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In practice, call center service levels are reported over periods of finite length that are usually no longer
than 24 hours. In such small periods the service level has a large variability. It is therefore not sufficient

to base staffing decisions only on the expected service level. In this paper we consider the classical M/M/s
queueing model that is often used in call centers. We develop accurate approximations for the service-level
distribution based on extensive simulations. This distribution is used for a service-level variability-controlled
staffing approach to circumvent the shortcomings of the traditional staffing based on the expected service level.
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1. Introduction
The hierarchical planning in call centers is usu-
ally divided into forecasting, requirements planning
for short intervals, and staff scheduling (see Gans
et al. 2003). For the requirements planning, stationary
queueing models are used to determine the minimum
number of agents to fulfill a specific performance
measure. In call centers, the Erlang C model is often
used to provide an estimate for the fraction of calls
that wait no more than Z seconds. This service-level
estimate Y can be interpreted as the long-run frac-
tion of calls that wait no more than Z seconds. How-
ever, in call centers we are never interested in the
long run: service-level realizations are considered at
30-minute intervals, and sometimes aggregated over
full days, but seldom over longer periods (see, e.g.,
Stolletz 2003). The service-level target that Y% of the
calls are answered within Z seconds is commonly
expressed in the form Y/Z. The goal of call center
managers is often to meet an aggregated Y/Z service
level for a high fraction X of periods.

Service levels fluctuate. One of the reasons for
service-level deviations is that call centers operate in a
highly volatile environment, with possibly erroneous
forecasts, staffing levels that are not as planned, etc.
Even if all parameters are correct, the realized service
level will still deviate from the service-level predic-
tion, because of the intrinsic randomness in the call
center environment. Simulations show that this dif-
ference can be considerable, for example, 5% over a
whole day is not exceptional (see §3). Managers are
aware that the actual service level can differ from the
expected service level. However, they do not realize

the impact of the randomness on the amount of fluc-
tuations. It is our personal experience that managers
are surprised to learn this and are willing to consider
new solutions, such as the one we propose.

Call center managers deal with fluctuations by traf-
fic management, the activity that consists of reschedul-
ing the workforce on short notice to obtain the
required service level (see, e.g., Mehrotra et al. 2010).
A higher than necessary service level is generally not
a problem, but managers might be penalized for fail-
ing to meet the target in too many periods. To this
end, some managers deliberately opt for a higher
expected service-level Ȳ > Y or a lower target time
Z̄ < Z to meet the original target Y/Z with higher like-
lihood. Such behavior is also observed in inventory
management (Thomas 2005) and other fields. Both
approaches are based on the experience of the call
center manager, because the influence of Ȳ and Z̄ on
the probability X to reach the target Y/Z is not yet
described in the literature.

Costs play a crucial role in our analysis. For exam-
ple, when staffing according to the expected value
of the service level, the target service level may only
be met 50% of the time intervals (see §4). However,
one additional staffed agent can already improve this
probability to 80%. Is it better to risk not reaching
the target service level 50% of the time, or to sched-
ule one additional agent and accept a risk of 20%?
To make this trade-off, we have to quantify both the
costs of staffing and the costs for not reaching the tar-
get service level. Finding the optimal trade-off then
becomes equivalent to minimizing total costs. Related
to this is the work of Baron and Milner (2009), where
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approximations are constructed for the expected pen-
alties for failing to meet the target service level for
impatient customers.

In call center planning, there are a number of chal-
lenging problems related to time-varying arrival rates.
For forecasting problems with time-varying rates, we
refer to Akşin et al. (2007) and Steckley et al. (2009).
The stationary independent period-by-period (SIPP)
approach (and variants of it) are widely used for
time-dependent requirements planning (staffing) in
call centers (see Green et al. 2001, 2003). Ingolfsson
et al. (2007) and Stolletz (2008) review these and other
evaluation methods for time-dependent systems and
compare them in numerical experiments. In all these
methods there is no distinction between the staffing
period and the aggregation interval for performance
measurement.

The contribution of this paper is twofold. First, we
analyze the variability of the service level as a func-
tion of the length of the aggregation interval. For
such a finite-length interval, the actual service level
is a random variable, and the service-level estimate
given by the Erlang C formula is the expected service
level. We give a closed-form approximation for the
complete distribution of the service level and validate
it extensively. Second, in contrast to decisions about
staffing levels that are based on the expected ser-
vice level, we propose a new approach for variability-
controlled staffing. The approximated distribution of
the service level is used to set the staffing level to
meet the service-level Y/Z with a targeted probabil-
ity X. We integrate this variability-controlled staffing
approach in the traditional SIPP approach for time-
dependent rates. With this method the staffing period
and the aggregation interval could be different, which
is important for highly volatile rates in call centers.

Related to our first contribution, Steckley et al.
(2009) provide an analysis to compute the service-
level distribution for the special case Z = 0 only. Their
approach works if, upon a customer arrival, it can be
determined from the state of the system whether that
customer will receive service on or before Z. In case
Z = 0, a customer will receive satisfactory service if
at least one server is available. Therefore, the state can
be chosen as the number of customers in the system.
Their approach cannot be generalized to Z > 0.

The remainder of this paper is organized as fol-
lows. We start in §2 with the model description, where
the basic notation and definitions are introduced for
the queueing model under consideration. Section 3
deals with the approximations that are based on
numerical experiments. Several performance evalua-
tions are presented as well. The approximations of
§3 are used in §4, where we present a new way to
do staffing calculations. We do this in such a way
that we have desired control over the variability. In

§5 we show how our staffing approach could be used
to address the issue of nonhomogeneous systems.
Finally, conclusions and directions for further research
are given in §6.

