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OPTIMAL JOB SPLITTING IN PARALLEL PROCESSOR
SHARING QUEUES
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O  The main barrier to the sustained growth of wireless communications is the Shannon limit
that applies to the channel capacity. A promising means to realize high-capacity enhancements
is the use of multi-path communication solutions to improve reliability and network performance
in areas that are covered by a multitude of overlapping wireless access networks. Despite the
enormous potential for capacity enhancements offered by multi-path communication techniques,
little is known about how to effectively exploit this. Motivated by this, we study a model where
jobs are split and downloaded over N multiple parallel networks, each of which is modeled
as a processor sharing (PS) queue. Each job is fragmented, according to a fixed splitting
rule o = (oty,...,0x) and re-assembled at the receiving end. The complex correlation structure
between the sojourn times at the PS nodes makes an exact detailed mathematical analysis of
the model impossible. Therefore, in this article we propose a simple and fast approximation
for the splitting rule o that minimizes the expected job-download time. Our approximation is
validated extensively by simulations. The results show that the outcomes are extremely accurate
over a wide range of parameter combinations.

Keywords Concurrent access; File splitting; Flow-level performance; Processor
sharing; Traffic splitting.

Mathematics Subject Classification Primary 68M20, 60K25; Secondary 90B22.

1. INTRODUCTION

The Shannon limit on channel capacity is already closely approached
by some of today’s wireless networks, leaving complex signal processing
techniques room for only modest improvements in the data transmission
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rate®). Concurrently using multiple, possibly different, networks then
becomes an alternative to increase the overall data rate, because (a) the
spectrum is regulated among various frequency bands and corresponding
communication network standards, and (b) the overall spectrum usage
remains relatively low over a wide range of frequencies®. In areas that
are covered by multiple wireless access networks, the concurrent use
of multiple networks simultaneously opens up tremendous possibilities
for increasing capacity, improving reliability, and enhancing Quality of
Service (QoS). Despite the enormous potential for quality improvement,
only little is known about how to fully exploit this potential. A main
requirement for the widespread use of trafficsplitting algorithms for
concurrent access is that the algorithms are simple, yet effective. Motivated
by this, we concentrate on splitting rules that (a) require only aggregated
information on the network status, and (b) are easy to enforce by
deciding upon the splitting ratio of the jobs only once. To this end, we
study static splitting rules that determine how jobs should be partitioned
into fractions (oy,...,ay), transferred over the different overlapping
networks and reassembled, to minimize the expected download time of the
entire job. We study this file-splitting problem in a queueing theoretical
context. Modeling network performance using processor sharing (PS)
based models™*!*?! is applicable to a variety of communication networks,
including CDMA, 1xEV-DO, WLAN, and UMTS-HSDPA. It was shown that
PS models can actually model file transfers over WLANs accurately!'*),
taking into account the complex dynamics of the protocol-stack, including
their interactions.

In the literature on telecommunication systems, the concurrent use
of multiple network resources in parallel was already described for a
Public Switched Digital Network (PSDN). Here inverse multiplexing
was proposed as a technique to perform the aggregation of multiple
independent information channels across a network to create a single
higherrate information channel. Various approaches have appeared to
exploit multiple transmission paths in parallel. Examples are using multi-
element antennas, as adopted by the IEEE802.11n standard™!, splitting at
the physical layer or switching datagrams at the link layer’™'®!, and also
using multiple TCP sessions in parallel to a fileserver®. In the latter case
each available network transports part of the requested data in a separate
TCP session. Previous work has indicated that downloading from multiple
networks concurrently may not always be beneficial”), but in general
significant performance improvements can be realized""'>'*). Under these
circumstances of using a combination of different network types, the
transport layer approaches in particular have shown their applicability!"?!,
as they allow appropriate link layer adaptations for each TCP session. In
addition, many papers have studied traffic distribution algorithms in a



Downloaded by [Vrije Universiteit Amsterdam] at 02:22 29 October 2013

146 Hoekstra et al.

more theoretical framework. In Ref.'"” the authors investigate the same
model as the one under consideration, but without the presence of
background traffic and with the Join the Shortest Queue (JSQ) policy
instead of the static splitting rules considered in the present article. In
Refs.'7181 " the author analyzes a similar model but with FCFS queues
and with probabilistic splitting. We further refer to Altman et al.”!, who
consider routing policies in a distributed versus centralized environment.
In general our queueing model falls within the framework of fork-join
queueing networks, see Ref?! for an extensive overview. In a recent
article] the theoretical foundation for a tail-optimal splitting rule is
provided for light foreground load that is shown to work well with respect
to both the tail asymptotics and the mean sojourn times.

In this article we study static job-splitting rules « = (o4, ..., ay), where
a job of size t is split into N tasks of size ;7 (¢ = 1,..., N), where the ith
task is processed by PS node 7, and reassembled upon completion of all the
tasks. In addition, we assume the presence of background traffic at each
of the nodes. The goal is to find a splitting rule «* that minimizes IE[S(%],
where S; is the total processing time of an entire foreground job, which
generally depends on the file-size distributions and on the characteristics
of the background traffic streams. Unfortunately, this model does not allow
for an exact analysis. The complexity lies in the fact that the sojourn
times of the fragments in the different PS nodes are generally correlated.
Therefore, we develop a new approximation for E[S;], combining light-
and heavy-traffic asymptotics, which then leads to an approximation for
o*. The approximation is validated by extensive simulations over a wide
range of parameter combinations, including light- and heavy-tailed job-
size distributions, and mixtures of light- and heavy-load scenarios on
foreground and background traffic. These simulations demonstrate that
the differences between the approximated optimal splitting rule and the
estimated optimum with respect to the expected foreground sojourn time
are extremely small for a wide range of the parameter settings.

