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To understand how thermocapillary forces manipulate the droplet motion in a confined
microchannel, a lattice Boltzmann phase-field model is developed to simulate immiscible
thermocapillary flows with consideration of fluid–surface interactions. Based on our recent
work of Liu et al., 2013 [54], an interfacial force of potential form is proposed to model
the interfacial tension force and the Marangoni stress. As only the first-order derivatives
are involved, the proposed interfacial force is easily combined with the wetting boundary
condition to account for fluid–surface interactions. The hydrodynamic equations are solved
using a multiple-relaxation-time algorithm with the interfacial force treated as a forcing
term, while an additional convection–diffusion equation is solved by a passive-scalar
approach to obtain the temperature field, which is coupled to the interfacial tension
by an equation of state. The model is first validated against analytical solutions for the
thermocapillary-driven convection in two superimposed fluids at negligibly small Reynolds
and Marangoni numbers. It is then demonstrated to produce the correct equilibrium
contact angle for a binary fluid with different viscosities when a constant interfacial
tension is taken into account. Finally, we numerically simulate the thermocapillary flows
for a microfluidic droplet adhering on a solid wall and subject to a simple shear flow
when a laser is applied to locally heat the fluids, and investigate the influence of contact
angle and fluid viscosity ratio on the droplet dynamical behavior. The droplet motion
can be completely blocked provided that the contact angle exceeds a threshold value,
below which the droplet motion successively undergoes four stages: constant velocity,
deceleration, acceleration, and approximately constant velocity. When the droplet motion is
completely blocked, three steady vortices are clearly visible, and the droplet is fully filled
by two counter-rotating vortices with the smaller one close to the external vortex. The
thermocapillary convection is strengthened with decreasing viscosity ratio of the droplet
to the carrier fluid. For low viscosity ratios, the droplet motion is completely blocked and
exhibits the similar behavior, but the structure of the internal vortices is more complicated
at the lowest viscosity ratio. For high viscosity ratios, the droplet motion is partially
blocked and undergoes a series of complex transitions, which can be explained as a result
of the dynamically varying Marangoni forces.

© 2013 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail address: haihuliu@illinois.edu (H. Liu).

0021-9991/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.08.054

http://dx.doi.org/10.1016/j.jcp.2013.08.054
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:haihuliu@illinois.edu
http://dx.doi.org/10.1016/j.jcp.2013.08.054
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2013.08.054&domain=pdf


H. Liu et al. / Journal of Computational Physics 256 (2014) 334–356 335

1. Introduction

Microfluidic technology has attracted significant interest owing to its diverse applications in biotechnology, chemistry,
pharmaceuticals and the life sciences. It has many advantages such as high throughput, short analysis time, small volume
and high sensitivity. Recently, a multiphase fluidic approach, so-called droplet-based microfluidics, which creates discrete
volumes with the use of immiscible phases has emerged as a promising flexible platform for microfluidic functions. It
allows for independent control of each droplet, thus generating microreactors that can be individually transported, mixed,
and analyzed. As samples/reagents are confined in the droplets, it can avoid sample dilution caused by Taylor dispersion, and
eliminate surface adsorption and cross sample contamination [1]. In the past decade, microfluidic droplets have been widely
applied to protein crystallization [2,3], drug delivery [4,5], material synthesis [6,7], as well as single-molecule/cell analysis
[8,9]. It is essential to manipulate droplets in a precise and flexible manner in droplet-based microfluidic applications. In a
microfluidic device, due to its intrinsically small dimensions, the effect of the interfacial tension, fluid viscosity, and surface
wettability becomes dominant compared to the body forces such as buoyancy or inertia force. Therefore, the interfacial
flow control is of great importance to manipulate the droplet behavior and optimize the performance of droplet-based
microdevices.

The most commonly encountered droplet manipulations include droplet generation, fission, fusion, mixing and sort-
ing [10]. Various approaches that cover a broad range of physical principles have been developed to achieve these manipu-
lations, including electrowetting on dielectric (EWOD) [11,12], dielectrophoresis (DEP) [13,14], hydrodynamic stress [15–17],
thermocapillary force [18,19], surface acoustic wave [20], magnetic force [21,22], and optical forces [23,24]. Among these
approaches, optical forces provide a promising route towards microactuation because light fields can be easily focused to
micrometric spots, and they are contactless and dynamically reconfigurable, without the need for any special microfabrica-
tion or moving parts [25]. However, optical forces are typically in the range of pN , which are often too weak to counteract
hydrodynamic forces acting on moving droplets. In the recent years, an optical alternative based on the production of local-
ized thermocapillary stresses (also known as Marangoni effect [26]) at the droplet interface has been demonstrated. In the
presence of surfactant, the magnitude of thermocapillary forces induced by the localized heating from a laser can reach μN
range [27], so they are more effective than the optical forces themselves for droplet manipulation.

Thermocapillary convection is a phenomenon of fluid movement that arises as a consequence of the variation of in-
terfacial tension at the interface caused by temperature differences. In most fluid systems, the interfacial tension is a
decreasing function of the temperature; in surfactant stabilized systems, however, the interfacial tension may increase al-
most linearly with increasing temperature [27,28]. In any case, the induced thermocapillary stresses lead to the movement
of droplets from the regions of high interfacial tension to the regions of low interfacial tension. The thermocapillary motion
of droplets plays an important role in many natural physical processes as well as numerous industrial activities, particularly
in space material processing and many other engineering and scientific applications under microgravity conditions where
sedimentation and gravity-driven convection are largely eliminated. Thus, it attracts an increasing amount of research inter-
est worldwide along with the progress of human space technology. For a comprehensive review of this topic, readers can
refer to the excellent book by Subramanian and Balasubramanian [29]. Since thermocapillary convection has an interfacial
origin, it is particularly suitable to drive flows at small scales, as in microchannels. To date, optically-induced thermocapil-
lary forces have been used for demonstrating many droplet-based microfluidic phenomena. It was found that a non-wetting
droplet resting on a substrate can move under laser-driven thermocapillary stresses [30]. Baroud et al. [27] showed that
a water droplet, transported by an immiscible oil flow in a cross-shaped microchannel, may be blocked if submitted to a
focused laser spot. This blocking may last several seconds (typically ∼ 2 s), indicating that the drag force from the viscous
oil is balanced (at least temporarily) by the thermocapillary force generated by the laser heating. They also further showed
that the strength of the blocking force increases with reduced droplet size and may become several orders of magnitude
larger than forces generated by dielectrophoresis. The optically-induced blocking force was also combined with the geom-
etry of the microchannel to realize various droplet manipulations including mixing, sorting, fission, fusion, sampling and
switching [25,31].

Although experimental studies have helped to understand thermocapillary flows in microfluidic devices, it is still very
difficult to carry out precise experimental measurements of the local temperature and flow fields during the transport pro-
cess of a droplet. Thus, the physical mechanism and dynamic behavior of droplet migration are still unclear and remain open
questions. Numerical modelling and simulations can be very instrumental in enhancing our understanding of thermocapil-
lary flows at microscale, complementary to experimental studies. However, numerical simulation of thermocapillary flows is
a challenging task, where the capillary effect usually plays a dominant role. Discretization errors in calculation of interfacial
forces may generate unphysical spurious velocities which can cripple the velocity field in the whole computational domain.
Minimizing the spurious velocities at the interface still remains a major challenge for numerical models and algorithms.
Additionally, contact-line dynamics plays an important role when the droplet touches a solid wall in microfluidic channels.
Due to its inherent multiscale nature, contact-line dynamics is still a long-standing physical problem to be resolved [32],
thereby posing an additional numerical challenge. Finally, due to the strong dependence of interfacial tension on temper-
ature, the temperature fluctuations result in non-uniform interfacial tension forces and Marangoni stresses that affect the
flowfield at the interface, which in turn alter the interfacial temperature distribution through the induced interfacial flows.
While the front-tracking method is not suitable for simulating droplet breakup and coalescence because the interface must
be manually ruptured based upon some ad-hoc criteria [33], interface capturing methods such as volume-of-fluid and level
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set methods will suffer from numerical instability at the interface region when the interfacial tension becomes a dominant
factor in microdroplet behavior [34]. Microscopically, the interface between different phases and the contact-line dynamics
on the solid surface are due to interparticle forces/interactions [35]. Thus, mesoscopic level models are expected to describe
accurately the thermocapillary flows in a confined microchannel.

