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We revisit the parameter estimation framework for population biological dynamical systems,
and apply it to calibrate various models in epidemiology with empirical time series, namely
influenza and dengue fever. When it comes to more complex models such as multi-strain
dynamics to describe the virus–host interaction in dengue fever, even the most recently devel-
oped parameter estimation techniques, such as maximum likelihood iterated filtering, reach
their computational limits. However, the first results of parameter estimation with data on
dengue fever from Thailand indicate a subtle interplay between stochasticity and the deter-
ministic skeleton. The deterministic system on its own already displays complex dynamics up
to deterministic chaos and coexistence of multiple attractors.
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1. INTRODUCTION

A major contribution to stochasticity in empirical
epidemiological data is population noise, which is mod-
elled by time-continuous Markov processes or master
equations [1–3]. In some cases, the master equation
can be analytically solved and from the solution a like-
lihood function be given [4]. The likelihood function
gives best estimates via maximization or can be used
in the Bayesian framework to calculate the posterior
distribution of parameters [3]. Here, we start with an
example of a linear infection model that can be solved
analytically in all aspects and then generalize to more
complex epidemiological models that are relevant for
the description of influenza or dengue fever [5], on the
cost of having to perform more and more steps by simu-
lation to obtain the likelihood function by complete
enumeration [6] or even in extreme cases just to
search for the maximum.

Recent applications to a multi-strain model applied
to empirical datasets of dengue fever in Thailand,
where the model displays such complex dynamics as
deterministic chaos in wide parameter regions [5,7],
including coexistence of multiple attractors, e.g. in
isolas [8], stretch the presently available methods of
parameter estimation well to its limits. Finally, the
analysis of scaling of solely population noise indicates
that very large world regions have to be considered in
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data analysis in order to be able to compare the fluctu-
ations of the stochastic system with the much easier to
analyse deterministic skeleton. Such a deterministic
skeleton can already show deterministic chaos [9,10],
here via torus bifurcations [8], which are also found in
other ecological models, such as the seasonally forced
Rosenzweig–McArthur model [11].

The main aim of this contribution is to give an over-
view and didactic introduction to parameter estimation
in population biology from simple analytically solvable
cases to recently developed numerical methods appli-
cable to larger models with such complex dynamical
behaviour as deterministic chaos in its mean field deter-
ministic skeleton. Although this is a review some new
results will be presented here as well, mainly to include
dynamic noise in the likelihoods of the numerical simu-
lations of complex models in parallel with the first given
analytical results in the simple models.
2. AN ANALYTICALLY SOLVABLE CASE

We first review some of the simplest epidemiological
models, and show explicitly the relation between the
formulation as a stochastic process and the determinis-
tic models formulated as ordinary differential equation
(ODE) systems. Then we will solve explicitly one
example where all steps towards a closed solution can
be given analytically. In this example model, a likeli-
hood function can be derived, including an analytical
expression of, as well as the maximum likelihood best
estimate as, a full Bayesian formulation.
This journal is q 2012 The Royal Society
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The model can be generalized to give a fast approxima-
tion scheme for more complicated stochastic epidemic
models which later will be used in the applications with
likelihoods based on simulations. With such simulation
models, all steps, which we show in the analytically
solvable case, can be performed in more complicated
models and applied to time series of real disease cases.
2.1. Basic epidemiological models including
population noise

The simplest closed epidemiological model is the suscep-
tible–infected–susceptible (SIS) model for susceptible
and infected hosts, specified by the following reaction
scheme:

S þ I �!b I þ I

and

I �!a S

9>>>=
>>>;

ð2:1Þ

for stochastic variables I and S ¼ N � I with N the total
population size of hosts. The transitions are infection rate
b and recovery rate a. From the reaction scheme, we can
give the dynamics of the probabability p(I, t) as follows:

d
dt

pðI ; tÞ ¼ b

N
ðI � 1ÞðN � ðI � 1ÞÞpðI � 1; tÞ

þ aðI þ 1ÞpðI þ 1; tÞ

� b

N
I ðN � I Þ þ aI

� �
pðI ; tÞ: ð2:2Þ

With the definition of mean values, which is given
here by kI l :¼

PN
I¼0 I � pðI ; tÞ, we can derive the

dynamics of the mean number of infected in time by
inserting the dynamics of the probability given above
and obtaining after some calculation (for a more
extended derivation and further details, see Stollenwerk
& Jansen [3] and references therein)

d
dt

kI l ¼ ðb� aÞkI l� b

N
kI 2l; ð2:3Þ

where higher moment kI 2l now appears in the dynamics.
For dynamics of higher moments and in spatial systems,
see the studies by Stollenwerk & Jansen [3] and Stollen-
werk et al. [12] for the equivalent higher clusters (pairs,
triples, etc.). Since, in spatial systems, the epidemiological
thresholds are, in general, shifted away from the mean
field values, further methods valid at and around these
thresholds can be used [13].

