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SUBLINEARITY OF THE TRAVEL-TIME VARIANCE

FOR DEPENDENT FIRST-PASSAGE PERCOLATION

By Jacob van den Berg and Demeter Kiss1

CWI and VU University Amsterdam, and CWI

Let E be the set of edges of the d-dimensional cubic lattice Zd, with
d≥ 2, and let t(e), e ∈E, be nonnegative values. The passage time from
a vertex v to a vertex w is defined as infπ : v→w

∑
e∈π

t(e), where the infi-
mum is over all paths π from v to w, and the sum is over all edges e of π.

Benjamini, Kalai and Schramm [2] proved that if the t(e)’s are i.i.d.
two-valued positive random variables, the variance of the passage time
from the vertex 0 to a vertex v is sublinear in the distance from 0 to v.
This result was extended to a large class of independent, continuously
distributed t-variables by Benäım and Rossignol [1].

We extend the result by Benjamini, Kalai and Schramm in a very
different direction, namely to a large class of models where the t(e)’s are
dependent. This class includes, among other interesting cases, a model
studied by Higuchi and Zhang [9], where the passage time corresponds
with the minimal number of sign changes in a subcritical “Ising land-
scape.”

1. Introduction and statement of results. Consider, for d≥ 2, the d-di-
mensional lattice Zd. Let E denote the set of edges of the lattice, and let t(e),
e ∈ E, be nonnegative real values. A path from a vertex v to a vertex w is
an alternating sequence of vertices and edges

v0 = v, e1, v1, e2, . . . , vn−1, en, vn =w,

where each ei is an edge between the vertices vi−1 and vi, 1 ≤ i ≤ n. To
indicate that e is an edge of a path π, we often write, with some abuse of
notation, e ∈ π.

If v = (v1, . . . , vd) is vertex, we use the notation |v| for
∑d

i=1 |vi|. The
(graph) distance d(v,w) between vertices v and w is defined as |v−w|. The
vertex (0, . . . ,0) will be denoted by 0.
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The passage time of a path π is defined as

T (π) =
∑

e∈π

t(e).(1)

The passage time (or travel time) T (v,w) from a vertex v to a vertex w
is defined as

T (v,w) = inf
π : v→w

T (π),

where the infimum is over all paths π from v to w.
Analogous to the above described bond version, there is a natural site

version of these notions: in the site version, the t-variables are assigned to
the vertices instead of the edges. In the definition of T (π), the right-hand
side in (1) is then replaced by its analog where the sum is over all vertices
of π. There seems to be no “fundamental” difference between the bond and
the site version.

An important subject of study in first-passage percolation is the asymp-
totic behavior of T (0, v) and it fluctuations, when |v| is large and the t(e)’s
are random variables. It is believed that, for a large class of distributions
of the t(e)’s, the variance of T (0, v) is of order |v|2/3. However, this has
only been proved for a special case in a modified (oriented) version of the
model [11]. Apart from this, the best upper bounds obtained for the variance
before 2003 were linear in |v| [13]. See Section 1 of [2] for more background
and references.

Benjamini, Kalai and Schramm [2] showed that if the t(e)’s are i.i.d. ran-
dom variables taking values a and b, b≥ a > 0, then the variance of T (0, v)
is sublinear in the distance from 0 to v. More precisely, they showed the
following theorem.

Theorem 1.1 (Benjamini, Kalai and Schramm [2]). Let b≥ a > 0. If the
(t(e), e ∈ E) are i.i.d. random variables taking values in {a, b}, then there is
a constant C > 0 such that, for all v with |v| ≥ 2,

Var(T (0, v))≤C
|v|

log|v|
.(2)

Benäım and Rossignol [1] extended this result to a large class of i.i.d.
t-variables with a continuous distribution, and also proved concentration
results. See also [5].

We give a generalization of Theorem 1.1 in a very different direction,
namely to a large class of dependent t-variables. The description of this
class, and the statement of our general results are given in Section 1.4.

Using our general results, we show in particular that (2) holds for the
{a, b}-valued Ising model with 0< a< b and inverse temperature β < βc. By
{a, b}-valued Ising model, we mean the model that is simply obtained from
the ordinary, {−1,+1}-valued, Ising model by replacing −1 by a and +1
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by b. The precise definition of the Ising model and the statement of this
result is given in Section 1.1.

We also study, as a particular case of our general results, a different Ising-
like first-passage percolation model: consider an “ordinary” Ising model
(with signs −1 and +1), with parameters β < βc and with external field h
satisfying certain conditions. Now define the passage time T (v,w) between
two vertices v and w as the minimum number of sign changes needed to
travel from v to w. Higuchi and Zhang [9] proved, for d = 2, a concentra-
tion result for this model. This concentration result implies an upper bound
for the variance that is (a “logarithmic-like” factor) larger than linear. We
show from our general framework that the sublinear bound (2) holds (see
Theorem 1.5).

The last special case we mention explicitly is that where the collection of
t-variables is a finite-valued Markov random field which satisfies a high-noise
condition studied by Häggström and Steif (see [7]). Again it follows from our
general results that the sublinear bound (2) holds (see Theorem 1.4).

The general organization of the paper is as follows: in the next three
subsections, we give precise definitions and statements concerning the special
results mentioned above. Then, in Section 1.4, we state our main, more
general results, Theorems 1.6 and 1.7.

In Section 2, we prove the special cases (Theorems 1.2, 1.4 and 1.5) from
Theorems 1.6 and 1.7.

In Section 3, we present the main ingredients for the proofs of our general
results: an inequality by Talagrand (and its extension to multiple-valued
random variables), a very general “randomization tool” of Benjamini, Kalai
and Schramm, and a result on greedy lattice animals by Martin [15].

