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Abstract
Synchronization of neural activity from distant parts of the brain is crucial for the coordination of cognitive activities.
Because neural synchronization varies both in time and frequency, time–frequency (T-F) coherence is commonly
employed to assess interdependences in electrophysiological recordings. T-F coherence entails smoothing the cross
and power spectra to ensure statistical consistency of the estimate, which reduces its T-F resolution. This trade-off has
been described in detail when the cross and power spectra are smoothed using identical smoothing operators, which
may yield spurious coherent frequencies. In this article, we examine the use of non-identical smoothing operators for
the estimation of T-F interdependence, i.e., phase synchronization is characterized by phase locking between signals
captured by the cross spectrum and we may hence improve the trade-off by selectively smoothing the auto spectra.
We first show that the frequency marginal density of the present estimate is bound within [0,1] when using
non-identical smoothing operators. An analytic calculation of the bias and variance of present estimators is performed
and compared with the bias and variance of standard T-F coherence using Monte Carlo simulations. We then test the
use of non-identical smoothing operators on simulated data, whose T-F properties are known through construction.
Finally, we analyze empirical data from eyes-closed surface electroencephalography recorded in human subjects to
investigate alpha-band synchronization. These analyses show that selectively smoothing the auto spectra reduces the
bias of the estimator and may improve the detection of T-F interdependence in electrophysiological data at high
temporal resolution.
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1 Introduction
Coherence analysis has widely been used for investigat-
ing functional connectivity between electrophysiological
signals to study the role of neural synchronization in
perception, action, and cognition [1-3]. Neural synchro-
nization has been reported in different frequency bands
and to vary over time and is hence commonly assessed
using time–frequency (T-F) coherence. T-F coherence
has been used in many fields of science, including neu-
roscience [4-10]. Short-time Fourier transform (STFT)
and wavelet transformation are typically used to estimate
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the T-F distribution of the signals of interest, which can
be interpreted as the spectral density estimation. Other
approaches include the quadratic T-F distribution from
Cohen’s class [11], such as the Winger-Ville [11,12] and the
Choi-Williams distribution [13].

Smoothing the cross and auto spectra is required for
the estimation of T-F coherence [7,14]. Given an arbi-
trary T-F decomposition method, smoothing the cross
and auto spectra can be performed via one of the fol-
lowing approaches; (a) Smoothing of periodigrams via
ensemble averaging, which is based on the Welch’s over-
lapped segment averaging (WOSA) method [15]. This
approach yields magnitude-squared coherence (MSC), see
also [16]. (b) Smoothing in one or both of the time and fre-
quency domains. In wavelet coherence, an explicit scale-
dependent 2D smoothing operator has previously been
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used, e.g., a Gaussian envelope of the Morlet wavelet func-
tion as the time-smoothing operator and a box-car filter
with a specific width as the scale (or frequency) smoothing
operator [7,17,18]. (c) Smoothing of both cross and auto
spectra via averaging a set of spectra estimated by multiple
orthogonal taper functions [10,19]. Multiwavelet coher-
ence was proposed based on the concept of Thomson’s
multitaper technique [20] and involves a set of orthogo-
nal wavelet taper functions, the so-called Morse wavelet.
Smoothing in the T-F plane is implicit when the cross and
auto spectra are averaged across the set of taper functions
[20-22]. It has been shown that multiwavelet coherence
has a lower variance compared to explicit 2D smoothing
operators [21].

All these approaches estimate coherence by using iden-
tical smoothing operators for the cross and auto spec-
tra. The use of identical smoothing operators indicates
that T-F coherence satisfies the Cauchy-Schwarz inequal-
ity and is hence bounded within [0,1] (see also [20,21]).
Smoothing entails an inherent trade-off between statisti-
cal consistency and T-F resolution, i.e., wider smoothing
windows result in improved accuracy and precision at the
cost of reduced resolution in T-F plane [23]. When using
identical smoothing operators the estimator fails when
smoothing goes to 1, as the numerator and denominator
become identical. Because phase synchronization is char-
acterized by phase locking between signals, captured by
the cross spectrum, we may improve the temporal reso-
lution by selectively smoothing the auto spectra. When
using non-identical smoothing operators, the bias of the
estimator may not go to 1 when the cross spectrum is
not smoothed, resulting in an estimator with improved
temporal resolution. In particular, we consider the case in
which only the auto spectra are smoothed. The resulting
estimate is not bound within [0,1], but it can be shown that
its frequency marginal density is equivalent to standard
coherence as a function of frequency.

We first test the effect of non-identical smoothing oper-
ators in simulated data and quantify its performance
based on the sensitivity, specificity, and z-score. We then
apply this method to empirical data of surface electroen-
cephalography (EEG) and assess cortico-cortical connec-
tivity between occipital channels estimated using identical
and non-identical smoothing operators. The marginal-
covariance densities are used to compare the observed
correlations in the time and frequency domains. These
analyses show that the use of non-identical smoothing
operators may help to detect weak correlations in elec-
trophysiological data and open up new possibilities for
quantifying T-F interdependences.

2 Methods
We first provide a short overview of T-F decomposition
methods before introducing a generalized T-F coherency

function. We then derive two specific estimators based
on non-identical smoothing operators. Two simulated
datasets are generated for testing the estimators. The first
example involves signals whose correlations vary in time
and in the second example correlations vary in time and
frequency. The empirical dataset consists of EEG data
from two occipital channels in three subjects to investigate
synchronization in the alpha frequency band (8–12 Hz),
which is commonly observed over occipital cortex.

2.1 Spectral decomposition
Both the STFT [24] and the wavelet transform [5,25-27]
have extensively been used for spectral decomposition.
There is a trade-off between spectral and temporal reso-
lution depending on window length: short windows give
poor spectral but good temporal resolution, and vice
versa for long windows. Temporal and spectral resolutions
remain constant over frequencies for STFT, as a fixed win-
dow length is used. In contrast, the wavelet transform has
varying T-F resolution, because signal are decomposed by
rescaling and shifting a mother wavelet function. Irrespec-
tive of the differences between spectral decomposition
methods, it has been shown that the Fourier, Hilbert,
and wavelet-based techniques are in fact mathematically
equivalent when using the most frequently employed class
of wavelets [28]. Recently, statistical properties includ-
ing the bias and variance of the phase estimators such as
Fourier, Hilbert, and wavelet-based techniques have been
discussed in [29].

Using WOSA, the signal is first partitioned into L equiv-
alent segments. Each segment is then weighted with a
suitable window w[ m] (positive, square integrable, inte-
grates to one), e.g., a unit power Hamming window. The
Fourier transform of each weighted segment is computed
and the estimation of power spectral density (PSD) is
obtained by averaging over L overlapping segments [24],
estimating the cross spectral density (CSD), PSD, and the
discrete Fourier transform of signal xl[ n] as

p̂xy[ k] = 1
L

L∑

l=1
Xl[ k] Y ∗

l [ k] ,

p̂xx[ k] = 1
L

L∑

l=1

∣∣∣Xl[ k]
∣∣∣
2

= 1
L p̂x[ k] ,

Xl[ k] = 1
M

M∑

m=1
xl[ m] w[ m] e−j 2π

M km,

(1)

where k denotes the discrete frequency, asterisk (∗) the
complex conjugate, xl[ n] = x[ l(M − q) + n] and yl[ n] =
y[ l(M − q) + n] where l = 1, 2, . . . , L and n = 1, 2, . . . , N ,
j = √−1. L and N are, respectively, the total number of
overlapping windows and data samples in x[ n], M and q
denote the width of a weighting window function w[ m]
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and the overlapping samples, respectively. Alternatively,
the wavelet transform and wavelet-PSD of discrete signal
x[ n] at scale or frequency a, (0 < a < ∞) and translation
or time b, (b ∈ R) can be expressed as

W (a, b; x, ψ) =
√

#t
|a|

N∑

n=1
x[ n] ψ∗

( (n − b)#t
a

)
,

p̂xxW (a, b) = |W (a, b; x, ψ)|2,
(2)

where #t denotes the sampling interval, and ψ(.) a
permissible wavelet function such as a complex Morlet
wavelet function [20,21].