The organization of this article is as follows. In Section 2 the model
is described and the notation is introduced. In Section 3 we analyze
the performance of the model and use these insights to develop a new
approximation method for determining the optimal split «*. In Section 4
the accuracy of the approximation method is discussed in detail. Finally,
in Section 5 we address a number of topics for further research.

2. MODEL DESCRIPTION

We consider a job-split model consisting of N parallel PS nodes,
PS,, ..., PSy, operating at the same speed (see Figure 1). Each of these PS
nodes in our model corresponds to a communication network. Files are
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transfer of fragments

Background stream 1 )\1

Background stream 2 \o

Foreground stream AQ

FIGURE 1 [Illustration of the job-split PS-model.

modeled as jobs that are fragmented into tasks. There are N + 1 traffic

streams: stream 0 is called the foreground stream and streams 1,...,N
are called the background streams. Jobs of background stream i are
not fragmented and are served exclusively at PS; (i =1,...,N). Jobs of

the foreground stream are fragmented into tasks upon arrival according
to a fixed splitting rule o = (oy,...,oy) where Z?:l o; =1 and ao; > 0,
¢t =1,...,N; thus a foreground job of size B = 1 is split into N tasks of size
o,;7, and the ith task is processed by PS; (¢ =1,..., N). Once all tasks have
been completed, they are reassembled, which completes the processing
of the job. Our probabilistic and load assumptions are as follows: arrivals
of jobs in all streams are according to independent Poisson processes
with rates 4;, ¢ = 0,1,..., N. The total arrival rate is denoted by A = 4, +
1+ ---+ Ay. For all streams, each job size B is an independent sample
from a general distribution with kth moment ¥ = [E[B*], for k = 1,2,....
Denote the background load of stream i by p; = 4, (i =0,1,...,N),
and denote the total load offered to the system by p = py+ p1 + -+ + pn.
The utilization of node i is denoted by

& i=p;+a;py, andleté:= max & (1)

i=1,...,]

For stability, it is assumed that ¢ < 1. Note that if p > 1 the stability
condition may pose restrictions on the choice of the splitting rule o.
Denote by A:={a:¢ < 1}, i.e., the set of combinations for which the
stability conditions are met. A splitting rule g is called feasible if o € A.

For an arbitrary foreground job, denote by S; the sojourn time of its
ith task operating under the splitting rule o. This is the time it takes the
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ith task to complete service at PS;. Denote $* = (S},..., Sy). The sojourn
time of a foreground job through the job-split model is denoted by

Sy :=max {Sf,...,Sy}. (2)
Our purpose is to find a splitting rule o* = («j,..., %} ) € A such that
E[S; ] = min E[S]]. (3)
1S

For a non-negative random variable X with finite positive first moment,
the squared coefficient of variation is denoted cy. Finally, heavy-traffic
limits for £ 4 1 are taken such that the total arrival rate A is increased
while the service-time distribution, the splitting rule o and the proportions
between the arrival rates Ay, A;,...,Ay remain fixed. Note that in this
limiting regime, not all nodes tend to become unstable as ¢ 1 1. More
precisely, node ¢ becomes unstable for ¢ 1 1 only if {; = &, and otherwise
node ¢ remains stable as ¢ 1 1. Denote the set of potentially unstable
queues by U := {i: §; = £}, where ¢; and ¢ are defined in (1).

3. ANALYSIS

In general, the “cost function” IE[S(%] does not allow for an exact
expression, and the optimization problem defined in (2) and (3)
cannot be solved explicitly. The mathematical complexity is caused by
the correlations between the sojourn times Sl,...,SI% of the jobs at
the different nodes. This dependence is caused by the fact that the
(fragmented) foreground tasks arrive at the nodes simultaneously, and
by the fact that their sizes o;B,...,oyB are correlated. For this reason,
in this section we will develop heuristic methods to approximate E[S;]
and the optimal splitting rule o*. The approximation of o* is based
on an interpolation between two components. The first component is
based on the concept of reduced-load equivalence (RLE), and works well
in light-traffic scenarios. The second component is based on heavy-load
asymptotics, and complements the RLE-based approximation for heavy-
load scenarios.

In Section 3.1 we formulate some known results on multiclass
PS models and present a number of simulation results that lead to
observations that are useful for later reference. In Section 3.2 we outline
the RLE-based approximation and in Section 3.3 we present the heavy-load
approximation. Subsequently, in Section 3.4 both approximations for «*
are combined into our composed-split approximation, which interpolates
o between these two components.
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3.1. Preliminaries

Considering node ¢ in isolation, it is easy to see that this node can
be modelled as a two-class M/G/1-PS model, where class-1 represents the
tasks originating from the foreground traffic and class-2 the background
traffic. Class-1 tasks arrive according to a Poisson process with rate 4, and
size o;B, where B is the size of an arbitrary job. Similarly, class-2 jobs arrive
according to a Poisson process with rate 4; and job size B. For this model,
it is known that for given B = 1, the conditional expected sojourn time of
a foreground task of size o;7 at node ¢ is given by:

E[S/|B=1] = loﬁf«f,;’ and hence, E[S/] = T_¢

(i=1,...,N),
(4)

where &; = BV (4; 4+ a;49) is the utilization of node i. However, despite the
fact that the conditional mean sojourn times IE[S} | B = 1] of the individual
tasks at each of the N nodes are known, an exact expression for the mean
sojourn time of entire foreground job, IE[S;] (defined in (2) and (3)),
which is defined as the maximum of the (correlated) per task sojourn
times is not known.

Prior to developing the approximations for the optimal splitting rule
o*, we perform numerical experiments based on simulations to gain insight
in the optimization problem. This will lead to a number of important
observations that will turn out to be useful for later reference. As an
illustrative example, for the case N =2 and " =1, Figure 2 shows
the behavior of IE[SOQ] for the traffic splitting rule o = (a,1 —a) € A as a
function of o (0 < o < 1), for different background and foreground load
scenarios. To highlight the impact of the service-time distributions, results
are shown for the extreme cases of deterministic service times (with ¢; =
0) and Pareto-2 distributed service times with Pr{B > x} = ;5 for x > 1/2,
so that ¢ = oo.

