of hGSTs or drug-drug interactions at the level of hGST should be considered as possible 
risk factors for CLZ-induced toxicity. In analogy, clinical association studies suggest that 
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the combined GSTM1-T1 double-null genotype leads to an increased susceptibility to 
idiosyncratic drug-induced liver injury (18-20). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Metabolic pathways and clozapine metabolites identified and characterized in humans 
(adapted from ref. (13–15)). Bioactivation of CLZ to reactive nitrenium ion is depicted in brackets, 
the structures of GSH adducts identified in vitro, and role of hGSTs are presented as described in ref. 
(19). Conjugates formed by further metabolism of GSH conjugates that were described by Stock et 
al. (13) are also depicted in this scheme. 

 

 
The aim of the present study was to investigate the variability in excretion of 

both stable and GSH-related metabolites in urine of 34 patients treated daily with CLZ. 
Twenty eight of these patients were genotyped with respect to their status of hGSTM1, 
hGSTT1, hGSTP1 and hGSTA1. Because GSH-conjugates undergo extensive catabolism by 
biliary, renal and intestinal enzymes (21), anticipated urinary metabolites of GSH-
conjugates were the N-acetylcysteine conjugates (mercapturic acids), cysteine conjugates, 
methylthio-conjugates and the corresponding sulfoxides and sulfones of CLZ and its 
major phase I-metabolites DMCLZ and CLZ-NO. To enable identification of the urinary 
thioethers, each of the five GSH-conjugates that can be formed from the CLZ-nitrenium 
ion, both non-enzymatically and enzymatically (10), were converted to the corresponding 
degradation products which might be expected in urine. In addition, we studied the 
variability in CLZ metabolism and bioactivation in precision-cut liver slices (PCLS) of a 
panel of fourteen liver donors, which were also genotyped with respect to their hGST-
status. PCLS represent a complex in vitro model which contain all cell types in their 
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natural environment and their metabolic profiles correlates well with in vivo data (22–24). 
Finally, a preliminary association study was performed to investigate the role of genetic 
polymorphism of four hGST as risk factor for CLZ-induced agranulocytosis. 
 

2.  Materials and methods 

2.1. Chemicals 

All chemicals used were of analytical grade and obtained from standard suppliers. 
7-OH and 9-OH CLZ were prepared by the modified Udenfriend reaction as described 
previously (25). 
 

2.2. Synthesis of anticipated GSH-related metabolites of CLZ 

GSH conjugates of CLZ were produced on a preparative scale by large-scale 
incubation using CYP102A1 M11H Phe87 mutant as a biocatalyst, and isolated by 
preparative HPLC as described previously (26). To obtain the corresponding cysteine 
conjugates, each GSH-conjugate was incubated overnight at 37 o�����������������ͶǤͶ���ɀ-
glutamyltransferase (GGT) in potassium phosphate buffer (100 mM, pH 7.4) and in a final 
����������� ʹͷͲ� Ɋ�Ǥ� ���� ��������������� ����������� ��� ������� ʹͷ� ρ�� ��� ͳͲΨ� ���� �����
HClO4 and centrifuged for 15 minutes at 14.000 rpm. The supernatant was analyzed by 
the LC/MS/MS method described below. Using this condition the GSH-conjugates were 
quantitatively converted to the corresponding cysteine S-conjugates. The intermediate 
cysteinylglycine conjugates were only observed with shorter incubation times [data not 
shown]. To prepare the possible N-��������������� ����������� ��� ���ǡ� ͷͲ� Ɋ�� ��� �����
cysteine S-conjugate was dissolved in 2 mL icecold 2 N ice cold sodium hydroxide 
solution (27)Ǥ�������������������ͳͲ��������ǡ�ʹͲ�Ɋ���������������������������������������
solution, stirred for 30 seconds and put back on ice. When the pH reached <7, it was 
allowed to stand on room temperature to complete the acetylation reaction. The samples 
were dried overnight under a nitrogen stream and redissolved in water for analysis by 
LC-MS/MS. 

To prepare the thiolmethylconjugates, the cysteine S-conjugates were first 
converted to thiols using a non-enzymatic model for cysteine conjugate beta-lyase (28). 
The cysteine S-cysteine conjugates were incubated overnight in 50 mM borate buffer 
ȋ��αͺǤȌ����������������ͳ�Ɋ�������������������������������Ɋ������4. For synthesis 
of the thiolmethyl conjugates 33 mM methyl iodide in acetonitrile was added to 
methylate the thiol-group. The reaction was stopped with 10% ice cold HClO4 (1/10 of 
the volume) and LC-MS/MS samples were taken to confirm the formation of the 
conjugates. The characteristics (retention times, exact mass and major fragments) of the 
prepared references of the thioethers of CLZ were used for the identification of 
conjugates in hPCLS and urine samples. 

 

2.3. Collection of urine samples from clozapine-treated patients 
Single-void (spot) urine samples were obtained from 34 schizophrenic patients 

on CLZ treatment under the care of the psychiatrist of the High Care Clinics of 
Rivierduinen. Average daily dose of CLZ was 530 ± 250 mg/day. All patients (31 male; 3 
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female) had reached steady state plasma levels of CLZ and DMCLZ-levels of 0.41 ± 0.17 
and 0.26 ± 0.11 mg/L, respectively. Urine samples were collected  at unspecified times 
with the patients’ agreement. Solid phase extraction (SPE) was used for clean-up and 
concentration of the urine samples.  3 mL samples of urine were loaded to Strata X C18 
solid-phase extraction column (200 mg/3mL; Phenomenex). The columns were washed 
with 3 mL of water to remove salts and proteins. CLZ and its metabolites were 
subsequently eluted using 2 ml of methanol. Samples were evaporated to dryness under 
��������� ���� ���� �������������� ����� ͵ͲͲ� ρ�� ��� ͷͲǣͷͲ� ȋ�ǣ�Ȍ� ��������� ���� �����Ǥ� ����
reconstituted solutions were analysed by LC/MS-MS system, as described below. The 
flow through and washing steps were checked to confirm that all CLZ-related metabolites 
were retained on the SPE-column.  
 

2.4. Incubations of clozapine with human precision-cut liver slices (hPCLS)  

Pieces of human liver tissue were obtained from fourteen patients (age range 17-
76 years; 4 male, 10 female) undergoing partial hepatectomy for the removal of 
carcinoma or from liver tissue remaining as surgical waste after split liver 
transplantation, as described previously (29). The experimental protocols were approved 
by the Medical Ethical Committee of the University Medical Center Groningen.   

The hPCLS were prepared using a Krumdieck tissue slicer (Alabama R&D, 
Munford, AL, USA) as described previously (30). In ice-cold Krebs-Henseleit buffer 
saturated with carbogen (95% O2 and 5% CO2). hPCLS (5 mm diameter, 200-͵ͲͲ�ρ��������
and ca. 4.5-5.5 mg wet weight) were stored in ice-cold UW solution until incubation.  

CLZ was incubated with hPCLS in 12-well plates (Greiner bio-one GmbH, 
Frickenhausen, Austria) as described previously (30). The hPCLS were pre-incubated at 
͵ι������ͳ������������������������������������ͳǤ͵������������ǯ�����������������������-1 
(Gibco, Paisley, UK), supplemented with 25 mM D-�������� ���� ͷͲ� ρ�Ȁ��� �����������
(Gibco, Paisley, UK) (WEGG medium) in a 12-well plate with shaking (90 times/min) 
under saturated carbogen atmosphere. After pre-incubation, hPCLS were transferred to 
fresh WEGG medium in the presence of Ͳ�ρ���������� ���������� �������� ����ʹͶ�Ǥ�This 
CLZ concentration does not cause serious toxicity, viability higher than 80%.  

Control incubations were performed in absence of CLZ. hPCLS and their 
corresponding media were collected and sonicated together to disrupt the tissues or cells. 
10 % of the sample volume of ice-cold 10 % HClO4 was added to precipitate the proteins. 
Samples were then centrifuged for 15 min on 14,000 rpm. Supernatants were filtered 
through membrane filters before HPLC-UV and/or LC-MS/MS analysis. 
 

2.5. Genotyping of hGSTs 

From 38 patients, including the 34 patients who provided urine samples, whole 
blood samples were obtained for GSTs genotyping during the regular checking of the 
patients. Seven of the patients had a history of agranulocytosis. The presence of at least 
one GSTM1 and/or GSTT1 allele was determined as described by Arand et al. (31), with 
minor modification. Briefly, 10 ng of DNA was taken to amplify representative sequences 
of the genes of GSTT1, GSTM1 and albumine (as household gene). Hotstart PCR 
mastermix was used from Qiagen (Venlo, The Netherlands) and PCR program was as 
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f������ǣ�ͳͷ������������ͻͷι�ǡ�͵ͷ�����������ͻͷι-ͷͷι-ʹι���������������͵Ͳ��������ǡ����������
������������������������ͳͲ������������ʹι�Ǥ��������������������� ����
���ͳ�����
���ͳ�
alleles were detected separately by agarose gel electrophoresis. At least 5% of patient 
samples were duplicated in the analysis and no inconsistencies were observed. 

The rs1695 genotype of GSTP1-1 (mutation A315G; Ile105Val) was determined 
by allele-specific PCR using a predesigned Taqman assay from LifeTechnologies 
(Nieuwerker a/d IJssel, the Netherlands) and analysed on 7500 real time PCR system. The 
presence of GSTA1 C-69T was determined by pyrosequencing on a Pyrosequencer 96MA 
(Oiagen, Venlo, The Netherlands) with PCR primers; 5’-AGTAGGTGGCCCCTTGGC-3’ 
(forward) and 5’-TGTCACCGTCCTGGCTCGAC-3.’ (reverse; biotinylated)  Sequence primer 
was: forward 5’- GGCTTTTCCCTAACTTGAC-3.’ Sequence to analyse was C/TCTTCTTTCA 
and dispensation order was GTCGTCTCA.  
 