To obtain a closed ODE, we neglect the variance,
restricting the dynamics to its simplest determinis-
tic part, the so-called mean field approximation,
var :¼ kI 2l� kI l2 � 0; and find the famous logistic
equation (in a slightly unusual form but mathematically
equivalent to the well-known formulation of Verhulst)

d
dt

kI l ¼ b

N
kI lðN � kI lÞ � akI l: ð2:4Þ

In complete analogy, many other epidemiological
models can be formulated, often with somewhat more
effort, such as the susceptible–infected–recovered (SIR)
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epidemic for susceptible, infected and recovered hosts

S þ I �!b I þ I

I �!g R

and R�!a S

9>>>>=
>>>>;

ð2:5Þ

with the respective transition rates, infection rate b,
recovery rate g and waning immunity a. For variables
S and I with R ¼ N � S � I given from the previous
two classes, we can again give the dynamics of the
probabability p(S, I, t) by

d
dt

pðS ; I ; tÞ ¼ b

N
ðI � 1ÞðS þ 1ÞpðS þ 1; I � 1; tÞ

þ gðI þ 1ÞpðS ; I þ 1; tÞ
� aðN � ðS þ 1Þ � I ÞpðS þ 1; I ; tÞ

� b

N
SI þ gI þ aðN � S � I Þ

� �
pðS; I ; tÞ:

ð2:6Þ
And, again, the mean field approximation of now

higher cross moments such as kSI l gives a well-known
closed ODE system for this SIR system.

A seasonally forced SIR system can already be used
to analyse diseases such as influenza with available
long time series from various countries [14]. As we will
show later, in realistic parameter regions for influenza,
we find complex dynamic behaviours with bifurcations
from limit cycles to double limit cycles and up to
deterministically chaotic dynamics. Also, multi-strain
epidemic models can be formulated in the frame work
of stochastic processes given above by including host
classes of infected with one or another strain.

One example is a dengue model, which can capture
differences between primary and secondary infection, an
important feature owing to the so-called antibody-depen-
dent enhancement (ADE). Infected with one strain are
labelled I1 and infected with a second different strain I2;
they can recover from that strain, called R1 and R2,
respectively, and after a period of temporary cross immu-
nity become susceptible to infection with another strain.
Hence, a susceptible that has been infected with strain 1
previously is labelled S1, and can now only be infected
with strain 2, therefore becomes I12, etc. For details, see
Aguiar et al. [5] and references therein. The reaction
scheme then looks for an infection with one strain and a
subsequent infection with a second strain, such as

S þ I1�!
b

I1 þ I1

S þ I21�!
wb

I1 þ I21

I1�!
g

R1

R1�!
a

S1

S1 þ I2�!
b

I12 þ I2

S1 þ I12�!
wb

I12 þ I12

and I12�!
g

R;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2:7Þ
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leading to a 10-dimensional ODE system which can be
reduced to 9 d.f. for constant population size. Already in
its simplest form, the model shows complex dynamics in
wide parameter regions, up to deterministic chaos charac-
terized by positive Lyapunov exponents [5]. A version of
this model including seasonality and import can easily
explain the fluctuations observed in time series of severe
disease (dengue haemorrhagic fever; DHF) in Thailand
[7]. We will come back later to these models. First, we
will analyse a simpler model.
2.2. Analytical solution of the linear
infection model

To simplify further for analytical tractability, we
assume only infection and only from an outside popu-
lation. This simplified epidemiological model, an SI
system, where infection is acquired only from the
outside, leads to a master equation which is linear not
only in probability but also in the state variables.
A linear mean field approximation for the dynamics of
the expectation values [3] is obtained from this process.
Although very simple in its set-up, it can be applied to
real world data of influenza in certain stages of the
underlying SIR model, when considering the cumulative
number of infected cases during the outbreak [4]. The
reaction scheme is given by

S þ I � �!b I þ I � ð2:8Þ

for infected I and susceptibles S ¼ N � I with popu-
lation size N, and infection rate b as the only possible
transition. The underlying model hypothesis is that
infection can be acquired from outside the considered
population of size N, hence meeting infected I*.