Figure 2 illustrates the behavioral differences between the various
systems. In the absence of background traffic, the curves exhibit wedge-
shaped behavior around their optimum, both for light (p, = 0.1) and
moderate (py = 0.9) foreground load. For non-zero but mild background
load and light foreground load, the curve is nearly constant around its
optimum. This is not the case if the background load becomes highly
asymmetric (p; = 0, ps = 0.9) in the presence of light foreground load; the
system is not stable for all values of o and exhibits a sharp increase in the
mean sojourn time for slightly underestimated values of o (below 0.95) and
is rather forgiving to overestimations where it coincides with the system
without background load. Considering the outcomes depicted in Figure 2,
it is clear that heavy foreground traffic yields a bended curve, showing that
the cost function is highly sensitive to the choice o.
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* =01, =0,pz=0,det.

v po=0.9,p =0,p;=0,det.
po=0.1,p =0, py =09, det,
=01, =0.1,py = 0.3, det.

o =090 =02 p =02 det.
o= 0.9, = 0.2, p; = 0.4, det.
o= 01,0 =0,p2 =0, Pareto— 2
oo =09, py =0, py = 0, Pareta — 2
o =0.1,p; = 0.1, g = 0.3, Pareto — 2

— o =09, 0y = 0.2, ps = 0.2, Pareto - 2
oo = 0.9, py = 0.2, py = 0.4, Parcto = 2
=01, =0, pg = 0.9, Pareto— 2

0 01 0.2 0.3 0.4 05 06 07 0.8 08 1
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FIGURE 2 [E[S;] as a function of the traffic splitting ratio «, based on simulations (color figure
available online).

The most interesting observation from Figure 2 is that both the cost
function E[S;] and optimal splitting ratio o* are nearly insensitive to the job-
size distribution. This observation is quite remarkable: Although it is well-
known that the per-node mean sojourn times are (fully) insensitive to the
distribution of the job sizes (see Eq. (4)), no general results are known for
the expected value of the maximum of the per-task sojourn times, which
in general are mutually dependent.

The question arises as to what the impact of the job-size distribution is
on the correlations between the per-node sojourn times of the foreground
tasks of sizes o B, . . ., oy B. Recall that the correlations between the sojourn
times are caused by the foreground traffic, because (a) the foreground
traffic stream generates simultaneous arrivals of tasks at each of the nodes,
and (b) the job sizes of the per-node tasks o;B,...,oyB are stochastically
dependent. Intuitively, one may expect that the higher the foreground
load, the stronger the correlations.

To validate this, we have performed simulation experiments for a two-
node model, with B =1 and split rule « = (1/2,1/2), where p,, p1,
and p, are parameterized as follows p; =1 —2p,/3, ps = 1/2 — py/3, and
where p, is varied between 0 and 3/2. In this way, p, is varied over the
interval [1/10, 3/2] such that the total load p = py + p; + ps is kept fixed
at value p = 3/2, while the ratios between p; and p, are fixed to p; =
2py. For each foreground job, we have calculated the statistical correlation
between the two per-node tasks (both of size 7/2), and the mean sojourn
times of the foreground jobs. Simulations have been run for 10'! jobs,
which led to extremely narrow confidence intervals (not shown here).
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FIGURE 3 The correlations between the sojourn times of the foreground traffic and E[S;] as a
function of py with fixed total load p = 1.5, based on simulations. (a) Correlation as a function of
po and (b) Sojourn time as a function of py (color figure available online).

Figure 3(a) shows the empirical correlation between the sojourn times of
the foreground jobs considered as a function of p,, where the service-
time distributions are varied as deterministic (¢; = 0), exponential (c; =
1), Erlang-2 (c; = 1/2), two-phase hyper-exponential with ¢; = 4 and ¢ =
16 (and balanced means), Pareto-3 (with Pr{B > x} = (1 + x/2)7° for x >
0 and hence ¢; = 3), and Pareto-2 (with Pr{B > x} = -5 for x > 1/2 and
hence c¢; = 00). Note that in Figure 3(a) the results for Pareto-3 and the
two-phase hyper-exponential with ¢; = 4 are so close that they can hardly
be distinguished. Moreover, the results in Figure 3 are so strikingly similar
that they almost entirely overlap.

The results depicted in Figures 3(a) and (b) lead to the following
remarkable observation.

Observation 1. The correlations between the per-task sojourn times of
the foreground traffic depend on the job-size distribution, whereas IE[SOl]
is nearly insensitive to the job-size distribution.

This observation is rather intriguing. First, we observe an obvious
dependence of the correlation between the per-task sojourn times with
respect to the job-size distribution, where higher variability seems to imply
a stronger correlation. This observation can be intuitively explained by
the fact that the per-task sojourn times are positively correlated, while this
correlation becomes most predominant for large job sizes, thus for outliers
in the job size B. Hence, the higher the variability in the distribution of B,
the more outliers in B and hence, the stronger the correlation. Second, the
results show that the differences in correlations over the different service-
time distributions do not manifest themselves in significant differences in
[E[Sy]. The impact of the correlations between the per-task sojourn times
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“vanishes” when looking at E[S;]. This observation will turn out to be
useful for developing an approximation for E[S;], see Sections 3.3 and 3.4.

3.2. Reduced Load Approximation (RLA)

The Reduced Load Approximation (RLA) splits jobs into tasks
according to the split rule (cf. Ref.'*)):

1 —p, .
Upra;i = —v - @=1...,N). (5)
Z]il(l - pj)
This simple splitting rule oy, = (%5 -»%p4n) cuts the foreground

jobs into tasks proportional to 1 — p;, i.e., the average amount of capacity
not used by the background traffic at node i. Note that the RLA is
insensitive to the job-size distribution (except of course for its mean ),
which is in line with Observation 1 in Section 3.1. In addition to its
attractive simplicity, the RLA (5) is asymptotically tail optimal for the case
of regularly varying service-time distributions (see Ref.l'?! for details).

