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Abstract

Risk analysis of CO2 geological storage involves the simulation of the
dynamics of the storage process and the evaluation of the probability
of the possible leakage events. The approach followed here focuses on
Gaussian Process response surface modelling in order to reduce the num-
ber of calls to the expensive reservoir simulator. Three major problems
related to uncertainty analysis of CO2 storage are addressed:

1. Injection well placement

2. Reliability estimation

3. Reliability sensitivity analysis

To tackle the first problem we provide a response surface method to han-
dle discrete parameters (well positions) and discrete functional outputs
to treat responses varying trough time (reservoir pressure evolutions). In
addition, we introduce a new method for modelling functional outputs
based on curves characterization and involving shape invariant model.
To address the reliability problem, we introduce a subset simulation al-
gorithm linked with the Gaussian Process model. It involves adaptive
experimental design refinement and the model updating. To solve the
last problem we suggest a new method for reliability sensitivity analy-
sis. It is based on a perturbation of a probability distribution of input
variables in order to evaluate which one contributes the most in the
variability of the failure probability.

All the proposed methods have been numerically tested on analytical
and CO2 storage examples.

Key words: meta-modelling • kriging • discrete parameters • times

series • functional ouputs • adaptive sampling • reliability analysis •
failure probability • reliability sensitivity analysis • CO2 reservoir storage

• well placement



Résumé

L’analyse de risques du stockage géologique de CO2 consiste à simuler
la dynamique du processus de stockage et à évaluer la probabilité de
fuites. L’approche proposée dans ce travail consiste à utiliser des surfaces
de réponses basées sur les processus Gaussiens, cela permet de réduire
le grand nombre d’appels au simulateur de réservoir nécessaire à cette
analyse. Dans cette thèse des méthodes innovantes sont etudiées pour
resoudre les problèmes suivants:

1. Emplacement des puits d’injection

2. Estimation de la fiabilité

3. Analyse de sensibilité fiabiliste

Pour résoudre le premier problème nous proposons une méthode de
surface de réponse pour gérer les paramètres discrets (positions des
puits) et les sorties fonctionnelles discrètes (évolution de pression du
réservoir). Par ailleurs, nous introduisons une nouvelle méthode pour
la modélisation des réponses variées dans le temps. Pour cela, la car-
actérisation des courbes est effectuée en utilisant des modèles à forme
invariante. Pour le problème de fiabilité, nous avons développé une ap-
proche combinant la méthode de réduction d’ensemble et le krigeage.
Un échantillonnage adaptatif est construit afin d’améliorer itérativement
l’estimation de la probabilité de défaillance du modèle. Pour répondre
au dernier problème, nous proposons une méthode pour l’analyse de sen-
sibilité fiabiliste. Elle est basée sur une perturbation de la distribution
de probabilité des variables d’entrée afin de trouver les facteurs qui con-
tribuent le plus à la variabilité de la probabilité de défaillance.

Toutes les méthodes proposées ont été testées numériquement sur des
exemples analytiques et des cas test de stockage de CO2.

Mots-clés: méta-modélisation • krigeage • paramétres discréts • series

temporelles • sorties fonctionnelles • échantillonage adaptative • analyse

de fiabilité • probabilité de défaillance • analyse de sensibilité • stockage

du CO2 • placement de puits
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C.5 Estimated indices Ŝiδ for hyperplane function with a mean twisting . 158

C.6 Estimated indices ̂Si,Vper for hyperplane function with a variance

twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.7 Ishigami failing points from a MC sample . . . . . . . . . . . . . . . . 160
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Chapter 1

Introduction

Contents

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Problem description

Carbon Capture and Storage (CCS) stands for the collection of CO2 from industrial

sources and its injection into deep geological formations for a permanent storage.

There are three possible options for injection: unmined coalbed formations, saline

aquifers and depleted oil and gas reservoirs [Polson et al., 2009]. The last one

could benefit with the enhanced oil recovery. The overview of the geological storage

options and the life cycle of a typical storage project is shown in Figure 1.1 [Benson,

2006].

Nevertheless, the following principal environmental question arises: what is the

probability that CO2 will remain underground for hundreds to thousands of years

after its capture and injection into a storage formation?

The primary risk of CO2 geological storage is unintended gas leakage from the

storage reservoir. There are several principal possibilities for the leakage. The first

one is CO2 leakage through a well: either through an injection well or through

the nearby wells (if they were not properly sealed). The second is a leakage from

the storage formation up to the atmosphere through a fault or a fracture. In this

1



1. INTRODUCTION

Figure 1.1: CO2 storage option and its life cycle IPCC, 2006)

work, we focus on the second leakage possibility. These fractures may be of different

origins. Some of them were not properly identified in the original geological model,

others could appear by cap rock fracturation during the injection. This can happen

when the reservoir pressure is higher than the caprock fracture pressure. There is

also a possibility of leakage through the caprock due to the capillary effects. All the

possible leakage scenarios could be a significant risk to the environment [Bowden

and Rigg, 2004; Le Guen et al., 2008].

Numerical modelling and simulation is an integral component of CO2 storage

assessment and monitoring. The technology is adapted from the petroleum industry.

The reservoir simulation models are constructed based on reservoir and production

data. They are used to predict and analyze CO2 plume distribution and reservoir

pressure development during injection and the storage periods. Moreover, numerical

simulation models can be used to forecast CO2 storage performance and to evaluate

the risks of possible leakage. In this study, we use COORESTM reservoir simulator

[Tillier et al., 2007; Trenty et al., 2006], which is a multi-component three-phase and

3-D fluid flow simulator in heterogeneous porous media, accounting for mineralogy

2



1.1 Problem description

changes as well as relative permeability and capillary pressure effects.

Reservoir simulation studies involves a sequence of various activities: data col-

lection, model building, simulation runs and analysis of the results. However, data

used for the reservoir characterization are often noisy. Moreover, gathering sufficient

information to build an accurate reservoir model is an expensive and usually an im-

possible task. The main source of uncertainty is the collected geological data, for

example, the reservoir porosity and the reservoir permeability, placement of faults

and fractures and the reservoir geometry. For example, when the gas is stored in a

saline aquifer, there are almost no available reliable hand-on data about the future

potential storage reservoir.

Uncertainty analysis has been recognized as a principal part of safety and risk

assessment. Generally speaking, when the main sources of uncertainties have been

identified, Uncertainty Analysis (UA) consists in quantifying the uncertainty in the

model output resulting from uncertainties in the model inputs. At the same time,

Sensitivity Analysis (SA) aims at identifying the contributions of each model un-

certain input to the variability of the model output. It helps to determine the most

influential input parameters and to analyze how these parameters affect the model

output.

Uncertainty analysis is also performed to assess the reliability of the system.

Reliability is measured by the failure probability. For a case of CO2 storage, a

failure probability can be, for example, the probability of exceeding the caprock

fracturing pressure by reservoir pressure during injection. If we denote Preservoir the

reservoir pressure and Pfracture the caprock fracturing pressure, then we consider

the following failure probability:

pf = P(Preservoir ≥ Pfracture).

In practice, uncertainty and sensitivity analysis require a large number of reservoir

simulator runs to explore all the input parameters space. However, higher accuracy

of a simulator involves a higher simulation time. One simulator run can take from

few minutes up to several hours or even days. Therefore, when the simulation

time becomes too high, uncertainty analysis may become unfeasible. Consequently,

response surface models have recently gained attention. These models are intended

to approximate the output from a simulator. The main advantage of the response

surface model is that evaluation time is almost negligible compared to using the

3



1. INTRODUCTION

simulator.

In this work, we focus on Gaussian Process (GP) response surface models, also

known as kriging. The GP response surface modelling was originally introduced

in the field of geostatistics by Krige in the 1950’s [Krige, 1951] and formalized in

1960’s by Matheron [1963]. Sacks et al. [1989] proposed the statistical approach

to uncertainty analysis of complex computer codes referred to as the Design of

Computer Experiments. The theory and the algorithms are formalized in Sacks

et al. [1989]; Santner et al. [2003]; Welch et al. [1992]. In a nutshell, departing from

some simulator runs at carefully chosen input parameters configurations, called the

experimental design, we build an approximation of a reservoir simulator output.

Making a prediction at an unknown input is much faster than using the simulator.

Therefore, uncertainty and sensitivity analysis become affordable.

In this thesis, we make a review of the GP response surface modelling with par-

ticular attention to handling discrete parameters and addressing discrete functional

outputs of a dynamic simulator. We also propose a new sequential adaptive ap-

proach for experimental design with the objective of a reliable estimation of the

failure probability. In addition, the subsequent sensitivity analysis of the failure

probability is presented.

1.2 Objectives of the thesis

The objective of the thesis is to provide a comprehensive methodology for risk and

uncertainty analysis for the projects of CO2 storage. This methodology is based on

GP response surface modelling and consists in the following steps:

1. First, we propose a new CO2 injection well placement technique. By incor-

porating discrete parameters, such as well coordinates, we can place the well

under a condition of minimization of a possible leakage risk. By implementing

an approach for discrete functional outputs, we can consider numerous possible

well positions with a low CPU time cost.

2. Then, we propose a new adaptive refinement method for a GP response surface

model in order to provide a reliable estimation of the probability of a possible

leakage. By sampling adaptively close to the failure region, we can update the

existing GP response surface model. The new model is designed specifically for
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the estimation of the failure probability. Consequently, the relevant estimation

of the risk and the reliability are computed.

3. The third step is the sensitivity analysis of the computed failure probability.

This analysis indicates which input uncertain parameters contribute the most

to the variability of the failure probability of the system.

This work was done with respect to CO2 reservoir storage. However, all the de-

veloped methodologies could be applied to other areas of science and engineering

applications involving complex numerical simulators for uncertainty, sensitivity and

reliability analysis.

1.3 Thesis outline

Chapter 2 starts with a brief review of GP response surface modelling. A particular

emphasis of this chapter is how to better handle discrete parameters in GP response

surface modelling. When working with discrete parameters, the main difficulty is the

design of an appropriate correlation function. The function should be valid for all the

possible combinations of the discrete parameters. We present some recent attempts

to handle discrete parameters and we investigate different correlation functions. In

particular, we study the method proposed by Qian et al. [2008]. We have tested

how the choice of the correlation function affects model predictivity on analytical

test cases. We also present a reservoir case involving discrete parameters both of

qualitative and quantitative nature.

Chapter 3 concentrates on GP response surface modelling for dynamic simula-

tors. The output of such simulators consists of a sequence of outputs at different

time-steps. Therefore, it represents discrete functional outputs with a finite support,

or time series. The classical approach assumes distinct GP models for every time

step. In this chapter, we propose two approaches to model a dynamic simulator.

The first one is the extension of the method presented in Chapter 2, considering

the time variable as an auxiliary discrete variable. Another approach is based on

the Shape Invariant Model (SIM). For a given experimental design the simulator

provides a set of discrete curves. The model assumes that we are working with a

set of curves that have a common shape function. All other curves are obtained

by a proper parametrical transformation. In this chapter, we provide an efficient
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algorithm for estimating SIM transformation parameters. Then, we propose a pre-

diction algorithm for the dynamic simulator. We present the numerical examples

obtained for both methods.

Chapter 4 is devoted to the review of reliability methods. The objective of these

methods is to estimate the failure probability of a system pf . It can be achieved

either by approximation methods or by simulation methods. We present the basic

reliability methods and we provide a comparison of these methods on analytical test

cases. We will describe more in detail subset simulation method. This method make

possible estimating the failure probability even in high dimensions with rather low

CPU time cost. Then, we introduce a new adaptive refinement technique, based

on the subset simulation algorithm. We propose to incorporate the data generated

at each level of the subset simulation algorithm. So that, we are sure that we are

sampling from or close to the failure region. By combining the subset simulation

algorithm and the proposed statistical criterion, we iteratively update the original

GP response surface model in order to compute relevant estimation of the failure

probability. The method was tested on an analytical and a CO2 storage reservoir

cases.

In Chapter 5 the reliability sensitivity analysis is considered. As soon as the fail-

ure probability pf is estimated, it is important to know which parameters contribute

the most to its variability. We propose a new moment independent sensitivity mea-

sure that is based on a perturbation of the original probability distribution of the

input variables. By perturbing the original law by a low value δ independently for all

the input variables, we can estimate the new failure probability pδ. If the new value

is considerably different from the original failure probability pf , this means that the

corresponding input variables has a high impact. Vice versa, if difference between

the original and the new computed values is negligible, then the parameters has low

or no impact on the failure probability. In this section, we will also introduce a new

method to estimate the perturbed failure probability without additional function or

simulator calls. The method is based on the importance sampling approach. We

will also provide analytical and CO2 storage examples.

To conclude, in the last Chapter 6 the overall conclusions are stated and some

open points for possible future research are presented.
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Chapter 2

Discrete parameters in GP

response surface models
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2.1 Introduction

Gaussian process (GP) based response surface modelling has been widely applied and

has gained considerable attention in the literature over the recent years [Forrester

et al., 2008; Sacks et al., 1989; Santner et al., 2003]. GP based response surface model

is a statistical approximation of a deterministic function based on the information

derived from an experimental design. GP models have been established as a core tool

for response surface modelling mostly for two reasons. First, the response surface is
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2. DISCRETE PARAMETERS IN GP RESPONSE SURFACE MODELS

easy to compute and, second, it provides a full posterior probability distribution on

interpolating functions [Sacks et al., 1989; Santner et al., 2003].

The objective of this chapter is to develop a predictive GP response surface model

for the output of a simulator involving both discrete and continuous parameters.

Discrete parameters may identify distinct classes, categories or levels. These pa-

rameters can describe factors of a qualitative or a quantitative nature. In the frame

of computer experiments, one mostly works with continuous parameters, but there

are sometimes parameters that are discrete by nature and could not be expressed

continuously. Such parameters may play a significant role for the simulator output.

In the reservoir engineering, we often deal with different discrete parameters. The

quantitative discrete parameters can be, for example, well position coordinates on a

reservoir grid. We can consider both horizontal or vertical wells. In such case, the

quantitative discrete parameters are defined by a cell number of the well trajectory

in a reservoir grid. There are also qualitative discrete parameters that may char-

acterize reservoir uncertainties. For example, we can consider different geological

porosity or permeability map realizations or different sets of relative permeability

or capillary pressure curves.

Actually, numerous response surface models are available for predicting the out-

put from a computer code when all inputs are continuous and few have been at-

tempted to propose new methods for the cases involving both discrete and continu-

ous parameters. The main objective of a response surface model involving discrete

parameters is to answer whether a single model can adequately describe the input-

output relationship for different levels of parameters. Standard approach assumes

distinct GP models for modelling observations generated at different levels or com-

bination of levels for different parameters. This approach can be time consuming

and often it is not affordable. For example, let us consider a reservoir model with

2 discrete parameters such as an injection well coordinates with 11 possible levels

for each coordinate. Then, the standard approach assumes different GP models for

different combination of parameters. This corresponds to 11×11 = 121 different GP

models (121 hyperparameters evaluations). Therefore, fitting one response surface

model with discrete parameters can help in:

- Reducing computational time;

- Including discrete parameters in Sensitivity analysis (SA) and Uncertainty

analysis (UA).

8
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Different approaches have been proposed to model a simulator involving discrete

parameters. McMillan et al. [1999] developed a proportionality model to analyze

protein activity data. However, the correlation function proposed in their article

has a limited applicability. Kennedy and O’Hagan [2000] introduced a Bayesian

approach with an autoregressive model that combines the information from outputs

of simulators of multi-level complexity. Qian and Wu [2008] extended this method

by introducing Bayesian hierarchical Gaussian process for integrating multiple data

sources of low accuracy and high accuracy. Furthermore, Qian et al. [2008] proposed

a new formulation for correlation function describing qualitative and quantitative

parameters.

In this work, we extend the method initiated by Qian et al. [2008]. We have

worked with different correlation functions proposed therein and we have tested

these models with a reservoir engineering case. In Chapter 3 we show how we

can apply this method to time-series output modelling. Furthermore, we have also

studied a CO2 injection well placement application (see Chapter 3).

This chapter is organized as follows. Firstly, we briefly introduce GP response

surface modelling in Section 2.2. Then, Section 2.3 discusses correlation function

specifications both for continuous and discrete parameters. Section 2.4 provides

analytical test cases. Section 2.5 provides a reservoir case example involving discrete

quantitative and qualitative parameters.

2.2 Gaussian process response surface modelling

In this section, we recall the basics of GP modelling or kriging.

The idea of modelling an unknown function by a stochastic process was intro-

duced in the field of geostatistics by Krige in the 1950’s [Krige, 1951] and formalized

in 1960’s by Matheron [1963]. Later Sacks et al. [1989] proposed the use of krig-

ing for prediction and design of experiments. The theory and the algorithms are

formalized in Sacks et al. [1989]; Santner et al. [2003]; Welch et al. [1992].

Consider the output of a simulator as an unknown deterministic function F(x) ∈
R, where x ∈ Ω ⊂ Rd is a specified set of selected input parameters. The function F is

only known in predetermined design points: Xn = {x1, . . . ,xn},Yn = {F(x1), . . . ,xn)}.
The objective is to predict the function F0 = F(x0) for some new arbitrary input
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x0. The function is modeled as a sample path of a stochastic process of the form:

F̂(x) =
m∑
j=1

hj(x) · βj + Z(x) = β>h(x) + Z(x) (2.1)

where:

• β>h(x) is the mean of the process and corresponds to a linear regression

model with preselected given real-valued functions h = {hi, 1 ≤ i ≤ m}. Here,

we only consider the case h = 1.

• Z(x) is a centered Gaussian stationary random process. This is defined by its

covariance function: C(x,y) = E [Z(x)Z(y)] = σ2R(x,y). R(x,y) is the cor-

relation function and σ2 = E[Z(x)2] denotes the process variance. Stationarity

condition assumes: R(x,y) = R(|x− y|), where |x− y| denotes the distance

between x ∈ Ω and y ∈ Ω.

Numerous families of correlation functions have been proposed in the literature

[Abrahamsen, 1997]. We use here Gaussian correlation function, the special case of

the power exponential family. The power exponential correlation function is of the

following form:

R(x,y) = exp

(
−

d∑
j=1

|xj − yj|pj

θj

)
= exp

(
−

d∑
j=1

d
pj
j

θj

)
(2.2)

where dj = |xj − yj|, 0 < pj ≤ 2 and θj > 0. The hyperparameters (θ1, .., θd) stands

for correlation lengths which affect how far a sample point’s influence extends. A

high θi means that all points have a high correlation (F(xi) being similar across our

sample), while a low θi means that there are significant difference between the F(xi)’s

[Forrester and Keane, 2009]. The parameters pj corresponds to the smoothness pa-

rameters. These parameters determine mean-square differentiability of the random

process Z(x). For pj = 2 the process is infinitely mean-square differentiable and the

correlation function is called Gaussian correlation function. Hence, Gaussian corre-

lation function is infinitely mean-square differentiable and it leads to a stationary

and anisotropic process Z(x) [Santner et al., 2003; Welch et al., 1992]. Regardless

the choice of a correlation function, the estimation of hyperparameters (θ1, .., θd)

is crucial for a reliable prediction. Here, we use maximum likelihood criterion to

estimate hyperparameters [Santner et al., 2003].
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2.2 Gaussian process response surface modelling

The experimental design points are selected in order to retrieve the most infor-

mation on the function at the lowest computational cost. The number of design

points for a reliable response surface model depends on the number of inputs and on

the complexity of the response to analyze [McKay et al., 1979; Santner et al., 2003].

Latin Hypercube Designs (LHD) provides a uniform coverage of the input domain.

If we wish to generate a sample of size n, first, we partition the domain of each vari-

able into n intervals of equal probability. Then, we randomly sample x1 according

to the distribution of each of the n intervals. Further, for each of the n values for

x1, we randomly select one interval to sample for x2 , so that only one sample of

x2 is taken in each interval. We continue the process of a random sampling without

replacement until all the variables have been sampled. As a result we generate a

sample where each of d inputs is sampled only once in each of n intervals. Latin

hypercube designs have been applied in many computer experiments since they were

proposed by [McKay et al., 1979].

In this work, we use a modified version of LHD - maximin LHD. It is based on

maximizing a measure of the closeness of the points in a design Dn:

max
design Dn

min
x1,x2∈Dn

d(x1,x2)

It can guarantee that any two points in the design are not ”too close”. Hence, the

design points are uniformly spread over the input domain.

Consequently, when we have the experimental design Xn = (x1, ..,xn) and the

observation data Yn = (F (x1), .., F (xn)), the multivariate distribution according to

the model (2.1) for the Gaussian correlation function can be expressed as:(
Y0

Yn

)
∼ N1+n

[(
h>(x0)

H

)
β, σ2

(
1 r>(x0)

r(x0) R

)]
,

where R = (R(xi,xj))1≤i,j≤n ∈ Rn×n is the correlation matrix among the observa-

tions; r(x0) = (R(x1,x0), ..,R(xn,x0))> ∈ Rn is the correlation vector between the

observations and the prediction point; h>(x0) = (hj(x0))1≤j≤m ∈ R
m is the vector of

regression function at the prediction point x0 and H = (hj(xi))1≤i≤n,1≤j≤m ∈ R
n×m

is the matrix of regression functions at the experimental design. The parameters β

and σ are unknown.

Considering the unbiasedness constraint, the parameter β is replaced by the
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generalized least squares estimate β̂ in (2.1). Here, β̂ is of the following form: β̂ =(
H>R−1H

)−1
H>R−1Yn. Assuming that the correlation function is the Gaussian

correlation function, the prediction is therefore given by:

F̂ (x0) = h>(x0) · β̂ + r̂(x0) R̂−1
(
Yn −H · β̂

)
(2.3)

The hyperparameters θ = (θ1, .., θm) and the process variance σ2 are estimated

by Maximum Likelihood (MLE). Using the multivariate normal assumption, the

MLE for σ2 is:

σ̂2 =
1

n

(
Yn −H β̂

)
R−1

(
Yn −H β̂

)
(2.4)

Knowing the estimations for β̂ and σ̂2, the coefficients θ are estimated by maximiz-

ing the log likelihood:

l
(
β̂, σ̂2,θ

)
= −1

2

[
n log σ̂2(θ) + log(det(R(θ)) + n+ n log(2π)

]
(2.5)

This function (2.5) depends only on θ.

The resulting predictor F̂ (x0) ∼ N(µF̂ (x0), σ
2
F̂ (x0)) is a Gaussian random vari-

able. Therefore, we can provide the confidence interval of the prediction. For a

given level of probability 1− α, the confidence interval is given by:

Y0 ∈
[
µF̂ (x0) − Φ−1

(
1− α

2

)
σ2

F̂ (x0);µF̂ (x0) + Φ−1
(

1− α

2

)
σ2

F̂ (x0)

]
where Φ−1 is the inverse function to the standard normal cumulative distribution

function. Figure 2.1 displays an example on analytical function F (x) = x sin(x).

The confidence interval is calculated for α = 5%. The black bold line corresponds

to the approximated function, the blue dotted line depicts the estimated predictor.

The red dots are the experimental design for n = 5. It is clear that more points

in design leads to a more narrow confidence interval. It is important to have more

design points in the region of interest to obtain a more reliable approximation.

After having estimated all the model parameters, we now need to validate the

model. In this work for estimation of prediction accuracy of the model, we use the

predictivity index, Q2, and Root Mean Squared Error, RMSE. The predictivity
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Figure 2.1: Kriging approximation with a confidence interval.

index is calculated basing on a cross validation and it has the following form:

RMSE :=

√√√√ n∑
i=1

(ŜX/xi − F (xi))2

n
Q2 := 1−

∑n
i=1

(
ŜX/xi − F (xi)

)2

∑n
i=1

(
F (xi)− F̃

)2 (2.6)

ŜX/xi is the kriging model computed using all the design points Xn except xi and

F̃ is the mean of {F (xi), i = 1, . . . , n}.
The closer Q2 is to 1 or RMSE is to 0, the higher is the model predictivity.

These criteria can be also calculated on separate validation test data by performing

additional simulator runs. This approach provides higher accuracy measure though

it requires additional CPU time costs.

2.3 Correlation function with discrete parameters

In this section, we provide a general method to build a correlation function in the

mixed case of continuous and discrete parameters.

As discussed in the previous section, the problem of handling discrete parameters

in response surface modelling has been studied in previous works by different authors

[Kennedy and O’Hagan, 2000; McMillan et al., 1999; Qian et al., 2008] . Among all
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the proposed methods we can highlight two of them that are based on adaptation of

the correlation function of stochastic process for the discrete parameters [McMillan

et al., 1999; Qian et al., 2008].

Recall that a the GP response surface model is defined by the following equation:

f̂(x) =
m∑
j=1

βjhj(x) + Z(x), x ∈ Ω ⊂ Rd,

where h = (h1, . . . , hm)> are user-selected regression functions, β = (β1, . . . , βm)

is vector of unknown coefficients and the residual Z(x) is a centered stationary

Gaussian process. The stochastic process Z(x) is characterized by its variance σ2

and its correlation function R(x,y) = R(|x − y|), (x,y) ∈ Ω2. The correlation

function measures dependency as a function of distance between two points in the

input domain Ω. When the input domain Ω has a discrete part, the main problem is

to define a ”good” distance in this part. Indeed, a correlation function, through all

the levels of parameters, should satisfy basic relationship between the inputs. When

the distance between the point x and the point y is small, this means that R(x,y)

is close to one and the values of Z(x) and Z(y) are correlated. Reciprocally, when

the distance between x and y is high, the value R(x,y) is close to zero and Z(x)

and Z(y) are nearly independent .

McMillan et al. [1999] introduced a multiplicative formulation of the correlation

function. Let G be a Gaussian correlation function:

G(u,v) =
d∏
i=1

exp

(
−|ui − vi|

2

θi

)
, u =


u1

...

ud

 ,v =


v1

...

ud

 ∈ Ω ⊂ Rd

Here, the unknown hyperparameters are θ = (θ1, ..., θd). For a discrete parameter

with k levels in McMillan et al. [1999], the correlation function multiplier exp |ui−vi|
2

θi

is replaced by:
k∏
j=1

exp

(
−|I(ui = j)− I(vi = j)|

θij

)
.

where I(vi = j) is an indicator function (equals to 1 if the discrete parameter vi

takes level j, and 0 otherwise).

The correlation function defined in this way has a limited applicability and is
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difficult to interpret. If we consider, for example, k = 4 then the correlation matrix

is under parametrized: six different correlations are defined by four parameters.

Therefore, it is impossible to estimate independently all the hyperparameters of the

model. In our work, we rather use the following formulation (proposed by Qian

et al. [2008]) for the correlation function.

Firstly, let us discuss more precisely our framework. Suppose we are working

with a function (the simulator output): f(w) = f(x,y), where x = (x1, .., xI)
>

are the continuous variables and y = (y1, .., yJ)> are the discrete variables. Each

discrete variable yj, j = 1, . . . , J has nj possible values or levels (yj ∈ {1, ..., nj}
for j = 1, .., J). For this function, the response at an input w is modeled as follows:

f̂(w) =
m∑
j=1

βj · hj(w) + Z(w) (2.7)

Now, we define the correlation structure for Z(w) that involves both discrete

and continuous variables. To keep things simple, we consider the case with only one

discrete parameter y1 with n1 levels: y1 ∈ {1, .., n1}. So that, we want to define a

correlation function for Z(w), where w = (x, y1)>.

For every fixed value of the discrete variable y1 = i ∈ {1, . . . , n1}, the Gaussian

process: Z(w) = Z(x, y1) = Zi(x) is completely defined by its variance σ2 and by

the Gaussian correlation function. So that, if we look over all the possible values

of the discrete variable y1 ∈ {1, . . . , n1} , for every fixed value the resulting process

depends only on the set of the uncertain continuous variables x ∈ Ω ∈ Rd. We can

define a mean-zero n1-variate process: Z (x) = (Z1 (x) , . . . , Zn1 (x)). The problem

is to define cross-correlation function for Z (x).

For a given arbitrary input w1 = (x1, y11) and w2 = (x2, y12), the correlation

function of the process Z (w) is a cross-correlation between two process correspond-

ing to different levels of the discrete variable y11 and y12:

corr (Z(w1), Z(w2)) = corr
(
Zy11 (x1) , Zy12 (x2)

)
(2.8)

For the sake of clarity, by extracting a proper matrix of multipliers A, we can

represent the multivariate process Z (x) = (Z1 (x) , . . . , Zn1 (x)) as a linear com-

bination of the processes with the same variance σ2 and the correlation function

Rθ(x1,x2):

Z (x) = A · η (x) ,
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where A = [a1, . . . , an1 ]
t is n1 × n1 nonsingular matrix such that: atjaj = 1 for

j = 1, . . . , n1. Vector η (x) = (η1(x), . . . , ηn1(x))t is a vector of independent Gaus-

sian stochastic processes with the same variance σ2 and the correlation function

Rθ(x1,x2). Then, the cross-correlation for the vector η is expressed as:

corr (η (x1) , η (x2)) = Rθ (x1,x2) · In1 ,

where In1 is n1 × n1 identity matrix.

Coming back to equation (2.8) for the correlation function of stochastic process

Z (w) from (2.7). With the help of selected representation, (2.8) can be expressed

as:

corr (Z(w1), Z(w2)) = corr
(
aty11η (x1) ,aty12η (x2)

)
= aty11ay12Rθ (x1,x2) (2.9)

Here, aty11ay12 corresponds to the cross-correlation between the different values

of levels of discrete variable y1. Let us denote τ r,s = atras, where r, s ∈ (1, . . . , n1).

Then, by its original definition the matrix T = (τ r,s) = AAt is a n1 × n1 positive

definite matrix with unit diagonal elements. Thus, for any correlation function

R(x1,x2) the function (2.9) is positive definite. Therefore, it is a possible correlation

function for the process Z(w) [Abrahamsen, 1997].

For a general case with J discrete factors: y = (y1, .., yJ), yj ∈ (1, .., nj) for

j = 1, . . . , J . Following the equation (2.9), a correlation function to Z(w) is a

product:

corr (Z(w1,w2)) =
J∏
j=1

[
τ j,yj1,yj2Rθj(x1,x2)

]
, (2.10)

where every matrix Tj = (τ j,r,s) is an nj × nj positive definite matrix with unit

diagonal elements. Consequently, equation (2.10) defines a valid correlation function

as the product of J valid correlation functions Abrahamsen [1997].

In this work, we focus on Gaussian family of correlation functions:

Rθj(x1,x2) = exp
(
−
∑I

i=1
|x1i−x2i|2

θji

)
.

Therefore, if we collect the hyperparameters corresponding to the same contin-

uous variable xi and we denote 1/θi =
∑J

j=1 1/θj i. Then, for the case of Gaussian
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family of correlation functions (2.10) becomes:

corr (Z (w1) , Z (w2)) =
J∏
j=1

[
τ j,yj1,yj2

]
exp

(
−

I∑
i=1

|x1i − x2i|2

θi

)
(2.11)

Here, the parameters τ j,yj1,yj2 measures the correlation between the response at any

two input values w1 and w2 that differ only by the value of the discrete variable

yj: at levels yj1 and yj2 respectively. Whereas, parameters θ̄ = (θ1, . . . ,θI) are the

correlation lengths for continuous variables x ∈ Ω ⊂ Rd.
Thus, we have defined a correlation function for an emulator modelling the com-

puter code involving both continuous and discrete parameters. However, the right

choice of the matrices Tj is not straightforward. In the following subsection, we

discuss another method in case of an ordered discrete parameters space.

2.3.1 Correlation function for ordered factors

Different structures for the matrices Tj can be chosen. Qian et al. [2008] considered

the cases of isotropic, multiplicative or group correlation functions. In this section,

we focus on a correlation function when the discrete parameter space is ordered.

The ordered assumption is quite natural in the experimental design paradigm. For

example, we have the discretized well coordinates. The levels are already ordered

by a given grid of a reservoir model.

Suppose, that all the discrete parameters y = (y1, . . . , yJ) are ordered in an

increasing way. This means that for each yj ∈ {1, . . . , nj} the following inequality

holds: 1 < 2 < · · · < nj. We consider the case of one discrete parameter y ∈
(1, . . . , n) and 1 < 2 < · · · < n.

