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Abstract
Most of the hosts used to produce the 151 recombinant pharmaceuticals so far approved for
human use by the Food and Drug Administration (FDA) and/or by the European Medicines Agency
(EMEA) are microbial cells, either bacteria or yeast. This fact indicates that despite the diverse
bottlenecks and obstacles that microbial systems pose to the efficient production of functional
mammalian proteins, namely lack or unconventional post-translational modifications, proteolytic
instability, poor solubility and activation of cell stress responses, among others, they represent
convenient and powerful tools for recombinant protein production. The entering into the market
of a progressively increasing number of protein drugs produced in non-microbial systems has not
impaired the development of products obtained in microbial cells, proving the robustness of the
microbial set of cellular systems (so far Escherichia coli and Saccharomyces cerevisae) developed for
protein drug production. We summarize here the nature, properties and applications of all those
pharmaceuticals and the relevant features of the current and potential producing hosts, in a
comparative way.

Introduction
Proteins are catalysers of metabolic reactions, structural
components of biological assemblies, and responsible for
inter and intracellular interactions and cell signalling
events that are critical for life. Therefore, deficiencies in
the production of specific polypeptides or the synthesis of
mutant, non-functional versions of biologically relevant
protein usually derive in pathologies that can range from
mild to severe. In humans, such diseases can be treated by
the clinical administration of the missing protein from
external sources, to reach ordinary concentrations at sys-
temic or tissular levels [1]. Therefore, many human pro-
teins have an important pharmaceutical value but they are
difficult to obtain from their natural sources. Recom-

binant DNA (rDNA) technologies, developed in the late
70's using the bacterium Escherichia coli as a biological
framework, offer a very potent set of technical platforms
for the controlled and scalable production of polypep-
tides of interest by relatively inexpensive procedures. This
can be done in convenient microbial cells such as bacteria
and yeasts, whose cultivation can be accomplished by rel-
atively simple procedures and instrumentation. In early
80's, the FDA approved the clinical use of recombinant
human insulin from recombinant E. coli (Humulin-US/
Humuline-EU) for the treatment of diabetes [2], being the
first recombinant pharmaceutical to enter the market. The
versatility and scaling-up possibilities of the recombinant
protein production opened up new commercial opportu-
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nities for pharmaceutical companies. Since the approval
of recombinant insulin, other recombinant DNA drugs
have been marketed in parallel with the development and
improvement of several heterologous protein production
systems. This has generated specific strains of many
microbial species adapted to protein production, and has
allowed the progressive incorporation of yeasts and
eukaryotic systems for this purpose. Among the 151 pro-
tein-based recombinant pharmaceuticals licensed up to
January 2009 by the FDA and EMEA, 45 (29.8%) are
obtained in Escherichia coli, 28 (18.5%) in Saccharomyces
cerevisiae, 17 (11.2%) in hybridoma cells, 1 in transgenic
goat milk, 1 in insect cells and 59 (39%) in mammalian
cells (Figure 1) [3]. In the next sections, the key properties
of these expression systems will be analyzed regarding
both the biological convenience and final quality of the
products. Alternative promising protein production sys-
tems such as filamentous fungi, cold-adapted bacteria and
alternative yeast species among others are under continu-
ous development but only few biopharmaceutical prod-
ucts from them have been marketed. Relevant properties
of such promising systems and their potential as produc-
ers of therapeutic proteins have been extensively reviewed
elsewhere [4-12].

Escherichia coli
The enterobacterium E. coli is the first-choice microorgan-
ism for the production of recombinant proteins, and

widely used for primarily cloning, genetic modification
and small-scale production for research purposes. This is
not surprising as the historical development of microbial
physiology and molecular genetics was mainly based on
this species, what has resulted in a steady accumulation
and worldwide use of both information and molecular
tools (such as engineered phages, plasmids and gene
expression cassettes). However, several obstacles to the
production of quality proteins limit its application as a
factory for recombinant pharmaceuticals. Recombinant
proteins obtained in E. coli lack the post-translational
modifications (PTMs) which are present in most of
eukaryotic proteins [13]. Glycosylation is the most com-
mon PTM [14] but many others, such as disulfide bond
formation, phosphorylation and proteolytic processing
might be essential for biological activity. PTMs play a cru-
cial role in protein folding, processing, stability, final bio-
logical activity, tissue targeting, serum half-life and
immunogenicity of the protein; therefore PMT deficient
version might be insoluble, unstable or inactive. Interest-
ingly, it is possible to attach or bind synthetic PTMs in the
case of pegylated products [15] such as human growth
hormone, granulocyte colony stimulating factor, interfer-
ons alfa-2a and alfa-2b, which renders versions of the pro-
tein in serum more stable than the naked product. Also,
the N-linked glycosylation system of Campylobacter jejuni
has been successfully transferred to E. coli, making this
approach a promising possibility for the production of
glycosilated proteins in this species [16]. Furthermore,
through genetic engineering of the underlying DNA, the
amino acid sequence of the protein can be changed to
alter its ADME (absorption, distribution, metabolism,
and excretion) properties, as it has been observed for insu-
lin (Table 1) [17].