2.2 T-F coherence
Coherence quantifies linear correlations between two
stochastic processes, or two observations x[ n] and y[ n],
from a linear time-invariant system as a function of
frequency, or time and frequency. Here, we define a
generalized coherency function as

$̂xy[ l, k] = S1
{

p̂xy[ l, k]
}

√
S2

{
p̂xx[ l, k]

}
S2

{
p̂yy[ l, k]

}

l = 1, 2, . . . , L, (3)
where p̂xy[ l, k] denotes the CSD estimate between xl[ n]
and yl[ n], p̂xx[ l, k] the PSD estimate, and S1{.} and S2{.}
the smoothing operators for the numerator (CSD) and
denominator (PSDs), respectively. If we assume identi-
cal smoothing operators (i.e., S1{.} ≡ S2{.}), we obtain
standard T-F coherency, which is normative (i.e., 0 ≤
|$̂xy[ l, k] | ≤ 1), see also [7,15,17,30].

The smoothing operators S1{.} and S2{.} can be 1D func-
tion of time [16], or an explicit 2D smoothing operator in
both time and frequency [7,17,22], or an average over a set
of orthogonal-based spectral estimates such as multitaper
approaches [10,19,22]. Using a time-domain smoothing
operator, Stime(•|k), we obtain standard MSC as

γ̂ 2
xy[ k] =

∣∣∣p̂xy[ k]
∣∣∣
2

p̂xx[ k] p̂yy[ k] , (4)

and T-F coherence as

$̂2
xy[ l, k] =

∣∣∣p̂xy[ l, k]!v[ m]
∣∣∣
2

{∣∣∣p̂xx[ l, k]
∣∣∣
2
! v[ m]

}{∣∣∣p̂yy[ l, k]
∣∣∣
2
! v[ m]

}k

= 1, 2, . . . , K , (5)
where the numerator and denominator of Equation (4)
are estimated as in Equation (1). The smoothing win-
dow v[ m], a suitable smoothing window (positive, square
integrable, integrates to one)—e.g., a unit power Ham-
ming window function of length M1—is used as time-
domain smoothing operator Stime(•|k), where ! denotes
the convolution operator. Note that smoothing process is

implemented by convolving the T-F CSD and PSDs with
smoothing window v[ m] at any given frequency k. In the
present context and for comparison purposes, we use a
weighting window in the STFT, i.e., normalized Hamming
window of 0.5 s in duration, and smoothing window, v[ m],
of 0.75 s duration. In this study, a normalized Hamming
window was also used for smoothing the cross and auto
spectra defined in Equations (5) and (11), and refer to T-
F interdependence using identical smoothing operators as
Method 1.

Smoothing in both time and frequency has been pro-
posed to improve the consistency of the T-F coher-
ence [22], which can be expressed as S

{
pxy[ l, k]

}
=

Sfreq(Stime(pxy|k)|l). In the wavelet coherence approach,
the Gaussian envelope of the Morlet wavelet with unit
power is used as the time-domain smoothing operator,
and a frequency-domain filter, a box-car function of the
width δ, as the frequency-domain smoothing operator,

S
{

pxy[ l, k]
}

= Sfreq
(

Stime(pxy|k)
∣∣∣l
)

= Sfreq
(

pxy[ l, k] c1e−l2/(2σlk)2 ∣∣∣l
)

,
(6)

where Sfreq(pxy|l) = pxy[ l, k] c2
∏

(σkδa). Here ∏
(.)

denotes the box-car function, σl and σk the time and
frequency localization parameters, respectively. The coef-
ficients c1 and c2 normalize the filters to unit energy.
Subsequently, identical smoothing operators are applied
to the temporal PSDs pxx[ l, k] and pyy[ l, k] [22]. Alter-
natively, multiple orthogonal tapers are used to estimate
the spectral densities [10,19] and smoothing is performed
implicitly by averaging over these tapers. The use of a
set of orthogonal wavelet functions allows a low vari-
ance estimation of the spectral density [21,22,31], and T-F
coherence can hence be estimated as

(̂2
xy[ l, k] =

∣∣∣Q̂xy[ l, k]
∣∣∣
2

Q̂xx[ l, k] Q̂yy[ l, k]
, (7)

Q̂xy[ l, k] = 1
P

P∑

p=1
p̂xy[ l, k; p] , (8)

where p̂xy[ l, k; p] is the pth spectral density estimate
obtained from pth orthogonal taper or wavelet function.

2.3 Non-identical smoothing operators
We now relax the constraint of identical smoothing opera-
tors and investigate Equation (3) when S1{.} ̸= S2{.}. Note
that by relaxing this constraint the estimator does not
satisfy the Cauchy-Schwarz inequality and hence is not
bound within [0,1]. We will first consider the case in which
we only smooth the PSDs, i.e., Stime(•|k), is applied to the
denominator of Equation (3) only. In particular, we rescale
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the temporal complex-valued CSD between signals xl[ n]
and yl[ n] by the ensemble averaged PSDs as

θ̂xy[ l, k] = p̂xy[ l, k]
√

p̂xx[ k] p̂yy[ k]

= L p̂xy[ l, k]
√

p̂x[ k] p̂y[ k]
, l = 1, 2, . . . , L,

(9)

where p̂xx[ k] = 1
L p̂x[ k], which is given in Equation (1).

Although this estimator (Method 2) is not bound within
[0,1], we can easily show that the frequency-marginal den-
sity of |θ̂xy[ l, k] |2 approaches the MSC given in Equation
(4) and hence is bound within [0,1] as shown by

γ̂ 2
xy[ k] =

∣∣∣ E
l
{θ̂xy[ l, k] }

∣∣∣
2

,

=
∣∣∣ E

l
{θ̂R[ l, k] } + j E

l
{θ̂I [ l, k] }

∣∣∣
2

,

=
∣∣∣∣
1/L ∑L

l=1 θ̂R[ l, k]
√

p̂xx[ k] p̂yy[ k]
+ j 1/L ∑L

l=1 θ̂I [ l, k]
√

p̂xx[ k] p̂yy[ k]

∣∣∣∣
2

,

=
∣∣∣ℜ{γ̂xy[ k] } + jℑ{γ̂xy[ k] }

∣∣∣
2
,

(10)
where E is the mathematical expectation, θ̂R[ l, k] and
θ̂I [ l, k] denote the real and imaginary parts of θ̂xy[ l, k].
That is, Equation (9) represents the rescaled T-F interde-
pendence estimate in which the MSC can be obtained by
temporally smoothing θ̂xy[ l, k].

Since the numerator in Equation (9) is not smoothed the
variance of this estimate will be higher than the variance
of Equation (5), but its temporal resolution is also higher
than estimates obtained from Equation (5). To facilitate
comparison between both approaches, we hence smooth
θ̂xy[ l, k] by substituting the numerator of Equation (5) in
the numerator of Equation (9), which yields

*̂xy[ l, k] = p̂xy[ l, k]!υ[ m]
√

p̂xx[ k] p̂yy[ k]
= L p̂xy[ l, k]!υ[ m]

√
p̂x[ k] p̂y[ k]

.