In Section 4, we first give a very brief informal sketch of the proof of
Theorem 1.6 (pointing out the extra problems that arise, compared with
the i.i.d. case in [2]), followed by a formal, detailed proof.

The proof of Theorem 1.7 is very similar to that of Theorem 1.6. This is
explained in Section 5.

1.1. The case where the t-variables have an {a, b}-valued Ising distribu-
tion. Recall that the Ising model (with inverse temperature β and external
field h) on a countably infinite, locally finite graph G is defined as follows.
First some notation: we write v ∼ w to indicate that two vertices v and w
share an edge. For each vertex v of G, the set of vertices {v :w ∼ v} is de-
noted by ∂v. The spin value (+1 or −1) at a vertex v is denoted by σv .
Now define, for each vertex v and each α ∈ {−1,+1}∂v , the distribution
qαv = qαv;β,h, on {−1,+1}:

qαv (+1) =
exp(β(h+

∑

w∼v αw))

exp(β(h+
∑

w∼v αw)) + exp(−β(h+
∑

w∼v αw))
,
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(3)

qαv (−1) =
exp(−β(h+

∑

w∼v αw))

exp(β(h+
∑

w∼v αw)) + exp(−β(h+
∑

w∼v αw))
.

Let V denote the set of vertices of G. An Ising distribution on G (with
parameters β and h) is a probability distribution µβ,h on {−1,+1}V which
satisfies, for each vertex v and each η ∈ {−1,+1},

µβ,h(σv = η|σw,w 6= v) = qσ∂v
v (η), µβ,h-a.s.(4)

In this (usual) setup, the spin values are assigned to the vertices. One
can define an Ising model with spins assigned to the edges, by replacing G
by its cover graph (i.e., the graph whose vertices correspond with the edges
of G, and where two vertices share an edge if the edges of G to which these
vertices correspond, have a common endpoint).

In the case where G is the d-dimensional cubic lattice Zd, with d≥ 2, it is
well known that there is a critical value βc ∈ (0,∞) such that the following
holds: if β < βc, there is a unique distribution satisfying (4). If β > βc and
h = 0, there is more than one distribution satisfying (4). A similar result
(but with a different value of βc) holds for the edge version of the model.

Let b > a > 0. An {a, b}-valued Ising model is obtained from the usual
Ising model by reading a for −1 and b for +1. More precisely, if (σv, v ∈ V )
has an Ising distribution and, for each v ∈ V , t(v) is defined to be a if
σv = −1 and b if σv = +1, then we say that (t(v), v ∈ V ) are {a, b}-valued
Ising variables. A similar definition holds for the situation where the spins
are assigned to the edges.

A special case of our main result is the following extension of Theorem 1.1
to the Ising model.

Theorem 1.2. Let b > a > 0 and d ≥ 2. If (t(v), v ∈ Zd) are {a, b}-
valued Ising variables with inverse temperature β < βc and external field h,
then there is a constant C > 0 such that for all v with |v| ≥ 2,

Var(T (0, v))≤C
|v|

log|v|
.(5)

The analog of this result holds for the case where the values a, b are assigned
to the edges.

1.2. Markov random fields with high-noise condition. Let (σv, v ∈ Zd), be

a translation invariant Markov random field taking values in WZd
where W

is a finite set. Let v ∈ Zd. For each w ∈W define (see [7])

γw = min
η∈W ∂v

P(σv =w|σ∂v = η).

Further, define

γ =
∑

w∈W

γw.
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Note that the definition of γw and γ does not depend on the choice of v.
Häggström and Steif [7] studied the existence of finitary codings (and exacts
simulations) of Markov random fields under the following high-noise (HN)
condition (see also [6] and [21]).

Definition 1.3 (HN condition). A translation invariant Markov ran-
dom field on Zd satisfies the HN condition, if

γ >
2d− 1

2d
.

We will show that the following theorem is a consequence of our main
result.

Theorem 1.4. Let d≥ 2 and let (σv, v ∈ Zd) be a translation invariant
Markov random field taking finitely many, strictly positive values. If this
Markov random field satisfies the HN condition, then, for the first-passage
percolation model with t(v) = σv, v ∈ Zd, there is a constant C > 0 such that
for all v with |v| ≥ 2,

Var(T (0, v))≤C
|v|

log|v|
.(6)

The analog of this result holds for the edge version of the model.

Remark. The HN condition for the edge version is a natural modifica-
tion of that in Definition 1.3. For instance, the 2d in the numerator and the
denominator of the right-hand side of the inequality in Definition 1.3 is the
number of nearest-neighbor vertices of a given vertex, and will be replaced
by 4d− 2 (which is the number of edges sharing an endpoint with a given
edge).

1.3. The minimal number of sign changes in an Ising pattern. In Sec-
tion 1.1, the collection of random variables (t(v), v ∈ Zd) itself had an Ising
distribution (with −1 and +1 translated to a, resp., b). A quite different
first-passage percolation process related to the Ising model is the one, stud-
ied by Higuchi and Zhang [9], where one counts the minimal number of sign
changes from a vertex v to a vertex w in an Ising configuration.

For β < βc, let θ(β,h) denote the probability that 0 belongs to an infinite
+ cluster, and let

hc(β) = sup{h : θ(β,h) = 0}.

For d= 2, it was proved in [8] that hc(β)> 0.
Using our general results, we will prove (in Section 2) the following ex-

tension of Theorem 1.1.
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Theorem 1.5. Let the collection of random variables (σv, v ∈ Z2) have an
Ising distribution with parameters β < βc and external field h, with |h|<hc.
Define, for each edge e= (v1, v2),

t(e) =

{

1, if σv1 6= σv2 ,
0, if σv1 = σv2 .