The method consists in transforming the discrete parameter y to a quantitative

one v. This is performed by using of a transformation function F . The function

F should be continuous and strongly increasing on [−1, 1]. Then, we transform the

level k of parameter y to level vk of parameter v by the following equation:

F (vk) = F (−1) + (k − 1) · F (1)− F (−1)

n− 1
, (2.12)

where −1 = v1 < . . . < vn = 1. Consequently, we assign: τr,s = R(vr, vs), where R

is a correlation function for v. Having converted all the discrete factors, we obtain

the Gaussian correlation function with I + J number of variables w = (x,v).
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2. DISCRETE PARAMETERS IN GP RESPONSE SURFACE MODELS

Different transformation functions F can be selected. Cumulative distribution

functions (CDF) are a reasonable choice. Also, some analytical functions such as

exponential or sine functions can be chosen. In Figure (2.2) three different trans-

formation functions are displayed for one qualitative factor with 6 ordered levels.

Figure (2.2(a)) displays linear function, that is also a CDF for uniform distribution

on [−1, 1] and Figure (2.2(b)) is a CDF of Gaussian distribution with mean µ = 0.25

and variance σ = 0.25. Figure (2.2(d)) shows analytical sine function and Figure

(2.2(d)) shows analytical exponential function.

(a) Linear function (b) Normal CDF, mean=0.25, sd=0.25

(c) Exponential function: exp(x) (d) Sine function: sin(πx/2)

Figure 2.2: Transformation function examples.
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By definition, the transformation function determines the choice of parameter

vk. It is worth to mention, that for the discrete parameters with originally unknown

order, the method can be used firstly by assigning some arbitrary order of levels.

The proper order can be established by trials-and-errors method basing on some test

data. So that, we can select the order that provides the highest model predictivity.

In the next section, we have studied the prediction performance of different

transformation functions on analytical functions. The results are discussed later.

2.4 Analytical tests

In this section, we present analytical test functions for the performance analysis

of the method introduced in the previous section. In Subsection 2.4.1 we give an

example of a multi-case function. Here, the level of discrete parameter defines the

function behavior. We compare the classical independent analysis and the method

proposed in Section 2.3. Subsection 2.4.2 provides a comparative analysis of different

transformation functions applied on two analytical functions.

2.4.1 Multi-case function example

Here, we consider the multi-case function (2.13) of 2 continuous variables (x, y) and

one discrete variable z. The discrete parameter, z defines the different cases of the

function. The parameter z has three possible values {1, 2, 3}. The function is defined

as follows:

F =


exp(1.9x) sin(5πy/2) if z1 = 1;

exp(2.5x) sin(5πy/2) if z1 = 2;

exp(2.1x) sin(5πy/2) if z1 = 3

(2.13)

The functional cross-section at x = y is depicted in Figure (2.3). We can notice that

the functions have similar behavior for different levels of the discrete parameter.

We compare two approaches. Independent analysis assumes distinct GP models for

modelling the data collected at different values of the discrete factor z. At the same

time, for integrated analysis we build a single GP model across different values

of discrete variable z. We apply a linear transformation function for integrated

analysis.

We have studied the method prediction performance at different sizes of experi-
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Figure 2.3: Multi-case function cross-section.

mental design N . For independent analysis, for a fixed value of z we computed three

different GP models of two variables (x, y) generated by an experimental design of

the same size N . For integrated approach, we work with a single GP model of

three variables (x, y, z) based on an experimental design of size 3 ×N accordingly.

The experimental design is a maximin Latin hypercube design. We have evaluated

50 different GP models computed from 50 different realizations of an experimental

design.

We use a predictivity index as a criterion for comparison of different approaches.

Recall that the predictivity index is defined as follows:

Q2 := 1−

∑Ntest
i=1

(
F̂ (xi)− F (xi)

)2

∑Ntest
i=1

(
F (xi)− F̃

)2

where Ytest = (F (x1), . . . , F (xNtest)) are the test data, F̃ is their empirical mean and

F̂ (xi) is the GP model approximation at the prediction point xi. For estimation of

the predictivity indices we use additional 500 function evaluations. Figure 2.4 com-

pares predictivity indices calculated at different designs of size N = 20, 30, 40, 50.

The integrated approach provides higher value of predictivity indexQ2 at lesser num-

ber N of input design points. The prediction efficiency of the integrated approach

is clearly better for the case of N = 20 and N = 30. There is some starting value
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(a) Predictivity indices, N=20 (b) Predictivity indices, N=30

(c) Predictivity indices, N=40 (d) Predictivity indices, N=50

Figure 2.4: Predictivity indices comparison.

of input sample size N from which both approaches demonstrate equivalent predic-

tion accuracy. For this case, it is N = 50, where all the models provide equivalent

prediction efficiency. This value of N generally depends on the complexity of the

function and the total number of input variables including the number of discrete

parameters and the associated number of levels.

In addition, we provide boxplots comparison of hyperparameters estimations

by different approaches for an experimental design of size N = 30. Figure 2.5(a)

displays comparison of the hyperparameters for continuous variables (x, y) calculated
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respectively by integrated approach and by three different GP models for every

fixed level of the discrete parameter z = 1, 2, 3. Figure 2.5(b) depicts the

hyperparameters estimations for (x, y, z) calculated by the integrated approach.

(a) Hyperparameters comparison (b) Integrated approach

Figure 2.5: Estimated hyperparameters comparison.

If we compare estimations of the hyperparameters corresponding to continuous

variables (x, y), we can see that all four models provide comparable estimations of

the hyperparameters.

To summarize, the presented analytical results show that with the integrated

approach it is possible to achieve higher prediction accuracy with a smaller size of

the involved experimental design and therefore with much lower CPU cost.

2.4.2 Transformation function selection

In this section, we provide sensitivity analysis of prediction accuracy depending on

the choice of transformation function. We consider an analytical function involving

different number of discrete parameters and different number of corresponding levels.

We are approximating the following functions (2.14) with a GP response surface

model. The size of the input experimental design is equal to 50 for every case.

To provide comprehensive comparison, we evaluate 50 different models and the
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predictivity was estimated with 250 additional confirmation function evaluations.

Chameau 4D

F (x) = 4x4 − 21
10
x4 + x · y − 4y2 + 4y4 + 3 sin(z) + x · z + w4 + 2w · z + 2

3
w5

Sinus 4D

F (x) = sin(5x+5)
5x+5

− sin(5y−3)
5y−3

− sin(z)
z
− sin(3w+3)

3w+3

(2.14)

The presented functions involve four variables. We consider cases where one, w,

or two of them (z, w) are discrete. Transformations from discrete to continuous

variables follow:

1. Linear: F1(x) = x

2. Standard normal distribution function: F2(x) = 1√
2·π

∫ x
−∞ exp

(
− t2

2

)
dt

3. Exponential function: F3(x) = exp(x)

4. Sine Transformation Function: F4(x) = sin(π·x
2

)

These are the transformation functions plotted in Figure 2.2.

We considered the case of one discrete parameter w with 10 levels and two

discrete parameters (z, w) with 10 and 20 levels accordingly. Boxplots of estimated

predictivity indices for different transformation functions are presented in Figure

(2.4.2). Figures 2.6(a) and 2.6(c) display the predictivity indices estimations for the

function Sinus 4D in the case of one and two involved discrete variables respectively.

The same cases for function Chameau 4D are depicted in Figures 2.6(b) and 2.6(d)

(a) Predictivity indices, Sinus 4D (b) Predictivity indices, Chameau 4D
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(c) Predictivity indices, Sinus 4D (d) Predictivity indices, Chameau 4D

Figure 2.6: Predictivity indices comparison.

Comparing the boxplot of the computed predictivity indices, we may conclude

that for some cases specific transformation function provides a little higher prediction

accuracy. However, in general if we compare the order of the differences, it is clear

that the model performance differences are not significant.

In addition, we present hyperparameters estimations for the case of two discrete

parameters for the function Sinus 4D (Figure 2.7(a)) and Chameau 4D (Figure

2.7(b)).

(a) Hyperparameters estimations, Sinus

4D

(b) Hyperparameters estimations,

Chameau 4D

Figure 2.7: Estimated hyperparameters comparison.
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2.5 Reservoir study

The estimated hyperparameters are low sensitive to the transformation function

selection. So that, the GP response surface model performance involving both con-

tinuous and discrete parameters are insensitive to the choice of the transformation

function.

In the next section, we present the method approbation with the reservoir sim-

ulation model.

2.5 Reservoir study

As discussed in the Introduction, the technology for CO2 storage monitoring was

completely adapted from petroleum industry. In this work, the PUNQ-S3 reservoir

case has been used for testing the method [PUNQ-S3 [1996]].

The PUNQ-S3 test case is a 3D synthetic reservoir model derived from the real

field data of the North Sea Brent reservoir. PUNQ-S3 (Production forecasting with

UNcertainty Quantification) is a benchmark model to test and analyze new methods

on uncertainty quantification and inverse problems of history matching.

A grid of the PUNQ-S3 reservoir field and the original pressure distribution in

the reservoir are displayed in Figure 2.5. The simulation model contains 19× 28× 5

grid blocks. The reservoir is surrounded by a strong aquifer in the North and

the West, and is bounded by a fault to the East and South. A small gas cap is

located in the center of this dome-shaped structure. The simulation model consists

of five independent layers. The porosity distribution in each layer is modeled by

geostatistical simulation. The layers 1, 3, 4 and 5 are assumed to be of good quality,

while the layer 2 is of poorer quality. Initially, the field contains six production

wells located around the gas-oil contact. No injection wells are required due to the

strong aquifer. The reservoir pressure map and the production wells are displayed

in Figure 2.5.

Table 2.1 represents the main uncertainty parameters considered in this study.

There are 6 continuous parameters as AQUI, MPH1, MPH2, MPV1, MPV2

and two discrete parameters: P1X, P1Y that corresponds to X and Y well position

grid coordinates. Here, we consider an additional qualitative discrete parameter: Z.

It represents different realizations of porosity and permeability maps. The parameter

has nine different levels that correspond to nine possible geostatistical realizations.

The model simulation period is 10 years. Production data is observed every
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Figure 2.8: PUNQ-S3 reservoir model: pressure distribution.

Name Description Min Max Def
AQUI Analytical porosity of the aquifer strength 0.2 0.3 0.2
MPH1 Horizontal transmissibility multiplier in good units 0.8 1.2 1.0
MPH2 Horizontal transmissibility multiplier in poor units 0.8 1.2 1.0
MPV1 Vertical transmissibility multiplier in good units 0.8 1.2 1.0
MPV2 Vertical transmissibility multiplier in poor units 0.8 1.2 1.0
SORG Critical saturation values used in endpoint scaling 0.15 0.2 0.18
SORW Critical saturation values used in endpoint scaling 0.15 0.2 0.18
P1X X coordinate of well PRO-1 / Quantitative Discrete 6 11 8
P1Y Y coordinate of well PRO-1 / Quantitative Discrete 21 23 22

Z Permeability distribution map / Qualitative Discrete 1 9 1

Table 2.1: PUNQS case study parameters.

2 years. Input experimental design is maximinLHD of size 100 and additional 200

confirmation runs were performed to test the prediction accuracy. Predictivity index

Q2 was selected as a criterion of prediction accuracy. Here, we consider two simulator

output for approximation: Total Field Oil Production (FOPT) and Field Water Cut

(FWC). FOPT is a cumulative oil production calculated at the end of every year.

FWC stands for a ratio of total volume of water produced by year to total volume

of liquid produced by year. Table (2.2) summarized the results. The table provides
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estimation of the hyperparameters corresponding to every variable and the computed

predictivity indices Q2.

year 1 2 3 4 5

θ1 20 20 20 12.66 10.71

θ2 16.36 4.82 3.49 4.61 5.30

θ3 20 20 20 18.10 20

θ4 20 20 20 20 20

θ5 20 20 5.99 4.55 6.02

θ6 18.96 8.68 17.28 19.66 17.61

θ7 6.31 5.60 3.77 4.06 3.73

θ8 5.24 2.02 1.56 1.48 1.80

θ9 14.85 20 13.98 15.36 5.05

θ10 0.25 0.06 0.05 0.05 0.05

Q2 0.97 0.94 0.85 0.89 0.90

year 1 2 3 4 5

θ1 12.19 19.92 17.50 13.82 8.51

θ2 15.77 8.44 7.93 7.88 6.63

θ3 20 20 20 20 20

θ4 17.85 20 19.27 19.15 20

θ5 6.27 5.54 8.08 10.10 17.65

θ6 15.70 17.32 20 20 20

θ7 16.35 19.02 10.45 7.35 6.14

θ8 1.48 1.72 1.95 2.39 2.79

θ9 2.56 3.40 3.87 4.52 4.90

θ10 0.05 0.05 0.05 0.05 0.05

Q2 0.85 0.87 0.88 0.89 0.89

Table 2.2: Predictivity indices by years for FOPT and FWC.

For both considered functions, the predictivity indices values range from 0.85

to 0.97. It corresponds to high level of prediction accuracy. If we have a look at

the hyperparameters calculated over the years, the estimations vary significantly

from one factor to another. Parameter Z provides the lowest value of correlation

parameter: θ10. At the same time, AQUI, MPH2, MPV1, MPV2 and SORG

have the least influence to the response outputs.

2.6 Conclusion

In this chapter, we introduced a GP response surface model for modelling experi-

ments involving discrete and continuous parameters. We adapted a general family

of correlation functions in case of ordered discrete parameters proposed by Qian

et al. [2008]. It provides a correlation function involving continuous and discrete

variables. As soon as the correlation function is available, classical GP modelling

can be applied.

The proposed integrated approach was tested on analytical and reservoir simu-

lation model case examples. The method outperforms independent approach with

a proven prediction efficiency at a lower size of the input experimental design. The

numerical results showed higher prediction accuracy at lesser CPU time. We have
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also conducted a sensitivity analysis for the transformation function selection. The

presented results showed a low sensitivity of the model predictivity to the choice of

the transformation function.

The important application of the suggested approach can be found in modelling

of time-series outputs considering the time variable as an auxiliary discrete input

variable. Moreover, regarding engineering application, the problem of optimal well

placement can be solved by adding well grid coordinates as additional quantitative

discrete variables. It will be discussed more in details in the following chapter.
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Chapter 3

Response Surface modeling for

time-series outputs
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3.1 Introduction

Simulation models are used nowadays in many industrial applications to predict and

analyze the behavior of complex systems. A simulator is a complex computer code

embedding the physical laws governing the physical system under investigation. The
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3. RESPONSE SURFACE MODELING FOR TIME-SERIES OUTPUTS

input of such simulators can be adjustable or uncontrollable parameters which are

only partially known and thus are affected by uncertainty. Uncertainty analysis of

numerical experiments is used to assess the confidence of the model outcomes which

are then used to make decisions [De Rocquigny et al., 2008]. Here, we focus on a par-

ticular type of dynamic simulators that are used to make predictions in the future.

These simulators are based typically on finite element / finite difference codes (for

instance, for the simulation of flows and transfers in porous media). Industrial appli-

cations using this type of simulators can be hydrocarbons reservoir forecasting and

carbon dioxide (CO2) underground storage [Busby and Sergienko, 2010; Sergienko

and Busby, 2011]. Such applications involve very complex numerical codes with a

large number of inputs and with high uncertainty derived from an incomplete knowl-

edge of subsurface formation [Subbey et al., 2004]. The uncertainty on the simulator

output is usually assumed to be mostly due to the propagation of the uncertainty

on the input. Nevertheless, modeling errors can also play a significant role.

In our frame, the dynamic simulator models a multi-phase 3-D fluid flow in

heterogeneous porous media, operating over fixed number of time-steps. The typical

output of such simulators consists of a sequence of outputs at different time-steps.

Therefore, it represents time series related, for instance, to a recovery rate for a

given well or a group of wells. It can be also a spatial output such as a pressure

map or a saturation map also evolving with time. Here, we focus on 1D time series

output which can be typically measured in a well.

Let us consider the output of a simulator as a deterministic function Y (t) =

F (x, t), where x ∈ Ω ⊂ R
d is a configuration of preselected input parameters and

0 < t ≤ T refers to a time step. Y (t) is a time dependent output, e.g. oil production

rate or reservoir pressure.

The function F : Rd×]0, T ] → R models the relationship between the input

and the output of a numerical simulator. Methods such as Monte Carlo ones can

be used to propagate uncertainty. However, each model evaluation being generally

very time-consuming this approach can be unpractical in industrial applications.

Moreover, the probability distribution of the input may vary as new data comes

in or within a process of dynamic data assimilation. Therefore, a response surface

approach can be a reasonable alternative in such applications [Busby and Feraille,

2008; Busby and Sergienko, 2010; Busby et al., 2008].

The advantage of a response surface model is that it is fast to evaluate and it

is designed to approximate the complex computer code based on a limited number
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of simulator evaluations. These evaluations of the simulator are taken at some well

chosen input configurations also called the training set or the experimental design.

Numerous experimental designs have been proposed and many of them are quite

sophisticated. Here, we use Latin Hypercube designs [McKay et al., 1979] for their

good space filling properties. Usually, it can be coupled with other criteria such

as the maximin design (maximum minimum distance) [Sacks et al., 1989; Santner

et al., 2003]. In this work, we focus on Gaussian process (GP) based response surface

models also known as kriging [Matheron, 1963; Sacks et al., 1989; Santner et al.,

2003].

The aim of this chapter is to propose a new method to address time series

outputs. For such dynamic simulator a standard approach assumes a single step GP

model for each time step. This basic approach can be computationally intensive for

a high number of time steps especially when a single GP model evaluation is highly

time consuming (e.g. the size of the training set and the number of variables are

large). Therefore, this can become unpractical in some industrial applications.

The problem of response surface modelling for dynamic simulators was recently

investigated by different authors. Several principal approaches can be distinguished.

A first possible approach is GP modelling considering the time steps as the model

additional input parameter [Busby and Sergienko, 2010; Conti and O’Hagan, 2010;

Qian et al., 2008]. This approach is easy to implement, however to take into account

all the information from an experimental design and every time steps, the size of

new resulting experimental design is multiplied by the number of time steps. In case

of large size of original experimental design or in case of high density of the steps in

the time scale, it leads to matrices of high dimensions. That can lead to numerical

problems because of matrix inversion. Conti et al. [2009] developed an iterative

approach to build a model of dynamic computer code, assuming that the model

output at a given time step depends only on the output at the previous time step

(Markovian assumption). Bayarri et al. [2007] introduced wavelet decomposition to

model time series outputs. Campbell et al. [2006], Higdon et al. [2008] and Lamboni

et al. [2009] suggested application of principal component decomposition. Auder

et al. [2011] extended this approach by a preliminary data classification.

In this work, we propose and compare two different methods to model time series

outputs. Firstly, we extend the method introduced in the previous Chapter 2. This

work was already presented in Sergienko and Busby [2011] and Busby and Sergienko

[2010]. In Section 3.2 we provide a new specification of the algorithm for application
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to time series outputs with a detailed explanation of the proposed algorithm. We

also consider the possible issues and discuss how to avoid them in Section 3.2.1.

We show the method efficiency with two different reservoir simulation models. One

of them is PUNQ-S3 reservoir model that we used in Section 3.2.2. Another one is

presented in Section 3.2.3, where we introduce a new method to address the problem

of an injection well placement for CO2 storage projects.

Further, we provide a new functional approach to model time series outputs of

a dynamic simulator in Section 3.3. This approach involves a combination of Shape

Invariant Model (SIM) and the Gaussian Process (GP) response surface modelling.

This model assumes a common pattern shape curve and curve-specific differences of

time series outputs in amplitude and timing are modeled with linear transformations.

We provide a model description in Section 3.3.2 and an efficient algorithm of the

model transformation parameters estimation in Section 3.3.2.1. Next, in Section

3.3.3 we discuss how to model time series outputs and provide an effective prediction

algorithm. The method was tested with a CO2 storage reservoir case using an

industrial commercial simulator and compared with a standard single step approach

in Section 3.3.4.

Finally, Section 3.4 summarizes the results of this chapter and highlights advan-

tages and drawbacks of both proposed approaches.

3.2 Time as a discrete parameter

This section is inspired by the work of Qian et al. [2008]. In Chapter 2 we discussed

the construction of a correlation function involving both continuous and discrete

variables. Here, we extend the method applying it for time series outputs modelling.

We consider time as an auxiliary discrete input variable. We modify the algorithm

in order to avoid possible computational issues.

To begin with, we consider a dynamic simulator as an output of a deterministic

function: Yt = F (x, t), where x = (x1, .., xd) ∈ Ω ⊂ Rd is a vector of input variables

and t : 0 < t ≤ T is a time step. The number of time steps is finite and fixed

t ∈ {1, . . . , T} . We suppose that t is equispaced in the time interval ]0, T ]. The

output of the dynamic simulator for a given input variables configuration x is a

vector: {Y1, . . . , YT} representing the simulator evaluations at a given configuration

x and at every considered time step. This vector of outputs can be considered as
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time series.

The standard approach to model a dynamic simulator is a single step GP mod-

elling. It assumes, that for every fixed t we consider a single output function Yt.

For such simulator, we can build a GP model based on a given experimental de-

sign set: {Xn,Yn
t }. Doing it iteratively for every fixed t, we can cover all the time

domain. This approach has the following disadvantages. Firstly, the resulting GP

response surface model is constructed for a particular time step t. Secondly, for the

complex output function a single model evaluation can be time consuming. In such

case, single step modelling approach can be unfeasible especially when there is a

large number of time steps. Here, we introduce a new algorithm and compare its

prediction performance with a single step GP model considered as a benchmark.

Firstly, let us present what is an experimental design for a dynamic simulator.

For an experimental design Xn = {x1, . . . ,xn}, xi ∈ Ω ⊂ R
d, i = 1, . . . , n we run

the simulator for every experimental unit: xi ∈ Xn, 1 ≤ i ≤ n. We collect then

the output at each time step t ∈ {1, . . . , T}. So that, the output Yn for a given

experimental design Xn is not a single vector, but the matrix (3.1). Every row (for

a fixed i): Yn[i, ] = F (xi, t), 1 ≤ t ≤ T , represents a discrete curve evolving over

time t.

Xn =


x1

...

xn

 Yn =


F (x1, 1) . . . F (x1, t) . . . F (x1, T )

...
...

...

F (xn, 1) . . . F (xn, t) . . . F (xn, T )

 (3.1)

To model time series outputs we propose to apply the method introduced in Chapter

2. Indeed, we can consider the time parameter t as an additional discrete variable

with the corresponding set of possible levels: {1, . . . , T}. Moreover, this set is

already ordered and we can apply the correlation function for ordered discrete vari-

ables with a linear transformation function. So that, a valid correlation function is

automatically available. The input variables domain Ω is replaced then by Ω×]0, T ]

and we can build a unique single output GP model based response surface model.

This model can be used to make a prediction for any arbitrary input x ∈ Ω ⊂ Rd at

any time step t ∈ {1, . . . , T}. The standard algorithm is completely similar to the

original one presented in Chapter 2.

The method is straightforward and easy to implement. Nevertheless, a direct ap-

plication of the method can lead to some numerical problems. When we are working
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with fitting a Gaussian process based model, the computational constraints typically

arise from the size n of the experimental design set Xn. The main computational

problem is the matrix inversion during the maximum likelihood estimation. In or-

der to achieve higher prediction performance, the aim is to account all the available

observations data from all the time steps. So that, we should transform the columns

of observations matrix Yn for a given experimental design Xn into a vector by join-

ing sequentially every column {Yn[, 1], . . . ,Yn[, T ]}. Going over all the time steps,

we obtain a new vector of observations: Yn
t = (Yn[, 1]>, . . . ,Yn[, T ]>)>. Now, we

have to inverse a nT × nT matrix. In case of a large number of time steps or high

dimension of input parameters space (the associated experimental design size n is

large), the matrix inversion can be very computationally demanding. It can lead to

misestimating of the model parameters. Hence, the direct application of the method

is restricted by the size of the original experimental design n and the number of the

time steps T involved in the dynamic simulator. To avoid this problem, we propose

a modification of the algorithm.

In our work, the original experimental design is a maximin Latin hypercube

design (LHD) introduced in Chapter 1. This provides a uniform coverage of the

input variables domain Ω ∈ R
d. Working with a dynamic simulator, for a given

experimental design Xn the information at every time step from the time interval

]0, T ] is available. So that, we wish to keep all the available information and to

include the time as an auxiliary discrete variable. The size of the new experimental

design is then nT×(d+1). It corresponds to a combination of the original LHD of the

input uncertain parameters Xn with the vector of all the time steps t = {1, . . . , T}.

Xt =



Xn

1
...

1

· · · · · ·

Xn

T
...

T


=



x1 1

xi
...

xn 1

· · · · · ·
x1 T

xi
...

xn T


Yt =



Yn[1, 1]
...

Yn[n, 1]

· · ·
Yn[1, T ]

...

Yn[n, T ]


(3.2)

The main reason of computational problems is the high number of time steps T

and the large size n of original experimental design Xn. As a modification of the

algorithm, we propose to selectively take out the information about the function
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3.2 Time as a discrete parameter

behavior at the time scale by combining two experimental designs (on the input

variables space Ω ∈ R
d and the time interval ]0, T ]). The objective is to reduce

the total size of the new experimental design with time considered as an auxiliary

variable but keeping the same information as it is provided with (3.2). So that, we

reduce the size of new experimental design from n × T to nnew, where nnew is the

size of the new experimental design on Ω×]0, T ] ∈ Rd+1. To keep a uniform coverage

of the input variables space Ω ∈ Rd, we recommend to choose nnew to be a multiple

of the size of the original design n: nnew = n× ntrain with ntrain < T .

We generate a new design vector of time steps tnnew = (t1, . . . , tnnew) as a Latin

hypercube permutation at the time interval t ∈ {1, . . . , T}. Then we combine tnnew

with Xn. By a proper selection of nnew and by a proper permutation tnnew , we can

keep the same level of information about the function at Ω×]0, T ] avoiding compu-

tational problems. For this algorithm, we do not have to conduct any additional

simulator runs because we use only available information from Yn and Xn.

As soon as we have this new experimental design, we can apply a standard

GP response surface modelling for a single output function: ft(xt) = F (x, t), where

xt ∈ Ω×]0, T ] ⊂ Rd+1 involves both discrete and continuous variables. The complete

algorithm is formalized in (3.2).

Algorithm 1 Algorithm for the GP modelling with time as an auxiliary variable.

Input: Dynamic simulator: Y (t) = F (x, t), x ∈ Ω ⊂ Rd, t ∈]0, T ]

Output: Unique GP response surface model

Create a design Xn = {x1, . . . ,xn} to span the domain Ω ∈ Rd

Run the simulator Yn = F (Xn, t) at design points for t = 1, . . . , T

Choose the size of new design: ntrain and nnew = ntrain · n

Create a design tnnew = {t1, . . . , tnnew} to cover the time interval ]0, T ]

Create a multiple design: Xnnew = {Xn, . . . ,Xn︸ ︷︷ ︸
ntrain times

}

Combine Xnnew
t = (Xnnew , tnnew)

Extract the vector of output Ynnew = Yn[·, tnnew ]

Conversion of all input discrete variables with a linear transformation modelling

Classical GP response surface model basing on new design

Return: Unique GP model formulation
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With a reasonable choice of nnew (so of ntrain) we can keep as much information

about the function as possible. The performance depends on the choice of ntrain.

If ntrain is too small it leads to lower prediction efficiency due to the lack of the

information. If ntrain is too high it can lead to numerical problems. We have tested

how the choice of nnew affects the prediction efficiency of the method. We discuss it

in the Section 3.2.2 on a reservoir model case example.

While working with this method in different applications, we have encountered

some difficulties. We point out few of them and discuss possible solutions to avoid

them.

3.2.1 Possible difficulties

3.2.1.1 Covariance structure

Let us consider the covariance between two different points in space and time xt1 =

(x1, t1) and xt2 = (x2, t2) and the corresponding outputs Yt1 = F (x1, t1) and Yt2 =

F (x2, t2). With the selected structure of the correlation function, the covariance is

expressed by a product of the variance σ2 of the stochastic process and the correlation

function:

Rt(xt1,xt2) = exp
(
−
∑d+1

i=1

|xt1i−xt2i |
2

θi

)
.

The hyperparameters θ = (θ1, . . . , θd) corresponds to the correlation lengths of the

input variables x ∈ Ω ⊂ R
d and θd+1 corresponds to correlation length of the time

variable. The hyperparameters affect how far the sample point influence extends. A

high θi means that all points have a high correlation and the corresponding outputs

being similar over the sample. While a low θi means that there is a significant dif-

ference between the different corresponding outputs. By examining the estimations

of the hyperparameters, one can decide what are the parameters that have the most

influence (and perhaps eliminate non influential variables). When we include time

as an auxiliary parameter, the correlation lengths of other input uncertain variables

can be misestimated. The reason is the output function dependence over the time

interval ]0, T ]. The difference of the function evaluations at two different points in

time can be considerably different.
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3.2 Time as a discrete parameter

3.2.1.2 High density of the time domain

Another possible issue is a high density of time step points in the time interval. When

we generate a new experimental design with included time variable, we collect all

the data from all the time step points. Number of the time steps can be large. For

example, with a case of CO2 storage, the reservoir model simulation period can be

up to hundreds or thousands of years. Another example is the method application to

the sound analysis where the data are gathered every minute or even every second.

In such case, for a new combined experimental design we have to include all the

possible time variable values from {1, . . . , T}. Thus, if the choice of a new design

size nnew is not sufficient, the prediction efficiency of resulting unique GP model can

be poor in view of the lack of information.

In such case, we propose to prioritize the information from different time steps

and include only the time steps with the relevant information. So that, we reduce

the total number of points T to a less number nt (number of included time steps). By

reducing the number of involved time steps, we avoid the possible numerical prob-

lems. It is worthwhile noting that the transformation from the discrete to continuous

variables should be still performed with a transformation function considering the

original number of levels {1, . . . , T}. In the case when the information from all the

time steps are of equal importance, we propose an alternative way to address this

issue in the following subsection.

3.2.1.3 Time domain division

Sometimes, it is not possible to allocate all the data to account all the design points

over the time interval. This can be due to computational difficulties. In other

cases, the simulator output has significantly different behavior over the selected

time interval ]0, T ]. As discussed before, the hyperparameters can be misestimated

in such cases. Here, we propose to divide time domain into a set of non intersecting

time intervals: ]Ti, Ti+1], where
⋃nintervals
i=1 ]Ti, Ti+1] =]0, T ]. After that, we consider

different GP models on the different time subdomains. The main question is how

to select the time domain partition?

Different algorithms for division can be performed. For example, in case of

quite similar output function behavior over the time interval, partition into equal

subintervals is a reasonable choice. For a case, when the function behavior is different

over the time interval, change points analysis can be applied. So that, the time
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domain is split by the points corresponding to the function behavior changes. For

complicated cases, statistical classification methods may be used.

There are different possible classification algorithms. To keep things simple,

we consider one of the simplest: the k − means classification algorithm. First,

we should choose the number of possible clusters nclusters. Then, we consider a

vector of empirical mean or empirical variance, calculated on the observation data

matrices. The number of clusters could be chosen by the method of trials and errors.

Starting from different possible assumptions and subsequent analysis the combined

model prediction performance. From the practice, we can say that sometimes even

a partition in two clusters can significantly increase the model predictivity. We have

tested this method on a reservoir case example. We present results in the following

section.

3.2.2 Reservoir case example

Firstly, we consider the reservoir model PUNQ-S3 for numerical approbation of the

method. The model was previously introduced in Section 2.5.

We consider 9 uncertain parameters including four discrete parameters with five

possible values. Discrete parameters correspond to wells coordinates. Table (3.1)

contains all the parameters used in this study. The selected uncertain parameters

describes different possible fluid flows and the reservoir conditions. The reservoir

model simulation period is 10 years that correspond to 10 time steps.