2.6. Analytical methods and metabolites quantification 

The prepared samples from urine and hPCLS incubations were analyzed by LC-
��Ȁ����������������ͷ�Ɋ���ͳͺ��������ȋͳͷͲ����έ�ͶǤ�����Ǥ�ǤǢ�����������Ȍǡ�����������
��� �� ͶǤͲ� ��� έ� ͵ǤͲ� ��� �Ǥ�Ǥ� ��������� ������ ȋͷ� Ɋ�Ȍ� �ͳͺ� ������ ������� ȋ����������ǡ�
Torrance, CA). The gradient used was constructed by mixing the following mobile phases: 
solvent A (1% acetonitrile, 99% water, and 0.2% formic acid) and solvent B (99% 
acetonitrile, 1% water, and 0.2% formic acid). The first 5 min were isocratic at 0% 
solvent B; from 5 to 30 min, the concentration of solvent B linearly increased to 100%; 
from 30 to 35 min, there was a linear decrease to 0% B, and it was maintained at 0% for 
re-equilibration until 40 min. The flow rate was 0.5 mL/min. Samples were injected at an 
��������������������ͷͲ�Ɋ�Ǥ 

For the identification of metabolites, a hybrid quadrupole-time-of-flight (Q-TOF) 
Agilent 6520 mass spectrometer was used, equipped with an electrospray ionization 
(ESI) source and operating in the positive mode (Agilent Technologies, Waldbronn, 
Germany). The MS ion source parameters were set with a capillary voltage at 3500 V; 
nitrogen was used as the desolvation and nebulizing gas at a constant gas temperature of 
͵ͷͲ�ι�Ǣ�����������ǡ�ͺ��Ȁ���Ǣ��������������ǡ�ͶͲ�����Ǥ��������������������������������������
with a collision energy of 25 V. MS spectra were acquired in full scan analysis over an m/z 
range of 50-1000 using a scan rate of 1.003 spectra/s. The MassHunter Workstation 
Software (version B.02.00) was used for system operation and data collection. Data 
analysis was performed using Agilent MassHunter Qualitative analysis software.   

For quantification of the GSH-related conjugates in urine, a standard curve of CLZ 
based on UV peak areas was used to estimate the concentrations of the synthesized 
reference metabolites, assuming that the extinction coefficients are equal to that of CLZ. 
The obtained concentrations of the synthesized conjugate references, based on UV-peak 
areas, were then correlated with the corresponding EIC peaks. This was used to 
determine the concentrations of conjugates measured in urine based on measured EIC 
peak areas.  

The levels of measured conjugates in urine were normalized by the 
corresponding levels of creatinine in the urine samples. Urinary creatinine was measured 
using a Creatinine (urinary) Assay Kit (Cayman Chemical, USA) as described in the 
protocol. 
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3.  Results 

3.1. Genotyping of human liver donors and schizophrenic patients treated 
with clozapine 

Table 1 shows the results of the genotyping of the 12 out of 14 liver samples used 
for the slice experiments and the blood samples of 38 CLZ-treated patients with and 
without history of CLZ-induced agranulocytosis. Overall, the frequencies of the different 
genotypes corresponded well with those previously reported for the Caucasian 
population (32-34).  

 
 

Table 1.  Genotypes of alleles of polymorphic glutathione S-transferases of human liver donors and  
schizophrenic patients treated with and without history of clozapine-induced agranulocytosis. 
            
Genotype                                       All samples         Liver donors  All patients     Patients without     Patients with 
               agranulocytosis    agranulocytosis 
                   number (%)        number (%)  number (%)      number (%)       number (%) 
           
Total                                       50 (100)              12 (100)                   38 (100)             31 (100)                 7 (100) 
GSTM1 
    Positive                  22 (44)           6 (50.0)    16 (42.1)           13 (41.9)       3 (42.9) 
   Null                  28 (56)           6 (50.0)    22 (57.9)           18 (58.1)       4 (57.1) 
GSTT1 
    Positive                  41 (82)           8 (66.7)    33 (86.8)           29 (90.6)      4 (66.7) 
    Null                  9 (18)           4 (33.3)     5 (13.2)             3 (9.4)      2 (33.3) 
GSTM1/T1 
    Double null              7 (14)           3 (25.0)     4 (10.5)             1 (3.2)                    3 (42.9) 
GSTA1 
   C/C                 13 (26)           5 (41.7)     8 (21.0)             5 (16.1)                  3 (42.9) 
    C/T                 26 (52)           5 (41.7)     21 (55.3)          17 (54.8)      4 (57.1) 
    T/T                 11 (22)           2 (16.7)     9 (23.7)             9 (29.1)      0 (0) 
GSTP1 
     A/A (Ile/Ile)           33 (66)           9 (75.0)     24 (63.2)          20 (64.5)      4 (57.1) 
     A/G  (Ile/Val)         15 (30)           3 (25.0)     12 (31.6)          10 (32.2)      2 (28.6) 
     G/G (Val/Val)         2 (4)           0 (0)                          2 (5.2)               1 (3.2)      1 (14.3) 
         
 
 

Although only seven patients had a history of CLZ-induced agranulocytosis, some 
remarkable differences in the distribution of genotypes were observed.  Three of the 
seven patients with agranulocytosis showed a double null genotype for GSTM1 and 
GSTT1, whereas this combination of null alleles was observed in only one of the 31 
patients without agranulocytosis, Table 1. Also, the T/T-genotype of GSTA1 was absent in 
the susceptible patients, whereas this genotype had a frequency of 29% in the group of 
the nonsusceptible patients.  Although this study suggests that certain genotypes of 
hGSTs might be at increased risk for CLZ-induced agranulocytosis, this preliminary 
association study requires validation in a much larger case/controlled association study. 
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3.2. Metabolism of CLZ by precision-cut human liver slices  

In vitro metabolism of CLZ was determined after 24h of incubation CLZ with 
precision-cat liver slices (PCLS) from 14 different liver donors. By using mass 
spectrometry in total 46 metabolites of CLZ could be identified tentatively, see Table 2, 
based on the extracted ion chromatograms (EIC) of their exact masses, the presence of a 
mono-chlorine isotope cluster, and the fragmentations patterns described previously 
(11,16). Thirty one metabolites could be found in all incubations, whereas  fifteen of the 
metabolites were absent in  one or more of the incubations, see Table 2. Consistent with 
in vitro incubations of CLZ with HLM (10), DMCLZ and CLZ-NO were the major 
metabolites in all slice incubations; a representative UV-chromatogram with detection at 
254 nm is shown in Figure 2.  The only other metabolites which were clearly detectable 
by UV-detection all appeared to correspond to GSH-related metabolites resulting from 
bioactivation of CLZ. The minor metabolites could only be detected by LC-MS/MS by 
analyzing EICs of known and anticipated metabolites.  

 
 
 

 

 

 

 

 

 

 

 

 

Figure 2. HPLC-UV chromatogram showing CLZ metabolites formed in 24h incubations of CLZ with 
human precision-cut liver slices. Lower line presents control: medium incubated with liver slice 
under the incubation conditions without addition of CLZ. 

 

Figure 3 shows the relative amounts of the major metabolites DMCLZ and CLZ-
NO and the total of GSH-related metabolites identified in the incubations with slices of 14 
individuals.  Based on the peak areas of the UV-chromatograms, the bioactivation 
pathway of CLZ was estimated to range from 4.7 to 13.4% of the total of CLZ-metabolism 
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in PCLS. Since the aim of the study was to characterize the variability of the bioactivation 
pathway of CLZ specifically, only the identification of GSH-related metabolites will be 
discussed in more detail. 

 

Figure 3. Metabolism of CLZ by different individual hPCLS. Amounts of DMCLZ, CLZ-NO, and total 
of GSH related conjugates, measured as UV peak areas, are presented as percentage of substrate 
�����������ȋͲ�ρ�Ȍ��������ʹͶ������������Ǥ� 

 

As shown in Table 2, in total fifteen metabolites in the slice incubations are 
derived from GSH-conjugates formed from bioactivation of CLZ and its major metabolites 
DMCLZ and CLZ-NO to their corresponding nitrenium ions.  Based on their identity with 
the synthesized references listed in Table S1, nine of the conjugates appeared to be 
derived from the GSH-conjugates of the CLZ-nitrenium ion. Although all five cysteine S-
conjugates of CLZ could be found in varying amounts, the only intact GSH-conjugate 
found at small amounts was 6-GS-CLZ, indicative for a very extensive catabolism of the 
GSH-conjugates formed in the slice incubations. 

In addition to the cysteine S-conjugates, three of the synthetical methylthio-
conjugates of CLZ, 8-CH3S-CLZ, 6-CH3S-CLZ-SCH3 and 7-CH3S-CLZ could be positively 
identified in all slice incubations. No N-acetylcysteine-conjugates of CLZ could be 
identified in any of the incubations, although the mercapturic acid pathway has been 
shown as an intrahepatic process (35). 
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 The remaining GSH-related metabolites identified in the slice incubations result from 
the nitrenium ions of DMCLZ and CLZ-NO. In 13 of the 14 slices, a GSH adduct with a m/z 
value of 618,22 ([M+H]+) was observed which corresponds to a GSH adduct of DMCLZ, as 
described previously (10, 36). Also, a cysteine conjugate of DMCLZ, with a m/z value 432,12 
([M+H]+), and four methylthio-conjugates of DMCLZ were found. One S-methyl conjugate 
with m/z 339,16 ([M+H]+) results from the substitution of chlorine of the nitrenium ion of 
DMCLZ, and could be assigned as 8-CH3S-DMCLZ. The other three thiomethyl-conjugates, 
all having a mono-chlorine isotope pattern and m/z value of 359,11 ([M+H]+), can be 
rationalized from initial addition of GSH to the DMCLZ-nitrenium ion. The exact position of 
the substituents, however, could not be assigned because of the lack of synthetical references. 
A cysteine S-conjugate with m/z 462,14 appears to be the only GSH-related conjugate resulting 
from bioactivation of CLZ-NO and could even be identified by UV-detection, Figure 2. The 
position of the cysteine-moiety, however, could not be established based on the fragmentation 
pattern. 

 

3.3. Interindividual Variability in CLZ bioactivation by Human Liver Slices  

Table 3 shows the relative amounts of the individual GSH-related conjugates 
identified in the incubations of CLZ with PCLS of the fourteen liver donors. The relative 
amounts are based on the peak areas of the EICs of their exact masses. Although these 
peak areas not necessarily reflect the absolute abundance of different metabolites, 
comparison of the peak areas of the same metabolite between the different slice 
incubations reflects the interindividual variability by which each of them are produced.  
In all incubations, 8-Cys-CLZ, 6-Cys-CLZ and one of the thiomethyl-conjugates of DMLZ, 
CH3S-DMCLZ-2, appeared to be formed in highest abundance, with an approximately 3-
fold variability for each of them.  