The master equation reads for the probability p(I, t)

d
dt

pðI ; tÞ ¼ b

N
I �ðN � ðI � 1ÞÞpðI � 1; tÞ

� b

N
I �ðN � I ÞpðI ; tÞ; ð2:9Þ

which can be solved using the characteristic function

keikI l :¼
XN
I¼0

eikI � pðI ; tÞ ¼: gðk; tÞ ð2:10Þ

or approximated by Kramers–Moyal expansion to pre-
serve eventual attractor switching in more complicated
models, relevant for influenza [15].
2.3. Solving the master equation

For suitable initial conditions, the master equation can
be solved to obtain the transition probabilities needed
to construct the likelihood function. From the definition
of the characteristic function, equation (2.10), we see
immediately that its derivatives are related to the
moments kI nl

ð�iÞn @n

@kn gðk; tÞ
����
k¼0
¼ kI nl ð2:11Þ

and g itself is a discrete Fourier transform using the
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definition k ¼: ð2p=ðN þ 1ÞÞ � k, hence

gðk; tÞ ¼
XN
I¼0

eið2p=ðNþ1ÞÞk�I � pðI ; tÞ ¼ ĝðk; tÞ: ð2:12Þ

Owing to this, we can, via Fourier back trans-
form, obtain the probabilities once we know the
characteristic function

pðI ; tÞ ¼ 1
N þ 1

XN
k¼0

e�ið2p=ðNþ1ÞÞk�I �ĝðk; tÞ: ð2:13Þ

Hence, we can derive a dynamics for the characteristic
function from the dynamics of the probabilities, even-
tually solve the partial differential equation (PDE) for
the characteristic function and then obtain, via Fourier
back transform, the solution to the probability.

The dynamics of the characteristic function,
obtained from the master equation, is

@

@t
gðk; tÞ ¼

XN
I¼0

eikI � d
dt

pðI ; tÞ; ð2:14Þ

giving the PDE

@

@t
gðk; tÞ ¼ b�Nðeik � 1Þ � gðk; tÞ

þ ib�ðeik � 1Þ � @g
@k

using b� :¼ ðb=N ÞI �, and the initial condition
pðI ; t0Þ ¼ dI ;I0 , and hence gðk; t0Þ ¼ eikI0 as the initial
condition for the characteristic function. With a classical
separation ansatz and the given initial conditions, we can
solve the PDE analytically, obtaining as the solution
(figure 1a)

gðk; tÞ ¼ eikN ðe�ike�b
�ðt�t0Þ þ ð1� e�b

�ðt�t0ÞÞÞN�I0 :

Then an inverse Fourier transformation gives the
transition probability pðI ; tjI0; t0Þ, explicitly

pðI ; tÞ ¼ N � I0

I � I0

� �
ðe�b�ðt�t0ÞÞN�I ð1� e�b

�ðt�t0ÞÞI�I0 ;

as the solution to the master equation. Owing to the
special initial conditions of exactly having I0 infected
at time t0, this solution is at the same time the tran-
sition probability pðI ; tjI0; t0Þ, as needed to construct
the likelihood function for the parameter estimation.

2.4. Likelihood function from the master
equation

From the transition probabilities, we can construct
the likelihood function, i.e. the joint probability of
finding all data points I0; I1; . . . ; In from our empirical
time series interpreted as a function of the model
parameters

pðIn; tn; . . . ; I0; t0Þ ¼
Yn�1

n¼0

pðInþ1; tnþ1jIn; tnÞ � pðI0; t0Þ

¼: LðbÞ: ð2:15Þ
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Figure 1. (a) An example of the characteristic function in real and imaginary parts with fixed Dt given by the sampling rate of the
time series. (b) From the characteristic function we can obtain the solution to the stochastic model and with it the likelihood
function, as shown here with its best estimate of the model parameter as maximum.
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With the analytical solution, we obtain here
explicitly using Dt :¼ tnþ1 � tn

LðbÞ ¼
Qn�1

n¼0

N � In
Inþ1 � In

� �
ðe�bDtÞN�Inþ1ð1� e�bDtÞInþ1�In

and can plot the likelihood as a function of the para-
meter, here b as shown in figure 1b, and its maximum as
the best estimator b̂. Here, the best estimator can be
calculated analytically as well [3] by evaluating the first
derivative of the likelihood to be zero atb̂. We obtain ana-
lytically

b̂ ¼ 1
Dt
� ln

N � ð1=nÞ
Pn�1

n¼0 In
N � ð1=nÞ

Pn�1
n¼0 Inþ1

 !
ð2:16Þ

as the best estimate for the parameter b.