The lattice Boltzmann method (LBM), as a mesoscopic numerical method, has been developed into a promising al-
ternative to traditional computational fluid dynamics (CFD) for simulating complex fluid flows in recent years. The LBM
has several advantages over the traditional CFD methods such as the ability to be programmed on parallel computers
and the ease in dealing with complex boundaries [36]. Besides, its kinetic nature provides many of the advantages of
molecular dynamics, making the LBM particularly useful in simulating complex interfacial dynamics. Historically, the first
multiphase LBM model was proposed by Gunstensen et al. [37] based on a lattice gas automation (LGA) model [38]. Since
then, many multiphase LBM models have been developed. These models can be classified into four types, i.e., the color-
fluid model [37,39–41], the interparticle-potential model [42–44], the phase-field-based model [45–49], and the mean-field
theory model [50]. For a comprehensive review of these models, interested readers may refer to Refs. [36,51,52]. These
multiphase LBM models mainly focus on interfacial flows with a constant interfacial tension, so they are incapable of sim-
ulating thermocapillary flows around moving and stationary interfaces except our recently improved color-fluid model [53]
and phase-field-based lattice Boltzmann finite-difference model [54]. In our improved color-fluid model, a concept of con-
tinuum surface force (CSF) is used to model the interfacial tension force and Marangoni stress, and the phase segregation
is achieved through the recoloring algorithm proposed by Latva-Kokko and Rothman [55]. In the phase-field-based lattice
Boltzmann finite-difference model, an interfacial force of stress form is analytically derived using the free energy theory,
and the hydrodynamic equations, including the Navier–Stokes equations (NSEs) and the Cahn–Hilliard equation (CHE), are
solved through an improved lattice Boltzmann equation (LBE) method originally proposed by Lee and Liu [49] while the
temperature equation is solved through a combination of the finite-difference method and the Runge–Kutta method. How-
ever, the both models can only simulate thermocapillary flows with droplets suspended in a carrier fluid, away from the
wall boundary. In addition, the calculation of interfacial force needs to estimate not only the gradient of phase-field but
also its derivatives, which usually introduces incompatible discretization errors [56–58], leading to large spurious currents
in the vicinity of the wall boundary when the surface wettability is enforced. These deficiencies largely limit their prospect
for droplet-based microfluidic applications.

In this paper, a lattice Boltzmann phase-field model is developed to simulate immiscible thermocapillary flows in a
confined microchannel. Using a phase-field methodology, an interfacial force of potential form is derived analytically to
model the interfacial tension force and the Marangoni stress. The proposed interfacial force is also combined with a cubic
wetting boundary condition to account for fluid–surface interactions, i.e., the contact-line dynamics. The fluid flows are
solved through a multiple-relaxation-time (MRT) LBM with the interfacial force treated as a forcing term [59,60] while the
phase interface is captured following a strategy proposed by Pooley et al. [32], which can enhance the numerical stability
for solving a binary fluid with large viscosity difference and produce correct equilibrium contact angles. The temperature
field, which is coupled to the interfacial tension by the equation of state, is also solved in the framework of LBM, where
thermal boundary conditions are imposed by a general halfway bounce-back scheme recently proposed by Zhang et al. [61].
The capability and accuracy of this model are first tested by two benchmark cases with analytical solutions. It is then used
to simulate the droplet dynamical behavior for a semi-circular droplet adhering on the bottom wall in a microchannel and
subject to a simple shear flow when a laser heating is applied. We show how the laser light blocks the droplet motion
and investigate the influence of contact angle and fluid viscosity ratio on the droplet motion. This study can provide an
in-depth understanding of thermocapillary flows for droplets in contact with solid walls in confined microfluidic devices
and facilitate design to precisely control droplet behavior.

2. Methodology

2.1. Phase-field theory and governing equations for hydrodynamics

We consider here an incompressible system of two nominally immiscible Newtonian fluids in contact with each other
and with a solid surface. The order parameter φ is introduced to identify the regions where two fluid flows occur: φ = −1
is occupied by fluid ‘A’ and φ = 1 by fluid ‘B’. The interface is represented by φ = 0 with an interfacial layer of thickness ε .
Denoting the fluid domain by Ω and the solid surface by ∂Ω , one can write the total free energy of the system as [62]

F (φ) =
∫
Ω

(
Ψ (φ) + ε2

2
|∇φ|2

)
dΩ +

∫
∂Ω

f w(φ)dS, (1)

where Ψ (φ) is the bulk free energy density and takes a double-well form Ψ (φ) = 1
4 (φ2 − 1)2. The term ε2

2 |∇φ|2 accounts
for the excess free energy in the interfacial region, where ε is the interface thickness. The second integral represents the
wall free energy due to the fluid–surface interactions, where f w is determined by the order parameter at the solid surface
and the dimensionless wetting potential Ωc [62],

f w(φ) = ε(3φ − φ3)

3
√

2
Ωc, (2)
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where Ωc is related to the equilibrium contact angle θ eq by Young’s equation:

cos
(
θ eq) = σB w − σAw

σ
= −Ωc, (3)

where σ is the interfacial tension between fluid A and B, and σAw (or σB w ) is the interfacial tension between the fluid
phase A (or B) and the solid surface.

A variational procedure is applied to the free energy functional, i.e. Eq. (1), and leads to

δF = d

dr
F (φ + rδφ)|r=0 =

∫
Ω

[
δφΨ ′(φ) + ε2∇φ · ∇δφ

]
dΩ +

∫
∂Ω

f ′
w(φ)δφ dS

=
∫
Ω

[
Ψ ′(φ) − ε2∇2φ

]
δφ dΩ +

∫
∂Ω

[
ε2(nw · ∇φ) + f ′

w(φ)
]
δφ dS

=
∫
Ω

[
Ψ ′(φ) − ε2∇2φ

]
δφ dΩ, (4)

where a natural boundary condition (also called cubic boundary condition in Ref. [49]) is imposed on the solid substrate
∂Ω:

nw · ∇φ = − 1

ε2
f ′

w(φ) = φ2 − 1√
2ε

Ωc. (5)

Here nw is the outward-pointing unit vector normal to the solid surface. This cubic boundary condition has been widely
used to simulate two-phase flows with moving contact lines [62–64,49]. It was demonstrated numerically that such a
boundary condition can eliminate the spurious variation of order parameter at solid boundaries, thereby allowing us to
better capture correct physics than its lower-order counterparts [64].

From Eq. (4) we can get the chemical potential μ, which is defined as the variational derivative of the free energy with
respect to the order parameter,

μ = δF

δφ
= Ψ ′(φ) − ε2∇2φ = φ3 − φ − ε2∇2φ. (6)

The equilibrium interface profile can be obtained from Eq. (6) at μ = 0. The one-dimensional solution of this equation is

φ(z) = tanh

(
z√
2ε

)
, (7)

where z is the spatial location normal to the interface (z = 0).
The time evolution of the diffuse interface is described by the convective CHE, in which the local diffusion flux is

proportional to the gradient of the chemical potential:

∂φ

∂t
+ u · ∇φ = ∇ · (Mφ∇μ), (8)

where u is the flow velocity, and Mφ > 0 is the mobility.
It is well known that the expression for the stress jump across the interface Σ is given by

[T · n]Σ = T · n|Σ,B − T · n|Σ,A = σκn − ∇Sσ , (9)

where T = −pI + η(∇u + ∇uT ) is the stress tensor, p is the pressure, η is the dynamic viscosity, I is the second-order
identity tensor, n is the unit vector normal to Σ and directing towards fluid B, κ = ∇ · n is the local interface curvature
and ∇S = (I − n ⊗ n) · ∇ is the surface gradient operator. The first term on the right-hand side of Eq. (9) is the interfacial
tension force and the second term is the Marangoni stress. In order to induce the local stress jump across the interface,
a volume-distributed interfacial force FS , should be added in the momentum equation as an additional body force. The
interfacial force is

FS = (−σκn + ∇Sσ)δΣ, (10)

where δΣ is the Dirac delta function used to localize the force explicitly at the interface, which should satisfy

∞∫
−∞

δΣ dz = 1 (11)

in order to recover properly the stress jump condition, Eq. (9), in the sharp-interface limit.
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By defining n = ∇φ
|∇φ| and δΣ = 3

√
2

4 ε|∇φ|2, an interfacial force of stress form was derived from Eq. (10) and can be
written as [54]

FS = 3
√

2

4
ε∇ · [σ(T )

(|∇φ|2I − ∇φ ⊗ ∇φ
)]

. (12)

However, one needs to approximate not only the gradient of φ but also the derivatives of the gradient in order to calculate
the above interfacial force. This may induce undesirable discretization errors at the solid surface when the wetting boundary
condition, i.e. Eq. (5), is enforced. It is therefore not surprising that none of the existing studies uses the interfacial force of
stress form to simulate the contact-line dynamics in the phase-field approaches [65,66,63,67,49,64]. Note that these studies
only consider a constant interfacial tension, so they cannot simulate thermocapillary flows around moving and stationary
droplets, which are crucial for many microgravity applications and opto-thermal manipulation of droplets in microfluidic
devices.