For the first-passage percolation model with these t-values, there is a C > 0
such that for all v with |v| ≥ 2,

Var(T (0, v))≤C
|v|

log|v|
.(7)

Remark. Higuchi and Zhang [9] give a concentration result for this
model (see Theorem 2 in [9]). Their method is very different from ours. [It is
interesting to note that the paragraph below (1.11) in their paper suggests
that Talagrand-like inequalities are not applicable to the Ising model.] The
upper bound for the variance of T (0, v) which follows from their concen-
tration result is (a “logarithmic-like” factor) larger than linear. For earlier
results on this and related models, see the Introduction in [9].

1.4. Statement of the main results. Our main results, Theorems 1.6
and 1.7, involve t-variables that can be represented by (or “encoded” in
terms of) i.i.d. finite-valued random variables in a suitable way, satisfying
certain conditions. These conditions are of the same flavor as (but somewhat
different from) those in Section 2 in [20].

We first need some notation and terminology. Let S be a finite set, and I
a countably infinite set. Let W be a finite subset of I . If x ∈ SI , we write xW
to denote the tuple (xi, i ∈W ). If h :SI → R is a function, and y ∈ SW , we
say that y determines the value of h if h(x) = h(x′) for all x, x′ satisfying
xW = x′W = y.

Let Xi, i ∈ I , be i.i.d. S-valued random variables. We say that the random
variables t(v), v ∈ Zd, are represented by the collection (Xi, i ∈ I), if, for each
v ∈ Zd, t(v) is a function of (Xi, i ∈ I). The formulation of our main theorems
involve certain conditions on such a representation:

• Condition (i): There exist c0 > 0 and ε0 > 0 such that for each v ∈ Zd there
is a sequence i1(v), i2(v), . . . of elements of I , such that for all k = 1,2, . . . ,

P ((Xi1(v), . . . ,Xik(v)) does not determine t(v))≤
c0

k3d+ε0
.(8)

• Condition (ii):

∃α> 0 ∀v,w ∈ Zd ∀k < α|v −w|
(9)

{i1(v), . . . , ik(v)} ∩ {i1(w), . . . , ik(w)}=∅.

• Condition (iii): The distribution of the family of random variables (t(v), v ∈
Zd) is translation-invariant.
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We say that the family of random variables (t(v), v ∈ Zd) has a repre-
sentation satisfying conditions (i)–(iii), if there are S, I and i.i.d. S-valued
random variables Xi, i ∈ I as above, such that the t-variables are functions
of the X-variables satisfying conditions (i)–(iii) above.

Analogs of these definitions for t-variables indexed by the edges of Zd can
be given in a straightforward way.

Now we are ready to state our main theorem.

Theorem 1.6. Let b > a > 0, and let, with d≥ 2, (t(v), v ∈ Zd) be a fam-
ily of random variables that take values in the interval [a, b] and have a rep-
resentation satisfying conditions (i)–(iii) above. Then there is a C > 0, such
that for all v ∈ Zd with |v| ≥ 2,

Var(T (0, v))≤
C|v|

log|v|
.(10)

The analog for the bond version of this result also holds.

If the t-variables can take values equal or arbitrarily close to 0, we need
a stronger version of condition (i) and extra condition (iv) (see below).

By an optimal path from v to w, we mean a path π from v to w such that
T (π)≤ T (π′) for all paths π′ from v to w.

• Condition (i′): There exist c0 > 0, ε0 > 0 and ε1 > 0, such that for each
v ∈ Zd there is a sequence i1(v), i2(v), . . . of elements of I , such that for
all k = 1,2, . . . ,

P ((Xi1(v), . . . ,Xik(v)) does not determine t(v))≤ c0 exp(−ε0k
ε1).(11)

• Condition (iv): There exist c1, c2, c3 > 0 such that for all vertices v,w the
probability that there is no optimal path π from v to w with |π| ≤ c1|v−w|
is at most c2 exp(−c3|v −w|).

Theorem 1.7. Let b > 0, and let, with d ≥ 2, (t(v), v ∈ Zd) be a col-
lection of random variables taking values in the interval [0, b], and having
a representation satisfying conditions (i′), (ii), (iii) and (iv) above. Then
there is a C > 0, such that for all v ∈ Zd with |v| ≥ 2,

Var(T (0, v)≤
C|v|

log|v|
.(12)

The analog of this result for the bond version of the model also holds.

Remarks.

(a) Note that condition (iii) is in terms of the t-variables only: we do not
assume that the index set I has a “geometric” structure and that the t-
variables are “computed” from the X-variables in a “translation-invariant”
way with respect to that structure (and the structure of Zd).
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(b) The goal of our paper is to show that the main result in [2], although
its proof heavily uses inequalities concerning independent random variables,
can be extended to an interesting class of dependent first-passage percolation
models. In the setup of the above conditions (i), (ii), (iii), (i′) and (iv), we
have aimed to obtain fairly general Theorems 1.6 and 1.7, without becoming
too general (which would give rise to so many extra technicalities that the
main line of argument would be obscured). For instance, from the proofs
it will be clear that there is a kind of “trade-off” between conditions (i)
and (ii): one may simultaneously strengthen the first and weaken the second
condition.

Also, if the bound in condition (i′) is replaced by a polynomial bound with
sufficiently high degree, Theorem 1.7 would still hold (but more explanation
would be needed in Section 5). Since the main motivation for adding this
theorem to Theorem 1.6 is to handle the interesting Ising sign-change model
studied by Higuchi and Zhang [for which we know that condition (i′) holds]
we have not replaced condition (i′) by a weaker condition.

2. Proofs of Theorems 1.2, 1.4 and 1.5 from Theorems 1.6 and 1.7.

2.1. Proof of Theorem 1.2. In [20], the notion “nice finitary representa-
tion” has been introduced in the context of two-dimensional random fields.
See conditions (i)–(iv) in Section 2 of that paper. In Section 2 (see in par-
ticular Theorem 2.3 in that paper), it is shown that the Ising model with
β < βc has such a representation. (See also [21].) The key ideas and ingre-
dients are exact simulation by coupling from the past (see [17] and [21]),
and a well-known result by Martinelli and Olivieri [16] that under a natural
dynamics (single-site updates; Gibbs sampler) the system has exponential
convergence to the Ising distribution. The random variables used to execute
these updates are taken as the X-variables in the definition of a representa-
tion.