2.5. Fisher information

To obtain an approximation of the confidence intervals
in the frequentists’ approach, after maximizing the like-
lihood, one assumes that the likelihood essentially
reflects a Gaussian distribution, an assumption justified
by the central limit theorem of probability in the case of
many data points available for the likelihood. Hence

pðbÞ :¼ 1

s
ffiffiffiffiffiffi
2p
p eðb�b̂Þ

2=2s2 ð2:17Þ

is a Gaussian distribution around the best estimate b̂
with a standard deviation s to be obtained from the
curvature of the likelihood around its maximum

@2pðbÞ
@b2

����
b¼b̂
¼ � 1

s
and s ¼ � 1

@2 LðbÞ=@b2jb¼b̂
:

We can test this assumption of Gaussianity and its
performance by the following experiment: we simulate
the stochastic process, i.e. the master equation via the
Gillespie algorithms [16,17], many times and each
time calculate the best estimate, obtaining a histogram
of the estimates around the initial model parameter.
Then we take one typical realization from the bulk of
the distribution and calculate the Gaussian distribution
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around the best estimate with variance given by the
negative inverse of the curvature of the likelihood, the
Fisher information, and compare the Gaussian with
the histogram of many realizations (figure 2). The com-
parison is relatively good, but the histogram and
previously the likelihood function are slightly asym-
metric around the maximum, requiring a refined
approach to better capture the distribution of par-
ameters given the experimental or empirical data.
This can be achieved by using the Bayesian framework,
as will be shown below.
2.6. Bayesian framework

The Bayesian framework starts by using the likelihood
function interpreted as the probability of finding the
data given a parameter (or parameter set in more general
cases); hence LðbÞ ¼ pðI jbÞwith I ¼ ðI0; I1; . . . InÞ being
the data vector and parameter b and constructs from it
being the probability of the parameters conditioned on
the present data, here from the time series of the epidemic
system, the Bayesian posterior pðbjI Þ. This can be
achieved only by imposing a prior pðbÞ, a probability of
plausible parameter sets, hence we have the Bayes formula

pðbjI Þ ¼ pðI jbÞ
pðI Þ pðbÞ ð2:18Þ

with the likelihood function pðI jbÞ as before, and a
normalization pðI Þ ¼ pðI jbÞ � pðbÞdb once a prior pðbÞ
is specified. For analytical calculations, a so-called conju-
gate prior is often used, i.e. a distribution for the
parameter in the same functional form as the parameter
appears in the likelihood function, here a beta distribution.
Then the posterior also has functionally the same form,
here again a beta distribution, but the parameters,
called hyperparameters, now contain information from
the data points. For the linear infection model, all steps
can still be performed analytically.

The posterior is given explicitly by

pðbjI Þ ¼ Gð~a þ~bÞ
Gð~aÞGð~bÞ

� e�bDt � Dtð1� e�bDtÞ~a�1ðe�bDtÞ~b�1;
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Figure 2. Comparison of the histogram of many realizations of
best estimates (step-like curve) and a Gaussian distribution
obtained from the best estimate and the Fisher information
via the likelihood of one typical realization (smooth curve).
The comparison is relatively good, but the histogram and pre-
viously the likelihood function are slightly asymmetric around
the maximum.
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Figure 3. Comparison between the maximum likelihood
method and the Bayesian approach for a simple linear infec-
tion model, with all analytical tools available.
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Figure 4. In an application to the situation of exponentially
distributed waiting times, the effect of parameter boundaries
on the parameter estimation can be studied.
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with hyperparameters ~a ¼ a þ
Pn�1

n¼0 ðInþ1 � InÞ and
~b ¼ bþ

Pn�1
n¼0 ðN � Inþ1Þ from the prior parameters a

and b. For the detailed calculation, see Stollenwerk &
Jansen [3]. One can observe that, for large datasets,
the sums over the data points are giving much larger
values in the hyperparameters than the original prior
parameters, hence a soft prior is achieved. If the prior
parameters are of the same order of magnitude as the
terms originating from the data points, the prior deter-
mines much more the form of the posterior than the
observations. Such hard priors are not always avoidable
when only small datasets are available. Then, the
posterior gives some indication of the underlying
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insecurities of the stochastic process but should also
not be overinterpreted.

