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Abstract
Background: The response of the trout, O. mykiss, head kidney to bacterial lipopolysaccharide
(LPS) or active and attenuated infectious hematopoietic necrosis virus (IHNV and attINHV
respectively) intraperitoneal challenge, 24 and 72 hours post-injection, was investigated using a
salmonid-specific cDNA microarray.

Results: The head kidney response to i.p. LPS-induced inflammation in the first instance displays
an initial stress reaction involving suppression of major cellular processes, including immune
function, followed by a proliferative hematopoietic-type/biogenesis response 3 days after
administration. The viral response at the early stage of infection highlights a suppression of
hematopoietic and protein biosynthetic function and a stimulation of immune response. In fish
infected with IHNV a loss of cellular function including signal transduction, cell cycle and
transcriptional activity 72 hours after infection reflects the tissue-specific pathology of IHNV
infection. attIHNV treatment on the other hand shows a similar pattern to native IHNV infection
at 24 hours however at 72 hours a divergence from the viral response is seen and replace with a
recovery response more similar to that observed for LPS is observed.

Conclusion: In conclusion we have been able to identify and characterise by transcriptomic
analysis two different types of responses to two distinct immune agents, a virus, IHNV and a
bacterial cell wall component, LPS and a 'mixed' response to an attenuated IHNV. This type of
analysis will lead to a greater understanding of the physiological response and the development of
effective immune responses in salmonid fish to different pathogenic and pro-inflammatory agents.
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Background
The orchestration of a successful immune response to
infection requires an integrated tissue response coordi-
nated by specific cytokine and chemokine release. Patho-
gen-specific immune responses are coordinated and
dependent upon the activation of specific pathogen recog-
nition receptors (PRRs), molecular moieties present upon
sub-sets of leukocytes such as macrophages or dendritic
cells. PRRs respond to pathogens or their PAMPs (Patho-
gen Associated Molecular Patterns) by the initiation of
distinct transcriptomic programmes which will dictate the
cellular/tissue response [1-3]. In mammals different tran-
scriptional programmes have been identified by microar-
ray analysis for specific PAMPs (viral, bacteria and yeast)
by both macrophages and dendritic cells which initiate
the immune response by secreting molecules such as pro-
inflammatory cytokines [4,5].

The availability of salmonid-specific gene chips [6-8] has
provided the means to begin to characterise the salmonid
immune response at a global gene level both in vitro and
in vivo. This technology will provide a deeper understand-
ing of overall cellular and tissue processes during immune
activation. A number of recent reports concerning PAMP
recognition [9], activated macrophage transcriptomics [8]
and immunomics [10-16] and genome-wide surveys [17]
show that fish and fish macrophages clearly respond dif-
ferentially to different pathogens. This therefore should
lead to different physiological/immunological responses
in vivo upon which the survival of the organism is based.

The head kidney or anterior kidney located posterior to
the cranium, is the central hematopoietic organ in salmo-
nids and other fish species. In addition, it contains adren-
alin-producing chromaffin cells and also plays a major
endocrine role in secretion of cortisol, the major glucocor-
ticoid and mineralocorticoid in fish [18-21]. The head
kidney can thus integrate the neuro-immuno-endocrine
milieu in normal and pathological states. However, few
global gene regulation studies concerning the molecular
regulation of head kidney function during infection or
PAMP stimulation in salmonids [15] have been reported
although many studies have used this tissue as a primary
source of macrophage-like cells for studies on the activa-
tion of the immune system [22,23].

The Novirhabdovirus infectious hematopoietic necrosis
virus (IHNV) is probably one of the most important fish
viral pathogens, responsible for great mortalities in
farmed salmonids [24,25]. As for all the Rhabdoviridae, the
genome of IHNV consists of a single-stranded negative-
sense RNA which has been entirely sequenced [26,27].
Their genome codes for five structural proteins: a nucleo-
protein (N), a polymerase-associated protein (P), a matrix
protein (M), an RNA-dependent RNA polymerase (L) and

a surface glycoprotein (G) responsible for immunogenic-
ity [28-30]. An additional gene, only present in some fish
rhabdoviruses, located between the G and L genes,
encodes a non-structural protein NV, whose putative role
in virus replication remains to be fully evaluated [31] but
appears to be linked to viral growth and pathogenicity
[30]. The strong early immune response elicited by IHNV
and other related RNA viruses has favored the develop-
ment of several vaccines using a reverse genetics approach
[32,33]; however, recently a DNA vaccine against IHN has
been registered in Canada (Novartis Animal Health Can-
ada, Inc).

LPS, the major constituent of the external layer of the
outer layer of Gram-negative bacteria, is a widely used
PAMP-preparation which induces potent immune
responses in which the lipid A portion of the molecule is
primarily responsible for the endotoxic properties
observed in experimental animals [34,35]. Fish present a
remarkable tolerance to LPS challenge in comparison to
mammals which has been postulated to be due to differ-
ences in receptor-mediated recognition of LPS [36]. In
vivo challenge to high concentrations of LPS in fish does
not result in endotoxin-mediated mortality [23].

We have carried out in vivo challenges using either live or
attenuated IHNV (infectious hematopoietic necrosis
virus) or bacterial lipopolysaccharide (E. coli LPS) in trout
(Oncorhynchus mykiss). Total RNAs from head kidney tis-
sue were sampled, 1 and 3 days post intra-peritoneal
injection (i.p.), and analysed by gene chip analysis. We
have identified a generalised immune/stress/hematopoi-
etic gene response to all treatments and a large set of viral-
specific genes responding to IHNV infection. Gene ontol-
ogy analysis presents two distinct physiological responses
to either LPS or IHNV in which IHNV pathogenesis can be
clearly identified. The response to LPS indicates a general
inflammatory response followed by a significant hemat-
opoietic response. Here we present a comparison of the
differential gene expression patterns induced in vivo by a
generic PAMP, E. coli LPS, and a viral pathogen, IHNV,
and an attenuated form of the viral pathogen, attIHNV in
the head kidney of the rainbow trout.

Results and Discussion
Fish survival and pathogenesis
The epizootiology of IHN in young fish has been thor-
oughly described [27,37-42] and includes widespread
hemorrhages in kidney, liver and musculature leading to
anemia, and extensive necrosis of major hematopioetic
tissues (head kidney and spleen). No mortalities, external
signs or histological lesions were observed in fish injected
with IHNV or attIHNV at sampling time points. The
remaining or non-sampled fish displayed the referred
pathological features of IHN, arriving to a 100% mortality
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7–9 days and 15–17 days after challenge with virulent or
attenuated IHNV, respectively. In fish challenged with LPS
no mortalities were recorded in experimental groups. This
is a typical response in which fish do not show an appre-
ciable 'septic shock' type response. A molecular mecha-
nism has been proposed addressing LPS-tolerance in fish
which may be due to differential signalling from Toll-like
receptors in which the classical TLR4 paradigm differs
from that observed in mammals. In fact, rainbow trout
macrophages have been shown to be about 1000 times
less sensitive to LPS than mammalian macrophages [9].

Overview of viral and LPS-induced differential gene 
expression in the head kidney
In order to examine the transcriptional profile of head
kidneys (HK) dissected from trout treated with either
intra-peritoneal LPS or infection with IHNV or attIHNV
we used a salmonid-specific cDNA microarray platform
previously validated for studies involving stress, toxicity
and immune response in trout [6-8,43].

Total numbers of genes significantly expressed in each of
the treatments is shown in fig. 1 and a list of 20 selected
genes, ranked by the expression levels was included in
tables 1, 2, 3. Applying a selection criteria based in a clas-
sical cut-off value of >2 fold change over the differentially
expressed genes (p < 0.01) emphasizes the stronger global
induction of gene expression following the inoculation of
both active and attenuated forms of IHNV (fig. 1b).
Within differentially expressed gene groups (>1 fold
change, p < 0.01; fig. 1a), bacterial LPS induces a higher
response in comparison to viral groups. Although the
number of ranked selected genes (p-value < 0.01) is con-
siderably lower than in viral treatments, about 56.5% (n
= 58) and 60% (n = 45) of regulated genes at 24 and 72
hours respectively achieve more than 2 fold change in its
expression levels, in contrast with attenuated (15%; n =
413 at 24 h and 25%; n = 591 at 72 h) or active (26%, n =
570 at 24 h and 35.5%; n = 428 at 72 h) viral inoculation
of IHNV.

However, using the aforementioned selection criteria (>2
fold change; p < 0.01) the magnitude of the transcrip-
tomic response, measured as the number of differentially
expressed genes, shows a clear difference between active
viral treatment and LPS, the former eliciting an extensive
immune, apoptotic and transcriptional response (see the
analysis of functional classes below; figs. 2, 3, 4, 5, 6, 7).
As shown by the gene representation of the two viral treat-
ments mirroring strength of induction at 1–1.5 fold
change levels, transcriptomic responses also include an
extensive repertoire of genes expressed below 1.5 fold
with p < 0.01 that clearly outnumber the 2-fold expressed
genes (Fig. 1a) and can be ascribed to low-level transcrip-
tional, metabolic and homeostasis maintenance pro-

grams (see tables 4, 5 and figs. 2, 3, 4, 5, 6, 7). Whilst it
may be expected that an attenuated form of the virus does
not induce a similar magnitude of response, the species-
specific onset of the immune response elicited by the
highly antigenic viral glycoprotein (G) of attIHNV may
undoubtedly contribute to the observed gene expression
pattern, as described in several DNA vaccination assays for
fish pathogenic rhabdoviruses [14,16,33].