2. Model Description
We model a call center by the M/M/s queueing sys-
tem. Arrivals occur according to a Poisson process
with parameter �. The service times are exponentially
distributed with parameter �. There are s identical
independent servers. Arriving customers that find all
servers occupied line up in an infinite buffer queue.
Arrivals are served in a first-come, first-served order.
The service level is defined as the fraction of cus-
tomers with a waiting time in the queue less than or
equal to � time units. In the long run, in a stationary
situation, the service level can be interpreted as the
probability that the waiting time in the queue, WQ,
is less than or equal to � . This probability is given by
the Erlang C formula:

�4WQ ≤ �5= 1 −C4s1 a5e−4s�−�5�1 (1)

where a = �/�. The constant C4s1 a5 can be inter-
preted as the probability of delay. This result can
be found in many standard books on queueing the-
ory (e.g., Kleinrock 1976). The necessary and suffi-
cient condition for stability is that the offered load per
server defined by �= �/4�s5 is less than one. We will
denote �4WQ ≤ �5 by ƐSL, that is, the expected service
level. The expected service level depends on �, �, s,
and � . Traditionally, service-level objectives have been
notated as Y/Z, which means that at least Y% of the
customers have to wait less than or equal to Z sec-
onds. Both � and Z can be used to denote the accept-
able waiting time, although the unit of Z is seconds
and the unit of � is arbitrary. There is a difference
between ƐSL and Y : Y is used to denote the target
service level, i.e., the minimum required service level;
ƐSL is the service level that is expected to be obtained
given all parameters. Although the steady-state per-
formance measure Y/Z will be met in the long run,
we are interested in the service level aggregated over
intervals of finite length t. The realized average ser-
vice level could be lower or higher than the expected
one. The distribution of the realized average service
level strongly depends on the length t.

Throughout the paper, we assess the accuracy of the
approximations and our staffing approach on several
examples. We mainly consider two call centers mod-
eled by the M/M/s queueing system, with parame-
ters that could be found in practice. These systems are
defined as follows.

Large system �= 40, �= 002, and s = 210.
Small system �= 3, �= 002, and s = 19.

Unless specified otherwise, the time scale is expressed
in minutes, and we take the acceptable waiting time
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Figure 1 Histograms of the Service Level Aggregated over 3-Hour Intervals (Left) and 24-Hour Intervals (Right)
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equal to � = 1/3. This means that the expected service
level is 80.7% for the large system and 81.3% for the
small system.

3. Numerical Approximations
To demonstrate the effect of the aggregation length t
on the service-level distribution, we have performed
straightforward simulations of the large system. The
results are shown in Figure 1. The simulations are per-
formed 10,000 times, each starting after a warm-up
period of 24 hours (such that the transient effects of
starting from an empty system are gone) and continu-
ing for 3 hours and 24 hours, respectively. After each
run, one realization of the service level is obtained.
The histograms depict what percentage of the runs
fall into each of the bins. In both cases, the average
service level is 80.7%, which is equal to the outcome
of the Erlang C formula. Consider the complete dis-
tribution of the service level. The shape of the dis-
tribution depends on the level of aggregation. For a
short aggregation length (e.g., 3 hours), the distribu-
tion is asymmetric and has a large variability, whereas
for a longer aggregation length (e.g., 24 hours), the
variability decreases and the distribution looks more
like a normal distribution. This can be explained by
the central limit theorem (see Baron and Milner 2009,
Corollary 2). What is remarkable is that the variabil-
ity, even when aggregated over the whole day, is still
huge: 35% of the realizations deviate more than 5%
from the average in this example (i.e., they have a
service level outside [7507%18507%]).

To account for the significant variability of the ser-
vice level in intervals of finite length, staffing de-
cisions should not only be made on the basis of
the expected service level, but should also reflect
both the variability that is inherent in service levels
and the level of desired confidence in achieving the

service-level objective. To be able to do this, we need
to quantify this variability. In this section we show
that we can accurately approximate the distribution
of the service level by the normal distribution. In the
normal distribution the variability is characterized by
the standard deviation. To this end, we develop an
approximation for the standard deviation.

3.1. Standard Deviation Approximation
In the limit t → �, the service-level distribution ap-
proaches the normal distribution. It is intuitively clear
(and can also be observed from Figure 1) that the stan-
dard deviation goes to zero in this limit. On the other
hand, the standard deviation is positive for finite t.
Furthermore, if t is large enough, the service-level
distribution cannot be distinguished from the normal
distribution, according to statistical tests for normal-
ity (see §3.2 for a description of such a test). As a
first step, we therefore consider large t and express
the estimate �̂ of the unknown standard deviation �
in the system parameters �, �, s, � , and t. We denote
that �̂ is a function of these parameters by �̂4 · 5. As a
next step, we show the results of this approximation
for shorter intervals.

The central limit theorem can be used to derive
the functional form of � . The central limit theorem
states that the distribution of the average of n inde-
pendent and identically distributed random variables,
each having mean ƐSL and standard deviation �, con-
verges to the normal distribution with mean ƐSL and
standard deviation � = �/

√
n. Baron and Milner (2009,

Corollary 2) prove that the central limit theorem also
holds for a stochastic number of random variables.
The contributions of the individual customers to the
service level are not independent. However, the con-
tributions of renewal cycles are independent.