Figure 3 shows the comparison of a histogram of best
estimates from many realizations of the stochastic process
(red), information that is not usually given in most
empirical systems; often, we only have a single realiz-
ation, and the results from the parameter estimation, a
Gaussian approximation from the best estimate and the
Fisher information (green), and finally the Bayesian pos-
terior (black) obtained from a conjugate prior (blue),
which is here nicely broad, not imposing much restriction
on the parameter values considered.

2.7. Some further remarks on
empirical situations

Before continuing with more complex population
models, we make some remarks on what can happen
in empirical situations, which we illustrate here using
analytical examples.

A parameter can be close to one of its boundaries
and not well measured by the given data points. In
figure 4, we show an example from a time series of
independent exponentially distributed waiting times
pðtÞ ¼ a � e�at (a typical null model for spiking neur-
ons). This model can also be treated analytically in the
same way as the linear infection model, which we have
calculated above explicitly. The only parameter a of
this model is always positive. However, the approxi-
mation of the likelihood by a Gaussian distribution can
have a large tail in the negative region of the parameter
space (green curve). In this case, clearly, the histogram
of our Gedanken experiment (red curve) is highly asym-
metric, with a long tail shifted to the right, i.e. towards
positive best estimates. Also the conjugate prior (blue
curve) vanishes at a ¼ 0, indicating that a negative
value of a is meaningless in this model. The Bayesian pos-
terior (black curve) captures the asymmetric distribution
of estimates much better than the Gaussian approxi-
mation, on which the Fisher information is based,
would suggest. Here, clearly the Bayesian approach is
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Figure 5. An ‘atypical’ realization is often encountered in empirical studies, where we have only one dataset available.
(a) Frequentists’ and Bayesian approach to a dataset from the right tail of the histogram, which still has a high probability
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performing better, while the Gaussian approximation has
a large tail for negative parameter a values.

Again, we illustrate the second remark on the pre-
viously studied linear infection model. Previously, we
compared the histogram of many stochastic realizations
with the likelihood of a ‘typical’ realization, by which
we mean a realization close to the bulk of the histogram.
However, in any empirical situation our only available
dataset, let us say of an epidemiological or ecological
time series, is more ‘atypical’ in the sense that it is still
quite likely to be obtained under the model assumptions,
but not coming from the central bulk. Just by using
another seed of our random generator than the one
used in figure 3, we obtain the situation shown in
figure 5a. And we have to remember that, in empirical
situations, we do not even have the histogram of our
Gedanken experiment, hence we have the information
from figure 5b only. A reasonable confidence interval
still covers the true parameter value, i.e. the one we orig-
inally used to generate the model realization, but the
maximum likelihood best estimate as well as the maxi-
mum of the Bayesian prior can be quite far away from
that empirically unknown true parameter value.

As a third remark, we already mention here that
the binomial transition probability from the linear
infection model can be generalized to a numerical
approximation scheme for more complex models,
the so-called Euler multi-nomial approximation. The
assumption of linear transition rates holds for short
time intervals and gives a binomial transition rate for
staying in the present state or moving into one other or
a multi-nomial for leaving to more than one other state.
We will use this Euler multi-nomial approximation later
for numerical parameter estimation in an SIR model.
3. NUMERICAL LIKELIHOOD VIA
STOCHASTIC SIMULATIONS

In cases where not all steps or even no step can be
performed analytically, a comparison of stochastic
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simulations, depending on the model parameters, with
the empirical data is the only available information on
the parameters. One can compare many simulations
and see if they fall within a region around the data,
called h-ball, depending on the parameter set used for
the simulations [6] obtaining estimates of the likelihood
function. In figure 6, an SIR model is compared with
empirical data from influenza; here, owing to the rela-
tive simplicity of the stochastic model, a numerical
enumeration of the whole relevant parameter space is
still computationally possible (equivalent to a flat but
cut-off prior). In more complicated models, dengue
fever models and data from Thailand, a complete
enumeration of the parameter space is not computa-
tionally possible, although only six parameters and
nine initial conditions have to be estimated. Particle fil-
tering, i.e. an often quite restricted distribution of
parameters and initial conditions, a hard prior in Baye-
sian language, is stochastically integrated and
compared with the empirical time series, selecting the
best performers as the maximum of the likelihood
function.