Condition (ii) in [20] is somewhat weaker than our current condition (i).
However, as shown in [20] (see the arguments between Theorems 2.3 and 2.4
in [20]), the above mentioned exponential convergence shows that the Ising
model satisfies an even stronger bound, namely condition (i′) in our paper.

Condition (iii) in [20] corresponds with our condition (ii), and condi-
tion (iv) in [20] is stronger than our condition (iii).

In [20], only the two-dimensional case is treated (because the applications
are to percolation models where typical two-dimensional methods are used)
but its arguments concerning “nice finitary representations” for the Ising
model extend immediately to higher dimensions.

From the above considerations, it follows that the Ising models in the
statement of our Theorem 1.2 indeed have a representation satisfying our
conditions (i)–(iii). Application of Theorem 1.6 now gives Theorem 1.2.
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2.2. Proof of Theorem 1.4. The argument is very similar to that in the
proof of Theorem 1.2. Therefore, we only mention the points that need extra
attention.

As in the proof of Theorem 1.2, the role of the X-variables in Section 1.4
is played by the i.i.d. random variables driving a single-site update scheme
(Gibbs sampler). In Theorem 1.2, a form of exponential convergence for the
Gibbs sampler was used. This exponential convergence came from a result
in [16]. In the current situation, the exponential convergence is, as shown in
Proposition 2.1 in [7], a consequence of the HN condition. This exponential
convergence implies (again, as in the case of Theorem 1.2) condition (i) [and,
in fact, the stronger condition (i′)] in Section 1.4. Condition (iii) is obvious,
and condition (ii) follows easily (as in the proof of Theorem 1.2) from the
general setup of the Gibbs sampler. So, again, we now apply Theorem 1.6
to obtain Theorem 1.4.

2.3. Proof of Theorem 1.5. Since β < βc, the collection (σv, v ∈ Z2), has
(as pointed out in the proof of Theorem 1.2) a representation satisfying
conditions (i), (ii) and (iii). In fact, as noted in the proof of Theorem 1.2, it
even satisfies the stronger form (i′) of condition (i). Since t(e) is a function
of the σ-values of the two endpoints of e, it follows immediately that the
collection (t(e), e ∈ E) (where E denotes the set of edges of the lattice Z2)
satisfies the (bond analog of) the conditions (i′), (ii) and (iii). The fact
that (iv) is satisfied follows immediately from Lemma 6 [and (1.9)] in [9].
Theorem 1.5 now follows from (the bond version of) Theorem 1.7.

3. Ingredients for the proof of Theorem 1.6.

3.1. An inequality by Talagrand. Let S be a finite set and n a positive
integer. Assign probabilities ps, s ∈ S, to the elements of S. Let µ be the
corresponding product measure on Ω := Sn.

Let f be a function on Ω, and let ‖f‖1 and ‖f‖2 denote the L1-norm and
L2-norm of f w.r.t. the measure µ:

‖f‖1 :=
∑

x∈Ω

µ(x)|f(x)|;

‖f‖2 :=

√

∑

x∈Ω

µ(x)|f(x)|2.

The notation f̄i is used for the conditional expectation of f given all
coordinates except the ith. More precisely, for x= (x1, . . . , xn) ∈ Sn we define

f̄i(x) :=
∑

s∈S

psf(x1, . . . , xi−1, s, xi+1, . . . , xn).
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Further, we define the function ∆if on Ω by

(∆if)(x) = f(x)− f̄i(x), x ∈Ω.(13)

Notational Remark. Often we work with the alternative, equivalent,
description that we have n independent random variables, say Z1, . . . ,Zn,
with P (Zi = s) = ps, s ∈ S,1≤ i≤ n. To emphasize the identity of the ran-
dom variables involved, we then often use the notation ∆Zi

instead of ∆i.

A key ingredient in [2] and in our paper is the following inequality for
the case |S|= 2 by Talagrand, a far-reaching extension of an inequality by
Kahn, Kalai and Linial [12].

Theorem 3.1 (Talagrand [19], Theorem 1.5). There is a constant K > 0
such that for each n and each function f on {0,1}n,

Var(f)≤K log

(

2

p(1− p)

) n
∑

i=1

‖∆if‖
2
2

log(e‖∆if‖2/‖∆if‖1)
,(14)

where (in the notation in the beginning of this section) p= p1 = 1− p0, and
where Var(f) denotes the variance of f w.r.t. the measure µ.

In the literature, (partial) extensions of this inequality and inequalities
of related flavor, to the case |S|> 2 have been given; see, for example, [18]
and [1]. The following theorem (see [14]) states the most “literal” extension
of Theorem 3.1 to the case |S|> 2. (In [14], an extended version of Beckner’s
inequality, a key ingredient in the proof of Theorem 3.1, is used, and the
proof of Talagrand is followed, with appropriate adaptations, to obtain the
extension of Theorem 3.1.) To make comparison of our line of arguments with
that in [2] as clear as possible, it is this extension we will use. (Moreover,
if instead of Theorem 3.2 we would use the modified Poincaré inequalities
in [1], this would not simplify our proof of Theorem 1.6.)