Not surprisingly, both viral treatments display a 10%
increase in the number of genes regulated >2 fold at 72
hours post-treatment. Previous studies on the pathogenic-
ity of IHNV in salmonids typically describe a 24 h delay in
detectable viral titres and internal measures of immuno-
logical disturbance, followed by a rapid increase in the
differential expression of viral-related and acute phase
response genes in major haematopoietic organs and liver,
respectively [42,44]. In addition, a tissue-specific effect
determines the dynamics of the transient cellular popula-

Gene response to lipolysaccharide and viral (active and atten-uated IHNV) in the head kidney of trout (O. mykiss)Figure 1
Gene response to lipolysaccharide and viral (active 
and attenuated IHNV) in the head kidney of trout (O. 
mykiss). (a) Total gene number (>1 fold change; p < 0.01) 
expressed on the microarray in each treatment and in each 
time point (b) Differentially expressed genes (p < 0.01; FDR 
< 0.05) with a 2-fold increase in expression levels are shown 
for each treatment and time point.
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Table 1: List of top 20 up and down regulated genes in the head kidney of trout, 24 and 72 hours after i.p. injection of LPS. Genes were selected for significant differential 
expression at p < 0.01 (FDR < 0.05). Values are expressed as FC, fold change.

24 hours UP 72 hours UP
Clone ID Clone Name FC p Clone ID Clone Name FC p

est03d11 Unknown-42 8.42 0.000 est03d11 Unknown-42 3.81 0.000
est04b01 Similar to rRNA (Vangl2) 4.54 0.004 est03e02 Hypothetical-fish 15 3.39 0.001
EXOB1_H05 Transposase-6 3.16 0.000 est04e04 MHC class 1b antigen 3.17 0.006
EXOB2_D06 NADH dehydrogenase subunit 5-1 2.76 0.000 EXOB2_H06 High affinity immunoglobulin epsilon receptor alpha 2.73 0.003
est02g07 Ig mu heavy chain disease protein 2.73 0.001 CA387837 Nucleolar protein NAP57 2.27 0.000
est02a11 Ig kappa chain V-IV region B17-2 2.71 0.002 EXOB4_C11 High affinity immunoglobulin gamma Fc receptor I precursor 2.15 0.008
EST1-3A_G09 Unknown-75 2.32 0.001 ENH2_F09 Beta-2-microglobulin-1 1.99 0.004
CA383564 Coatomer epsilon subunit 1 2.25 0.001 EXOB2_A09 60S ribosomal protein L5-2 1.80 0.005
est04e04 MHC class 1b antigen 2.24 0.007 HST0001_C05 Cell division control protein 42 homolog 1.72 0.009
EST1-3A_F12 Transposase-59 2.12 0.001 EXOB3_F09 MHC class I heavy chain-1 1.71 0.001
HK0002_D09 Prothymosin alpha 2.03 0.003 est01g04 5-aminolevulinate synthase 1.58 0.010
est02e09 Ig heavy chain V-III region HIL 2.00 0.005
EXOB4_D12 Hpa repeat-1 1.99 0.001
HK0003_E06 DnaJ homolog subfamily C member 9 1.96 0.005
HK0003_E08 Unknown-194 1.90 0.007
est04g12 Envelope protein 1.90 0.004
HK0002_H08 TATA-binding protein associated factor 2N 1.79 0.003
CA387665 Cytochrome P450 2J2 1.79 0.000
est01h01 Unknown-19 1.76 0.009
est03b11 Acidic leucine-rich nuclear phosphoprotein 32 A-1 1.68 0.008

24 hours DOWN 72 hours DOWN

EXOB2_D07 Ependymin related protein-1 -2.28 0.002 est04c10 Unknown-56 -2.04 0.000
HST0001_C04 Hemoglobin alpha chain -2.42 0.004 CA367764 Calmodulin-1 -2.13 0.001
EST1-3A_D08 Glyceraldehyde-3-phosphate dehydrogenase-6 -2.49 0.009 est03c04 Matrix metalloproteinase-9 -2.21 0.000
EXOB1_H06 CC chemokine SCYA110-2 -2.55 0.005 HKT0001_E07 Actin, alpha skeletal 1 -2.28 0.002
EST1-3A_H06 Transcription factor jun-B-1 -2.89 0.003 est01f03 Deltex protein 1 -2.37 0.001
est03f08 Transaldolase -2.91 0.002 est01e02 Thymosin beta-4-1 -2.73 0.002
EXOB2_H01 Unknown-100 -2.91 0.002 EXOB3_G05 Actin, cytoplasmic 2 -2.78 0.000
est02f08 Serine protease-like protein-1 -2.97 0.000 EST1-3A_D08 Glyceraldehyde-3-phosphate dehydrogenase-6 -3.14 0.000
EST1-3A_A09 Serine protease-like protein-2 -3.96 0.003 EST1-3A_B03 Hypothetical-fish 44 -3.16 0.007
CA371363 Glucose-6-phosphate isomerase-1 -4.35 0.000 CA348284 CCAAT/enhancer binding protein beta -3.22 0.003
HST0001_D08 Beta-globin -4.46 0.000 CA374193 Chemokine receptor CXCR4 -3.71 0.000
est04e05 Glutathione peroxidase-gastrointestinal -4.54 0.000 utu04f08 Actin, alpha skeletal 5 -3.81 0.001
est01c04 Unknown-11 -6.17 0.001 KVkm2_F01 Unknown-224 -4.21 0.000
EXOB2_D05 Matrix metalloproteinase 9-2 -6.63 0.000 est01f01 DNA-binding protein inhibitor ID-1 -4.64 0.000
est01e10 Tolloid-like protein (nephrosin)-1 -6.69 0.001 est02f08 Serine protease-like protein-1 -4.64 0.001
CA348284 CCAAT/enhancer binding protein beta -7.36 0.006 EST1-3A_A09 Serine protease-like protein-2 -5.52 0.000
est03c04 Matrix metalloproteinase-9 -7.44 0.000 EXOB3_H01 Matrix metalloproteinase-13 -5.88 0.007
EXOB2_G12 Tolloid-like protein (nephrosin)-2 -9.26 0.000 EXOB2_H01 Unknown-100 -12.08 0.000
EST1-3A_B03 Hypothetical-fish 44 -14.01 0.000 est01e10 Tolloid-like protein (nephrosin)-1 -12.97 0.000
EXOB3_H01 Matrix metalloproteinase-13 -17.18 0.000 EXOB2_G12 Tolloid-like protein (nephrosin)-2 -13.47 0.000
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)Table 2: List of top 20 up and down regulated genes in the head kidney of trout, 24 and 72 hours after i.p. injection of attIHNV. Genes were selected for significant differential 

expression at p < 0.01 (FDR < 0.05). Values are expressed as FC, fold change.

24 hours UP 72 hours UP
Clone ID Clone Name FC p Clone ID Clone Name FC p

EXOB2_B10 Hemoglobin beta chain 19.46 0.000 est03e08 Hypothetical-fish 36 3.06 0.000
HST0001_C04 Hemoglobin alpha chain 11.19 0.000 CA343473 C3a anaphylatoxin chemotactic receptor 2.98 0.000
KVkm2_A01 Unknown-219 10.93 0.000 EXOB2_G11 Stanniocalcin-1 2.93 0.000
HST0001_D04 Alpha-globin I-2 10.93 0.000 EXOB1_B02 Hypothetical-fish 34 2.84 0.000
EXOB4_A03 Carbonic anhydrase 10.57 0.000 KVkm2_H07 Unknown-226 2.77 0.000
CA366564 Huntingtin 8.52 0.000 EXOB3_A01 Unknown-103 2.73 0.000
EXOB2_B12 RING finger protein 103 8.34 0.000 CA363723 Cyclin C 2.64 0.000
HST0001_C07 Unknown-213 7.60 0.000 EXOB4_H01 Unknown-132 2.63 0.000
ENH2_E07 Unknown-3 7.04 0.000 est04c02 Unknown-53 2.61 0.000
EXOB4_G09 Histone H14 6.94 0.000 HK0002_G04 Fructose-bisphosphate aldolase A 2.45 0.000
EXOB4_H06 Alpha-globin 1-3 6.63 0.000 EST1-3A_H03 Unknown-76 2.42 0.000
utu01e09 Embryonic alpha-type globin2+collagen alpha 2(1) 4.94 0.000 CA358107 Ectonucleoside triphosphate diphosphohydrolase 1 2.42 0.000
HK0002_G02 Creatine kinase, sarcomeric mitochondrial precursor 4.49 0.000 CA378361 Ubiquitin ligase SIAH1 2.40 0.000
HK0001_C08 Galectin-9 (VHSV-induced protein)-3 4.14 0.000 HK0001_H12 Unknown-162 2.35 0.000
CA361101 Regulator of G-protein signaling 1-2 4.03 0.000 CA342204 TNF receptor associated factor 3 2.33 0.000
est02a11 Ig kappa chain V-IV region B17-2 3.19 0.000 EST1-3A_H05 Adenosine deaminase 3 2.31 0.000
CA343473 C3a anaphylatoxin chemotactic receptor 3.00 0.000 est04f10 Hypothetical-fish 1 2.30 0.000
est04b01 Similar to rRNA (Vangl2) 2.69 0.000 KVkm2_H11 Unknown-228 2.30 0.000
HST0001_D02 ATP-binding cassette, sub-family F, member 2 2.58 0.000 HKT0001_A11 Hypothetical-fish 11 2.28 0.000
CA384134 G1/S-specific cyclin D2 2.56 0.000 CA355893 DnaJ homolog subfami.B member 2 2.26 0.000