(11)
That is, the smoothed CSD is rescaled by the inner prod-
uct of the ensemble-averaged PSDs (Method 3). (The
MATLAB-function of Methods 1,2, and 3 can be found in
the following link: http://www.sng.org.au/Downloads )

2.3.1 The bias and variance of T-F interdependence
estimators, θ̂xy[ l, k] and "̂xy[ l, k]

It is well known that the standard T-F coherence func-
tion, (see Equation (5)), between two random Gaussian
processes is distributed as a chi-squared random variable
with ν degrees of freedom, shown as χ2

ν , [7,17]. Statis-
tical properties of MSC, (see Equation (4)), was shown
to have a specific probability density function (PDF) and
cumulative distribution function [16,32]. Recently, Cohen

and Walden [18,31] have shown that temporally smoothed
wavelet coherence, (see Equation (7)), of two stationary
processes with Normal distribution and zero mean is dis-
tributed as the Goodman’s distribution with an appropri-
ate degrees of freedom. Therefore, the bias and variance
of the standard T-F coherence and MSC have explicitly
been stated and addressed in the literature. In this section,
the aim is to analytically calculate the bias and variance of
T-F interdependence estimators, |θ̂xy[ l, k] |, see Equation
(9), and |*̂xy[ l, k] |, see Equation (11). We define the bias
and variance of the estimators |θ̂xy[ l, k] | and |*̂xy[ l, k] | as
follows (derivations of analytic calculation of the bias and
variance are given in Appendix)

E
{A

B
}

≈ E[ A]
E[ B] − cov(A, B)

E[ B]2 + E[ A]
E[ B]3 Var[ B] , (12a)

Var
{A

B
}

≈ Var[ A]
E[ B]2 − 2E[ A]

E[ B]3 cov(A, B) + E[ A]2

E[ B]4 Var[ B] ,
(12b)

where A " |p̂xyl
[ k] | and B "

√
p̂xx[ k] p̂yy[ k] =√

L2xy[ k] +Q2xy[ k] = p̂xy[ k], where Lxy[ k] and Qxy[ k]
denote the real and imaginary parts of the ensemble
cross spectra, respectively. Using Equation (12a) approx-
imates the bias of estimators |θ̂xy[ l, k] | and |*̂xy[ l, k] | as
E

{
A
B
}

≈ 2.1√
πDwd

and E
{

Ā
B
}

≈ 2.1
M1

√
πDwd

, where Ā and
M1 denote the cross spectra and the width of a smooth-
ing window, v[ m], respectively (see Appendix). Dwd =
Rw[ 0] + 8

π2 Rw[ 1] +(1 − 8
π2 )Rw[ 3] is the scaled correlation

function of the Fourier transform of a weighting-window
function, such that Rw[ d] = ∑M−d

m=1 W [ m] W [ m + d],
where W [ k] = F{w(m)} denotes the Fourier transform
of a weighting window function w(m) of length M [16].
In this article, Dwd ≈ 1.8 (see Appendix). Accordingly,
using Equation (12b) approximates the variance of esti-
mators |θ̂xy[ l, k] | and |*̂xy[ l, k] | as Var

{
A
B
}

≈ 0.54
Dwd

and

Var
{

Ā
B
}

≈ 0.54
2M1Dwd

, respectively (see Appendix).
In order to verify the calculation of the bias and vari-

ance, Monte Carlo simulations have been performed for
1,000 realizations. Resulting bias and variance of the T-
F coherence estimators, |$̂xy[ l, k] | and |*̂xy[ l, k] |, are
given in Figure 1. It is shown that the bias of estimator
|*̂xy[ l, k] | (Method 3) (≈ 0.8) is lower than that of esti-
mator |$̂xy[ l, k] | (Method 1) where a smoothing-window
is not used. Naturally, the variance of estimator |$̂xy[ l, k] |
(Method 1) goes to zero, because it attributes the value
of 1 to all T-F coherence estimates when no smoothing
is applied. On the other hand, the variance of estima-
tor |*̂xy[ l, k] | (Method 3) is not zero (≈ 0.4) when no
smoothing is applied to the cross spectrum. This indi-
cates that method 3 can differentiate between coherent

http://www.sng.org.au/Downloads
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Figure 1 The result of Monte Carlo simulations for the bias and
variance T-F interdependence estimators. Top panel shows the
bias of methods 1 and 3 (i.e., Equations (5) and (11)). Bottom panel
represents the variance of methods 1 and 3.

and non-coherent T-F points at maximal temporal reso-
lution, as smoothing is not required. The bias and vari-
ance obtained from an analytic calculation (i.e., Equations
(28a), (28b)) closely agree with simulation results shown in
Figure 1, verifying the analyses performed to approximate
the bias and variance of the present T-F interdependence
estimators.

2.4 Simulated data
To compare three methods and test the use of non-
identical smoothing operators, we derived from two
simulated datasets with different properties:

(1) Signal pairs with time-varying coherence, i.e.,
Gaussian noise modulated at 0.6 and 1.2 Hz.

(2) Signal pairs with frequency-varying coherence, i.e., a
jump in synchronous frequencies from 10 to 20 Hz.

After comparing the methods in these basic examples, we
then explore their ability to characterize dynamic correla-
tions in human EEG data, where the ground truth is not
known in advance.

2.4.1 Simulated dataset 1
We first consider an example proposed by Lachaux et
al. [8] to evaluate T-F coherence. Two independent dis-
crete noise sequences {α1n}N

n=1 and {α2n}N
n=1 with mean

0 and variance 1 were drawn from normal distribution
and modulated by a sinusoid signal β[ n], where N is the
total number of samples. This modulation produces two
discrete signals S1[ n] = α1[ n] +β[ n] α2[ n], and S2[ n] =
α2[ n] +β[ n] α1[ n], which are synchronized and desyn-
chronized over time. We defined a pure sinusoid signal
β[ n] as β[ n] = a(1 + sin[ 2π fn] ). Following Lachaux

et al. [8], we choose f = 0.6 Hz. In addition, to assess
the temporal resolution of the different methods, we also
consider f = 0.9 Hz and f = 1.2 Hz, i.e., in this example
coherence is modulated at a higher frequency. The ampli-
tude a determines the boundaries of the coherence, see
Equation (13). Since α1[ n] and α2[ n] are Gaussian noise
with variance σ 2 = 1, the power spectra of α1[ n] and
α2[ n] are both equal to σ 2 = 1 for all frequencies, and
their cross spectra are equal to 0. The coherence between
signals S1[ n] and S2[ n] can analytically be defined as a
function of β[ n] as follows:

ϒ[ a, n] = 4a2F2[ n]
(1 + a2F2[ n] )2 , (13)

where F[ n] = 1
aβ[ n], and a ∈[ 0.01, 0.5]. By substitut-

ing amax = 0.5 and amin = 0.01 into Equation (13), one
respectively obtain two bounds for time-varying coher-
ence, one is 0 ≤ ϒ[ 0.5, n] ≤ 1 and the other is 0 ≤
ϒ[ 0.01, n] ≤ 1.6 × 10−3.

The methods were assessed for different levels of coher-
ence by considering a ∈[ 0.01, 0.5]. To test for statistical
significance of the estimated T-F interdependence, sets of
surrogate data of linear independent signals were created.
For each amplitude a, 100 surrogates were generated by
randomizing the corresponding Fourier phases [33], i.e.,
by destroying the temporal structure in the data while
leaving amplitudes intact. T-F interdependence was com-
puted between the surrogate sets and 95% confidence
intervals were determined for each method indepen-
dently. The analytic coherence is continuously distributed
and we assess the performance of the different methods by
regressing estimated T-F interdependences on the analytic
coherence.