On the other hand, the frequencies with which the differ-
ent codons appear in E. coli genes are different from those
occurring in human genes, and this is directly related to
the abundance of specific tRNAs. Therefore, genes that
contain codons rare for E. coli may be inefficiently
expressed by this organism and cause premature termina-
tion of protein synthesis or amino acid misincorporation,
thus reducing the yield of expected protein versions [18].
This problem can be solved either by site-directed replace-
ment of rare codons in the target gene by codons that are
more frequently used in E. coli, or, alternatively, by the co-
expression of the rare tRNAs (E. coli strains BL21 codon
plus and Rosetta were designed for this purpose). In addi-
tion, initial methionine removal depends on the side
chain of the penultimate amino acid of N-terminal in
final recombinant proteins produced in E. coli although it
can be efficiently removed using recombinant methionine
aminopeptidase [19]. Some mutant E. coli strains have
been developed to promote disulfide bond formation
(AD494, Origami, Rosetta-gami) and/or with reduced

Number (and percentage values siding the bars) of recom-binant proteins approved as biopharmaceuticals in different production systemsFigure 1
Number (and percentage values siding the bars) of 
recombinant proteins approved as biopharmaceuti-
cals in different production systems. Data has been 
adapted from Table 1 in [3]. Exubera, an inhalated recom-
binant human insulin produced in E. coli has been omitted 
since Pfizer stopped its marketing in January 2008. Two 
recently FDA approved products Xyntha and Recothrom 
produced both in CHO cells have also been added.
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protease activity (BL21). As an additional technical obsta-
cle, proteins larger than 60 kDa are inefficiently obtained
in soluble forms in E. coli [20].

As it has been well documented, bacteria overproducing
either eukaryotic or prokaryotic recombinant proteins are
subjected to different stresses (essentially metabolic and
conformational) [21]. Under this situation, protein
processing associated to cell stress responses might render
non useless products, mainly because of lack of solubility,
and many protein species deposit in high amounts as pro-
tein aggregates known as inclusion bodies (IBs) [22-25].
By adjusting media composition, growth temperature,
inducer concentration, promoter strength and plasmid
copy number, variable amounts of the target protein can
be forced to appear in the soluble form [26,27], although
unfortunately, many eukaryotic proteins are exclusively
found trapped in IBs and seem to be resistant to process-
based solubility enhancement. While IBs formed by
enzymes can be efficient catalysers in enzymatic reactions
[28-32], pharmaceutical proteins need, in contrast, to be
dispersed as soluble entities to reach their targets at thera-
peutic doses. IBs essentially contain the recombinant pro-
tein in variable proportions (from 60 to more than 90%)
and some contaminants as chaperones, DNA, RNA and
lipids [33]. Although stored protein can be released from
IBs using denaturing conditions, in vitro refolding proc-
esses are not as effective as expected [34] and other expres-
sion systems should be tried. In some cases, recombinant
proteins have been successfully purified from IBs as for
example Betaferon [35] and insulin [36]. However, for
non integral membrane proteins, cytosolic and/or soluble
protein domains, the probability of success is reasonably
high and E. coli should be then considered as a promising
expression system [37].

In summary, around 10% of full-length eukaryotic pro-
teins tested in this system have been successfully pro-
duced in soluble form in E. coli [38]. Approved
therapeutic protein-based products from E. coli include
hormones (human insulin and insulin analogues, calci-
tonin, parathyroid hormone, human growth hormone,
glucagons, somatropin and insulin growth factor 1), inter-
ferons (alfa-1, alfa 2a, alfa-2b and gamma-1b), inter-
leukins 11 and 2, light and heavy chains raised against
vascular endothelial growth factor-A, tumor necrosis fac-
tor alpha, cholera B subunit protein, B-type natriuretic
peptide, granulocyte colony stimulating factor and plas-
minogen activator (Additional file 1). Noteworthy, most
of the recombinant pharmaceuticals produced in E. coli
are addressed for the treatment of infectious diseases or
endocrine, nutritional and metabolic disorder disease
groups (Figure 2).