24 hours DOWN 72 hours DOWN

est01e10 Tolloid-like protein (nephrosin)-1 -2.60 0.000 EXOB2_G02 Profilin-1 -2.13 0.000
est03c04 Matrix metalloproteinase-9 -2.70 0.000 EXOB2_F12 60S ribosomal protein L7a-1 -2.13 0.000
HST0001_C03 Plasminogen precursor-2 -2.72 0.000 est02g11 Cytochrome c oxidase subunit I-1 -2.14 0.000
KVkm2_H10 Unknown-227 -2.76 0.000 HK0001_H03 60S ribosomal protein L26 -2.14 0.000
CA34828 CCAAT/enhancer binding protein beta -3.05 0.000 HK0003_A12 Heterogeneous nuclear ribonucleoprotein A1-1 -2.16 0.000
EXOB2_D05 Matrix metalloproteinase 9-2 -3.07 0.000 EXOB1_H12 NADH dehydrogenase subunit 4 -2.23 0.000
est02f08 Serine protease-like protein-1 -3.21 0.000 HK0002_D07 Unknown-172 -2.24 0.000
EST1-3A_A09 Serine protease-like protein-2 -3.25 0.000 EXOB3_G03 60S acidic ribosomal protein P2 -2.31 0.000
HK0003_C11 Tropomyosin alpha 3 chain-1 -3.34 0.000 EXOB2_G09 Cytochrome c oxidase subunit I-2 -2.34 0.000
utu03e06 Parvalbumin alpha-3 -3.50 0.000 HST0001_D04 Alpha-globin I-2 -2.37 0.000
CA370329 Lysozyme C precursor -3.90 0.000 ENH2_H06 Unknown-5 -2.46 0.000
HK0003_C08 Parvalbumin alpha-2 -3.99 0.000 est04c05 Ferritin heavy chain-1 -2.54 0.000
utu04h1 Myosin light chain 2-2 -4.13 0.000 P_46 ATPase 6 -2.56 0.000
utu02c02 Myosin heavy chain, skeletal, adult 1-1 -4.30 0.000 utu02b07 Cytochrome c oxidase subunit II -2.64 0.000
Hete0002_A07 Metallothionein-IL -4.49 0.000 KVkm2_H10 Unknown-227 -2.67 0.000
HK0003_E07 Myosin light chain 2-1 -4.49 0.000 EST1-3A_H07 Cytochrome b-1 -2.86 0.000
HK0002_D07 Unknown-172 -5.04 0.000 est02h09 Nonhistone chromosomal protein HMG-17 -3.07 0.000
EXOB1_A03 Metallothionein A -5.05 0.000 CA370329 Lysozyme C precursor -3.08 0.000
est01c04 Unknown-11 -6.17 0.000 EXOB1_C02 Unknown-83 -3.44 0.000
HK0002_F05 Myosin heavy chain, skeletal, fetal -7.31 0.000 EXOB2_G01 Leukocyte cell-derived chemotaxin 2 -3.56 0.000
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Table 3: List of top 20 up and down regulated genes in the head kidney of trout, 24 and 72 hours after i.p. injection of active IHNV. Genes were selected for significant differential 
expression at p < 0.01 (FDR < 0.05). Values are expressed as FC, fold change.

24 hours UP 72 hours UP

Clone ID Clone Name FC p Clone ID Clone Name FC p

CA343473 C3a anaphylatoxin chemotactic receptor 5.35 0.000 HST0001_D04 Alpha-globin I-2 15.48 0.000

est04c02 Unknown-53 4.26 0.000 est02a11 Ig kappa chain V-IV region B17-2 10.06 0.000

est02b02 PEST-containing nuclear protein 4.00 0.000 EXOB4_D02 Beta actin-2 9.60 0.000

EXOB3_A01 Unknown-103 3.91 0.000 EXOB2_B10 Hemoglobin beta chain 9.58 0.000

CA358107 Ectonucleoside triphosphate diphosphohydrolase 1 3.69 0.000 HK0003_A03 Thymosin beta-4-2 7.56 0.000

EXOB4_H01 Unknown-132 3.63 0.000 est02f08 Serine protease-like protein-1 6.41 0.000

HK0002_G04 Fructose-bisphosphate aldolase A 3.59 0.000 est02h09 Nonhistone chromosomal protein HMG-17 6.00 0.000

EXOB1_B03 Unknown-81 3.59 0.000 est03c04 Matrix metalloproteinase-9 5.91 0.000

EXOB4_E09 Hypoxanthine-guanine phosphoribosyltransferase 3.55 0.000 est01e06 Coronin-1B 5.51 0.000

CA378361 Ubiquitin ligase SIAH1 3.43 0.000 est02g07 Ig mu heavy chain disease protein 5.44 0.000

HK0003_G05 Unknown-201 3.43 0.000 EXOB4_H05 Unknown-133 5.24 0.000

est04f10 Hypothetical-fish 1 3.41 0.000 est01e02 Thymosin beta-4-1 5.17 0.000

EST1-3A_G03 Unknown-74 3.40 0.000 EXOB3_D02 Eukaryotic translation elongation factor 1 alpha 1 4.60 0.000

CA378435 Protein phosphatase 2C delta isoform 3.35 0.000 EXOB2_A01 MHC class II invariant chain-like protein 1 4.44 0.000

HK0002_H10 Unknown-182 3.33 0.000 EXOB3_H01 Matrix metalloproteinase-13 4.34 0.000

EXOB1_F02 Transcription regulator protein BACH1 3.28 0.000 EXOB1_A05 Ribosomal protein L6-1 4.33 0.000

est04b01 Similar to rRNA (Vangl2) 3.26 0.000 EST1-3A_F05 Heat shock 70 kDa protein 1 4.27 0.000

EST1-3A_H05 Adenosine deaminase 3 3.21 0.000 EXOB2_G0 Profilin-1 4.00 0.000

HK0001_H12 Unknown-162 3.05 0.000 HKT0001_H03 Microtubule-associated protein RP/EB 3.95 0.000

CA368716 Membrane-bound transcription factor site 2 protease 3.00 0.000 CA370329 Lysozyme C precursor 3.91 0.000

24 hours DOWN 72 hours DOWN

utu01a03 40S ribosomal protein S3-1 -3.22 0.000 EXOB1_B02 Hypothetical-fish 34 -4.48 0.000

HKT0001_H03 Microtubule-associated protein RP/EB -3.24 0.000 HK0002_G04 Fructose-bisphosphate aldolase A -4.80 0.000

utu04g05 40S ribosomal protein S9-3 -3.27 0.000 CA384134 G1/S-specific cyclin D2 -4.93 0.000

EST1-3A_D03 60S ribosomal protein L23 -3.32 0.000 EST1-3A_H03 Unknown-76 -5.18 0.000

EXOB1_H08 ADP, ATP carrier protein 3 -3.43 0.000 est03f04 F-box/WD-repeat protein 11 -5.28 0.000

EST1-3A_F05 Heat shock 70 kDa protein 1 -3.54 0.000 CA368716 Membrane-bound transcription factor site 2 protease -5.31 0.000

EXOB1_A03 Metallothionein A -3.55 0.000 CA384029 Chromobox protein homolog 4 -5.47 0.000

EXOB2_G09 Cytochrome c oxidase subunit I-2 -3.55 0.000 EXOB3_A01 Unknown-103 -5.54 0.000

HST0001_C03 Plasminogen precursor-2 -3.56 0.000 EXOB4_H01 Unknown-132 -5.99 0.000

EXOB3_E01 Na/K ATPase alpha subunit-2 -3.76 0.000 EST1-3A_H05 Adenosine deaminase 3 -6.23 0.000

HK0001_D01 Ubiquitin -3.83 0.000 EXOB1_B03 Unknown-81 -6.29 0.000

HK0002_B07 Heat shock 70kDa protein 8 -4.24 0.000 HK0001_H12 Unknown-162 -6.44 0.000