For twelve of the fourteen liver slices, the genotypes of the hGSTM1-1 and 
hGSTT1-1 were determined in order to investigate whether deficiency of these hGSTs 
leads to altered levels of GSH-related metabolites. However, according to the results 
presented in Table 3, no significant differences were observed between the different 
groups of genotypes, when comparing the average amounts of each GSH-related 
metabolite.  

To analyze the similarity of the profiles of the GSH-related metabolites of the 
different liver slices, the correlations between the profiles were obtained by pairwise 
plotting the amounts of individual metabolites of two individuals along the x- and y-axis.  
As shown in Table 4, only slices from donor HL5, HL8, HL9 and HL12 showed very 
similar profiles of metabolites, as indicated by r2-values higher than 0,9.  However, the 
fact that each of these individuals had a different combination of genotype of hGSTs, 
indicate that the genotype of hGST has no predictive value for the profile of GSH-related 
metabolites. This can most likely be explained by the fact that also differences in activity 
of the bioactivation enzymes, and enzymes involved in the catabolism of the GSH-
conjugates contribute to the differences in metabolic profiles between different 
individuals. However, no information is available on the activity of CYP3A4 in the slices of 
the different liver donor.  
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Table 3. Relative amounts of GSH related conjugates of clozapine in incubations of 
precision-cut slices from 14 individual human livers.a 

a. Numbers represent percentages peak areas of EICs of specific metabolites relative to the sum of peak areas of 
total GSH-related metabolites. 

 
Table 4. Analysis of the similarity of profiles of GSH-related metabolites of CLZ in 
incubations of slices obtained from 12 genotyped liver donors.a 

a.  Numbers represent r2-values obtained when plotting relative amounts of GSH-related metabolites of two 
individuals against x- and y-axis. 
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3.4. Identification of metabolites of clozapine in urine of patients 
As shown in Table 2 in total 44 different CLZ-metabolites could be measured by 

LC-MS/MS analysis of urine samples obtained from the 34 patients undergoing chronic 
CLZ therapy. Based on their identity with metabolites observed in the slice incubations, 
and based on exact masses and fragmentation pattern of CLZ-metabolites described 
previously (11, 13, 16), most could be attributed to primary and secondary phase I and 
phase II-metabolites of CLZ. In total 39 of the metabolites which were found in 
incubations of CLZ with liver slices were also found in urine; five metabolites were 
exclusively found in urine, as described in Table 2. Fifteen of the seventeen phase I and 
phase II metabolites which were previously identified by Dain et al. and Schaber et al. 
could be found in urine of all patients (13, 16). However, two sulfate conjugates which 
could previously be found only in one of the three patients (16), could not be identified in 
any of the urine samples.  

Consistent with the previous studies (13, 16), 8-OH-DMCLZ appeared to be the 
major urinary metabolite of CLZ in urines of all patients. Interestingly, both 8-OH-CLZ, 8-
OH-DMCLZ and their corresponding glucuronides appeared as two chromatographically 
separated peaks (Table 2). Because no regioisomers are possible for these metabolites, 
since the hydroxy-group has substituted the chlorine-atom of the benzodiazepine-
structure at the 8-position, these peaks might resulted from boat and chair-
conformations of the piperazine-ring, as was observed previously in case of ketotifen-
metabolites (38). Relative to the sum of peak areas of all metabolites combines, the 8-OH-
DMCLZ peaks represented 30 ± 5% of the total peak area. Other metabolites showing 
high peak areas were the glucuronide of 8-OH-DMCLZ (10 ± 3%), CLZ-NO (9 ± 3%), 
DMCLZ (8 ± 3%) and the sulfate conjugate of 7-OH-DMCLZ, which corresponds to the 
high urinary levels found previously (13, 16).   

Interestingly, the levels of several phase I-metabolites are strongly correlated 
with the levels of phase II metabolites. When plotting the peak areas of the phase I 
metabolites versus the phase II metabolites of each urine sample, Figure 4, it was 
observed that the peak areas of 8-OH-CLZ and 8-OH-DMCLZ strongly correlate with the 
levels of their corresponding glucuronides. Also, the sulfate conjugate of 7-OH-CLZ 
strongly correlates with the amount of 7-OH-CLZ. The peak area of OH-DMCLZ-3 
correlates with the sulfate conjugate of 7-OH-DMCLZ, suggesting that OH-DMCLZ-3 
contains the hydroxy-group at the 7-position. 

In contrast to the studies of Dain et al. and Schaber et al., in the present study 
eleven GSH-related metabolites could be identified as minor metabolites resulting from 
the bioactivation pathway of CLZ and its major metabolites DMCLZ and CLZ-NO. By 
analyzing the EICs of m/z 446,12, 6-cysteinyl-clozapine (6-Cys-CLZ) could be positively 
identified in 32 of the 34 urine samples because of co-elution and identical fragmentation 
with the synthetical reference compound. Only traces of its regioisomers 7-Cys-CLZ and 
9-Cys-CLZ could be found but these were too low to integrate [data not shown]. In 
addition, two thiomethyl-conjugates with m/z of 373,13 and 339,16 could be assigned as 
6-CH3S-CLZ and 8-CH3S-CLZ, respectively, by comparison with the reference compounds. 
These two metabolites correspond to two of the four metabolites previously identified by 
Stock et al. by GC-MS-analysis of basic extracts of urine (11). The other two metabolites 
observed by Stock et al., 8-CH3S-DMCLZ, and the thiomethylsulfone CH3SO2-CLZ, could be 
identified in 33 of the 34 urine fractions by EICs of their exact masses 325,15 and 405,17. 
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Four of the five other GSH-related metabolites were also derived from GSH-conjugates of 
DMCLZ: three metabolites with exact mass of 359,11 most likely correspond to different 
regioisomers of thiomethyl-conjugates of DMCLZ. A minor metabolite with m/z 432,12 
and chlorine-isotope pattern could by assigned as a cysteine S-conjugate of DMCLZ (Cys-
DMCLZ). 

 

Figure 4.  Correlation of urinary excretion of phase I and phase II metabolites of CLZ. 
Each dot represent the peak areas of the two metabolites in a single urine sample; the x-axis shows 
the peak area of the phase II-metabolite; the y-axis the peak area of the phase I-metabolite. 
 

 
The eleventh GSH-related metabolite had an exact mass of m/z 462,14 and 

chlorine-isotope pattern, which correspond to an oxygenated cysteine S-conjugate of CLZ.  
Based on the similar fragmentation of the piperazine-ring when compared to that of CLZ-
NO, the structure of this metabolite is most likely of cysteine S-conjugate of the 
nitrenium-ion of CLZ-NO. 

Although N-acetylcysteine S-conjugates were anticipated as end products of the 
GSH-conjugates of CLZ, we were not able to identify any urinary metabolite 
corresponding with the five references of N-acetylcysteine S-conjugates of CLZ. 
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3.4.1. Interindividual Variability in CLZ metabolite profile in human urine 

As shown by the relative high standard deviations of the amounts of each 
metabolites in Table 2 significant variability was observed in the population of CLZ-
treated patients, especially of the metabolites that are excreted at relatively low amounts. 
In Table 5, the relative amounts of the GSH-related metabolites for each patient is 
tabulated; only the 28 patients are included which were genotyped with respect to their 
genotypes of four hGSTs.   

The profile of GSH-related metabolites, which collectively represent 4% of the 
sum of peak areas, shows a very large interindividual variability. For the only four 
patients which excreted 6-CH3-CLZ, this represented a major metabolite since its peak 
area was 25% of the total of GSH-related material. Other individuals with remarkable 
profiles are patients P8 and P15, who excreted a 125 and 30-times higher level of Cys-
DMCLZ, respectively, than the other individuals. For P8, who had relatively the highest 
percentage of GSH-related metabolites in urine, this cysteine S-conjugate represented 
75% of the total. In urine of patient P26 only four of the GSH-related metabolites were 
found. 

To further analyze the variability of the metabolic profiles amongst the CLZ-
treated patients, for each individual the relative amount of metabolites was plotted 
against the corresponding averages calculated from 34 individuals.  

As demonstrated by two representative examples in Figure 5, generally very 
good correlations were found when relative peak areas of all metabolites were included 
in the correlation analysis; correlation coefficients for 22 of the 34 urine samples were 
higher than 0.9. When excluding the major metabolite 8-OH-DMCLZ, still r2-values above 
0.85 were found [data not shown].  However, when only the GSH-related metabolites 
were included in the correlation analysis extreme poor correlations were observed, see 
Figure 5.   

Because even patients with the same genotypes of hGST-alleles showed the same 
level of variability as the total group of patients, it was not possible to recognize a 
relationship between any genotype, or combination of genotypes, and the total amount of 
GSH-related metabolites or the profile of GSH-related profiles.   

Patients P27 and P28 were the only genotyped patients with a history of 
agranulocytosis and were negative for both the GSTM1- and GSTT1-alleles. Their profile 
and total levels of both major metabolites, however, did not significantly differ from that 
of the other patients, due to the large standard deviations. 
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Figure 5. Correlation of profiles of patients P19 (patient without developed agranulocytosis) and 
P28 (patient developed agranulocytosis) with the average profile calculated from 34 individuals.  
Each dot represents a specific metabolite; the x-axis shows the average abundance, the y-axis the 
abundance of patients P19 and P28. The left plots show the correlation obtain when all 44 
metabolites were included; the right plots if only percentage of GSH-related metabolites are 
correlated. 
 

 

4. Discussion 
Bioactivation of CLZ to reactive nitrenium ion by local myeloperoxidases and 

hepatic P450s is generally accepted as a cause for the agranulocytosis and hepatotoxicity 
observed in a small percentage of CLZ-treated patients (5-7). It can therefore be 
hypothesized that patients who are susceptible to these adverse drug reactions have a 
relative high activity of bioactivation and/or a deficiency in protective mechanisms, such 
as hGST-deficiency (36). Although recently it was demonstrated that bioactivation of CLZ 
in incubations with HLM from 100 individuals showed an 8-fold difference, so far no 
information is available on the variability of bioactivation in vivo in CLZ-treated patients. 
The only study in which urinary thioethers derived from GSH-conjugates of CLZ were 
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identified in urine of CLZ-treated patients, reported three thiomethyl-conjugates and one 
methylsulfone conjugate (11). This study did not provide information on the variability in 
excretion. In two more recent studies which aimed at the identification of the full 
spectrum of CLZ-metabolites, 18 different CLZ-metabolites were identified (13,16).  
However, no GSH-related metabolites could be identified by the analytical methods used, 
indicating that these are excreted in low amounts. In the only study in which 
interindividual variability of urinary metabolites was reported, urines of only three CLZ-
patients were analyzed (16), and therefore provide little information on the variability of 
urinary metabolites.  Additionally, metabolism of CLZ treated human PCLS has also been 
described, identifying phase I and II metabolites and suggesting that hPCLS could be a 
good translational model for CLZ metabolite profile between in vitro HLM incubations 
and in vivo urine sample analysis (39). Synergistic toxicity was found when mouse and 
hPCLS were co-incubated with lipopolysaccharide (LPS) and IDILI-associated drugs, 
having clozapine as an example (39, 40). The amounts of bioactivation pathway 
conjugates, namely glutathione and cysteine conjugates, were significantly lower among 
the responders (synergistic toxicity observed) in hPCLS incubated with LPS when 
compared to the ones without LPS but not among the nonresponders (synergistic toxicity 
observed). Depletion of GSH in the liver, resulting in lower levels of GSH and cysteine 
conjugates of CLZ is a possible underlying mechanism causing higher toxicity that might 
be due to the covalent binding of CLZ reactive metabolites to proteins.  