Using Eq. (6) and the following equalities [68,54]:

|∇φ|2 = 1

2ε2

(
φ2 − 1

)2
, (13)

∇ · (∇φ ⊗ ∇φ) = 1

2
∇(|∇φ|2) + ∇2φ∇φ, (14)

we can transform the interfacial force equation (12) into a different but equivalent form:

FS = 3
√

2

4
ε

[
|∇φ|2∇σ − (∇σ · ∇φ)∇φ + σ

ε2
μ∇φ

]
, (15)

which is referred to the interfacial force of “potential form”. Obviously, the discretization of gradient terms is only required
in Eq. (15). This can relieve the numerical difficulty in estimating the derivatives of the gradient at the solid surface. In
particular, if the interfacial tension is a constant, the interfacial force term can reduce to

FS = 3
√

2

4ε
σμ∇φ, (16)

which is commonly used in literature. It is widely recognized that spurious velocities at the interfaces originate from incom-
patible discretizations of the interfacial force. The interfacial force of potential form is able to produce smaller discretization
errors than its stress form [56–58], which is key to small spurious velocities.

In a thermocapillary flow, an equation of state is required to relate the interfacial tension to the temperature, which may
be linear or nonlinear. For the sake of simplicity, we only consider a linear relation between the interfacial tension and the
temperature T in this study [69,53], i.e.,

σ(T ) = σref + σT (T − Tref ), (17)

where Tref is the reference temperature, σref is the interfacial tension at Tref , σT is the rate of change of interfacial tension
with temperature, defined as σT = ∂σ/∂T .

Substituting Eq. (17) into Eq. (15), we obtain the interfacial force as

FS = 3
√

2

4
ε

[
σT |∇φ|2∇T − σT (∇T · ∇φ)∇φ + σ

ε2
μ∇φ

]
. (18)

With the interfacial force FS given by Eq. (18), the macroscopic governing equations for the incompressible fluid flows
can be written as [65,63,66,67]

∇ · u = 0, (19)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · [η(∇u + ∇uT )] + FS , (20)

where ρ is the density of fluid mixture.

2.2. Lattice Boltzmann method for hydrodynamic equations

The NSEs, Eqs. (19) and (20), are solved using the MRT-LBM, while the CHE, Eq. (8), is solved through the standard single-
relaxation-time (SRT) LBM as suggested by Pooley et al. [32]. MRT-LBM has a number of advantages over the SRT-LBM in
simulating various flow problems, including enhanced numerical instability, the ability to model thermohydrodynamics with
adjustable Prandtl numbers [70], removing the viscosity-dependent velocity field [71], and minimization of the spurious ve-
locities and reproducing the correct contact angle for simulating multiphase flows [32]. In this model, we need to define
two particle distribution functions (PDFs) f i(x, t) and gi(x, t) on each lattice point, where i is the lattice direction. The
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first distribution function is related to macroscopic fluid density ρ and momentum j, and the second distribution function
captures the order parameter φ

ρ(x, t) =
∑

i

f i(x, t), j(x, t) =
∑

i

f i(x, t)ei + 1

2
FSδt, φ(x, t) =

∑
i

gi(x, t), (21)

where j = ρ0u, ρ0 is the mean fluid density which is used to reduce compressibility effects in the model [72,71], and the
fluid velocity u is defined effectively to carry some of the influence of the variable interfacial force; ei is the lattice velocity
vector defined as e0 = (0,0), e1,3 = (±c,0), e2,4 = (0,±c), e5,7 = (±c,±c), and e6,8 = (∓c,±c) for a two-dimensional
9-velocity model (D2Q9). The lattice speed c is defined by c = δx/δt , where δx and δt are the lattice spacing and time step,
respectively. The speed of sound cs can be related to c by cs = c/

√
3.

The evolution equations of the PDFs f i(x, t) and gi(x, t) are governed by

f i(x + eiδt, t + δt) − f i(x, t) = Ω
f

i + δt F̄ i, (22)

gi(x + eiδt, t + δt) − gi(x, t) = Ω
g
i , (23)

where Ω
f

i and Ω
g
i are the MRT collision operator for f i and the standard BGK collision operator for gi , and are given by

Ω
f

i = −(
M−1SM

)
i j

[
f j(x, t) − f eq

j (x, t)
]
, (24)

Ω
g
i = − 1

τg

[
gi(x, t) − geq

i (x, t)
]
, (25)

where f eq
i and geq

i are the equilibrium distribution functions of f i and gi , τg is the single relaxation parameter for gi , M is
a transformation matrix, and S is a diagonal relaxation matrix.

F̄ i in Eq. (22) represents the discrete forcing term accounting for the interfacial force acting on the fluid mixture, which
is given by [59]

F̄ = M−1
(

Ĩ − 1

2
S
)

MF̃, (26)

where Ĩ is a 9 × 9 unit matrix, F̄ = [ F̄0, F̄1, F̄2, F̄3, F̄4, F̄5, F̄6, F̄7, F̄8]T , and F̃ = [ F̃0, F̃1, F̃2, F̃3, F̃4, F̃5, F̃6, F̃7, F̃8]T .
The governing physics of LBM is determined through the hydrodynamic moments of the equilibrium distribution func-

tions and the forcing terms. The moments of f eq
i , geq

i and F̃ i are:∑
i

f eq
i = ρ,

∑
i

f eq
i eiα = ρ0uα,

∑
i

f eq
i eiαeiβ = ρ0uαuβ + ρc2

s δαβ,

∑
i

f eq
i eiαeiβeiγ = ρ0c2

s (δαβuγ + δαγ uβ + δβγ uα), (27)

∑
i

geq
i = φ,

∑
i

geq
i eiα = φuα,

∑
i

geq
i eiαeiβ = φuαuβ + Γ μδαβ, (28)

∑
i

F̃ i = 0,
∑

i

F̃ ieiα = F Sα,
∑

i

F̃ ieiαeiβ = uα F Sβ + uβ F Sα. (29)

A suitable choice for f eq
i , geq

i and F̃ i that satisfies the constraints (27)–(29) is a power series expansion in terms of the
velocity

f eq
i = wi

[
ρ + ρ0

(
ei · u

c2
s

+ uu : (eiei − c2
s I)

2c4
s

)]
, (30)

geq
i = wi

[
Gi + φ

(
ei · u

c2
s

+ uu : (eiei − c2
s I)

2c4
s

)]
, (31)

F̃ i = wi

[
ei · FS

c2
s

+ uFS : (eiei − c2
s I)

2c4
s

]
, (32)

where the coefficient Gi is given by

Gi =
{

Γ μ/c2
s (i > 0)

[φ − (1 − w0)Γ μ/c2
s ]/w0 (i = 0),

(33)

and wi is the weight factor with w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36.
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The transformation matrix M is given explicitly as [73]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

which is designed to contain more physically relevant quantities, e.g. density, momentum, energy, and their fluxes. The
diagonal relaxation matrix S is defined as

S = diag[s0, s1, s2, s3, s4, s5, s6, s7, s8], (35)

where the elements si are the relaxation rates associated with each f i . The parameters s0, s3 and s5 correspond to the
conserved moments (i.e., density and momentum) and are chosen as s0 = s3 = s5 = 1. s7 and s8 are related to the kinematic
viscosity ν by

s7 = s8 = 1

τ f
, and ν =

(
τ f − 1

2

)
c2

s δt . (36)

Besides, symmetry requires that s4 = s6. As a result, three independent parameters s1, s2 and s4 (= s6) can be freely adjusted
to enhance the stability of MRT model [72,74,59,75]. Following the guidelines and suggestions in [73], we choose these free
parameters as s1 = 1.63, s2 = 1.14 and s4 = s6 = 1.92 in this study. It is worth noting that the MRT model will reduce to
the BGK model if all si in Eq. (35) are set to 1/τ f .

Employing the Chapman–Enskog multiscale analysis, Eqs. (22) and (23) can lead to the hydrodynamic equations (19),
(20) and (8) with the pressure p = ρc2

s in the limit of the low Mach number. The relaxation parameter τg is related to the
mobility Mφ through [46,32]

Mφ = δtΓ

(
τg − 1

2

)
, (37)

where Γ is a constant that appears in the equilibrium distribution function geq
i . As pointed out by Pooley et al. [32], it is

not necessary to adopt an MRT approach for gi since one can simply set τg = 1 and independently use Γ to control the
mobility. To account for unequal viscosities of the two fluids, we define the viscosity ν as a linear function of the order
parameter

ν(φ) = 1 − φ

2
νA + 1 + φ

2
νB , (38)

where νA and νB are the viscosities of the fluid A and B, respectively.