Name Description Min Max Def
AQUI Analytical porosity of the aquifer strength 0.2 0.3 0.2
MPH1 Horizontal transmissibility multiplier in good units 0.8 1.2 1.0
MPH2 Horizontal transmissibility multiplier in poor units 0.8 1.2 1.0
MPV1 Vertical transmissibility multiplier in good units 0.8 1.2 1.0
MPV1 Vertical transmissibility multiplier in poor units 0.8 1.2 1.0
SORG Critical saturation values used in endpoint scaling 0.15 0.2 0.18
SORW Critical saturation values used in endpoint scaling 0.15 0.2 0.18
P4X X coordinate of well PRO-4 /Discrete 7 11 9
P4Y Y coordinate of well PRO-4 /Discrete 15 19 17
P12X X coordinate of well PRO-12 /Discrete 13 17 15
P12Y Y coordinate of well PRO-12 /Discrete 10 14 12

Table 3.1: PUNQS case study parameters.

For an experimental design we select a maximin LHD Xn of size 50. The matrix
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with corresponding simulator outputs is Yn - [50, 10] matrix. Additional 100 con-

firmations runs is conducted to test the prediction performance. Predictivity index

Q2 was computed for every year. We consider 10 single step GP response surface

models for every year as a reference case. The selected output functions for analy-

sis are the same as in Example 2.5: Field Oil Total Production (FOPT) and Field

Water Cut (FWC). These functions are presented in Figure 3.1. To illustrate the

choice of new design, we have presented it in Figure 3.1 by red dots for ntrain = 1.

(a) FOPT (b) FWC

Figure 3.1: The functions of FOPT and FWC.

We have studied how the choice of nnew, or ntrain, influence the model prediction

efficiency. For a fixed ntrain = 1, 2, 3 we have conducted 50 different integrated

GP model evaluations. The only difference of these models is a sampling of t vari-

able. Figures 3.2(a) depicts the boxplots of evaluated predictivity indices Q2 for the

function of FOPT for ntrain = 2. Figure 3.2(b) displays the results for the same

function assuming two different model on two time intervals. The red dots are the

predictivity indices computed for the reference model. The green and blue dots are

the empirical means of Q2 evaluations for the boxplots with and without splitting

the time domain. Figure 3.2(c) represents the same case for FWC with ntrain = 2. It

can be seen that the predictivity varies from one sample to another and some values

corresponds to very low predictivity. Whereas, by splitting the time domain into 2

equal intervals the predictivity is significantly improved. For some time points this

model even outperforms the classical single step approach. Q2 estimations for the

rest of cases could be found in Appendix A, section A.1.
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(a) FOPT, ntrain = 2 (b) FOPT, ntrain = 2 with time scale di-

vision

(c) FWC, ntrain = 2 (d) FWC, ntrain = 2 with time scale divi-

sion

Figure 3.2: Predictivity indices estimations for different sizes of combined sampling.

It can be concluded that the prediction efficiency depends on the choice of ntrain.

For the presented cases the higher size of new experimental design means the higher

prediction performance. Worthwhile noting, that starting from some value of ntrain,

the prediction efficiency decreases due to arising matrices of quite high dimension.

As the main conclusion, comparing crossplots and Q2 it is clear that this new ap-

proach provides the same level of predictivity with the less time-costs. Predictivity

could be improved significantly by splitting time domain for different GP models. In
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this case, the predictivity is even better than the reference case. Table (3.2) repre-

sents CPU time comparison for independent single step approach and the proposed

approach.

Unique GP model Single-step modelling

FOPT 00:01:44 00:08:40

FWC 00:01:18 00:08:52

Table 3.2: CPU time comparison

3.2.3 Injection well placement optimization

Carbon Capture and Storage technology (CCS) stands for collection of CO2 from

industrial sources and its injection underground. Carbon dioxide is stored in a deep

geological formation that is sealed on a top by a low permeability cap [Busch et al.,

2010]. Subsurface storage of CO2 is always associated with an excess pressure in the

reservoir and one of the primary environmental risks is a pressure-driven leakage of

the gas from the storage formation [Benson, 2006; Bowden and Rigg, 2004].

The problem of an injection well placement is an important issue that can con-

tribute significantly to the risk mitigation. In order to assess the risk of CO2 leakage

through the caprock we can simulate different potential well placement scenarios.

After that, the injector is placed providing the minimum risk. However, it can be

infeasible in case of complex simulation models and numerous possible placements

for the reason of an excessive simulation time. At the same time, response sur-

face modelling is intended to approximate complex and computationally demanding

simulator codes basing on a limited number of simulations with lower time costs.

Here, we focus on Gaussian Process (GP) model. We propose to approximate the

reservoir simulator output with the response surface model by taking well positions

as controllable discrete parameters and a time step as an auxiliary model variable.

So that, instead of looking over all the possible combinations of the well positions,

we run a unique model for the analysis of possible pressure evolution. The sug-

gested approach leads to considerable time-savings reducing the required number of

simulations.

For the problem of well placement the output of the simulator can be represented

by F (x,y, t), where the set x ∈ Ωx ⊂ R
d1 represents collectively the uncertain pa-
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rameters describing the reservoir: porosity, permeability etc. The set of parameters

y ∈ Ωy ⊂ Rd2 are man-controlled discrete parameters (the well position in our case)

and t ∈]0, T ] corresponds to time step. The objective is to place a well with a

minimized risk of leakage. Therefore, the objective function to approximate is the

reservoir overpressure increase in the upper layer of the reservoir. When the re-

sponse surface model is computed, it should be validated. After that, to be more

confident about the leakage risk, we aim to estimate a quantile P90 of F (x,y, t)

as a function of controllable parameters y basing on sampling x. The quantile is

calculcated by Monte-Carlo sampling of the uncertain parameters x for every fixed

well position y. After that, the optimal well position y∗ is the one that provides

a minumum possible pressure evolution. It can be represented as a solution of the

following optimization problem:

y∗ = arg min
y∈Ωy

max
t∈]0,T ]

(F̂90(y, t)).

The method was tested on a reservoir model of potential CO2 storage site in

Europe. The reservoir simulation model was constructed from incomplete data

and can include significant uncertainties. The model is realized by a coarse grid

resolution of 800m × 800m cells and the grid dimensions are: Nx × Ny × Nz =

43 × 52 × 52. Two facies are used in the model: sand and shale. Initial storage

pressure was assumed to be at the hydrostatic conditions (100 bars at 1000 m).

The CO2 injection is supposed to be at a constant rate for 30 years. Table 3.3

summarizes the parameters considered for this study.

Name Description Min Max Def
PHI Porosity multiplier 0.5 1.5 1
K Permeability multiplier 0.8 1.2 1
Nsand N exponent for sand facies 1 3 2
Nshale N exponent for shale facies 2 4 3
INJ1X X coordinate of injection well 26 36 31
IN1Y Y coordinate on injection well 22 32 27

Table 3.3: CCS study parameters.

Figure 3.3(a) displays the original pressure distribution map. The injection well

is to be placed inside the predetermined region. Each coordinate includes 11 possible

levels. The uncertain parameters x selected for this study characterize the reservoir

and the fluid properties. This implies different CO2 flowing possibilities between the
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reservoir layers. The well position cell number refers to the controllable parameters

to be optimized.

Following the engineering safety criteria, the margin on the cap rock allows

a pressure increase of about 15 % compared to static condition. Therefore, the

maximum allowed overpressure is Plimit = 15 bars. Exceeding this value can lead

to a leakage. The first step is an approximation of the overpressure in the upper

(a) Original reservoir pressure distribu-
tion

(b) The best, the worst and the default
positions

Figure 3.3: Injection well placement study.

layer by a GP response surface model and the model validation. After that, if the

satisfactory predictivity is achieved, by fixing controllable parameters and Monte-

Carlo sampling of the uncertain parameters, we can go over all the possible 121

coordinates combinations and estimate P90 of these realizations. Afterward, the

optimum well position can be identified.

Figure 3.3(b) represents the possible overpressure evolutions. It compares the

overpressure development over the simulation period for the best, the worst and the

default well position that was used in the original simulation model. The optimal

well position corresponds to [X, Y ] = [36, 32]. Whereas, placing an injection well in

[X, Y ] = [26, 32] can lead to a leakage.

By this section, we propose a new method for an injection well placement opti-

mization under uncertainty, particularly CO2 injection well placement. The method

is based on a GP response surface approximation of the reservoir overpressure basing

on a limited set of reservoir simulator runs.
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We applied the method to the potential CO2 storage reservoir model. The injec-

tion well position is determined under minimizing the risk of apossible leakage. To

conclude, this example demonstrated a reliable level of predictivity. Moreover, in-

cluding controllable parameters as additional variables allows to considerably reduce

the required number of simulations. The method provides significant time savings

compared to the standard approach.

Unique GP model Single step modelling

00:00:37 00:07:57

Table 3.4: Time costs comparison.

3.3 Shape invariant model approach

3.3.1 Introduction

In this section, we discuss the shape invariant model representation and the proce-

dure for efficient parameters estimation.

The shape invariant model was introduced by Lawton et al. [1972]. The model

assumes that we are working with a set of curves that have a common shape function

that is modeled nonparametrically. The deformation of this function is modeled

parametrically by choosing a proper parametrical transformation. We consider a

class of linear transformations only. These parameters can be normally interpreted

as a shift in timing or a scale in amplitude. For this reason, shape invariant model

is widely applied to study periodic data such as temperature annual cycle [Vimond,

2010] or traffic data analysis [Gamboa et al., 2007]. Indeed, in these cases there

is always some variability in time cycles or amplitude. The model has also been

used to study biological data , where the departure from the pattern can be caused

by a different environmental conditions [Brumback and Lindstrom, 2004; Izem and

Marron, 2007]. In this work, we use the model to represent reservoir simulator

output data. For example, if we consider the field water cut that is the ratio of

produced water compared to the volume of total liquids produced. In this example,

the shift in time is caused by different moment of water breakthrough. Whereas,

for the cumulative oil production function we can clearly observe vertical scaling
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transformation for different flowing conditions in the reservoir model. These flowing

conditions are defined by selection of input uncertain parameters. So that, we can

study the influence of the model input parameters on the overall shapes of functional

for curves the selected output.

In figure (3.4) we display three possible transformations that we consider in our

work: horizontal shift 3.4(a), vertical shift 3.4(b) and vertical scaling 3.4(c). The

bold line represents original pattern shape.

(a) Horizontal shift (b) Vertical shift (c) Vertical scale

Figure 3.4: Parametrical transformation examples.

We are interested in the common shape as well as in the efficient estimation of

transformation parameters. So that, we can reproduce any curve and align it to

the pattern. Moreover, we can make a prediction for an input configuration x0 by

modelling the transformation parameters.

As discussed, for an experimental design Xn = {x1, ..,xn}, we have a set of

observations Yn = {Yi,j = F (xi, tj), 1 ≤ i ≤ n, 1 ≤ j ≤ J}, where xi is the set of

preselected input parameters and tj refers to a time step. So that, Yi,j is the jth

observation on the ith experimental design unit, with 1 ≤ i ≤ n and 1 ≤ j ≤ J .

Thereby, the idea is to find a general pattern curve that make possible subsequent

transformations of any curve to this selected pattern with properly adjusted trans-

formation parameters.

We focus here on linear transformations. Thus, the model structure may be

written as:

Yi,j = α∗i · f(tj − θ∗i ) + v∗i + σ∗i
2 · εij (3.3)

where tj is observation time which assumed to be known and equispaced in the

interval ]0, T ]. The vector of parameters: (α∗, θ∗, v∗) = (α1, .., αn, θ1, .., θn, v1, .., vn)
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is unknown as well as the pattern function f . The errors εij are i.i.d. with a normal

distribution N(0, 1), (i, j) ∈ {1, .., n}× {1, .., J}. It represents the observation noise

and without loss of generality we assume that σ2 = 1. The variance does not affect

exactly on the parameters estimation procedure and the method still works for a

variance σ2. The function f is assumed to be 2π-periodic [Gamboa et al., 2007;

Vimond, 2010].

In this section we provide the algorithm for efficient estimation of the transforma-

tion parameters under unknown function pattern f . Since the functional pattern f is

unknown, the pattern is replaced by its estimate. So that, it seems natural to study

the problem (3.3) in a semi-parametric framework: the transformation shifts and

scales are the parameters to be estimated, while the pattern stands for an unknown

nuisance functional parameter. We use an M-estimator built on the Fourier series

of the data. Under identifiability assumptions it is possible to provide a consistent

algorithm to estimate (α∗, θ∗, v∗) when f is unknown. This section is organized as

following. Firstly, we describe the method of efficient estimation of transformation

parameters of the shape invariant model. The method is illustrated with an exam-

ple on an analytical function. Then, we present the forecast algorithm for dynamic

simulators with a practical application of the algorithm on a CO2 storage reservoir

case.

3.3.2 Model description

Consider Yn = F (Xn, t) = {F (xi, tj), 1 ≤ i ≤ n, 1 ≤ j ≤ J} is (n × J) matrix of

observations. We model these observations in the following way:

Yi,j = α∗i · f(tj − θ∗i ) + v∗i + εij, 1 ≤ i ≤ n, 1 ≤ j ≤ J (3.4)

where f : R → R is an unknown 2π-periodic continuous function, θ∗ = (θ∗1, ..., θ
∗
n),

α∗ = (α∗1, ..., α
∗
n), v∗ = (v1, ..., vn) ∈ Rn are unknown parameters, εij is a Gaussian

white noise with variance equal to 1. The time period is linearly transformed such

that ]0, T ]→]0, 2π], therefore tj = j
J

2π, j = 1, .., J is equispaced in ]0, 2π].

The objective is to estimate the horizontal shift θ∗ = (θ∗1, ..., θ
∗
n), the vertical

shift v∗ = (v1, ..., vn) and the scale parameter α∗ = (α∗1, ..., α
∗
n) without knowing the

pattern f . Fourier analysis is well suited for the selected structure of the model.

Indeed, this transformation is linear and shift invariant. Therefore, applying a
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discrete Fourier transform to (3.4) and supposing J is odd, the model becomes:

dkl =

{
α∗ke

−ilθ∗kcl(f) + wkl, 1 ≤ k ≤ n, 0 < |l| ≤ (J − 1)/2

α∗kc0(f) + v∗k + wk0, 1 ≤ k ≤ n, l = 0
(3.5)

where cl(f) = 1
J

∑J
m=1 f(tm)e−2iπml

J , (|l|≤(J−1)/2) are the discrete Fourier coefficients

and wkl, (1≤k≤n, |l|≤(J−1)/2) is a complex white Gaussian noise with independent

real and imaginary parts.

We also notice that in order to ensure the identifiability of the model (3.5) we

can consider different constraints. In this work, we are working in the following

parameters space:

A = {(α, θ, v) : α1 = 1, θ1 = 0, v1 = 0, 0 < θi < 2π,−π < vi < π, 0 < αi < αmax}.
This means that we fix the first curve from the experimental design. We assume it

as the reference curve and all others are representation of this reference realized by

horizontal shifts, vertical shifts and scaling parameters.

The objective of this section is to estimate the transformation parameters (α∗,

θ∗, v∗) without any prior knowledge on the function f . The estimation depends on

the unknown functional parameter (cl (f))|l|≤(J−1)/2, the Fourier coefficients of the

unknown function f . So that, we consider a semi-parametrical method based on an

M -estimation procedure. M -estimation theory enables to build an estimator defined

as a minimizer of a well-tailored empirical criterion that is given in the following

subsection.

3.3.2.1 Parameters estimation

The goal is to estimate the vector of parameters (α∗, θ∗, v∗) that depends on the

Fourier coefficients of the unknown function f . We consider a semi-parametric

method based on an M-estimation procedure [Gamboa et al., 2007].

To construct an M-estimator, we define the rephased (untranslated and rescaled)

coefficients for any vector (θ, α, v) ∈ A:

c̃kl(α, θ, v) =

{
1
αk e

ilθkdkl, 1 ≤ k ≤ n, 0 < |l| ≤ (J − 1)/2
1
αk (dkl − vk) , 1 ≤ k ≤ n, l = 0
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and the mean:

ĉl(α, θ, v) =
1

n

n∑
k=1

c̃kl(α, θ, v), |l| ≤ (J − 1)/2

Therefore, for (α∗, θ∗, v∗) we obtain:

c̃kl(α
∗, θ∗, v∗) = cl(f) +

1

α∗k
eilθ

∗
kwkl 1 ≤ k ≤ n

ĉl(α
∗, θ∗, v∗) = cl(f) +

1

n

n∑
k=1

eilθ
∗
k · wkl
α∗k

.

Hence, |c̃kl(α, θ, v)− ĉl(α, θ, v)|2 should be small when (α, θ, v) is closed to

(α∗, θ∗, v∗).

Now, consider a bounded measure µ on ]0, T ] and set

δl :=

∫ T

0

exp

(
2iπl

T
ω

)
dµ(ω), (l ∈ Z) (3.6)

Obviously, |δl| > 0, l 6= 0 and this sequence (δl) is bounded. Without loss of gener-

ality we assume that δ0 = 0. Assume further that
∑

l |δl|
2 |cl(f)|2 < +∞. So that

f ∗ µ is a well defined square integrable function:

f ∗ µ(x) =
∫
f(x− y)dµ(y)

We construct the following empirical contrast function (3.7):

Mn(α, θ, v) =
1

n
·

n∑
k=1

J−1
2∑

l=−J−1
2

|δl|2 |c̃kl(α, θ, v)− ĉl(α, θ, v)|2 (3.7)

The random function Mn is non negative. Furthermore, its minimum value is

reached close to the true parameters (α∗, θ∗, v∗). We define the estimator by:

(α̂, θ̂, v̂)n = arg min
(α,θ,v)∈A

Mn(α, θ, v)

The prof of convergence (α̂, θ̂, v̂)n
P−→

n→+∞
(α∗, θ∗, v∗) and asymptotic normality

of the estimators can be found in Gamboa et al. [2007]; Vimond [2010]. The weights

δl in (3.6) are chosen to guarantee the convergence of the contrast function to a
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deterministic functionMn and to provide the asymptotic normality of the estimators.

Moreover, the convergence can be sped up by proper selection of weights. The

analysis of convergence at different weights is presented in [Gamboa et al., 2007]. In

this work, we used the weights δl = 1/|l|β with β = 1.5.

The computation of the estimators is quick since only a Fast Fourier algorithm

and a minimization algorithm of a quadratic functional are needed. The procedure

is summarized in Algorithm (3.3.2.1)

Algorithm 2 Parameters estimation procedure.

Input: Input set of curves from experimental design Yn = {Yij, i = 1, .., n; j =

1, .., J}
Output: Transformation parameters estimation (α∗, θ∗, v∗)

Define the identifiability condition: A =

{(α∗, θ∗, v∗) ∈ [−π, π[3×n: α1 = 1, θ1 = 0, v1 = 0}
Compute the matrix of discrete Fourier coefficients D = {dkl, k = 1, .., n; |l| ≤
(J − 1)/2}
Compute the matrix of rephased Fourier coefficient C̃ = {c̃kl, k = 1, .., n; |l| ≤
(J − 1)/2}
Compute the vector of mean of rephased coefficients Ĉ = {ĉl, |l| ≤ (J − 1)/2}
Choose the weight sequence δl

Define Mn(α, θ, v) = 1
n
·
∑n

k=1

∑J−1
2

l=−J−1
2

|δl|2 |c̃kl(α, θ, v)− ĉl(α, θ, v)|2

Compute (α̂, θ̂, v̂) = arg min(α,θ,v)∈AMn(α, θ, v) ∈ R3×(n−1)

Return: (α̂, θ̂, v̂) ∈ R3×(n−1)

3.3.2.2 Analytical function example

In this section the shape invariant model and the efficient parameters estimation

are presented on an analytical function. The minimization algorithm used in the

estimation procedure is a Newton-type algorithm .

Let us consider the following function:

f(x) = 20 · (1− x/(2π)) · x/(2π)

Simulated data are generated as follows:

Yij = α∗i · f(tj − θ∗i ) + v∗i + εij, 1 ≤ i ≤ n, 1 ≤ j ≤ J
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with the following choice of parameters: n = 5, J = 101, tj = j
J

2π, 1 ≤ j ≤ J

are equally spaced points on ]0, 2π]. Transformation parameters (θ∗, α∗, v∗) are

uniformly distributed on [0, 1], where θ∗1 = 0, v∗1 = 0, α∗1 = 1; the noise εji, j =

1, .., J, i = 1, .., n are simulated with a Gaussian law with mean 0 and variance 0.5.

Results are displayed in Figure 3.5. The function f is plotted by a solid red line

in Figure 3.5(d). Figure 3.5(a) shows the original simulated noisy data Yi,j. The

cross-sectional mean function of these data is presented in Figure 3.5(d) by black

dotted line. Figure 3.5(b) plots estimated transformation parameters versus the

originally simulated parameters. As it can be seen, the estimations are very close to

the original parameters. The inverse transformation using the estimated parameters

is displayed in Figure 3.5(c) and the mean function of restored curves is displayed in

Figure 3.5(d) by blue dashed line. Figure 3.5(d) compares the cross-sectional mean

of inversely transformed data and the cross-sectional mean of originally simulated

data. Despite the noise, it is noticeable that the data after inverse transformation

are much more closer to the original function f than the original cross-sectional

mean function.

This analytical example shows that the method is effective in estimating the

transformation parameters of the shape invariant model.

(a) Original data (b) Calculated parameters
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(c) Inverse transformation (d) Comparison

Figure 3.5: Analytical example.

3.3.2.3 Modified model with internal scaling

We can also consider a model including internal scaling of the variable. In this case,

the observations data Yn = {Yi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ J} of a dynamic simulator

can be represented as follows:

Yi,j = f(ai · tj), 1 ≤ i ≤ n, 1 ≤ j ≤ J (3.8)

Figure 3.6 displays how this transformation changes the general pattern curve with

an example on sin x function. The original function is depicted by a bold line.

You can clearly see that with this transformation changes 2π-periodic function to a

ai2π-periodic function. Here, we provide the estimation procedure of internal scaling

parameters: a = (a1, . . . , an).

To estimate the parameters a = (a1, . . . , an) we propose to change the original

variable so that: t→ expu. Then:

Y = f(ai · t) = f(exp(log(ai · t))) = f(exp(log ai + log t)) = g(u+ âi),

where g(·) = f(exp(·)), So that, replacing the variables we reduce the problem of

the internal scale parameters estimations to the previous model for the function

g considering only the horizontal shifts parameters: â = (â1, . . . , ân). However,

such variable replacement should be done keeping the same boundaries [1, T ]. The

51



3. RESPONSE SURFACE MODELING FOR TIME-SERIES OUTPUTS

Figure 3.6: Internal scaling example.

variable t is replaced by u by the following formulation:

t = exp
(

(T − 1) u−1
log T−log 1

+ log 1
)

= exp
(

(T − 1) u−1
log T

)
or

u = (log t−log 1)(T−1)
log T−log 1

+ 1 = (log t)(T−1)
log T

+ 1

(3.9)

We should also keep in mind that the original function f in original coordinate space

is 2π periodic. To estimate correctly the horizontal shifts parameters, we should keep

new function g also 2π periodic.

We illustrate the procedure of estimation of internal scale parameters with the

same analytical function example as before:

f(x) = 20 · (1− x/(2π)) · x/(2π)

We consider the following choice of parameters: J = 5, N = 101, ti = i
N

2π, 1 ≤
i ≤ N are equally spaced points on ]0, 2π]. Transformation parameters (a∗) are

uniformly distributed on [0, 1], where a∗1 = 1. We do not consider the noise in this

example to show the parameters estimation.

Results are displayed in Figure 3.7. The function f is plotted by a solid red line

in Figure 3.7(a). Figure 3.7(a) shows the original simulated data Yi,j. The data
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obtained after the variable replacement is presented in Figure 3.7(b). Horizontal

shifts are now clearly observable with new variable. Figure 3.7(c) plots estimated

internal scaling parameters versus the originally simulated parameters. As it can

be seen, the estimations are very close to the original parameters. The inverse

transformation using the estimated parameters is displayed in Figure 3.7(d). It is

noticeable that the data after inverse transformation are much more closer to the

original function f than the original cross-sectional mean function.

(a) Original noisy data (b) Data with new variable

(c) Calculated parameters (d) Inverse transformation

Figure 3.7: Analytical function example.
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Applying the shape invariant model to the modelling of the output a dynamic

simulator in reservoir engineering, we are mostly working with the model described

in previous section. In the next section, we present the prediction algorithm based

on the model (3.4). However, for some application the model (3.8) with internal

scaling can be applicable. Then, the prediction algorithm is completely the same

considering only the parameters of internal scaling.

In the next section, we explain how this model can be applied in reservoir engi-

neering forecast problems.

3.3.3 Prediction algorithm

To apply the shape invariant model approach to model the dynamic simulator,

firstly we have to modify the parameters estimation procedure for large number of

curves. When we are working with uncertainty modelling, we always start from an

experimental design Xn and a set of observation Yn. As we have mentioned, the

number of design points depends on the number of inputs and on the complexity

of the response. Hence, optimization problems could arise when we compute the

contrast function with a large number of curves, i. e. large size of the experimental

design. It can be time consuming and the results can be inaccurate. Therefore, we

propose to adapt the Algorithm 3.7 to the Algorithm (3). The original observation

data is split into blocks and the optimization procedure is then performed on each

of the blocks. Following the identifiability condition, we are working on a compact

set A = {(α∗, θ∗, v∗) ∈ [−π, π[3×n: α1 = 1,θ1 = 0,v1 = 0}. This condition should

be satisfied on every block optimization by adding the first reference curve to the

block.
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Algorithm 3 Parameters estimation procedure for large n.

Input: Input set of curves from experimental design Yn = {Yij, i = 1, .., n; j =

1, .., J}
Output: Transformation parameters estimation (α∗, θ∗, v∗)

Split the observation data into Nb blocks of (K + 1) curves

for m = 1, .., Nb do

Define block curves YK+1 = {Y1, Y(m−1)(K+1)...,YmK} = {Yij, i = 1, .., K+1, j =

1, .., J}
Perform Algorithm 3.3.2.1

Compute (α̂, θ̂, v̂) = arg min
α,θ,v∈A

Mn(α, θ, v), where (α̂, θ̂, v̂) ∈ R3×K

end for

Return: (α̂, θ̂, v̂) ∈ R3×(n−1)

With this procedure, we can estimate the transformation parameters for an ex-

perimental design of any size. As soon as we have estimated the parameters for

every curve from observation data set, we can formulate the prediction algorithm.

Instead of reproducing the simulator output for a prediction point x0 at every time

step, we model the whole output curve with apropriately estimated transformation

parameter. This curve provides the approximation of the output for the selected

input configuration x0 at each of considered time steps {tj, j = 1, .., J}. The

transformation parameters for the input x0 are evaluated with the Gaussian pro-

cess response surface modelling. The model is based on the experimental design

and the set of evaluated transformation parameters calculated for the observation

data curves. The prediction framework for an arbitrary input configuration x0 is

presented by the following Algorithm 4.

With the proposed algorithm, the problem of response surface modelling for

dynamic simulators is reduced to an optimization problem and GP modelling for the

transformation parameters. However, it is worth to mention that before performing

the algorithm it is important to analyze the curves behavior for the observation data

set. Studying the curves characterization, probably we may fix for example vertical

shifts v or horizontal shifts θ at zero. Also, if the curves have significantly different

behavior at different time series we can split the observation data in time as well in

order to achieve higher prediction accuracy.

The next section presents an application with a dynamic reservoir simulator case.
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Algorithm 4 Prediction algorithm for dynamic simulator.

Input: Dynamic simulator Y = F (x, t) with t ∈ {tj, j = 1, .., J} and prediction

point x0

Output: Prediction Y 0 = F (x0, tj) for all j = 1, .., J

Generate an experimental design Xn = (x1, ..,xn) to span the space of interest

Evaluate Yn = F (Xn, tj) at every time step tj, 1 ≤ j ≤ J

Generate a set of discrete curves {Yi,j}, i = 1, .., n; j = 1, .., J

Estimate the (α, θ, v) ∈ (Rn)3 with Algorithm 3

Construct new experimental design for the function of parameters:

(Xn, θ(Xn)), (Xn, α(Xn)) and (Xn, v(Xn))

Estimation of hyperparameters for GP models of transformation parameters

α(x0), θ(x0) and v(x0) are approximated with corresponding GP models

Reproduce: F (x0, tj) = α(x0)f(tj − θ(x0)) + v(x0) for all {tj, j = 1, .., J}
Return: Discrete time series Y 0 = F (x0, t) with t ∈ {tj, j = 1, .., J}

3.3.4 CO2 storage case example

As we discussed, subsurface CO2 storage is always associated with an excess reservoir

pressure. The one of primary environmental risks is a pressure-driven leakage of

CO2 from the storage formation. In this section, we consider another CO2 storage

reservoir simulation model. We apply the prediction algorithm and compare it with

a single step GP modelling as a reference case.

In order to assess the risk of CO2 leakage through the cap rock we consider a

synthetic reservoir model. The model is made up of three zones (3.8):

• a reservoir made of 10 layers

• a cap-rock made up of 1 layer

• a zone-to-surface composed of 9 layers

The XY size of the grid is set at 10 km total length. Each layer is 5m thick,

including the cell above the cap-rock. The total number of cells is 13520 (26x26x20

model grid). The structure of the reservoir is reduced to its simplest expression.

The zone above the cap-rock (up to the surface) is currently set to 1 layer. The

salinity of the water is 35gm/l. The temperature of the reservoir is set to 60◦C

and the initial pressure is hydrostatic. The injection bottom rate is set to 10E+06

tons/year. The fracture pressure is estimated by geomechanical experts to 122 bars.
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Figure 3.8: Reservoir model.

Exceeding this value of reservoir pressure can lead to a leakage. The simulation

period is 55 years that include an injection period of 15 years followed by 40 years

of storage. In this study we analyze the possibility of leakage through a cap rock.

Therefore, we consider pressure in the storage reservoir as an objective function to

be approximated.

The uncertain parameters selected for this study characterize the reservoir and

the fluid properties. It implies different CO2 flowing possibilities between the reser-

voir layers. The distribution low for the parameters is uniform. Table (3.5) repre-

sents the parameters description with their range of minimum and maximum values.

Name Description Min Max

PORO Reservoir Porosity 0.15 0.35

KSAND Reservoir Permeability 10 300

KRSAND Water relative permeability end-point 0.5 1.0

Table 3.5: Uncertain parameters.

We start from the observation data Yn - 30x55 matrix of simulator outputs. By

means of Algorithm (3) we provide the transformations parameters estimations.

Figure (3.9(a)) provides the original set of curves and Figure (3.9(b)) represents the

same set after inverse transformation. The pattern curve is differentiable after the

inverse transformation with the estimated parameters.
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(a) Observation data (b) Restored data

Figure 3.9: Original observation data and data after inverse transformation.

As we are sure here that the model parameters are efficiently estimated, we can

proceed with the next step of prediction algorithm (4). The next step is Gaussian

process response surface modelling for the transformation parameters basing on the

estimation set of parameters.

(a) RMSE (b) Predictivity indices

Figure 3.10: Predictivity Indices and RMSE.

In Figure (3.10) we display the model validation criteria: Root Mean Square Error

(RMSE) and predictivity indices (Q2), calculated separately for every year. The
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criteria were computed with help of additional confirmation test data. The low

predictivity in the first and last years is caused by low variance of data in that

period. In general, the method provides reliable level of predictivity. It is also

reflected by crossplots of test and predicted data. Figure (3.11(a)) is based on SIM

modelling approach and Figure (3.11(b)) corresponds to single step GP modelling.

Both method provides a high level of approximation.

(a) SIM method (b) Single step GP

Figure 3.11: Crossplot comparison.

Table (3.6) compares the simulation CPU time for both methods. Single step GP

model requires 5 times more CPU time, although SIM modelling method provides

the same level of reliability.

SIM method
Single step GP

Optimization Parameters modelling Total

CPU time 00:00:35 00:00:15 00:00:50 00:04:28

Table 3.6: CPU time comparison.

Worthwhile noting, that in this study we consider a simple model with only three

uncertain parameters. So that, to estimate the function with GP model at every

single step takes approximately 10 seconds. For more complex functions and more

input uncertain parameters involved a single step model evaluation can take up to

10-20 minutes. So that, for the same simulation period of 55 years CPU time can

increase to 10-20 hours. Whereas SIM approach does not depend on number of time
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steps and the method always conclude only a single optimization problem and as

maximum 3 GP models for the transformation parameters.