Consider a renewal process with the epochs at
which an arriving customer initiates a busy period
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as renewal moments. The time between consecutive
renewal moments consists of a busy period B and an
idle period I , so that the mean time between renewals
is ƐB+ƐI . Then, by Asmussen (2003, Proposition 1.4),
in the interval of length t, the number of renewal
cycles converges to n= t/4ƐB+ ƐI5 as t → �.

3.1.1. Result for � = 0. For � = 0 it is possible to
derive the standard deviation � of the service level in
a renewal cycle. In this case, only the customers that
arrive during the idle period are successfully served.
In Daley and Servi (1998) the mean and variance are
given for the number of arrivals in a busy period, NB,
and in an idle period, NI . They are

ƐNB =
1

1 −�
1 varNB =

�41 +�5

41 −�53
1

ƐNI =
Ps−1

�s−1
1 varNI = 2

s−1
∑

i=1

PiPi−1

�i�s−1
+

Ps−1

�s−1
−

(

Ps−1

�s−1

)2

1

where � is the steady-state distribution of the num-
ber of customers in the system and Pi =

∑i
j=0 �j . The

service level is then given by NI/4NI + NB − 15. (The
−1 comes from the fact that the arrival that initi-
ates the busy period is included in both periods.) The
expected value of the service level follows immedi-
ately from the renewal process and is given by

ƐSL =
Ps−1/�s−1

Ps−1/�s−1 +�/41 −�5
1

which is also equal to the outcome of the Erlang C
formula. The variance of the service level in a renewal
cycle can be obtained from the multivariate delta
method (Casella and Berger 2002), i.e., a Taylor series
expansion. Using the most important terms in the
series expansion, the variance simplifies to

�2
≈

varNI

4ƐNI + ƐNB − 152
− 2

ƐNI varNI

4ƐNI + ƐNB − 153

+
4ƐNI 5

24varNI + varNB5

4ƐNI + ƐNB − 154
0

Finally, the mean length of the renewal cycle equals
4ƐNI + ƐNB − 15/�, and hence

n=
t�

ƐNI + ƐNB − 1
1

as t → �. The standard deviation is then approxi-
mately given by � = �/

√
n.

A special case is the M/M/1 queue, for which these
expressions can be simplified to ƐSL = 1 − �, �2 ≈

�41 +�541 −�5, n= t�41 −�5, and �2 ≈ 41 +�5/4�t5.
In Steckley et al. (2009) an analysis is provided

to approximate the standard deviation in case � = 0.
That approximation has to be obtained by solving
multiple sets of equations. We have extended their

results by providing a closed-form solution. Both
methods give exactly the same standard deviation.
This follows from an analytical comparison in case
s = 1 and from a numerical comparison in case s > 1.

Although this standard deviation approximation
for � = 0 has been analytically derived, numerical
results show that it is not accurate for a high utiliza-
tion. For example, if � goes to one in the M/M/1
queue, the standard deviation goes to

√

2/4�t5, which
is nonzero. However, one would expect that the
standard deviation goes to zero, because there is no
variability when the expected service level is zero.
Differences are clearly noticeable for � > 005 for the
M/M/1 queue. The accuracy increases for systems
with more agents. For instance, a system with s = 10
has a perfect accuracy for � < 009. That the accu-
racy decreases at high utilization can be attributed
to the application of the central limit theorem. The
length of a renewal cycle increases as the utilization
increases, and therefore there are fewer independent
renewal cycles in a fixed-length interval. Because this
approach can only be applied to systems with � = 0,
we take the following alternative approach to approx-
imate the standard deviation for � > 0.

3.1.2. Method for � > 0. The method consists of
generating the “real” standard deviation � by means
of simulations for different parameter combinations.
We then try to find an approximation �̂ , such that
the approximation is very accurate on all generated
instances. The parameter combinations used in the
simulations are obtained by the following steps.

Step 1. We varied the target service level from the
set 80.25, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90, 0.959 and the acceptable waiting time � from the
set 81/6, 1/3, 1/2, 1, 29.

Step 2. We varied the offered load � within the
interval 6005115 in step sizes of 0.001, and we fixed �
equal to 0.25.

Step 3. A unique combination of the pair 4�1 s5
exists for given values of � and � such that the
expected value of the service level is as close as pos-
sible to the Y/Z service level chosen in Step 1. After
this step, the s remains fixed.

Step 4. Because of the integrality constraint of s,
however, the expected service level might not be close
enough to the target. For given values of � and s,
we generally can get arbitrarily close by changing �
and hence �. To be precise, we increase � by a step
size until the expected service level is greater than the
target. In this case, we halve the step size and start
decreasing � until the expected service level is lower
than the target. We continue until we reach the Y/Z
service level within the desired accuracy of 0.001. The
only exception is that for very lightly loaded systems
the s computed in Step 3 might already be too high
to ever reach the target. We ignored these instances.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
5.

10
8.

13
5.

5]
 o

n 
29

 O
ct

ob
er

 2
01

3,
 a

t 0
2:

25
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Roubos, Koole, and Stolletz: Service-Level Variability of Inbound Call Centers
406 Manufacturing & Service Operations Management 14(3), pp. 402–413, © 2012 INFORMS

Table 1 Bounds of the Parameter Combinations
Used for Approximating �

� � s � t

Lower bound 0.1 0.2 1 1/6 61000
Upper bound 200 2 750 2 61000

Table 1 lists the bounds of the parameter combina-
tions that we have obtained using this scheme. Note
that we have a value of t = 61000 for the aggregation
interval, which is large enough for the normal distri-
bution to be justified. In total we have performed well
over 20,000 different simulations. Each simulation is
independently executed 1,000 times, out of which one
simulated standard deviation of the service level is
obtained. Again, the warm-up period is 24 hours.