Theorem 3.2 ([14], Theorem 1.3). There is a constant K > 0 such that
for each finite set S, each n ∈ N and each function f on Sn the following
holds:

Var(f)≤K log

(

1

mins∈S ps

) n
∑

i=1

‖∆if‖
2
2

log(e‖∆if‖2/‖∆if‖1)
.(15)

3.2. Greedy lattice animals. The subject of this subsection played no role
in the treatment of the first-passage percolation model with independent t-
variables in [2], but turns out to be important in our treatment of dependent
t-variables.
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Consider, for d≥ 2, the d-dimensional cubic lattice. A lattice animal (ab-
breviated as l.a.) is a finite connected subset of Zd containing the origin.
Let Xv , v ∈ Zd, be i.i.d. nonnegative random variables with common distri-
bution F . Define

N(n) := max
ζ : ζ l.a. with |ζ|=n

∑

v∈ζ

Xv,

where the maximum is over all lattice animals of size n.
The subject was introduced by Cox et al. [3]. The asymptotic behavior,

as n→∞ of N(n) has been studied in that and several other papers (see,
e.g., [4] and [10]). For our purpose, the following result by Martin [15] is
very suitable.

Theorem 3.3 (Martin [15], Theorem 2.3). There is a constant C such
that for all n and for all F that satisfy

∫ ∞

0
(1− F (x))1/d dx <∞,

E

(

N(n)

n

)

≤C

∫ ∞

0
(1− F (x))1/d dx.(16)

Martin [15] says considerably more than this, but the above is sufficient
for our purpose.

3.3. A randomization tool. As in [2] we need, for technical reasons, a cer-
tain “averaging” argument: extra randomness is added to the system to
make it more tractable. To handle this extra randomness appropriately, the
following lemma from [2] is used.

Lemma 3.4 (Benjamini, Kalai and Schramm [2], Lemma 3). There is
a constant c > 0 such that for every m ∈N there is a function

g = gm :{0,1}m
2
→{0,1, . . . ,m},

which satisfies properties (i) and (ii) below:

(i) For all i= 1, . . . ,m2 and all x ∈ {0,1}m
2
,

|gm(x(i))− gm(x)| ≤ 1,(17)

where x(i) denotes the element of {0,1}m
2
that differs from x only in the ith

coordinate.
(ii)

max
k

P(g(y) = k)≤ c/m,(18)

where y is a random variable uniformly distributed on {0,1}m
2
.
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4. Proof of Theorem 1.6. To keep our formulas compact, we will use
constants C1, C2, . . . . The precise values of these constants do not matter for
our purposes. Some of them depend on a, b, the dimension d, the distribution
of the X-variables (in terms of which the t-variables are represented), or
the constants in the conditions (i), (i′), (ii), (iii) and (iv) in Section 1.4.
However, they do not (and obviously should not) depend on the choice of v
in the statement of the theorem.

4.1. Informal sketch. The detailed proof is given in the next subsection.
Now we first give a very brief and rough summary of the proof of the main
result in [2] (listed as Theorem 1.1 in our paper), and then informally (and
again briefly) indicate the extra problems that arise in our situation where
the t-variables are dependent.

Let γ be the path from 0 to v for which the sum of the t-variables is
minimal. (If more than one such path exists, choose one of these by a deter-
ministic procedure.) Since the value of each t-variable is at least a > 0 and
at most b, it is clear that the number of edges of γ is at most a constant c
times |v|.

In [2] the t-variables are independent, and Talagrand’s inequality (The-
orem 3.1) is applied with f = T (0, v) and with each i denoting an edge e.
From the definitions, it is clear that ∆if is roughly the change of T (0, v)
caused by changing t(e). Moreover, a change of t(e) can only cause a change
of T (0, v) if, before or after the change, e is on the above mentioned path γ.
So, ignoring the denominator in Talagrand’s inequality, one gets the (linear)
bound

Var(T (0, v))≤C1E

[

∑

e∈γ

(b− a)2
]

≤ c(b− a)2|v|.(19)

It turns out that, by introducing additional randomness in an appropriate
way, without changing the variance (see Lemma 3.4), the ‖∆if‖2/‖∆if‖1
in the denominator in the right-hand side of Talgrand’s inequality becomes
(uniformly in i) larger than |v|β for some β > 0, thus giving the log|v| (and
hence, the sublinearity) in Theorem 1.1.

In our situation, the underlying independent random variables are the Xi,
i ∈ I (by which the dependent t-variables are represented). Application of
Talagrand-type inequalities to these variables has the complication that
changing oneX-variable changes a (random) set of possibly many t-variables.
Taking the square of the effect complicates this further. Nevertheless, it
turns out that by suitable decompositions of the summations, and by block
arguments (rescaling), one finally gets, instead of (19) a bound in terms of
(“rescaled”) greedy lattice animals which, by the result of Martin in Sec-
tion 3, is still linear in |v|.
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To handle the denominator in the Talagrand-type inequality, we use ad-
ditional randomness, as in [2]. Again, the fact that changing an X-variable
can have effect on many t-variables complicates the analysis, but this com-
plication is easier to handle than that for the numerator mentioned above.

4.2. Detailed proof. We give the proof for the site version of Theorem 1.6.
The proof for the bond version is obtained from it by a straightforward, step-
by-step translation.

Notational Remark. The cardinality of a set V will be indicated
by |V |.

We start by stating a simple but important observation (a version of
which was also used in [2]). A finite path π is called an optimal path, or
a geodesic, if there is no path π′ 6= π with the same starting and endpoint
as π, for which T (π′)< T (π).

Observation 4.1. Since the t-variables are bounded away from 0 and ∞,
there is a constant C2 > 0 such that for every positive integer n and every
w ∈ Zd the following hold:

(a) Each geodesic has at most C2n vertices in the box w+ [−n,n]d.
(b) Each geodesic which starts at 0 and ends at w has at most C2|w|

vertices.