Extensive numerical experimentation in Ref.'?! (and Table 1 in
Section 4 below) reveals that the RLA leads to highly accurate
approximations of o* if either py, ~ 0 or if the nodes are fairly equally
loaded, but that it may become inaccurate when one or more nodes are
heavily loaded while others are not (see for example the right upper
corner in Table 1 below). This raises the need for a refinement of the RLA
to improve its accuracy for asymmetric background-load scenarios, which
is the main goal of the present article. To this end, in the next section we
use and combine known heavy-traffic asymptotics for multi-class PS models
and Observation 1 to derive approximations for E[S;], and hence for the
optimal splitting of jobs o*, under heavy-traffic assumptions.

3.3. Heavy Traffic Approximation (HTA)

In this section we will use heavy-traffic (HT) asymptotics for multi-class
PS models to develop an approximation for IE[S(%], and hence of o*, that
meets these asymptotic HT-properties. To formulate these HT properties,
recall that node i considered in isolation can be modeled as a two-class
M/G/1 PS model, where class-1 jobs (representing background jobs at
node i) arrive according to a Poisson process with rate 4, and service
times o;B, and where class-2 jobs (representing foreground jobs) arrive
according to a Poisson process with rate /; and service times B. Let S;(1)
denote the sojourn time of an arbitrary job of size T at node i (regardless
of its class). Zwart and Boxma®*! show that for t > 0, i € U, o € A,

(1 =9 Si(ait) =4 O(o;T) (S 1 1), (6)
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where O({) is an exponentially distributed random variable with mean (.
Moreover, in Ref.?? it is shown also that moment-wise convergence holds:
Fort>0,ieU,aeAand k=1,2,...,

lim (1 OMELS(0;1)"] = klatth. (7)

To this end, it is important to observe that the conditional results in
(6) and (7) were proven for the classical single-class M/G/1 PS node,
but are also directly applicable to multi-class M/G/1 PS nodes. Then,
removing the conditioning with respect to the distribution of the size of
the foreground tasks at node ¢ in Eq. (6) leads to the following result for
S, the unconditional sojourn time for a job at node i: For 1> 0, ¢ € U,
aueA,

(1=98 =4 0()B (1 1), (8)

where O(«;) is exponentially distributed with mean «;, B is the job size, and
where the random variables ®(«;) and B are independent. Moreover, the
kth moment of the unconditioned sojourn time of an arbitrary foreground
job at node i has the following limiting HT-behavior: For i € U, x € A, k =
L2,...,

1;?11(1 — OME[SF] = klok ™. 9)
<

We are now ready to use the HT-asymptotics (6) to (9) to develop a
simple approximation for IE[SOl] that works well under HT-circumstances,
i.e., where £ 1 1. In the absence of an exact analysis, we will construct a
simple approximation for the joint probability distribution of

§%1TA(T) = (S}%lln,l(“lf)’ ) SIZI’IA,N(OCNT))’ (10)

where S, (2;7) is the sojourn time of the ith fragment of an arbitrary
foreground job of size T (note that this fragment itself is of size «;7). To this
end, note that (6) implies the following limiting behavior for the marginal
distributions of the conditional sojourn times S, ;(1;7): For i € U, a € A,
t >0,

ll?llPV{(l — é)SHTA’,j(O(,;T) > t} = exp {—i} . (11)
<

o;T

Note that (11) is only valid for i € U, because if i ¢ U then node 7 will not
become unstable so that (1 — &)Syr;(a;7) — 0 (a.s.), when & 4 1 (see also
Remark 3.2).
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Next, we develop an approximation for IE[S)] which satisfies the
known heavy-traffic properties of the marginal per-task sojourn-time
distributions formulated in (10) and (11). Regarding the correlations,
recall from Observation 1 (formulated in Section 3) that IE[S;] at
best weakly depends on the correlations between the per-task sojourn
times. Therefore, although the pertask conditional sojourn times
Sia1 (), ..., Sy (oy7) are clearly not independent, we assume that they
are. Based on this assumption, we approximate the distribution of S35, (1)
(defined in Eq. (10)) by assuming that S;;, (017, . .., S y(onT) (a) are
exponentially distributed with mean o;7/(1 —¢&;), so that the marginal
distributions satisfy the known HT behavior in (11) for i € U (see also

Remark 3.2), and (b) are mutually independent: For #,...,ty > 0, 2 € A,
7> 0,
N 1—¢
Pr{S%,TA,l(oclr) > tl,...,S%,TA,N(och) > Iy}~ l_[exp {— : tti} . (12)

i=1

We will now use the approximation in (12), which covers the known HT-
limiting behavior from (6)—(7), to derive a simple approximation for E[S;]
that works well when ¢ 4 1. To this end, for 7 > 0, « € A, define

Stimo(1) == max{S%,TA’l (o17), ..., S%[TA’N(OCN’L')}. (138)

Then using Eq. (12), the distribution of S, (t) can be approximated
as the distribution of the maximum of N independent exponentially
distributed random variables with known parameters (given in Eq. (12)).
See Property 1 in Appendix A for an expression for the mean value of
such random variable. Using this result, the conditional cost function
IE[S};740(T)] can be readily obtained from Property 1 simply by making
following substitutions in Eq. (21) from Appendix A: For i =1,..., N,

o;T
1-¢&

Note that it is readily verified that the so-obtained approximation of
IE[S;7740(D)] is linear in 1, so that the unconditioned cost function E[S;, ]
can be directly obtained by replacing t by " in (14). In this way, the
cost function E[S;;;, ] can be approximated by using Eqs. (12) to (14) and
Eq. (21), which leads to the following approximation for IE[S;; ,1:

X, i= Sy (00),  and  1/p; i= B[Sy, (01)] =

(14)

N
o 1
EIShl <00 Y e 09
D T
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where
Sei={G, oo si) i, i€ {l,. . NLi <ip < -+ <} (16)

Note that the approximate expression for E[S;, ] in Eq. (15) is explicit,
and hence, the computation time is negligible. Notice also that the right-
hand side of Eq. (15) is (fully) insensitive to the job-size distribution, which
is in line with Observation 1 discussed in Section 3.1.