Hete0002_A07 Metallothionein-IL -4.50 0.000 HK0002_H10 Unknown-182 -6.59 0.000

utu02a08 Ubiquitin and ribosomal protein S27a-2 -4.43 0.000 est04c02 Unknown-53 -6.62 0.000

est02a11 Ig kappa chain V-IV region B17-2 -4.84 0.000 EXOB4_E09 Hypoxanthine-guanine phosphoribosyltransferase -6.63 0.000

utu02c02 Myosin heavy chain, skeletal, adult 1-1 -4.97 0.000 est02b02 PEST-containing nuclear protein -6.85 0.000

utu04f11 40S ribosomal protein S3-2 -6.00 0.000 est04f10 Hypothetical-fish 1 -7.01 0.000

est03c10 Alanine-glyoxylate aminotransferase 2 -7.41 0.000 EST1-3A_G03 Unknown-74 -7.55 0.000

est01c04 Unknown-11 -8.11 0.000 CA378361 Ubiquitin ligase SIAH1 -7.82 0.000

HK0002_D07 Unknown-172 -8.74 0.000 EXOB2_G11 Stanniocalcin-1 -9.69 0.000
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tions during inflammation and, subsequently, the tissue-
dependent gene expression profile. It has been suggested
[45] that the transient double stranded RNA intermedi-
ates produced by the accelerated replication of IHNV 24
hours post infection seem to regulate the expression of
trout Toll-like Receptor 3 (rtTLR3) in a unpredictable
manner, strongly dependent on viral growth and host
lymphocyte recirculation cycles. Interestingly, the pattern
of rtTLR3 expression in response to Yersinia ruckeri, a
gram-negative bacterial trout pathogen shows a remarka-
bly lower magnitude in terms of fold change compared
with the viral challenge [45], mimicking the magnitude of
the response between LPS and IHNV/attIHNV treatments
described above (fig 1b). Although both treatments dis-
play increases in the number of regulated genes the pat-

terns of gene expression are also significantly different.
The number of genes regulated show that LPS induces in
the majority a down-regulation of gene expression at both
time points. Similar results were observed in LPS-stimu-
lated macrophages derived from trout, O. mykiss, ana-
lysed with the same platform [8]. Highest fold changes in
individual genes were observed in down-regulated genes
in the LPS groups (table 1). On the other hand, viral treat-
ments induce a higher induction of transcriptomic and
cell cycle/apoptotic activity where induction and suppres-
sion processes display a similar weighting (tables 2 and
3).

The viral treatments show the highest differential gene
expression counts obtained when compared across all
available experiments in our gene (KuopioChip) data-
base. This observation, together with the extensive tran-

Over represented GO functional classes in attIHNV array experimentsFigure 3
Over represented GO functional classes in attIHNV 
array experiments. Functional categories with Yates cor-
rected Chi squared p < 0.05 were selected. Number of regu-
lated genes for each category is shown in parenthesis

Over represented GO functional classes in LPS array experi-mentsFigure 2
Over represented GO functional classes in LPS array 
experiments. Functional categories with Yates corrected 
Chi squared p < 0.05 were selected. Number of regulated 
genes for each category is shown in parenthesis.
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scriptional onset observed in the analysis of functional
ontology categories in viral treatments (see below), fol-
lows that of Abbas et al. (2006) suggesting that a specific
immune response mobilizes more transcriptional remod-
elling than the majority of physiological responses.

Specific vs. common gene responses
From the selected differentially expressed genes (p < 0.01)
in LPS and viral treatments, the differential response in
LPS and viral treatments (significant differential expres-
sion in at least 5 of the 6 experiments) was evaluated
across 155 experiments in our gene database (Kuopio-
Chip) in order to ascertain those genes co-expressed
(Fischer's exact P < 0.01) in each or both experimental
conditions (minimum requirement was significant differ-
ential expression in at least 5 of the 6 experiments). A total
of 49 genes were identified from which many genes

showed opposite responses representative of directional
responses to viral and LPS-induced stimuli (table 4 and
5).

Interestingly genes regulated by the attIHNV treatment
show a mixture of effects both similar and different to LPS
and IHNV suggesting that different mechanisms, non-spe-
cific and specific response, of activation are induced by
the attenuated virus in the head kidney. Alpha globin for
example shows down regulation by LPS whereas attIHNV
initially induces expression, 11 fold, followed by suppres-
sion, -2.37 fold. On the other hand IHNV causes suppres-
sion at 24 hours followed by strong induction, 15 fold.
LPS and attIHNV show similar profiles for: Glucose-6-
phosphate isomerase, annexin 1, the nephrosin proteins,
calmodulin-1, CEBP-beta, cysteine-rich protein-1, cyto-
chrome oxidase and cytochrome p-450. The majority of
the genes are related to immunity and the inflammatory
response. Suppression of HK proteases, nephrosin and
MMPs, seems to be one of the most characteristic effects
of LPS (Nephrosins FC; 24 hours; -6.69 and -9.26 and 72
hours -12.97 and -13.47) whereas viral treatment causes a
similar initial effect followed by induction of expression
(FC at 72 hours; attIHNV 1.44 and IHNV 2.98 and 3.7).
Serine protease-like proteins 1 and 2(spl1 and spl2) are
also highly suppressed by LPS, attIHNV and IHNV at 24
hours. This suppression continues in the LPS treatment,
however in viral samples we observe a significant increase
in expression in the 72 hour samples (attIHNV; 1.32 both
spl1 and 2, IHNV; 6.4 and 3.75). Several cytoskeleton
related genes including ARP2/3, the actin and profilin-1
are down-regulated by both LPS and attIHNV whereas
IHNV induces up-regulation of all genes in this group at
72 hours post-infection.

Viral treatments induce a typical adaptive immune
response (table 5). The antigen processing/presenting
loading pathways include the differential expression of
MHC Class I and lymphoid and myeloid cell lineages, as
shown by the regulation of B-cell specific coactivator OBF-
1, essential for the response of B-cells to antigens and
required for the formation of germinal centers, the conser-
vation of BTK B-cell, HCK neutrophil and TNFalpha
receptor signaling pathways, the cathepsin mediated anti-
gen processing and the interferon-inducible RNA-specific
adenosine deaminase ADAR1 (table 5).

Not surprisingly, NF-kappa-B (NFkB) signal transduction
suffered from moderate to severe regulation in the head
kidney of infected trout (tables 3 and 4). NFkB is consid-
ered a pleiotropic transcription factor expressed in several
cell types undergoing amongst others inflammatory
assaults. Both active IHNV and attIHNV treated fish
showed differential regulation of Inhibitor of kappaB
kinase gamma, member of a family of proteins which

Over represented GO functional classes in IHNV array experimentsFigure 4
Over represented GO functional classes in IHNV 
array experiments. Functional categories with Yates cor-
rected Chi squared p < 0.05 were selected. Number of regu-
lated genes for each category is shown in parenthesis.
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inactivate NFkB by trapping it in the cell cytoplasm [46]
and are actively expressed in virus infected cells [47].

The anaphylactic arm of the complement activation acts
in a double fashion through the component C3a/
C3aReceptor: as a chemotactic mediator involved in
endotoxic responses and, simultaneously, as a regulator of
homing and mobilizations of hematopoietic stem cells
(see below). Both complement related serine proteases
(spl) and C3 proteolytic components were differentially
expressed in LPS-induced or viral treatments. However,
the highest levels of complement expression seem to be
strongly dependent of viral invasions in fish head kidney
(tables 3 and 5)

Stromal protease activity and extracellular matrix 
remodelling in trout head kidney
Although the precise function of nephrosin, an astacin
metalloproteinase [48] remains unresolved, it has been
shown to be involved in the late stages of granulocyte dif-
ferentiation and cell migration and/or tissue infiltration
processes in challenged carp and zebrafish [49,50]. In
trout treated with LPS, the two nephrosin proteins genes
are severely down regulated (between -6 and -10 fold) at
both time points (fig. 1). The rest of metalloproteinases
(MMP 9-2, 13) also showed a marked decrease of expres-
sion in LPS treated trout (less than -6 fold change) at both
time points and at 24 h in IHNV or attIHNV infected fish
(-1.3 to -3 fold; see table 2 and additional file 1), therefore

suggesting a decrease in extracellular matrix remodeling
and leukocyte movement.

In mammals, MMP 9 has been implicated in the signal
processing and maturation of dendritic cells, IL-8 medi-
ated activation of neutrophils and undifferentiated
hematopoietic stem cells [51,52]. Whilst the existence of
functionally differentiated dendritic cells in fish is still
controversial [53,54], the mammalian leukocyte response
outlined for IL-8 and MMP 9 seems to be conserved in tel-
eosts, although the exact pattern of organ distribution, the
intensity of gene regulation and the voluble species-spe-
cific expression of IL-8 in fish HK remains obscure
[55,56]. The chemotatic properties of IL-8 on leukocytes
are amplified by the recruitment of neutrophils mediated
by CXC chemokines. Our data show a moderate (-3.71
fold change) down-regulation of trout CXCR4. Mamma-
lian CXCR4 forms with TNFalpha, several HSP proteins
and GDF5 an activation cluster involved in monocyte LPS
signal transduction [57] and also acts synergistically with
the colony-stimulating factor mediated mobilization of
hematopoietic stem cells [57,58].