2.3. Lattice Boltzmann method for temperature equation

If the viscous heat dissipation and compression work done by the pressure are negligible, the governing equation de-
scribing temperature field can be written as [53]

∂T

∂t
+ u · ∇T = ∇ · (k∇T ) + qT , (39)

where k is the thermal conductivity, and qT is the heat source density. Following the definition of fluid viscosity given by
Eq. (38), we define the thermal conductivity of mixture as

k(φ) = 1 − φ

2
kA + 1 + φ

2
kB , (40)

where kA (kB ) is the thermal conductivity of fluid A (B). Instead of directly solving Eq. (39), the temperature equation is
also modelled by a lattice Boltzmann equation for an independent temperature distribution function, which is known as the
passive-scalar (PS) approach. Compared to its counterpart—the multi-speed (MS) approach, PS approach can overcome some
inherent limitations, e.g., the numerical instability, the narrow range of temperature variation, and the fixed value of the
Prandtl number [76]. The reliability of the PS approach for thermal flows has been verified by many benchmark studies [77,
76,78].
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Fig. 1. A schematic to illustrate the location of the boundary nodes.

In order to simulate the evolution of temperature field, another distribution function hi is used:

hi(x + eiδt, t + δt) − hi(x, t) = − 1

τh

[
hi(x, t) − heq

i (x, t)
] + δt wiqT , (41)

where τh is the dimensionless relaxation time related to the thermal conductivity as k = (τh − 1/2)c2
s δt ; heq

i (x, t) is the
equilibrium distribution function in the i-th direction at the location x and the time t , which is chosen to recover the
macroscopic temperature equation, i.e. Eq. (39),

heq
i = wi T

[
1 + ei · u

c2
s

+ uu : (eiei − c2
s I)

2c4
s

]
, (42)

where the temperature T is calculated by

T (x, t) =
∑

i

hi(x, t). (43)

2.4. Boundary conditions

Boundary treatment is one of the key issues in LBM modelling interfacial flows. In a typical simulation of thermocapillary
flow in a microchannel there are three types of boundary conditions to be resolved: fluid flow boundary condition, thermal
boundary condition, and wetting boundary condition. As we know, the halfway bounce-back has been widely used to handle
complicated flow boundary conditions, e.g. in porous media, for its ease in implementation. As shown in Fig. 1, the link
between the solid node xs and the fluid node x f intersects the physical boundary at xw , which is located at the midpoint
of the link. The relationship between xs and x f is xs = x f + eiδt . Following Ladd’s halfway bounce-back scheme [79], the
particle distribution function entering from “inside” the solid ϕī(x f , t + δt) (with ϕi = f i or gi ) is determined by

ϕī(x f , t + δt) = ϕ+
i (x f , t) − 2wi�(x f )

ei · uw

c2
s

(44)

for a moving wall with velocity uw , where eī = −ei ; the superscript ‘+’ denotes the post-collision, pre-streaming value
of the particle distribution function; � is taken as ρ (or φ) for ϕi = f i (or gi ). This boundary condition can prevent the
boundary “mass leakage”, which is indispensable for a flow with small velocity.

The thermal boundary conditions are imposed by a general halfway bounce-back scheme recently proposed by Zhang
et al. [61]. For the Dirichlet boundary condition, the particle distribution function entering from the inside of the solid is
calculated as

hī(x f , t + δt) = −h+
i (x f , t) + 2wi T w

[
1 + (ei · uw)2

2c4
s

− |uw |2
2c2

s

]
, (45)

where T w is the temperature at the boundary node xw . For the adiabatic boundary condition, the boundary temperature
T w can be obtained by solving equation nw · ∇T = 0 using a finite-difference approximation:

nw · ∇T = T w − T f

0.5nw · eiδx
= 0, (46)

i.e., T w = T f , where T f is the temperature at the fluid node neighboring the physical boundary, and ei is the particular
lattice velocity associated with the link that crosses the boundary. Once the boundary temperature T w is obtained, the
unknown distribution hī(x f , t + δt) can be calculated through Eq. (45) similar to the Dirichlet boundary condition. In imple-
menting the wetting boundary condition (specially, to enforce the natural boundary condition, Eq. (5)), we follow the way
of Braint et al. [80].
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Fig. 2. The geometric setup depicting two immiscible fluids in a microchannel. The temperatures of the lower and upper walls are T (x,−b) = Th +
T0 cos (ωx) and T (x,a) = Tc , respectively, where Th > Tc > T0 and ω = 2π

l is a wave number.

3. Results and discussion

Thermocapillary motion of a droplet can be characterized by several important dimensionless parameters, including
Reynolds number (Re), Marangoni number (Ma), capillary number (Ca), fluid viscosity ratio (λ), and thermal conductivity
ratio (χ ). Without losing generality, we choose the fluid B as the continuous phase in this study, so these dimensionless
parameters are defined as follows:

Re = LU

νB
, Ma = LU

kB
= Re · Pr, Ca = UηB

σref
, λ = ηA

ηB
, χ = kA

kB
, (47)

where L and U are the characteristic length and velocity of the system, respectively, and Pr is the Prandtl number.

3.1. Model validation

To verify the proposed phase-field LBM, we first simulate the thermocapillary-driven flow in a heated microchannel
with two superimposed planar fluids [81]. Note that the wall wettability is not taken into account in this problem. The
setup of the problem is shown in Fig. 2. The heights of the upper fluid A and the lower fluid B are a and b, respectively,
while the fluids extend to infinity in the x-direction. We impose a uniform temperature to the upper wall and a sinusoidal
temperature (which is higher than that of the upper wall) to the lower wall as

T (x,a) = Tc, (48)

and

T (x,−b) = Th + T0 cos(ωx), (49)

respectively, where 0 < T0 < Tc < Th , and ω = 2π
l is a wave number with l being a length scale. The above thermal

boundary conditions establish a periodic temperature field in the x-direction with a period length of l. Therefore, it is
sufficient to only consider the solution in one period domain with − l

2 � x < l
2 . Re, Ma and Ca can be easily calculated

through Eq. (47) with the characteristic length L = b and the characteristic velocity U = |σT |T0
l

b
ηB

. When these dimensionless
numbers become negligibly small, the interface is thought to remain flat, and the momentum and energy equations can be
simplified to be linear. By solving the simplified governing equations with the stress boundary condition (Eq. (9)) at the
interface, the temperature and velocity fields can be analytically obtained and are given by [81]

T (x, y) = (Tc − Th)y + χ Tcb + Tha

a + χb
+ T0 f (ã, b̃,χ) sinh(ã − ωy) cos(ωx), (50)

ux(x, y) = Umax
{[

Ca
1 + ω

(
Ca

2 + Ca
3 y

)]
cosh(ωy)

+ (
Ca

3 + ωCa
1 y

)
sinh(ωy)

}
sin(ωx), (51)

u y(x, y) = −χUmax
[
Ca

1 y cosh(ωy) + (
Ca

2 + Ca
3 y

)
sinh(ωy)

]
cos(ωx), (52)

in the upper fluid A and
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T (x, y) = χ(Tc − Th)y + χ Tcb + Tha

a + χb

+ T0 f (ã, b̃,χ)
[
sinh(ã) cosh(ω ỹ) − χ sinh(ωy) cosh(ã)

]
cos(ωx), (53)

ux(x, y) = Umax
{[

Cb
1 + ω

(
Cb

2 + Cb
3 y

)]
cosh(ωy)

+ (
Cb

3 + ωCb
1 y

)
sinh(ωy)

}
sin(ωx), (54)

u y(x, y) = −χUmax
[
Cb

1 y cosh(ωy) + (
Cb

2 + Cb
3 y

)
sinh(ωy)

]
cos(ωx), (55)

in the lower fluid B. In Eqs. (50)–(55), the unknown constants are determined by

ã = aω; b̃ = bω, (56)

f (ã, b̃,χ) = [
χ sinh(b̃) cosh(ã) + sinh(ã) cosh(b̃)

]−1
, (57)

Ca
1 = sinh2(ã)

sinh2(ã) − ã2
; Ca

2 = −aã

sinh2(ã) − ã2
; Ca

3 = 2ã − sinh(2ã)

2[sinh2(ã) − ã2] ,

Cb
1 = sinh2(b̃)

sinh2(b̃) − b̃2
; Cb

2 = −bb̃

sinh2(b̃) − b̃2
; Cb

3 = sinh(2b̃) − 2b̃

2[sinh2(b̃) − b̃2] , (58)

and

Umax = −
(

T0σT

η2

)
g(ã, b̃,χ)h(ã, b̃, λ), (59)

where

g(ã, b̃,χ) = sinh f (ã, b̃,χ), (60)

and

h(ã, b̃, λ) = [sinh2(ã) − ã2][sinh2(b̃) − b̃2]
λ[sinh2(b̃) − b̃2][sinh(2ã) − 2ã] + [sinh2(ã) − ã2][sinh(2b̃) − 2b̃] . (61)

Numerical simulations are carried out in a 200 × 102 lattice domain with the initial heights of fluid layer a = b = 50
lattices. Periodic boundary conditions are applied on the left and right boundaries of the domain. On the upper and lower
walls, no-slip boundary conditions are imposed, and the wall temperatures are specified through Eqs. (48) and (49), where
Th = 20, Tc = 10 and T0 = 4. The fluid properties and numerical parameters are chosen as σT = −5 × 10−4, Tref = 10,
σref = 2.5 × 10−2, ηA,B = 0.25, kB = 0.2, ε = 1.0 and Mφ = 5 × 10−2. These values result in Re, Ma and Ca of typical value
of O (0.01) or at most O (0.1). To show the effect of thermal conductivity ratio on the induced flow and temperature field,
both kA = 0.2 and kA = 0.02 are simulated such that χ = 1 and χ = 1/10.