Let Xi, i ∈ I , be the independent random variables in terms of which the
variables (t(v), v ∈ Zd) are represented. So T (0, v) is a function of the X-
variables. As we said in the informal sketch, we introduce extra randomness,
in the same way as in [2]: fix m := ⌊|v|1/4⌋. Let (yji , i= 1, . . . ,m2, j = 1, . . . , d)
be a family of independent random variables, each taking value 0 or 1 with
probability 1/2. The family of yji ’s is also taken independently of the X-
variables. Define, for j = 1, . . . , d,

yj = (yj1, . . . , y
j
m2).

Each yj is uniformly distributed on {0,1}m
2
, and will play the role of the y

in Lemma 3.4. We simply write Y for the collection (yji , i = 1, . . . ,m2, j =
1, . . . , d) and X for the collection (Xi, i ∈ I).

Let

z(Y ) = (g(y1), . . . , g(yd))(20)

with g = gm as in Lemma 3.4.
To shorten notation, we will write f for T (O,v) and f̃ for the passage

time between the vertices that are obtained from 0 and v by a (random)
shift over the vector z(Y ):

f̃ = T (z(Y ), v + z(Y )).(21)



14 J. VAN DEN BERG AND D. KISS

Note that f is completely determined by X , while f̃ depends on X as
well as Y .

By translation invariance [see condition (iii)], for every w ∈ Zd, T (0, v)
has the same distribution as T (w,v+w). Hence, by conditioning on Y and
using that Y is independent of the t-variables, it follows that f̃ has the same
distribution as f . In particular,

Var(f) = Var(f̃).(22)

Theorem 3.2 gives (see the Remarks below)

Var(f̃)≤ C3

∑

i=1,...,m2,j=1,...,d

‖∆
yji
f̃‖22

1 + log(‖∆
yji
f̃‖2/‖∆yji

f̃‖1)

(23)

+C3

∑

i∈I ‖∆Xi
f̃‖22

1 +mini∈I log(‖∆Xi
f̃‖2/‖∆Xi

f̃‖1)
.

Remarks.

(a) At first sight, Theorem 3.2 is not applicable in the current situa-

tion where we have two types of random variables: Xi’s and yji ’s. However,

by a straightforward argument, “pairing” each variable yji , i = 1, . . . ,m2,

j = 1, . . . , d, with an independent “dummy” variable Xj
i (with the same dis-

tribution as the “ordinary” X-variables), and each variable Xi, i ∈ I , with
an independent “dummy” variable yi (with the same distribution as the “or-
dinary” y-variables), it is easy to see that Theorem 3.2 is indeed applicable
here.

(b) Note that the statement of Theorem 3.2 is formulated for finite n.
Combined with a standard limit argument, it gives (23).

We will handle, in separate subsections, the first term of (23), the numer-
ator of the second term, and the denominator of the second term.

4.2.1. The first term in (23). By (20), (21) and (17) it follows that |∆
yji
f̃ |

is at most a constant C4, so that we have the following lemma.

Lemma 4.2. The first term in (23) is at most

≤ dC4m
2 = dC4|v|

1/2.(24)

4.2.2. The denominator of the second term in (23). In this subsection
we write, for notational convenience, ∆if̃ for ∆Xi

f̃ , where i ∈ I .
If w,w′ ∈ Zd we write γw,w′ for the path π minimizing

∑

w∈π t(w). If there
is more than one such path, we use a deterministic, translation-invariant way
to select one. If w = 0 and w′ is our “fixed” v, we write simply γ for γ0,v .
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Recall that z = z(Y ) is the random shift. We write γ(z) for γz,v+z.
Also recall the definitions and notation in Section 1.4. If w ∈ Zd and

j ∈ I , we say that w needs j if j = ik(w) for some positive integer k, and
Xi1(w), . . . ,Xik−1(w) does not determine t(w).

By a well-known second-moment argument we have, for each j ∈ I ,

‖∆j f̃‖2

‖∆j f̃‖1
≥

1
√

P(∆j f̃ 6= 0)
.(25)

Note that, given z(Y ) and all Xi, i ∈ I \{j}, there is a, possibly nonunique,
s = s(j,X,Y ) ∈ S such that f̃ (now considered as a function of Xj only)

takes its smallest value at Xj = s. Further note that if ∆j f̃ 6= 0 then, after

replacing the value of Xj by s, we have ∆j f̃ < 0. So we get

P(∆j f̃ < 0)≥ P(∆j f̃ 6= 0)min
r∈S

P(Xj = r),

and hence

P(∆j f̃ 6= 0)≤
P(∆j f̃ < 0)

minr∈S P(Xj = r)
.(26)

Moreover, it follows from the definitions that if ∆j f̃ < 0, there is a w
on γ(z) such that a certain change of Xj causes a change of t(w). By this
and (26), we have

P(∆j f̃ 6= 0)≤ C5

∑

w∈Zd

P(w ∈ γ(z),w needs j)

(27)
≤ C5

∑

w∈Zd

min(P(w ∈ γ(z)),P(w needs j)).

Recall the definition of m in the paragraph following Observation 4.1. Let
w ∈ Zd and consider the box Bm(w) :=w+ [−m,m]d. We have

P(w ∈ γ(z)) = P(w− z ∈ γ).

By the construction of z, and (17), w−z takes values in the above mentioned
box Bm(w). Also by the construction of z, and (18), each vertex of the box
has probability ≤C6/m

d to be equal to w−z. Moreover, by Observation 4.1
at most C7m vertices in the box are on γ. Hence, since γ is independent of z,
it follows (by conditioning on γ) that

P(w ∈ γ(z))≤C7m
C6

md
≤C8|v|

−(d−1)/4.(28)

Further, by condition (i), we have

P(w needs j)≤
c0

rw(j)3d+ε0
,(29)
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where rw(j) (which we call the rank of j) is the positive integer k for which
ik(w) = j.