2.4.2 Simulated dataset 2
In the second example, coherence varies both in time
and frequency and we assess the methods by vary-
ing the signal-to-noise ratio (SNR). We simulated two
independent discrete signals S3[ n] =

[
x1[ n] + η1[ n],

x2[ n] + η2[ n]
]

and S4[ n] =
[
x1[ n] + η3[ n] , x2[ n] +

η4[ n]
]

of 20-s duration. Note that n denotes the dis-
crete time index. η[ n] is Gaussian noise: η[ n] ∼ N (µη =
0, σ 2

η = 1). Two sinusoid signals x1[ n] = A sin[ 2π10n]
and x2[ n] = A sin[ 2π20n] were contaminated by four
independent Gaussian noise sequences ηi[ n] , i = 1, 2, 3, 4
as stated above. To produce signals with different ampli-
tudes, we defined a range of amplitudes A by using a wide
range of SNR,

A = Anoise
(

10 SNR
20

)
. (14)

The three methods were compared for different levels of
SNR ∈[ −30, 10] dB, where dB is a logarithmic unit that
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indicates the ratio of a physical quantity (noise strength,
signal strength, etc). Here, we set Anoise = 0.2. Perfor-
mance of the methods was assessed by quantifying the
sensitivity, specificity, and z-score. Sensitivity and speci-
ficity are statistical measures of the performance of a
binary classification test defined as

Sensitivity = TP
TP + FN %,

Specificity = TN
TN + FP %,

(15)

where TP, TN, FP, and FN denote number of true pos-
itives, true negatives, false positives, and false negatives,
respectively. By construction, signals S3[ n] and S4[ n] are
either fully correlated or uncorrelated for each point in the
T-F plane, i.e., they are binary. To binarize the estimated
T-F interdependence we again determined the 95% confi-
dence interval by phase-randomizing the data (see Section
2.4.1), assigning all T-F points exceeding the threshold
to 1 and the rest to 0. In addition, the z-scores were
determined at each specific SNR as

Z = X̄ − µ

σx
, (16)

where X̄ denotes mean of the estimate at T-F points where
true coherence is present and µ and σx the mean and
standard deviation of the estimate at T-F points were true
coherence is absent (null distribution). Note that the true
coherence is represented in Figure 2.

2.4.3 Experimental data (human EEG)
We then sought an exploratory assessment of the different
estimators of T-F interdependence in characterizing syn-
chronization in an exemplar physiological dataset, namely
human EEG. We studied the correlations between two
scalp channels over occipital cortex, i.e., O1 and O2. EEG
was acquired from three healthy human subjects while
they were sitting still with their eyes closed for 10 min.
EEG data were sampled at Fs = 500 Hz and digitized
by an analog-to-digital convertor with a resolution of

16 bits/sample. The protocol was approved by the Human
Research Ethics Committee of The University of New
South Wales and all subjects gave their voluntary and
informed consent. EEG data recorded over occipital areas
were chosen because it is known to contain complex pat-
terns of intermittent synchronization within the alpha
frequency range (8–13 Hz), see [34].

Because the true coherence between empirically
recorded signals is not known, we assess the meth-
ods based on the marginal densities of the covariance
matrix. We first determine the time-domain and
frequency-domain zero-lag covariance matrices. The
time-domain covariance matrix of |*̂xy[ l, k] | is estimated
as R̂(L×L)

xy = E{|*̂xy[ l, k] ||*̂H
xy[ l, k] |} where H denotes

Hermitain transposition (i.e., conjugate transposition).
Analogously, the frequency-domain covariance matrix is
estimated as R̂(K×K)

xy = E{|*̂H
xy[ l, k] ||*̂xy[ l, k] |}. There-

fore, the time-domain zero-lag covariance matrix of
|*̂xy[ l, k] | can be estimated as

R̂(L×L)
xy = 1

K

K∑

k=1

(
|*̂xy[ l1, k] | − µl1|k

)

×
(
|*̂H

xy[ l2, k] | − µl2|k
)

, l1 ̸= l2 = 1, 2, . . . , L,
(17)

where µl1|k denotes the mean value of |*̂xy[ l1, k] | at time-
window l1 and given frequencies k = 1, 2, . . . , K . Sim-
ilarly, the frequency-domain zero-lag covariance matrix
|R̂(K×K)

xy | is expressed as

R̂(K×K)
xy = 1

L

L∑

l=1

(
|*̂H

xy[ l, k1] | − µk1|l
)

×
(
|*̂xy[ l, k2] | − µk2|l

)
, k1 ̸= k2 = 1, 2, . . . , K .

(18)

The diagonal of matrices R̂(L×L)
xy and R̂(K×K)

xy reflect the
variance and reveal the dominant temporal interaction

Figure 2 The analytic coherence for two simulated data sets. Panel A represents the analytic time-varying coherence in Example 1 obtained
from Equation (13) at amplitude a = 0.5, and panel B shows the desired T-F coherence for simulated data of Example 2.
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and spectral correlation between signals x[ n] and y[ n],
which is used to compare the different methods.

3 Results
3.1 Simulations
Two basic datasets were generated to compare three
methods on signals with known properties. Figure 2 shows
the analytic (or the true-valued) time-varying coherence
obtained from Equation (13) at amplitude a = 0.5
for dataset 1, and the desired T-F coherence for the
frequency-varying coherence described in dataset 2. T-
F interdependence was assessed with different estimators
as defined in Equations (5), (9), and (11), which use
either identical and non-identical smoothing operators. In

the first simulated dataset, the time course of all three
methods follows the analytic time-varying coherence,
although some differences can be observed (Figure 3).
Using identical smoothing operators, estimated correla-
tion levels are generally quite high (Figure 3A). Indeed,
if we determine the number of statistically significant T-
F points using phase-randomized surrogate data, we see
that the null hypothesis is rejected in at least > 50% of
the simulations even for T-F points where true coherence
is absent (Figure 3B). These are false positive observations
as the apparent statistical significance is high but the true
rate is zero. Because analytic coherence is identical across
frequencies, we investigate time-marginal density of all
three methods, which again confirms the raised lower

Figure 3 The resulting T-F coherence estimates using Equations (5), (9), and (11) for the first simulated dataset. All results were estimated
using a 0.5-s Hamming weighting window and a 0.75-s Hamming smoothing window. The first simulated dataset (a = 0.5) compares three different
estimators of T-F interdependence: method 1 using identical smoothing operators (top row) and methods 2 and 3 using non-identical smoothing
operators (bottom two rows). Panels A, D, and G show the magnitude of the T-F estimate obtained from single simulation; panels B, E, and H show
the percentage of simulations in which the null hypothesis was rejected (estimated across 100 simulations), and panels C, F, I the time-marginal
density reflecting the time-course of the coherence estimate. In panels F and I, T-F coherence interdependence is projected within [0,1] by using
tanh−1(.) function for comparison purposes.
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bound of the coherency estimate when using identical
smoothing operators (Figure 3C).

As expected, not smoothing the CSDs, as described in
Equation (5), strongly increases the variance of the esti-
mate (Figure 3D). However, the estimator still reflects
the analytic coherence as shown by the statistical anal-
ysis (Figure 3E) and its time-course (Figure 3F). The
variance of the estimate is reduced after smoothing
the CSDs, as described in Equation (11) (Figure 3G).
Although the variance of the estimate is still higher
compared to the first method based on identical
smoothing operators, the range of the estimate has
increased. The percentage of simulations in which the
null hypothesis is rejected varies between 30 and 100%
(Figure 3H) and the time course reveals a lower value
around 0.15 (Figure 3I).