In this way we have the standard deviation for a
wide range of parameter combinations. The goal is
to construct a function �̂ that can very accurately fit
the data.

3.1.3. Result for � > 0. Motivated by the simula-
tion results for a fixed service level and acceptable
waiting time, we deduce the following simple func-
tional form to describe the data

�̂4�1�1 s1 �1 t5=
�4ƐSL1 �5

√
�s41 −�5

√
t
1 (2)

where � is a parameter that depends on the system
parameters only through the expected service level
and the acceptable waiting time. To approximate �,
we impose the functional form given by �4ƐSL1 �5 =

41 − ƐSL5a1+a2� · ƐSLb1+b2� · 4c1 + c2�5. This specific form
is motivated by our observations in the data and the
requirement that the standard deviation is zero in the
case when the expected service level is either zero
or one. The constants are determined by the least-
squares regression over all experiments. In the end,
� is given by

�4ƐSL1 �5 = 41 − ƐSL5004348+000132�
· ƐSL100708+000776�

· 4106271 + 000339�50 (3)

The corresponding mean squared error is then
404 · 10−6. In addition, the mean absolute percentage
error is only 3.4%, despite the divisions by very small
numbers. The value of the coefficient of determi-
nation, defined by R2 = 1 −

∑

i4�i − �̂i5
2/
∑

i4�i − �̄52,
is 0.98.

Figure 2 shows how the value of � depends on
the expected service level and the acceptable waiting
time. If the expected service level is close to its bounds
of zero or one, i.e., a really bad or an excellent cus-
tomer service, the value of the parameter � is close
to zero. Also, for increasing values of the acceptable
waiting time, the parameter � decreases.

Figure 2 Plot of the Function � Dependent on the Expected Service
Level for Different Values of � (in Minutes)
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It is possible to apply this approximation to the
case � = 0 as well. Then, we observe an increased
accuracy at high utilizations, compared to the ana-
lytical approximation for � = 0 that loses accuracy
at high utilizations. In that sense, this approximation
is an important addition to the analytical one, even
for � = 0.

3.1.4. Validation. To validate Equation (2), we
simulated 200 new instances that are shown in Fig-
ure 3. This figure shows the simulated and approx-
imated standard deviation � for the small and the
large system, dependent on the utilization �. The
arrival rate � is changed from the base examples such
that the specified � is obtained. This plot shows that
the standard deviation is well approximated for a
broad range of �. Only in case of an unrealistically
high utilization is the standard deviation overesti-
mated. In these cases (�> 0098), the expected service
level is way below 50%, so there are more impor-
tant concerns other than a well-approximated stan-
dard deviation. The standard deviations increase if �
increases up to a very high utilization before it starts
to diminish.

Next we show the generality of the approximations.
We consider parameter combinations chosen at ran-
dom uniformly between the lower and upper bounds
as displayed in Table 1. The interval length t is chosen
from 66001610007 instead to allow other large intervals
as well. Randomly chosen parameter combinations
can result in unstable systems. Therefore, we only
considered stable systems. In addition, we considered
systems with an expected service level less than one
only. Otherwise, the standard deviation will be zero
because there is no variability. After 500 randomly
selected instances, we get that the mean value of the
simulated standard deviation is 101 · 10−3. Moreover,
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Figure 3 Comparison of the Simulated and Approximated Standard
Deviation for the Large and Small System
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we obtain a mean absolute error of 603 · 10−5, and
the maximum absolute error is 300 · 10−3. The abso-
lute percentage error corresponding to this maximum,
then, is only 1.9%. We see that under all circumstances
the accuracy of the approximation is very good. For
parameter values outside the wide range of values in
Table 1, our approximation has yet to be validated.

3.1.5. Shorter Intervals. So far, we have consid-
ered large values of the interval length t. We have
developed an approximation for the standard devia-
tion of the service level, and we have shown that it
has excellent accuracy in these cases. Moreover, the
distribution of the service level is indistinguishable
from the normal distribution.

In shorter intervals the distribution will be different
from the normal distribution (see, e.g., Figure 1). This
is because there are too few busy periods in order for
the central limit theorem to provide a good approxi-
mation. Our approximation of the standard deviation
is motivated by the applicability of the central limit
theorem. Because we are looking at a stochastic num-
ber of busy periods, n, the standard deviation will
also be different from � = �/

√
n in shorter intervals.

Consequently, our standard deviation approximation
will have a lower accuracy.

To assess the accuracy of the standard deviation
approximation in shorter intervals, we have per-
formed additional experiments. In Table 2 the results
are shown on the two examples for intervals rang-
ing from 30 minutes up to 1,440 minutes. The
table shows the simulated standard deviation � , the
approximated standard deviation �̂ , and the rela-
tive difference between these two. The simulations
have been performed 10,000 times for an accurate
measurement. Two observations can be made. First,
as the intervals become smaller, the standard devia-
tion becomes larger. Second, as the intervals become

Table 2 Accuracy Assessment of the Standard Deviation
Approximation for Several Interval Lengths t

Large system Small system

t (minutes) � �̂ ã% � �̂ ã%

30 00260 00372 430248 00218 00278 270750
60 00214 00263 220887 00173 00197 130709

120 00166 00186 110785 00131 00139 60309
180 00140 00152 80114 00109 00114 30810
360 00103 00107 40546 00079 00080 10295
720 00074 00076 20879 00057 00057 00003

1,440 00053 00054 20243 00040 00040 00291

smaller, the accuracy of the approximation dimin-
ishes. Both observations were explained earlier. There
is also a difference between the large and the small
system. The approximation of the standard deviation
is more accurate on the small system. This is likely
the result of a smaller busy-period length, because the
offered load is less.