The MMP gene family appears to be induced by LPS in
trout macrophages [8], and a widescreen transcriptomic
analysis of carp metalloproteinases detected a large
amount of MMP9 mRNA mainly in hematopoietic
organs, HK and spleen [59,60]. Fish metalloproteinases
thus probably act in a mammalian fashion, showing and

Gene Ontology analysis for LPS treatmentFigure 5
Gene Ontology analysis for LPS treatment. Results show categories with significant difference, (pair comparison inde-
pendent test, p < 0.05), chosen from categories which had a p-value < 0.01 from individual treatment groups. Data is shown as 
mean fold change ± std.error.
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up-regulation by the synergistic stimulation of Tumor
Necrosis Factor alpha (TNFalpha) and LPS. In agreement
with the low level expression of MMPs observed 24 h post
injection, no significant amounts of TNFalpha mRNA
were detected in LPS treated trout, in contrast with IHNV
infected fish. Both myeloperoxidase, a lysosomal hemo-
protein characteristic of mononuclear phagocytes, and
TNF were up regulated 24 h post injection of attenuated
IHNV in trout HK (2.3 and 2.6 fold, respectively). In the

active viral group, however, TNFalpha was found to be
inactive (see below). The moderate up-regulation of
TNFalpha 3 days post attIHNV stimulation (table 2) may
suggest, according to the well described model of macro-
phage stimulation by LPS [8], the onset of a proliferative
myeloid response in the principal hematopoietic organ.

Intracellular thymosin beta-4 (TBX4) is considered the
main G-actin sequestering peptide in mammals [61]. The

Gene Ontology analysis for attIHNV treatmentFigure 6
Gene Ontology analysis for attIHNV treatment. Results show categories with significant difference, (pair comparison 
independent test, p < 0.05), chosen from categories which had a p-value < 0.01 from individual treatment groups. Data is 
shown as mean fold change ± std.error.
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Gene Ontology analysis for IHNV treatmentFigure 7
Gene Ontology analysis for IHNV treatment. Results show categories with significant difference, (pair comparison inde-
pendent test, p < 0.05), chosen from categories which had a p-value < 0.01 from individual treatment groups. Data is shown as 
mean fold change ± std.error.
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putative functions of extracellular TB4X include induction
of hemostasis, wound and tissue healing, chemotaxis,
induction of metalloproteinases, granulocyte-mediated
inhibition of inflammatory processes and regulation of
hematopoietic stem cell proliferation [62]. Not surpris-

ingly, the TBX4 gene is >2 fold down regulated in trout HK
72 h post injection of LPS (table 1), but strongly upregu-
lated (>5–7 fold) in IHNV infected trout undergoing an
incipient hemorrhagic symptomology. This suggests that,
in fish as in mammals, the pleiotropic effects of TBX4 are

Table 4: Genes common to all treatments. Genes selected were expressed in a minimum of 5 of the 6 experiments and compared 
against all experiments in the database (n = 155). Only genes specific to these experiments were chosen (Fischer's exact Test, p < 
0.01). Values are expressed as FC, fold change.

Clone ID Clone Name LPS (FC) AttIHNV (FC) IHNV (FC)
24 hr 72 hr 24 hr 72 hr 24 hr 72 hr

CA384637 60 kDa heat shock protein-1 - 1.47 1.18 1.25 -1.25 1.29
est03b11 Acidic leucine-rich nuclear phosphoprotein 32 A-1 1.68 1.41 1.17 1.32 1.27 1.34
utu01f04 Actin, alpha skeletal 2 - -1.31 -1.48 1.18 1.52 1.29
utu01g11 Actin, alpha skeletal 3 1.67 -1.64 -1.47 -1.25 1.34 1.42
utu04d04 Actin, alpha skeletal 4 2.00 -1.30 -1.18 - 1.61 1.37
EST1-3A_H05 Adenosine deaminase 3 1.57 - 1.14 2.31 3.21 -6.23
HST0001_D04 Alpha-globin I-2 -1.30 - 10.93 -2.37 -3.11 15.48
CA364941 Annexin A1-1 -2.08 -1.78 -1.36 -1.46 -1.26 1.68
F_122 ARP2/3 complex 21 kDa subunit - -.192 -1.41 -1.23 -1.57 1.33
P_10 Aryl hydrocarbon receptor 1.35 - 1.32 1.80 1.47 -2.32
CA367764 Calmodulin-1 - -2.13 -1.26 -1.29 -1.73 1.49
CA348284 CCAAT/enhancer binding protein beta -7.36 -3.22 -3.05 - -2.16 1.76
CA363762 Cell death activator CIDE-B 1.32 - 1.35 1.74 2.08 -2.53
CA383564 Coatomer epsilon subunit 1 2.25 - 1.20 1.43 1.24 1.53
HK0003_G01 Creatine kinase, M-2 - 1.61 -2.02 1.32 -1.54 -1.40
HK0002_G02 Creatine kinase, sarcomeric mitochondrial precursor -1.68 - 4.49 -1.54 -1.82 1.20
CA358998 Cysteine-rich protein 1 -1.75 -2.71 -1.37 -1.51 -1.62 2.75
utu01g04 Cytochrome oxidase subunit III-2 - -1.36 -2.55 -2.04 -2.08 2.33
EXOB1_C10 Cytochrome P450 2K4-2 1.60 1.34 1.20 -1.44 - -1.14
utu01d06 Deoxyribonuclease gamma precursor 1.50 - -1.19 -1.26 1.46 -1.31
utu01e09 Embryonic alpha-type globin2+collagen alpha 2(1) -1.62 1.42 4.94 -1.41 -1.96 -
HK0001_D12 Estrogen-responsive B box protein 1.29 - -1.22 -1.14 2.11 -1.38
HK0002_G04 Fructose-bisphosphate aldolase A 1.65 - 1.25 2.45 3.59 -4.80
HK0001_A11 Fumarate hydratase, mitochondrial precursor - -1.58 -1.12 -1.21 1.43 -1.25
CA371363 Glucose-6-phosphate isomerase-1 -4.35 -1.68 -1.40 -1.15 -1.37 2.81
EXOB3_H05 Glucose-6-phosphate isomerase-2 -2.07 - -1.51 -2.08 -1.77 1.81
CA366403 Heat shock 27 kDa protein-1 1.44 - 1.21 1.61 2.49 -2.43
HST0001_C04 Hemoglobin alpha chain -2.42 - 11.19 -1.82 -2.93 2.87
EXOB2_B10 Hemoglobin beta chain -1.86 - 19.46 -2.07 -2.45 9.58
EXOB4_C11 High affinity immunoglobulin gamma Fc receptor I precursor - 2.15 -1.70 -1.73 -1.88 1.71
est02a11 Ig kappa chain V-IV region B17-2 2.71 - 3.19 -2.07 -4.84 10.06
est02g07 Ig mu heavy chain disease protein 2.73 - 2.38 1.56 -2.14 5.44
EXOB2_D05 Matrix metalloproteinase 9-2 -6.63 -2.62 -3.07 1.71 -1.93 3.20
EXOB3_H01 Matrix metalloproteinase-13 -17.18 -5.88 -1.32 2.06 1.44 4.34
est03c04 Matrix metalloproteinase-9 -7.44 -2.21 -2.70 1.68 -2.92 5.91
EXOB3_F09 MHC class I heavy chain-1 - 1.71 -1.43 -1.20 -2.87 -3.02
P_4 Myeloperoxidase 1.55 - 1.23 1.88 2.32 -3.19
EXOB3_E09 N-myc downstream regulated protein-2 -1.48 1.67 1.16 1.21 - -1.32
EXOB2_G02 Profilin-1 - -2.04 -1.79 -2.13 -2.12 4.00
est02f08 Serine protease-like protein-1 -2.97 -4.64 -3.21 1.32 -1.84 6.41
EST1-3A_A09 Serine protease-like protein-2 -3.96 -5.52 -3.25 1.32 -2.91 3.75
HK0002_H08 TATA-binding protein associated factor 2N 1.79 - -1.32 -1.22 1.71 -1.32
est01e02 Thymosin beta-4-1 - -2.73 -2.03 -1.32 -1.47 5.17
est01e10 Tolloid-like protein (nephrosin)-1 -6.69 -12.97 -2.60 -1.07 -3.11 2.98
EXOB2_G12 Tolloid-like protein (nephrosin)-2 -9.26 -13.47 -1.67 1.44 -1.75 3.70
Hete0002_E09 Transposase-56 2.06 1.96 1.42 1.30 2.04 1.67
EST1-3A_F12 Transposase-59 2.12 1.62 1.28 1.23 - 1.20
EXOB3_F11 Ubiquitin-conjugating enzyme E2-18 kDa - 1.47 1.48 1.68 1.61 -1.84
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mediated by the remodeling of intracellular actin
cytoskeleton and/or components of the extracellular
matrix [63].