Saccharomyces cerevisiae
Production in yeast is usually approached when the target
protein is not produced in a soluble form in the prokary-
otic system or a specific PTM, essential for its biological
activity, cannot be produced artificially on the purified
product [13]. Yeasts are as cost effective, fast and techni-
cally feasible as bacteria and high density cell cultures can
also be reached in bioreactors. Even more, mutant strains
that produce high amounts of heterologous protein are
already available. Even though yeasts are able to perform
many PTMs as O-linked glycosylation, phosphorylation,
acetylation and acylation, the main pitfall of this expres-
sion system is related to N-linked glycosylation patterns
which differ from higher eukaryotes, in which sugar side
chains of high mannose content affect the serum half-life
and immunogenicity of the final product. Although less
studied than in bacteria, the production of recombinant

Table 1: Recombinant insulins approved for human use. 

INN1 Trade name Production system Modifications from natural PK2

Insulin human Humulin
Insuman
Exubera3

E. coli None Short-acting insulin

Insulin human Novolin S. cerevisiae None Short-acting insulin

Insulin lispro Humalog E. coli PB28K and KB29P Rapid-acting insulin analogue
Insulin glulisine Apidra E. coli NB3K and KB29E Rapid-acting insulin analogue
Insulin aspart Novorapid S. cerevisiae DB28P Rapid-acting insulin analogue

Insulin glargin Lantus E. coli NA21G and 2 additional R in B chain Long-acting insulin analogue
Insulin detemir Levemir S. cerevisiae TB30del and myristic fatty acid attached to KB29 by 

acylation
Long-acting insulin analogue

Insulin is a polypeptide of 51 amino acid, 30 of which constitute A chain, and 21 of which comprise B chain. The two chains are linked by a disulfide 
bond. Mutations in amino acid sequences are noted for each of the chains.
1INN: International Nonproprietary Names. 2PK:PharmacoKinetics. 3Exubera: Rapid-actin insulin using inhalation route [17], was discontinued in 
2008 by the manufacturer
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proteins also triggers conformational stress responses and
produced proteins fail sometimes to reach their native
conformation. Recent insights about conformational
stress, and in general, to cell responses to protein produc-
tion in recombinant yeasts have been extensively reviewed
elsewhere [21,39,40].

The approved protein products produced in yeast are
obtained exclusively in Saccharomyces cerevisiae [4] and
correspond to hormones (insulin, insulin analogues, non
glycosylated human growth hormone somatotropin, glu-
cagon), vaccines (hepatitis B virus surface antigen -in the
formulation of 15 out of the 28 yeast derived products-)
and virus-like particles (VLPs) of the major capsid protein
L1 of human papillomavirus type 6, 11, 16 and 18, urate
oxidase from Aspergillus flavus, granulocyte-macrophage
colony stimulating factor, albumin, hirudin of Hirudo
medicinalis and human platelets derived growth factor. As
in the case of E. coli, most of the recombinant pharmaceu-
ticals from yeast are addressed to either infectious diseases
or endocrine, nutritional and metabolic disorders (Figure
2), being these therapeutic areas the most covered by
microbial products. Interestingly, several yeast species
other than S. cerevisiae are being explored as sources of
biopharmaceuticals and other proteins of biomedical
interest [21,41]. In addition, current metabolic engineer-
ing approaches [42] and optimization of process proce-
dures [43,44] are dramatically expanding the potential of
yeast species for improved production of recombinant
proteins.

Insect cell lines
Cultured insect cells are used as hosts for recombinant
baculovirus infections. The production of a recombinant
viral vector for gene expression is time-consuming, the
cell growth is slow when compared with former expres-
sion systems, the cost of growth medium is high and each
protein batch preparation has to be obtained from fresh
cells since viral infection is lethal. PTMs are also an impor-
tant limitation of this expression system because of the
simple non-syalated N-linked glycosylation which is
translated in a rapid clearance from human sera [45].
Although genetic engineering has been used to select
transgenic insect cell lines (MIMIC™ from Invitrogen and
SfSWT-3) expressing galactosyltransferase, N-acetylglu-
cosaminyltransferases, syalic acid synthases and syalil-
transferases genes [46-48] to obtain humanized complex
N-linked glycosylation protein patterns, there are still
unwanted toxicological issues that need to be overcome.