The aim of the present study was, therefore, to investigate the variability in CLZ-
metabolism by analyzing urine samples of 34 CLZ-treated patients and by incubating CLZ 
with hPCLS of 14 individuals.  

As shown in Table 2, all 23 urinary CLZ-metabolites which have been reported 
previously (11-15), could be identified in the urine samples and/or slice incubations 
analyzed in the present study.  Although not all urine was collected and quantification 
was based on peak areas of EICs, the present study shows that next to DMCLZ and CLZ-
NO, the 7- and 8-hydroxylated metabolites of CLZ and DMCLZ and their corresponding 
glucuronides and sulfate conjugates represent major metabolites in urine of all patients. 
In all urine samples, 8-OH-DMCLZ was the most abundant metabolite, consistent with 
previous studies (13,16). Although the major urinary metabolites DMCLZ and CLZ-NO 
were also identified as major metabolites in the 24 h incubations of CLZ with human PCLS, 
Figure 2, only small amounts of the 7- and 8-hydroxylated metabolites of CLZ and DMCLZ 
were formed in vitro and could only be detected by LC-MS/MS. These metabolites were 
also formed in trace amounts in incubations with HLM and recombinant human CYPs (10), 
suggesting that the formation of the 7- and 8-hydroxylated metabolites mainly originate 
from extrahepatic metabolism by as yet to be identified enzymes.   

In contrast to the previous studies of Dain et al, (13) and Schaber et al. (16), in 
the present study eleven different metabolites were identified in urine which are related 
to the bioactivation pathways of CLZ.  Next to the four thiomethyl-conjugates previously 
identified by Stock et al., seven additional metabolites were found which originate from 
GSH-conjugates of CLZ and its major metabolites DMCLZ and CLZ-NO. The positive 
identification of these metabolites in the present study might be explained by the 
availability of reference metabolites, which were produced synthetically and by 
incubations of CLZ in human slices. This enabled selective screening for the expected 
metabolites by exact mass measurements using highly sensitive LC-MS/MS-equipment.   
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It has been shown previously that GSH-conjugates of drugs are often excreted as 
N-acetylcysteine conjugates in urine (41-44). They are therefore often used as biomarker 
for internal exposure to potentially toxic electrophiles (45). However, in the present 
study no N-acetylcysteine conjugates of CLZ could be detected.  Previously, it has been 
shown that formed N-acetylcysteine conjugates can be deacetylated again by hepatic and 
renal acylases (26). The balance of N-acetylation and deacetylation, which is substrate-
dependent, therefore, determines the excretion profile of GSH-conjugates.  In case, N-
deacetylation is high, cysteine S-conjugates can be converted by cysteine S-conjugates 
beta-lyase enzymes, producing thiol-metabolites which are subject to subsequent 
methylation reactions (21).  The fact that seven of the eleven urinary GSH-related 
metabolites in the present study represent thiomethyl-conjugates of CLZ and DMCLZ, is 
consistent with the preference for the beta-elimination/S-methylation pathway above N-
acetylation of the cysteine S-conjugates of CLZ.  

When analyzing the profiles of GSH-related metabolites in the 34 urine samples, 
a very large variability in the ratio of the eleven products were observed.  When 
comparing profiles between any combination of two individuals or each individual profile 
with the average profile, only very poor correlations were observed, as shown in Figure 5. 
In comparison, the profiles of the major metabolites showed much smaller variability.  
The explanation for the very large variability in profiles of the GSH-related metabolites 
might be the fact that much more enzymes are involved in their production than the 
major metabolites which can be produced in two to three steps.  To produce thiomethyl-
conjugates at least six steps are required,  involving CYPs, GST, gamma-
glutamyltranspeptidase, dipeptidase, beta-lyase and S-methyltransferases (21), each of 
which might some interindividual differences due to drug-drug interactions or genetic 
polymorphisms.  Furthermore, GSH-conjugates of CLZ have been shown to be eliminated 
in the bile of rats and mice (7). In humans, 40% of radiolabeled CLZ-metabolites was 
excreted in the feces (13), which also points to extensive biliary excretion in human. 
Therefore, metabolism of GSH-conjugates of CLZ also might occur in the intestinal 
microflora, which can result in excretion of GSH-related CLZ-metabolites in feces and 
which might contribute to urinary metabolites by entohepatic circulation.   

Previously it was shown that several hGST were able to catalyze conjugation of 
GSH to the CLZ-nitrenium ion, producing multiple regioisomer GSH-conjugates (10).  
Therefore, genetic polymorphism at the level of hGST was speculated to be a possible risk 
factor for the adverse effects of CLZ.  Three of the GSH-related metabolites identified in 
urine are derived from the chlorine-substitution pathway, which only occurs in presence 
of hGSTs (10).  Although for 28 patients the genotype of four hGSTs were determined, no 
association was found between a certain genotype and a certain profile of GSH-related 
metabolites, due to the wide variability in profiles.  For the same reason, the urinary 
profiles of the two patients with a history of CLZ-induced agranulocytosis did not display 
a unique profile.  

In conclusion, in the present study multiple GSH-related metabolites could be 
identified in urine of CLZ-treated patients that reflect the bioactivation pathway of CLZ. 
However, because of the very wide variability in amounts and profiles, excretion of GSH-
related metabolites does not appear to be related to specific genotypes of hGST.  Analysis 
of these products in urine does not appear to be useful for quantitative biomonitoring of 
internal exposure to reactive CLZ-metabolites, which might be useful to support 
association studies aiming at the identification of risk factors for CLZ-toxicity. The 
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preliminary association study presented in this study for the first time suggest that the 
double null-genotype of GSTM1 and GSTT1 might be a risk factor for CLZ-induced 
agranulocytosis. However, because of the relatively small number of cases and controls, 
this association remains to be validated in a large-scale association study.  Because 
urinary GSH-related metabolites show very wide variability and also reflect extensive 
metabolism in non-target tissues, alternative biomarkers, for example protein adducts in 
neutrophils, are required to investigate the role of hGST-polymorphisms on exposure to 
reactive nitrenium ions. 
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1. Summary 

Adverse drug reactions (ADRs) still remained to be the second cause of failure in 
drug development between 2007-2010 even though extensive research has been 
performed. This fact underlines the importance of ADRs, on the one hand as potential risk 
for patients and on the other hand as financial threats for pharmaceutical industry (1). 
The unpredictable and barely understood idiosyncratic drug reactions (IDRs) are of 
special concern. Several hypothetical mechanisms underlying IDRs have been proposed 
but none of these theories is robust for all cases nor are fully confirmed thus far. 
Generally, the hypotheses do propose an important role for bioactivation and subsequent 
reactions of chemically reactive metabolites (CRMs) with cellular macromolecules 
(especially proteins), and the protective mechanisms that prevent these reactions (Figure 
1). Bioactivation is collectively proposed to be required in the mechanism leading to IDRs, 
but is thought to be not sufficient on its own. In most people (non-susceptible 
individuals), the formation of CRMs is counterbalanced by detoxification mechanisms 
(bioinactivation). It is considered that these CRMs are able to elicit toxicity once the key 
detoxification pathway (i.e. glutathione (GSH) conjugation) has been overwhelmed. Risk 
factors, which might be genetic or host factors such as age, enzyme induction, and disease, 
may perturb favourable balance between bioactivation and bioinactivation. 

The main focus of the research described in this thesis was to get deeper insights 
into the role of CRMs, and the balance between bioactivation and protections processes in 
mechanisms underlying IDRs and risk factors for the individual patients for the 
occurrence of these rare but severe toxicities. More specifically, Chapters 2 to 5 describe 
in vitro studies performed to investigate the role of polymorphic glutathione S-
transferases (GSTs) in the detoxification of drug reactive metabolites, while Chapters 6 
to 8 aimed at the development of novel strategies for discovering the risk factors and 
leading to a better understanding of the development of IDRs, taking clozapine as a 
typical model drug. Clozapine is very effective atypical antipsychotic, which causes severe 
idiosyncratic agranulocytosis in approximately 1% of the patients as well as 
hepatotoxicity. Bioactivation to reactive nitrenium ion is presumed to be responsible for 
these adverse events. 

In Chapter 1, a general introduction on ADRs with the emphasis on IDRs is given. 
Although the exact mechanism for the occurrence of IDRs is not known, proposed 
mechanisms are including the formation of CRMs and subsequent reactions with cellular 
components, especially proteins (Figure 1). Idiosyncratic toxicity can occur when a 
convergence of risk factors tips the risk-benefit balance away from benefit and toward 
risk (3). Therefore, drug- and patient-related risk factors for the occurrence of IDRs are 
also summarized here. As prediction and the unraveling of mechanisms of IDRs are very 
important, current applications of in vitro and in vivo techniques to screen for the CRMs 
formation are also reviewed. Finally, the aim and scope of the thesis are formulated. 

Glutathione S-transferases (GSTs) are major enzymes involved in the 
detoxification of xenobiotics by catalyzing conjugation reactions to GSH. Thus, 
polymorphisms (especially deletions) of human GST genes could cause increased 
susceptibility of patients to idiosyncratic drug-induced toxicity, if these enzymes would 
play a role in the detoxification of CRMs. Hence, Chapter 2 presents an overview of the 
polymorphisms of GSTs, association studies that show correlations between 
polymorphisms and idiosyncratic toxicities as well as in vitro and in vivo studies where 
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the role of these enzymes in the detoxification of reactive drug metabolites was 
investigated. 