3.4 Conclusions

In this chapter, we focus on a problem of GP response surface modelling for dynamic

simulators. The output of such simulator is time series at the time interval t ∈]0, T ].

We propose two different methods to address time series outputs.

The first method is an extension of the method introduced in Chapter 2 for han-

dling discrete parameters. We consider time as an auxiliary variable and we build a

new correlation function working in a new variable space Ω×]0, T ] ⊂ R
d. We have

modified the algorithm in order to avoid possible numerical issues. The method was

tested with a PUNQ-S3 reservoir model. The method is easy to implement. More-

over, by tuning parameters such as ntrain, the method performance is comparable to

a single step GP modelling approach. However, CPU time costs are much less. The

method performance efficiency could be increased by splitting time domain into few

subdomains, as we have shown in Section 3.2.2 for FOPT and FWC functions.

Here, we also propose a new method for a CO2 injection well placement under

uncertainty. We can consider injection well coordinates as controllable parameters.

After that, with help of GP response surface model for a dynamic simulator we can

sample all the uncertain parameters for every fixed well position. So, that the we re-

duce the problem to a unique GP response surface model. Whereas, standard single

step approach assumes GP models for every possible well coordinates combination

at every time step. The CO2 storage reservoir example provided in Section 3.2.3

proves the reliability of the method.

Another approach to address time series outputs is a functional based approach.

We adapted an efficient algorithm for estimation of transformation parameters of

the shape invariant model with the specification for large sets of data curves. We

suggested an application of this approach to model the time series outputs from a

dynamic simulator. The proposed method reduces the problem of functional outputs

modelling to one optimization problem and three GP response surface models for

transformation parameters. We have tested the method with a CO2 storage reservoir

case. Numerical results show that the method provides satisfactory and comparable

predictivity at lesser CPU time. The main advantage of this method is that its

60



3.4 Conclusions

performance does not depend on the number of the involved time-steps. It can be

very advantageous when we are working with a model involving large number of

times steps such as CO2 storage when the reservoir model simulation period can

include up to hundreds or thousands time steps. However, if the set of output

curves have significantly different behavior, preliminary curves classification may be

required.

To summarize, both of proposed methods proved their reliability with analytical

and reservoir model examples. Including time as additional variable is easy to

apply. The method performance is comparable to a single step approach especially

in case of low number of time steps. Whereas, shape invariant model approach is

very advantageous for large number of time steps. It is completely based on curves

behavior analysis and does not depend on number of time steps.
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4.1 Introduction

CO2 storage in deep geological formations is a safe and an effective measure of

greenhouse gases mitigation. It is important to understand the reservoir perfor-

mance, uncertainties and risks that are associated with the gas storage. Cap rock
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failure assessment is one of the most important factors in preventing CO2 leakage

from the storage formation up to the surface. The cap rock integrity and the asso-

ciated risks were recently studied by different authors in different aspects. Most of

these studies are devoted to geomechanical analysis of the cap rock integrity and the

storage formation. Rutqvist et al. [2007] analyze a maximum sustainable injection

pressure using coupled analysis of fluid flow and geomechanical fault reactivation.

Hawkes et al. [2005] review the geomechanical factors affecting hydraulic integrity of

the storage reservoir. There are also studies involving risk and uncertainty analysis.

Condor et al. [2011] provide a comprehensive summary and comparison analysis of

existing risk assessment methodologies for the geological storage of carbon dioxide.

Korre et al. [2007] present uncertainty modelling involved in CO2 storage perfor-

mance assessment in coalbed methane reservoirs. There is a risk of leakage not

only through the cap rock fracturing but also through abandoned wells that were

not properly sealed. Kopp et al. [2010] develop methods to quantify a risk of such

leakage from subsurface reservoir. A response surface methodology was applied by

Rohmer and Bouc [2010]. They use a linear regression model to estimate the effective

stress state in the reservoir after CO2 injection.

In this chapter, we propose to estimate the possible risk of leakage through a cap

rock due to the excess the cap rock fracturing pressure. We propose an application

of GP response surface modelling for uncertainty and risk analysis in CO2 storage.

By approximating the function of reservoir pressure, we can quantify the risk and

estimate the reliability of the system. If we know the reservoir pressure, we can

define a performance or limit state function g(x). This function determines if the

system is in a failure state or in a safe state.

Underground reservoir modelling is always related to some uncertainties about

input parameters. The reservoir pressure is approximated as a realization of a

Gaussian Process. Therefore, we will define the risk of leakage due to overpressure

as a failure probability. If Preservoir(x) stands for a GP response surface model for

the function of reservoir pressure and Pfracture is the fracture pressure, then we can

define a limit-state function as:

g(x) = Pfracture − Preservoir(x) (4.1)

Then, the failure region is defined as: Ωf = {x : g(x) < 0} ⊂ Ω ⊂ R
d and the
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probability of failure is given by the following integral:

pf = P{g(x) < 0} =

∫
Ωf

fx(x)dx (4.2)

where fx(x) is the joint probability density function of input parameters x ∈ Ω ⊂ Rd.
In the same way we can define the safe region Ωs = {x : g(x) > 0} ⊂ Ω ⊂ R

d

and the limit-state surface Ωo = {x : g(x) = 0} ⊂ Ω ⊂ R
d. By definition we have:

Ωf ∪ Ωs ∪ Ωo = Ω ⊂ Rd.
The failure region and the failure probability are generally unknown. Identifying

these quantities is one of the most important and challenging problems in reliability

and risk analysis. In this work, we assume that all the input variables are inde-

pendent and that their probability densities are known. The chapter is organized

as follows. Firstly, we will review the reliability methods for estimating a failure

probability. The methods can be grouped into approximation ones and simulation

ones. We will pay more attention to subset simulation algorithm. Then, we will

discuss the main drawbacks of GP response surface models for failure probability

estimation. To improve the model reliability, we propose an adaptive refinement al-

gorithm based on subset simulation. The method performance efficiency is studied

on an analytical and a CO2 storage reservoir case examples.

4.2 Reliability analysis methods

In this section, we provide a brief overview of the existing methods for estimation

of a failure probability pf . We divide the methods into the approximation ones and

the simulation ones. The first ones consist in approximating the original limit-state

function either by a Taylor expansion up to first or second order, or by a response

surface model. Here, we will present only First and Second Order Reliability Meth-

ods (FORM and SORM) that are based on Taylor expansion approximations. The

methods involving a response surface modelling will be considered separately in Sec-

tion 4.3. The simulation methods is a class of methods that consist in numerous

evaluations of the limit-state function. Then, basing on these simulations we can

estimate directly the integral in (4.2). In addition, we can estimate the coefficient

of variation and the variance of the computed estimation.

This section is organized as follows. First, we will introduce the approximation
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methods such as FORM and SORM. Then, we will put in action the following sim-

ulation methods: Crude Monte-Carlo simulations, Direct Simulation, Importance

Sampling and Subset Simulations. The present section is a review of the literature

concerning structural reliability analysis [Bourinet, 2010; Du, 2005; Lemaire et al.,

2009; Madsen et al., 2006].

4.2.1 Approximation methods

In this section, we work with the vector of independent input variables x = (x1, . . . , xd) ∈
Ω ⊂ Rd. As discussed previously, the failure probability pf is given by the following

integral:

pf = P{g(x) < 0} =

∫
Ωf

fx(x)dx, (4.3)

where g(x) is a performance function, fx(x) is the known joint probability density

function of x and Ωf = {x ∈ Ω : g(x) < 0} is the failure region.

The basic idea of approximation methods is to simplify the computation of the

integral (4.3). There are two possible ways. It can be done either through the sim-

plification of the integrand function, i.e. the joint density fx(x), or the performance

function g(x).

A majority of reliability methods are designed for a standard normal space, or

U-space. It facilitates the numerical computation by replacing the joint probability

density fx(x) with a standard normal density φ(x). Here, we will discuss the trans-

formation of the input variables x = (x1, . . . , xd) from its original physical space

(or X-space) into u = (u1, . . . , ud), where u ∼ N(0, Id) and N(0, Id) corresponds to

the standard normal distribution. The failure probability estimation should be the

same in the both spaces. Therefore:

pf =

{
= P (g(x) ≤ 0) = P (G(u) ≤ 0)

=
∫

Ωf
fx(x)dx =

∫
Ωu
φd(u)du

(4.4)

The Rosenblat transformation can be applied [Rosenblatt, 1952]. If we denote Fxi
the cumulative distribution function for variable xi in X-space and Φ is a standard

normal cumulative distribution function, then the transformation can be expressed

by:

Fxi(xi) = Φ(ui)

ui = Φ−1 [Fxi(xi)]
(4.5)
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For example, consider a Gaussian random variable x ∼ N(µ, σ2) with cdf Fx =

Φ
(
t−µ
σ

)
. Therefore, (4.5) simplifies to:

u = Φ−1 [Fx(x)] = Φ−1

[
Φ

(
x− µ
σ

)]
=
x− µ
σ

,

Or

x = µ+ σu.

When we apply the Rosenblatt transformation, the performance function also changes:

g(x) = G(u)

Therefore, according to (4.4) the failure probability may be expressed as:

pf = P(G(u) < 0) =

∫
Ωu

φd(u)du,

where φd(u) is the joint probability of the vector u = (u1, . . . , ud). Hence, the failure

probability is given by the following integral:

pf =

∫
· · ·
∫

G(u<0)

d∏
i=1

1√
2π

exp

(
−u

2
i

2

)
du1 · · · dud

As soon as we have simplified the integrand function, the next step is to simplify

the integration boundary G(u) = 0. First and Second Order Reliability Methods

(FORM and SORM) consist in the approximation of the performance function G

by a Taylor expansion. FORM uses a linear approximation, whereas SORM uses a

second order Taylor expansion. In the next subsections these methods are described

in details.

4.2.1.1 First order reliability method

In the First Order Reliability Method (FORM) we approximate the limit state

function G(u) by its first order Taylor expansion.

We linearize the function in the following way:

G(u) ≈ L(u) = G(u∗) +∇G(u∗)(u− u∗)> (4.6)
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L(u) stands for the linearized performance function, u∗ is an approximation point

and ∇G(u∗) is the gradient of G(u) evaluated at u∗. The gradient is given by:

∇G(u∗) =

(
∂G(u)

∂u1

,
∂G(u)

∂u2

, · · · , ∂G(u)

∂ud

)∣∣∣∣
u∗

(4.7)

Recall that we are working in the U-space of standard normal random variables. The

joint standard normal density φd(u) attains its maximum value at u = 0 and then

it decreases exponentially with ‖u‖ symmetrically. It is then a natural choice to

approximate the performance function G(u) at a point where φd(u) has the highest

value. Consequently, the first step is to determine the Most Probable Point (MPP).

It is the point on the limit-state surface G(u) = 0 that maximizes the joint density

φd(u). We can formulate an optimization problem for MPP:

u∗ = arg maxφd(u) subject to G(u) = 0. (4.8)

We can rewrite the joint standard normal density definition as:

φd(u) =
d∏
i=1

1√
2π

exp

(
−u

2
i

2

)
=

(
1√
2π

)d
exp

(
−1

2

d∑
i=1

u2
i

)

Then, the maximization problem (4.8) is equivalent to the following minimization

problem:

u∗ = arg min
u

d∑
i=1

u2
i = arg min

u
‖u‖2 subject to G(u) = 0 (4.9)

where ‖·‖ stands for the Euclidean norm.

The Most Probable Point (MPP) is the closest point from the limit-state surface

to 0 in U-space. We can define the reliability index as the distance from the origin

to the MPP u∗: β = ‖u∗‖. A two dimension example is given in Figure 4.1.

By substituting the MPP and since G(u∗) = 0, (4.6) reduces to

L(u) = ∇G(u∗)(u− u∗)> =
d∑
i=1

∂G(u)

∂ui

∣∣∣∣
u∗

(ui − u∗i ) = γ0 +
d∑
i=1

γiui (4.10)
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Figure 4.1: Most probable point and reliability index.

where the constants are defined as follows:

γ0 = −
d∑
i=1

∂G(u)

∂ui

∣∣∣∣
u∗
u∗i and γi =

∂G(u)

∂ui

∣∣∣∣
u∗
.

Approximation (4.10) implies that L(u) is a normal random variable with mean

µL = γ0 and variance σL =
√∑d

i=1 γ
2
i . Therefore, the failure probability is given

by:

pf ≈ P(L(u) ≤ 0) = Φ(−µL
σL

) = Φ

− γ0√∑d
i=1 γ

2
i

 =

= Φ


∑d

i=1
∂G(u)
∂ui
· u∗i√∑d

i=1

(
∂G(u)
∂ui

∣∣∣
u∗

)2

 = Φ(αu∗>),

where α = ∇G(u∗)
‖∇G(u∗)‖ is the normalized gradient vector: ‖α‖ = 1. The vector α

is perpendicular to the limit-state surface G(u) = 0 at the MPP. On the other

hand, the MPP u∗ is defined as the closest to the origin at the limit-state surface.

According to (4.9), the MPP is the tangent point of the limit-state surface G(u) = 0
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and the circle with the radius of ‖u∗‖ = β (see Figure 4.1). Hence, the vector u∗ is

perpendicular to the surface G(u) = 0 and it is oppositely directed to the gradient

vector α:

α = −u∗

β
or u∗ = −βα.

Then, the failure probability is approximated by:

pf ≈ P(L(u) < 0) = Φ(αu∗>) = Φ(−αα>β) = Φ(−β).

The MPP can be generally found by numerical iterative methods. The First Order

Reliability Method is quick and it is widely used in the areas of structural reliability

or reliability based design [Ditlevsen and Madsen, 1996; Madsen et al., 2006].

4.2.1.2 Second order reliability method

The Second Order Reliability Method (SORM) uses the second order Taylor ex-

pansion to approximate the performance function G(u) at the Most Probable Point

(MPP) u∗. The expansion is as follows:

G(u) ≈ G2(u) = G(u∗) +∇G(u∗)(u− u∗)> +
1

2
(u− u∗)H(u∗)(u− u∗)> (4.11)

G2(u) stands for approximation of the performance function, u∗ is the MPP (G(u∗) =

0), ∇G(u∗) is the gradient of G(u) evaluated at u∗ and H(u∗) is the Hessian eval-

uated at u∗. The Hessian Matrix is the matrix of second derivatives:

H(u∗) =


∂2G
∂2u1

∂2G
∂u1∂u2

. . . ∂2G
∂u1∂ud

∂2G
∂u2∂u1

∂2G
∂2u2

. . . ∂2G
∂u2∂ud

. . . . . . . . . . . .
∂2G

∂ud∂u1
∂2G

∂ud∂u2
. . . ∂2G

∂2ud

 (u∗) .

By performing different linear transformations, the approximation G2(u) can be

simplified and the failure probability estimation is given by [Du, 2005]:

pf = P(g(u) < 0) = Φ

(
d∏
i=1

√
1 + βκi

)
, (4.12)
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where β stands for reliability index and κi denotes the ith main curvature of the

performance function G(u).

SORM is applied when the MPP is available from FORM analysis. FORM

is easy to apply because only the first derivatives are involved. These quantities

could be quickly numerically computed. Application of SORM implies second order

derivatives and it requires more function calls. However, it provides more accurate

approximations.

4.2.2 Simulation methods

Simulation methods are based on multiple performance function evaluations for a

random sample from the original joint probability fx(x). These methods are more

expensive from a CPU time point of view. However, simulation methods are widely

used in reliability engineering disciplines. Recently, multiple methods enhancements

were proposed in order to decrease the number of function calls and CPU time

respectively. In this section, we first consider crude Monte Carlo estimations and

some basic modifications such as importance sampling, directional sampling and

subset simulations.

4.2.2.1 Crude Monte Carlo sampling

This method is the simplest simulation method.

First, let us reformulate the definition of the failure probability as an expectation

of a failure indicator function. Here, we can work both in the original X-space of

input variables or in the standard normal U-space. By definition:

pf = P(g(x) < 0) =

∫
Ωf

fx(x)dx =

∫
Ω

I(x)fxdx = Efx [I(x)], (4.13)

where the failure indicator function is defined as:

I(x) =

1, if x ∈ Ωf ,

0, if x ∈ Ωs

Suppose, we have XN = {x1, . . . ,xN} a set of N i.i.d. samples randomly drawn

from the joint density fx(x). Then, the Crude Monte Carlo (CMC) estimation is as
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follows:

p̂fCMC
=

1

N

N∑
i=1

I(xi) =
Nf

N
(4.14)

where Nf is the number of samples xi that fall inside the failure region.

Figure 4.2 displays an example of crude Monte Carlo sampling in U-space. The

red points fall inside the failure region. As a sum of independent random variables

Figure 4.2: Crude Monte Carlo sampling.

with the same distribution, p̂fCMC
is asymptotically Gaussian. Moreover, it is an

unbiased estimator of pf . Indeed, we have:

E[p̂fCMC
] =

1

N

N∑
i=1

E[I(xi)]]
i.i.d.
=

1

N
(NE[I(x)]) = E[I(x)] = 0× (1− pf ) + 1× pf = pf

The variance VAR[p̂fCMC ] of the estimator is given by:

VAR[p̂fCMC
] =

1

N
pf (1− pf ).
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To evaluate the accuracy of the CMC estimator, the coefficient of variation (or

relative standard deviation) can be used. It is defined as:

δp̂fCMC
=

√
VAR[p̂fCMC ]

E[p̂fCMC ]
=

√
1− pf
Npf

.

For pf � 1, the following approximation holds:

δp̂fCMC
≈ 1√

Npf
.

Therefore, for a target accuracy of 10%, i.e. δp̂fCMC
= 0.1, the size of the sample

should be N ≈ 100
pf

. Suppose that pf ≈ 10−5, then the required number of function

evaluations is N ≈ 107. This is not always affordable.

Despite the fact that this method is computationally expensive, it remains one

of the most widely used methods.

4.2.2.2 Importance sampling

Importance sampling is a well established technique for variance reduction in Monte

Carlo simulation. It is described by numerous authors [Melchers, 1989; Ripley,

1987; Rubinstein and Kroese, 2008; Shinozuka, 1983]. The idea is to sample more

efficiently according to a ”good” distribution. This distribution is designed for the

failure region Ωf . Recall that the failure probability is defined as

pf =

∫
Ω

I(x)fx(x)dx

The method assumes a change of the probability density fx(x). For example, let

h(x) be a density vanishing away of the failure region Ωf . It means that:

h(x) = 0 ⇒ I(x)fx(x) = 0,

I(x)fx(x) 6= 0 ⇒ h(x) 6= 0.
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The function h(x) is called a proposal or importance sampling probability density

function. If we multiply the integrand by 1 = h(x)
h(x)

, we get:

pf =

∫
Ω

I(x)
fx(x)

h(x)
h(x)dx = Eh

[
I(x)

fx(x)

h(x)

]
.

The estimation of the failure probability is equivalent to the estimation of the above

expectation. This can be done by Monte Carlo sampling according to the new

density h(x). Let XN = {x1, . . . ,xN} be a set of N i.i.d. samples of density h(x).

Then:

p̂fIS =
1

N

N∑
i=1

I(x)
fx(xi)

h(xi)
. (4.15)

is an unbiased estimation of Eh [p̂fIS]. The variance of this estimation is:

VAR [p̂fIS ] =
1

N

(
Eh

[(
I(x)

fx(x)

h(x)

)2
]
− p2

f

)
.

The optimal choice of the proposal density h(x) is the one that minimizes the vari-

ance of the estimator p̂fIS . It is well known (see Rubinstein and Kroese [2008]), that

the optimal proposal density is the following density:

h∗(x) =
I(x)fx(x)

pf
.

Unfortunately, the optimal density depends on the unknown value of pf . However,

it provides an idea of the best sampling density. In the field of structural reliability,

different proposal densities were studied. For example, Shinozuka [1983] proposed

a uniform probability density in a hypercube centered at the MPP. Later, Melchers

[1989] analyzed the standard Gaussian probability density centered at the MPP. A

sample drawn with this method is presented in Figure 4.3. Different choices of h(x)

have their advantages and limitations. The choice of proposal density can even be

changed during simulations depending on the reliability problem. There are also

different variants of importance sampling: bridge sampling [Meng and Wong, 1996],

linked importance sampling [Neal, 2005], particle filtering [Chopin, 2002] etc.
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Figure 4.3: Importance sampling example.

4.2.2.3 Directional sampling

The directional sampling method uses the polar coordinate system. In these coordi-

nates, the main variables are the radius R and the direction vector A. The method

was introduced by Bjerager [1988] and Ditlevsen et al. [1988]. It is a variance reduc-

tion method. Hence, the estimation of the failure probability for a given accuracy

can be achieved with a smaller number of simulations.

Assume that we work in the standard normal U-space. For independent but

non-Gaussian variable x, the Rosenblatt transformation can be applied (Rosenblatt

[1952], See Section 4.2.1). We represent a standard Gaussian variable u as: u = ra,

where r2 is a χ2 random variable with d degree of freedom and a is a unit vector

(‖a‖ = 1) with a uniform distribution over the d-dimensional unit hypersphere Sd1.

Then the failure probability can be rewritten as:

pf =

∫
Sd1

P [G(rA) ≤ 0|A = a] da (4.16)

where d(a) is a normalized Lesbegue measure on the unit hypersphere Sd1.

Let, r(a) be the radius of the point on the limit-state surface G(u) = 0 which is

the closest to the origin in direction a. We can rewrite then a part of the integrand
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function as:

P [G(rA) ≤ 0|A = a] = P(r > r(a)|A = a) = P(R2 > r(a)2|A = a) =

= 1− P(R2 ≤ r(a)2|A = a) = 1− χ2
d (r(a)2)

Then the failure probability may be expressed as:

pf =

∫
Sd1

[
1− χ2

d

(
r(a)2

)]
da.

Now, we can provide an estimation of failure probability. Suppose, AN = {a1, . . . , aN}
is a set of N vectors uniformly distributed over the unit hypersphere. Then, pf can

be estimated by:

p̂fDS =
1

N

N∑
i=1

[
1− χ2

d

(
r(ai)

2
)]

where r(ai) is the distance between the origin and the point intersecting the limit-

state surface G(u) = 0 in the direction ai. In practice, these intersections are

estimated iteratively. Once the closest points are determined, the estimation of the

failure probability pf is straightforward. However, the algorithm can fail to find the

closest point on G(u) = 0. Figure 4.4 displays an example of directional simulations

explaining graphically the choice of the direction vectors ai.

Figure 4.4: Directional sampling example.
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Moarefzadeh and Melchers [1999] proposed a combination of directional simula-

tion and importance sampling for application in a physical X-space .

4.2.2.4 Subset simulation

Subset simulation for estimation of the failure probability was introduced by Au and

Beck [2001]. In particular, Au and Beck [2003] applied their method to the analysis

of seismic dynamic risks. It has also been used in the context of stochastic reliability

optimization in Taflanidis and Beck [2008] and Taflanidis and Beck [2009]. Later,

Zuev et al. [2011] presented a Bayesian approach, where their goal is to estimate the

posterior distribution of the failure probability estimator.

The basic idea of subset simulation is to represent the very low failure probability

pf as a product of larger probabilities that can be computed more easily:

pf =
m∏
i=1

pi (4.17)

For such representation, we will consider a decreasing sequence of nested subsets

in the parameters space. This sequence commences from the entire space Ω and it

converges to the failure region Ωf .

Ω = F0 ⊃ F1 ⊃ · · · ⊃ Fm = Ωf

Subsets F1, . . . , Fm are called intermediate failure events. Since
⋂m
i=1 Fi = Ωf ,

the failure probability pf = P(Ωf ) can be rewritten as a product of conditional

probabilities. By definition of conditional probability we have [Au and Beck, 2001]:

pf = P(Ωf ) = P(
m⋂
i=1

Fi) = P(F1)
m∏
i=2

P(Fi|Fi−1) =
m∏
i=1

pi

Therefore, the problem of failure probability estimation is reduced to the estimation

of the intermediate failure probabilities pi. By a proper choice of the intermediate

failure events Fi, the corresponding intermediate failure probabilities can be suffi-

ciently large to be efficiently estimated by Crude Monte Carlo (CMC) sampling. For

example, suppose pi ≈ 0.1, i = 1, . . . , 4 then pf ≈ 10−4 which is rather small to be

estimated precisely with CMC simulation. However, the intermediate probabilities

pi ≈ 0.1 can be efficiently estimated at low CPU time cost.
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The original problem of pf estimation is then replaced by a sequence of MC sim-

ulations of more frequent intermediate events in the conditional probability spaces

P(Fi|Fi−1), i = 2, . . . ,m with the conditional densities q(·|Fi−1). The conditional

probabilities pi = P(Fi|Fi−1) are estimated sequentially.

pi ≈ p̂MC
i =

1

N

N∑
k=1

IFi
(
xik
)
, where xik

i.i.d.∼ q(·|Fi−1) (4.18)

Working with the conditional densities q(·|Fi−1) means that we need to generate a

sample Xi = {xi1, . . . ,xiN} which follows the joint density fx(x) and which lies in

the intermediate failure domain Fi−1. Then, among this sample, we estimate pi by

evaluating the number of points that lie into Fi.

In this sequence, p1 = P(F1|F0) = P(F1|Ω) = P(F1) can be easily estimated by

a Monte Carlo according to a known joint density q = q(·|Ω) = fx(x):

P1 ≈ P̂ (F1) =
1

N

N∑
k=1

IF1(xk).

Figure 4.5: Subset simulation example.
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To estimate the probabilities pi for i ≥ 2, we need to sample from conditional

density functions q(·|Fi−1). Markov Chain Monte Carlo (MCMC) is a reasonable

alternative. MCMC is a Markov chain technique to sample from an arbitrary

multi-dimensional probability distribution. Au and Beck [2001] introduced a mod-

ified Metropolis-Hastings algorithm for efficient sampling according to the multi-

dimensional density q(·|Fi−1). Details can be found in Au and Beck [2001, 2003].

Briefly, for every vector coordinate we separately generate a candidate state. Then

it is accepted if a vector of the candidates lies in Fi−1. As soon as we have a sample

of size N , we can apply (4.18) for estimation of pi = P(Fi|Fi−1).

Figure 4.5 presents an example with m = 4: F1 ⊃ F2 ⊃ F3 ⊃ F4 = Ωf . It

illustrates how we can use a sequence of intermediate failure events to approach at

every level the failure region Ωf . Intermediate failure regions of different levels are

displayed by different colors.

We will study in detail both the modified Metropolis-Hastings algorithm and

the practical implementation of the algorithm of subset simulation in Section 4.2.4.

We will also provide an estimation for the coefficient of variation δ of the computed

estimator.

4.2.3 Analytical example

In this subsection, we will compare the estimations of the failure probability provided

by different methods.

We will consider the following performance function depending on three variables:

f(x) = 5− 0.2x1 − 0.7x2 − x3

where all xi ∼ N(0, 1) are independent standard normal variables with. As a sum of

independent standard normal variables, function f(x) is also normal variable with

mean µ = 5 and variance σ2 = 0.22 + 0.72 + 1 = 1.53. Therefore, we can estimate

precisely the failure probability:

P(f(x) ≤ 0) = Φ(−µ/σ) = 2.64693× 10−5.

We will compare estimations provided by the presented methods: FORM, SORM,

Importance Sampling (IS), Directional Sampling (DS) and Subset simulation (SS).

For IS method as the proposal density h(x) we use the 3-dimensional standard
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normal density centered at the MPP. Table 4.1 summarizes the estimations, number

of function calls and CPU time required. The methods were performed using the

FERUM software [Bourinet, 2010].

Method p̂f CPU time Number of function calls

FORM 2.6469e-5 0.0798 sec 14

SORM 2.6469e-5 0.1054 sec 23

IS 3.2000e-5 1.5871 sec 1e6

DS 2.6469e-5 12.9425 sec 4.55e6

SS 2.6710e-5 0.5055 sec 49316

Table 4.1: Reliability methods comparison.

It can be seen that for this function FORM/SORM provides the most accurate

estimation with the less number of function calls. Of course, that is easily explained

by the linearity of the performance function. FORM approximates the limit state

surface by a hyperplane and, for the linear case, this hyperplane coincides with the

original limit state surface. However, for more complicated functions the approx-

imation is not straightforward. The error of the failure probability estimation for

FORM and SORM increases with the complexity of the function. Regarding the

simulation methods, the most accurate estimate is given by directional simulation.

However, subset simulation provides reliable estimation of failure probability pf with

less number of function calls. Furthermore, importance sampling overestimates pf .

The advantage of FORM/SORM method is that it needs a small number of

function calls. However, the errors of estimation can be significantly larger for

more complicated functions. In addition, these methods do not provide statistical

properties of the computed estimator, such as the variance and the coefficient of

variation. Among simulation methods, subset simulation yields a reliable estimation

of the failure probability pf at less cost. Though, it still requires a high number of

function evaluations for a reliable estimation. This is not always possible with an

expensive reservoir simulator. For this reason, in Section 4.3 we introduce a Gaussian

process response surface modelling in estimation of the failure probability pf . We

will discuss the method to improve the reliability of the provided estimation.

In the next section, we will discuss in details the Subset simulation algorithm

and its practical implementation.
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4.2.4 Subset simulation algorithm

As already discussed, the objective of subset simulation is to represent the failure

probability pf as a product of larger probabilities corresponding to intermediate fail-

ure events: Ω = F0 ⊃ F1 ⊃ · · · ⊃ Fm = Ωf . The failure domain Ωf = {x : g(x) < 0}
is then equal to the intersection Ωf =

⋂m
i=1 Fi. The failure probability pf is evaluated

as a product of conditional probabilities:

pf =
m∏
i=1

P(Fi|Fi−1) =
m∏
i=1

pi, (4.19)

where every pi = P(Fi|Fi−1) is evaluated sequentially by sampling from the con-

ditional density q(·|Fi−1). Recall that the conditional density q(·|Fi−1) is designed

to generate a sample that follows the original joint density fx(x) and lies in the

domain Fi−1. Thus, we replace the problem of estimating very low probability pf

by estimating higher conditional probabilities pi = P(Fi|Fi−1), i = 1, . . . ,m.

To estimate p1 crude Monte Carlo sampling can be applied since q(·|F0) =

q(·|Ω) = fx(x). To estimate pi, i ≥ 2 and to sample from the conditional den-

sities, Markov Chain Monte Carlo (MCMC) sampling is used. It is an effective

technique to sample from an arbitrary distribution. In particular, the Metropolis-

Hastings algorithm was originally introduced by Metropolis et al. [1953] and then

modified by Hastings [1970]. By a proper application of this algorithm, the distri-

bution of the generated sample converges to the given conditional density q(·|Fi−1)

if the length of the sample is sufficiently large [Au and Beck, 2003].

Suppose, that we want to sample a d-dimensional vector x = (x1, . . . , xd) accord-

ing to the conditional density q(·|Fi−1). We suppose that all the vector components

are independent. We can rewrite:

q(x|Fi−1) =
fx(x)IFi−1

(x)

P(Fi−1)
=

[∏d
k=1 fk(xk)

]
IFi−1

(x)

P(Fi−1)
.

In the case of a high dimensional vector x with many independent components,

the original Metropolis-Hastings algorithm produces a Markov chain with highly

correlated states [Au and Beck, 2001; Zuev et al., 2011]. For this reason, Au and

Beck [2001] proposed a modified Metropolis algorithm that consists in generating a

MCMC sample separately component by component. Sampling by components does
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not change the stationary distribution of the Markov chain. It was shown that if the

current sample xj ∼ q(·|Fi−1), then the next sample xj+1 has the same distribution

(see Au and Beck [2001]).

Now, we will briefly explain the modified Metropolis algorithm. First, we have

to choose a proposal density. Let ri(ξi|αi) be a univariable symmetric density for

variable xi. The symmetry property means that ri(ξi|αi) = ri(αi|ξi). This density

is centered at αi. We can use the same proposal density for all the coordinates

ri(xi) = r(xi), i = 1, . . . , d. In order to estimate pi we need to generate a sample of

size N from the conditional probability q(·|Fi−1). Let x1 ∈ Fi−1 be the initial state of

a target Markov Chain. As a proposal density, we suggest a uniform univariable den-

sity centered at x1 on the interval of selected width. Then, if fx(x) =
∏d

k=1 fk(xk) is

the original joint pdf, the modified Metropolis-Hasting algorithm can be summarized

as in Algorithm 5.