Fig. 3 shows equispaced contours of temperature field for the thermal conductivity ratio: (a) χ = 1 and (b) χ = 1/10. It
can be clearly seen that our numerical results (solid contours) agree well with the analytical solutions (dashed contours) as
given by Eqs. (50) and (53). This suggests that the halfway bounce-back scheme Eq. (45) is able to enforce accurately the
thermal boundary condition with non-uniform wall temperature. Note that our simulated isotherms slightly deviate from
the analytical ones in the neighborhood of the interface for χ = 1/10, which is caused by the finite interface thickness of
the phase-field model and the jump of thermal conductivity across the interface. At a low thermal conductivity ratio, i.e.
χ = 1/10, the isotherms approaching from the lower fluid tend to be normal to the interface, implying that heat transfer
between the lower fluid and the interface in the y-direction is close to zero. Fig. 4 shows the comparison of velocity
vectors between our simulation results and the analytical solutions as given by Eqs. (51), (52), (54), and (55) for χ = 1
and 1/10. The simulated velocity vectors also agree well with the analytical solutions except those close to the interface at
χ = 1/10, consistent with the deviation in isotherms. Finally, it can be found by comparing Fig. 4(a) with Fig. 4(b) that the
thermocapillary-driven convection will be strengthened with decreasing thermal conductivity ratio.

To assess the fluid–solid interaction model given by Eq. (5) implemented in the proposed phase-field model, we perform
static contact angle simulations in a 300 × 100 lattice domain. The dependence of the interfacial tension on the tempera-
ture is switched off so that a constant interfacial tension is used. The initial condition is a semi-circular stationary droplet
(fluid A) sitting along the center line on the bottom wall. The top wall is assumed to be neutral wetting, i.e., θ eq = 90◦ .
The periodic boundary condition is used in the horizontal direction while the halfway bounce-back boundary condition, i.e.
Eq. (45), is imposed at top and bottom in the vertical direction. The relaxation parameters are fixed at τA = 3.0 and τB = 0.7,
which gives a viscosity ratio of λ = (τA − 0.5)/(τB − 0.5) = 12.5. Other parameters are chosen as: σ = 0.038, ε = √

2 and
Mφ = 0.01. We run the simulation until the shape of droplet does not change, i.e. reaching an equilibrium state. Different
contact angles can be achieved through adjusting the dimensionless wetting potential Ωc according to Eq. (5). Fig. 5(a)–(c)
shows equilibrium shapes of the droplet with the wetting potential Ωc = −0.5, 0 and 0.5, respectively. Their correspond-
ing equilibrium contact angles, calculated from the measured droplet height and base diameter, are 60.22◦ , 89.97◦ and
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Fig. 3. Temperature contours for fluid systems with thermal conductivity ratios of (a) χ = 1 and (b) χ = 1/10. Analytical solutions and simulation results
are represented by the dashed lines and solid lines, respectively, labelled with temperature values.

119.54◦ , respectively. The simulated equilibrium contact angle as a function of the dimensionless wetting potential for a
wider range is presented in Fig. 6. It is clearly observed that the simulated results by the present LBM agree well with the
theoretical solution, Eq. (3), in the range of contact angle from 30◦ to 150◦ . Minimization of unphysical spurious velocities
at the interface still remains a challenge in many multiphase models. Fig. 7 shows the time evolution of the maximum
spurious velocities (Umax) for various contact angles. For all of the contact angles under consideration, the maximum spu-
rious velocities in the steady state range from 2 × 10−7 to 2.42 × 10−6, which are much smaller than those obtained by
other multiphase LBM models [37,42,46,32,60,41]. Therefore, the present phase-field model is well suited for simulating
multiphase flows in confined microfluidic geometries. In addition, it is interesting to make some remarks concerning the
choice of free parameters s1, s2 and s4 in the diagonal relaxation matrix S. First of all, the free parameters are not uniquely
determined although Lallemand and Luo [73] provided some guidelines to choose some of them. It is therefore not surpris-
ing that a number of forms of diagonal relaxation matrix have been reported in literature with different free parameters,
e.g., Refs. [71,82–84,59,85–87]. To date, trial-and-error approach is still required to find the most stable and reliable set of
free parameters for a specific problem. Secondly, it is acknowledged that the free parameters can affect the magnitude of
spurious velocities in multiphase/multicomponent LBM models [32,59,60] though they are not associated with the hydrody-
namic moments. For the simulations of static contact angle, we have found that the spurious velocities obtained with our
choice of s1 = 1.63, s2 = 1.14 and s4 = 1.92 are smaller than those obtained by the well-known Two-Relaxation-Time (TRT)
algorithm (s1 = s2 = 1

τ f
and s4 = 8(2−s1)

8−s1
) [88,75], the MRT of Pooley et al. (s1 = s2 = s4 = 1) [32], and the MRT of Fakhari

and Lee [87]. For example, in the case of Ωc =
√

3
2 the magnitudes of maximum spurious velocity are 2.42 × 10−6 for our

choice, 4.89 × 10−6 for the TRT, 6.73 × 10−6 for the MRT of Pooley et al., and 3.69 × 10−6 for the MRT of Fakhari and Lee,
respectively. Finally, the MRT algorithm should be more stable than the BGK model [73,88,74,75,32,59,60] even if the choice
of free parameters is not optimal. This is also demonstrated by our simulations, in which the fluid viscosities are decreased
to a very low value, e.g. τA = 0.53 and τB = 0.5024, while the other parameters are kept the same as the above. As can be
seen in Fig. 8, the droplet will be driven away from the bottom wall by the strong spurious velocities when the BGK model
is used, which is unphysical. However, our MRT algorithm is able to produce the correct equilibrium contact angle, with the
predicted value of 151.5◦ in good agreement with its theoretical value of 150◦ . Based on the limited numerical comparisons
shown here, the guidelines given by Lallemand and Luo [73] (recall that our free parameters are chosen following their
recommendation) seem to be applicable as well in the present multiphase MRT model. However, further study is required
to provide more insights in determining optimal parameters.
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Fig. 4. (Color online.) Velocity vectors for fluid systems with thermal conductivity ratios of (a) χ = 1 and (b) χ = 1/10. Velocity vectors are shown at every
third grid point. Analytical solutions and simulation results are represented by the red and blue lines with arrow, respectively.

Fig. 5. (Color online.) Droplet on a solid surface with the dimensionless wetting potential of (a) Ωc = −0.5, (b) Ωc = 0 and (c) Ωc = 0.5. The corresponding
contact angles are 60.22◦ , 89.97◦ and 119.54◦ , respectively.

3.2. Thermocapillary manipulation of a moving microdroplet on a solid substrate

Historically, the research on thermocapillary flow mainly focused on immersed droplets in an infinite fluid medium
under the microgravity conditions where no solid boundary is involved, avoiding complex fluid–surface interactions. Since
interfacial tension plays a dominant role compared to other forces for microscale droplets, microfluidics has opened up a
new avenue for droplet manipulation by the use of optically-induced thermocapillary convection, i.e., the so-called optocap-
illarity. Different from the flows in an infinite domain, the confinement and wettability of channel walls would quantitatively
or qualitatively modify the physics of thermocapillary migration in a microfluidic channel [89,90]. Although a color-fluid LB
model [53] has been developed to simulate optocapillary flows in a microchannel, and ‘blocking’ behavior of droplet was
reproduced successfully, the moving droplet is only allowed to be fully immersed in the carrier fluid without consideration
of wettability of channel walls. Thus, this model is inapplicable in most microfluidic environments where disperse droplets
interact directly with channel walls. In addition, the droplet dynamics in optocapillary flows is still poorly understood es-
pecially when the wall wettability is taken into account. Here we will apply the proposed phase-field LBM to numerically
study thermocapillary flows for a droplet adhering on a solid wall and subject to a simple shear flow in a microchannel,
in which a laser is used to locally heat the fluid. The effect of wall wettability and fluid viscosity ratio on droplet dynamic
behavior will be investigated for a constant thermal conductivity ratio. For the sake of simplicity, here we approximate the
heating from the laser as a local heat source of a Gaussian form:
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Fig. 6. Contact angle as a function of the dimensionless wetting potential with the simulation results represented by discrete points and the solid line from
the theoretical predictions by Eq. (3).