We then assessed the performance of the three estima-
tors by linear regression of the estimated interdependence
(Figure 4) against the analytic coherence (Figure 2). The
top row of Figure 4 shows an example of the regression
lines for the three methods. Using identical smoothing
operators, estimated coherency is bounded in [0,1], the
estimate is largely restricted to values > 0.5 as reflected by
the large offset (0.55) and small slope (0.37) of the regres-
sion line (Figure 4A). The estimator predicts analytic
coherence well, as shown by the correlations coefficient
(r) of 0.67. Using non-identical smoothing operators, esti-
mated coherence is no longer bounded in [0,1] and reveals
increased variance (Figure 4B,C). However, the regression
line is closer to that of an ideal estimator (X = Y ), as
revealed by a lower offset (0.41) and a larger slope (0.69)

(Figure 4C). Due to larger variation in the estimate, the
correlation coefficient for non-identical smoothing oper-
ators is lower (r = 0.47) than for identical smoothing
operators. This is true for the whole range of amplitudes
(a ∈[ 0.01, 0.5]) when coherence is modulated at 0.6 Hz
(Figure 4D). Methods 1 and 3 use a temporal smoothing
window with a length of 0.75 s. If coherence is modulated
at 1.2 Hz (or 0.833 s period length), the changes in coher-
ence within each cycle get smoothed out as the length of
the smoothing window is close to the period length of the
modulation. Method 2 does not involve smoothing of the
cross spectrum and hence is still able to capture the cyclic
changes in coherence. When coherence is modulated at
lower rates (e.g., 0.6 Hz) methods 1 and 3 perform better
as the smoothing window is shorter than the period length
of the modulation of coherence and smoothing improves
the SNR. This result confirms the superior temporal reso-
lution of method 2 in this setting. As Figure 4D–F shows,
there is a decreasing trend in the r values of methods 1
and 3 due to the smoothing window. This indicates that
method 1 reduces the variance of estimates when using
a smoothing operator, but this comes at the expense of
reducing the temporal resolution. This is revealed by a
decreasing value of r. As shown in Figure 4D–F, method
2 does not deviate far from r ∼ 0.2 while the modulation
frequency increases.

In the second dataset, coherence is varied in time and
frequency reflecting a jump in time from 10 to 20 Hz
(Figure 2B). Again, all three methods are able to detect
this coherence pattern (Figure 5, top row), i.e., show-
ing correlations at frequencies f1 = 10 Hz (from 0 to

Figure 4 The linear regression analysis between analytic coherence (X) and the magnitude of the estimate (Y ) for the first simulated
dataset. Top row shows the regression line for a = 0.5 and f = 0.6 Hz for methods 1 to 3 (panels A to C, respectively). Bottom row show the
correlation coefficient r for different amplitudes (a ∈[ 0.01, 0.5]) when coherence is modulated at 0.6 Hz (D) 0.9 Hz or 1.2 Hz (E).
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Figure 5 The resulting T-F interdependence of the second simulated dataset. All results were estimated using a 0.5-s Hamming weighting
window and a 0.75-s Hamming smoothing window. The second simulated dataset comparing three different T-F coherency estimators described
by Equations (5), (9), and (11). Panels A, B, and C represent the magnitude of estimate T-F coherency in a single simulated signal pair using
Equations (5), (9), and (11) respectively. Second and third rows (panels D–I) show the time and frequency-domain covariance matrices using
Equations (17) and (18) at SNR = 0 dB. The bottom row represents the sensitivity, specificity, and z-scores in the interval of SNR ∈[ −30, 10] dB at
95% confidence interval for the three different methods estimated across 100 simulations.

8 s) and f2 = 20 Hz (from 12 to 20 s). Similar to the
results from dataset 1, method 1 (based on identical
smoothing operators) shows the highest level of back-
ground coherence (Figure 5A). In contrast, coherence
levels for method 2 are relatively reduced for both the
synchronous T-F points as the non-coherent background
(Figure 5B). The smoothed version of method 2 shows

higher levels at the coherent T-F points combined with
low background levels (Figure 5C). The time and fre-
quency marginal densities of method 3 also correctly
reflect the coherent time points (Figure 5F) and frequen-
cies (Figure 5I), whereas method 1 shows more spurious
off-diagonal correlations (Figure 5G). In this example, the
input variable in binary, i.e., coherence is either 0 or 1, and
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we use signal detection theory to quantify performance.
Estimated T-F interdependence was binarized by defining
a 95% confidence interval using a resampling technique
and all T-F points were set at 0 or 1 depending on this
threshold. We then quantified the sensitivity and speci-
ficity of the three methods. The specificity was constant
at 0.95 because we used a 95% confidence interval to
binarize the data. The sensitivity increased for all three
methods with increasing SNRs showing a jump from 0.5
to approximately 1 around SNR of −10 dB. Method 3 had
slightly higher sensitivity at these intermediate SNR levels,
although the difference was marginal. The z-score, reflect-
ing the ratio between estimated interdependence at corre-
lated and uncorrelated T-F points (Equation (16)), showed
a similar increase at higher SNR levels. Method 3 has
the highest z-score across all levels of SNR reflecting the
increased contrast between correlated and uncorrelated
T-F points.

These two basic simulations show that using non-
identical smoothing operators and selectively smoothing
the numerator and denominator of the T-F coherence
function increases the range of the estimate and allows
detecting a broader range of correlations. The increased
range helps to decrease the number of false positives
and reduces spurious correlation patterns. However, the
increased range comes at the cost of increased variance of
the estimate.

3.2 EEG data
We finally apply three methods to empirical data to char-
acterize dynamic patterns of interdependences between
left and right of human occipital cortexes, as reflected
in surface EEG recordings at channels O1 and O2. Data
segments for three subjects are shown in the top row of
Figure 6 revealing intermittent episodes of alpha activ-
ity. The T-F interdependences estimated with method 1

show high levels of correlations uniformly across time
and frequency (Figure 7, row A). In contrast, methods 2
and 3 reveal a more heterogeneous T-F estimate reflect-
ing a larger range of estimated values (Figure 7, rows
B and C, respectively). Because the underlying proper-
ties of the signals are unknown, we use the frequency-
marginal densities of the estimates (see Equation (18)) to
obtain the correlated frequencies. Method 1 revealed uni-
formly correlated frequencies, i.e., interdependences are
not restricted to any particular frequency and numer-
ous off-diagonal correlations are present. In contrast,
the frequency-domain covariance matrix of methods 2
and 3 shows specific correlated frequencies between the
two EEG signals, O1 and O2 isolated to the alpha fre-
quency range (8–12 Hz) in all three subjects (Figure 7
at rows E and F). Although some off-diagonal correla-
tions are present, they are strongly reduced compared
to method 1.

4 Discussion
In this article, we assess the use of non-identical smooth-
ing operators for estimating T-F interdependence. Tradi-
tionally, the cross and auto spectra are smoothed using
identical smoothing operators to assure that the esti-
mate is bound within [0,1]. By relaxing this constraint,
we examine the possibility of selectively smoothing the
auto spectra to improve the trade-off between T-F reso-
lution and statistical consistency. Analytic and simulation
analysis of the bias and variance showed that the use
of non-identical smoothing operators reduces the bias of
the estimate when smoothing vanishes, which allows to
design an estimator with maximal temporal resolution.
However, the reduced bias comes at the cost of increased
variance of the estimate and the estimate is no longer
bound within [0,1]. Two stimulated datasets showed that
the reduced bias results in an increased range and reduced

Figure 6 The occipital EEG signals O1 and O2 recorded from three human subjects showing intermitted episodes of alpha activity.
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Figure 7 T-F interdependences between occipital EEG signals O1 and O2 illustrated here for three human subjects. All results were
estimated using a 0.5-s Hamming weighting window and a 0.75-s Hamming smoothing window. Each column represents the results for each
subject. Upper panels—taken place in rows A, B, and C—represent the magnitude T-F interdependence estimates using Equations (3), (9), and (11),
respectively, for three subjects. Lower panels—taken place in rows D, E, and F—represent the frequency-domain zero-lag covariance matrix (using
Equation (18)) of the magnitude T-F interdependence estimates shown in rows of A, B, C, respectively.

false positive of the estimate, but lower correlation with
the true distribution due to increased variance. When
applying these methods to two occipital EEG channels,
the reduced range of the estimate obtained with identical
smoothing operators resulted in spurious correlation pat-
terns. In contrast, the estimator based on non-identical
smoothing operators revealed a larger range and selec-
tively detected correlations in the alpha frequency band.
Together these results show that non-identical smoothing
operators may be useful when high temporal resolution or
low false positive rates are required.