By (27), (28) and (29), we have, for every K,

P(∆j f̃ 6=0)≤C9

(

|v|−(d−1)/4|{w : rw(j)<K}|+

∞
∑

k=K

|{w : rw(j) = k}|

k3d+ε0

)

.(30)

Now, condition (ii) implies, for each j ∈ I and each k > 0,

|{w : rw(j)< k}| ≤C10k
d.(31)

Hence, the first term between the brackets in (30) is at most

C10|v|
−(d−1)/4Kd.(32)

Further, using again (31) (and summation by parts) the sum over k in (30)
is at most

C11

∞
∑

k=K

kd

k3d+ε0+1
≤C12K

−2d−ε0 .(33)

Combining (30), (32) and (33), we get

P(∆j f̃ 6= 0)≤C13(|v|
−(d−1)/4Kd +K−2d−ε0).(34)

Now take for K the smallest positive integer satisfying Kd ≥ |v|(d−1)/8

and insert this in (34). This gives

P(∆j f̃ 6= 0)≤C14|v|
−(d−1)/8,(35)

which together with (25) yields the following lemma.

Lemma 4.3. There is a constant C15 > 0 such that for all v ∈ Zd the
denominator of the second term in (23) is larger than or equal to

C15 log|v|.

4.2.3. The numerator of the second term in (23), and completion of the
proof of Theorem 1.6. As in the previous subsection, we write ∆j for ∆Xj

,
where j ∈ I .

By the definition of f̃ (and of the norm ‖ · ‖2), we rewrite
∑

j∈I

‖∆j f̃‖
2
2 =

∑

j∈I

E[(∆jT (z(Y ), z(Y ) + v))2].(36)

By taking the expectation outside the summation, conditioning on Y
(and using that Y is independent of the t-variables) and then taking the
expectation back inside the summation, it is clear that the right-hand side
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of (36) is smaller than or equal to

max
x∈Zd

∑

j∈I

E((∆jT (x,x+ v))2).(37)

We will give an upper bound for the sum in (37) for the case x= 0. From
the computations, it will be clear that this upper bound does not use the
specific choice of x, and hence holds for all x.

In the case x= 0, the sum in (37) is, by definition, of course
∑

j∈I

‖∆jf‖
2
2.(38)

Let X ′
j be an auxiliary random variable that is independent of the X-

variables and has the same distribution. Let X denote the collection of
random variables (Xi, i ∈ I), and X ′ the collection obtained from the col-
lection X by replacing Xj by X ′

j . By the definition of ∆jf (and standard
arguments), we have

Ej((∆jf)
2) = 1

2Ej,j′[(f(X)− f(X ′))2]
(39)

= Ej,j′[(f(X)− f(X ′))2I(f(X)< f(X ′))],

where Ej denotes the expectation with respect to Xj , and Ej,j′ denotes
the expectation with respect to Xj and X ′

j . [So, (39) is a function of the
collection (Xi, i ∈ I, i 6= j).]

Let γ be the optimal path, as defined in the beginning of Section 4.2.2,
w.r.t. the t-variables corresponding with the family X . Let w be a vertex.
Observe that a change of t(w) does not increase f if w is not on γ, and
increases f by at most b− a if w is on γ. By this observation, and a similar
argument as used for (27), we have

(f(X ′)− f(X))I(f(X)< f(X ′))≤ (b− a)
∑

w∈γ

I(w needs j),(40)

and hence

(f(X)− f(X ′))2I(f(X)< f(X ′))
(41)

≤ (b− a)2
∑

u,w∈γ

I(u needs j,w needs j).

Since ‖∆jf‖
2
2 is the expectation w.r.t. the Xi, i 6= j, of Ej((∆jf)

2), we
have, by (39) and (41), that

‖∆jf‖
2
2 ≤ (b− a)2E

[

∑

u,w∈γ

I(u needs j,w needs j)

]

.(42)

To bound the right-hand side of (42), recall the definition [below (29)]
of rw(j) (with j ∈ I and w ∈ Zd), and note that, by condition (i) in Sec-
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tion 1.4, we have, on an event of probability 1,
∑

u,w∈γ

I(u and w need j)

=
∞
∑

k=1

∑

u,w∈γ

I(u and w need j,max(ru(j), rw(j)) = k)

(43)

≤ 2

∞
∑

k=1

∑

u∈γ

∑

w∈γ

I(u and w need j, ru(j) = k, rw(j)≤ k)

≤ 2

∞
∑

k=1

∑

u∈γ

I(u needs j, ru(j) = k)|{w ∈ γ : rw(j)≤ k}|.

By condition (ii), each of the vertices w in the last line of (43) is located
in a hypercube of length C16k centered at u. By this and Observation 4.1,
it follows that the number of w’s in the last line of (43) is at most C17k. So
we have, with C18 = 2C17,

∑

u,w∈γ

I(u and w need j)≤C18

∞
∑

k=1

k
∑

u∈γ

I(u needs j, ru(j) = k),

which, together with (42) [and using the definition of ik(u)] gives, after
summing over j,

∑

j∈I

‖∆jf‖
2
2 ≤C19

∞
∑

k=1

kE

[

∑

u∈γ

I(u needs ik(u))

]

=C19

|v|
∑

k=1

kE

[

∑

u∈γ

I(u needs ik(u))

]

(44)

+C19

∑

k>|v|

kE

[

∑

u∈γ

I(u needs ik(u))

]

.

The sum over k > |v| in the right-hand side of (44) can be bounded very
easily as follows: by Observation 4.1(b), all vertices of γ are inside the box
[−C2|v|,C2|v|]

d. Hence, the above-mentioned sum over k > |v| is at most

C19

∑

k>|v|

k
∑

u∈[−C2|v|,C2|v|]d

P(u needs ik(u)).