Fig. 7. (Color online.) Time evolution of the maximum spurious velocities (Umax) at various contact angles.

qT =
{

Q se
−2 (x−xs)2+(y−ys)2

w2
s , if [(x − xs)

2 + (y − ys)
2]� d2

s ,

0, otherwise,

(62)

where Q s is the maximum heat flux of the hot spot, xs and ys are the position of hot spot where the heat flux is taken to
be of the maximum value, ds is the size of the diffused hot spot, and ws is a parameter controlling the profile of heat flux.

The detailed problem setups are given as follows. As shown in Fig. 9, a stationary semi-circular droplet of radius R = 32
initially sits on a smooth substrate at the bottom. The computational domain size is Lx × L y = 8R × 2R and the initial
droplet center is (xC , yC ) = (65,0). The bottom wall is kept stationary, and the top wall moves towards the right with a
constant velocity U w , yielding a constant shear rate γ = U w/L y . Besides, a constant temperature T = 0 is specified at the
bottom and top walls. In the horizontal directions, periodic boundary conditions are applied for fluid flows while adiabatic
boundary conditions are used for temperature. The fluid is locally heated by a laser lighting source with its distribution
given by Eq. (62), in which xs = 181, ys = 21, ws = 6.0, ds = 8.0, and Q s = 0.2. To reproduce the thermocapillary blocking,
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Fig. 8. (Color online.) Snapshots of a droplet, which is initially placed on the bottom wall with a semi-circular shape for τA = 0.53, τB = 0.5024 and

Ωc =
√

3
2 , taken at times (a) t = 0, (b) t = 20,000, (c) t = 500,000, and (d) t = 1,000,000. Note that the BGK model is used in the simulation. The red

solid lines are zero contours of the order parameter φ.

Fig. 9. A schematic illustration of the geometry setup for simulating a moving droplet driven by a simple shear flow subjected to a laser heating. A semi-
circular droplet is initially placed on the bottom substrate with its center located at (xC , yC ).

the coefficient of interfacial tension variation with temperature, σT , should be positive [27,28]. Note that in our study
an “effective” coefficient is directly used accounting for both temperature and concentration effects in the presence of
surfactant. Specifically, we take σT = 2 × 10−4, and σref = 5 × 10−3 at the reference temperature Tref = 0. The dimensionless
numbers Ca, Re, Ma, and χ are respectively fixed at 0.01, 0.16, 0.08, and 1, where the characteristic length and velocity are
defined by L = R and U = γ R . In addition, the Cahn number can be calculated as Cn = ε/R � 0.044, and the Peclet number
Pe = γ Rε/M is of O(1), which is required to capture correct droplet dynamical behavior [91,92].

The contact angle plays an important role in determining the dynamical behavior of a moving droplet in a microchannel
due to large surface-to-volume ratio. The effect of contact angle is first investigated for a fixed fluid pair with λ = 1.
Different contact angles are achieved through adjusting the value of Ωc while keeping the other parameters fixed. When
a laser heating source is applied, it is observed that the droplet motion can be blocked to some extent, which depends
on the magnitude of the contact angle. As θ eq increases from 45◦ to 135◦ , the droplet motion can undergo two states. At
the smallest θ eq , the droplet motion is partially blocked. When θ eq increases beyond a critical value θ

eq
c (45◦ < θ

eq
c < 60◦),

the droplet motion is completely blocked, so the droplet finally rests at a site adjacent to the center (xs, ys) of the heating
source. Fig. 10 shows the time evolution of the droplet shape, position, and the streamlines around the moving droplet for
θ eq = 45◦ , which corresponds to the state that the droplet motion is partially blocked. The dimensionless time is defined
by the shear rate as t∗ = γ t . At an early time, i.e., t∗ = 6.25, since the droplet is far away from the laser heating source
and the viscous force driving the droplet motion is small, the streamlines are almost straight. As the droplet moves towards
the heating source, a small vortex begins to grow at the substrate inside the droplet (see Fig. 10(b)). At t∗ = 18.75, the
droplet moves further towards the heating source. The size of vortex inside the droplet increases, and a small vortex (i.e.,
the external vortex) starts to appear in the carrier fluid and close to the front end of the droplet. Shortly, another small
vortex starts to arise near the external vortex. But different from the external vortex, it is located on the other side of the
droplet interface with an opposite direction of rotation (see Fig. 10(d)). As the time elapses, the internal main vortex first
grows slightly and then diminishes gradually with the largest size occurring at t∗ = 28.13, while the other two vortices
both grow until t∗ = 50.0 (see Fig. 10(e)–(g)). Subsequently, the droplet keeps moving towards the right, and all the vortices
decrease significantly in size (see Fig. 10(h)–(j)). At t∗ = 59.69, we can notice that the external vortex has vanished and
its neighboring internal vortex also reduces to a small size. As the droplet passes through the center of heating source,
the neighboring internal vortex does not decrease further but increases (see Fig. 10(k) and (l)). This increase attributes to
the Marangoni convection at the top interface of the droplet, where a large temperature gradient may happen due to the
localized heating from laser. However, the internal main vortex continues to decrease and even becomes non-dominant in
size (see Fig. 10(l)) (note that we still call it main vortex in order to avoid inconsistency).
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Fig. 10. (Color online.) The time evolution of droplet shape, position and streamlines surrounding the droplet for θeq = 45◦ with the times taken as:
(a) t∗ = 6.25, (b) t∗ = 9.38, (c) t∗ = 18.75, (d) t∗ = 19.38, (e) t∗ = 23.44, (f) t∗ = 28.13, (g) t∗ = 50.0, (h) t∗ = 54.69, (i) t∗ = 57.81, (j) t∗ = 59.69,
(k) t∗ = 62.5, and (l) t∗ = 64.06. The red solid lines are zero contours of the order parameter φ , the black lines with arrows are the streamlines, and the
pink point is the center of the heating source.

Fig. 11 shows the time evolution of droplet shape, position, and streamline patterns around the moving droplet for θ eq =
90◦ , where the droplet motion is completely blocked due to stronger Marangoni convection arising from more “effective”
interfacial areas. At t∗ = 3.13, the droplet is far away from the laser heating source, and thus the effect of Marangoni
stresses is negligibly small. However, the streamlines are less horizontal and straight than those in the case of θ eq = 45◦
(see Fig. 11(a)), which is attributed to an increased viscous shear force. As the droplet moves forward, a clockwise-rotating
vortex, i.e., the internal main vortex, appears at the bottom wall inside the droplet at t∗ = 9.38. This vortex quickly grows,
and meanwhile its core uplifts (see Fig. 11(c)). At t∗ = 15.63, some S-shaped streamlines are observed in the region near the
front end of the droplet, where a small external vortex also starts to grow. The internal main vortex and the external vortex
continuously increase in size and between them, a new internal vortex with anticlockwise rotation has emerged (Fig. 11(e)).
At a later stage, all the vortices keep growing slowly until their sizes reaching the maximum values at t∗ = 31.25. Since
then, the positions of the droplet and vortices, as well as their sizes and shapes remain unchanged (Fig. 11(h)), indicating
that the droplet has been motionless and reached the steady state. It can be clearly seen that the two counter-rotating
internal vortices completely fill the droplet and the droplet behaves like a solid obstacle. Noted that in a flow around a solid
obstacle, one cannot observe vortex/recirculation outside the solid for a small Reynolds number, typically Re < 1. However,
in the present simulation the temperature gradient causes the fluid to flow away from the bottom wall regions of low
interfacial tension, and thereby the external vortex is formed. The existence of these stable vortex regions is a result of the
balance of various forces, including the pressure, viscous stresses, and the capillary and Marangoni forces. Similar droplet
behavior and flow patterns are also observed for θ eq = 60◦ , 120◦ and 135◦ . However, the contact angle affects the inception
time of each vortex, and the time at which the droplet motion is completely blocked. This can be clearly seen by comparing
the simulation results of two different contact angles, e.g., θ eq = 90◦ and θ eq = 135◦ (see Figs. 11 and 12). As will be shown
in Fig. 14, the droplet moves at a higher velocity for more hydrophobic surface (i.e., larger contact angle), so it will be earlier
to reach the region with higher temperature gradient, and intuitively the inception of each vortex and the droplet blocking
will occur earlier. But this intuition seems not true for the internal main vortex, which is formed at t∗ = 9.38 for θ eq = 90◦
while delayed to t∗ = 10.0 for θ eq = 135◦ . The delay may be associated to the larger viscous force at more hydrophobic
surface such that a larger temperature gradient is required to overcome this force for generating the vortex. At θ eq = 135◦ ,
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Fig. 11. (Color online.) The time evolution of droplet shape, position and streamlines surrounding the droplet for θeq = 90◦ with the times taken as:
(a) t∗ = 3.13, (b) t∗ = 9.38, (c) t∗ = 12.5, (d) t∗ = 15.63, (e) t∗ = 17.19, (f) t∗ = 17.81, (g) t∗ = 31.25, and (h) t∗ = 78.13. The red solid lines are zero
contours of the order parameter φ , the black lines with arrows are the streamlines, and the pink point is the center of the heating source. Besides, xA in
(a) denotes the x-position of the advancing contact point.