Next, denote by o = (a1, -5 %5 ) the splitting rule that
minimizes E[S};;, ] among all & € 4, i.e.,

IE[SgTA,O] = rilei/? IE[S%ITA,O]' (17)

The optimal split o}, can then be approximated by evaluating Eq. (15)
over all « € A, or by some non-linear optimization method. In practice,
this causes no problem as N is not too large. Note that in the context of
concurrent access for wireless networks, which was the main motivation for
this study, N is indeed small, say 2 or 3. We refer to Remark 4.2 for a brief
discussion on the complexity of the optimization.

3.4. Composed Split Approximation (CSA)

Now we combine both approaches in the following to obtain the
composed-split approximation (CSA), denoted o, = (0fgy1s- -+ > %egan)>
where fori=1,..., N,

Upga; = (1 = K0y 4 ; + Kitlyp ;»  with ; := max{py, ..., pn}, (18)

and where o, ,; is given in Eq. (5), and where o}, ; can be obtained
from Egs. (15) to (17). The interpolation factor «; is taken such that «;
is independent of x (and of i, see also Remark 3.3), while for light-traffic
scenarios the RLA is dominant and for heavy-load scenarios the HTA is
dominant. We refer Remark 3.3 below for a discussion on the choice of
the interpolation factor.

Remark 3.1. A complicating factor of the model is the complex
correlation structure between the sojourn times of the individual tasks
after a job has been split. In this context, we observe that the reduced load
approximation (RLA) can be thought of as implying that there is “perfect”
correlation in the sojourn times of the different tasks, and thus gives a
lower bound on the mean sojourn times. To this end, note that under
“perfect correlation,” forall 4,7 =1,...,N, x € Aand 7 > 0,

E[S? | B =1] = E[S| B =1]. (19)
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Using Eq. (4), this set of equations (19) is readily seen to lead to the RLA
defined in Eq. (5). In this way, the RLA can be seen as optimizing a lower
bound for E[S;].

On the contrary, the HTA can be viewed as optimizing an upper
bound for E[S,]. To this end, note that the simulation results shown
in Figure 3 suggest that for fixed € A the pertask sojourn times
are positively correlated. Loosely speaking, the maximum of positively
correlated random variables is stochastically dominated by the maximum
of independent random variables with identical marginal distributions.
Hence, such a dominance also holds for the expected values, so that the
HTA defined in Eq. (15) gives an upper bound for E[S;], defined in
Eq. (3). In that sense, the HTA is optimizing an upper bound.

Remark 3.2. Recall that the HT behavior in (11) holds if and only
if ie U, ie., for those nodes i for which & =¢&, defined in (1). For
ie U, Eq. (11) shows that the conditional sojourn time for node i
converges (both in distribution and moment-wise) to an exponential
distribution with known mean. In contrast, the nodes i ¢ U do not become
unstable for ¢ 1 1. However, note that in the HTA in (15) the marginal
conditional sojourn-time distributions are approximated by (independent)
exponential distributions for all : =1, ..., N. Nonetheless, note that under
HT circumstances (i.e., £ & 1) the impact of the per-task sojourn times of
nodes i for i ¢ U on [E[S;] tends to vanish under HT-scalings.

Remark 3.3. The choice of the interpolation factor x; in Eq. (18) only
depends on the background-load values. The benefit is its simplicity and
the fact that x; does not depend on ¢, the parameter which is to be
optimized. The drawback of this choice is that it does not accurately
cover the HT behavior when & 1 1 while pi,...,py are close to 0; this
may happen when the foreground load p, is large. One way to overcome
this problem is to take as the interpolating factor x; := ¢;, defined in
Eq. (1). The problem is that in this way, the interpolation factor itself
depends on «; which leads to a fixed-point equation to solve for «;. We
have checked the accuracy of the approximations based on k; = ;; note
that convergence of such fixed-point iteration can easily be shown to hold.
Our results show that no significant improvement of the accuracy of the
approximations is obtained.

4. NUMERICAL RESULTS

To assess the accuracy of the approximations for the optimal
splitting rule a, we have performed extensive numerical experimentation,
comparing the approximation results with simulations. To cover a wide
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range of parameter combinations in a structured manner, we have varied
the file-size distributions (deterministic, exponential, hyper-exponential,
Pareto), and the load values of the foreground traffic (high, medium, low)
and the background traffic (high, medium, low).

In our experiments various parameters scenarios were considered. For
these parameter combinations, we calculated the following:
1. the optimal split rule o* = (of, ..., 0% _;, 1 —of —--- —o}_,),
2. approximations for «*, denoted

*

1 - T (xa[)[),N—l)’ and

* * * * _
ga[)j) - (OC(LM),I’ et OC/I[)[),N—I’ (xaj)j),l

3. the relative difference in the mean foreground traffic processing times,

defined by

Lapp o
A% = abs (E[S" ]:*IE[SO ]> x 100%. (20)
ELS; ]

First, we assume N =2 and fV) = 1. The file-size distributions were
varied as deterministic (to cover the case ¢; = 0), exponential (c; = 1),
H, with ¢j = 16 (with balanced means) and Pareto-2 (with ¢; = c0). The
load of the foreground traffic p, was varied as 0.1, 0.5, 0.9, and 1.8, and
the background loads p, and p, were varied as 0.1,0.3,...,0.9. To search
for the optimal splitting rule o = («,1 — o), we evaluated all feasible
values of a with a step size 0.01, and more finely if needed. Below we
will present the results of the evaluations. Tables 1 to 5 show for each
feasible combination of p; and p, the corresponding values of the optimal
split determined by simulation ¢* = (o*, 1 — «*), the approximated optimal
split oy, = (o), 1 — o) for app € {RLA, HTA, CSA}, and the relative error
in the cost function A%, defined in (20). To obtain highly accurate
simulation results, experiments were run with extremely many jobs, up to
10" if needed, leading to very narrow confidence intervals (CIs), such
that all digits in the Tables 1 to 5 are significant. For compactness of
the presentation the CIs are not shown. Also, note that because of the
symmetry in the model for N = 2 only the results for p; < p, are shown.