By condition (i), and since the number of vertices u in this last expression is,
of course, of order |v|d, this expression is smaller than or equal to a constant
times

|v|d
∑

k>|v|

k1−3d−ε0 ,

which is smaller than a constant C20.
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To bound the sum over k ≤ |v| in the right-hand side of (44), observe that,
by condition (ii), if a set V ⊂ Zd is such that |u−u′| ≥C21k for all u,u′ ∈ V
with u 6= u′, then the collection of random variables

(I(u needs ik(u)), u ∈ V )

is independent. With this in mind, we partition, for each k, Zd in boxes

Bk(w) := [−⌈C21k⌉, ⌈C21k⌉)
d +2⌈C21k⌉w, w ∈ Zd.

We will say that two boxes Bk(w) and Bk(u) are neighbors [where u =
(u1, . . . , ud) and w = (w1, . . . ,wd)] if max1≤i≤d |wi − ui|= 1.

By Observation 4.1(a), γ has at most C22k vertices in each of these boxes.
Hence, the the sum over k ≤ |v| in the right-hand side of (44) is at most

C23

|v|
∑

k=1

k2E

[

∑

w : (∗)

I(∃u ∈Bk(w) s.t. u needs ik(u))

]

,(45)

where (∗) indicates that we sum over all w ∈ Zd with the property that γ
has a vertex in Bk(w) or in a neighbor of Bk(w).

Next, partition Zd in 2d classes, as follows:

Zz := z + 2Zd, z ∈ {0,1}d.

So (45) can be written as

C23

|v|
∑

k=1

k2
∑

z∈{0,1}d

E

[

∑

w : (∗∗)

I(∃u ∈Bk(z + 2w) s.t. u needs ik(u))

]

,(46)

where (∗∗) indicates that we sum over all w ∈ Zd with the property that γ
has a point in Bk(z + 2w) or in a neighbor of Bk(z +2w).

Now, for each z ∈ {0,1}d, the set

{w ∈ Zd :γ has a point in Bk(z + 2w) or a neighbor of Bk(z +2w)}

is a lattice animal and has, for k≤|v|, by Observation 4.1(b), at most C24|v|/k
elements.

So, from (44)–(46) we get

∑

j∈I

‖∆jf‖
2
2 ≤C23

|v|
∑

k=1

k2
∑

z∈{0,1}d

E

[

max
L : |L|≤C24|v|/k

∑

w∈L

I(∃u∈Bk(z +2w)

s.t. u needs ik(u))

]

(47)

+C20,

where the maximum is over all lattice animals L with size ≤C24|v|/k.
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Now for each z we have, by the observation below (44), that

(I(∃u∈Bk(z +2w) s.t. u needs ik(u)),w ∈ Zd)

is a collection of independent 0–1-valued random variables. For each w, this
random variable is 1 with probability less than or equal to

|Bk(z +2w)|max
u∈Zd

P(u needs ik(u))≤
C25k

d

k3d+ε0
,(48)

where we used condition (i).
By (47), (48) and Theorem 3.3, we get

∑

j∈I

‖∆jf‖
2
2 ≤ C20 +C26

|v|
∑

k=1

k2
|v|

k

(

kd

k3d+ε0

)1/d

≤ C20 +C26|v|

∞
∑

k=1

k2k−(3d+ε0)/d(49)

≤ C27|v|.

Together with (36)–(38), this gives the following lemma.

Lemma 4.4. The numerator of the second term in (23) is at most C27|v|.

Lemma 4.4, together with (22), (23), Lemma 4.2 and Lemma 4.3, com-
pletes the proof of Theorem 1.6.

5. Proof of Theorem 1.7. The proof is very similar to that of Theo-
rem 1.6 and we only discuss those steps that need adaptation.

First, we define, for u,w ∈ Zd, the following modification of T (u,w):

T̂ (u,w) := min
π : u→w,|π|≤c1|u−w|

T (π),(50)

where |π| is the number of vertices of π, and with c1 as in condition (iv).
From this definition, it is obvious that

|T̂ (0, v)− T (0, v)|

≤ b(|v|+1)I(∄ an optimal path π from 0 to v with |π|< c1|v|).

By this inequality and condition (iv), we get immediately

Var(T̂ (v))−Var(T (v)) = o(|v|/ log(|v|)),

so that it is sufficient to prove (12) for T̂ (0, v).

Now, with f = T̂ (0, v) and f̃ = T̂ (z, v+ z) [with z = z(Y ) as in Section 4]
the proof follows that of Theorem 1.6, with the following modifications:
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A few lines above (28) we used that γ has at most C7m vertices in the
box Bm(w). In the current situation we have to add, as a correction term,
the probability that γ has more than C7m vertices in that box. It follows
easily from condition (iv) that, with a proper choice of C7, this probability
goes to 0 faster than any power of m. Hence (recalling the definition of m),
it is clear that (28) remains true. Therefore, the denominator of the second
term in the proof of Theorem 1.6 is, in the current situation, again larger
than a constant times log|v|.

A few lines before (44) we applied Observation 4.1(a) (which used the
fact that all t-values were larger than some positive a) to conclude that the
number of vertices of γ in a certain box of length of order k is at most
some constant times k. In the current situation we do not have this strong
bound, but we can obviously conclude that this number is at most the total
number of vertices in the box. Because of this, the k in (44) is, in our current
situation, replaced by kd.

A few lines above (45), we again used Observation 4.1(a). Again we have
to replace a factor k by kd. By this (and the previous remark) the k2 in (45),
and therefore also in (46) becomes k2d.

By the definition of T̂ , the statement about the size of the lattice animal
[a few lines above (47)] still holds (with appropriate constants). By this and
the earlier remarks, we now get (47) with the factor k2 replaced by k2d. By
condition (i′), the denominator in the right-hand side of (48) is now of order
exp(ε0k

ε1), so that the sum over k in this modified form of (49) is still finite.
This completes the proof of Theorem 1.7.
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