 

 

Figure 1. Metabolic processes and drug fate in the human body. Adapted from (2).  

 

 
Chapter 3 is about the role of (polymorphic) hGSTs on the inactivation of 

reactive drug metabolites of clozapine. In this in vitro study we investigated the ability of 
four major recombinant human GSTs (GSTA1-1, GSTM1-1, GSTP1-1, and GSTT1-1) on the 
detoxification of clozapine reactive intermediates and formation of GSH adducts. Human 
and rat liver microsomes and a highly active drug-metabolising P450 BM3 mutant 
M11his were used for the bioactivation of clozapine and formation of reactive nitrenium 
ion. In presence of three of the tested hGSTs, namely hGSTP1-1, hGSTM1-1 and hGSTA1-1, 
GSH conjugation was strongly increased while the polymorphic hGSTT1-1 did not show 
any activity. Major changes in the regioselectivity of GSH conjugation also occurred, 
possibly due to the different active side geometries of hGST isoenzymes. Two GSH 
conjugates, previously only found in in vivo animal studies (4) were completely 
dependent on the presence of hGSTs, which explains their absence in in vitro studies 
without GSTs. With this, we have shown for the first time that addition of GSTs in in vitro 
systems is needed to obtain adequate reflections of GSH conjugation in  in vivo systems. 

The effects of human GSTs on the GSH adduct formation of diclofenac were also 
studied and described in Chapter 4. First, a single BM3 mutant showing the best 
metabolism of diclofenac, the double mutant CYP102A1 M11H Phe87, was selected for 
diclofenac bioactivation. The effects of the four major recombinant human GSTs, hGSTA1-
1, hGSTM1-1, hGSTP1-1 and hGSTT1-1, on the formation of GSH conjugates of diclofenac 
were studied. Addition of hGSTA1-1, hGSTM1-1, and hGSTP1-1 increased GSH 
conjugation, with hGSTP1-1 showing the highest activity and hGSTA1-1 the lowest. hGSTs 
catalyzed the formation of GSH conjugates from all four described bioactivation pathways. 
hGSTP1-1 showed the highest activity towards the formation of GSH conjugates from 5-
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OH diclofenac which leads to a different conjugate profile than the other hGSTs. This 
might be an important role as the 5-OH diclofenac is less stable than 4’-OH diclofenac, i.e., 
more prone to further oxidation to reactive quinone imine. hGSTP1-1 is highly expressed 
in the epithelia of the gastrointestinal tract and, based on the observed results, could  play 
a crucial role in protection against gastrointestinal toxicity of diclofenac. On the other 
hand, high increases of 4’-OH diclofenac conjugates, the major diclofenac bioactivation 
pathway, in the presence of hGSTM1-1 imply that deficiency of hGSTM1-1 might be a risk 
factor for diclofenac induced hepatotoxicity. This is particularly important in conditions 
when cellular GSH becomes depleted and inactivation of reactive diclofenac metabolites 
will be more dependent on GST-catalyzed GSH-conjugation. Further investigation is 
warranted to confirm if GSTP1 and GSTM1 polymorphisms contribute significantly to 
these diclofenac-induced toxicities. 

Human GSTP1-1 gene is polymorphic in human populations. Four allelic variants 
of hGSTP1-1 have been identified (5). These variants result from Ile105Val and Ala114Val 
substitutions. hGSTP1-1 polymorphisms are becoming increasingly relevant since 
previous studies suggested variations among individuals in regards to enzyme activity 
(6–9). In Chapter 5 we studied the ability of four allelic variants of hGSTP1-1, namely 
hGSTP1*A (Ile105/Ala114), hGSTP1*B (Val105/Ala114), hGSTP1*C (Val105/Val114) and 
hGSTP1*D (Ile105/Val114), to catalyze the GSH conjugation of the reactive metabolites of 
diclofenac, clozapine, and paracetamol. Reactive metabolites were generated in vitro by 
human liver microsomes and drug metabolizing P450 BM3 mutants. Differences in 
activity between the proteins could not be attributed to a general decrease in catalytic 
efficiency. Rather, the differences reflected the effect of residue 105 and 114 on events 
specific for given substrates. Single substitutions at residue 105 or 114 did affect the 
ability to catalyze GSH conjugation. However, when both residue 105 and 114 were 
substituted the effect could be enhanced or diminished. Based on the results in this 
chapter, we suggest that the binding orientation of substrates in the active site of P450 
BM3 mutants is changed and has effect on GSH conjugation.   

Last three chapters are more closely dedicated to clozapine, its bioactivation to 
reactive nitrenium ion and possible risk factors that might lead to idiosyncratic toxicities, 
agranulocytosis and hepatotoxicity. Chapter 6 describes the application of P450 BM3 
mutants for clozapine bioactivation and structural characterization of the GSH conjugates 
formed. A saturation mutagenesis study was performed in which the active-site residue 
at position 87 was mutated to all 20 possible amino acids. In BM3 M11 the residue at this 
position is Val87, introduced at an early stage of the mutagenesis process, to expand the 
substrate selectivity to drugs and drug-like molecules (10). In the saturation mutagenesis 
studies, it was demonstrated that the type of amino acid at position 87 has a strong effect 
on substrate selectivity when comparing a series of alkoxyresorufins and on the activity 
and regioselectivity of testosterone hydroxylation (11). We also proved the importance of 
the residue at position 87 on the regioselectivity of clozapine metabolism. In particular, 
we showed that physical properties of the side chain of aminoacid in position 87 are very 
critical for the total activity of the enzyme. The mutant with phenylalanine at position 87 
was very selective for the bioactivation of clozapine and was therefore chosen for large 
scale production of the GSH conjugates. Five major GSH adducts of clozapine, four having 
the same mass and three of them synthesized for the first time, were produced in high 
levels, purified and structural elucidation was done by 1H-NMR. This study confirmed the 
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utility of highly active and selective P450 BM3 mutants as tool to characterize human-
relevant metabolites, applied here for the first time for formation of CRMs.  

Chapter 7 is describing involvement of individual human CYPs in the 
bioactivation of clozapine and formation of reactive intermediates. Fourteen different 
recombinant human CYPs were used for the complete metabolic studies of clozapine, and 
more specifically to elucidate enzymes responsible for its bioactivation. Also, inhibition of 
reactive metabolite formation (measured as GSH conjugates) by addition of selective 
inhibitors of individual CYP enzymes to human liver microsomes incubations was 
investigated. Six out of fourteen recombinant human P450s were able to bioactivate 
clozapine, with CYP3A4 and CYP2D6 showing the highest specific activity. To establish 
the importance of CYP2D6 in the bioactivation of clozapine, collaboration with prof. 
Magnus Ingelman-Sundberg’s group was set up. Individual liver microsomes prepared 
from 100 different human livers could thus also be used to study the contribution of 
CYP3A4 and CYP2D6 in clozapine bioactivation in vitro and to evaluate the role of 
polymorphic CYP2D6. No significant inhibition by quinidine, inhibitor of CYP2D6, 
occurred in any of 100 individual incubations, suggesting that CYP2D6 polymorphism is 
not an important factor in determining susceptibility to hepatotoxicity of clozapine. It 
was also observed that the bioactivation of clozapine to reactive nitrenium ion 
contributes equally to metabolism of clozapine as major biotransformation pathways, i.e. 
demethylation and N-oxidation, do. There were 2 out of the 100 individuals with 
significantly higher formation of the reactive metabolites (Figure 7, Chapter 7) compared 
to the others. Based on these results, it was finally concluded that CYP3A4 is the major 
enzyme responsible for clozapine bioactivation in the liver and that drug-drug 
interactions and induction at the level of CYP3A4, more than genetic variability, might be 
factors determining exposure of hepatic tissue to reactive clozapine metabolites.  

The most recent and major studies to translate previous results into humans and 
human patients treated with clozapine are described in Chapter 8. This was done by 
measuring urine samples from schizophrenic patients treated with clozapine, by 
performing human precision-cut liver slice (hPCLS) incubations, as well as by analyzing 
the association of GST polymorphisms with the occurrence of agranulocythosis. Metabolic 
profiles based on urine samples from clozapine treated patients corresponded to 
previously described metabolic profiles (12–14). Bioactivation of clozapine was identified 
by measuring the formation of GSH related conjugates. Surprisingly, cysteine conjugates 
were measured rather than the expected N-acetyl cysteine conjugates in human urine. 
Previously described clozapine thiomethyl conjugates found in human urine (12) were 
also measured. In correspondence with measurements in patients urine, in human liver 
slice incubations cysteine and thiomethyl conjugates were also found as well as all other 
phase I and phase II stable metabolites. With this, we could show that hPCLS are a good 
model for predicting human metabolic profiles of clozapine in vivo. The exact structures 
of the identified GSH related conjugates were determined using reference standards, 
produced by enzymatic and chemical syntheses from corresponding GSH conjugates and 
described in Chapter 6. Both, chemical and enzymatically catalyzed (GST-dependent) 
GSH related conjugates were observed. The GSH conjugate structures, reflecting the 
involvement of CRMs of clozapine, the importance of polymorphic human GSTs for their 
formation (as described in Chapter 3), and the occurrence of agranulocythosis were 
correlated with genotyping results for the human GSTs. Due to the extremely large 
variability in amounts and profiles of GSH-related metabolites, no correlation was 
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observed with the polymorphic alleles of hGSTM1, GSTT1, GSTP1 and GSTA1. Remarkably, 
however, three out of seven patients that developed agranulocytosis had double null 
genotypes for GSTM1-1 and GSTT1-1 while within control group only one out of thirty 
one patients was a carrier of the double-null genotype. Larger number of adequate 
samples would be necessary to confirm this most interesting and relevant observation. 
 

2. Conclusions and perspectives 

The research described in this thesis was a part of a wider interdisciplinary 
project “Towards Novel Translational Biomarkers for Adverse Drug Reactions (ADRs)” 
financed by the Dutch Top-Institute Pharma (grant D3-201), notably involving the 
formation of CRMs. Several industrial and academic partners participated in this project 
that led to several publications and translational strategies to better predict drug safety 
early in the drug discovery and development processes (Figure 2).  

 

Figure 2. Strategy and approaches towards novel translational safety biomarkers for adverse drug 
toxicity (TI-Pharma D-301 project). 