To start, we compare the performance of the RLA (discussed in
Section 3.2), the HTA (discussed in Section 3.3) and the CSA (discussed
in Section 3.4). As an illustrative example, Table 1 shows the results for
the case with p, = 0.1 and exponential job-size distributions, for a variety
of background-load combinations of (p;, ps).

We observe that the CSA indeed performs much better than both the
RLA and the HTA. In fact, the RLA performs very well if p; & p,, but
tends to degrade significantly if p; and p, are far apart. This degradation
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TABLE 1 Comparison of the RLA, the HTA and the CSA for the case of exponential job-size
distributions and py = 0.1, and N =2

Reduced load approximation (RLA)

0.1 0.3 0.5 0.7 0.9

pi\pe o i, A% of oy, A% of oy, A% o oy, A% o oy, A%

0.1 0.50 0.50 0.00 0.55 0.56 0.03 0.70 0.64 1.92 0.85 0.75 879 0.97 0.90 24.88

0.3 0.50 0.50 0.00 0.63 0.58 0.69 0.80 0.70 6.19 0.96 0.88 23.39
0.5 0.50 0.50 0.00 0.70 0.63 258 094 0.83 19.65
0.7 0.50 0.50 0.00 0.86 0.75 10.76
0.9 0.50 0.50 0.00

Heavy-traffic approximation (HTA)

0.1 0.3 0.5 0.7 0.9
pi\pe o Ly A% of oy A% o oy A% o oy A% o oy, A%
0.1 0.50 0.50 0.00 0.55 0.63 2.29 0.70 0.78 2.79 0.85 091 3.01 097 099 1.71
0.3 0.50 0.50 0.00 0.63 0.67 0.66 080 0.85 1.50 0.96 0.98 1.54
0.5 0.50 0.50 0.00 0.70 0.73 0.32 0.94 0.96 0.93
0.7 0.50 0.50 0.00 0.86 0.87 0.12
0.9 0.50 0.50 0.00

Composed-split approximation (CSA)

0.1 0.3 0.5 0.7 0.9

Pl\P‘Z o gy A% ot gy, A% of apg A% of opy A% of agg, A%

0.1 0.50 0.50 0.00 0.55 0.59 042 0.70 0.72 0.07 0.85 0.87 0.15 097 098 0.72

0.3 0.50 0.50 0.00 0.63 0.63 0.00 0.80 0.81 0.03 0.96 0.97 0.50
0.5 0.50 0.50 0.00 0.70 0.70 0.01 094 095 0.22
0.7 0.50 0.50 0.00 0.86 0.86 0.01
0.9 0.50 0.50 0.00

in the accuracy becomes most apparent if p; &~ 0 and ps ~ 1, showing
double-digit error percentages. This was to be expected, since the RLA
(5) simply splits traffic proportional to the relative amounts of capacity not
used by the background traffic, while one may suspect that the absolute
values of the background traffic have a large impact on the sensitivity of
the choice of the splitting rule with respect to the background-load values.
As expected, the HTA is doing much better in those asymmetric heavy-
load scenarios, but tends to degrade somewhat when PS; is lightly loaded
(p1 = 0.1) and PS, is moderately loaded (ps = 0.7), leading to errors up
to 3%. We observe that the CSA overall performs significantly better than
the RLA and the HTA, in most cases leading to an error percentage less

than 0.5%.
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In short, the results in Table 1 indeed show that the usefulness of
refining the simple and explicit RLA (introduced in Ref.'¥) into the
CSA, leading to extremely accurate results for most of the parameter
combinations.

In the remainder of this section, we will further evaluate the
accuracy of the CSA for a broad range of service-time distributions and
combinations of foreground and background loads. Table 2 shows the
results for light foreground load, with py = 0.1. The results show that
the approximations are highly accurate over a wide range of background-
load combinations and service-time distributions, with errors significantly
less than 1%. The least favorable results from our approximation were
consistently found when the background load is highly asymmetric (p; =
0.1 and py = 0.9), but even in those cases the results are highly accurate,
with errors below 0.8%.

Tables 3 and 4 show the results for moderate foreground load values
of py = 0.5 and py = 0.9, respectively. The results again show that the CSA

TABLE 2 Simulation results for light foreground load (po =0.1), N =2

0.1 0.3 0.5 0.7 0.9

pl\p2 o gy A% o ol A% of afg A% of ol A% of afg A%
Deterministic

0.1 0.50 0.50 0.00 055 059 043 0.71 0.72 0.03 0.86 0.87 0.10 0.97 0.98 0.70

0.3 0.50 0.50 0.00 0.63 0.63 0.01 0.80 0.81 0.03 0.96 0.97 0.49

0.5 0.50 0.50 0.00 0.71 0.70 0.00 0.94 0.95 0.05

0.7 0.50 0.50 0.00 0.86 0.86 0.03

0.9 0.50 0.50 0.00
Exponential

0.1 0.50 0.50 0.00 0.55 0.59 042 0.70 0.72 0.07 0.85 0.87 0.15 0.97 098 0.72

0.3 0.50 0.50 0.00 0.63 0.63 0.00 0.80 0.81 0.03 0.96 0.97 0.50

0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.22

0.7 0.50 0.50 0.00 0.86 0.86 0.01

0.9 0.50 0.50 0.00

Hyper-exponential
0.1 0.50 050 0.00 0.55 0.59 0.76 0.70 0.72 0.22 0.85 087 0.12 0.97 0.98 0.76