we also notice that the external vortex and its neighboring internal vortex are both larger in size, implying that the droplet
is easier to get blocked for more hydrophobic surfaces.

Fig. 13 gives the evolution of the temperature field surrounding the moving droplet for θ eq = 120◦ and λ = 1. We can
see that the temperature field has negligible change because thermal diffusion is the dominant energy transport mechanism
at small Marangoni numbers. As stated previously, we use the constant Marangoni number and thermal conductivity ratio
throughout this paper, i.e., Ma = 0.08 and χ = 1, it is therefore believed that all the temperature fields are almost the
same as those given in Fig. 13 even though big differences may be observed for droplet shape and velocity field when
different flow conditions are used. From the far field to the Center of Heating Source (CHS), the temperature increases, and
the isotherms become denser, implying a higher temperature gradient near the CHS. However, one should notice that the
temperature gradient is positive on the left side of CHS but it is negative on the right side. Considering the Marangoni force
that causes the fluid to move towards the regions of high interfacial tension (or high temperature) along the interface, it is
expected that the Marangoni force arising at the interface serves to block the droplet motion when the interface is located
on the left side of the CHS. Once the droplet interface moves to the right side of CHS, an opposite Marangoni force, which
promotes the droplet motion, will be formed at this interface. In particular, if some droplet interface is located to the left
side of the CHS but the rest subject to the right side, the acceleration or deceleration of droplet will depend on which side
of the interfacial force prevails. During the droplet motion, various forces are dynamically varying in magnitude and compete
with each other, leading to the droplet behavior very complicated especially when the droplet motion is partially blocked.
This can be clearly seen in Fig. 14, which plots the x-coordinate of droplet centroid as a function of the dimensionless
time t∗ , calculated by

xd(t) =
∫

V φx dV∫
V φ dV

=
∑

x x(x, t)φ(x, t)∑
x φ(x, t)

, where φ < 0. (63)
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Fig. 12. (Color online.) The time evolution of droplet shape, position and streamlines surrounding the droplet for θeq = 135◦ with the times taken as:
(a) t∗ = 3.13, (b) t∗ = 10.0, (c) t∗ = 12.5, (d) t∗ = 13.44, (e) t∗ = 15.63, (f) t∗ = 17.19, (g) t∗ = 28.13, and (h) t∗ = 78.13. The red solid lines are zero
contours of the order parameter φ , the black lines with arrows are the streamlines, and the pink point is the center of the heating source.

By differentiating xd with respect to time, we obtain that, the droplet initially slides on the substrate at a constant velocity
for all the contact angles because the droplet is far from the CHS. However, the moving velocity increases with increasing
contact angle. Afterwards, the droplet motion exhibits significantly different characteristics for θ eq = 45◦ and θ eq � 60◦ . For
θ eq � 60◦ the droplet will continuously slows down and finally rests in the vicinity of the CHS. It can be observed in Fig. 14
that the final rest position of droplet centroid, xd(t → ∞), increases as the contact angle increases. So does it mean that
the droplet becomes more difficult to be blocked with an increase in θ eq? To clarify this question, we have plotted the
rest position of the advancing contact point xA (i.e., the intersection between the droplet front and the solid surface as
indicated in Fig. 11(a)) as a function of the contact angle in the inset of Fig. 14. As the contact angle increases, xA decreases,
indicating that the droplet gets blocked more easily. Actually, the aforementioned observations that xd(t → ∞) increases
with increasing θ eq is caused by the large horizontal length of droplet for small contact angle. For the smallest contact
angle, i.e., θ eq = 45◦ , the droplet motion successively experiences the transition of constant velocity (CV), deceleration (DC),
acceleration (AC), and approximately constant velocity (ACV). To better understand these droplet behaviors, we choose the
discrete points b, d, h and k on the line of θ eq = 45◦ , which fall into the regimes of CV, DC, AC and ACV, respectively. Note
that the corresponding snapshots for the four discrete points are given in Fig. 10(b), (d), (h) and (k), respectively. As we
expect, the droplet is far from the CHS in the CV regime. In the DC regime, the droplet front is very close to the CHS, and
the interface is mainly located on the left side of CHS. In the AC regime, the Marangoni force at the interface located on
the right side of the CHS is large enough to dominate the droplet motion, where more droplet interface is exposed in the
region of high temperature gradient. In the ACV regime, the droplet is passing through the CHS, and the Marangoni force
at the right interface of CHS still keeps a little larger than the one at the left interface. The discrepancy in Marangoni force
is quasi-balanced by the viscous stresses, and thus it is not surprising that the droplet moves at a velocity larger than the
initial droplet velocity in the far field.

For a droplet/bubble migration in an infinite medium, the viscosity ratio was found to strongly affect its migration
velocity [93]. It is believed that the influence of viscosity ratio is more complicated in a confined microchannel due to the
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Fig. 13. (Color online.) The time evolution of the temperature field surrounding the moving droplet for θeq = 120◦ and λ = 1 with the times taken as
(a) t∗ = 3.13, (b) t∗ = 9.69, (c) t∗ = 12.5, (d) t∗ = 14.38, (e) t∗ = 16.25, (f) t∗ = 18.75, (g) t∗ = 23.44, and (h) t∗ = 39.06. At each time step, the zero
contour of φ is indicated by the red solid line, and the temperature contours are plotted by the green solid lines with every 1.5 spacing and the initial
value of 0.5 starting from the far field towards the center of the heating source, which is represented by an X-shaped cross.

Fig. 14. (Color online.) The x-coordinate of droplet centroid as a function of dimensionless time for various contact angles, where the discrete points b, d, h
and k are explained in the text. The lower inset indicates the rest position of the advancing contact point as a function of the contact angle for θeq � 60◦ ,
where the droplet motion is completely blocked.
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Fig. 15. (Color online.) The time evolution of droplet shape, position and streamlines surrounding the droplet for λ = 1/20 with the times taken as: (a) t∗ =
3.13, (b) t∗ = 7.81, (c) t∗ = 9.38, (d) t∗ = 10.0, (e) t∗ = 10.94, (f) t∗ = 11.88, (g) t∗ = 12.81, (h) t∗ = 13.75, (i) t∗ = 14.38, (j) t∗ = 15.63, (k) t∗ = 28.13, and
(l) t∗ = 46.88. The red solid lines are zero contours of the order parameter φ , the black lines with arrows are the streamlines, and the pink point is the
center of the heating source.

fluid–surface interactions. Therefore, we examine the effect of viscosity ratio for the fixed contact angle θ eq = 120◦ . Different
viscosity ratios are achieved by adjusting the viscosity of dispersed phase while keeping the viscosity of continuous phase
fixed. When the viscosity ratio is varied from 1

20 to 10, the droplet motion also undergoes two states. At low viscosity
ratios, i.e., λ � 1, the droplet motion can be completely blocked; whereas at high viscosity ratios the droplet motion can
only partially blocked, and droplet will eventually pass through the CHS. Although the droplet behavior is very similar for all
λ� 1, the structures of internal vortices are significantly different, which can be seen from the comparison between λ = 1

20
and λ = 1. Note that the simulation result with λ = 1 is not shown here because the growth and structure of all vortices
exhibit similar characteristics to those given in Figs. 11 and 12, where two counter-rotating internal vortices completely fills
the droplet, and the internal main vortex has much larger size. Fig. 15 gives the time evolution of droplet shape, position,
and streamline patterns around the moving droplet for λ = 1