 
 
IDRs are usually rare, not evident in animal species, but can be serious and even 

fatal in humans and lead to withdrawal of otherwise effective therapeutic agents. The fact 
that IDRs will mostly occur only at the post-approval stage, when such problems typically 
first become evident, is a major impediment to drug development. When the research 
described in this thesis started, there were no validated methods for the identification of 
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drugs that may cause hypersensitivity or idiosyncratic drug reactions in humans during 
preclinical drug evaluation.  

It is well established that most IDRs result from the bioactivation of drugs to 
CRMs (15). The first step towards developing a valid methodology would be the testing of 
molecules for their ability to form reactive metabolites. However, there is no simple 
correlation between drug bioactivation in vitro and ADRs in the clinic. Even though 
bioactivation is collectively proposed to be required in mechanisms leading to IDRs, not 
all drugs that undergoing bioactivation by drug-metabolizing enzymes are associated 
with IDRs in the clinic. In particular, very little is known about the relationship between 
the chemical properties of CRMs and the mechanisms underlying clinical IDRs. Studies on 
how these properties contribute to toxicity (in preclinical species and in humans) 
appeared to be key for future research. The main aim of this thesis was therefore to 
develop in vitro techniques for the bioactivation of drugs and detection and 
characterization of stable and, more importantly, chemically reactive metabolites. 

However, it is impossible to predict an individual's susceptibility to IDRs due to 
drugs only on bioactivation. Second aim of this thesis was investigate which other factors 
determine interindividual susceptibility to drug toxicity. The most common step 
following bioactivation is bioinactivation or detoxification (Figure 3). The efficiency of 
detoxification of the chemically reactive intermediates, often via GSH conjugation, might 
be a crucial risk factor for the occurrence of IDRs. The balance between bioactivation and 
bioinactivation pathways in the metabolism of drugs could be the critical factor that 
determines individual susceptibility for IDRs (Figure 3). In susceptible people the usually 
favourable balance between bioactivation and bioinactivation may be perturbed by either 
genetic or host factors, allowing the toxic metabolites to escape detoxification. Chemical 
properties of the drug, daily doses, drug metabolism, drug-drug interactions, and other 
factors such as age, sex, nutritional factors, and underlying disease states might mediate 
the development of IDRs. Under these circumstances, the toxic metabolites may bind 
covalently to various cellular macromolecules and cause toxicity. With most drugs, 
however, the factors which cause this imbalance are unknown, which explains why such 
reactions continue to occur. Genetic susceptibility, however, is one of the most important 
risk factors, although the precise genetic bases is still poorly understood for most drugs 
with documented IDRs (16). Therefore, our aim was to identify if polymorphic enzymes, 
primarily hCYPs and hGSTs, are involved in biotransformation and bioinactivation 
processes of model drugs causing IDRs. More specifically, we investigated in in vitro 
studies if genetically polymorphic enzymes are involved in bioactivation and 
detoxification of the reactive nitrenium ion of clozapine, drug that causes idiosyncratic 
agranulocytosis and hepatotoxicity. Finally, we tried to correlate the importance of these 
polymorphisms with the in vivo data obtained from the patients on clozapine treatment.  

 

2.1. Role of (polymorphic) hGSTs in the detoxification of chemically reactive 
drug metabolites 

In the first part of this thesis, we demonstrated that (polymorphic) human GSTs 
might play a significant role in the inactivation of reactive drug metabolites (Chapter 3 to 
Chapter 5). We have shown that hGSTs are able to catalyze the GSH conjugation of CRMs, 
resulting in different regioisomeric GSH conjugates of clozapine and showing selectivity 
for different bioactivation pathways for diclofenac. This data indicated the possible 
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importance of polymorphic GSTs, namely hGSTM1-1 and hGSTP1-1, as risk factors for the 
occurrence of idiosyncratic toxicity. Several clinical studies demonstrated an increased 
susceptibility to idiosyncratic drug-induced liver injury by a combined GSTM1-T1 double-
null genotype (17, 18). A reduced ability to detoxify electrophilic reactive metabolites, 
which is expected among individuals with GSTM1-1 null genotypes, might play a role in 
determining or predicting the risk for clozapine and/or diclofenac related toxicities. 
Inter-individual differences in hGSTP1-1 enzymes derived from polymorphisms that 
could also lead to greater exposure to reactive metabolites may also be a possible 
explanation for a varying susceptibility to drug-induced ADRs. Remarkably, our GSTs 
genotyping study in clozapine treated schizophrenic patients showed that there might be 
a correlation between GSTM1-T1double-null genotype and occurrence of agranylocytosis. 
In addition to reported in vitro studies, specifically designed case-control studies are 
required to investigate whether genetic polymorphisms of hGSTP1-1 and hGSTM1-1 
causally contribute to the inter-individual differences in susceptibility to these drug-
induced ADRs. We have developed and validated a strategy for investigation of the role of 
hGSTs in the detoxification of CRMs and formation of GSH adduct. More importantly, we 
proved that the addition of GSTs is required for the formation of all human relevant GSH 
conjugates. 

 
 

Figure 3. Schematic representation of the main focuses of this thesis. Individuals, susceptible for 
the expression of IDRs show a disturbed balance between increased bioactivation (i.e. CRMs 
formation) and decreased detoxification (i.e. GSH conjugation). 
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2.2. Bioactivation of clozapine and risk factors for its idiosyncratic toxicity 

Measuring the potential of drugs and drug candidates to be bioactivated to CRMs 
in early drug discovery is often hampered by the difficulties in detecting and 
characterizing low levels of CRMs. When this research started, Damsten et al. already 
showed that BM3 mutants were useful to produce reactive metabolites from the drugs 
clozapine, diclofenac and acetominophen (19). We have been able to identify novel 
human relevant GSH conjugates of clozapine by discovering that hGSTs had to be added 
and by using NMR for unequivocal structural elucidation. This study confirms the high 
potential of P450 BM3 mutants as tool to produce and characterize human-relevant 
and/or CRMs for the development of safer drugs. 

The involvement of individual hCYPs in the hepatic metabolism of clozapine to its 
major metabolites N-desmethyl clozapine and clozapine N-oxide has been well 
characterized previously (20–22). Using several in vitro approaches, we showed for the 
first time that CYP3A4 is the major enzyme responsible for clozapine bioactivation. 
Interindividual differences and drug-drug interactions at the level of CYP3A4, often 
occurring (23, 24), may therefore well add to differences in susceptibility of patients to 
clozapine IDRs. We have also shown that hGSTs, specifically polymorphic hGSTM1-1, play 
a significant role in of the protection against the CRMs of clozapine formed by cytochrome 
P450s (Chapter 3). Therefore, a high activity of bioactivation by CYP3A4 in combination 
with reduced activity of protective hGSTs, and specifically polymorphic hGSTM1-1, might 
explain high susceptibility of part of the patients to hepatotoxic effects of CLZ.  

Finally, in Chapter 8, we described an approach leading to the discovery of 
stable urinary metabolite biomarkers, namely cysteine and thiomethyl conjugates, 
indicative for clozapine bioactivation in clozapine treated patients. Translational 
biomarkers such as these, first time discovered and validated in in vivo studies, can be 
used to explore associations between metabolic activation and the incidence and risk 
factors of ADRs in patients. The importance of polymorphic hGSTs for the formation and 
urinary excretion of detected thioether conjugates was also discussed. Due to the 
extremely large variability in amounts and profiles of GSH-related metabolites, no 
correlation was found with polymorphic alleles of hGSTM1, GSTT1, GSTP1 and GSTA1. 
Urinary GSH-related metabolites of CLZ, therefore, do not seem useful biomarkers for 
quantitative biomonitoring of internal exposure to reactive CLZ-metabolites. In the same 
study, we have also shown that hPCLS, containing both phase I and phase II enzymes, are 
an excellent model for patient-relevant metabolic profile characterization. The here 
developed strategy, involving in vitro approach for drug metabolism by more complex 
system (hPCLS) and urine analysis from the chronically treated patients, forms a unique 
and translational bridge between in vitro studies and clinical studies in patients. 
Interestingly, we could also demonstrate for the first time the relevance of a combined 
GSTM1-T1 double-null genotype in the investigated clozapine-treated patients for the 
occurrence of clozapine-induced agranulocytosis.  

In conclusion, associations between the generation of chemically reactive 
metabolites (CRMs) during the drug metabolism and various drug toxicities is generally 
well-established. However, considerable uncertainty is still surrounding the predicitvity 
of reactive metabolite formation with regard to risks for ADRs or IDRs in humans. 
Although recent developments in molecular toxicology have increased our understanding 
of how drug metabolism may contribute to drug bioactivation and bioinactivation and to 



Chapter 9 

240 

possible drug–related ADRs or IDRs, it is not yet possible to predict these toxicities based 
on chemical structures alone. There remains a need for mechanistic drug safety related 
research to be better equipped to informing both medicinal chemists and clinicians about 
risk and hazard identification due to drug exposure. Recent developments have provided 
new strategies that have greatly improved our basic understanding of the role of drug 
metabolism in ADRs. However, much remains to be done to fully understand the basic 
molecular and cellular mechanisms, and to enable the translation of this knowledge and 
methods to better predict drug safety. We have developed methods which will help to 
explore the molecular mechanisms in order to: (1) determine the functional group(s) 
within molecules and metabolic reactions that might be responsible for the toxicity; and 
(2) identify (biological) factors that may determine cell-directed toxicity and predispose 
individuals for ADRs or IDRs. As such, the results presented in this thesis will contribute 
significantly to the development of novel, translational technologies and methodologies, 
which can moreover serve as the interesting starting points for future research in drug 
safety sciences. 
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Nederlandse samenvatting 

Schadelijke bijwerkingen, in het engels 'adverse drug reactions' (ADR), waren 
tussen 2007 en 2010 de op een na belangrijkste reden waarom kandidaat 
geneesmiddelen tijdens de ontwikkeling moesten worden teruggetrokken. Dit ondanks 
het feit dat er al decennia veel onderzoek wordt verricht naar de oorzaak van deze 
ongewenste reacties. Vooral de zeldzame 'idiosyncratische drug reacties' (IDR), die 
meestal pas aan het licht komen nadat een geneesmiddel op de markt is geïntroduceerd, 
zijn een bron van zorg vanwege hun onvoorspelbare en zeer ernstige aard.  Tot nu toe 
zijn verschillende hypotheses geformuleerd met betrekking tot de oorzaak van deze vaak 
fatale reacties.  Geen van deze hypotheses is tot nu toe voldoende gevalideerd.  Over het 
algemeen wordt enzymatische bioactivatie van geneesmiddelen tot hoog-reactieve 
metabolieten die met cellulaire macromoleculen kunnen reageren, in het bijzonder 
eiwitten, beschouwd als een belangrijke risicofactor in het ontstaan van IDR.  Hoewel 
cellen verschillende beschermingsmechanismen bevatten tegen reactieve metabolieten, 
zoals inactivatie door middel van glutathion (GSH)-conjugatie, kan in sommige situaties 
de vorming van reactieve metabolieten te hoog zijn om nog effectief te kunnen 
inactiveren. Factoren die de balans van bioactivering en inactivering negatief kunnen 
beïnvloeden zijn genetische afwijkingen op het niveau van de biotransformatie enzymen 
of transporteiwitten, enzyminductie of enzymremming door andere geneesmiddelen of 
voedingscomponenten, leeftijd en de ziekte waaraan een patiënt lijdt. 