0.3 0.50 0.50 0.00 0.63 0.63 0.07 0.80 0.81 0.04 0.96 0.97 0.57
0.5 0.50 0.50 0.00 0.70 0.70 0.02 0.94 0.95 0.23
0.7 0.50 0.50 0.00 0.86 0.86 0.13
0.9 0.50 0.50 0.00
Pareto
0.1 0.50 0.50 0.00 0.55 059 052 0.70 0.72 0.15 0.85 0.87 0.23 0.97 0.98 0.73
0.3 0.50 0.50 0.00 0.62 0.63 0.03 0.79 0.81 0.01 0.96 0.97 0.57
0.5 0.50 0.50 0.00 0.70 0.70 0.01 0.94 0.95 0.25
0.7 0.50 0.50 0.00 0.86 0.86 0.03

0.9 0.50 0.50 0.00
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moderate foreground load (py =0.5), N =2

0.1 0.3 0.5 0.7 0.9

pi\pe o iy A% ot opgy A% o apy A% ot oy A% o gy A%

Deterministic
0.1 0.50 0.50 0.00 0.57 058 0.11 0.68 0.68 0.03 0.81 081 0.02 095 0.96 0.25
0.3 0.50 0.50 0.00 0.61 0.61 0.03 0.75 0.75 0.04 092 092 0.05
0.5 0.50 0.50 0.00 0.65 0.65 0.02 0.85 0.85 0.20
0.7 0.50 0.50 0.00

Exponential
0.1 0.50 0.50 0.00 0.57 058 0.13 0.68 0.68 0.04 0.81 0.81 0.01 095 0.96 0.28
0.3 0.50 0.50 0.00 0.61 0.61 0.03 0.75 0.75 0.06 0.92 0.92 0.06
0.5 0.50 0.50 0.00 0.65 0.65 0.04 0.85 0.85 0.22
0.7 0.50 0.50 0.00

Hyper-exponential
0.1 0.50 0.50 0.00 0.57 058 0.35 0.68 0.68 0.16 0.81 0.81 0.05 095 0.96 0.48
0.3 0.50 0.50 0.00 0.61 0.61 0.00 0.75 0.75 0.07 0.92 092 0.15
0.5 0.50 0.50 0.00 0.65 0.65 0.09 0.85 0.85 0.36
0.7 0.50 0.50 0.00
Pareto
0.1 0.50 0.50 0.00 0.57 058 0.19 0.67 0.68 0.05 0.81 081 0.04 095 0.96 0.22
0.3 0.50 0.50 0.00 0.60 0.61 0.01 0.74 0.75 0.00 0.92 0.92 0.18
0.5 0.50 0.50 0.00 0.65 0.65 0.07 0.85 0.85 0.06
0.7 0.50 0.50 0.00
TABLE 4 Simulation results for moderate foreground load (py =0.9), N =2
0.1 0.3 0.5 0.7 0.9

pi\pe o iy A% ot ohgy A% o apy A% ot o A% o gy A%

Deterministic
0.1 0.50 0.50 0.00 0.57 057 0.02 0.66 0.66 0.02 0.77 0.77 0.06 091 0.91 0.63
0.3 0.50 0.50 0.00 0.59 0.59 0.02 0.71 0.71 0.38
0.5 0.50 0.50 0.00

Exponential
0.1 0.50 0.50 0.00 0.57 0.57 0.07 0.66 0.66 0.04 0.77 0.77 0.17 091 091 0.11
0.3 0.50 0.50 0.00 0.59 0.59 0.05 0.71 0.71 0.06
0.5 0.50 0.50 0.00

Hyper-exponential
0.1 0.50 0.50 0.00 0.57 057 0.11 0.66 0.66 0.09 0.77 0.77 0.12 091 0.91 0.07
0.3 0.50 0.50 0.00 0.59 0.59 0.01 0.71 0.71 0.36
0.5 0.50 0.50 0.00
Pareto

0.1 0.50 0.50 0.00 0.57 057 0.08 0.66 0.66 0.05 0.77 0.77 0.00 091 0.91 0.00
0.3 0.50 0.50 0.00 0.59 0.59 0.00 0.71 0.71 0.53

0.5

0.50 0.50 0.00




Downloaded by [Vrije Universiteit Amsterdam] at 02:22 29 October 2013

Optimal Job Splitting 161

performs extremely well in all cases considered, with errors significantly
less than 1%, even for Pareto-2 distributed job sizes (thus with infinite
variance) and highly asymmetric background-load scenarios. Note that in
Tables 3 and 4 several combinations of (p;, ps) are omitted because they
violate the stability conditions.

Finally, to assess the accuracy of the approximation for heavily loaded
foreground traffic, additional simulation runs were conducted for p, =
1.8. Note that in this case, the set of a-values for which the system is still
stable is limited to o € (4/9;1/2). To obtain an accurate estimate for o*, we
simulated IE[S\*'~™] for different o-values with step size 0.001.

The results shown in Table 5 demonstrate that the CSA is also
extremely accurate for heavy foreground load scenarios. Note that
the mean sojourn times and the optimal split are indeed remarkably
insensitive with respect to the job-size distributions, which supports the
validity of Observation 1 in Section 3.