Algorithm 5 Modified Metropolis-Hastings algorithm.

Input: • Initial state x1 ∈ Fi−1

• Joint density fx(x) =
∏d

k=1 fk(xk)

• Size of sample N

• Proposal uniform density r(·|αi)
for j = 1, . . . , N do

for k = 1, . . . , d do

Sample component x̃j+1
k ∼ r(·|xjk)

Compute ratio h =
fk(x̃j+1

k )

fk(xjk)

Set x̃j+1
k =

x̃
j+1
k , with probability min{1, h}

xjk, with probability 1−min{1, h}
end for

Accept/Reject x̃j+1

Check if x̃j+1 ∈ Fi−1

Set xk+1 =

x̃j+1, if x̃j+1 ∈ Fi−1

xj, if x̃j+1 /∈ Fi−1

end for

Output: Xj = {x1, . . . ,xN} a Markov chain of length N with stationary pdf

q(·|Fi−1)
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This algorithm ensures that the next sample is always in Fi−1. Choosing the

uniform density centered at the previous state as a proposal, x̃j+1 has a high prob-

ability to be in Fi−1. It yields a rather high acceptance ratio h that accelerates the

exploration of the failure region.

When the sample Xi = {xi1, . . . ,xiN} ∼ q(·|Fi−1) is available, we can estimate

the conditional probability pi by:

pi = P(Fi|Fi−1) ≈ p̂i =
1

N

N∑
k=1

IFi(x
i
k), (4.20)

and the final estimation is given by:

p̂f =
m∏
i=1

p̂i. (4.21)

Using the provided algorithm, the intermediate failure probabilities pi, i = 1, . . . ,m

can be estimated by sampling from conditional density x ∼ q(·|Fi−1), i = 1, . . . ,m.

However, it remains to select the sequence of the intermediate failure events Fi, i =

1, . . . ,m. We discuss this choice as well as some implementation issues in the fol-

lowing section.

4.2.4.1 Practical implementation

Subset simulation proceeds as follows. As discussed above, we estimate first p1 =

P(F1|Ω) ≈ p̂1 by direct Monte Carlo sampling from the original joint density fx(x).

From this sample we can pick up those who are already in F1. Clearly, this picked

sample is distributed as q(·|F1) and it can be used as a starting point for the next

Markov chain. By sampling from q(·|F1), we can estimate p2 = P(F2|F1) according

to (4.20). Then, we select from this new sample the points that are in F2 to estimate

p3 = P(F3|F2). We repeat this sequential sampling until we reach the failure domain

Fm = Ωf . Finally, the failure probability estimator is expressed as (4.21).

The choice of the intermediate failure domains directly affects the efficiency of

the subset simulation procedure. It defines how fast the failure region Ωf is ap-

proximated. If g(x) is a performance function, then the failure region Ωf = {x ∈
Ω : g(x) ≤ 0} is the last member in the sequence of intermediate failure events:

Ωf =
⋂m
i=1 Fi = Fm = {x ∈ Ω : g(x) ≤ 0} ⊂ Ω.

Let us consider a sequence of intermediate positive thresholds y1 > y2 > . . . >
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ym = 0. We can define the intermediate failure events as:

Fi = {x ∈ Ω : g(x) ≤ yi} and pi = P(g(x) ≤ yi).

The choice of the sequence (yi)
m
i=1 defines the intermediate conditional probabilities

pi = P(g(x) ≤ yi). If the sequence (yi)
m
i=1 decreases slowly, then the values (pi)

m
i=1

are large and requires smaller sample size N for reliable estimation. Such sequence

requires more simulation steps though. Conversely, a fast decreasing sequence leads

to smaller intermediate conditional probabilities (pi)
m
i=1 and higher sample size N

[Au and Beck, 2003].

In practice, the choice of the thresholds sequence (yi)
m
i=1 in advance is not

straightforward. A reasonable alternative may be to define (yi)
m
i=1 iteratively in

such way that the corresponding estimated conditional probabilities are equal to a

predetermined fixed value pi = α0. Then, the sequence (yi)
m
i=1 is evaluated for every

subset simulation procedure level i as a quantile of α0 for the conditional distribu-

tion q(·|Fi−1). For a target failure probability pf of order 10−4− 10−6, the choice of

α0 = 0.1 provides a reliable estimation. We will use the same number N of samples

at every stage of subset simulation.

We estimate (yi)
m
i=1 sequentially as the empirical quantiles of q(·|Fi−1). The first

level y1 is estimated from a sample of size N according to the original joint pdf

X1 ∼ fx(x). Then, an empirical α0-quantile of g1 = g(X1) is given as follows:

ŷ1 : P(x ∈ Ω : g(x) ≤ y1) ≈
N∑
l=1

I(g(x1
l ) ≤ ŷ1)/N = α0.

If y1 ≤ 0 then we have already sampled from the failure region Ωf . The failure

probability can be estimated with the sample x1:

p̂f =
N∑
l=1

I(g1
l ≤ 0)/N.

If y1 > 0, it means that we need to continue to sample. At every stage we estimate

ŷi so that:

P(x ∈ Ω : g(x) ≤ yi) ≈ P(g(Xi−1) ≤ ŷi) = α0.

The algorithm is summarized in Algorithm 6.
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Algorithm 6 Subset simulation algorithm.

Input: • Intermediate conditional probability α0

• Sample size N

• Joint pdf fx(x) =
∏d

i=1 fi(xi)

Set j = 1

Sample X1 = {x1
1, . . . ,x

1
N} ∼ fx(·)

Evaluate g1 = {g1
1, . . . , g

1
N} = {g(x1

1), . . . , g(x1
N)}

Estimate y1 : P(x : g(x) ≤ y1) = α0 empirically by ŷ1 :
∑N

l=1 I(g1
l ≤ ŷ1)/N = α0

Set N1
f =

∑N
l=1 I(g1

l ≤ ŷ1)

if ŷ1 ≤ 0 then

Set p̂f = N1
f /N

STOP

end if

while ŷj > 0 do

Set j = j + 1

Sample Xj = {xj1, . . . ,x
j
N} ∼ q(·|Fj−1), centered at Xj−1

F = {xj−1
i : g(xj−1

i ) ≤

ŷj−1} ∈ Fj−1

Evaluate gj = {gj1, . . . , g
j
N} = {g(xj1), . . . , g(xjN)}

Estimate ŷj :
∑N

l=1 I(glj ≤ ŷj)/N = α0

Set Nj
f =

∑N
l=1 I(gjl ≤ ŷj)

end while

if yj ≤ 0 then

Set m = j and pm =
∑N

l=1 I(gjl ≤ 0)/N = Nm
f /N

end if

Output: Estimation of the failure probability p̂f = αm−1
0 pm
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4.2.4.2 Statistical properties of the estimator

Au and Beck [2001] and Au and Beck [2003] provide detailed discussion about the

statistical properties of the previous estimation. Further, they also discuss the

choice of the tuning parameters such as the sample size N and the intermediate

failure probability α0. Here, we provide a brief analysis of the estimator.

Firstly, we will discuss the statistical properties of the intermediate failure prob-

ability estimator. Particularly, we will provide estimations of the coefficient of vari-

ation for different steps of the subset simulation algorithm. For the first step, we

start from the distribution density fx(x). Therefore, the coefficient of variation can

be computed in the same way as for crude Monte Carlo sampling:

δ1 =

√
1− p1

Np1

, where p1 = P(F1).

Intermediate conditional probability estimator

For intermediate failure events, the coefficient of variation is different. It accounts

for the correlation among the states of a Markov chain at intermediate levels [Au

and Beck, 2001; Zuev et al., 2011].

Assume that at level i of the subset simulation algorithm we aim to estimate

the conditional failure probability pi = P(Fi|Fi−1). Since the intermediate condi-

tional probabilities are estimated sequentially, at level i we have already estimated

the probabilities p1, . . . , pi−1 and the corresponding conditional samples used for es-

timation are X1, . . . ,Xi−1. Every sample X1, . . . ,Xi−1 is of size N . To evaluate

the intermediate conditional failure probability p̂i ≈ pi = P(Fi|Fi−1), we generate a

Markov chain distributed with q(·|Fi−1). In practice, at every step the algorithm uses

not a single one, but several simultaneous Markov chains starting from the points

{x ∈ Xi−1 : x ∈ Fi−1}. The number of Markov chains at level i is Nc = N/Ni−1
f .

If α0 is a predetermined conditional probability, then Ni−1
f = α0N and Nc = 1/α0.

Therefore, to calculate the coefficient of variation of the estimator at level i we have

to take into account the correlation between the states of different Markov chains.

The coefficient of variation for every intermediate step may be expressed as [Au and

Beck, 2001]:

δi =

√
1− pi
piN

(1 + γi),
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where

γi = 2

N/Nc−1∑
k=1

(
1− kNc

N

)
Ri(k)

Ri(0)

is a correlation factor between the states of a Markov chain. Let us denote xil,k the

kth sample of the lth chain at the ith step of the algorithm. Define:

Ri(k) = E
[
IFi
(
xi−1
l,1

)
IFi
(
xi−1
l,1+k

)]
− p2

i ,

which is the autocovariance of the stationary sequence:

{
I(xil,k), k = 1, . . . , N i

f = N/Nc

}
at lag k.

When the generated samples are dependent, γi > 0 and the coefficient of variation

δ increases. In the independent case, γi = 0 and the coefficient of variation is equal

to a coefficient of variation corresponding to a Crude MC sampling.

Failure probability estimator

Intermediate estimators p̂i converge almost surely to the intermediate conditional

probabilities pi (Strong Law of Large Numbers) [Au and Beck, 2001]. Therefore, the

final estimator p̂f converges to the failure probability pf .

p̂1
N→∞−→ P(F1)

p̂i
N→∞−→ P(Fi|Fi−1), i = 2, . . . ,m

p̂f
N→∞−→ pf

Au and Beck [2001] prove that due to the correlation between the estimators p̂i,

the estimator p̂f is biased for every fixed N , but it is unbiased asymptotically. The

correlation comes from the fact that to sample the new Markov chain at every level

of subset simulation i, we use the points from Fi−1 (that were used to estimated p̂i−1).

Choice of the level α0

The optimal choice of the conditional failure probability α0 is a trade off between

the number of algorithm stages and the maximum allowable N available for reliable

estimation. Au and Beck [2003] provide an estimation of the coefficient of variation

of the estimator p̂f . Let us assume that there are m levels in the algorithm. At every
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level a Markov chain is sampled during N steps. Then the coefficient of variation

may be approximated by:

δ2 ≈ m(1− α0)

Nα0

(1 + γ), (4.22)

where γ is the average value of the correlation parameters γi, i = 1, . . . ,m [Au and

Beck, 2001]. We denote, the total number of draw by NT = mN . Also, the order

of the failure probability can be estimated by: p̂f ≈ αm0 . So, m = log p̂f/ logα0.

Therefore, we can rewrite (4.22) as:

δ2 ≈ (1− α0)

NTα0

(log p̂f )
2

(logα0)2
(1 + γ).

Hence, we can estimate the size of a sample required for a reliable estimation with

a given coefficient of variation δ:

NT =
(1− α0)(log pf )

2(1 + γ)

α0(log p̂f )2δ2

We can analyze the dependency of the coefficient of variation on α0 for a fixed γ.

Figure 4.6 represents a comparative analysis for pf = 10−4 , NT = 5 × 103 and

γ = 0, 2, 4, 6, 10. We can see that choosing α0 ∈ [0.1, 0.4] leads to the most efficient

implementation. We select relatively low value of NT to clearly observe the effect of

dependency.

Figure 4.6: Coefficient of variation δ as a function of α0.
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Recently, Zuev et al. [2011] applied a Bayesian approach to the estimator p̂f .

By assuming that the intermediate conditional failure probability is a stochastic

variable, it is possible to compute the posterior distribution of the estimator p̂f .

Firstly, we assume as a prior distribution for pj the uniform distribution on [0, 1],

Then, the estimator p̂j is a sum of Bernoulli variables as a sum of indicator functions

on a sample Xj = {xj1, . . . ,x
j
N}. It leads to the beta distribution for intermediate

estimators: p̂j ∼ B(nj + 1, N − nj + 1), where nj =
∑N

k=1 IFj(x
j−1
k ). Then, the

final estimator is a product of beta random variables. Zuev et al. [2011] prove that

p̂f ∼ B(a,b) follows a beta distribution with the following parameters:

a =

∏m
j=1

nj+1

N+2

(
1−

∏m
j=1

nj+2

N+3

)
∏m

j=1
nj+2

N+3
−
∏m

j=1
nj+1

N+2

b =

(
1−

∏m
j=1

nj+1

N+2

)(
1−

∏m
j=1

nj+2

N+3

)
∏m

j=1
nj+2

N+3
−
∏m

j=1
nj+1

N+2

where nj =
∑m

k=1 IFj(x
j−1
k ) is the number of times when Xj−1 falls into the inter-

mediate failure region Fj. In view of the practical implementation, at level j we

estimate the threshold yj as α0-quantile of sample Xj−1 of size N . It means that:

nj =

α0N, if j < m,

Nm
f , if j = m

where N is the size of the sample at every level and Nm
f is the number of points at

the last level falling into the failure region Fm = Ωf .

This gives us a possibility to study the influence of the choice of the algorithm

parameters such as α0 and N to the estimation of the failure probability p̂f .

4.2.4.3 Analytical example

We consider an analytical example similar to the one of Section 4.2.3. We will

consider as a performance function the following linear combination of Gaussian

variables:

f(x) = 4− 0.1x1 − 0.3x2 − 0.7x3 − x4
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where all the variables are independent with standard normal distribution: xi ∼
N(0, 1). The function f(x) is a Gaussian random variable as a sum of independent

standard normal variables. The mean is µ = 4 and the variance is σ2 = 0.12 +0.32 +

0.72 + 1 = 1.59. Therefore, we can compute precisely the failure probability:

P(f(x) ≤ 0) = Φ(−µ/σ) = 7.564× 10−4.

Figure 4.7(a) represents a comparison of the posterior distribution for the estimator

of pf for different values of N at the fixed value of α0 = 0.1. Figure 4.7(b) displays a

comparison between the empirical distributions of the estimator for different values

of α0 at the fixed value N = 103.

(a) Analysis of N influence (b) Analysis of α0 influence

Figure 4.7: Bayesian analysis.

As it can be seen, the computed distributions are centered around the true value

of pf . The variance, and therefore the coefficient of variation, decreases when N

increases. This implies that for the higher value of N the uncertainty about the

computed estimator pf is lower. On the contrary, a low value of α0 = 0.01 leads

to fewer levels in the algorithm levels and the variance becomes higher than for the

values of α0 ∈ [0.1, 0.4]. Estimated coefficient of variations are displayed in Table

4.2.
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Sample size α0

N = 500 N = 1000 N = 104 N = 106 α0 = 0.01 α0 = 0.1 α0 = 0.4

c.o.v. δ 0.233 0.165 0.052 0.036 0.321 0.165 0.108

Table 4.2: Coefficients of variation.

For this example, we may conclude that for N = 104 the algorithm provides

reliable estimation of the failure probability with coefficient of variation of 5%.

4.3 GP model based reliability analysis

In the previous section we have discussed different methods to evaluate the failure

probability pf for a given analytical performance function g(x). Often, dealing with

dynamic reservoir simulators, the analytical expression for a performance function

is not available. In this section, we introduce another approximation method. It is

based on approximation of the performance function by a response surface model.

Particularly, Gaussian Process (GP) response surface model with subsequent appli-

cation of subset simulation algorithm will be considered. The use of GP response

surface model in reliability analysis has recently gained attention by different au-

thors [Bect et al., 2012; Bichon et al., 2011; Dubourg et al., 2011; Echard et al.,

2011; Kaymaz, 2005; Picheny, 2009].

The expensive simulator code is replaced with a response surface model that is

faster to compute. In the case of CO2 reservoir storage, the failure event occurs

when the reservoir pressure exceeds the cap rock fracturing pressure. Let P (x) be a

function of the reservoir pressure and Pfracture be a geomechanically estimated cap

rock fracturing pressure. Then, the failure region may be defined as:

Ωf = {x ∈ Ω : P (x) ≥ Pfracture} .

Therefore, the performance function to approximate is:

g(x) = Pfracture − P (x) and pf = P(g(x) ≤ 0)

The function g(x) is replaced by a GP response surface model ĝ(x). This response

surface model is built using an experimental design {Xn,Yn = g(Xn)}. Then, the
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estimator for failure probability is:

p̂f = P(ĝ(x) ≤ 0) =

∫
Ω
f̂

fx(x)dx,

where Ωf̂ = {x ∈ Ω : ĝ(x) ≤ 0} is an approximated failure region and fx(x) is the

joint density of x ∈ Ω ⊂ Rd.
The accuracy of the approximation of the GP response surface model is crucial for

a reliable estimation of the failure probability pf . Furthermore, the experimental

design plays a major role in the model reliability. The existing design and the

related response surface model can be improved by adaptive sampling in the region

of interest (the failure region Ωf in our case). In order to improve the quality of

the model, we propose to update the original experimental design with additional

simulations around the boundary of the failure region. Here, we propose an adaptive

sampling technique that is based on the subset simulation algorithm. First, we

discuss some existing techniques for reliability-oriented adaptive designs. Then,

we introduce a novel adaptive sampling technique. In order to demonstrate the

efficiency of the proposed technique, we will provide examples on an analytical

function and on a CO2 reservoir storage case. We will compare the estimations of

the failure probability provided by the original GP model and the improved GP

model.

4.3.1 Sequential adaptive design

Local refinement of a particular region of interest has recently gained attention

in the field of reliability analysis. When a GP response surface model is used to

estimate the failure probability, it is required that the model is sufficiently accurate

in the region of failure. However, classical design sampling techniques (such as

maximin LHD [Santner et al., 2003]) aim to cover uniformly the input domain:

x ∈ Ω ⊂ R
d. Therefore, in order to get more information about the function

close to or inside the failure region Ωf we propose to refine iteratively the original

experimental design {Xn,Yn = g(Xn)}. At each iteration we will add adaptively

the points close to the limit-state surface, thus reducing the uncertainty about the

failure region. This method is referred to an adaptive refinement. The objective

of the adaptive refinement is to improve the reliability of the failure probability

estimator.
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While working with dynamic reservoir simulators, the experimental design is of

primary importance, since the CPU time required for a single simulator run may be

large. Here, we focus on the construction of an accurate response surface model to

estimate the failure probability pf . Sequential adaptive designs aim at minimizing

uncertainty close to the limit state surface {x ∈ Ω : g(x) = 0}. This approach as-

sumes that the original experimental design is performed for example with a Latin

hypercube sampling [McKay et al., 1979]. Then subsequent runs are performed at

new input configurations which are selected under some statistical criterion mini-

mizing the uncertainty. The general algorithm of any sequential adaptive design can

be described in three stages:

1. Find the best configuration x∗ satisfying the chosen criterion

2. Run the simulator at x∗ to obtain g(x∗)

3. Update the GP model by including (x∗, g(x∗)) to the experimental design

The procedure continues until some stopping criterion is reached. The stopping

criterion can rely for example on the prediction error or on the chosen measure of

uncertainty.

Different adaptive refinement techniques were recently proposed. Bect et al.

[2012] propose a stepwise uncertainty reduction algorithm. This algorithm is based

on a Bayesian approach for the problem of failure probability estimation. It takes

the origin from the Efficient Global Optimization algorithm (EGO) [Jones et al.,

1998]. Bect et al. [2012] propose to measure an error of the estimation of the failure

probability. They derive an upper bound for this measure that does not depend

on the value of pf . The next point to add is chosen by minimization of this error

bound. Picheny et al. [2010] suggest another error measurement which they call

the weighted integrated mean-square error. The weighting density depends only on

the available original observation data. Bichon et al. [2011] developed so called the

expected feasibility function which measures the expected proximity to the limit

threshold value. Every next point is added by minimizing the feasibility function

and approaching the vicinity of the limit state surface. Finally, Dubourg [2011]

introduce a refinement method based on splice sampling coupled with a k-means

classification algorithm.

The presented adaptive techniques have both advantages and drawbacks. The

choice of an optimal technique is always a trade-off between accuracy and the re-
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quired CPU time for every iteration. For expensive simulators, the CPU time re-

quired for every simulator run could be very restrictive. Consequently, the optimal

number of points to be added at every iteration should be as small as possible,

while bringing as much information from the failure region. One is always inter-

ested in approaching the limit state surface and the failure region fast with less

possible number of simulator runs. At the same time, subset simulation is known as

an effective estimation of the failure probability even in very high dimensions. De-

pending on the chosen intermediate probability α0, the failure region is approached

rather rapidly. At every level of the subset simulation algorithm, we estimate the

sequence of intermediate thresholds (yj)
m
j=1 by sampling from the conditional den-

sity q(·|Fj−1). The intermediate failure events are considered as a nested sequence:

Ω = F0 ⊃ F1 ⊃ . . . ⊃ Fm = Ωf . So that, at every level of the algorithm we are sam-

pling closer to the failure region Ωf . The sample of size N generated at every level

j: Xj = {xj1, . . . ,x
j
N} is automatically available. We suggest to incorporate these

data to the experimental design. At every level of the subset simulation algorithm

we update the original GP model with the points sampled at the previous level.

Thus, we provide a new subset simulation algorithm that involves the GP model

refinement at every level. The refinement takes place until a stopping criterion is

reached. In the end, the last updated GP model is used to estimate the failure

probability pf . As a result, it provides a reliable failure probability estimation.

The next subsection describes the proposed refinement algorithm in details.

4.3.2 Adaptive refinement algorithm

The complete algorithm is summarized in Algorithm 7. Here, we provide a brief

explanation and argumentation of the algorithm.

The proposed refinement algorithm has two principal objectives: the first one is

to explore the failure region, the second one is to improve the estimation of the failure

probability. It may be achieved with the minimization of the uncertainty about the

performance function g(x) near the limit state surface Ωs = {x ∈ Ω : g(x) = 0} and

the failure region Ωf = {x ∈ Ω : g(x) < 0}. The GP response surface model based

on such design is specifically built to estimate the failure probability pf .

As discussed above, the basic idea of the subset simulation algorithm is to

represent the failure probability pf as a product of larger conditional probabili-

ties by introducing intermediate failure events Fj = {x ∈ Ω : g(x) < yj}, where
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Ω = F0 ⊃ F1 ⊃ . . . ⊃ Fm = Ωf and y1 > y2 > . . . > ym = 0. Then, the estimation

of the failure probability pf is:

p̂f =
m∏
j=1

P(Fi|Fi−1).

By choosing the value of the intermediate failure probability α0 and the size of the

intermediate samples N at the level k of the algorithm the intermediate threshold

value yk is estimated. This is done by sampling Xk = {xk1, . . . ,xkN} ∼ q(·|Fk−1),

where the conditional density q(·|Fk−1) is realized with Markov chain Monte Carlo

sampling (see Algorithm 6 for more details). We suggest to perform the subset

simulation algorithm simultaneously with the GP model refinement. It means that

at every level of the subset simulation algorithm the GP model is updated with the

refined experimental design. It is continued until some stopping criterion is reached.

As soon as the criterion is reached, to estimate the failure probability the classical

subset simulation algorithm is applied to the last updated GP model ĝf (x). To

update the experimental design at the iteration k + 1 we propose to use the data

sampled at the level k of the subset simulation algorithm Xk = {xk1, . . . , xkN} ∼
q(·|Fk−1). The sequence Ω = F0 ⊃ F1 ⊃ . . . ⊃ Fm = Ωf is a nested sequence

converging to the failure region. At every refinement iteration by a correct statistical

analysis of these data, we can select out the points to add in order to retrieve the

most information about the approximated function in the failure region Ωf . Below

we provide the selecting and the stopping criteria of the refinement procedure.

First, we have to define the number of points to be added at every refinement

iteration. We will denote it by Nadd. Now, we want to precise that the original

model ĝ(x) is built according to the original experimental design of size n: Xn and

the simulator runs Yn = g(Xn). It is important to note that in order to keep

the points only close to the failure region, after the first iteration of the refinement

algorithm we will replace the original design Xn with the new selected points X1
add =

{x1
1, . . . ,x

1
Nadd
}. Then we will add the points only to this new replaced design. The

model based on such experimental design is specifically focused on the failure region.

Let us denote by p̂SSf the estimation of the failure probability provided by the subset

simulation applied to the original model ĝ(x). Suppose that we are given with α0,

the value of the intermediate failure probability, and N , the size of the intermediate

conditional samples. Recall that for any arbitrary input configuration x∗ the kriging
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predictor yields the approximation ĝ(x∗) and the estimation of the variance of this

approximation VAR(ĝ(x∗)). Hence, the estimation of the coefficient of variation at

the input x∗ is also available. We will denote it by:

δ(x∗) =
√

VAR(ĝ(x∗))/ĝ(x∗).

The coefficient of variation is a statistical measure of the dispersion around the mean.

Therefore, the lower the coefficient of variation, the lower the uncertainty about the

performance function g(·) around the input x∗. By minimizing the coefficient of

variation δ of the GP response surface model ĝ(x) close to the failure region, we

reduce the uncertainty about the performance function in this region. Therefore, at

the level k for a sample Xk = {xk1, . . . , xkN} ∼ q(·|Fk−1) we select out the points in

order to minimize the coefficient of variation δk = {δk1 , . . . , δkN}.
The stopping criterion of the refinement procedure is defined by the maximum

possible value for the coefficient of variation δmax = ε. By selecting the threshold

value ε, we continue the algorithm until max
x∈Xk

δ(x) < ε. When the condition is met,

we use the final updated GP model to estimate the failure probability.

Here, we want make a point about the selecting criterion. Let us denote the set of

points added at the level k of the refinement algorithm by Xk
add = {xk1, . . . ,xkNadd} ⊂

Xk. We will also use the notation ĝk−1 for the GP response surface model evaluated

at the level k− 1. The model ĝk−1 is built with the design {X1
add, . . . ,X

k−1
add }. Recall

that at the level k of the subset simulation refinement algorithm we select out the

points from the sample Xk = {xk1, . . . , xkN} ∼ q(·|Fk−1) in order to minimize the

corresponding value of the coefficient of variation δk = {δk1 , . . . , δkN}. It means that

we start refining with the input providing the maximum value δkmax = max
x∈Xk

(δk):

xk1 := arg max
x∈Xk

(δk).

However, if the size of the sample Xk is rather large, e.g. N = 104 − 106, the

sample points are highly concentrated. For this reason, we propose a modification

of the algorithm in order to avoid sampling in the vicinity of the first point xk1.

Inside the refinement iteration k, once the input corresponding to δkmax has been

identified, we suggest to artificially update the design {X1
add, . . . ,X

k−1
add } with the

pair {xk1, ĝk−1(xk1)}, while keeping the hyperparameters θk−1 = {θk−1
1 , . . . , θk−1

d }
of the model ĝk−1 unchanged. By adding this pair to the current experimental
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design, the variance of ĝk−1 at the point xk1 is equal to zero. The variance of ĝk−1

around the input xk1 is close to zero. Therefore, now we can choose the next input

xk2 ∈ Xk
−1 = Xk\{xk1}:

xk2 := arg max
x∈Xk

−1

δ(Xk
−1).

We continue until we sample Nadd points. As soon as the required number of

points is sampled, we evaluate the performance function g(·) by running the sim-

ulator at Xk
add = {xk1, . . . ,xkNadd}. We can now reevaluate the hyperparameters

θk = {θk1 , . . . , θkd} and update the GP model by ĝk with {X1
add, . . . ,X

k
add}.

This algorithm can be considered as a subset simulation algorithm for a Gaussian

Process response surface models. At every iteration k we update the GP model

ĝk(x) and recalculate the hyperparameters based on the experimental design from

the failure region Ωf . This algorithm provides a reliable estimation of the failure

probability for the GP approximation of the performance function. The accuracy

of the estimation depends on the value of the stopping criterion ε. The higher the

value of ε, the lower the total number of refinement iterations. However, the lower

the value of ε, the higher the estimation accuracy. In practice, we propose to set

ε = 0.1. It leads to a reliable estimation with a rather low number of iterations.

The complete algorithm is presented in Algorithm 7. In the next sections we

provide examples on a known analytical function and on a CO2 reservoir storage

case. We illustrate the convergence of the algorithm. In addition, we will compare

the results provided by the original and updated GP models.
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Algorithm 7 Adaptive refinement algorithm.

Input: • Initial experimental design Xn = {x1, . . . ,xn} and GP model ĝ(x)

• Number of samples to add at each iteration Nadd

• Stopping criterion: ε

• Subset simulation parameters: α0 and N

Output: Updated GP model ĝf and the failure probability estimation p̂SSf
Set k = 1

The first step of SS algorithm: evaluate y1 and sample X1 = {x1
1, . . . ,x

1
N}:

P(ĝ(x1) < y1) = α0. Set g1 = ĝ(X1).

Evaluate δ1 = δ(X1) and δ1
max = max

x∈X1
(δ(x))

if δ1
max < ε then

stop

else

for i in 1 : Nadd do

Find x1
i ∈ X1 : δ(x1

i ) = max
x∈X1

(δ(x))

Update Xn = {Xn,x1
i } and Yn = {Yn, ĝ(x1

i )}
Update X1

add = {X1
add,x

1
i }

Update the model ĝ with the design {Xn,Yn}. The updated model: g̃(·)
Re-evaluate the c.o.v. δ at the sample X1: δ1 = δg̃(X

1)

end for

end if

Evaluate the performance function: Y1
add = g(X1

add). Replace the original design:

Xn := X1
add and Yn := Y1

add. Evaluate the GP model ĝ1 based on {X1
add,Y

1
add}

while δkmax ≥ ε do

Set k = k + 1 and Xk
add = {}

Perform step k of SS algorithm: evaluate yk and sample Xk = {xk1, . . . ,xkN}:
P(gk < yk) = α0, where gk = ĝk−1(Xk)

Evaluate δk = δ(Xk) and δkmax = max
x∈Xk

(δ(x))

for i in 1 : Nadd do

Find xki ∈ Xk : δ(xki ) = max
x∈Xk

(δ(x))

Update Xk
add = {Xk

add,x
k
i }

Update the GP model ĝk−1 with the design {
(
Xn,Xk

add

)
;
(
Yn, ĝk−1(Xk

add)
)
}.

The updated GP model g̃k(·).
Re-evaluate the c.o.v. at the sample Xk: δk = δg̃k(X

k)

end for

Evaluate GP model ĝk basing on the refined design Xn := {Xn,Xk
add} and the

simulator runs Yn := {Yn,Yk
add}

end while

Evaluate p̂SSf with SS algorithm for the final model ĝkf
Return: Estimation of failure probability p̂SSf
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4.4 Numerical examples

4.4.1 Analytical function example

In this section, we apply the algorithm on an analytical function. First, we compute

the estimation of the failure probability by subset simulation algorithm applied to

the known analytical function. We will use this estimation as a reference value pf .

Then, we will compare this reference value with the estimations given by the original

GP model and the updated GP model. We also analyze a map of the variance and

the coefficient of variation (c.o.v.) calculated at different levels of the refinement

procedure.

The analytical function is given by the following formulation:

f(x) = 3− 0.3x2
1 − 0.7x2 (4.23)

where x = (x1, x2) ∈ R2 are independent random variables and xi ∼ N(0, 1), i = 1, 2.

The following table represents estimations provided by different reliability methods:

FORM, SORM, Importance Sampling (IS), Directional Sampling (DS) and Subset

Simulation (SS). For the subset simulation we use: α0 = 0.1 and N = 104. It can

be seen that FORM/SORM underestimates the failure probability pf .

FORM SORM IS DS SS

p̂f 1.645e-3 1.809e-3 3.564e-3 3.657e-3 3.662e-3

Function calls 48 53 1e6 1e6 28623

Table 4.3: pf estimations.