Het belangrijkste doel van het onderzoek dat in dit proefschrift wordt 
beschreven was om meer inzicht te krijgen in de rol van reactieve geneesmiddel 
metabolieten, en de rol van erfelijkheid in de balans van bioactiverende- en 
beschermende mechanismen die bepalend kan zijn voor het risico de zeldzame IDRs.  
Daartoe werden in vitro methoden ontwikkeld waarmee zowel de stabiele als reactieve 
metabolieten van geneesmiddelen kunnen worden gedetecteerd en gekarakteriseerd. 
Ook werd onderzocht welke factoren de interindividuele verschillen in de gevoeligheid 
voor ADR zouden kunnen verklaren. Daartoe werd onderzocht of erfelijk bepaalde 
cytochroom P450s en glutathion S-transferases (GSTs) betrokken zijn bij het 
metabolisme van geneesmiddelen die zelfzame IDR veroorzaken. Cytochroom P450s zijn 
vaak verantwoordelijk voor de vorming van reactieve metabolieten, terwijl GSTs 
betrokken kunnen zijn bij de enzymatisch GSH-conjugatie, en daardoor de detoxificatie 
van reactieve metabolieten. Uit de uitgevoerde in vitro studies kwam naar voren dat 
enkele genetisch bepaalde glutathion S-transferases betrokken zijn bij de inactivatie van 
de reactieve metabolieten van de geneesmiddelen clozapine en diclofenac.  Om het 
mogelijke verband tussen deficiëntie van glutathion transferases en het risico op ADR aan 
te tonen in vivo werd het metabolisme van clozapine onderzocht in patiënten die wel en 
niet gevoelig zijn voor de toxiciteit van dit geneesmiddel.  Het in dit proefschrift 
beschreven onderzoek was onderdeel van een breder interdisciplinair 
onderzoeksprojects, getiteld "Towards Novel Translational Biomarkers for Adverse Drug 
Reactions (ADRs)", dat werd gefinancieerd door het Topinstituut Pharma 
(projectnummer D3-201). Aan dit project namen verschillende industriële en 
academische partners deel. 

In Hoofdstuk 1 wordt een algemene introductie gegeven over ADR, met speciale 
nadruk op de zelfzame IDRs.  Hoewel het exacte mechanisme van IDRs nog niet bekend is, 
wordt vorming van reactieve metabolieten die vervolgens reageren met cellulaire 
macromoleculen, zoals eiwitten, als een belangrijke eerste stap beschouwd. 
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Idiosyncratische toxiciteit treed hoogstwaarschijnlijk alleen op als meerdere 
risicofactoren samenvallen in een patiënt. De verschillende risicofactoren die gerelateerd 
kunnen zijn aan het geneesmiddel of aan de patiënt worden in dit hoofdstuk samengevat.  
Omdat reactieve metabolieten waarschijnlijk een belangrijke rol spelen worden de 
verschillende experimentele benaderingen waarmee de vorming van reactieve 
metabolieten kunnen worden aangetoond in hoofdstuk 1 ook behandeld. 

Glutathione S-transferases (GSTs) kunnen soms een belangrijke rol spelen in de 
ontgifting van electrofiele chemicaliën door ze te koppelen aan het tripeptide glutathion 
(GSH). Genetisch polymorfismen van GSTs kunnen daarom een bepalende factor zijn in de 
gevoeligheid voor IDRs als erfelijk bepaalde GSTs een belangrijke rol spelen in de 
inactivatie van reactieve geneesmiddelmetabolieten. In Hoofdstuk 2 wordt een overzicht 
gegeven van de genetische polymorfismes van GST die in de bevolking zijn aangetoond. 
Verschillende associatiestudies worden beschreven waarin het verband tussen deze 
polymorfismes en het risico op toxiciteit van geneesmiddelen in patiënten populaties is 
onderzocht. Daarnaast worden de in vitro en in vivo benaderingen beschreven waarmee 
de beschermende rol van GSTs kon worden aangetoond. 

In het onderzoek dat wordt beschreven in de hoofdstukken 3 tot en met 5 werd 
bestudeerd of erfelijk bepaalde menselijke GSTs een rol spelen in de inactivatie van de 
reactieve metabolieten van clozapine en diclofenac. Clozapine is een zeer effectief 
geneesmiddel in de behandeling van psychiatrische patiënten.  Echter, in ongeveer 1% 
van de met clozapine behandelde patiënten treedt ernstige, levensbedreigende 
agranulocytose op.  Daarnaast veroorzaakt clozapine in een deel van de patiënten een 
asymptomatische verhoging van plasma transaminase levels; slechts bij een zeer klein 
aantal patiënten kan ernstige leverschade optreden. Bioactivatie van clozapine tot een 
hoog-reactief nitrenium ion door myeloperoxidase en P450s wordt beschouwd als de 
oorzaak voor deze toxische bijwerkingen. In Hoofdstuk 3 wordt beschreven dat drie van 
de onderzochte GSTs, namelijk hGSTP1-1, hGSTM1-1 en hGSTA1-1, in staat waren de 
koppeling van het reactieve nitrenium ion aan GSH te katalyseren. Het genetisch 
polymorfe GSTT1-1 vertoonde geen katalytische werking.  Tussen de actieve GSTs bleken 
grote verschillen in regioselectiviteit in GSH-conjugatie aan het nitrenium ion te bestaan, 
hetgeen mogelijk kan worden verklaard door de verschillende geometrie van de 
substraat bindingsplaatsen van deze enzymen. Twee van de gevonden GSH-conjugaten, 
die voorheen alleen in in vivo proefdier studies waren aangetoond bleken alleen in 
aanwezigheid van GSTs  te kunnen worden gevormd, hetgeen verklaart waarom deze 
conjugaten tot nu toe nooit in in vitro experimenten konden worden aangetoond.  Dit laat 
zien dat toevoegen van GSTs aan in vitro incubaties noodzakelijk is om een adequate 
weerspiegeling te krijgen van het profiel van GSH conjugaten zoals die in vivo kunnen 
worden gevormd. 
 Het antiontstekingsmiddel diclofenac veroorzaakt bij een zeer klein deel van de 
patiënten een zeer ernstige vorm van levertoxiciteit. Daarnaast kan diclofenac toxiciteit 
veroorzaken in het maagdarmkanaal. Aangetoond is dat diclofenac door zowel 
glucuronidering als oxidatie-reacties tot verschillende eiwit-reactieve metabolieten kan 
worden omgezet. In Hoofdstuk 4 wordt het effect beschreven van GSTs op de ontgifting 
van vier verschillende reactieve metabolieten die door cytochroom P450s worden 
gevormd.  Toevoeging van hGSTA1-1, hGSTM1-1 en hGST1-1 bleek de GSH-conjugatie van 
alle vier reactieve intermediairen te versnellen; de hoogste activiteit werd waargenomen 
met hGSTP1-1, terwijl hGSTA1-1 de laagste activiteit vertoonde.  hGSTP1-1 bleek vooral 
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actief te zijn in de vorming van GSH-conjugaten die via 5-hydroxydiclofenac worden 
gevormd.  5-Hydroxydiclofenac is gevoelig voor autoxidatie tot een reactief quinonimine 
dat als het meest toxische metaboliet van diclofenac wordt beschouwd. hGSTP1-1 heeft 
een lage expressie in levercellen, maar een hoge expressie in de cellen van het 
maagdarmkanaal. Dit enzym speelt daarom waarschijnlijk een belangrijke rol in de 
bescherming tegen de darmtoxiciteit van diclofenac.  4'-Hydroxydiclofenac is een van de 
hoofdmetabolieten van diclofenac, en kan door cytochroom P450 verder worden 
geoxideerd tot een ander quinonimine. Het erfelijk bepaald hGSTM1-1 bleek zeer actief te 
zijn in de GSH-conjugatie van dit quinonimine. Deficiëntie van hGSTM1-1, welke ongeveer 
45% van de bevolking voorkomt, kan de gevoeligheid voor levertoxiciteit van diclofenac 
mogelijk verhogen, vooral in situaties waarin de concentratie van GSH in de lever is 
verlaagd, en de inactivatie van de quinonimines sterk afhankelijk worden van GSTs. 

Verschillende studies suggereren dat genetische polymorfismen van hGSTP1-1 
ook tot interindividuele verschillen in enzymactiviteit kunnen leiden.  In Hoofdstuk 5 
worden de enzymactiviteiten beschreven waarmee vier allelische varianten van hGSTP1-
1 de reactieve metabolieten van paracetamol (acetaminophen), clozapine en diclofenac 
conjugeren aan GSH.  De vier onderzochte varianten waren hGSTP1*A (Ile105/Ala114), 
hGSTP1*B (Val105/Ala114), hGSTP1*C (Val105/Val114) en hGSTP1*D (Ile105/Val114).  
De drie geneesmiddelen werden gebioactiveerd door menselijke levermicrosomen en het 
bacteriële P450 BM3.  Uit de resultaten blijkt dat de allelische varianten slechts kleine 
verschillen vertoonden in de activiteit waarmee de reactieve metabolieten van deze 
geneesmiddelen werden gekoppeld aan GSH.  Verschillen in enzymactiviteit tussen de 
GSTP1-1 mutanten verklaart dus waarschijnlijk niet de waargenomen verschillen in 
gevoeligheid voor toxiciteit.  hGSTP1-1 heeft echter ook nog andere functies in de cel, 
������ ��˫nvloeding van de werking van transcriptiefactoren (bijvoorbeeld jun-K) en de 
glutathionylering van eiwitten. Het is dus mogelijk dat het genetische polymorfisme van 
hGSTP1-1 meer invloed heeft op deze andere functies van dit eiwit. 