The moderate/severe down-regulation of CXCR4 1 day
post LPS challenge (-3.7 fold change), metalloproteinases
and TB4X observed at 24 h and 72 h (less than -6 and -2
fold change levels, respectively; table 1) thus favors a sce-
nario of delayed reactive state to LPS stimulation in the
recirculation and traffic of trout head kidney hematopoi-
etic cells following i.p. administration of bacterial LPS.
Moreover, the head kidney itself shows a low level stromal
extracellular matrix remodeling in trout treated with LPS,
as suggested by the down regulated expression of actin,
MMP, nephrosins and Thymosin beta 4 (table 1). How-
ever, at 3 days post IHNV infection the transcriptomic
footprints in the head kidney reveal an immunological
shift orientated toward a somewhat impaired adaptive
arm activation coupled with a strong hemostatic and
extracellular matrix sculpting response: the systemic
spreading of IHNV clearly inhibits TNFalpha, MHC class I
and several macrophage and cell cycle/differentiation

markers (tables 3, 4; see below) favoring a MHC class II,
immunoglobulin and MMP/TBX4 enhanced immune
response.

Complement response to LPS-induced and viral challenges 
in trout head kidney
Contrary to the liver, the head kidney cannot be consid-
ered an acute phase reactive organ. Following a xenobiotic
assault, complement related serine proteases, modulators
and C3 proteolytic peptides are synthesized primarily in
the liver. However, minor but biologically significant
extra-hepatic (mainly in active immune cells, gills, skin,
heart, gonad and renal tissues) synthesis of complement
components has recently been demonstrated in fish as in
other vertebrates [64,65]. Therefore, complement inflam-
matory, chemotactic, opsonic and lytic activities extend
the effect of the innate arm of immune responses to the
core of major hematopoietic organs.

In trout injected with LPS, complement related serine pro-
teases (spl1 and spl2) homologous to the MASP proteins
involved in the activation of the classical complement

Table 5: Genes specific to viral treatments. Genes selected were expressed in a minimum of 3 of the 4 experiments and compared 
against all experiments in the database (n = 155). Only genes specific to these experiments were chosen (Fischer's exact Test, p < 
0.001). Values are expressed as FC, fold change. 13 Unknowns were removed.

Clone ID Clone Name AttIHNV (FC) IHNV (FC)
24 hr 72 hr 24 hr 72 hr

CA387866 Arachidonate 5-lipoxygenase-2 1.16 1.34 1.27 1.03
CA384555 B-cell-specific coactivator OBF-1 1.48 1.76 1.37 -1.09
CA343473 C3a anaphylatoxin chemotactic receptor 3.00 2.98 5.35 -1.50
ENH2_F03 Cathepsin K-1 -2.30 1.22 -3.01 1.42
EXOB4_F03 Cathepsin S -1.46 -1.28 -1.65 2.80
CA376117 CD231 1.31 1.55 2.04 -1.66
CA363762 Cell death activator CIDE-B 1.35 1.74 2.08 -2.53
EXOB4_E08 Cytochrome c oxidase subunit VIIa-related 1.08 -1.14 1.18 -2.47
CA381440 Double-stranded RNA-specific adenosine deaminase 1.45 1.53 1.69 -1.67
CA351392 Guanine nucleotide exchange factor DBS 1.19 1.93 2.97 -3.13
EXOB4_C11 High affinity immunoglobulin gamma Fc receptor I precursor -1.70 -1.73 -1.88 1.71
HKT0001_A11 Hypothetical-fish 11 1.20 2.28 1.49 -1.85
est03c07 Ig kappa chain V-I region WEA 1.60 2.07 1.41 1.21
est02g07 Ig mu heavy chain disease protein 2.38 1.56 -2.14 5.44
CA363978 Inhibitor of kappaB kinase gamma 1.16 2.13 2.21 -2.36
EXOB3_F09 MHC class I heavy chain-1 -1.43 -1.20 -2.87 -3.02
CA341859 Nuclear factor NF-kappa-B 1.40 1.12 1.63 1.28
CA378435 Protein phosphatase 2C delta isofor 1.44 2.05 3.35 -3.87
EXOB1_B07 PRPF39 protein 1.19 1.22 1.39
est03e10 Putative inorganic polyphosphate/ATP-NAD kinase -1.11 -1.05 1.33 1.29
est03b12 Secretory granule proteoglycan core protein -1.83 -1.83 -2.97 2.77
ENH2_B08 Splicing factor, arginine/serine-rich 8 1.10 1.24 1.25 -1.49
CA380121 Telomerase reverse transcriptase 1.33 1.36 1.34 -1.33
EXOB1_G12 Thioredoxin -1.24 -1.61 -1.56 1.46
CA342204 TNF receptor associated factor 1.23 2.33 2.64 -2.89
CA378736 Tyrosine-protein kinase BTK 1.28 1.61 1.81 -1.80
EXOB3_G04 Tyrosine-protein kinase HCK -1.07 -1.38 -1.39 1.40
P_54 VEGF4 1.23 1.34 1.37
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pathway [66,67] remained down regulated throughout
the treatment (-3 and -4 fold change at 24 h and 72 h
respectively; table 1) and no expression of C3 genes were
detectable in head kidney (table 1), in concordance with
the biased adaptive response observed in this group (see
below). A recent microarray analysis of acute phase reac-
tivity in the liver of catfish (Ictalurus punctatus) showed an
enhanced (greater than >2 fold) complement response in
fish infected with Edwardsiella ictaluri, a gram negative
pathogen responsible for enteric septicemia in catfish [13]
In trout, Lovoll et al. (2007b) found a similar expression
pattern in hepatocytes treated with LPS, but, in sharp con-
trast with the highest expression levels of complement
genes in liver, a minor up regulation of C3 genes in head
kidney and spleen was observed. Additionally, gene
expression showed a strong tissue and isoform depend-
ence: C3-4 was found to be down regulated in HK follow-
ing stimulation with LPS, and more interestingly, not all
trout isoforms maintained similar levels of gene expres-
sion [68].

The tolerance of fish to the standard LPS doses used in
rodent immune challenges is well known, and has been
linked to the peculiarities of PAMP receptors in fish [36]
that may preclude a strong endotoxic shock response.
Thus, the strongest cellular and tissue responses to i.p.
injection LPS in fish are thought to be restricted to acti-
vated monocyte/macrophages and lymphocytes, portals
of entry (gills, intestine, skin) and acute phase organs
(liver). However, the dynamics of the teleostean immune
response is of primary interest in these organs, as in the
head kidney, that functions either as a cradle for immuno-
logical priming of leukocyte populations or as a major
node in the complex and the still poorly understood net-
work of neuro-immune-endocrine interactions in fish. In
that respect, our results uncover a striking difference
between lipopolysaccharide and viral treatments concern-
ing head kidney transcriptomic dynamics: in attenuated
and active IHNV groups, the complement related serine
proteases and anaphylatoxin receptors (C3aR) maintain
up regulated expression levels at both time points, with
the maximal expression (>5–6 fold change) in active viral
groups.

The C3aR shows an unequivocal upregulated expression
at 24 h and 72 h in animals infected with attIHNV, and at
24 h in animals infected with active IHNV (our results
also show a tenuous down regulation of C3aR (-1.5 fold
change) in IHNV treated fish at 72 h; see additional file 1).
At 72 h, the response to IHNV consist of a mixture of
adaptive (MHC, IG) and innate (C3aR, complement
related serine proteases, lysozyme C) immune and stress
(HSP70, hemostasis) responses against a background of
metalloproteinase-mediated matrix remodeling (table 3).
Therefore, as suggested in this and previous studies with

mammals [69-71], the expression of C3a/C3aR may prob-
ably contribute to the homing/mobilizations and differ-
entiation of hematopoietic stem cells in response to the
generalized immune and stress response elicited by an
aggressive and extremely pathogenic virus in fish. Moreo-
ver, in mammals several C3 cleavage fragments, including
C3a has been demonstrated to be linked to the CXCR4-
mediated responsiveness of hematopoietic stem cells
[71]. The moderate down regulation of CXCR4 in LPS
treated fish (table 1) and upregulation (>1.5 fold) in
attIHNV infected fish (see additional file 1), together with
the strong upregulation of C3aR in IHNV treated fish sug-
gests a conservation of complement mediated functional
responses in the hematopoietic head kidney. The dynam-
ics and trafficking of hematopoietic and differentiated
cells in fish are, nonetheless, far from being fully under-
stood.

Specific immune responses to LPS-induced and viral 
challenges in trout head kidney
Genes involved in the immunoglobulin system increased
in all treatments displaying different kinetics. Ig gamma
Fc receptor (CD64) gene expression increased late in the
LPS treatment whereas IgM heavy chain (B-cells) and Ig
kappa chain V-IV region B17-2 (involved in antigen pres-
entation) increased acutely. Under attIHNV conditions a
similar regulation is observed for the latter genes in which
IgM expression is sustained at 72 hours and Ig Kappa sup-
pressed. CD64 expression is suppressed by attenuated
virus, whereas IHNV suppresses all three genes at the early
stage and induces expression (1.7, 10 and 5.4 fold respec-
tively) at the later stage of infection. This may reflect
migration of leukocytes to the primary sites of infection/
inflammation and/or differential recruitment of leukocyte
sub-populations to the infected head kidney in both
IHNV/attIHNV treatments.