3.2. Normal Approximation
Although the relative differences of the standard devi-
ation approximation can be quite significant for small
intervals, what is more important is the accuracy of
the normal approximation that uses this standard
deviation approximation. As we show in this subsec-
tion, the accuracy of the resulting normal approxi-
mation is good. In total we get that the service-level
distribution can be approximated as

SL ∼N4ƐSL1 �̂250 (4)

The mean of the service-level distribution is equal to
the outcome of the Erlang C formula. The standard
deviation is defined by Equations (2) and (3).

There are two possible sources of error in this
approximation. First, the standard deviation might
not be estimated correctly. We assessed the accuracy
of the standard deviation approximation in the previ-
ous subsection. Second, the normal distribution itself
might not be a good distribution for the service level.
We can test this.

To test the null hypothesis that a sample from
the unknown service-level distribution comes from
a distribution in the normal family, we perform the
Lilliefors test (Lilliefors 1967). This is a goodness-of-fit
test similar to the Kolmogorov–Smirnov test, with the
difference that the mean and variance of the sample
are used in the null hypothesis. The test statistic is

D = max
x

�G4x5− F 4x5�1

where G is the empirical cumulative distribution func-
tion estimated from the sample, and F is the normal
cumulative distribution function with mean and stan-
dard deviation equal to the mean and standard devi-
ation of the sample. The null hypothesis is rejected if
the test statistic is larger than the critical value.
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Table 3 Test Statistic of the Normal Approximation and Comparison
of the 0.1-Quantile Between the Simulation and the
Approximation for Several Interval Lengths t

Large system Small system

t (minutes) D Sim App ã% D Sim App ã%

30 00220 00405 00330 180449 00206 00506 00456 90741
60 00180 00503 00470 60533 00147 00578 00561 20981

120 00123 00580 00569 10934 00082 00638 00635 00497
180 00089 00617 00613 00730 00069 00667 00667 00024
360 00066 00669 00670 00060 00049 00708 00710 00284
720 00047 00709 00710 00122 00036 00738 00740 00266

1,440 00032 00738 00738 00096 00025 00760 00761 00159

If we perform the Lilliefors test on the two exam-
ples, we find the test statistics as shown in Table 3.
The values D are decreasing in the interval length t.
This suggests that the normal distribution becomes
an appropriate distribution for the service level as
the intervals become larger. However, for all intervals
shown in the table, the null hypothesis is rejected at
a 5% significance level.

Given that we make an error in the approximation
of the standard deviation and in the approximation
by the normal distribution, we are interested in the
accuracy of Equation (4). Therefore, we compare the
0.1-quantiles of our approximated service-level distri-
bution with the empirical distribution based on sim-
ulations. If we denote by F −1 the quantile function,
then we have in the former case, for x = 001,

F −14x5= ƐSL +ê−14x5�̂1

where ê−1 is the inverse of the standard normal
cumulative distribution function. Table 3 lists the re-
sults of the comparison between the simulation and
the approximation, together with the relative error.

Figure 4 Left Plot: Stairs Plot of the Probability That the 80/20 Service Level Will Be Met as a Function of the Number of Agents for Two Values
of t; Right Plot: Service Level as a Function of the Safety Staffing Level
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Note. Examples based on the large system with smin = 200.

From these results, we can observe that the error de-
creases in the interval length t. This is as expected
because both the standard deviation approximation
and the approximation by the normal distribution
become more accurate when the interval length is
increased. We can also see that the approximation
performs very well starting from an interval length
of 120–180 minutes. Therefore, the approximation is
useful for relatively slow-changing demand. When
arrival rates change significantly in a short period
of time, call centers often have to divide time into
smaller intervals, typically of 30 minutes. The approx-
imation is not good in such cases.

4. Variability-Controlled Staffing
Staffing decisions that are made solely based on the
expected value suffer from the variability in the ser-
vice level. Depending on a couple of factors, it is pos-
sible that the target service level will be reached only
50% of the time. These factors include, for instance,
the level of aggregation and the expected service
level. By making better decisions, these kinds of sit-
uations can be prevented. By taking the distribution
of the service level into account, one can control the
likelihood that the target service level is met.

The left plot in Figure 4 shows the probability that
the service-level objective will be met, depending on
the number of agents. From a managerial point of
view, this figure is useful in two different ways. First,
for a given staffing level, it could be used to show
with what probability the target service level will be
met. Second, for a given target, it shows the optimal
staffing level. This staffing decision is based on a new
service-level objective. Instead of a Y/Z service level,
we now get an X/Y/Z service level. This means that
in X% of the intervals the target service level of Y/Z
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will be met. The variability-controlled staffing level ŝ
can be calculated as follows, taking 90/80/20 as an
example:

ŝ = min
{

s ∈� ��4N4ƐSL1 �̂25≥ 0085≥ 009
}

0 (5)

Remark 1. The new way to do the staffing calcu-
lations in Equation (5) generalizes the way it is done
in the Erlang C formula. When we take t → �, we
have �̂ → 0, and the approximation of the service
level by the normal distribution becomes determin-
istic with value ƐSL. Then in Equation (5), the prob-
ability �4ƐSL ≥ 0085 is either one or zero. Therefore,
the staffing level corresponding to the X/Y/Z service
level is the same as that of the Y/Z service level for
t → �. Also, the 50/Y/Z service level results in the
same staffing level, for all t, as the Y/Z service level.
This is because the normal distribution is symmetric.