The original GP response surface model is computed using the maximin Latin

hypercube design {Xn,Yn} of size n = 5. The corresponding estimation of the

failure probability is p̂of = 0. We keep”’ α0 = 0.1 and N = 104. We add Nadd = 5

points at each refinement step. The stopping threshold is ε = 0.1. The algorithm

stops after 4 iterations after 20 new added design points. Table 4.4 provides the

evolution of the p̂f estimations and the maximum c.o.v. δGP .

Step 1 Step 2 Step 3 Step 4

p̂f 0.9866 0.006154 0.003308 0.003512

δGP 0.5396 2.3012 0.4024 0.0575

Table 4.4: p̂f and δGP estimations.
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Figure 4.8 compares the distribution of the variance and the coefficient of vari-

ation (c.o.v.) between the original and the final designs. The solid line corresponds

to the limit-state surface g(x1, x2) = 0. Black points are used in the original design

and the blue points were added by the refinement algorithm. We easily see that the

limit state surface is well approximated and that the variance is significantly smaller

at the final step. This is also confirmed in the estimation of the failure probability.

The estimation after 2 steps is sufficiently close to the reference value pf .

(a) Variance at the original design (b) Variance at the final design

(c) C.O.V. at the original design (d) C.O.V. at the final design

Figure 4.8: Evolution of variance and coefficient of variation at different stages of

the refinement algorithm.
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4.4.2 CO2 storage case example

In this section, we will consider the CO2 reservoir storage example presented in

Section 3.3.4. The original design consists of 30 simulator runs. The objective is to

evaluate the risk of leakage due to the overpressure in the reservoir. Geomechanical

experts established the fracturing pressure to be Pfr = 122 bars. The original

design used in this section is presented in Figure 4.9. This model considers three

variables with uniform distribution at the given intervals. Details could be found in

Table 3.5. However, we propose to use the uniform assumption for the refinement

procedure if we know the boundaries of a distribution. It allows to explore the

failure region more rapidly. After that, when the refined model is available, the

failure probability can be recalculated under the chosen distribution assumption.

Figure 4.9: Reservoir pressure development.

Obviously, no curve of the original design overpasses the limit pressure value. In this

study, we approximate the reservoir pressure in the last year of injection when there

is the highest risk of leakage. We will denote by P (x) the reservoir pressure and by

P̂ (x) the corresponding GP response surface model. The objective is to estimate

the following probability:

pf = P(P (x) ≥ Pfr) (4.24)

We use the subset simulation for the estimation of this probability. The original GP
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model P̂0(x) is computed using the original design {X30,Y30}. The estimation of

the failure probability for this model is p̂SSf = 0. By varying the threshold value, we

can evaluate the maximum reservoir pressure Pmax = 121.5 bars. This value can be

overpassed with the probability pmax = 3.93× 10−7. Now, we will use the adaptive

refinement algorithm in order to improve the original model and to reevaluate the

failure probability. The subset simulation parameters are α0 = 0.1 and N = 104.

The stopping criterion is ε = 0.1 and the number of points to be added at each

iteration is Nadd = 5. The algorithm stops after 4 iterations. Table 4.5 gives the

estimations computed at every step of the algorithm.

Step 1 Step 2 Step 3 Step 4
p̂f 0.008348 0.0008179 0.0006109 0.0005456
δGP 0.224 1.113 1.248 0.079

Table 4.5: p̂f and δGP estimations.

Figure 4.10 compares the reservoir pressure simulated at the last year of injec-

tion. The first 30 values correspond to the original design used in the original GP

model. The pink values correspond to the values simulated for the updated design.

Obviously, after each iteration the values of the reservoir pressure become higher

and therefore closer to the fracture pressure (or limit-state surface). We assume that

the final estimate p̂f = 5.4 × 10−4 is the relevant estimation. This estimation can

be subsequently improved by changing the stopping criterion, for example taking

ε = 0.05

Figure 4.10: Reservoir pressure development with updated data.
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4.5 Conclusions

This section covered the reliability analysis in CO2 storage. First, we have reviewed

several common methods to estimate the failure probability of the system. We have

compared these methods on an analytical function example. For a linear function,

FORM/SORM provide the reliable estimation at the least cost. For more com-

plicated functions, simulation methods usually provide more relevant estimation.

Another advantage of the simulation methods is the possibility to measure the error

of estimation by computing the coefficient of variation.

Among the presented simulation methods, subset simulation uses the least num-

ber of function calls. For this reason, we provided the detailed algorithm and dis-

cussed the statistical properties of the estimator. The coefficient of variation of the

estimation depends on both the size of the intermediate samples N and the choice

of the intermediate failure probability α0. We have also analyzed the Bayesian

approach of subset simulation. Based on the analysis of the posterior distribu-

tion, we propose to choose the intermediate failure probability α0 ∈ [0.1, 0.4] and

N = 103 − 104.

However, subset simulation can become infeasible when the performance function

is too expensive to evaluate. For example, this is the case for a dynamic reservoir

simulator. One simulator run may take from few minutes to few hours or even days.

The approach to reliability analysis based on GP response surface modelling can sig-

nificantly decrease the required CPU time. The reservoir simulator approximation

is computed using a limited number of the simulator runs. Therefore, to estimate

the failure probability it is highly important that the model is accurate in the failure

region and close to the limit-state surface. Classical experimental design techniques

aim to cover uniformly the input domain, whereas we are interested in the informa-

tion near the failure region. This leads to the introduction of an adaptive refinement

technique. We propose a new adaptive refinement methodology. It combines GP

response surface modelling and subset simulation algorithm. At each iteration of

the subset simulation algorithm, we choose points among the generated sample and

update the GP model with the selected points. The main criterion is to reduce the

coefficient of variation of the updated GP model.

This method demonstrates promising results. We have tested the method with

a known analytical function and a CO2 storage reservoir case. For an analytical

function, the results provided by an updated GP model are sufficiently close to the
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reference estimation. The main advantage of the method is a low CPU time. For

the analytical example, GP model involves only 20 additional function calls. It is

comparable with FORM and SORM approximation methods. However, it provides

more robust estimation. For the CO2 storage reservoir case, the estimations of

the failure probability changes from 0 to 4.2 × 10−4. These estimations could even

be improved by decreasing the stopping threshold ε. By this adaptive refinement,

we can estimate the probability of leakage before and after the CO2 injection well

placement.

The stopping threshold ε for the coefficient of variation can be chosen depending

on the affordable number of additional simulator runs. The lower value of ε involves

more iteration steps. In practice, it was noticed that the value ε = 0.1 is sufficient

for a reliable estimation. For lower values of ε, the number of additional simulation

increases. Whereas, the difference at the failure probability estimation at every

iteration is insignificant.

As soon as we know how to generate a reliable GP model for estimation of failure

probability, it is important to analyze what are the parameters that mostly affect

the failure probability. We will cover the sensitivity analysis of failure probability

in the following chapter.
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Sensitivity analysis for failure

probability
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5.1 Introduction

For complex systems, such as CO2 reservoir storage, it is important to evaluate the

probability of failure pf . We discussed in the previous chapter how to effectively
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estimate this value for a complex dynamic simulator. In this chapter, we will dis-

cuss sensitivity analysis for the failure probability. This is an essential part of any

reliability analysis. It highlights the most significant input variables that contribute

mostly to the variability of the output. Sensitivity analysis can help in answering

the question: which input variable is most influential to the failure probability of the

system? For which random input a change in the original probability distribution

can improve the system reliability?

Let us consider the vector of uncertain input parameters x ∈ Ω ⊂ R
d and the

output function F (·) : Rd → R. We assume that the input parameters are indepen-

dent random variables with the joint density fx(x) =
∏d

i=1 fxi(xi). Hence, every

input variable has marginal density fxi . The objective of the sensitivity analysis is

to identify the most influential parameters x in terms of the variability of the output

F (x). As discussed in previous chapters, this means to rank the input parameters

and to identify for which of them a small variation implies a large variation of the

output.

The widely used methods for sensitivity analysis are based on a variance decom-

position of the output. Sobol’ [1993] introduced the variability measure expressed

by the so-called Sobol’ sensitivity indices. Knowing the probability distribution of

the input parameters and the output, we can define sensitivity indices for each of the

input variables. It is expressed as a ratio of the variance caused by a given input on

the total output variance. We can also measure the interaction effect of two input

variables as the proportion of the total variance of the output that is due to these

inputs. Sobol [2001] proposed the use of Monte Carlo sampling to estimate Sobol

indices. Nowadays, numerous methods are available for efficient estimation of the

sensitivity indices both for analytical deterministic functions or involving response

surface modelling techniques. However, when dealing with a failure probability, the

function of interest is the expectation of an indicator function. Generally, the fail-

ure probability is of very low order. For these reasons, variance decomposition may

provide irrelevant indices estimation. In addition, it requires numerous function

evaluations that is not always affordable.

There have been a few attempts to develop well suited sensitivity analysis meth-

ods for a failure probability. First, as complementary results of the First Order

Reliability Method, sensitivity to the distribution of the input parameters can be

obtained. Sensitivity is expressed as the partial derivative of the reliability index β

[Lemaire et al., 2009]. Another approach was proposed by Morio [2011]. He uses the
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variance decomposition and Sobol’ sensitivity indices to study the rate of change in

the failure probability due to the changes of the input distribution density param-

eters. Borgonovo et al. [2011] suggested moment independent importance measures

in the reliability analysis. This measure does not involve the variance. For a fixed

variable xi it quantifies the effect of knowing xi by computing the L1 norm between

the unconditional joint density fx(·) and conditional density fx|xi(·).
In this chapter, we present a novel moment independent approach for sensitivity

analysis of a failure probability. We develop a methodology for estimating the

influence of the input variables by perturbing its original probability density function

fx(x). In particular, we estimate the effect of the perturbation on the value of the

failure probability pf . Here, we propose to distinguish classes of the distributions

by their supports. For the case of a bounded support, such as the uniform or the

triangular distributions, the main source of uncertainties is about the boundaries

of the support. On the other hand, in the case of infinite support, such as the

normal or the log-normal distributions, the main source of uncertainties comes from

the distribution parameters, such as mean and variance. The main advantage of

the proposed methodology is the efficiency in terms of CPU time. In order to

estimate the sensitivity indices for all the input variables, we only use one sample

XN = {x1, . . . ,xN}
i.i.d.∼ fx(·). The performance function is evaluated only once on

the given sample.

This chapter is organized as follows. First, we introduce the proposed density

perturbation for the distributions with an unbounded support. Then, we precisely

discuss the method for different families of distributions. Later, we introduce the

technique to calculate the perturbed failure probability using the same sample XN .

It is based on an inverse technique of the importance sampling. After that, we

present the formulation for the moment independent sensitivity indices. We also

study statistical properties of the presented indices. Finally, we provide analytical

and CO2 storage reservoir case examples.

5.2 Density perturbation for different probability

distributions

In this chapter, we keep the same notation as before: g(x) is the performance

function of the system, x ∈ Ω ⊂ Rd is a set of independent input variables with joint
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density fx(x) =
∏d

i=1 fxi(xi). The failure probability is expressed as:

pf = P(g(x) ≤ 0) = Efx

[
Ig(x)≤0

]
=

∫
Ωf

fx(x)dx,

where Ωf = {x ∈ Ω : g(x) ≤ 0} is a failure region.

In general, the density fx(·) is built using some engineering restrictions. In this

section, we study how a perturbation on the original probability density fx(·) affects

the failure probability of the system pf .

This work is inspired by Lemaitre et al. [2012]. Originally the method was ap-

plicable only for Gaussian distributions [Lemaitre and Arnaud, 2011]. Here, the

method is extended to more general distributions of the input variables. The ob-

jective of this study is to estimate the influence of the input random variables

from the vector x to the failure probability of the system pf . The proposed ap-

proach consists in perturbing the original density for a given fixed variable xi while

keeping constant the probability density functions for all other variables x−i =

(x1, . . . , xi−1, xi+1, . . . , xd). Then, a new failure probability is computed. If this new

value piδ differs significantly from the original one pf , it means that this selected

input variable xi is influential. Conversely, if the new failure probability piδ is close

to pf , then the input xi has low influence on the failure probability.

5.2.1 Density perturbation

To define the probability density perturbation, we use some ideas from the infor-

mation theory. The main idea is to perform a density perturbation that can be

applicable to any probability distribution. We select the Kullback-Leibler (KL) di-

vergence as a measure of perturbations. KL divergence quantifies the ”closeness” of

two probability distribution P and Q. Suppose that P and Q are continuous proba-

bility distributions with densities p(x) and q(x). Then, the KL divergence between

P and Q is given by:

DKL(P,Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (5.1)
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Let us denote for the variable xi the new (perturbed) density as fxiδ(·), then fxiδ(·)
is selected in such way that:

DKL(fxi , fxiδ) = δ. (5.2)

Possible values of the perturbation δ may be restricted by inequalities for Kullback-

Leibler divergence [Dragomir and Glus̃cević, 2000]. Let us define the function

r(x) := p(x)
q(x)

, x ∈ Ω ⊂ Rd and assume that 0 < r < r(x) < R for all x ∈ Ω ⊂ Rd. We

have:

DKL(p, q) ≥ 0

DKL(p, q) ≤ (R− r)2

4rR
= δmax

According to these inequalities, we choose δ ∈ [0, δmax], where δmax = (R−r)2
4rR

can be

estimated precisely for the selected family of distributions F .

For some given δ > 0 and the original probability density function fxi(·), we

propose to restrict our choice of perturbation among the following class of densities:

fxiτ (x) = exp(τx− ψ(τ))fxi(x). (5.3)

This density class minimizes the KL divergence between the original and the per-

turbated distributions [Lemaitre and Sergienko et. al, 2012]. Here, τ is a constant

depending on δ (it is chosen under the condition (5.2)). The function ψ(τ) is a

normalization function and it may be expressed as:

ψ(τ) = log

[∫ ∞
−∞

exp(τt)fxi(t)dt

]
.

It is the cumulant generating function for the perturbed probability distribution.

We set Mk :=
∫∞
−∞(t − µ)kfxiτ (t)dt the kth central moment of the distribution Fiτ ,

where M1 = 0 and M2 = σ2 (µ and σ2 is the distribution mean and variance). Then,

the following equalities hold for ψ(τ):

ψ(0) = 0

ψ′(0) = µ

ψ′′(0) = M2

(5.4)
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When the KL divergence between the original and the perturbed density is set to

the value δ, we obtain the following expression for τ :

KL(fxiτ , fxi) =

∫ ∞
−∞

fxiτ (t) log
fxiτ (t)

fxi(t)
dt =

∫ ∞
−∞

fxiτ (t) (τt− ψ(τ)) dt (5.5)

= τψ′(τ)− ψ(τ).

Therefore, τ should satisfy the equation:

τψ′(τ)− ψ(τ) = δ. (5.6)

Let τ ∗ = τ(δ) be a solution of (5.6). We use this parameter in order to define the

perturbed density modification fxiτ (·) defined by equation (5.3).

Let us consider the function:

G(τ) = τψ′(τ)− ψ(τ)− δ.

This function has a global minimum at τ = 0 and G(0) = −δ < 0 for δ > 0. We

show in Appendix B.1.2 that G(τ) has not more than two zeros τ1 < 0 and τ2 > 0

(depending on the functional domain). Therefore, equation (5.6) has exactly two

solutions τ1 and τ2.

For every fixed level of δ, we can study two effects of the perturbation (5.3). We

denote the perturbed densities corresponding to the solutions of equation (5.6) by

fxiτ1 and fxiτ2 . Then the joint perturbed probability density is expressed as:

fxiτj (x) = fxiτj

d∏
k=1,k 6=i

fxk(xk), j = 1, 2.

The corresponding value of the perturbed failure probability piδj (j = 1, 2) can be

computed as the following integral:

piδj = Efxiτj

[
Ig(x)<0

]
=

∫
Ig(x)<0fxiτj dx, j = 1, 2. (5.7)

In the same way, we can study the interaction effect by perturbing two variables xi

and xj at the same time by δ1 and δ2 respectively. Suppose that τ(δ1) = (τ1δ1 , τ2δ1)

and τ(δ2) = (τ1δ2 , τ2δ2) are the solutions of equation (5.6), where δ1 and δ2 are the

perturbations of KL divergence (5.2) for the variables xi and xj, respectively. The
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new joint probability density function is:

fxij,τ(δ1),τ(δ2)(x) = fxiτ(δ1)fxjτ(δ2)

d∏
k=1,k 6=i,j

fxk(xk).

The corresponding value of the perturbed failure probability is estimated in the

same way by putting in (5.7) the new joint probability density fxij,τ(δ1),τ(δ2)(·).
Later, we introduce a method to efficiently estimate the perturbed failure prob-

ability piδ using the same Monte Carlo sample as for the original estimation of the

failure probability pf . The method allows to compute the perturbed failure probabil-

ity with low additional CPU cost. It is applicable to the estimation of the interaction

effects as well. Before that, we first study the effect of the perturbation for different

families of probability distributions.

5.2.1.1 Normal distribution

When xi ∼ N(µ, σ2), the density fxi(x) is:

fxi(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Then, the cumulant generating function is:

ψ(τ) = µτ +
τ 2σ2

2
, τ ∈ R.

By substituting the expression for ψ(τ), the new perturbed density is given by:

fxiτ =
1√

2πσ2
exp

(
−(x− (µ+ τσ2))

2

2σ2

)
.

This means that the variable xiτ is normally distributed with mean µ + τσ2 and

variance σ2. The expression for τ can be computed by fixing the Kullback-Leibler

divergence (5.2) at the level δ > 0. We have to solve the following equation for τ :

DKL(fxiτ , fxi) = ψ′(τ)τ − ψ(τ) = δ.
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There are two solutions for any positive fixed value of δ:

τ1 = −
√

2δ

σ
and τ2 =

√
2δ

σ
.

Hence, the perturbation of the original normal distribution of the variable xi leads to

a normal distribution with mean translated by τσ2. The two possible solutions for

τ mean either positive or negative translation. Therefore, by conducting sensitivity

analysis we can study how the mean translation affects the failure probability.

The case of the truncated Gaussian distribution is presented in Appendix B.4.

5.2.1.2 Lognormal distribution

For a lognormal distribution logN(µ, σ2), the density has the following form:

fxi(x) =
1

x
√

2πσ2
exp

(
−(log x− µ)2

2σ2

)
In order to solve equation (5.3) we propose to look for a density having the form:

fxiτ (x) = exp(τ log x− ψ(τ))fxi(x).

In this case, all computations are identical to the one performed for the normal

distribution. We then obtain the same expression for the normalization function

ψ(τ) as for the previous case of the normal distribution. The modified density is:

fxiτ =
1

x
√

2πσ2
exp

(
−(log x− (µ+ τσ2))

2

2σ2

)
.

The values for τ are the same as for the normal distribution:

τ1 = −
√

2δ

σ
and τ2 =

√
2δ

σ
.

This density perturbation corresponds to positive or negative translation of the

location parameter µ of the distribution.
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5.2.1.3 Exponential distribution

Assume that xi ∼ Exp(λ), λ > 0, which is the exponential distribution with the

parameter λ. The density is given by:

fxi(x) = λe−λx.

The expression for ψ(τ) can be rewritten as:

ψ(τ) = log

(
λ

λ− τ

)
, τ < λ.

For δ > 0 we can define the equation for τ(δ):

τ

λ− τ
− log

λ

λ− τ
= δ, τ < λ,

The two possible solutions of this equation are expressed with the W Lambert

function. We denote by W0(x) the upper branch of the Lambert function on the

interval [−1/e, 0] and by W−1(x) the lower branch on the same interval. Then the

solutions for τ(δ) have the following form:

τ1(δ) =
λ
(
W−1(−e−1−δ) + 1

)
W−1(−e−1−δ)

and τ2(δ) =
λ
(
W0(−e−1−δ) + 1

)
W0(−e−1−δ)

.

Knowing the value for τ ∗ = τ1, τ2, the new perturbed density will take the following

form:

fxiτ = exp(τ ∗x) exp(−λx)(λ− τ ∗) = (λ− τ ∗) exp (− (λ− τ ∗)x) .

Therefore, xiτ ∼ Exp(λ− τ ∗) has the exponential distribution with parameter (λ−
τ ∗).

5.2.1.4 Poisson distribution

Assume that variable xi ∼ Pois(λ), λ > 0, which is Poisson distribution with pa-

rameter λ. The density is given by:

fxi(k) =
λke−λ

k!
, k ∈ N.
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Thus, the normalization function takes the form:

ψ(τ) = λ(eτ − 1), τ ∈ R.

The equation for τ(δ) becomes:

λeτ (τ − 1) + λ = δ.

The two possible solutions of this equation can also be expressed with the W Lam-

bert function. The solutions for τ(δ) have the following form:

τ1(δ) = W−1

(
−λ− δ

eλ

)
+ 1 and τ2(δ) = W0

(
−λ− δ

eλ

)
+ 1.

Knowing the value for τ ∗ = τ1, τ2, we can rewrite the perturbed density fxiτ as:

fxiτ = exp(τ ∗k − ψ(τ ∗))
e−λλk

k!
=

(
λeτ

∗)k
k!

exp(−λeτ
∗
).

Therefore, the new perturbed variable xiτ ∼ Pois(λeτ
∗
) follows the Poisson dis-

tribution with parameter λeτ
∗
.

5.2.1.5 Uniform distribution

Assume that xi ∼ U[a, b], the uniform distribution on the interval [a, b]. The density

is:

fxi(x) =
1

b− a
Ix∈[a,b](x), (b > a).

The normalization function becomes:

ψ(τ) = log

(
eτb − eτa

τ(b− a)

)
, τ ∈ R. (5.8)

Then the equation for τ(δ) is:

τbeτb − τaeτa

eτb − eτa
− 1− log

(
eτb − eτa

τ(b− a)

)
= δ.

This equation has no explicit solutions for τ . The solutions can be found using a

numerical solver. Suppose that τ ∗ = τ(δ) is a solution of equation (5.8). Then, the
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5.2 Density perturbation for different probability distributions

perturbed density is:

fxiτ =
τ ∗eτ

∗x

eτ∗b − eτ∗a
Ix∈[a,b](x).

Therefore, the new perturbed variable xiτ is no longer uniform on [a, b]. This density

modification for a = −1, b = 1 and δ = 0.5 is displayed in Figure 5.1(a).

(a) Exponential density modification (b) Boundaries perturbation

Figure 5.1: Uniform density perturbation.

While working with uncertain parameters defined on a compact support, the

main source of uncertainty is on the boundaries of the support. For such distribu-

tions with a bounded support, we propose to apply another density perturbation.

The idea consists in perturbing the original boundaries by τ = ±δ. In the same way

as with infinite support we consider the effect of positive or negative perturbation.

For example, consider xi ∼ U[a, b] to be uniformly distributed on the interval [a, b].

Then, in order to stay inside the support the perturbed random variable xiτ is uni-

formly distributed either on U [a+ δ, b] or on U [a, b− δ]. The corresponding density

for perturbed uniform distribution can be expressed as:

fτ =
1

b− a− δ
Ix∈[a+δ,b](x) or fτ =

1

b− a− δ
Ix∈[a,b−δ](x).

The same perturbation may be applied to triangular or trapezoidal distributions.

It can be also applied to the truncated Gaussian distribution if one is interested

about the boundary influence on the failure probability pf . In this case the density
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function should be corrected for the new boundaries.

To summarize this section, we have covered many classical families of distribu-

tions. In the next section, we explain how to efficiently estimate a perturbed failure

probability pfδ .

5.3 Importance sampling and sensitivity analysis

As discussed in Chapter 4, Monte Carlo sampling is the most popular simulation

methods to estimate the failure probability. We consider the input parameters space

Ω ∈ Rd. Suppose that all the input parameters are independent and that fx(x) =∏d
k=1 fxk(xk) is the joint density of input parameters. Let XN = {x1, . . . ,xN}

i.i.d.∼
fx(·) be a sample of size N . Then, the estimation of the failure probability pf is

given by:

p̂f =
1

N

N∑
k=1

Ig(xk)≤0. (5.9)

Now, assume that fxiτ is a new perturbed density for the input parameter xi. Then

the new joint density is fxτ =
∏
fx1 · · · fxi−1

fxiτfxi+1
· · · fxd = fxiτ

∏d
k=1,k 6=i fxi(xi).

The corresponding failure probability piδ is defined as an expectation of the indicator

function for this new distribution:

piδ = Efxiτ

[
Ig(x)≤0

]
=

∫
Ω

Ig(x)≤0fxiτ (x)dx

Here, we propose to apply the technique used in the Importance Sampling (IS)

simulation method. We multiply the integrand function by 1 = fx(x)
fx(x)

. Both density

functions fx(x) and fxiτ are the products of the density functions of the independent

variables x = (x1, . . . , xd) ∈ Ω ⊂ R
d and only differ for the variable xi. Therefore,

we obtain:

piδ =

∫
Ω

Ig(x)≤0fxiτ (x)dx =

∫
Ω

Ig(x)≤0
fxiτ (xi)

fxi(xi)
fx(x)dx = Efx

[
Ig(x)≤0

fxiτ (xi)

fxi(xi)

]
.

By doing this, we do not need to throw a new sample according to the density

function fxiτ (x). We are working in the same probability space integrating the

function
[
Ig(x)≤0

fxiτ (xi)

fxi (xi)

]
. In addition, to estimate the perturbed failure probability

piδ we keep the same sample points from the failure region: XN
f = {x ∈ XN : g(x) ≤

0} that provide non-zero values of the indicator function Ig(x)≤0. Consequently, we
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do not need to reevaluate the function and we do not need any additional function

calls. The estimation of the failure probability for perturbed density is expressed

as:

p̂iδ =
1

N

N∑
k=1

Ig(xk)≤0
fxiτ (xki)

fxi(xki)
. (5.10)

If we are interested in the interaction effects, we perturb the probability densities

for the variables xi and xj simultaneously. Then, the new joint density is:

fxij,τ(δ1),τ(δ2)(x) = fxiτ(δ1)fxjτ(δ2)

d∏
k=1,k 6=i,j

fxk(xk).

Therefore, in this case the new failure probability can be estimated by:

p̂fτ(δ1),τ(δ2) =
1

N

N∑
k=1

Ig(x)≤0

fxiτ(δ1)(xki)fxjτ(δ2)(xkj)

fxi(xki)fxj(xkj)
.

This new value of the failure probability describes the interaction effects of two

variables xi and xj on the failure probability pf .

The proposed reliability sensitivity analysis is based on the analysis of the value

of the perturbed failure probability. The higher the effect of the perturbation by

the same value of δ is, the more influential the variable to the failure probability

is. The new failure probability itself can be a sensitivity measure because it makes

possible to determine what variables has the highest impact. However, we propose

another sensitivity measure. It allows to clearly differentiate the input variables

by the level of their influence on the failure probability. We will consider different

possible formulations of sensitivity indices in the next section.

5.4 Sensitivity indices formulations

Here, we analyze different possible sensitivity indices based on the previous density

perturbation. These indices have different asymptotic statistical properties. In this

section, we investigate three possible sensitivity indices. We detail and compare

these suggestions on the same analytical function afterwards.
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5.4.1 Basic indices

The basic index is based on the difference piδ−pf with the original failure probability

pf . It is expressed as the ratio:

Siδ =
piδ − pf
pf

(5.11)

The support of these indices is [−1,+∞). A negative value of Siδ means that the

proposed density modification reduces the failure probability. Conversely, a positive

value of this index means an increase in the failure probability. Zero value of Siδ

means that the variable xi has no impact on the failure probability.

In practice, pf is estimated by p̂f with the Monte Carlo simulation method. In

the same way, according to (5.10) piδ is estimated by p̂iδ. The estimator of the

indices Ŝiδ thus can be expressed as:

Ŝiδ =
p̂iδ − p̂f
p̂f

.

This estimation provides an asymptotic unbiased estimation of Siδ. Moreover, ac-

cording to the Central Limit Theorem (CLT):

1√
VARfx

[
Ŝiδ

] (Ŝiδ − Siδ) N→∞→ N(0, 1)

The proof and an asymptotic expression of the variance can be found in Appendix

B.2.2.

The above basic indices are computed separately for every fixed value of the

density perturbation δ. It allows to study the effect of perturbation by varying the

value of δ. It can help in reliability design optimization by adjusting the distribution

parameters of the input variables x = (x1, . . . , xd) in order to achieve the lowest

failure probability pf .

5.4.2 Symmetric indices

The previous index is bounded below by −1. Therefore, in some cases it may be

difficult to use this index to rank the parameters by their influence on the failure

probability. For some density perturbations the indices for some variables may have
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similar behavior around the value −1. For this reason, we propose an alternative

index. For the input variable xi and a perturbation parameter δ > 0 we set:

S̃iδ =

[
piδ
pf
− 1

]
Ipiδ>pf +

[
1− pf

piδ

]
Ipiδ<pf =

piδ − pf
pfIpiδ>pf + piδIpiδ<pf

.

The value of this index also equals to 0 when the perturbed probability pfiτ does

not differ from the original value pf . The negative values of such indices occur for

decreasing failure probability, whereas positive values occur for an increasing value

of the failure probability.

To estimate these indices we will also use the Monte Carlo estimations p̂f and

p̂iδ. More details on these indices can be found in Appendix C.1 and in Lemaitre and

Sergienko et. al, 2012, where the statistical properties of the estimator are studied.

5.4.3 Variance based sensitivity indices

Another possible way to measure the influence of the input variables can be based

on the variance decomposition.

Here, we assume that the value of the density perturbation δ is a random variable.

For example, suppose that δ ∼ U[0, 1] is uniformly distributed on [0, 1]. Then, we

can compute the variance of the perturbed failure probability piδ as a function of

the random variable δ. Let us denote this value by VARδ(piδ). This variance can be

used to evaluate the impact of the input variable xi in the variation of the failure

probability. We propose to normalize this measure by the ”total variance” of the

perturbed failure probability denoted by VARδ(pxδ). By the ”total variance” we

mean the variance of the perturbed failure probability computed by simultaneous

perturbing all the variables densities fx(·) =
∏d

k=1 fxi(·). The proposed index is

then:
˜̃Sδi =

VARδ(piδ)

VARδ(pxδ)
, (5.12)

where piδ is the failure probability computed for the density fxi perturbed by δ. The

value pxδ is the failure probability computed by perturbing all the input variables

densities fx =
∏d

k=1 fxi simultaneously by a vector δ = (δ1, . . . , δd) ∈ [0, 1]d. The

ratio (5.12) evaluates the amount of variation caused by perturbing the density fxi
relatively to the total variation caused by perturbing all the variables densities. We

show how to estimate the ratio (5.12) with a Monte Carlo sampling of the random
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variable δ in Appendix B.5. Here, we will detail the estimation of the probability

pxδ.

To estimate the perturbed failure probability pxδ, we perturb the vector of the

densities of the input variables x = (x1, . . . , xd) simultaneously by a vector δ =

(δ1, . . . , δd). Assume that τ = (τ1(δ1), . . . , τd(δd)) is the corresponding vector of the

solutions (5.6). Then, the new perturbed joint density is expressed as:

fxτ =
d∏

k=1

fkτk(xk),

and the related perturbed failure probability:

pxδ =

∫
Ω

Ig(x)<0fxτdx.

In the same way as with (5.10), the last probability can be estimated by:

p̂xδ =
1

N

N∑
k=1

Ig(xk)<0

∏d
l=1 flτl(xl)∏d
l=1 fl(xl)

.

With the indices defined by (5.12), we can compare directly the influence of

different input variables to the failure probability pf . However, we should make the

a priori assumption about the probability distribution of the variable δ. In addition,

it is not straightforward to evaluate the statistical properties of this estimator.

5.4.4 Analytical function example

To investigate the previous indices, we will consider a simple linear function of three

independent normally distributed variables: x1, x2, x3 ∼ N(0, 1):

g(x1, x2, x3) = 3− 0.1x1 − 0.5x2 − 1.0x3. (5.13)

As a linear combination of independent Gaussian random variables, g(x) ∼ N(µ, σ),

where µ = 3 and σ2 = 0.12 + 0.52 + 1.02 = 1.26. The original failure probability can

be explicitly computed:

pf = 1− Φ(
µ

σ
) = 3.7× 10−3.
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The estimation provided by a Monte Carlo sample of size N = 106 yields p̂f =

3.69 × 10−3. We will use the same Monte Carlo sample to estimate the perturbed

failure probabilities piδ and the sensitivity indices Siδ.