The coatomer protein (COP) epsilon known to play a role
in the formation and maturation of phagosomes [72] is
induced in all treatments, and the Class I major histocom-
patibility complex (MHC) antigen, well known to be
involved in antigen presentation in dendritic cells is acti-
vated late by LPS and suppressed by viral treatments (-3
fold; tables 2, 3), whereas Class II MHC showed a moder-
ate up regulation (4.4 fold) in fish infected with IHNV at
72 h.

In fish, as in mammals, the interaction of MHC molecules
with T cell receptors (TCR) seems to activate subsets of
cytotoxic T lymphocytes (CTL) and T helper cells (Th) in
a similar fashion [73]. Homologues of mammalian MHC,
several proteins associated to antigen presentation, beta2
microglobulin and CD8+ and CD4+ (markers for CTL and
Th, respectively) have been recently characterized in trout
and other fish species [74,75], thus reinforcing the conser-
Page 14 of 21
(page number not for citation purposes)



BMC Genomics 2008, 9:141 http://www.biomedcentral.com/1471-2164/9/141
vation of antigen processing pathways in immune cells.
However, the trafficking, recirculation and cell-to-cell
communication against a quiescent/activated immune
background have not yet been properly described in fish.
Moreover, the translation of classical bacterial or viral
inflammatory murine models encompasses several tech-
nical (full characterization of immune processes, absence/
presence of mediators, conservation of activation/inhibi-
tion pathways) and species-specific difficulties, the latter
related to the high variability of the interspecific thresh-
olds of immune activation in fish and, last but not least,
the relative virulence and co-evolutionary trade-offs of
pathogens.

Our and several recent studies have attempted to resolve
these issues weighting the organ related immune response
to an established model of LPS-induced inflammation or
viral infection. In this regard, the expression of CD8 and
CD4 (coreceptors of MHC Class I and II binding, respec-
tively) in trout seems to be restricted mainly to thymus
and to a certain extent, to spleen, even though non-
infected fish maintain a widespread low level expression
in several hematopoietic or lymphocyte infiltrated organs
[74,75]. Overturf and LaPatra (2006) were unable to find
elevated levels of CD8 expression in the HK of trout
infected with bacteria or IHNV at 24 h or 5 days post infec-
tion, although in liver and spleen a positive dose-response
correlation followed the infection (24 h) expression of
CD8 and C3 [76]. In a similar experiment, 72 hours after
IHNV challenge Hansen and LaPatra (2002) observed a
surprising tissue-specific shutdown of MHC Class IIB
mRNA in head kidney and spleen of infected trout, thus
suggesting an enhanced CD8 response coupled with acti-
vation of MHC Class I antigen presentation following
IHNV infection [77], as observed in a cohabitant model of
fish viral infection described recently [78]. Similarly, an
infection by Vibrio anguilarum seemed to depress the short
term (up to 4 days) expression of MHC class II genes in
head kidney, liver and spleen of turbot, Scophthalmus max-
imus [79]. However, an elevated expression of MHC Class
II genes has been described in trout following i.m. DNA
vaccination with recombinant IHNV [80] and xenobiotic
inflammation [81]. In trout challenged with VSHV, a
member of Rhabdoviridae, the dynamics of T cell expan-
sion, and thus the onset of MHC mediated adaptive
immune response, were found to be correlated with the
expected waves of viral replication, with peak a week after
viral challenge [82], mimicking the delayed (up to 10
days) expression of MHC mRNAs that were also observed
in japanese flounder (Paralichthys olivaceus) leukocytes
infected with Neoheterobothrium hirame, a monogenean
parasite [83].

As described in other species [84,85], our results suggest a
predilection for CD4/Th lymphocyte response in the head

kidney of trout challenged with IHNV at 72 post infection,
coupled with a strong spl-induced complement cleavage
activation and MMP/TBX4 extracellular matrix sculpting,
together with a decreased TNFalpha mediated activation
of monocyte/macrophage populations, a shutdown of
MHC Class I and also a low level regulation of apoptosis,
as shown by the inhibition of Ubiquitin ligase S1AH1 and
Galectin-9 (see table 3 and additional file 1).

The i.p. administration of LPS activates the MHC Class I
pathway of antigen processing in concordance with previ-
ous studies with LPS-activated trout macrophages [8].
However, the transcription factor CCAAT/enhancer bind-
ing protein-alpha (C/EBP-alpha), best known for its role
in driving myeloid cells towards the granulocytic line [86]
but also known to be induced during macrophage differ-
entiation, and the MMP/TBX4 response was inhibited in
head kidney 72 h post injection. Deltex protein 1 (DTX)
also appears to be down regulated 72 h post infection
with LPS (table 1). Although still poorly understood, the
cross-talk between Deltex protein 1 (DTX1) and the evo-
lutionary conserved Notch and NFkappaB signaling path-
ways [87,88] allows the normal development and
maturation of differentiated lymphocyte populations in
hematopoietic and lymphopoietic organs in mammals.
This suggests an impaired trafficking of lymphoid/mye-
loid HK cells in the early response to LPS in trout.

Myeloperoxidase (MPO) was up-regulated by all treat-
ments at 24 hours returning to baseline in LPS samples,
increasing in attIHNV and actively inhibited in IHNV
samples (tables 1, 2, 3, 4). Myeloperoxidase is expressed
in neutrophils and monocytes and plays a role in the oxy-
gen dependent mechanism of phagocytosis. The macro-
phage scavenger receptor MARCO [89] was also inhibited
in IHNV samples. Therefore, the microbiocidal function
was diminished in the head kidney of IHNV infected
trout.

Taken together, these results may suggest a minor func-
tion of the head kidney in the short term (24–72 hrs) acti-
vation of the immune response to virulent IHNV, or,
alternatively, an inducible and maybe antagonistic early
differential expression of MHC Class I or II mediated anti-
gen processing in the head kidney, heavily influenced
either by the type and infective dynamics of pathogen
(LPS vs. viral) or the portals of entry (organ/tissue). From
the experimental infections described above, the liver and
spleen also seem to act as a major acute phase reactive
organs at the initial stages of viral invasion, and the head
kidney can be more properly defined as an inductor of a
delayed adaptive response as much as a major regulator of
erythropoietic and myeloid differentiation. Nevertheless
the dual expression of the MHC antigen processing/pre-
senting machinery appears to be strongly influenced by
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the species-specific immunological sensibility [90,91], the
virulence of pathogens and the timing of cellular differen-
tiation in immune organs. This pathogen/host species-
specific branching of MHC mediated immune response in
fish requires, however, further analysis.

Haemoglobin metabolism in LPS-induced and viral 
infected trout head kidney
Hemoglobin genes (α, β) are suppressed by both LPS and
IHNV at 24 hours, 2–3 fold suppression, however
attIHNV strongly induces expression of both proteins(11
and 19 fold respectively) followed by suppression at 72
hours. IHNV induces expression (3 and 10 fold α and β
respectively) at 72 hours whereas LPS samples return to
baseline levels.

Interestingly, 5-aminolevulinate synthase, the key enzyme
involved in heme synthesis was up-regulated in both
attIHNV samples and in a LPS-specific manner at 72
hours. A similar response has been observed in head kid-
ney tissue from Atlantic salmon, S. salar, infected with Pis-
cirickettsia [15].

The coordinated expression of both hemoglobin genes
and 5-aminolevulinate synthase suggest erythropoietic
activity in the head kidney. Furthermore, a significant
increase in cellular proliferation in PU-1-ve cells, 72 hours
post-LPS administration, in the head kidney of LPS-
treated rainbow trout has been reported (Ribas et al, 2007
in press) thus activation of hematopoietic, potentially
erythropoietic, mechanisms during the early stages of
infectious processes may be a standard for the non-spe-
cific immune response in fish.

HSP induced stress response to LPS-induced and viral 
challenges in trout head kidney
Active IHNV inhibits the expression of heat shock protein
(HSP) 27 (-2.4 fold) and induces the expression of 70 and
90 (2.8 and 2.3 fold respectively) 3 days post infection
from a previous inactive state at 24 h (-4.24 fold). The
attIHNV showed a down regulation of HSP70 (-2 fold) at
the same time point.

HSPs have been implicated in the generalized stress
response associated to xenobiotics and/or inflammatory
reactions in fish [44,85,92]. However, the reliability of
HSP as an indicator of stress or pathologic/immune dis-
turbances has recently thoroughly criticized [93] because
of the great variability of measured HSP expression:
despite the correlated expression of HSP with altered
states in stressed or injured fish, the sensitivity and inten-
sity of HSP response can vary in a species-specific manner,
and among tissues, HSP families, season, developmental
stages and stressor. Not being an acute phase response
organ, it is, thus, difficult to speculate about the fate of

HSP repaired enzymatic and/or cytoskeleton proteins in
infected head kidney.

