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Abstract

Driven by rapid technological advancements, the amount of data that is created, captured, communica-
ted, and stored worldwide has grown exponentially over the past decades. Along with this development
it has become critical for many disciplines of science and business to being able to gather and analyze
large amounts of data. The sheer volume of the data often exceeds the capabilities of classical storage
systems, with the result that current large-scale storage systems are highly distributed and are comprised
of a high number of individual storage components. As with any other electronic device, the reliability
of storage hardware is governed by certain probability distributions, which in turn are influenced by the
physical processes utilized to store the information. The traditional way to deal with the inherent unre-
liability of combined storage systems is to replicate the data several times. Another popular approach
to achieve failure tolerance is to calculate the block-wise parity in one or more dimensions. With better
understanding of the different failure modes of storage components, it has become evident that so-
phisticated high-level error detection and correction techniques are indispensable for the ever-growing
distributed systems. The utilization of powerful cyclic error-correcting codes, however, comes with a
high computational penalty, since the required operations over finite fields do not map very well onto
current commodity processors. This thesis introduces a versatile coding scheme with fully adjustable
fault-tolerance that is tailored specifically to modern processor architectures. To reduce stress on the
memory subsystem the conventional table-based algorithm for multiplication over finite fields has been
replaced with a polynomial version. This arithmetically intense algorithm is better suited to the wide
SIMD units of the currently available general purpose processors, but also displays significant bene-
fits when used with modern many-core accelerator devices (for instance the popular general purpose
graphics processing units). A CPU implementation using SSE and a GPU version using CUDA are
presented. The performance of the multiplication depends on the distribution of the polynomial coeffi-
cients in the finite field elements. This property has been used to create suitable matrices that generate a
linear systematic erasure-correcting code which shows a significantly increased multiplication perfor-
mance for the relevant matrix elements. Several approaches to obtain the optimized generator matrices
are elaborated and their implications are discussed. A Monte-Carlo-based construction method allows
it to influence the specific shape of the generator matrices and thus to adapt them to special storage and
archiving workloads. Extensive benchmarks on CPU and GPU demonstrate the superior performance
and the future application scenarios of this novel erasure-resilient coding scheme.

i





Zusammenfassung

Die sogenannte digitale Revolution, beginnend am Ende des 20. Jahrhunderts, hat unseren Zugang zu
Informationen umfassend verändert. Viele Bereiche des gesellschaftlichen Lebens, der Wirtschaft und
der Wissenschaft sind mittlerweile stark auf Informationstechnologie angewiesen. Zusammen mit der
rasanten Entwicklung der Mikroprozessoren war die Evolution der magnetischen Speichertechnolo-
gien einer der Schlüsselfaktoren für den Übergang in eine Informationsgesellschaft. Kostengünstige
Datenspeicher mit hoher Kapazität bilden heute die Basis für die große Familie von allgegenwärtigen
Geräten, die in die Klasse der personal computing devices eingeordnet werden, beispielsweise klassi-
sche Arbeitsplatzrechner, tragbare Laptops, Mobiltelefone, Tablet-Computer, sowie Foto- und Video-
kameras. Besonders der Durchbruch der Halbleiter-Speicher hat die Entwicklung immer kleinerer und
robusterer Geräte aus dieser Klasse begünstigt. Aber auch die Entwicklung der professionellen Hoch-
leistungscomputer und deren Speichersysteme wird durch diese Schlüsseltechnologien angetrieben.
Besonders diese Art von Computern hat enorme Bedeutung für den wissenschaftlichen Erkenntnis-
gewinn, aber auch ein breites wirtschaftliches Anwendungsspektrum. Das gewaltige Wachstum der
Menge an Informationen, die weltweit erzeugt (oder gewonnen), übertragen und gespeichert wird ist
daher wenig überraschend. Schätzungen zu Folge stieg die Gesamtmenge aller gespeicherten Infor-
mationen (auf allen gängigen analogen und digitalen Medien) von 2,6 Exabytes1 in 1986 auf 295
Exabytes in 2007 [1]. Bemerkenswerterweise trugen die digitalen Speichertechnologien erst ab dem
Jahr 2000 signifikant zur gesamten Speicherkapazität bei. Nur drei Jahre später wurden geschätzte
90% aller neuen Daten auf magnetischen Medien gespeichert [2] und im Jahr 2007 überholten die
digitalen Speicher die analogen endgültig: 52% aller existenten Informationen waren auf Festplatten,
28% auf optischen Medien und 11% auf magnetischen Bändern gespeichert. Neuere Studien aus dem
Jahr 2011 quantifizierten die Gesamtmenge aller vom Menschen jemals erzeugten und gespeicherten
Informationen auf gewaltige 1,8 Zettabytes [3][4]. Die datenintensiven Wissenschaften gelten neben
dem Experiment, der Theorie und der Simulation mittlerweile als vierte essentielle wissenschaftliche
Disziplin. Das prominenteste Beispiel kommt aus Gebiet der Teilchenphysik: Der Large Hadron Col-
lider (LHC) der Europäische Organisation für Kernforschung (CERN) in Genf [5] beheimatet sechs
unterschiedlich große Experimente die zusammen einige zehn Petabyte an zu speichernden Daten pro
Jahr aufnehmen. Aber nicht nur derartige Großforschungsprojekte stellen hohe Anforderungen an die
Datenverarbeitungs- und Speichersysteme: Die Entwicklung bildgebenden Sensoren mit Auflösungen
Gigapixel-Bereich und immer höher auflösenden Teleskopen stellt die astronomische Forschung vor
ähnliche Herausforderungen. Sogar die relativ kompakten DNA-Sequenzierungsgeräte aktueller Bau-
art produzieren bereits Rohdatenmengen im Bereich einiger Terabyte pro Tag. Mit den immer größer