In Hoofdstuk 6 wordt beschreven dat mutanten van het bacteriële P450 BM3 
waardevolle hulpmiddelen zijn bij het karakteriseren van GSH-conjugaten van 
geneesmiddelen.  P450 BM3 is het meest actieve cytochroom P450 dat tot nu toe in de 
natuur is gevonden, en heeft daarom veel perspectief als katalysator in de biotechnologie. 
Door middel van mutagenese zijn in de groep Moleculaire Toxicologie mutanten 
ontwikkeld die is staat zijn geneesmiddel metabolieten op grote schaal te produceren. In 
Hoofdstuk 6 is een serie van mutanten onderzocht waarin het aminozuur op positie 87 is 
vervangen door elk van de andere aminozuren, ookwel 'saturation mutagenesis' 
genoemd. Het aminozuur op deze positie bevindt zich in de substraat bindingsplaats, 
zodat verwacht werd dat vervanging van het aminozuur tot verschillen in activiteit en/of 
regioselectiviteit kan leiden.  Door deze mutanten te incuberen met clozapine, in 
aanwezigheid van GSH, bleek dat de onderzochte mutanten in staat waren de 
metabolieten te produceren die ook door menselijke P450s worden gevormd. Inderdaad 
bleken de 20 mutanten een grote variatie in activiteit en metaboliet-profiel vertoonden.  
De mutant met een fenylalanine op positie 87 bleek zeer selectief te zijn in de bioactivatie 
van clozapine tot het toxische nitrenium ion, en een hoge activiteit te bezitten. Met behulp 
van deze mutant konden vijf verschillende GSH-conjugaten van clozapine op grote schaal 
worden geproduceerd, zodat daarvan de absolute structuur met behulp van 1H-NMR voor 
de eerste keer kon worden opgehelderd.  Deze studie toont aan dat P450 BM3 mutanten 
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waardevolle hulpmiddelen kunnen zijn in toxicologisch onderzoek omdat ze ook de 
humaan-relevante reactieve metabolieten kunnen produceren. 

Het onderzoek dat beschreven is in Hoofdstuk 7 was erop gericht te 
identificeren welke menselijke cytochroom P450s betrokken zijn bij de bioactivatie van 
clozapine in de lever. Uit incubaties van clozapine met 14 verschillende recombinant 
humane P450s bleek dat zes van de P450s in staat waren clozapine te bioactiveren; 
CYP3A4 en CYP2D6 vertoonden de hoogste specifieke activiteit.  De belangrijke rol van 
CYP3A4 werd bevestigd door remmingsexperimenten met gepoolde menselijke 
levermicrosomen; alleen de CYP3A4-specifieke remmer bleek een sterke verlaging van de 
GSH-conjugaten te vertonen. Remming van CYP2D6 in de gepoolde levermicrosomen 
bleek geen significate invloed op vorming van GSH-conjugaten te vertonen, hetgeen 
verklaard kan worden door het gemiddeld lage expressieniveau van dit P450.  Omdat een 
klein percentage van de bevolking meerdere kopiën van het gen van CYP2D6 bezit, 
hetgeen tot sterk verhoogde CYP2D6 kan leiden, is, in samenwerking met prof. Magnus 
Ingelman-Sundberg (Karolinska Instituut, Stockholm) ook de bioactivatie van clozapine 
onderzocht met een panel van levermicrosomen van 100 verschillende individuën.  Uit 
deze studie bleek dat er een grote interindividuele variabiliteit bestaat in de bioactivatie 
van clozapine, en dat de bioactivatieroute kwantitatief bijna even belangrijk is als de N-
demethylering en N-oxidatie-route. Echter, toevoeging van de CYP2D6-specifieke remmer 
quinidine bleek bij geen van 100 levermicrosomen significante remming te vertonen op 
de bioactivatieroute, zodat genetisch polymorfisme van CYP2D6 waarschijnlijk geen 
risicofactor is voor de levertoxiciteit van clozapine. 

Uit deze studie blijkt dat CYP3A4 het belangrijkste enzym is voor de bioactivatie 
van clozapine in de lever. Drug-drug interacties op het niveau van CYP3A4, zoals enzym 
inductie, spelen dus waarschijnlijk een belangrijke rol in de variabiliteit in bioactivatie 
van clozapine. Op basis van de resultaten die beschreven zijn in de Hoofdstukken 3 en 7 
kan als hypothese worden geformuleerd dat een combinatie van enzyminductie van 
CYP3A4 in combinatie met deficiëntie van GSTs, zoals hGSTM1-1, tot verhoogde 
gevoeligheid voor clozapine-ge˫nduceerde levertoxiciteit kan leiden.  

Hoofdstuk 8 beschrijft de resultaten van de studies die zijn uitgevoerd om de 
klinische relevantie van de in vitro studies van clozapine met recombinant GSTs en P450s 
aan te tonen.  Ten eerste werd het metabolisme van clozapine onderzocht met menselijke 
leverslices van 14 verschillende individuen. Daarnaast werd de uitscheiding van 
metabolieten van clozapine in urine van 28 psychiatrische patiënten onderzocht, 
waarvan sommigen clozapine-ge˫nduceerde agranulocytose ondervonden.  Zowel in de 
incubaties van clozapine met leverslices, als in de urine-monsters konden meer dan 30 
verschillende metabolieten van clozapine worden aangetoond die worden gevormd door 
fase 1 en fase 2 enzymen, hetgeen de waarde van leverslice-experimenten voor het 
voorspellen van geneesmiddel metabolisme bevestigd. Een aantal van de metabolieten 
kon worden toegeschreven aan de bioactivatie-route van clozapine.  In de urine monsters 
van patiënten werden zowel cysteine- als thiomethyl-conjugaten van clozapine 
aangetoond. Deze thioethers ontstaan bij afbraak van GSH-conjugaten van clozapine, een 
proces dat in meerdere weefsels kan plaatsvinden. Aan de hand van de structuren kon 
worden bevestigd dat GSH-conjugatie van het reactieve clozapine metaboliet bij de mens 
ook door GSTs wordt gekatalyseerd. Van zowel de leverslices als de patiënten was het 
genotype van vier GSTs (hGSTM1-1, hGSTT1-1, hGSTP1-1 en hGSTA1-1) bepaald. Echter, 
er werd geen correlatie gevonden tussen het genotype van GSTs en het profiel van de 
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GSH-conjugaten en daarvan afgeleide producten, mede vanwege de zeer grote 
interindividuele verschillen in metaboliet-profielen in de slice-incubaties en urine 
monsters. Bij het vergelijken van het GST-genotype van patiënten met en zonder 
agranulocytose bleek dat drie van de zeven patiënten met agranulocytose zowel het gen 
voor hGSTM1-1 en hGSTT1-1 misten.  Bij de dertig patiënten die géén agranulocytose 
ontwikkelden bleek slechts één patiënt beide genen te missen.  Deze zeer interessante 
resultaten zouden erop kunnen wijzen dat het missen van beide genen een risicofactor 
voor agranulocytose kan zijn. Deze vinding dient echter te worden bevestigd in een 
grotere associatiestudie. 

Concluderend, onderzoek in de laatste decennia heeft aangetoond dat reactieve 
metabolieten van geneesmiddelen waarschijnlijk een belangrijke rol spelen bij het 
ontstaan van verschillende vormen van ADRs.  Echter, de voorspellende waarde van 
vorming van reactieve metabolieten in tot nu toe gebruikte in vitro modellen voor het 
optreden van ADRs, en de meer zeldzame IDRs, is nog steeds zeer beperkt.  Er bestaat 
daarom grote behoefte aan betere, op mechanistisch onderzoek gebaseerde 
modelsystemen waarmee de risicoschatting voor de toxische bijwerkingen van 
geneesmiddelen kan worden verbeterd. Met de mechanistische kennis kunnen door 
farmacochemici veiliger geneesmiddelen worden ontwikkeld. Mechanistische studies 
verschaffen namelijk inzicht over welke functionele groepen en welke enzymatische 
reacties tot de vorming van reactieve, mogelijk toxische metabolieten kunnen  leiden. 
Daarnaast wordt steeds meer duidelijk dat ook patiënt-specifieke biologische factoren, 
zoals genetische polymorfismen op het niveau van de biotransformatie-enzymen, 
transporters en het eiwitten van het  immuunsysteem bepalend kunnen zijn voor het 
risico op een ADR. Indien deze erfelijke factoren bekend worden kan de arts beter 
voorspellen of een te behandelen patiënt gevoelig zal zijn voor toxiciteit.  De resultaten 
van het in dit proefschrift beschreven translationele onderzoek, waarin zowel methodes 
zijn ontwikkeld om de vorming van reactieve metabolieten te detecteren en identificeren, 
als waarin de rol van erfelijke factoren op het niveau van beschermende GSTs is 
aangetoond, kunnen daarom een belangrijke bijdrage leveren aan de verbetering van de 
risicoschatting van geneesmiddeltoxiciteit in gevoelige ����˩����.  
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List of abreviations 

 

ADR                                                  Adverse drug reaction 

AMAP 3’-hydroxyacetanilide 

APAP Acetaminophen (paracetamol) 

CDNB                                               1-chloro-2,4-dinitrobenzene 

CLZ                                                   Clozapine 

CLZ-NO                                            Clozapine N-oxide 

CN- Cyanide anion 

CRM                                                  Chemically reactive metabolites 

CYPs                                                 Cytochrome P450s 

DF                                                      Diclofenac 

DMCLZ                                             Desmethylclozapine 

GSH                                                   Glutathione (reduced) 

GSSG                                           Glutathione (oxidized) 

GST                                                   Glutathione S-transferase 

hGST  Human glutathione S-transferase 

HClO4  Perchloric acid 

HLM                                                  Human liver microsomes 

HPLC                                                 High performance liquid chromatography 

IDR                                                    Idiosyncratyc drug reaction 

KPi                                                    Potassium phosphate 

LC-MS  Liquid chromatography–mass spectrometry 

NAC  N-acetyl cysteine 

NMR                                                 Nuclear Magnetic Resonance 

NSAID                                              Nonsteroidal anti-inflammatory drug 

PCLS                                                 Precision-cut liver slices 

hPCLS Human precision-cut liver slices 

P450                                                 Cytochrome P450 monooxygenase 

P450 BM3                                       Cytochrome P450 BM3 

RI                                                       Reactive Intermediate 
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