In figure 6, we can also study confidence intervals for
multiple parameters. The easiest generalization from
the one-parameter case is the likelihood slice, in which
around the maximum all but one parameter are fixed
and then the confidence interval is evaluated for the
remaining parameter, as in the one-parameter case. In
figure 6, the maximum of the likelihood is not easily
determined and we observe near equally likely parameter
sets along a long comb.

To quantify this insecurity along the comb better, one
can fix one parameter for which the confidence interval is
to be determined, and maximize all the other parameters,
which gives essentially a projection of the comb in
figure 6. A so-called likelihood profile is obtained in this
way. This method gives large confidence intervals for
the two parameters chosen here, the infection rate and
the initial number of susceptibles before the influenza
season, quantifying well the insecurity of parameters
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rather than what the eventually much smaller likelihood
sections would suggest.
3.1. Application to more complex models

In such cases, in which the model can display determi-
nistic chaos, like the one in dengue fever that we
investigated [5,7], even the short-term predictability
and long-term unpredictability (as measured by the lar-
gest Lyapunov exponent) prohibit the comparison of
stochastic simulations with the entire time series.
Hence, iteratively short parts of the time series are com-
pared with the stochastic particles, and, via simulated
annealing, the variability of the particles is cooled
down, i.e. the priors are narrowed in Bayesian language.
The final method is called ‘maximum likelihood iterated
filtering’ (MIF) [18–21]. We apply this method to
dengue data from Thailand (a detailed manuscript is
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in preparation [22]), obtaining wide likelihood profiles
for some of the parameters. Here, we display bifurcation
diagrams obtained from the best estimates, around a
difficult to estimate but important model parameter,
the import rate @ (figure 7a) for the parameter set
from data from a single province and (figure 7b) from
a whole region with several provinces. We observe
that the estimates are driven towards imports near
the boundary towards extinction. Extrapolating finally
to larger population sizes than the current data allow
(figure 8) shows that, in such larger systems, a better
estimate should be obtained in the region of complex
dynamics since the boundary towards extinction is
shifted towards smaller import values. For details of
the stochastic bifurcation diagrams, see Aguiar et al. [23].

To illustrate the ideas behind iterated particle filter-
ing and including the explicit effects of dynamic noise as
investigated in the previous example analytically, we
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will now look at a susceptible–infected–recovered–re-
susceptible (SIRS) model with seasonality and import,
which is motivated by recent studies on influenza [14]
and which is reported to show deterministic chaos,
and see how a suitable particle filter can perform in
such a scenario.
a

4. ATESTCASEFOR ITERATEDFILTERING
UNDER CHAOTIC DYNAMICS

Looking back to the roots of filtering in time-series
analysis, the earliest complete filters are the Stratono-
vich–Kalman–Bucy filters [24–29], also known as
Kalman filters, for linear stochastic systems under
additional observation noise.

4.1. A brief look at the history of filtering

A state-space model ðd=dtÞx ¼ Ax þ B1 with state
vector x and noise vector 1 and in the simplest case a
linear scalar as observation y ¼ Cx þ j with noise j

can be solved explicitly to find pðxjyÞ, i.e. from the
measurement y the underlying states x can be obtained,
a task which often occurs in signal analysis in physics.
But already including the estimation of parameters,
here the matrix A, leads to a nonlinear problem that
cannot be solved analytically, but has to be approxi-
mated, via extended Kalman filters; hence, the
calculation of pðx;AjyÞ or pðAjyÞ is already non-trivial.

Similarly for nonlinear systems ðd=dtÞx ¼ f ðx; u; 1Þ,
where the parameter vector u now replaces the coeffi-
cients of the matrices A and B, and observation
y ¼ gðx; jÞ has often been treated with simulation pro-
cedures to solve the classical filtering problem, i.e. to
estimate the states x from the observations y, but
turns out to be much more difficult, in computational
terms, again for parameter estimation, i.e. to estimate
u from y, although it is tempting to just consider par-
ameters as additional states and leave the conceptual
framework unchanged. But then, as in MIF, the likeli-
hood function only considers the observation noise,
not the dynamic noise. In mathematical terms, the like-
lihood function pðyjxÞ is taken from the observation
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process y ¼ gðx; jÞ and includes only indirectly the
dynamic noise ðd=dtÞx ¼ f ðx; u; 1Þ giving zero weight
to dynamic realizations below the observations. For
extended reviews on filtering, see [30–33].