To assess the accuracy of the approximation for N > 2, we also
consider a model with N = 3 with Pareto-2 distributed service times with
B = 1. Table 6 shows the results for this system with p, = 1.5 where p;,
pe, and ps are varied as 0.3, 0.5, and 0.7. For each feasible parameter
setting, the table shows o* = (&, 03,0%)" obtained via simulation, o}, =
(01 Ootgns 3554 ) | » and the relative error defined in Eq. (20). The results
in Table 6 show that the accuracy of the CSA is again excellent for
N = 3. To summarize, the results in Tables 1 to 6 show that the CSA,
which combines the benefits of the RLA and the HTA, leads to extremely
accurate approximations for o* over a wide range parameter settings.

Remark 4.1. In Section 3.1 we observed on the basis of preliminary
simulation experiments that the mean sojourn times, and the optimal
a-values, are remarkably insensitive with respect to the service-time
distributions (Observation 1), even for extremely variable job-size
distributions. In this context, notice that the results shown in Tables 1 to
5 unanimously confirm this observation.

TABLE 5 Simulation results for heavy
foreground load (py =1.8), with N =2, p; =0.1

and pe = 0.0

o %esa A%
Deterministic 0.473 0.47312 0.03
Exponential 0.473 0.47312 0.06

Hyper-exponential 0.474 0.47312 0.05
Pareto 0.474 0.47312 0.06
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Remark 4.2. Despite the fact the RLA for o* in (5) is explicit, the HTA
is not, and can only be calculated numerically. This generally requires
numerical optimization of o over the set A. When N is not too large
this causes no problem, because the evaluation of IE[S;,,] for given
o is explicit, and the set of wo-values is within the bounded set A for
which standard non-linear optimization techniques are available. Note that
discretization of the set A and then enumeration over all ¢ can also be
done for small N. However, when N is large, the computation times may
become significant. In those cases, a further simplification of the HTA
seems to be needed. In this context, recall that in general not all queues
become unstable as ¢ 1 1 (namely only those for which ¢ € U, see also
Remark 3.2). Therefore, only the proper choice of o; for i € U may be
crucial, whereas the cost function [E[S;] may be expected to be fairly
insensitive to the choice of «; for i¢ U as { 1 1, i.e., becomes negligible
in heavy traffic. This observation may lead to a dramatic reduction of
the dimension of the optimization problem. Furthermore, for N — oo
one may use asymptotic results from the powerful extreme-value theory to
develop approximations for the HT behavior of E[S;]. These observations
open up possibilities for further reducing the computational complexity
of the calculation of oj,,,. Finally, note that from an application point of
view, in the context of wireless networks with concurrent access (a) N is
rather small, say N < 3, and (b) the job-split ratio does not have to be
(re)calculated in real time, so that the computational requirements are not
very strict.

5. TOPICS FOR FURTHER RESEARCH

The results presented in this article raise a number of challenging
topics for further research. First, the simulation results in Figures 2 and 3
show that IE[SOl] is at least near-insensitive with respect to the distribution
of the job size B. The question arises whether [E[S;] is fully insensitive
to the distribution of B, similar to the marginal distributions of the per-
task sojourn times (see Eq. (4)). Even extremely long simulation runs
do not give a definite answer whether [E[S;] is fully insensitive to the
distribution of B. Obtaining rigorous proofs of insensitivity properties,
possibly under additional requirements on the job-size distribution, is a
challenging topic for further research. Second, an intriguing observation
made in Figures 3(a) and (b) is that the differences in correlations over
different job-size distributions are evident but seem to have no impact on
[E[Sy]. The impact of the correlations between the per-task sojourn times
seems to cancel out when evaluating IE[S(%]. Currently, a full understanding
of this phenomenon is lacking, and is left as a topic for follow-up research.
Third, the Poisson assumption may be relaxed. In fact, we suspect that both
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the RLA and the HTA can be quite easily extended for example to renewal
arrival processes, but it is unclear to what extent they can be further
generalized to more realistic arrival processes that include correlations
between job arrivals. Derivation of such approximations is a challenging
subject for further research. Finally, the job-split model assumed a fixed
splitting rule «. However, it is likely that much better performance can be
obtained if the splitting ratios are allowed to depend on the actual state
of the system. Derivation and evaluation of such dynamic splitting policies
address another appealing topic for follow-up research.

APPENDIX A

For self-containedness of the article, in this appendix we formulate a
known result giving the expected value of maximum of a arbitrary number
of exponentially distributed random variables.

Property 1. If Xi,..., Xy are i.i.d. exponentially distributed random variables
with means 1/, ..., 1/uy respectively, then

N
1

E X, ..., X = —1)r+t _ 1

[max{X,..., Xy}] ;( ) Z T (21)

(@108 ) ESE

where S, (k=1,...,N) is defined in (16).

Proof. The derivation of Property 1 is trivial and requires only standard
algebraic manipulations, and is left as an exercise to the reader. O

To illustrate Property 1, let us work out (21) for the cases N = 2, 3 and
4. For N =2, we have § = {1,2}, §; = {1,2}, and S = {(1,2)}, so that

1 1 1
E [max{X;, Xo}]= — + — — .
M1 Mo e

(22)

For N =3, we have S ={1,2,3}, §; ={1,2,3}, S ={(1,2),(1,3),(2,3)}
and S3 = {(1,2,3)}, so that

1 1 1 1 1 1
E[max{X;, Xo, Xs}] = —+—+ — | — + i
Hio pe Hs H1+pe  p s et s

1
.
f + po +

(23)
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Finally, it is readily verified that for N =4 we have S ={1,2,3,4},
Sl = {1; 2) 3’ 4}: S2 = {(1> 2); (1;3)’ (174); (2> 3)) (27 4); (3’4)}> S% = {(17 27 3)7
(1,2,4),(1,3,4),(2,3,4)} Sy = {(1,2,3,4))}, so that

IE [max{X;, X, X5, Xy}]

1 1 1 1 1 1
— + + + + +
g s oty et Uz He g sty

1 1 1 1
( + + + )
Mo+ fo 4 s A fo A fly A fs s fo s+ Uy

1 (24)
f g + ps + py
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