Basic index

Firstly, we will present the basic sensitivity indices and the related interaction ef-

fects. Figure 5.2 depicts sensitivity indices calculated for δ ∈ [0, 1] with the positive

(5.2(b)) and the negative (5.2(a)) mean shifting. It can be clearly observed that

the highest impact on the failure probability is due to the variable x3 and that the

variable x1 has the lowest impact for both cases of τ . Moreover, the higher the value

of δ is, the higher is the influence of the parameters.

(a) Negative τ (b) Positive τ

Figure 5.2: Basic sensitivity indices example.

The interaction effects is computed the same way by perturbing two parameters

simultaneously. We denote pik,δ1δ2 the failure probability obtained by perturbing the

distribution of the two variables xi and xk at the same time. Therefore, here we have

to analyze the surface of perturbations for all possible combinations (δ1, δ2) ∈ [0, 1]2.
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(a) Negative τ (b) Positive τ

Figure 5.3: Basic interaction effect example.

The same results are valid for the interaction effect. The higher the impact of a

single variable, the higher the influence of the interaction with other variables. Here,

we can see that the highest value of interaction effects corresponds to the couple of

variables (x2, x3).

Symmetric indices formulation

Here, we provide estimations of the symmetric indices formulation. Figure 5.4 dis-

plays the computed value of symmetric sensitivity indices for negative (Figure 5.4(a))

and positive (Figure 5.4(b)) values of τ . The results are similar to the ones obtained

above. The variable x3 has the highest influence on the failure probability. However,

in this case there is no lower boundary of −1.
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(a) Negative τ (b) Positive τ

Figure 5.4: Symmetric sensitivity indices example.

The same results are valid for the estimated interaction effects.

(a) Negative τ (b) Positive τ

Figure 5.5: Symmetric interaction effect example.

Variance based formulation

Here, we present the estimations for the variance based sensitivity indices Siδ. The

indices formulated this way provide a single value estimation for a sample of pertur-
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bations δ. Here, we present boxplots of indices computed for each of the variables

xi, i = 1, 2, 3. The boxplots were generated with 30 indices realizations. Figure

5.6 compares the simulated results for negative (Figure 5.6(a)) and positive (Figure

5.6(b)) values of τ .

(a) Negative τ (b) Positive τ

Figure 5.6: Variance based sensitivity indices

It can be observed that for positive values of τ there is almost no variation in the

estimation of the indices. In this case, the variable x3 shows the highest impact on

the failure probability. Whereas for the case of negative values of τ all the variables

demonstrate similar values of the indices. The reason of rather high values of indices

for negative τ is very low order (−4) of the values of total and partial variances.

5.5 CO2 storage case example

In this section, we provide an application of the proposed reliability sensitivity

analysis to CO2 storage reservoir case. We study the same reservoir case from

the Section 3.3.4. The following input variables are considered in this reservoir case:
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Name Description Min Max

PORO Reservoir Porosity 0.15 0.35

KSAND Reservoir Permeability 10 300

KRSAND Water relative permeability end-point 0.5 1.0

Table 5.1: Uncertain parameters.

For sake of clarity we transform the original intervals into [−1, 1]. In this sec-

tion, we assume the truncated standard normal distribution for all the parameters

N[−1,1](0, 1).

Let us recall the formulation of the performance function. Suppose that Pfracture

is a fixed value of the cap rock fracturing pressure. Preservoir(x) is a function of

the reservoir pressure depending on the input parameters configuration x ∈ Ω ⊂
R
d. Then, the performance function defining the event of the gas leakage can be

expressed as:

g(x) = Pfracture − Preservoir(x).

The reservoir pressure Preservoir(x) is computed with a complex dynamic reservoir

simulator. For this reason, we use the GP response surface model approximation

P̂ (x). We use the refined GP response surface model obtained in Section 4.4.2. This

model provides a reliable estimation of the failure probability pf .

Under the assumption about the truncated standard normal distribution, the

estimation of the failure probability for the refined model is p̂SSf = 2.25×10−4. This

estimation is computed with the subset simulation. The Monte Carlo sample of size

N = 106 provides the estimation p̃f = 2.26 × 10−4. We use this same sample to

estimate the perturbed failure probability piδ and the sensitivity indices Siδ. Here,

we use the basic formulation of the indices presented in Section 5.4.1.

There are two possible ways for sensitivity analysis of the truncated Gaussian

distribution. We can perturb either the boundaries of the support or the mean value

of the distribution. In this example, we compare the results for both cases. We start

with the sensitivity indices calculated by the mean shifting. Figure 5.7 displays the

evolution of the sensitivity indices for δ ∈ [0, 1] for negative (Figure 5.7(a)) and

positive (Figure 5.7(b)) values of shifting. The parameters ranking depends on the

sign of τ . When τ > 0 (i.e. the positive mean shifting) the porosity parameter has

the highest impact on the failure probability. It means that increasing the mean

value of the reservoir porosity PORO leads to increasing the failure probability. On

125



5. SENSITIVITY ANALYSIS FOR FAILURE PROBABILITY

the contrary, increasing the mean value of the reservoir permeability KSAND and the

water relative permeability end-point KRSAND has a negative effect on the risk of

leakage. For the negative mean shifting, the parameters KSAND and KRSAND have

the highest influence on the failure probability. Reducing the reservoir permeability

and the end-point water relative permeability impedes the gas flow in the reservoir.

It increases the risk of the leakage.

(a) Negative τ (b) Positive τ

Figure 5.7: Mean shifting.

Now, we consider the boundaries perturbation. It means that we are moving one

of the the distribution boundaries by δ in positive or negative directions keeping the

values of mean and variance unchanged. Figure 5.8 depicts the sensitivity indices

for δ ∈ [0, 1] for negative (Figure 5.8(a)) and positive (Figure 5.8(b)) values of

τ = ±δ. When τ < 0 (i.e. the resulting distribution is N[−1,1−δ](0, 1)) the porosity

parameter has the highest impact on the failure probability. It means that by

decreasing the maximum value of the reservoir porosity PORO the failure probability

decreases. It is also proved by Figure 5.7(a). It can be also observed that for this

parameter the new perturbed failure probability piδ is equal to zero when δ > 0.3.

Then, for τ > 0 the resulting distribution is N[−1+δ,1](0, 1). For this case, increasing

the reservoir permeability KSAND and the water relative permeability end-point

KRSAND reduces the failure probability piδ.
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(a) Negative δ (b) Positive δ

Figure 5.8: Boundaries shifting.

Both methods provide comprehensive and complementary results. If the main

uncertainty is about the boundaries of the support, one can start with the boundaries

perturbation. By moving the boundaries of the original distribution, it is possible

to determine the safe intervals for the input parameters by detecting the value of δ:

piδ = 0 or Siδ = −1. After that, the effect of the mean perturbation can be studied.

5.6 Conclusions

In this chapter, we introduced a novel approach to reliability sensitivity analysis.

Currently the majority of the methods for reliability analysis is based on the variance

decomposition and Sobol’ sensitivity indices. We present a new moment indepen-

dent sensitivity measure. The method is based on a perturbation of the original

probability distribution of input random variables. We can analyze the a priori as-

sumption about the input distributions and measure the effect of possible deviations

from this assumption. In particular, we select the Kullback-Leibler divergence as a

measure of the perturbation.

We introduced a class of distributions from which we select the perturbed distri-

bution. We provided the analysis of different probability distribution families and

studied the effect of the perturbation of the Kullback-Leibler divergence for these

families.
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For the perturbed distribution, we proposed an effective method to estimate the

corresponding perturbed failure probability. The method is based on a technique

coming from the importance sampling simulation method. It allows to estimate the

new failure probability without supplementary performance function evaluations.

The new sensitivity indices formulation describes the relation between the new fail-

ure probability piδ and the original failure probability of the system pf . By varying

the value of the perturbation δ, we can study how the positive or negative prob-

ability density perturbation affect the failure probability. If the model has input

controllable parameters, the method can help improving the system reliability and

the design optimization.

We investigated the method on analytical and CO2 storage reservoir cases. The

method provides relevant results and can be applied in reliability sensitivity analysis.

In the presented examples we considered the identically distributed input variables.

However, the method can be equally applied to different families of distributions.

We also provided the analysis of the statistical properties of the proposed es-

timators for the perturbed failure probability p̂iδ and the sensitivity indices Ŝiδ.
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Chapter 6

Conclusions and perspectives

The objective of this work has been to provide a comprehensive thorough method-

ology for uncertainty and risk analysis in CO2 storage. The presented methodology

gives some solutions to the problem from different aspects.

We focus in this thesis on a Gaussian Process (GP) response surface modelling.

The expensive reservoir simulator is replaced with a GP response surface model that

is much faster to evaluate. The presented methodology is based on a GP response

surface modelling and consists in the following steps:

1. Optimal injection well placement

2. Reliability estimation

3. Reliability sensitivity analysis

We will discuss the most important contributions separately for each of the formu-

lated problems.

Injection well placement

First of all, the problem of CO2 injection well placement represents a problem of

handling discrete parameters (such as well coordinates) in the GP response surface

modelling. In Chapter 2 we have presented different formulations for a correlation

function involving both discrete and continuous variables. We have tested these

formulations and their performance on analytical function examples. We have suc-

cessfully used the method on a CO2 reservoir storage case.

While working with a well placement optimization another difficulty arises. It

is related to addressing the discrete functional outputs. In this work, the dynamic
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simulator models a multi-phase 3-D fluid flow in the storage reservoir operating

over fixed number of time-steps. The output of such simulators is a sequence of

outputs at different time-steps. Therefore, it is a time series, such as a overpressure

development at different years of injection. The classical approach to model time-

series outputs assumes distinct GP modelling for every time step. In Chapter 3 we

have presented two different methods to model time series outputs.

The first one is based on considering the time variable as an auxiliary discrete

variable. However, it can be computationally demanding. The GP response surface

modelling requires the inversion of the design covariance matrix. Depending on the

size of the matrix (i.e. the number of available experimental design data and number

of involved time steps), the matrix inversion could be infeasible. In addition, the

difficulties could be encountered in the case of high density of the points in the

time scale when the design data are in close proximity. We propose three different

techniques that helps in improving the method efficiency. We have tested proposed

method on a PUNQ-S3 reservoir case. Moreover, we have provided a CO2 reservoir

storage example with a direct application to an injection well placement.

Another approach to address time series outputs is a functional based approach.

This approach involves a combination of Shape Invariant Model (SIM) and the

Gaussian Process (GP) response surface modelling. This model assumes a common

pattern shape curve and curve-specific differences of time series outputs in ampli-

tude and timing are modeled with linear transformations. We provided an efficient

algorithm for estimation of the transformation parameters of the shape invariant

model with the specification for large sets of data curves. We proposed a novel ap-

proach that reduces the problem of functional outputs modelling to one optimization

problem and GP response surface modelling for transformation parameters. This

method does not depend on the number of time steps and could be very advan-

tageous for complex dynamic simulators with a large number of time steps. The

prediction algorithm was tested on a CO2 reservoir storage case. It was compared

to a classical single step approach. For the presented example, new method out-

performs the classical one in terms of CPU time with a factor five. However, when

the design set of curves is significantly different in functional behavior, preliminary

classification may be required.
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Reliability estimation

Chapter 4 provides a critical review of existing reliability methods for computation-

ally expensive reservoir simulation models. We have provided a detailed discussion

of the existing methods for reliability analysis, including approximation methods

(such as First and Second Order Reliability Methods (FORM/SORM)) and simu-

lation methods (such as Monte Carlo sampling, Importance Sampling, Directional

Sampling and Subset Simulation). Many of the relative advantages and drawbacks

of these methods have been presented. In particular, while presented simulation

methods give the robust estimation of the failure probability, applying to a reservoir

simulator all of them becomes very computationally demanding. For this reason we

provide another approximation method. It is based on a GP response surface model

approximation of the reservoir simulator.

The reservoir simulator approximation is computed using an experimental design.

The design represents a limited number of simulator runs. For this reason, in order

to provide a robust estimation of the failure probability of a system, it is highly

important that the model is sufficiently accurate in the failure region and close to

limit-state surface. Whereas classical experimental design techniques, such as Latin

hyper cube, aim at uniform coverage of the input domain. Hence, we propose a new

adaptive refinement technique for an experimental design. It is based on a subset

simulation algorithm. We propose an updated subset simulation that allows to

compute the failure probability with a target level of accuracy. The method consist

in integrating the data generated at every level of the subset simulation algorithm in

experimental design refinement. It allows to get more information from the failure

region. The method entails simultaneous update of the design and re-evaluating the

corresponding GP model.

We have tested the method with a known analytical function and a CO2 stor-

age reservoir case. The failure probability estimations provided by the original and

the updated GP models have demonstrated the method efficiency. From a prac-

tical experience, we propose the threshold value ε = 0.1 as a reasonable trade-off

between the affordable number of iterations and the reliable failure probability es-

timation. The proposed adaptive refinement technique offers a robust estimation of

the probability of leakage for a chosen CO2 injection well placement.
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6. CONCLUSIONS AND PERSPECTIVES

Reliability sensitivity analysis

As soon as we know the failure probability of the system, it is important to analyze

which input parameter contribute most in the variability of the failure probability.

Chapter 5 introduced a new moment independent measure for reliability sensitivity

analysis. This value is based on a perturbation on the original probability distribu-

tion of input random variables. It can help to analyze how the a priori assumption

about the input distributions affect the failure probability estimation. Kullback-

Leibler divergence was chosen as a measure of perturbation. We have studied the

effect of the perturbation for different probability distributions..

We propose a new method to estimate the perturbed failure probability without

additional simulator runs. It is based on importance sampling method. Conse-

quently, without additional CPU cost by varying the value of perturbation we can

study the impact of positive or negative probability density perturbation on the

failure probability.

In order to compare numerically the influence of the input variables on the failure

probability, we have provided different possible formulations for sensitivity indices.

The analysis of statistical properties of the suggested estimator was also presented.

The method was tested both on an analytical function example and a CO2 storage

reservoir case. The presented results are promising. The method could be effectively

applied in reliability sensitivity analysis.

Future research

Preliminary curves classification

In Chapter 3 we have presented the approach to model discrete functional outputs

based on Shape Invariant Model. This approach could be improved by adding

an intelligent curves classification. Starting from the experimental design set of

curves we can perform a preliminary curves classification. Then, separately for

every class we compute corresponding transformation parameters. We compute the

GP response surface models for the transformation parameters in every class. Then,

we would have to develop a clustering function. This function for a given input

configuration will determine a number of cluster. When the number of cluster is
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known the appropriate GP model is used for parameters estimation.

We have tested some curves classification methods. However, for our application

it was not advantageous in terms of CPU time. In this case, we have to solve not a

single optimization problem. The number of optimizations is equal to the number

of curves clusters. However, for some applications it could outperform the classical

single step approach.

Reliability analysis with a random performance function

The threshold value defining the performance function is not always a fixed value. It

depends on the input parameters of the system. We consider the input parameters

as random variables. Therefore, it seems to be reasonable to consider the threshold

value (cap rock fracturing pressure in our case) as the random variable. This random

function depends on the configuration of input parameters.

It is interesting to develop a subset simulation algorithm with a random threshold

value. In this case the algorithm should be modified as the intermediate threshold

values will depend on the probability distribution of the original threshold.

Reliability based design optimization

Reliability based design optimization aims to find optimum set of controllable design

variables maximizing the system reliability.

The proposed methodology for reliability sensitivity analysis could contribute

to the reliability based design optimization. By perturbing the original probability

distribution of the input controllable parameters we can analyze changes in the

failure probability. Therefore, by varying the values of perturbation δ, we can find

the optimal probability distribution parameters (such as mean and variance) for the

design variables in order to achieve the lowest possible failure probability.

For the case of CO2 storage we can study the range of optimal injection rate or

the longest possible injection period. It could be coupled with the classical reliability

based design optimization methods for a higher efficiency.
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Appendix A

A.1 PUNQ-S3 example

A.1.1 Field watercut function

(a) Ntrain=1 (b) Ntrain=2
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(c) Ntrain=3

Figure A.1: FWC

(a) Ntrain=2 (b) Ntrain=3

Figure A.2: Time division
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A.1 PUNQ-S3 example

A.1.2 Cumulative field oil production function

(a) Ntrain=1 (b) Ntrain=2

(c) Ntrain=3

Figure A.3: FOPT
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(a) Ntrain=2 (b) Ntrain=3

Figure A.4: Time division
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Appendix B

B.1 Properties of the normalization function

For a given random variable x with probability density f(x). We propose the density

modification xτ ∼ fτ (·) as follows:

fτ (x) = exp(τx− ψ(τ))f(x),

where ψ(τ) is a normalization function given by:

ψ(τ) = log

[∫ ∞
−∞

exp(τx)f(x)dx

]
.

Let us define D = {τ ∈ R : ψ(τ) < +∞} and D̊ is the interior of D. We will

also suppose, that ∃ε : D ⊃] − ε, ε[. Here, we will study the properties of this

normalization function.

B.1.1 Derivatives

• ψ′(τ) = E[xτ ], τ ∈ D̊

ψ′(τ) =

d
dτ

[∫∞
−∞ exp(τx)f(x)dx

]
∫∞
−∞ exp(τx)f(x)dx

=

∫ ∞
−∞

x exp(τx−ψ(τ))f(x)dx =

∫ ∞
−∞

xfτ (x)dx = E[xτ ]

• ψ′′(τ) = E [xτ − E(xτ )]
2 , τ ∈ D̊
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B. APPENDIX B

ψ′′(τ) =
d

dτ

[∫ ∞
−∞

x exp(τx− ψ(τ))f(x)dx

]
=

=

∫ ∞
−∞

[x(x− ψ′(τ)) exp(τx− ψ(τ))f(x)dx] =

=

∫ ∞
−∞

x2fτ (x)dx− ψ′(τ)

∫ ∞
−∞

xfτ (x)dx =

∫ ∞
−∞

x2fτ (x)dx− [E[xτ ]]
2 =

= E [xτ − E(xτ )]
2 = VAR(xτ )

• ψ′′′(τ) = E [xτ − E(xτ )]
3 , τ ∈ D̊

E [xτ − E(xτ )]
3 =

∫ ∞
−∞

[x− ψ′(τ)]
3
fτ (x)dx =

=

∫ ∞
−∞

x3fτ (x)dx− 3ψ′(τ)

∫ ∞
−∞

x2fτ (x)dx+ 3ψ′(τ)2

∫ ∞
−∞

xfτ (x)dx− ψ′(τ)3

=

∫ ∞
−∞

x3fτ (x)dx− 3ψ′(τ)

∫ ∞
−∞

x2fτ (x)dx+ 2ψ′(τ)3 = ψ′′′(τ)

B.1.2 The two solutions of the equation

Here, we will discuss about possible solutions of the equation ψ′(τ)τ −ψ(τ) = δ, τ ∈
D̊ for sufficiently small δ > 0.

Let G(τ) := ψ′(τ)τ − ψ(τ) − δ, τ ∈ D̊. We will show that this function has

exactly two zeros τ1 < 0 and τ2 > 0.

• G′(τ) = τψ′′(τ), τ ∈ D̊

We do not consider a constant random variable. Hence, ψ′′(τ) = VAR(xτ ) > 0 and

G′(τ) has the same sign as τ ∈ D̊ and G′(τ) = 0⇔ τ = 0.

• G′′(τ) = τψ′′′(τ) + ψ′′(τ)|τ=0 = ψ′′(0) = VAR(x) > 0

Therefore, τ = 0 is the minimum. G(0) = −ψ(τ)|τ=0 − δ = −δ < 0 for δ > 0.

The derivative G′(τ) < 0 for τ < 0 and G′(τ) > 0 for τ > 0. Thus, G(τ) is strictly

decreasing for τ < 0 and G(τ) is strictly increasing for τ > 0. Hence, for sufficiently

small δ and τ ∈ D̊ the function G(τ) has less than two zeros τ1 < 0 and τ2 > 0 if

both of them τ1, τ2 ∈ D̊.
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B.2 Statistical properties of the indices estimator

B.2 Statistical properties of the indices estimator

Here, we will study statistical properties of the estimator of the perturbed failure

probability p̂iδ and corresponding estimator of the sensitivity indices Siδ =
p̂iδ−p̂f
p̂f

.

We will start with studying the properties of p̂iδ.

B.2.1 Estimator of the perturbed failure probability

Suppose, fx(x) =
∏d

i=1 fxi(xi) is the input joint density and fxiτ is a perturbed

probability density for the parameter xi. Recall that for a sample of size N :

{x1, . . . ,xN}
i.i.d.∼ fx(x), the estimation of p̂iδ is computed by:

p̂iδ =
1

N

N∑
k=1

Ig(xk<0)
fxiτ (xki)

fxi(xki)
.

First, we study the expectation and the variance of this estimator.

1. Efx [p̂iδ] = piδ

2. VARfx [p̂iδ] = 1
N

VARfx

[
Ig(x)<0

fxiτ (xi)

fxi (xi)

]
= 1

N

[∫
Ig(x)<0

f2xiτ (xi)

f2xi (xi)
fx(x)dx− p2

iδ

]
This variance tends to 0 when N →∞. Furthermore, by the Central Limit Theorem

(CLT): 1√
VARfx [p̂iδ]

(p̂iδ − piδ)
N→∞→ N(0, 1)

Note that the covariance between the estimator p̂f and p̂iδ does not vanish.

Indeed, we use the same sample to estimate pf and piδ. We can compute this

covariance (see also C.6.2):

COV(p̂f , p̂iδ) = Efx(p̂f p̂iδ)− E(p̂f )E(p̂iδ) =

=
N

N2

∫
Ig(xk<0)

fxiτ (xi)

fxi(xi)
fxi(xi)dx− pfpiδ =

=
1

N
piδ(1− pf )

The value of this covariance decreases when the sample size N increases.
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B.2.2 Sensitivity indices estimator
Recall, that the first sensitivity index is:

Siδ =
piδ − pf
pf

=
piδ
pf
− 1, i = 1, . . . , d.

We estimate this value with the Monte Carlo method and the importance sampling

by estimating consistently piδ and pf . The estimator of this index is:

Ŝiδ =
p̂iδ
p̂f
− 1.

Here, we will study some proprieties of this estimator.

It is not straightforward to compute directly Efx

[
Ŝiδ

]
= Efx

[
p̂iδ
p̂f

]
− 1 and

VARfx

[
Ŝiδ

]
= VARfx

[
p̂iδ
p̂f

]
. We propose to use the Delta Method to approximate

these values [Van der Vaart, 2000].

Let us recall the Taylor expansion with integral form for the remainder. Let φ

be a two times differentiable function on [t0, t], then:

φ(t) := φ(t0) + φ′(t0)(t− t0) +

∫ t

t0

(1− u)φ′′(u)du (B.1)

We will define a function:
φ(t) =

y(t)

x(t)
− 1,

where x(t) = (1−t)pf +tp̂f and y(t) = (1−t)piδ+tp̂iδ. For this function: φ(0) = Siδ

and φ(1) = Ŝiδ. Following the Taylor expansion (B.1) we will expand φ(t) with t = 1

and t0 = 0. First, we will compute the derivatives.

1. x′(t) = p̂f − pf

2. y′(t) = p̂iδ − piδ

Then,

φ′(t) =
y′(t)x(t)− x′(t)y(t)

x2(t)
=

pf p̂iδ − p̂fpiδ
((1− t)pf + tp̂f )

2

φ′(t)|t=0 =
pf p̂iδ − p̂fpiδ

p2
f

The second derivative is:

φ′′(t) =
2x(t)x′(t) (p̂fpiδ − pf p̂iδ)

x4(t)
=

2x′(t) (p̂fpiδ − pf p̂iδ)
x3(t)

=
2(p̂f − pf ) (p̂fpiδ − pf p̂iδ)

x3(t)
.
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B.3 Lambert W function

Therefore, the reminder is:∫ 1

0

2(1− t)(p̂f − pf ) (p̂fpiδ − pf p̂iδ)
((1− t)pf + tp̂f )

3 dt =
(p̂f − pf )(pf p̂iδ − p̂fpiδ)

p2
f p̂f

.

So that, by the Taylor expansion (B.1) we obtain:

Ŝiδ = Siδ +
pf p̂iδ − p̂fpiδ

p2
f

+
(p̂f − pf )(pf p̂iδ − p̂fpiδ)

p2
f p̂f

.

The last term R =
(p̂f−pf )(pf p̂iδ−p̂fpiδ)

p2f p̂f
is the remainder. This remainder is bounded

and we can neglect it for the approximation.

Ŝiδ ≈ Siδ +
pf p̂iδ − p̂fpiδ

p2
f

.

Now, we can approximate the mean and the variance of Ŝiδ.

1. Efx

[
Ŝiδ

]
∼ Siδ

2. VARfx

[
Ŝiδ

]
∼ VARfx

[
p̂iδ
pf

]
+VARfx

[
p̂fpiδ
p2f

]
−2piδ

p3f
COV(p̂iδ, p̂f ) = 1

p2f
VARfx [p̂iδ]−

p2iδ(1−pf )

Np3f
.

Therefore, the variance of the indices estimator tends to 0 when N → ∞. With

some extra computations we can show that:

1√
VARfx

[
Ŝiδ

] (Ŝiδ − Siδ) N→∞→ N(0, 1).

So that, knowing the variance of the estimator, the confidence region for the indices

may be computed.

B.3 Lambert W function

Lambert W function, also known as the Omega function or Product logarithm, is

a set of functions (or the branches) of the inverse relation of the function f(w) =

w exp(w), where w ∈ C is complex. The following equation defines W (z):

z = W (z) exp(W (z)), z ∈ C.
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The Lambert W relation cannot be expressed by elementary functions. The Lambert

W relation is multivalued. If we consider only real-valued branches of W , then the

function is defined only for x ≥ −1/e. This funciton is double-valued on (−1/e, 0).

The additional constraint W = −1 defines a single-valued function W0(x): W0(0) =

0 and W0(−1/e) = −1. Meanwhile, the lower branch is such that W−1 = −1

and it is denoted by W−1(x). This branch decreases from W−1(−1/e) = −1 to

W−1(0−) = −∞.

More information about Lambert W function could be found in Corless et al.

[1996].

B.4 Truncated Gaussian distribution

Suppose xi ∼ N(µ, σ2)[a,b] is distributed according truncated Gaussian distribution.

Suppose, that Φ(·) is the standard normal cumulative distribution function. Let us

make few notations to ease the density introduction:

α =
a− µ
σ

, β =
b− µ
σ

, Z = Φ(β)− Φ(α),

where Φ = 1√
2π

∫ t
−∞ exp

(
−u2

2

)
du is the standard normal distribution function.

Then the density function of the Gaussian distribution truncated on the interval

[a, b] is given by:
f(x) =

1

Z
√

2πσ2
exp

(
−(x− µ)2

2σ2

)
I[a,b],

where I[a,b] is an indicator function for the interval [a, b]. Therefore, the expression

for ψ(τ) is:

ψ(τ) = log

[∫ b

a

(exp(τx)f(x)) dx

]
.

By direct calculation we can obtain:

ψ(τ) =
τ 2σ2

2
+ µτ + log

Φ
(
b−τσ2−µ

σ

)
− Φ

(
a−τσ2−µ

σ

)
Z

 .
The derivative is expressed as:

ψ′(τ) = µ+ τσ2 + σ
φ
(
b−τσ2−µ

σ

)
− φ

(
a−τσ2−µ

σ

)
Φ
(
b−τσ2−µ

σ

)
− Φ

(
a−τσ2−µ

σ

) ,
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B.5 Variance based sensitivity indices

where φ(t) = 1√
2π

exp
(
− t2

2

)
is the standard normal density function. The solutions

of the equation:

ψ′(τ)τ − ψ(τ) = δ (B.2)

can be found using a numerical solver.

Suppose, τ ∗ is one of the solutions of (B.2). Then, by substituting directly the

normalization function ψ(τ), we obtain the formulation for the perturbed density

fτ (x):

fτ (x) = exp(τx− ψ(τ))f(x) =
1√

2πσ2

exp

(
−(x−(µ+τ∗σ2))

2

2σ2

)
Φ
(
b−τ∗σ2−µ

σ

)
− Φ

(
a−τ∗σ2−µ

σ

) .
This density corresponds to truncated Gaussian distribution on the interval [a, b]

with the mean µ+ τ ∗σ2 and the variance σ, where τ ∗ is the solution of (B.2).

B.5 Variance based sensitivity indices

Here, we will show how to estimate the values of the numerator and the denominator

for the sensitivity indices defined in Section 5.4.3.

Recall, that for the variable xi ∼ fxi(·) the sensitivity indices is defined as:

˜̃Sδi =
VARδ(piδ)

VARδ(pxδ)
, (B.3)

where piδ is the failure probability computed for the δ - perturbed density fxiτ and

pxδ is the failure probability computed by perturbing all the input variables densities

fx =
∏d

k=1 fxi simultaneously by a vector δ = (δ1, . . . , δd) ∈ [0, 1]d.

We will show how to estimate the numerator and the denominator in (B.3) by a

Monte Carlo sampling of the random variable δ.

• The variance VARδ(piδ) for the variable xi

Suppose that δi = {δi1, . . . , δiN} ∼ U[0,1], i = 1, . . . , d is a set uniform sample of

size N of the random variable δ. Then, if N >> 2 an unbiased estimator of the

numerator in (B.3) is given by:

V̂ARδ(piδ) =
1

N − 1

N∑
k=1

(
piδik − piδi

)2

,
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where piδi = 1
N

∑N
k=1 piδik is the empirical mean.

By sampling sequentially δi, i = 1, . . . , d, we can estimate the numerator of the

index (B.3) for all the input variables x = (x1, . . . , xd).

• The total variance VARδ(pxδ)

The denominator of the index (B.3) is the value of the total variance of the perturbed

failure probability. It is common for all the variables. To estimate the denominator

in (B.3), we will use N × d matrix composed of d samples of size N of the random

variable δ: ∆ = (δ1, . . . , δd)>, where δj = {δj1, . . . , δ
j
N}, j = 1, . . . , d. This matrix

provides N independent vector of simultaneous perturbations. If we denote the

random vector of simultaneous perturbation by δk = (δ1
k, . . . , δ

d
k), k = 1, . . . , N ,

the total variance is then estimated by:

V̂ARδ(pxδ) =
1

N − 1

N∑
k=1

(pxδk − px∆)2 ,

where px∆ = 1
N

∑N
k=1 pxδk is the empirical mean.
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Appendix C

In this Section, we provide an article that was submitted to the Journal of Statistical

Computation and Simulation [Lemaitre and Sergienko et. al, 2012]. This article

provides another approach to the presented reliability sensitivity analysis. It details

the choice of the presented exponential density modification. In this work, we also

consider perturbation of a variance of the original distribution. The method was

tested numerically on analytical examples and a reliability engineering example.

C.1 Introduction

In the context of structural reliability, computer codes are used in order to assess the

safety of industrial systems relying on complex physical phenomena. For instance, an

electric operator would like to predict the height of a potential river flood in order

to determine the height of a dyke preventing any disaster. In this example, the

computer code (simulating the hydraulic model) has some uncertain input variables

(flow rate, river length, water height, etc.), that are modelled by random variables.

In this paper, the computer code is a deterministic numerical model and one of its

output is considered. Due to the randomness of the model inputs, this output is a

random variable more or less sensitive to the uncertainty of the input variables.

Sensitivity analysis (SA) is a tool used to explore, understand and (partially)

validate computer code. It aims at explaining the outputs regarding the input un-

certainties (Saltelli et al. [2000]). The definition of SA differs from fields and authors.

We use the ”global SA” definition given by Saltelli et al. wherein the whole vari-

ation range of the inputs is considered. The application of such an approach can

be model simplification (by removing irrelevant modelling elements), input variables

ranking or research prioritization. There is a wide range of SA techniques, regarding
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what type of problem the experimenter is faced with (Iooss [2011]). For instance,

screening methods are to be applied when there is a large number of inputs, and

few models assumptions. For a quantitative point of view, the most popular tech-

niques are variance-based methods, based upon the functional Hoeffding variance

decomposition Antoniadis [1984] and the so-called Sobol’ indices (Saltelli et al.).