We include dynamic noise explicitly in the iterated
filtering with resampling and obtain good results for
difficult-to-estimate parameters such as the import
rate under chaotic dynamics.
4.2. Seasonal SIR model with chaotic dynamics

The SIR model with import @

S þ I �!bðtÞ I þ I

I �!g R

R�!a S

nd S �!@ I ;

9>>>>>>>=
>>>>>>>;

ð4:1Þ

and seasonal forcing given by

bðtÞ ¼ bð1þ u� cosðvtÞÞ; ð4:2Þ

and parameters in the uniform phase and chaotic
amplitude (UPCA) region, relevant for influenza [14],
a ¼ 1=6y, g ¼ 1=3d ¼ 365=3y, b ¼ 1:5� g, u ¼ 0:12,
shows around the import lnð@Þ ¼ �15 deterministic
chaos. We take stochastic simulations from this model
to test time series for the illustration of iterated filtering
with dynamic noise in the likelihood function estimated
via the Euler multi-nomial approximation, again a sto-
chastic simulation method comparing the data by using
an h-distance measure; see figure 9 for the comparison
of the example dataset and the approximating simu-
lation. They diverge because of the deterministically
chaotic dynamics after about 2 years of the simulation,
rather than because of the different simulation schemes.
We also tested that two Gillespie simulations depart
around this time horizon.

In this model situation, we illustrate the iterated fil-
tering. The states are x ¼ ðS ; I Þ, with the stochastic
dynamics f as specified by the reaction scheme equation
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Figure 10. Comparison of the first six months of data with simulations (a) time series and (b) cumulative distribution of distances.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.005 0.010 0.015 0.020

p(
di

st
)

dist

0

50 000

100 000

150 000

200 000

250 000

300 000

350 000
(a) (b)

1 2 3 4 5 6

I(
t)

t

Figure 11. Comparison of the first six months of data with simulations (a) time series and (b) cumulative distribution of distances,
now for varying parameters, here the seasonality.
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(4.1), and the observations y ¼ Icum, the cumulative
incidences in a given time interval, here one month,
and an additional observation process could be mod-
elled, in which not all new cases are observed, but only
those with a probability equal to or less than 1, specify-
ing the observation process g. Parameters in u are given
by the seasonality and by the import. We assume for sim-
plicity now that the other parameters are known and
keep them fixed, but they could be included in the
Interface Focus (2012)
parameter vector to be estimated as well. We also esti-
mate all initial conditions, hence these are included in
the generalized parameter vector u.
4.3 Constructing a particle filter: particle weights
from dynamic noise

We compare the dataset IE ¼ ðI1; I2; . . . ; IEÞ, with
dimension E (here E ¼ 6 months), with K Euler
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multi-nomial simulations I kðujÞ performed with par-
ameter set uj (‘particles’ now in the context of
filtering adopted for parameter estimation)

p̂ðIE jujÞ ¼
1
K

XK
k¼1

Hðh� k IE � I kðujÞ kEÞ ð4:3Þ

simulations in the h-ball region around the data, with
H(x) being the Heaviside step function. This gives an
estimate of the time-local likelihood function pðIE jujÞ;
hence, for K ! 1 and h! 0,

wj :¼ p̂ðIE jujÞ ! pðIE jujÞ; ð4:4Þ

giving the weights of particles wj for the particle filter
(figure 10).

We use J ¼ 10 particles, original parameter set
uj , with K ¼ 100 simulations each, distances dist :¼
k IE � I kðujÞ k. Still we have some fluctuations without
changing the parameters yet (figure 10).

As the next step, we impose a variation in the para-
meters given by a Gaussian distribution. We vary
seasonality u by 10 per cent with a Gaussian
distribution

pðuÞ ¼ 1

s
ffiffiffiffiffiffi
2p
p e�ðu�mÞ

2=2�s2 ð4:5Þ

with m ¼ uorig ¼ 0:12, the original value used for the
data simulation, and s ¼ m=10, which acts like a
Gaussian prior, for J ¼ 10 particles, with K ¼ 100
simulations each. Most distances are larger than in
figure 10, but some are even smaller now (figure 11).

In the same way, we can vary several parameters and
initial conditions, we vary seasonality u, import ln(@)
and initial conditions I0 and R0, all Gaussian, with
the same order of magnitude, and still find distances
in the same region as before. As an aside, varying the
number of initial susceptibles by 10 per cent changes
the simulation trajectories a lot, since owing to
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conservation of the host population, N ¼ S þ I þ R,
a small change in S means a huge change in R.
For construction of priors, one should always bear in
mind such side effects of dependencies as the one just
mentioned.