Conclusion
For the functional analysis of biological roles of regulated
genes, our two-step approach in the first instance estab-
lishes a list of differentially expressed genes whose
ascribed biological roles are evaluated and secondly by
identifying overrepresented GO functional categories
using the KuopioChip analysis software (see materials
and methods). This methodological approach is not
exempt of limitations. The selected cut-offs for minimal
gene expression, the co-expressed patterns of gene expres-
sion, the non lineal genome-proteome crosstalk and the
limited transcript enrichment of the array can either limit
the amount and quality of transcriptomic responses
assessed or exclude transient but biologically relevant
genetic responses correlated with the abruptness and
organ-dependent systemic damage in infected fish.

As a guideline for elucidating the biological response of
viral/LPS-induced challenge, the comparison of differen-
tially expressed genes by the GO categories showed a
marked induction of metalloproteinases and other colla-
gen and extracellular matrix sculptors in LPS treated trout,
coupled with a decrease in genes controlling the basal
metabolism and an increase in the activity of immune
related mediators of MHC antigen presenting and immu-
noglublin-mediated opsonisation (figures 2 and 5) 72 h
post infection.

Several genes involved in signal transduction and protein
biosynthesis were active in attIHNV groups 72 h post
infection, following a decrease in cytoskeleton remodel-
ling. As in active IHNV infected trout, the functional GO
categories are strongly enriched in genes active during
inflammatory, immune and defence responses. In both
attenuated and active IHNV treated fish, the immune
response at 72 h clearly outweighs the metalloproteinase
orientated LPS response, but, as described above, the
response of the trout head kidney transcriptome to IHNV
infection was more robust and diversified in number and
immune related activation pathways.

Methods
Animal protocol an experimental infections
Rainbow trout, Oncorhynchus mykiss, were obtained from
two commercial fish farms. Fish were maintained in flow
through tanks under ambient conditions of light (pho-
toperiod 10L/14D) and temperature (15 ± 2°C). Fish
were fed with commercial trout pellets ad libitum and
acclimated for at least two weeks prior to use in experi-
ments. The health status of the animals and water quality
were checked on a daily basis. Challenge experiments
were carried out separately for each treatment and were
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performed in recirculating tanks with aeration at 14°C.
Trout (n = 10/tank) weighing between 70–100 g were sep-
arated into 6 different tanks, 3 control and 3 experimental
tanks. For experimental stimulations the fish were mildly
anaesthetized (MS-222, 40 ppm, stage II of anaesthesia
according to Iwama et al. 1989) and intraperitoneal (i.p.)
injections carried out. Fish were intraperitoneally injected
with saline (control) and LPS (6 mg/Kg; serotype 026:B6,
Sigma, #L-8274), or with 100 µl of a 106 pfu/ml dilution
of IHNV or attIHNV or culture medium (negative con-
trol). At defined time points, 24 and 72 hours post i.p.
injection, animals (total n = 6), control and experimental,
were selected from each tank (n = 2) and sacrificed by over
anesthetization (MS-222, 100 ppm, stage III of anaesthe-
sia [94]). Head kidneys (HK) were immediately dissected
out, pooled and processed for total RNA purification
using Tri Reagent (Molecular Research Center, Cincinnati,
OH, USA) according to the manufacturer's protocol
[95,96].

Viruses and cell line
IHNV (French isolate 32/87) was used and propagated in
the fish epithelial cell-line EPC derived from common
carp (Cyprinus carpio) [97]. EPC cells were cultured in
Eagle's minimum essential medium (MEM, Gibco) sup-
plemented with foetal bovine serum (FBS), penicillin
(100 IU ml-1), streptomycin (100 µg ml-1), buffered with
7,5% sodium bicarbonate and incubated at 20°C. The
virus was inoculated on EPC grown in MEM with antibi-
otics and 2% FCS at 14°C. When the cytopathic effect was
complete, the supernatant was harvested and centrifuged
to eliminate cell debris. The virus stock was titrated
according to Reed & Muench [98] in EPC 96 well plates.
Attenuated IHNV was generated by reverse genetic engi-
neering of virulent IHNV by M. Bremont as described else-
where [31].

RNA isolation
RNA from head kidneys of experimental and control/
sham-injected fish were extracted with the Trizol reagent
(Life Technologies) or Tri Reagent (Molecular Research
Center, Cincinnati, OH, USA) according to the manufac-
turer's instructions. DNase treatment was performed to
remove contaminating DNA from preparations. RNA was
precipitated using ethanol 100% and ammonium acetate
(pH 5.2). The RNA was stored at -80°C in ethanol 70%
until use.

Microarray design and analyses
The design of the microarray is described in detail else-
where [6,7] and a full description of the platform and data
presented in this manuscript are accessible through the
public GEO depositories (accession number GPL6155
and GSE10272). In brief, the platform included 1380
genes printed in six replicates each. Random clones from

common and subtracted cDNA libraries (976) were com-
pared with the known vertebrate proteins using blastx and
686 genes were identified; the functional annotations
were transferred from the putative homologs. These
clones were supplemented with 297 genes selected by the
categories of Gene Ontology. Overall, each microarray
was enriched in a number of functional classes, such as
stress and defense response (145 and 105 genes, respec-
tively), cell cycle (62 genes), signal transduction (114
genes), chaperone activity (41 genes), and apoptosis (79
genes).

Total RNA obtained from head kidney tissue was verified
for quantity and integrity by denaturing electrophoresis
and labeling with Cy3- and Cy5-dCTP (Amersham Phar-
macia) was completed using SuperScript III reverse tran-
scriptase (Invitrogen) and oligo(dT) primer, and cDNA
was purified with Microcon YM30 (Millipore). We used a
dye swap experimental design [99] and each sample was
hybridized to two microarrays. For the first slide, test and
control cDNA were labeled with Cy5 and Cy3 respec-
tively, and for the second array dye assignment was
reversed. All head kidney samples were analyses using the
dye swap protocol. The slides were pre-treated with 1%
BSA, fraction V, 5 × SSC, 0.1% SDS (30 min at 50°C) and
washed with 2 × SSC (3 min) and 0.2 × SSC (3 min) and
hybridized overnight in cocktail containing 1.3 × Den-
hardt's, 3 × SSC 0.3% SDS, 2.1 µg/µl polyadenylate and 1
µg/µl yeast tRNA. All chemicals were from Sigma-Aldrich.
Scanning was performed with ScanArray 5000 and images
were processed with QuantArray (GSI Luminomics). The
measurements in spots were filtered by criteria I/B ≥ 3 and
(I-B)/(SI + SB) ≥ 0.6, where I and B are the mean signal and
background intensities and SI, SB are the standard devia-
tions. After subtraction of mean background, locally
weighted non-linear regression (Lowess) normalization
[100] was performed separately for each slide. To assess
differential expression of genes, the normalized log inten-
sity ratios were analyzed with Student's t-test (p < 0.01).
The Bayesian modification to the false discovery rate
(FDR) was used to correct for multiple comparison tests,
estimating the q-value for the set of differentially
expressed genes [101]. For the analysis of the functional
profiling of samples, all genes that showed significant dif-
ferential expression (p < 0.01) in at least one sample were
used. Due to the large number of genes, the statistical sig-
nificance of over represented functional categories in each
experiment (figs. 2, 3, 4) was assessed using the Yates cor-
rection to Chi square test (corrected p < 0.05). The log (p-
level) ranked up or down-regulated genes were analyzed
interrogating the functional classes of Gene Ontology
(GO) [102] and compared by the sums of ranked genes
(Student's t-test, p < 0.05). A list of LPS and virus specific
responsive genes (figs 5, 6, 7) was obtained by GO data
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mining of a database (KuopioChip) of 155 previous
immune and stress related experiments [7,43].

Quantitative RT PCR
Primers were designed to amplify 194–305 bp fragments.
RNA was processed with Rnase-free Dnase (Promega).
Synthesis of cDNA with Superscript III reverse tran-
scriptase (Invitrogen) was primed with oligo(dT). Analy-
ses were carried out using Dynamo SYBR Green kit
(Finnzymes) and ABI Prism 7700 (Amersham-Pharma-
cia)

In order to quantify mRNA expression, real time PCR (Q-
PCR) was carried out. cDNA was diluted 1:50 for target
mRNA and 1:100 for 18S and used as a template with the
primers Q-PCR Fw and Q-PCR Rv (see additional file 1,
table 7). Wells (20 µl final volume) contained 10 µl of
iQ™ SYBR Green Supermix (Bio-Rad), 500 nM concentra-
tion of forward and reverse primers and 5 µl of cDNA.
Controls lacking cDNA and controls containing RNA were
included. Reactions were run in a MyiQ thermocycler
(BioRad) under the following protocol: 5 min initial
denaturation at 95°C, followed by 40 cycles of 10 sec
denaturation at 95°C and 30 sec at 60°C, and a final melt-
ing curve of 81 cycles (from 55°C to 95°C). All samples
were run in triplicate and fluorescence was measured at
the end of every extension step. CT (threshold cycle) val-
ues for each sample were expressed as "fold differences",
calculated relative to untreated controls and normalized
for each gene against those obtained for 18S (see addi-
tional file 1, Table 8).
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