There is only one approved biopharmaceutical product
containing recombinant proteins from infected insect cell
line Hi Five, Cervarix, consisting on recombinant papillo-
mavirus C-terminal truncated major capsid protein L1
types 16 and 18. Nonetheless, this expression system has
been extensively used in structural studies since correctly
folded eukaryotic proteins can be obtained in a secreted
form in serum free media which enormously simplifies
protein capture in purification protocols.

Hybridoma cell lines
Hybridomas are fusion cells of murine origin (B-cells and
myeloma tumour cells) that are able to express specific
monoclonal antibodies against a determined antigen,
thus possessing therapeutic potential [49]. Clone selec-
tion may account for the progressive enrichment of cells
displaying a glycosylation profile with reduced potency
and undesirable immunogenic reaction since the human
immune system recognizes mouse antibodies as foreign.

Genetic engineering has been applied to obtain human-
ized monoclonal antibodies using either recombinant
mammalian cells producing chimeric antibodies or genet-
ically modified mice to produce human-like antibodies
[49]. One such product, Remicade, which binds tumour
necrosis factor-alpha, is a pharmaceutical blockbuster
used in the treatment of Crohn's disease.

Hamster cell lines
Most of the therapeutic proteins approved so far have
been obtained using transgenic hamster cell lines, namely
49 in chinese hamster ovary cells (CHO) and 1 in baby
hamster kidney cells (BHK) (Additional file 1). The main
advantage of this expression system is that cells can be
adapted to grow in suspension in serum free media

Number of recombinant biopharmaceuticals in different pro-duction systems, grouped by WHO therapeutic indications (see the legend of Additional file for nomenclature)Figure 2
Number of recombinant biopharmaceuticals in dif-
ferent production systems, grouped by WHO thera-
peutic indications (see the legend of Additional file 
for nomenclature). Products from E. coli and S. cerevisae 
are also presented together under the category of microbial 
cells.
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(SFM), protein-free and chemically defined media [50].
This fact increases the biosafety of final products reducing
risk of introducing prions of bovine spongiform encepha-
lopathy (BSE) from bovine serum albumin and of infec-
tious variant Creutzfeldt-Jakob Disease (vCJD) from
human serum albumin. In addition, recombinant prod-
ucts can be secreted into the chemical defined media,
which simplifies both upstream and downstream purifi-
cation process [51]. PTMs in this expression system are
almost the same as in human cell lines, although some
concerns about comparability in the glycosylation pattern
have arisen when comparing different batches of the same
manufacturer product and biosimilars [52]. Further devel-
opment of chemically defined media and fine description
of growth conditions would help to overcome this issue.

Human cell lines
In the recent years, three therapeutic proteins produced in
human cell lines have been approved, namely Dynepo-
erithropoietin, Elaprase-irudonate-2-sulfatase and Repla-
gal-alfa-galactosidase A. These products are fully glyco-
sylated human proteins, so this expression system should
be addressed when heavily glycosylation is needed. In
general, recombinant biopharmaceuticals obtained from
mammalian cells cover a wider spectrum of pathological
conditions than those obtained from microbes, and the
distribution of applications is less biased than when
observing products from E. coli or S. cerevisae (Figure 2).

Transgenic animals
Transgenic animals (avian and mammals), have been suc-
cessfully used for the production of recombinant proteins
secreted into egg white and milk respectively. Protein pro-
duction using transgenic farm animals supposes a great
biotechnological challenge in terms of safety concerns
such as transmission of infectious diseases (including
viral and prion infections) or adverse allergenic, immuno-
genic and autoimmune responses. In 2006, ATryn was the
first and so far single approved rDNA biopharmaceutical
using transgenic animals and validated manufacturer
technology platform. It contains human antithrombin
(432 amino acids) with 15% glycosylated moieties and is
secreted into the milk of transgenic goats. Another prod-
uct obtained from the milk of transgenic rabbits (Rhucin)
has been recently denied for its approval by the EMEA
although more tests of repeated treatment are underway
to try again its approval. Despite such limited progress, if
pharmacovigilance after patient treatment does not reveal
any adverse side effects, we might envisage, in the next
years, an increase in the approval rate of recombinant pro-
tein products from transgenic animal origin.