Now the weight wj of particle uj from estimating
the time-local likelihood function for dynamic noise is
given by

wj :¼ p̂ðIE jujÞ ¼
1
K

XK
k¼1

H ðh� k IE � I kðujÞ kEÞ;

and we perform filtering in the form of sequential
importance resampling [32,33] proportional to the
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weights wj of particles uj after each six-month time
slice, using an h-ball size of h ¼ 0:005 (figure 12).

4.4. Particle filter in action

Now going M ¼ 5 times through the time series with
each L ¼ 40 time slice of six months and starting the
parameter values not at u ¼ 0:12 but at u ¼ 0:14, and
not at lnð@Þ ¼ �15:0 but at lnð@Þ ¼ �13:0, we find par-
ameters converging to the expected values as shown in
the following.

One extra step has to be performed once we go several
times through the data time series. The initial variance of
the parameters and the initial conditions are decreased by
the so-called simulated annealing parameters a ¼ 0:8 and
at each m-tour an initial variance factor b ¼ 2, which are
essentially scaling factors for the variance in the Gaussian
priors; for details, see Breto et al. [19]. We use, as the
update rule with the sample mean over particles �u

ðmÞ
i ð‘Þ

at each time slice, the simplest version

u
ðmþ1Þ
i ¼

XL

‘¼1

�u
ðmÞ
i ð‘Þ; ð4:6Þ

which turns out to perform best, whereas suggested
gradient-like update rules seem only to perform well
very close to the final estimates, and otherwise receive
rather destructive kicks at the main convergence region
towards the best estimates. For the results after five
times, see figure 13.

This shows the qualitative behaviour of the algorithm
well, especially indicating that the import parameter is
rather more difficult to estimate than the seasonality
(figure 13c,d).

Now going M ¼ 20 times through the time series and
more particles, better h resolution gives the results
shown in figures 14 and 15. The effect of the simulated
annealing is clearly visible, with smaller variation in
subsequent m-runs showing up in the estimates. Sur-
prisingly, the import parameter is now also very well
estimated after the additional effort of longer filtering.

When comparing the simulations of the best esti-
mates with the final piece of time series, the
predictive power is quite good in the sense that the
simulations now are very close to the data (figure 16).
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5. CONCLUSIONS AND DISCUSSION

We presented the framework of parameter estimation in
simple and in complex dynamical models in population
biology, with special emphasis on epidemiological
applications. Dynamic population noise, as opposed to
observation noise, can be used to construct analytical
likelihood functions in simple models and also be esti-
mated via simulations in more complex and more
realistic models. Especially in models, which show in its
mean field approximation already deterministic chaos it
is demonstrated to be possible to estimate well so difficult
parameters like the import rate. Future research will
now be possible to reinvestigate realistic systems such
as dengue fever with very good datasets from Thailand,
where import already has been identified as one of the
key parameters to determine the underlying dynamical
structure of the process.

The presented method of filtering is also close to
some elements of approximate Bayesian computations
(ABCs), especially the aspect of a distance measure
between data and simulations [34,35], and, very recently,
ABC methods have been applied to some examples from
physics and immune signalling displaying deterministi-
cally chaotic behaviour [36]. For the selection between
different possible models, see Stollenwerk et al. [37] for
an application in an ecological case study, and for a
recent application to the paradigmatic Nicholson’s blow-
fly system, an ecological example with chaotic or near
chaotic dynamics, see Wood [38]. In the present context,
for example, one could see if the available time-series data
can distinguish between a four-strain dengue fever model
and a simpler model distinguishing only primary and sec-
ondary infection and eventually select one and reject the
other (which is not always possible given a certain data-
set; see Stollenwerk et al. [37]). For an initial study of
qualitative similarities and differences in terms of dyna-
mical complexity of such models, see Aguiar et al. [39].
The large number of initial conditions might prohibit
the more complex four-strain model from being suffi-
ciently better than the primary versus secondary
infection model. Another future research question will
be the comparison of spatial stochastic simulations with
data, where shifts in epidemiological thresholds are to
be expected [40]. Finally, such epidemiological models
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might help to guide vaccination policies [41], once the
dynamical parameters are sufficiently well known to
obtain information on the relevant dynamic scenario
behind the epidemiological fluctuations.
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