Remark 2. It should be noted that the staffing
level corresponding to an X/Y/Z target can also be
achieved by a Ȳ /Z̄ target, where Ȳ or Z̄ are possi-
bly different from Y and Z. To illustrate this, con-
sider, for example, the two cases in the left plot in
Figure 4. To reach a 90/80/20 service level, we find
ŝ = 212 for t = 11440, and ŝ = 215 for t = 180. The
same staffing levels correspond to an 84/20 and 91/20
target, respectively. The notation X/Y/Z has several
advantages. For instance, it is immediately clear from
the target description what the likelihood is of reach-
ing the Y/Z service level. In addition, the staffing
level strongly depends on the interval length t. It is
difficult to give an interpretation to Ȳ /Z̄ on the like-
lihood X to reach Y/Z for different lengths t.

Planning according to the variability-controlled
staffing level comes at higher staffing costs. The min-
imum number of agents needed to handle all calls in
a deterministic system is smin = ��/��. The planning
according to the traditional Y/Z service level leads
to a higher number of agents sY/Z. The difference
sY/Z − smin could be interpreted as a safety staffing
level to provide a higher service to the customers
and is further increased to the safety staffing level

Table 4 Variability-Controlled Staffing Levels for Different Target Service Levels and Interval Lengths

Large system Small system

t (minutes) 50/80/20 90/80/20 95/80/20 99/80/20 50/80/20 90/80/20 95/80/20 99/80/20

30 210 (208) 219 (217) 220 (220) 223 (226) 19 (18) 22 (22) 23 (23) 23 (25)
60 210 (208) 217 (216) 218 (219) 220 (224) 19 (19) 22 (21) 22 (22) 23 (24)

120 210 (209) 216 (215) 217 (217) 218 (221) 19 (19) 21 (21) 21 (22) 22 (23)
180 210 (210) 215 (215) 216 (216) 217 (220) 19 (19) 21 (21) 21 (21) 22 (22)
360 210 (210) 214 (214) 214 (214) 216 (217) 19 (19) 20 (20) 21 (21) 21 (21)
720 210 (210) 213 (213) 213 (213) 214 (215) 19 (19) 20 (20) 20 (20) 21 (21)

1,440 210 (210) 212 (212) 213 (213) 213 (214) 19 (19) 20 (20) 20 (20) 20 (20)

Note. Optimal staffing levels are in parentheses.

ŝ− smin according to the variability-controlled staffing
of Equation (5). The right plot in Figure 4 shows
the expected service-level Y/20 and the probability X
to reach the 80/20 service level as a function of the
safety staffing level. To reach an 80/20 service level,
a safety staffing level of 10 agents is needed. To reach
this service level with a probability of 90% in an
interval of t = 180, the safety staffing level increases
to 15 agents. If the call center management includes
an X/Y/Z service level in their contracts, they have
to consider the additional costs for these increased
staffing levels in their pricing schemes.

We demonstrate the implications of our staffing
approach on the staffing levels for the large and small
call center. The default staffing levels are 210 and
19 agents, respectively. Because of the observed devi-
ation in the service level, the traditional 80/20 service
level will be met only in 55.3% and 62.6% of 24-hour
intervals, respectively. For different interval lengths
and different target service levels, the variability-
controlled staffing levels are displayed in Table 4.
The optimal values derived via time-consuming sim-
ulations are given in parentheses. From the table, a
couple of observations can be made. First, it is not
surprising to see that the staffing levels increase if
the traditional target service level must be met with
higher probability. Second, the smaller the intervals,
the more uncertainty in service level. Hence, gener-
ally more agents are needed as well. However, this
does not hold for the 50/80/20 service level, because
the 80/20 service level will be met with a probabil-
ity higher than 50% with the default staffing levels.
Third, the absolute increase in staffing levels is larger
for the larger call center than it is for the smaller
call center. This is because of the law of diminishing
returns (see, e.g., Koole and Pot 2011), which states
that the marginal increase in service level declines in
the number of agents. An increase in expected service
level is needed to ensure that the target service level
is satisfied with the specified probability. Verification
with simulations shows that a good amount of these
staffing levels are indeed optimal. The staffing levels
for the examples with X < 99 are optimal for t ≥ 180,
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because our approximation of the service-level distri-
bution is very accurate. In the cases t ≤ 120, there is
a slight over- or understaffing of no more than two
in our examples, except for X = 99. This justifies the
applicability of the approximations once more.

5. Staffing for Nonhomogeneous
Systems

The SIPP approach is a traditional approach that helps
to determine performance measures and staffing lev-
els for time-dependent systems. In these systems the
parameters (essentially the arrival rate and number
of agents) are dependent on the time. This is for
instance denoted by the M4t5/M/s4t5 queueing sys-
tem. From a practical point of view, the staffing lev-
els s4t5 are to remain constant within a planning
period, which typically has a duration of 30 minutes.
In the SIPP approach, a stationary queueing model,
e.g., the M/M/s model, is constructed for each plan-
ning period. Each model is then independently solved
for the minimum number of agents needed to meet
the target service level.