All three estimators are based on time-domain smooth-
ing operators. In the first method, the cross and auto
spectra are smoothed with a short temporal window. In
the second method, the temporal CSD is normalized by
the ensemble averaged PSDs. Finally, in the third method,

the smoothed CSD is normalized by the ensemble aver-
aged PSDs. Two datasets were constructed to compare the
three estimators. In the first dataset coherence changed
continuously over time. Using non-identical smoothing
operators (method 3) resulted in an increased range and
reduced bias compared to identical smoothing operators
(method 1), as reflected by a reduction in false positives
(Figure 3H) and a regression line with a smaller off-set
and increased slope (Figure 4C). However, the regression
coefficient, r, was lower for method 3 than for method
1 due to increased variance of the estimate. Using iden-
tical smoothing operators (method 1), the combination
of higher bias and lower temporal resolution may lead
to spurious correlations (false positives), as high corre-
lations spread in the T-F plane. In particular, we found
that wider smoothing window yields spurious coherent
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frequencies where a narrower weighting-window is used
(see Figures 7 and 8). In this framework, the role of non-
identical smoothing operator is to avoid production of
spurious coherent frequencies and improve the temporal
resolution of the estimate.

In the second dataset, coherence changes discretely
reflecting a jump from one frequency to another over
time. Method 3 showed a slightly higher sensitivity
and increased z-score reflecting the increase in contrast
between correlated T-F points and background levels
(Figure 5). When applying these estimators to resting-
state EEG to detect T-F interdependences between two
occipital channels, using non-identical smoothing opera-
tors suggested a broader range of estimated correlations
across frequencies and an apparent reduction of uniform
correlations across all frequencies (Figure 7, row D), iso-
lating the alpha rhythm as the dominant synchronous
oscillation in these scalp EEG data. The increased range
and reduced bias of method 3 may hence be useful to
detect T-F interdependences in electrophysiological data,
such as EEG, in which correlations are sparse. Under
these circumstances it may be more important to reduce
the number of false positives by reducing background
coherences levels.

The two estimators using non-identical smoothing
operators were derived by normalizing the temporal CSD
by the ensemble-averaged PSDs, instead normalizing each
T-F area in the CSD by the PSDs in the same area. This

results in an increase range of the estimate when the
PSDs are not constant over time. That is, because the
CSDs are normalized by the average spectral power, esti-
mated T-F interdependences will fluctuate with temporal
fluctuations in power. Although this may not be desir-
able for all types of signals, several studies have shown
that modulations in synchronization and spectral power
often coincide in neural data [35,36], which may improve
the detection of T-F interdependence using non-identical
smoothing operators. Another consequence of normal-
izing the CSD by the ensemble-averaged PSD is that
only the frequency marginal density of the (squared) esti-
mate is bound within [0,1] but the time-resolved estimate
itself not. Although the scaling of the time-resolved mea-
sure is essentially identical to coherence as shown by
its frequency marginal density, it can be projected on
the interval of [0,1] using Fisher transform to facilitate
interpretation (see Figure 3F, I and [37]). For the sake
of simplicity we used a normalized Hamming window
as a temporal smoothing window to compare the use of
non-identical smoothing operators. There is however no
limitations for using more sophisticated smoothing func-
tions, such as 2D smoothing operators [18] or a multitaper
technique [21].

5 Conclusion
By relaxing the constraint of using identical smoothing
operators for the cross and auto spectra, we open up

Figure 8 The effect of the width of the smoothing window, wt, on the T-F interdependence derived from Equation (5) as a function of the
length of the weighting-window, wf . (A) T-F interdependence estimates using Hamming-weighting window of the width wf = 0.1 s and
varying-width smoothing window, wt = 0.1, 0.37143, . . . , 2 s, rows (B–G) illustrate the T-F interdependence estimates using different lengths of the
weighting and smoothing windows, respectively.
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broader possibilities for the estimation of interdepen-
dence in the T-F space. We specifically considered an
example of non-identical smoothing operator by normal-
izing the temporal CSD by the ensemble-averaged PSDs.
This method revealed a reduced bias and increased range
at the cost of increased variance of the estimate and may
be useful for detecting T-F interdependences in resting-
state EEG where correlations between signals are sparse
and changes over time.

Appendix
In this section, we provide the analytic calculation of
the bias and variance of the present T-F interdependence
estimators. Let us consider two discrete, independent
real-valued random processes, drawn from a Gaussian
distribution with mean of zero and variance of σ 2

x . We
denote these two random processes {xn} ∼ N (0, σ 2

x ) and
{yn} ∼ N (0, σ 2

y ). We now derive the bias and variance of
the present T-F interdependence estimators of these two
processes.

Bias and variance of the T-F interdependence estimator
|θ̂xy[ l, k] |
We define the bias of |θ̂xy[ l, k] | as

Bias " E
{
|θ̂xy[ l, k] |

}
− |θxy[ l, k] | = E

{A
B

}
, (19a)

A " |p̂xyl
[ k] | =

√
L2xyl

[ k] +Q2xyl
[ k] =|Xl[ k] Y ∗

l [ k] | ,
(19b)

B "
√

p̂xx[ k] p̂yy[ k] =
√

L2xy[ k] +Q2xy[ k] =
√

p̂xy[ k] ,
(19c)

where E denotes the mathematical expectation, θxy[ l, k]
the true T-F interdependence between two independent
random variables x and y, i.e., θxy[ l, k] = 0, A and B the
two random variables denoting magnitude of cross spec-
tra at lth segment and magnitude of the product of power
spectra, respectively, and Lxy[ k] and Qxy[ k] the real and
imaginary parts of the ensemble cross spectra, respec-
tively. Therefore, the key point is to approximate the term
E{A

B }. Analogously, we define the variance of |θ̂xy[ l, k] | as

V = Var
{
|θ̂xy[ l, k] |

}
= E[ |θ̂xy[ l, k] |2]

− E[ |θ̂xy[ l, k] |]2 = Var
{A

B
}

. (20)

Since |θ̂xy[ l, k] | is a function of two random variables, and
hence we may write |θ̂xy[ l, k] | as a form of |θ̂xy[ l, k] | =
f (A, B). We can generalize the expectation and variance
of a function of two or more random variables using Tay-
lor series expansion. In statistical signal processing, the
expansion is evaluated at the expected value and variance
of a random variable, X. For example, for an univariate

random variable, evaluation of the expansion of f (X) at
E[ X] is calculated as

f (X) = f (E[ X] ) + f ′
(E[ X] )(X − E[ X] )

+ f ′′
(E[ X] )(X − E[ X] )2

2!