Alternative, non microbial systems for forthcoming 
products
As previously discussed, recombinant DNA biopharma-
ceuticals obtained from bacterial, yeast or mammalian

cell culture bioreactors are quite effective as therapeutic
agents although production costs are relatively high. One
way to address the economic-cost benefit hurdle is
through the use of transgenic organisms to manufacture
biopharmaceuticals. Biopharming would dramatically
reduce the cost of recombinant therapeutic proteins not
only in the initial construction of production facilities but
also the scale-up process and the final recombinant pro-
tein yield. Nonetheless, the fact that regulatory guidelines
are being developed as the same time that the establish-
ment of protein production processes is creating uncer-
tainty within biotechnological companies to fulfil drug
administration requirements.

Transgenic plants have been used as recombinant protein
producers for research and diagnostic uses due to the
advantageous low cost of cultivation, high mass produc-
tion, flexible scale-up, lack of human pathogens and addi-
tion of eukaryotic PTMs. The first recombinant protein
product obtained from transgenic tobacco was human
growth hormone [53] and since then, many other prod-
ucts have been obtained (including antibodies, the sur-
face antigen of the Hepatitis-B-Virus, industrial enzymes
and milk proteins). Again, the main disadvantage is
related to the plant specific PMTs introduced in recom-
binant proteins which produce adverse immune
responses. Moreover, the possibility to spread the proteins
in open fields and the negative public perception of the
transgenic plants precludes the use of plants as an attrac-
tive expression system of therapeutic proteins.

Host comparative trends in rDNA biopharmaceutical 
approval
As mentioned above, human insulin produced in E. coli
was the first rDNA pharmaceutical approved for use,
which was followed by a progressively increasing number
of other protein drugs from bacteria and yeast (Figure 3).
Since 1995, the progression of products of mammalian
origin was noticeable and extremely regular, and quanti-
tatively comparable to that of microbial products. Impor-
tantly, the incorporation of mammalian cells as factories
for rDNA pharmaceuticals has neither represented an
excluding alternative to microbial hosts nor resulted in a
decrease in the approval rate of microbial products (Fig-
ure 3). This is probably due to the extremely different bio-
logically and technologically backgrounds associated to
protein production, the good quality of microbial prod-
ucts and the high costs associated to mammalian cell pro-
duction. In addition, this fact indicates the potential of
microbial cells in biopharmaceutical industry despite the
limited PTM performance of their products and other bot-
tlenecks as discussed above. Also, microbial cell factory
products cover a spectrum of products and application
fields that do not necessarily match those addressed by
mammalian cell factories (Figure 2).
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Interestingly, a plateau in the rate of rDNA drug approval
during the last 2–3 years is becoming perceivable, irre-
spective of the production system (Figure 3). Although it
might be observed as a transient event, this fact seems
instead to indicate that the current production systems
could be near to the exhaustion regarding their ability to
hold the production of complex proteins, protein com-
plexes or the so-called difficult-to-express proteins. Desir-
ably, recent insights about system's biology of
recombinant cells and hosts, and specially, arising novel
concepts on recombinant protein quality [54-56] and
host stress responses [21] would enlarge the possibilities
for metabolic and process engineering aiming to the eco-
nomically feasible production of new, more complex
drugs. Indeed, pushed by fast advances in molecular med-
icine the pharmaceutical industry is urgently demanding
improved production systems and novel and cheaper
drugs.

Conclusions and future prospects
Overcoming the biological and methodological obstacles
posed by cell factories to the production or rDNA pharma-
ceuticals is a main challenge in the further development of
protein-based molecular medicine. Recombinant DNA
technologies might have exhausted conventional cell fac-
tories and new production systems need to be deeply
explored and incorporated into the production pipeline.
On the other hand, a more profound comprehension of
host cell physiology and stress responses to protein pro-
duction would necessary offer improved tools (either at
genetic, metabolic or system levels) to favour high yield
and high quality protein production. Apart from the

expected incorporation of unusual mammalian hosts
such as transgenic animals or plants, microbial cells
appear as extremely robust and convenient hosts, and
gaining knowledge about the biological aspects of protein
production would hopefully enhance the performance of
such hosts beyond the current apparent limitations. In
this regard, not only commonly used bacteria and yeasts
but unconventional strains or species are observed as
promising cell factories for forthcoming recombinant
drugs. Their incorporation into productive processes for
human pharmaceuticals would hopefully push the trend
of marketed products and fulfil the increasing demands of
the pharmacological industry.
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