In this section we show how our variability-
controlled staffing approach can be integrated in the
SIPP approach. To this end, we consider a real-life
example of a large banking call center. Available data
consist of call detail records from which we can
extract, among other things, the call volumes and
average service time. The call volumes are shown in
the left plot in Figure 5, from 8.00 until 20.00. The
call volumes outside this time period are negligible.
The average service time turns out to be 2.5 minutes
(�= 004).

In Tables 5 and 6 we compare the traditional
approach with the variability-controlled staffing ap-
proach for different lengths of the aggregation period
equal to 30 minutes, 6 hours, and 12 hours. For each
approach, we report the number of staffed agents in

Figure 5 Left Plot: Incoming Call Volume by 30-Minute Intervals; Right Plot: Transient Expected Service Level
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each 30-minute interval, and we report the expected
service level and the probability of meeting the ser-
vice level aggregated over 30 minutes, 6 hours, and
12 hours.

When we apply the SIPP approach to this call cen-
ter and model each 30-minute planning period by
the M/M/s queueing system, we can find the opti-
mal staffing levels such that in each period the 80/20
target service level will be met. These staffing lev-
els are displayed in the columns labeled 80/20 in
Table 5. We assess the performance of this staffing
approach by means of simulations. The simulations
are performed using 10,000 independent replications
starting from an empty system, because the call cen-
ter starts empty at the beginning of the day. In the
simulations we modeled the change in staffing levels
from one period to the next by the so-called exhaus-
tive discipline (see Ingolfsson 2005). This means that
agents that are still serving customers will only leave
as soon as they finish the call. This discipline is ben-
eficial to the service level in periods in which the
staffing level is lower than in the previous period.
That the expected service level is not reached in
each 30-minute period is because of the assumption
of independent periods in the SIPP approach (see
Stolletz 2008), where waiting customers at the end of
one period are not carried over to the next period.
This effect is visible in the example in Table 5 for peri-
ods with a significant decrease in the arrival rate com-
pared to the former period, for example, in the period
17.00–17.30. Potentially larger queues at the end of the
former period with more agents are carried over into
a period with fewer agents. This leads to longer wait-
ing times in the period with fewer agents. We can also
observe this from the right plot in Figure 5, which
shows the transient expected service-level ƐSL4t5 for a
customer arriving at time t (see Ingolfsson et al. 2007).
Even though there are periods with a good average
service level, the probabilities that the target service
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Table 5 Simulation Results of Staffing According to 80/20 and 90/80/20 for 30-Minute Aggregation Intervals

80/20 90/80/20 30-minute

Interval s ƐSL �4SL ≥ 0085 s ƐSL �4SL ≥ 0085

8.00–8.30 34 00896 00812 37 00971 00970
8.30–9.00 60 00898 00820 64 00975 00975
9.00–9.30 110 00906 00832 115 00974 00965
9.30–10.00 191 00914 00845 198 00983 00980

10.00–10.30 178 00773 00612 184 00946 00916
10.30–11.00 175 00796 00653 181 00954 00931

00828 00675 00959 00999
11.00–11.30 183 00849 00739 189 00968 00955
11.30–12.00 181 00816 00682 187 00959 00941
12.00–12.30 173 00799 00654 178 00945 00912
12.30–13.00 164 00786 00637 170 00951 00924
13.00–13.30 211 00901 00820 218 00980 00972
13.30–14.00 191 00739 00566 197 00929 00884

00797 0.534 00946 10000
14.00–14.30 179 00753 00588 185 00945 00913
14.30–15.00 169 00777 00621 175 00953 00927
15.00–15.30 161 00791 00645 166 00946 00917
15.30–16.00 161 00820 00685 167 00962 00943
16.00–16.30 159 00828 00702 164 00957 00934
16.30–17.00 136 00697 00493 142 00918 00869

00751 00382 00928 00984
17.00–17.30 72 00376 00070 76 00657 00291
17.30–18.00 54 00625 00381 57 00875 00786
18.00–18.30 50 00768 00596 54 00953 00935
18.30–19.00 46 00796 00626 49 00941 00914
19.00–19.30 50 00844 00715 54 00965 00959
19.30–20.00 45 00782 00597 48 00932 00897
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Table 6 Simulation Results of Staffing According to 90/80/20 for 6-Hour and 12-Hour Aggregation Intervals

90/80/20 6-hour 90/80/20 12-hour

Interval s ƐSL �4SL ≥ 0085 s ƐSL �4SL ≥ 0085

8.00–8.30 35 00926 00883 35 00926 00883
8.30–9.00 61 00928 00882 61 00928 00882
9.00–9.30 112 00940 00903 112 00940 00903
9.30–10.00 194 00954 00924 193 00941 00902

10.00–10.30 180 00858 00754 180 00849 00735
10.30–11.00 178 00893 00818 177 00873 00781

00903 0.936 00886 00888
11.00–11.30 185 00919 00859 184 00893 00811
11.30–12.00 184 00908 00842 183 00881 00793
12.00–12.30 175 00883 00801 174 00854 00747
12.30–13.00 166 00871 00774 166 00863 00762
13.00–13.30 214 00951 00919 213 00937 00895
13.30–14.00 194 00858 00753 193 00827 00702