It should be noted that most SA methods focus on real-valued continuous nu-

merical output variables. When the quantity of interest is a binary value (e.g. when

the numerical model returns “faulty system” or “safe system”), SA techniques are

underdeveloped. Some basic techniques can be quoted, such as Monte-Carlo filter-

ing (Saltelli et al.) which consists in measuring differences between a “safe” sample

and a “faulty” sample via standard statistical tests. In a different scientific field,

the reliability index resulting from the First or Second Order Reliability Methods

(FORM/SORM, Lemaire et al. [2009]) can also be used to classify the impact of the

inputs on the failure probability. More recent works give methods combining always

the two objectives: estimating a failure probability and assessing the influence of

the input uncertainty on the failure probability (Morio [2011]; Munoz Zuniga et al.

[2011]).

In this paper, a real-valued numerical model denoted byG : Rd → R is considered.

This model may further be called the “failure function”. In practice, each run of

G can be CPU time consuming. We are interested in the event G(X) < 0 (system

failure) and in the complementary event G(X) ≥ 0 (system safe mode). X =

(X1, ..., Xd)
T is a d-dimensional continuous random variable whose joint probability

density function (pdf) is denoted f . For i = 1, · · · , d, let fi denotes the distribution

of Xi (the marginal density). We make the assumption that all components of X

are independent. The quantity of interest is the system failure probability:

P =

∫
1{G(x)<0}f(x)dx.

The aim of this work is the quantification of the influence of each variable Xi on

this probability, by using the same set of calculations that have been used in the

failure probability (P ) estimation.

In most cited works, sensitivity indices for failure probabilities were defined in

strong correspondence with a given method of estimation (e.g. Lemaire et al. [2009];
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Munoz Zuniga et al. [2011]), and their interpretation is consequently limited, as

stressed in Lemaitre and Arnaud [2011]. To answer to genericity concerns expressed

by these authors, this article first aims at defining sensivity indices that have more

intrinsic relevance (Section C.2). Nonetheless, they have to be estimated in practice

in function of the method. For simplicity reasons, a classical Monte Carlo framework

is considered to estimate P and the indices, and derive the theoretical properties

of the estimators of the latter. Pursuing the same idea of offering extended tools

of sensitivity analysis, Section C.3 focuses on generic strategies of input perturba-

tion based on maximum entropy rules. The behaviour of the indices is examined in

Section C.4 through numerical simulations in various complexity settings, involving

toy examples and a realistic case-study. Comparisons with two reference methods

(FORM indices and Sobol’ indices) highlight the relevance of the new indices in

most situations. The main advantages, remaining issues are finally discussed in the

last section of the article, as well as avenues for future research.

C.2 Definition, estimation and properties of a sen-

sitivity index

Given a unidimensional input variable Xi with pdf fi and some perturbation param-

eter δ lying in a given subset of R, let call Xiδ ∼ fiδ the corresponding perturbed

random input. Accordingly, the failure probability becomes

Piδ =

∫
1{G(x)<0}

fiδ(xi)

fi(xi)
f(x)dx (C.4)

where xi is the i−th component of the vector x. Independently of the mechanism

chosen for the perturbation (see next Section for proposals), a good sensitivity index

Siδ should have intuitive features that make it appealing to reliability engineers and

decision-makers. We believe that the following proposal can fulfil these requirements:

Siδ =

[
Piδ
P
− 1

]
1{Piδ>P} +

[
1− P

Piδ

]
1{Piδ<P} =

Piδ − P
P · 1{Piδ>P} + Piδ · 1{Piδ<P}

.
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Firstly, Siδ = 0 if Piδ = P , as expected if Xi is a non-influential variable or if

δ expresses a negligible perturbation. Secondly, the sign of Siδ indicates how the

perturbation impacts the failure probability qualitatively. It highlights the situations

when Piδ > P amounts to determining if the remaining (epistemic) uncertainty on

the modelling Xi ∼ fi can increase the failure risk and therefore should be more

accurately analysed. Conversely, P can be interpreted as a conservative assessment

of the failure probability, robust to perturbations on Xi, if Piδ < P . In such a

case, deeper modelling studies on Xi appear less essential. Thirdly, given its sign

the absolute value of Siδ is of simple interpretation and provides a level of the

conservatism or non-conservatism induced by the perturbation: a value of α > 0 for

the index means that Piδ = (1 + α)P . If Siδ = −α < 0 then Piδ = (1/(1 + |α|))P .

The postulated ability of Siδ to enlighten the sensitivity of P to input per-

turbations must be tested in concrete cases, when an estimator P̂N of P can be

computed using an already available design of N numerical experiments. In this pa-

per, N is assumed to be large enough such that statistical estimation stands within

the framework of asymptotic theory. Besides, we assume for simplicity a standard

Monte Carlo design of experiments, according to which P̂N =
∑N

n=1 1{G(xn)<0}/N

where the x1, · · · ,xN are independent realisations of X. The strong Law of Large

Numbers (LLN) and the central limit theorem (CLT) ensure that for almost all

realisations P̂N −−−→
N→∞

P and

√
N/[P (1− P )](P̂N − P )

L−−−→
N→∞

N(0, 1).

An interest of the Monte Carlo framework is that Piδ can be consistently estimated

without new calls to G, through a “reverse” importance sampling mechanism:

P̂iδN =
1

N

N∑
n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )
.

This property holds in the more general case when P is originally estimated by

importance sampling rather than simple Monte Carlo, which is more appealing in

contexts when G is time-consuming Beckman and McKay [1987]; Hesterberg [1996].

This generalization is discussed further in the text (Section C.5).

Lemma C.2.1: Assume the usual conditions
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(i) Supp(fiδ) ⊆ Supp(fi),

(ii)

∫
Supp(fi)

f 2
iδ(x)

fi(x)
dx <∞.

Then, P̂iδN −−−→
N→∞

Piδ and
√
Nσ−1

iδN

(
P̂iδN − Piδ

)
L−−−→

N→∞
N(0, 1). The exact expres-

sion of σ−1
iδN is given in Appendix C.6. It can be consistently estimated by

σ̂2
iδN =

1

N

N∑
n=1

1{G(xn)<0}

(
fiδ(x

n
i )

fi(xni )

)2

− P̂ 2
iδN .

The asymptotic properties of any estimator of Siδ will depend on the correlation

between P̂N and P̂iδN . The next proposition summarizes the features of the joint

asymptotic distribution of both estimators.

Proposition C.2.2: Under assumptions (i) and (ii) of Lemma C.2.1,

√
NΣ

−1/2
iδ

[(
P̂N

P̂iδN

)
−

(
P

Piδ

)]
L−−−→

N→∞
N2 (0, I)

where Σiδ is given in Appendix C.6 and can be consistently estimated by

Σ̂iδ =

(
P̂N(1− P̂N) P̂iδN(1− P̂N)

P̂iδN(1− P̂N) σ̂2
iδN

)
.

Given (P̂N , P̂iδN), the plugging estimator for Siδ is

ŜiδN =

[
P̂iδN

P̂N
− 1

]
1{P̂iδN>P̂N} +

[
1− P̂N

P̂iδN

]
1{P̂iδN<P̂N}. (C.5)

In corollary of Proposition C.2.2, applying the continuous-mapping theorem to the

continuous function s(x, y) =
[
y
x
− 1
]
1y>x +

[
1− x

y

]
1y<x, ŜiδN converges a.s. to

Siδ. The following CLT results from Theorem 3.1 in Van der Vaart [2000].

Proposition C.2.3: Assume that assumptions (i) and (ii) of Lemma C.2.1 hold
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and further that P 6= Piδ. Then,

√
N
[
dTΣd

]−1/2
[
ŜiδN − Siδ

]
L−−−→

N→∞
N (0, 1) (C.6)

with d = (
∂s

∂x
(P, Piδ),

∂s

∂y
(P, Piδ))

T for x 6= y, and

∂s

∂x
(x, y) = −y1{y>x}/x2 − (1/y)1{y<x},

∂s

∂y
(x, y) = (1/x)1{y>x} + x1{y<x}/y

2.

C.3 Methodologies of input perturbation

Our sensitivity analysis method requires the definition of a perturbation for each

input. In general, and especially in preliminary reliability studies, there is no prior

rule allowing to elicit a specialized perturbation for each input variable. When con-

ducting such an analysis, it is advisable to propose one or several fair methodologies

for perturbing the inputs. Roughly speaking, to compare the impact of those pertur-

bations, each should be defined intrinsically, independently of each input location

and scale. as relative shifts .

More precisely, we suggest to define a perturbed input density fiδ as the closest

distribution to the original fi in the entropy sense and under some constraints of

perturbation. Information-theoretical arguments (Cover and Thomas [2006]) led us

to choose the Kullback-Leibler (KL) divergence between fiδ and fi as a measure

of the discrepancy to minimize under those constraints. Recall that between two

densities p and q we have

KL(p, q) =

∫ +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (C.7)

Let i = 1, · · · , d, the constraints are linear as functional of the modified density

fmod: ∫
gk(xi)fmod(xi)dxi = δk,i (k = 1 · · ·K) (C.8)
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Here, for k = 1, · · · , K, gk are given functions and δk,i are given real. These quan-

tities will lead to a perturbation of the original density. The modified density fiδ

considered in our work is:

fiδ = argmin
fmod satisfies (C.8)

KL(fmod, fi) (C.9)

and the result takes an explicit form (Csiszár [1975]) given in the following propo-

sition.

Proposition C.3.1: Let us define, for λ = (λ1, ..., λK)T ∈ RK ,

ψi(λ) = log

∫
fi(x) exp

[
K∑
k=1

λkgk(x)

]
dx , (C.10)

where the last integral can be finite or infinite (in this last case ψi(λ) = +∞).

Further, set dom ψi = {λ ∈ RKψi(λ) < +∞}. Assume that there exists at least

one density fm satisfying (C.8) and that dom ψi is an open set. Then, there exists

a unique λ∗ such that the unique solution of the minimisation problem (C.9) is

fiδ(xi) = fi(xi) exp

[
K∑
k=1

λ∗kgk(xi)− ψi(λ∗)

]

The theoretical technique to obtain λ is provided in appendix C.7. Hereby are

presented two kind of perturbations used further on.

Mean twisting The first moment is often used to parametrize a distribution.

Thus the first perturbation presented here is a mean shift, that is expressed with a

single constraint: ∫
xifmod(xi)dx = δi . (C.11)

In term of SA, this perturbation should be used when the user wants to understand

the sensitivity of the inputs to a mean shift - that is to say ”what if the real mean
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of input Xi were δi instead of E [Xi]”.

Proposition C.3.2: Considering the constraint (C.11) Under the assumptions of

Proposition C.3.1 the expression of the optimal perturbed density is

fiδi(xi) = exp(λ∗xi − ψi(λ∗))fi(xi)

where λ∗ is such that equation (C.11) holds.

It can also be noted that equation (C.10) becomes

ψi(λ) = log

∫
fi(xi) exp(λxi)dxi = log (MXi(λ))

where MXi(u) is the moment generating function (mgf) of the i−th input. With

this notation λ∗ is such that∫
xi exp (λ∗xi − log (MXi(λ

∗))) fi(xi)dxi = δi ,

which leads to ∫
xi exp (λ∗xi) fi(xi)dx = δiMXi(λ

∗) .

This equation can be simplified to

M ′
Xi

(λ∗)

MXi(λ
∗)

= δi .

This equation may be easy to solve when one has the expression of the mgf of the

input and of its derivative.

Variance twisting In some cases, the mean of an input may not be the main

source of uncertainty, but rather the second moment. This case may be treated

considering a couple of constraints. The perturbation presented is a variance shift,

therefore the set of constraints is
∫
xifmod(xi)dxi = E [Xi] ,∫
x2
i fmod(xi)dxi = Vper,i + E [Xi]

2 .
(C.12)
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The perturbed distribution has the same expectation E [Xi] as the original one and

a perturbed variance Vper,i = VarXi ± δi.

Proposition C.3.3: Under the assumptions of Proposition C.3.1, for the con-

straint (C.12), the expression of the optimal perturbed density is

fiδi(xi) = exp(λ∗1x+ λ∗2x
2 − ψi(λ∗))fi(xi)

where λ∗1 and λ∗2 are so that equation (C.12) holds.

Proposition C.3.4: Considering that the original random variable Xi is dis-

tributed according to a Natural Exponential Family (NEF). Recalls that a NEF’s

pdf is of form :

fi,θ(xi) = b(x) exp [xiθ − φ(θ)]

where θ is a parameter from a parametric space Θ and

φ(θ) = log

∫
b(x) exp [xiθ] dxi

is the cumulant distribution function. Considering the assumptions of Proposition

C.3.1, then it is straightforward by (Csiszár [1975])that optimal densities proposed

respectively in Proposition C.3.2 and in Proposition C.3.3 are also distributed ac-

cording to a NEF.

C.4 Numerical experiments

In this Section, the methodology is tested on two academic cases and a more real-

istic industrial code. The new indices are compared to the results of two reference

method, FORM indices (or Importance Factors, IF) and Sobol’ indices (SI). Both

are computed using the methodologies given in Lemaire et al. [2009] and Sobol’

[1993], respectively. Concerning SI, the methodology used is the one given by Sobol’

in (Sobol’ [1993]). To assess the reproducibility of the estimation of the SI, a sample

of 105 points is used, and 50 replications are made. Thus all the estimation of the

SI are the mean of the obtained values and the coefficient of variation (CV) of the

index is provided.
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Variable X1 X2 X3 X4

Importance factor 0.018 0.679 0.302 0

Table C.1: Importance factors for hyperplane function

C.4.1 Hyperplane failure surface

For the first example, X is set to be a 4−dimensional vector, with 4 independent

marginal distributions normally distributed with parameters 0 and 1. Therefore

fXi ∼ N(0, 1) for i = 1, .., 4. The failure function is defined as:

G(X) = k −
4∑
i=1

aiXi

where k and a = (a1, a2, a3, a4) are the parameters of the model. For this numerical

example, parameters are set with values k = 16 and a = (1,−6, 4, 0). An explicit

expression for P can be given as the sum of the four variables behaves like a Gaussian

distribution with mean 0 and standard deviation

√√√√ 4∑
i=1

a2
i . Therefore:

P = φ

−k/
√√√√ 4∑

i=1

a2
i

 = φ

(
−16√

53

)
' 0.014

where φ(.) is the standard normal cumulative distribution function.

It is expected that the influence of Xi on P strongly uniquely depends on |ai|.
The greater the absolute value of the coefficient is, the bigger the expected influence

is. The aim of choosing one non-influential (dummy) variable is to assess if the SA

methods can identify this variable as non-influential on the failure probability.

C.4.1.1 FORM

In this ideal hyperplane failure surface case, FORM performs well as expected

Lemaire et al. [2009] by providing an estimate P̂FORM = 0.01398. The importance

factors, given in Table C.1, provide an accurate variable ranking for the failure

function, given the ai factors.
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Sobol’ Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Mean 0.0017 0.2575 0.0544 9.45 ∗ 10−5 0.1984 0.9397 0.7256 0

CV 1.5854 0.04826 0.1336 27.4 0.012 0.0069 0.013 0

Table C.2: Sobol’ indices for hyperplane function

C.4.1.2 Sobol’ indices

The first-order and total indices are displayed in Table C.4.1.2. The interpretation

of the results is that X2 and X3 concentrate most of the variance of the indicator

function. At first order, 25% of its variance is explained by X2 without any inter-

action. It should be noted that the total index for X4 is null, assessing that this

variable does not impact the failure probability. The total indices estimators’ CV

are small, meaning that this method is reproducible and that 105 points are enough

to estimate in an efficient way the indices ST i . On the other hand, some CV values

for low mean first order indices are quite high. The conclusion of this result is that

the method correctly estimates high indices but estimates poorly the indices close

to 0. This may not be a problem, given that what is of interest is knowing that the

index is close to 0.

C.4.1.3 Density modification based reliability indices

The method presented throughout this article is applied on the hyperplane function.

As explained in Section C.3, several way to perturb the input distributions exist.

For this case, we choose to apply first a mean twisting, then a variance twisting

with fixed mean. A simple calculus gives that the perturbed densities are Gaus-

sian, respectively with the constraint mean and variance 1 for the mean twisting

perturbation, and with mean 0 and the constraint variance for the variance twisting

perturbation. Thus, the MC estimation gives P̂ = 0.01446. For the mean twist-

ing (see (C.11)), the variation range chosen for δ is from −1 to 1 with 40 points,

reminding that δ = 0 cannot be considered as a perturbation. For the variance

twisting (see (C.12)), the variation range chosen for Vper is from 1/20 to 3 with 28

points, where Vper = 1 is not a perturbation. The estimated indices are plotted

respectively in Figure C.5 for mean twisting and in Figure C.6 for variance twisting.

95% confidence interval are plotted around the indices.
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Figure C.5: Estimated indices Ŝiδ for hyperplane function with a mean twisting

Mean perturbation indices The indices Ŝiδ behave in a monotonic way given

the importance of the perturbation. The slope at the origin is directly related to the

value of ai. For influential variables (X2 and X3), the increasing or the decreasing is

faster than linear, whereas the curve seem linear for the slightly influential variable

(X1). A modification of the mean of amplitude δ positive will slightly rise the

failure probability for variable X1, highly decrease it for variable X2 and increase

it for variable X3 (Figure C.5). The effects are reversed with same amplitude for

negative δ. It can be seen that variable X4 has no impact on the failure probability

for any perturbation. Those results are consistent with the expression of the failure

function.

Variance perturbation indices Increasing the variance of input X2 and X3

increases the failure probability, whereas it is the opposite when decreasing the

variance(Figure C.6). The modification of the variance of X1 and X4 has no effect

on the failure probability. The increasing of the indices is linear for X2 and X3, and

the decreasing of the indices is faster than linear, especially for X2.
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Figure C.6: Estimated indices Ŝi,Vper for hyperplane function with a variance

twisting

C.4.2 Thresholded Ishigami function

The Ishigami function is a common test case in SA since it has a complex expression,

with interactions between the variables. A modified version of the Ishigami function

will be considered in this paper. A threshold that is added to the value obtained

with the regular expression is set, and this is considered as the failure function.

Therefore one has:

G(X) = sin (X1) + 7 sin (X2)2 + 0.1X4
3 sin (X1) + k

where k = 7. X is a 3−dimensional vector of independent marginals uniformly

distributed on [−π, π] . In Figure C.7, the failure points (where G(x) < 0) are

plotted in a 3-d scatterplot.

There are 614 failure points on a MC sample of 105 points therefore the failure

probability here is roughly P̂ = 6.14.10−3. The complex repartition of the failure

points can be noticed. Those points lay in a zone defined by the negative values of

X1, the extremal and mean values of X2 (around −π, 0 and π), and the extremal

values of X3 (around −π and π).
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Figure C.7: Ishigami failing points from a MC sample

Variable X1 X2 X3

Importance factor 1e−17 1 0

Table C.3: Importance factors for Ishigami function

Sobol’ Index S1 S2 S3 ST1 ST2 ST3

Mean 0.0234 0.0099 0.0667 0.8158 0.6758 0.9299

CV 0.0072 0.0051 0.0095 0.0156 0.0216 0.0094

Table C.4: Sobol’ indices for Ishigami function

C.4.2.1 FORM

The algorithm FORM converges to an incoherent design point (6.03, 0.1, 0) in 50

function calls, giving an approximate probability of P̂FORM = 0.54. The importance
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factors are displayed in Table C.3. The bad performance of FORM is expected

given that the failure domain consists in six separate domains and that the function

is highly oscillant, leading to optimization difficulties. The design point is absurd,

thus the FORM results of SA are incorrect.

C.4.2.2 Sobol’ indices

The first-order and total indices are displayed in Table C.4. The small values of

first order indices show that no variable has impact on the variance of the indicator

of failure on its own. The relatively high and similar value of the three total index

states that all the variables highly interact with each other to cause system failure.

The low CV shows that the method is reproducible.

C.4.2.3 Density modification based reliability indices

The method presented throughout this article is applied on the thresholded Ishigami

function. As for the hyperplane test case, a mean twisting and a variance twisting

are applied. When twisting an uniform distribution by shifting the mean and keep-

ing the same support, the modified distribution (given by Proposition C.3.2) is an

exponential distribution with a mode situated on one endpoint of the support. The

modified density when shifting the variance and keeping the same expectation is

proportional to a truncated Gaussian when decreasing the variance. When increas-

ing the variance, the perturbed distribution is a symmetrical distribution with 2

modes close to the endpoints of the support. As previously, the same MC sample of

size 105 (also used to produce Figure C.7) is used to estimate the indices with both

perturbations. For the mean twisting (see (C.11)), the variation range chosen for δ is

−3 to 3 with 60 points - numerical consideration forbidding to choose a shifted mean

closer to the endpoints. For variance twisting, the variation range chosen for Vper

is 1 to 5 with 40 points, recall that the original variance is Var[Xi] = π2/3 ' 3.29.

The estimated indices are plotted respectively in Figure C.8 for mean twisting and

in Figure C.9 for variance twisting.
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Figure C.8: Estimated indices Ŝiδ for thresholded Ishigami function with a mean

twisting

Figure C.9: Estimated indices Ŝi,Vper for thresholded Ishigami function with a

variance twisting
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Mean perturbation indices One can see on Figure C.8 that a perturbation of

the mean for X2 and X3 will increase the failure probability, though the impact

for the same mean perturbation is stronger for X3 (Ŝ3,−3 and Ŝ3,3 approximatively

equal respectively 9.5 and 10). On the other hand, the indices concerning X1 show

that a mean shift between −1 and −2 increases the failure probability, whereas

an augmentation of the mean or a large diminution strongly diminishes the failure

probability (Ŝ1,3 approximatively equals −7.1011). Therefore, Figure C.8 leads to

two conclusions. Firstly the failure probability can be strongly reduced when shifting

the mean of the first X1 (this is also provided by Figure C.7 wherein all failing points

have a negative value of X1). Secondly any change in the mean for v X2 or X3 will

lead to an increase of the failure probability.

Variance perturbation indices Figure C.9 (upper) shows that a change in the

variance has little effect on X2 and X1, though the change is of opposite effect on the

failure probability. However, considering that the indices ̂S2,Vper,i and ̂S1,Vper,i lies

between −0.4 and 0.4, one can conclude that the variance of theses variables are not

of great influence on the failure probability. On the other hand, Figure C.9 (lower)

shows that any reduction of the variance of X3 strongly decreases the failure proba-

bility, and that an increase of the variance slightly increases the failure probability.

This is relevant with the expression of the failure surface, as X3 is fourth powered

and multiplied by the sinus of X1. A variance diminution as formulated gives a

distribution concentrated around 0; thus decreasing the variance of X3 shrinks the

term containing it in G(X), therefore reducing the failure probability.

C.4.3 Industrial case : flood case

The goal of this test case is to assess the risk of a flood over a dyke for the safety of

industrial installations. This comes down to model the maximum height of a flood.

Given the uncertainty upon numerous physical parameters, the uncertainty approach

is used and unknown parameters are modelled by RV. From a simplification of the

Saint-Venant equation, a flood risk mode is obtained. The quantity of interest is the

difference between the height of the dyke and the height of water. If this quantity

is negative, the installation is flooded; this is the failure event that is considered.

Several quantities will be denoted as follows: Q the flow rate, L the watercourse

section length studied, B the watercourse width, Ks the watercourse bed friction
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Variable Q Ks Zv Zm

Importance factor 0.246 0.725 0.026 0.003

Table C.5: Importance factors for flood case

coefficient (also called Strickler coefficient), Zm and Zv respectively the upstream

and downstream bottom watercourse height above sea level and Hd the dyke height

measured from the bottom of the watercourse bed. The water height model is

expressed as:

H =

 Q

KsB
√

Zm−Zv
L

 3
5

Therefore the following quantity is considered:

G = Hd − (Zv +H).

Among the model inputs, the choice is made that the following variables are known

precisely: L = 5000 (m), B = 300 (m),Hd = 58 (m), and the following are considered

to be random. Q (m3.s−1) follows a positively truncated Gumbel distribution of

parameters a = 1013 and b = 558 with a minimum value of 0. Ks(m
1/3s−1) follows a

truncated Gaussian distribution of parameters µ = 30 and σ = 7.5, with a minimum

value of 1. Zv (m) follows a triangular distribution with minimum 49, mode 50 and

maximum 51. Zm (m) follows a triangular distribution with minimum 54, mode 55

and maximum 56.

C.4.3.1 FORM

The algorithm FORM converges to a design point (1.72,−2.70, 0.55,−0.18) in 52

function calls, giving an approximate probability of P̂FORM = 5.8 ∗ 10−4. The

importance factors are displayed in Table C.5.

FORM assesses that Ks is of extremely high influence, followed by the Q that is

of medium influence. Zv has a very weak influence and Zm is negligible. It can be

noticed that the estimated failure probability is twice as small as the one estimated

with crude MC, but remains in the same order of magnitude.
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Sobol Index SQ SKs SZv SZm STQ STKs STZv STZm

Mean 0.0169 0.2402 −7 ∗ 10−5 −5 ∗ 10−4 0.7447 0.9782 0.2684 0.1062

CV 0.0122 0.0577 0.0029 0.0023 0.0553 0.0137 0.0516 0.0389

Table C.6: Sobol’ indices for flood case

C.4.3.2 Sobol’ indices

The first-order and total indices are displayed in Table C.6. It can be seen that

the estimate of some indices is negative despite the fact that Sobol indices are

theoretically positive. The estimation can indeed produce negative results for values

close to 0.

Considering the first order indices, Zv and Zm are of null influence on their own.

Q is considered to have a minimal influence (1% of the variance of the indicator

function) by itself, andKs explains 24% of the variance on its own. When considering

the total indices, it can be noticed that both Zv and Zm have a weak impact on

the failure probability. On the other hand, Q has a major influence on the failure

probability. Ks total index is close to one, therefore Ks explains (with or without

any interaction with other variables) almost all the variance of the failure function.

C.4.3.3 Density modification based reliability indices

The method presented throughout this article is applied on the flood case. Given

some numerical difficulties to converge to an optimal solution satisfying (C.12), only

the mean twisting will be applied here. One can notice that the different inputs

are follow various distributions (unlike the other examples), thus the question of

”equivalent” perturbation arises, and will be discussed further in Section C.5. Here

the choice have been made to shift the mean relatively to the standard deviation,

hence including the spread of the various inputs in their respective perturbation. So

for any input, the original distribution is twisted so that the perturbed distribution’s

mean is the original’s one plus δ times its standard deviation, δ going from −1 to

1 with 40 points. The 105 MC sample gives an estimation of the failure probability

P̂ = 8.6 ∗ 10−4.

Figure C.10 assesses that a increasing of the mean of the inputs increases the

failure probability slightly for Zv, strongly for Q, and diminishes it slightly for Zm

and strongly for Ks. This goes the opposite way when decreasing the mean. In term

of absolute modification, Ks and Q are of same magnitude, even if Ks has a slightly
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Figure C.10: Estimated indices Ŝiδ for flood case with a mean twisting

strongest impact. On the other hand, the effects of mean perturbation on Zm and

Zv are practically negligible.

C.5 Discussion

C.5.1 Equivalent perturbation

The question of ”equivalent” perturbation arises from cases where all inputs are

not identically distributed, such as in Subsection C.4.3.3. Indeed, problems may

emerge when some inputs are defined on infinite intervals and when other inputs are

defined on finite intervals (such as uniform distributions). Consider a model with one

Gaussian distribution and one uniform distribution as inputs. Thus, a mean shift

will be a translation for the first input, whereas it will lead to a Dirac distribution

in one endpoint for the other input. Hence, not any shift mean can be considered

as an ”equivalent” perturbation. One could think of a ”relative mean shift”, which

seems a fairly good idea. But let one consider a model with two Gaussian inputs

of equal variance 1 and of mean respectively 1 and 10000. Then, a relative mean
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shift of 10% will result in Gaussian distributions with mean respectively 1.1 and

11000, and still variance 1. This counter-example shows that relative mean shift

might not be an adequate perturbation in term of ”equivalence”. The solution

presented in Subsubsection C.4.3.3 tries to take into account the spread of the inputs

distributions, but would have failed on the counter-example given above.

C.5.2 Conclusion on the method

The method presented in this paper gives interesting complementary information in

addition of traditional SA methods applied to a reliability problem. Additionally, it

has two advantages:

• The ability for the user to set the most adapted constraints considering his/her

problem.

• The MC framework allows to use previously done function calls, thus limiting

the CPU cost of the SA, and allowing the user to test several perturbations.

C.5.3 Further work

Two main avenues are of interest.

• To obtain better estimator of the failure probability P , in term of variance

reduction and of number of function calls. Further work will be made with

importance sampling methods, and possibly subset methods:

• To find a way to perturb ”equivalently” several distributions of different na-

tures. For this, a perturbation that is not based upon a moment constraint

but rather of an entropy constraint. The differential entropy of a distribution

can be seen as a quantification of uncertainty Auder and Iooss [2009]. Thus

an example of (non-linear) constraint on the entropy can be :

−
∫
fXiδ(x) log fXiδ(x)dx = −δ

∫
fXi(x) log fXi(x)dx.

Yet further computations have to be made to obtain a tractable solution of

the KL minimization problem under the above constraint.
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C.6 Appendix 1: Proofs

C.6.1 Proof of Lemma C.2.1

Under assumption (i),

∫
Supp(fiδ)

1{G(X)<0}
fiδ(xi)

fi(xi)
f(x) dx ≤

∫
Supp(fiδ)

fiδ(x) dx = 1.

So that, the strong LLN may be applied to P̂iδN . Defining

σ2
iδ = Var

[
1{G(X)<0}

fiδ(Xi)

fi(Xi)

]
,

one has

σ2
iδ =

∫
Supp(fi)

1{G(x)<0}
f 2
iδ(xi)

fi(xi)

N∏
j 6=i

fj(xj) dx− P 2
iδ < ∞ under Condition (ii).

Therefore the CLT applies:

√
Nσ−1

iδ

(
P̂iδN − Piδ

)
L−→ N(0, 1) .

Under assumption (ii), the strong LLN applies to σ̂2
iδN . So that, the final result

is straightforward using Slutsky’s lemma.
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C.6.2 Proof of Proposition C.2.2

First, note that

E

[
P̂ P̂iδ

]
− PPiδ = E

[
1

N2

(
N∑
n=1

1{G(xn)<0}

)(
N∑
n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )

)]
− PPiδ

=
1

N2
E

[
N∑
n=1

[
1{G(xn)<0}

]2 fiδ(xni )

fi(xni )
+

N∑
n=1

N∑
j 6=i

1{G(xn)<0}1{G(xj)<0}
fXiδ(x

j
i )

fXi(x
j
i )

]
−PPiδ

=
1

N2
[NPiδ +N (N − 1)PPiδ]− PPiδ

=
1

N
(Piδ − PPiδ) .

Assuming the conditions under which Lemma 1 is true, the bivariate CLT follows

with

Σiδ =

(
P (1− P ) Piδ(1− P )

Piδ(1− P ) σ2
iδ

)
.

Each term of this matrix can be consistently estimated, using the results in Lemma

1 and Slutsky’s lemma.

C.7 Appendix: Computation of Lagrange multi-

pliers

Let H be the Lagrange function:

H(λ) = ψi(λ)−
K∑
k=1

λkδk

Thus, using the results of Csiszár [1975]

λ∗ = arg minH(λ)
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The expression of the gradient of H with respect to the jth variable is

∇jH(λ) =

∫
gj(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)
− δj

In the same way, the expression of the second derivative of H with respect to the

hth and the jth variable is

DhjH(λ) =

∫
gh(x)gj(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)

−
∫
gj(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)

∫
gh(x)fi(x) exp(

∑K
k=1 λkgk(x))dx

expψi(λ)

Although any gradient descent method would theoretically converge to the optimal

solution λ∗, the expressions of ∇jH(λ) and DhjH(λ) may not be tractable, thus

leading to computational problems.
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