+ f ′′′
(E[ X] )(X − E[ X] )3

3! + H.O.T. ,

(21)

where H.O.T. stands for the higher-order terms, and f ′
(.)

and f ′′
(.) denote the first and second derivatives of a func-

tion of random variable X, respectively. It is easy to show
the expected value and variance of f (X) by using the
Taylor expansion

E{f (X)} = E[ f (µX + (X − µX))] ,
≈ E

[
f (µX) + f ′

(µX)(X − µX)

+ 1
2 f ′′

(µX)(X − µX)2
]
,

≈ f (µX) + f ′′(µX)

2 σ 2
X ,

(22)

noting that E[ X−µX] = 0, where µX and σ 2
X are the mean

and variance of X. The variance of f (X) is derived from
variance definition and the Taylor expansion:

Var{f (X)} = E[ f 2(X)] −E2[ f (X)]
≈ Var(X)f ′(E[ X] )2 ≈ σ 2

Xf ′(E[ X] )2 .
(23)

It is now possible to generalize this concept to func-
tion of more than one random variable using multivariate
Taylor expansion, which is referred to as delta method [38-
40]. Using the delta method, the variance of a function of
two random variables X1 and X2 are defined as

Var[ f (X1, X2)] ≈
( ∂f

∂X1

)( ∂f
∂X2

)
Cov(X1, X2). (24)

Applying multivariate Taylor expansions of Equation (22),
and (24) to a ratio of two random variables A, see Equation
(19b), and B, see Equation (19c), we define the bias and
variance of θ̂xy[ l, k] as [39-41]

E
{A

B
}

≈ E[ A]
E[ B] − cov(A, B)

E[ B]2 + E[ A]
E[ B]3 Var[ B] , (25a)

Var
{A

B
}

≈ Var[ A]
E[ B]2 − 2E[ A]

E[ B]3 cov(A, B) + E[ A]2

E[ B]4 Var[ B].
(25b)

The terms shown in Equations (25a) and (25b) give
an approximation of the bias and variance of the T-F
interdependence estimator |θ̂xy[ l, k] |. It was shown that

the standardized A–i.e.,
√

L2xyl [k]
σ 2

1l
+ Q2xyl [k]

σ 2
2l

, where σ 2
1l

=

Var[ Lxyl
[ k] ] = σ 2

2l
= Var[ Qxyl

[ k] ] = 1
2σ 4

x σ 4
y (see

[42])—has a Rayleigh-distribution with the PDF fZ(z) =
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ze−z2/2, z ≥ 0 whose mean and variance are √
π/2 and

(4 − π)/2, respectively [43]. So, the mean and variance of
A are calculated as

E[ A] =
√

π

2 σ1l
=

√
π

2
( 1√

2
σ 2

x σ 2
y
)

=
√

π

2 σ 2
x σ 2

y ,
(26a)

Var[ A] = 4 − π

2

(1
2σ 4

x σ 4
y

)
= 0.21σ 4

x σ 4
y . (26b)

Analogously, since random variable B is the square-root
of the product of the ensemble power spectra p̂xx[ k] and
p̂yy[ k] derived from the WOSA approach, it can be shown

that the standardized B—i.e.,
√

L2xy[k]
σ 2

1
+ Q2xy[k]

σ 2
2

, where σ 2
1 =

Var[ Lxy[ k] ] = σ 2
2 = Var[ Qxy[ k] ] = 1

2
√

Dwdσ
4
x σ 4

y —has a
Rayleigh-distribution with PDF fZ(z) = ze−z2/2, z ≥ 0
whose mean and variance are √

π/2 and (4−π)/2, respec-
tively. Therefore, the mean and variance of B are given by

E[ B] =
√

π

2 σ1 =
√

πDwd
2

( 1√
2
σ 2

x σ 2
y

)
(27a)

=
√

πDwd

2 σ 2
x σ 2

y , (27b)

Var[ B] = 4 − π

2 (
1
2 Dwdσ

4
x σ 4

y ) = 0.21Dwdσ
4
x σ 4

y , (27c)

where Dwd = Rw[ 0] + 8
π2 Rw[ 1] +(1 − 8

π2 )Rw[ 3] is
the scaled correlation function of the Fourier trans-
form of a weighting window function, such that Rw[ d] =∑M−d

m=1 W [ m] W [ m+d], where W [ k] = F{w(m)} denotes
the Fourier transform of a weighting-window function
w(m) of length M [16]. We approximated the value of Dwd
when M = 100 as Dwd ≈ 1.8 by using a simulation.
Note that cov(A, B) = 0 because Rayleigh random vari-
ables A and B are uncorrelated since processes {xn} and
{yn} are drawn from Gaussian distribution [42]. Therefore,
Equations (25a) and (25b) can be rewritten as

E
{A

B
}

≈ E[ A]
E[ B] + E[ A]

E[ B]3 Var[ B] ≈ 2.1
√

πDwd
≈ 0.88,

(28a)

Var
{A

B
}

≈ Var[ A]
E[ B]2 + E[ A]2

E[ B]4 Var[ B] ≈ 0.54
Dwd

≈ 0.3.

(28b)

Bias and variance of T-F interdependence estimator
|"̂xy[ l, k] |
T-F interdependence, |*̂xy[ l, k] |, has a smoothed cross
spectra (see Equation (11)), whereas |θ̂xy[ l, k] | does not.
The mean and variance of denominators of Equations (9)
and (11) are however identical. Torrence and Compo [7]
and Torrence and Webster [17] showed smoothing in both
time and frequency domains, whereas we only use a time
domain smoothing operator, which is implemented by a

Figure 9 The effect of the width of the smoothing window, wt, on the T-F interdependence derived from Equation (11) as a function of
the length of the weighting-window, wf . (A) T-F interdependence estimates using Hamming-weighting window of the width wf = 0.1 s and
varying-width smoothing window, wt = 0.1, 0.37143, . . . , 2 s, rows (B–G) illustrate the T-F interdependence estimates using different lengths of the
weighting and smoothing windows, respectively.
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running average (or convolution). It was originally shown
that the variance of the smoothed cross spectra can be
reduced by the factor of [≈ 1

2M1
], where M1 is the length

of smoothing window in seconds (or samples) [42]. We
show the effect of smoothed cross spectra in the bias and
variance of T-F interdependence estimator |*̂xy[ l, k] |. A
normalized Hamming window was used as the smooth-
ing window in this study. Therefore, the bias and variance
of the T-F interdependence estimator |*̂xy[ l, k] | can be
approximated by using Equations (25a) and (25b)

E
{ Ā

B
}

≈ 2.1
M1

√
πDwd

, (29a)

Var
{ Ā

B
}

≈ 0.54
2M1Dwd

. (29b)

Noting that E[ Ā] = 1
M1

E[ A], where Ā denotes the
smoothed cross spectra using a moving average (or con-
volution, see the numerator of Equation (11)). Equation
(29b) indicates that the bias and variance are reduced by
a factor of 1

M1
and 1

2M1
compared to Equations (28a) and

(28b), respectively. The main disadvantage of large M1
is the reduction of the time resolution by changing the
distribution of time points of the T-F plane at a given
frequency k. That is, larger M1 induces uniform distribu-
tion to the temporal evolution of T-F points at any given
frequency k (Figure 8 bottom rows of the right columns).

Empirically, the length of the smoothing window M1
should be close to but longer than weighting window used
in the Fourier transform. Figure 8 shows the results using
identical smoothing windows (method 1), while Figure 9
shows the results for non-identical smoothing windows
(method 3). The columns represent changes in length of
the weighting window in the T-F decomposition, whereas
the rows represent changes in the length of the smoothing
window. It can be seen that applying a wider smooth-
ing window to the T-F plane reduces the variance of the
estimated at the cost of the reduction of the temporal
resolution.
Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This research was supported by the ARC Thinking Systems grant TS0669860;
the National Health and Medical Research Council; the BrainNRG collaborative
award JSMF22002082, and the Netherlands Organization for Scientific
Research (NWO #45110–030).