00879 00933 00860 00860
14.00–14.30 182 00879 00791 181 00846 00731
14.30–15.00 171 00873 00779 170 00839 00719
15.00–15.30 163 00877 00787 162 00844 00727
15.30–16.00 163 00895 00821 163 00882 00796
16.00–16.30 161 00894 00817 160 00878 00788
16.30–17.00 138 00804 00659 138 00793 00636

00845 0.768 00823 00671
17.00–17.30 73 00470 00111 73 00471 00118
17.30–18.00 55 00739 00533 55 00735 00524
18.00–18.30 52 00889 00803 51 00848 00727
18.30–19.00 47 00877 00781 47 00865 00753
19.00–19.30 52 00925 00881 51 00893 00817
19.30–20.00 46 00857 00735 46 00853 00731
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level will be met in the 30-minute periods are very
low. Overall, there are 1,566.5 agent hours needed for
the traditional SIPP approach without taking the vari-
ability of the service level into account.

The second part of Table 5 shows the results of the
variability-controlled staffing according to 90/80/20
for 30-minute aggregation intervals in each 30-minute
planning period, i.e., the length of the staffing period
equals the length of the aggregation interval. This
results in higher staffing levels and higher expected
service levels. Moreover, the probabilities of reach-
ing the desired target service level are brought to
an acceptable level. For the same reason as in the
80/20-SIPP approach, the variability-controlled SIPP
approach does not reach the desired probability to
reach the service level in each interval.

Usually call center managers are more interested in
aggregated service levels over several hours. To inte-
grate the length of the interval for performance mea-
surement, we apply the variability-controlled staffing
approach for the different 30-minute periods. Assume
that the service levels are reported over 6-hour inter-
vals. For each 30-minute planning period we staff
according to the 90/80/20 target service level for
6-hour intervals with the arrival rate of the respective
30-minute period. This planning results in staffing
decisions for short periods due to the dynamics in
call volumes, but takes into account the longer inter-
vals for performance aggregation. For aggregation
intervals of 6 and 12 hours, Table 6 reports for each
30-minute period the staffing levels and simulation
results of the expected service level and the probabil-
ity that the 80/20 service level will be met. Because
the staffing levels are higher than the 80/20 case and
lower than the 90/80/20 30-minute case, the results
are also between the two cases of Table 5.

Furthermore, in Tables 5 and 6 the results of the
aggregated performance assessment are shown. For
the aggregation of performance measures over peri-
ods with different arrival rates and staffing levels,
we consider calls that start the service in the respec-
tive periods. The aggregated results show that for
staffing according to 80/20 the probability to meet
the 80/20 service level over the whole day is very
low, with a value just above 50%. On the other hand,
staffing according to 90/80/20 for 30-minute aggre-
gation intervals gives an excessive probability. The
results for staffing according to 90/80/20 for 6- and
12-hour aggregation intervals lie between these two
extreme cases. More importantly, the probabilities to
reach the service level are closer to the desired values.

The last row shows the overall agents’ hours
needed. The shorter the aggregation interval, the more
agents are needed. In our example, the difference
between the traditional approach and a 30-minute
period is 61 agent hours, i.e., working with service

goals for short intervals would need 3.89% more agent
hours. When we compare the traditional approach
with the 6- and 12-hour periods, we find an increase of
1.53% and 1.12% agent hours, respectively. Such anal-
ysis of additional costs is valuable in contract negoti-
ations, where the call center management now knows
the costs for a shorter aggregation interval for service-
level goals.

6. Conclusions and Further Research
In this paper we have considered the service-level
distribution beyond its expectation. When aggregated
over intervals of finite length, the service level has
a nonnegligible variability. Motivated by the central
limit theorem, we have approximated the service-
level distribution by the normal distribution. In the
normal distribution the variability is characterized
by the standard deviation. By means of extensive
numerical experimentation, we have developed an
accurate closed-form approximation for the standard
deviation, depending on the length of the aggrega-
tion interval. These approximations for the service-
level distribution turn out to be quite accurate, also
for relatively short intervals.

Using the complete distribution of the service level,
it is possible to make improved staffing decisions. Our
variability-controlled staffing approach offers the pos-
sibility to control the probability that the traditional
target service level is met. This results in an X/Y/Z
service-level objective. This means that in X% of the
aggregation intervals the Y/Z target service level will
be met.

Finally, we have shown, by means of an exam-
ple, how our variability-controlled staffing approach
could be integrated in the traditional SIPP approach
to deal with time-dependent arrival rates. Because
the service levels are often aggregated over several
hours, we apply our approach in each small planning
period to a longer aggregation interval. Although the
assumptions of the SIPP approach are not justified, it
is clear that our approach adds value to call center
management.

A possible direction for further research could be
to consider more realistic models, instead of the basic
M/M/s queueing system. In reality, customers are
impatient and will abandon if their waiting time
in the queue exceeds some (stochastic) threshold.
This introduces the patience distribution as another
parameter the service level depends on. Maybe aban-
doned customers will redial at a later time, giving
rise to two more parameters: the redial probability
and the redial time distribution. Furthermore, it has
been shown (see, e.g., Jongbloed and Koole 2001,
Avramidis et al. 2004, Brown et al. 2005) that the
Poisson process cannot explain all variability in the
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arrival process. The arrival rate itself could therefore
be modeled by a random variable. In addition, the
service-time distribution differs in practice from the
exponential distribution (the lognormal distribution
would be more appropriate). It would be valuable
if the dependence of all these characteristics on the
service-level distribution could be quantified.
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