20 . At t∗ = 7.81, we can observe that a clockwise-rotating vortex
starts to appear at the bottom wall inside the droplet, and it is closer to the front end of moving droplet compared to those
in the cases with λ = 1. As the droplet moves forward, the internal vortex becomes bigger, meanwhile it is elongated
backwards due to large flow resistance, arising primarily from the thermocapillary convection at the front interface of
droplet (see Fig. 15(c)). At t∗ = 10.0, another new vortex (called the N vortex hereafter) is formed on the left side inside
the former internal vortex (called the F vortex hereafter), and it has a higher center in spatial position than the F vortex.
As shown in Fig. 15(f), the N vortex significantly increases in size, and an external vortex arises at the wall surface near the
front end of droplet interface. Subsequently, the droplet continues to advance towards the heating source, but the advancing
velocity is relatively low. The external vortex and the N vortex both increase continuously in size, but the size of F vortex
almost remains unchanged (see Fig. 15(g) and (h)). In addition, it can be clearly seen that in the droplet, the streamlines
adjacent to the CHS gradually become warped, indicating that the thermo-induced Marangoni convection is getting stronger.
As the droplet approaches the steady state, an anticlockwise-rotating vortex appears between the external vortex and the
F vortex (see Fig. 15(i)), as observed previously in Figs. 11 and 12. This new born vortex keeps growing slightly until
t∗ = 28.13. Finally, the droplet motion creases completely and the system reaches the steady state (see Fig. 15(k) and (l)).

When the viscosity ratio is increased to 5, the induced thermocapillary force is not strong enough to stop the droplet
movement, which can be clearly seen from Fig. 16. At t∗ = 12.81, we can see a vortex formed at the bottom wall in the
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Fig. 16. (Color online.) The time evolution of droplet shape, position and streamlines surrounding the droplet for λ = 5 with the times taken as: (a) t∗ = 3.13,
(b) t∗ = 12.81, (c) t∗ = 20.31, (d) t∗ = 23.44, (e) t∗ = 25.63, (f) t∗ = 28.13, (g) t∗ = 29.69, (h) t∗ = 31.25, and (i) t∗ = 32.81. The red solid lines are zero
contours of the order parameter φ , the black lines with arrows are the streamlines, and the pink point is the center of the heating source.

middle of the contact line. Obviously, the vortex formation occurs much later compared with the case of λ = 1/20, which
is due to the fact that droplet moves slower at high viscosity ratios (see Fig. 17 below). This vortex, referred to as the
main vortex, continuously increases in size, and an external vortex also starts to grow near the advancing contact point at
t∗ = 20.31. The main and external vortices both keep growing until their sizes reach the maximum at t∗ = 23.44, when
another internal vortex is found to arise between the two former vortices. However, the newborn internal vortex vanishes
shortly, different from what we have seen in Fig. 10, where the droplet motion is also partially blocked. It should be noted
that at t∗ = 23.44 the droplet front is just before the center of the heating source, beyond which the droplet motion will
slow down. As the droplet front passes through the center of the heating source, all the vortices diminish (see Fig. 16(e)
and (f)), and we can observe that the external vortex has disappeared at t∗ = 28.13. After that, the main vortex continues
to shrink (see Fig. 16(g)–(i)). At t∗ = 29.69, a new wall vortex appears away from the advancing contact point around 15
lattices. Note that such a wall vortex is not observed in Fig. 10. This difference may be caused by the difference in contact
angle. The wall vortex quickly increases (see Fig. 16(h) and (i)) and an internal vortex emerges near the top of the droplet
(Fig. 16(h)), which is attributed to the Marangoni convection induced at the top interface of the droplet. The top vortex also
grows quickly with its size much bigger than the main vortex at t∗ = 32.81.

To know the influence of viscosity ratio on the droplet motion, we plots the x-coordinate of droplet centroid as a function
of dimensionless time for the viscosity ratios of 1/20, 1/5, 1, 5 and 10, which is shown in Fig. 17. For low viscosity ratios,
i.e., λ � 1, the droplet first moves at a constant velocity, and then decelerates until it comes to rest. We interestingly
observe that the droplet motion almost exhibits the same behavior for two lowest viscosity ratios. For high viscosity ratios,
e.g., λ � 5, the droplet motion successively experiences the transition of CV, DC, AC, DC, ACV, DC, AC, DC, and CV. The
former three regimes/processes, i.e., CV, DC and AC, are essentially the same as those observed in the case of θ eq = 45◦ (see
the blue line in Fig. 14), where the droplet is also blocked partially. We do observe an intermediate DC process (the open
circle f in Fig. 17 with the corresponding snapshot given in Fig. 16(f)) when the droplet motion transits from AC to ACV;
whereas for θ eq = 45◦ the DC process is not clearly distinguished. The DC process results from the reduction in Marangoni
force on the right side of the CHS, since the droplet front moves away from the region of high temperature gradient (see
Fig. 16(f)). When the droplet interface on the left and right sides is approximately symmetric with respect to the CHS, the
droplet motion will revert to an approximately constant velocity (see Fig. 16(g), which is the corresponding snapshot of
open circle g in Fig. 17). As the droplet continues to advance, the interface symmetry is broken, and the interface on the left
of CHS is closer to the CHS where the temperature gradient is higher, so the droplet once again decelerates. Once the whole
droplet moves to the right of the CHS, the Marangoni force will contribute to accelerate its motion. As the droplet moves
away from the CHS, the decreased Marangoni force cannot keep it moving at an increasing or even a constant velocity. Thus
the droplet is slowed down due to the viscous stresses from the carrier fluid, and finally moves at constant velocity, as
observed in the early stage. In addition, it can be noticed in Fig. 17 that, as the viscosity ratio decreases, the initial droplet
velocity increases, but the droplet blocking becomes increasingly significant. This suggests that the Marangoni convection
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Fig. 17. (Color online.) The x-position of droplet centroid as a function of dimensionless time for various viscosity ratios. Note that the open circles on line
of λ = 5 correspond to the subfigures (f)–(i) in Fig. 16.

is strengthened with decreasing viscosity ratio, which is consistent with the previous theoretical analysis and numerical
results [93,94].

4. Conclusions

A lattice Boltzmann phase-field model has been developed to simulate thermocapillary flows in a confined microfluidic
geometry. Based on the phase-field theory, an interfacial force of potential form is proposed to model the interfacial tension
forces and the Marangoni stresses because of the gradient of interfacial tension. As only the first-order derivatives are in-
volved, the interfacial force of potential form can be easily combined with a cubic wetting boundary condition to account for
the fluid–surface interactions, which can effectively suppress the spurious velocities near the solid walls. The hydrodynamic
equations are solved through a multiple-relaxation-time approach, which can enhance the numerical stability for solving
a binary fluid with large viscosity difference and produce correct equilibrium contact angles. The temperature field, which
is coupled to the interfacial tension by the equation of state, is also solved in the LB framework, where thermal boundary
conditions are imposed by a general halfway bounce-back scheme recently proposed by Zhang et al. [61].

The lattice Boltzmann phase-field model is validated and then used to numerically demonstrate that the laser heating
can generate the thermocapillary forces to block the droplet motion when a liquid droplet is attached to a solid substrate in
microchannel, subject to a simple shear flow. The position and intensity of the laser heating source are kept constant, and
the thermal conductivity ratio of both fluids is fixed at χ = 1. When the contact angle θ eq increases from 45◦ to 135◦ , the
droplet motion will transit from partial blocking to complete blocking, and the blocking becomes increasingly pronounced.
In the case of partial blocking (θ eq = 45◦), the droplet motion successively experiences four processes: CV, DC, AC, and
ACV. In the case of complete blocking (θ eq � 60◦), the droplet firstly slides on the substrate at a constant velocity, and
then slows down until it creases. When the droplet finally becomes motionless, the structure of vortices exhibits common
characteristics: two counter-rotating vortices fill the droplet completely with the internal main vortex dominating in size,
and an external vortex is situated at the corner of the droplet front and the bottom wall. The viscosity ratio λ is also found
to strongly influence the droplet dynamic behavior. For low viscosity ratios (λ � 1), the droplet motion can be blocked
completely. Although the droplet motion exhibits the similar behavior for all λ � 1, the structure of the internal vortices
is more complicated for lower viscosity ratio. For high viscosity ratios (λ � 5), the droplet motion is partially blocked and
successively experiences the transition of CV, DC, AC, DC, ACV, DC, AC, DC, and CV, which is much more complex than
what we observe in the case of θ eq = 45◦ . These transitions can be explained as a result of the competition between the
Marangoni forces and viscous stresses, which are dynamically varying as the droplet moves forward.
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