Received: 21 September 2012 Accepted: 13 March 2013
Published: 10 April 2013

References
1. A Schnitzler, J Gross, Normal and pathological oscillatory communication

in the brain. Nat. Rev. Neurosci. 6(4), 285–296 (2005)
2. F Varela, JP Lachaux, E Rodriguez, J Martinerie, The brainweb: phase

synchronization and large-scale integration. Nat. Rev. Neurosci.
2(4), 229–239 (2001)

3. G Buzsaki, A Draguhn, Neuronal oscillations in cortical networks. Science
304(5679), 1926–1929 (2004)

4. A Bruckstein, D Donoho, M Elad, From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Rev.
51, 34–81 (2009)

5. A Grinsted, J Moore, S Jevrejeva, Application of the cross wavelet
transform and wavelet coherence to geophysical times series. Nonlinear
Process. Geophys. 11(5–6), 561–566 (2004)

6. K Spencer, P Nestor, M Niznikiewicz, D Salisbury, M Shenton, R McCarley,
Abnormal neural synchrony in schizophrenia. J. Neurosci.
23(19), 7407–7411 (2003)

7. C Torrence, G Compo, Apractical guide to wavelet analysis. Bull. Am.
Meteorol. Soc. 79, 61–78 (1998)

8. JP Lachaux, A Lutz, D Rudrauf, D Cosmelli, M Le Van Quyen, J Martinerie, F
Varela, Estimating the time-course of coherence between single-trial
brain signals: an introduction to wavelet coherence. Neurophysiologie
Clinique. 32(3), 157–174 (2002)

9. M Plett, Transient detection with cross wavelet transforms and wavelet
coherence. IEEE Trans. Signal Process. 55(5I), 1605–1611 (2007)

10. Y Xu, S Haykin, R Racine, Multiple window time-frequency distribution
and coherence of EEG using Slepian sequences and Hermite functions.
IEEE Trans. Biomed. Eng. 46(7), 861–66 (1999)

11. L Cohen, Time-frequency distributions—a review. Proc. IEEE.
77(7), 941–981 (1989)

12. A Tzallas, M Tsipouras, D Fotiadis, Epileptic seizure detection in EEGs
using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed.
13(5), 703–710 (2009)

13. HI Choi, WJ Williams, Improved time-frequency representation of
multicomponent signals using exponential kernels. IEEE Trans. Acoust.
Speech Signal Process. 37(6), 862–871 (1989)

14. P Liu, Wavelet spectrum analysis and ocean wind waves. Wavelets
Geophys, 151–166 (1994)

15. G Carter, Coherence and time delay estimation. Proc. IEEE. 75(2), 236–255
(1987)

16. R Bortel, P Sovka, Approximation of statistical distribution of magnitude
squared coherence estimated with segment overlapping. Signal Process.
87(5), 1100–1117 (2007)

17. C Torrence, P Webster, Interdecadal changes in the ENSO-monsoon
system. J. Climate. 12(8 PART 2), 2679–2690 (1999)

18. E Cohen, A Walden, A statistical study of temporally smoothed wavelet
coherence. IEEE Trans. Signal Process. 58(6), 2964–2973 (2010)

19. DJ Thomson, Spectrum estimation and harmonic analysis. Proc. IEEE.
70(9), 1055–1096 (1982)

20. I Daubechies, Time-frequency localization operators: a geometric phase
space approach. IEEE Trans. Inf. Theory. 34(4), 605–612 (1988)

21. S Olhede, A Walden, Generalized Morse wavelets. IEEE Trans. Signal
Process. 50(11), 2661–2670 (2002)

22. JS Brittain, D Halliday, B Conway, J Nielsen, Single-trial multiwavelet
coherence in application to neurophysiological time series. IEEE Trans.
Biomed. Eng. 54(5), 854–862 (2007)

23. DR Brillinger, Time Series Data Analysis and Theory Holt. (Rinehart&amp
Winston, New York, 1975)

24. PD Welch, The use of fast-Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified
periodograms. IEEE Trans. Audio Electroacoust. AU-15, 70–73 (1967)

25. X Jiang, S Mahadevan, Wavelet spectrum analysis approach to model
validation of dynamic systems. Mech. Syst. Signal Process. 25(2), 575–590
(2011)

26. M Breakspear, CJ Stam, Dynamics of a neural system with a multiscale
architecture. Philos. Trans. R. Soc. B. 36, 1051–1074 (2005)

27. TW Boonstra, A Daffertshofer, M Breakspear, PJ Beek, Multivariate
time-frequency analysis of electromagnetic brain activity during
bimanual motor learning. NeuroImage. 36(2), 370–377 (2007)

28. A Bruns, Hilbert Fourier-, and wavelet-based signal analysis: are they really
different approaches? J. Neurosci. Methods. 137, 321–332 (2004)

29. KQ Lepage, MA Kramer, UT Eden, Some sampling properties of common
phase estimators. Neural Comput. 25, 1–21 (2013)

30. S Aydin, Comparison of power spectrum predictors in computing
coherence functions for intracortical EEG signals. Ann. Biomed. Eng.
37, 192–200 (2009)



Mehrkanoon et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:73 Page 16 of 16
http://asp.eurasipjournals.com/content/2013/1/73

31. E Cohen, A Walden, A statistical analysis of Morse wavelet coherence. IEEE
Trans. Signal Process. 58(3 PART 1), 980–989 (2010)

32. G Carter, CH Knapp, AH Nuttall, Estimation of the magnitude-squared
coherence function via overlapped fast Fourier transform processing. IEEE
Trans. Audio Electroacoust. AU-21(4), 337–344 (1973)

33. H Kants, T Schreiber, vol. 1. (Cambridge University Press, Cambridge, MA,
2003), pp. 109–112

34. F Freyer, K Aquino, PA Robinson, P Ritter, M Breakspear, Bistability and
non-Gaussian fluctuations in spontaneous cortical activity. J. Neurosci.
29(26), 8512–8524 (2009)

35. A Daffertshofer, BCM van Wijk, On the influence of amplitude on the
connectivity between phases. Front. Neuroinf. 5(6), 1–12 (2011)

36. BCM van Wijk, PJ Beek, A Daffertshofer, Neural synchrony within the
motor system: what have we learned so far? Front. Human Neurosci.
6, 252–263 (2012)

37. AM Amjad, DM Halliday, JR Rosenberg, BA Conway, An extended
difference of coherence test for comparing and combining several
independent coherence estimates: theory and application to the study of
motor units and physiological tremor. J. Neurosci. Methods. 73, 69–79
(1997)

38. ES Lee, Analyzing Complex Survey Data No. 071 in 07, 2nd edn. (SAGE
Publications, London, 2006)

39. L Kish, Survey Sampling. (Wiley, New York, 1965)
40. G Kalton, Introduction to Survey Sampling: Quantitative Applications in the

Social Sciences, No. 035 in 07. (SAGE Publications, London, 1983)
41. AC Davison, Statistical Models. (Cambridge University Press, Cambridge,

Ma, 2008)
42. G Jenkins, D Watts, Spectral Analysis and Its Applications. (Holden Day, San

Francisco, CA, 1968)
43. AI Günter, in Proceedings of the 2nd International Symposium on Image and

Signal Processing and Analysis, IEEE ISPA. Bias and variance of averaged and
smoothed periodogram-based log-amplitude spectra (Pula-Croatia),
(University Computing Center Zagreb-Croatia, 2001), pp. 452–457

doi:10.1186/1687-6180-2013-73
Cite this article as: Mehrkanoon et al.: Non-identical smoothing operators
for estimating time-frequency interdependence in electrophysiological
recordings. EURASIP Journal on Advances in Signal Processing 2013 2013:73.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission
7 Rigorous peer review
7 Immediate publication on acceptance
7 Open access: articles freely available online
7 High visibility within the fi eld
7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Methods
	Spectral decomposition
	T-F coherence
	Non-identical smoothing operators
	The bias and variance of T-F interdependence estimators, xy[l,k] and xy[l,k]

	Simulated data
	Simulated dataset 1
	Simulated dataset 2
	Experimental data (human EEG)


	Results
	Simulations
	EEG data

	Discussion
	Conclusion
	Appendix
	Bias and variance of the T-F interdependence estimator |xy[l,k]|
	Bias and variance of T-F interdependence estimator |xy[l,k]|

	Competing interests
	Acknowledgements
	References