1Ein Exabyte steht für 1018 Bytes.
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werdenden Datenmengen müssen natürlich auch die Hochleistungsrechner mit immer größeren Spei-
chersystemen ausgestattet werden, um die Analyse der gewonnen Informationen zu ermöglichen. Doch
die Verarbeitung von großen Datenmengen hat nicht nur im wissenschaftlichen Umfeld enorm an Be-
deutung gewonnen. Besonders das Geschäftsfeld der Internet Suchmaschinen wäre ohne die Fähigkeit
enorme Datenmengen zu sammeln, zu analysieren und zu speichern heute undenkbar. Weiter Beispiele
sind elektronische Handelsplattformen und weltumspannende soziale Netzwerke.

Der größte Teil all dieser Daten wird zum Online-Zugriff auf großen Sammlungen von Festplatten
vorgehalten, deren Verwaltung und Pflege die Besitzer vor große Herausforderungen stellt: Obwohl die
Zuverlässigkeit einer einzelnen Festplatte durchaus beachtlich ist, ergeben sich bei Systemen aus Zehn-
tausenden Festplatten hohe Raten an Fehlerereignissen. Große wissenschaftliche Experimente können
aus Kostengründen oft nicht beliebig wiederholt werden und schon eine kurze Unerreichbarkeit im In-
ternethandel kann enorme Verluste erzeugen. Typischerweise werden daher Kopien der Daten erstellt
und diese auf (geographisch) verschiedene Rechenzentren verteilt. Da diese Strategien der mehrfachen
Replikation relativ kostenintensiv sind, wurden effizientere Verfahren entwickelt. In ihrem berühmten
Artikel aus dem Jahre 1988 beschreiben Patterson, Gibson und Katz [6], wie man die Zuverlässigkeit
von Sammlungen von Festplatten mit verschiedenen Techniken erhöhen kann. Die Berechnung redun-
danter horizontaler Paritätsinformationen zur Erzeugung einer einfachen Fehlertoleranz hat sich daraus
zum Standard für die folgenden Jahrzehnte entwickelt (RAID). Später kamen diverse Erweiterungen
hinzu, die sogar den Ausfall von zwei Festplatten tolerieren können. All diese Verfahren stellen jedoch
nur die Spezialfälle der umfassenden mathematischen Theorie der linearen fehlerkorrigierenden Codes
dar. Im Rahmen dieser Theorie nutzt man die Werkzeuge der linearen Algebra um das Kodieren und
das Dekodieren zu formalisieren. Als besonders leistungsstark haben sich die zyklischen linearen Co-
des über endliche Körper erwiesen. Die weitverbreiteten Reed-Solomon-Codes [7] erlauben es, zu einer
Menge an n Nachrichtensymbolen eine frei wählbare Menge an k Redundanzsymbolen zu berechnen.
Die original Nachricht kann auch dann noch rekonstruiert werden, wenn bis zu k Symbole verloren ge-
gangen sind. Eine Variante dieser Codes eignet sich besonders für den Einsatz in Speichersystemen [8].
Für die n Nachrichtensymbole d = d0,d1, . . . ,dn−1, müssen k Redundanzsymbole c = c1,c2, . . . ,ck−1

berechnet werden. Mit Hilfe einer speziellen Generatormatrix G = (gi, j), die von einer Vandermonde-
Matrix abgeleitet wird, lässt sich die Kodierung durch eine Matrix-Vektor-Multiplikation darstellen:

G


d0

d1
...

dn−1

=



d0

d1
...

dn−1

c0

c1
...

ck−1


=

(
d
c

)
.
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Nachrichten- und Redundanzsymbole werden nun auf n+ k unterschiedliche Speicherkomponenten
(zum Beispiel Festplatten) verteilt. Im Falle des Defekts einer Komponente (und dem einhergehen-
den Verlusten des Nachrichtensymbols di) wird nun die i-te Zeile der Generatormatrix G und des Er-
gebnisvektors (d,c)T gestrichen. Nach k Streichungen erhält man G∗ und (d∗,c)T . Das verbleibende
Gleichungssystem

G∗


d0

d1
...

dn−1

=

(
d∗

c

)
(1)

kann nun gelöst werden. Die Dekodierung entspricht also einer Multiplikation der invertierten redu-
zierten Matrix mit dem Vektor der noch intakten Symbole:

(G∗)−1

(
d∗

c

)
=


d0

d1
...

dn−1

= d (2)

Diese elegante Kodierungsschema hat jedoch einen entscheidenden Nachteil. Bei allen arithmetischen
Operationen handelt sich um Operationen auf endlichen Körpern (auch Galois-Körper genannt). Die
Symbole sind Elemente des Körpers und repräsentieren Polynome. Alle arithmetischen Operationen
sind daher Operationen auf Polynomen. Besonders die Multiplikation zweier Elemente ist deshalb
sehr aufwendig und lässt sich schlecht auf die Ausführungseinheiten moderner Prozessoren abbilden.
Üblicherweise werden daher die Ergebnisse (oder bestimmte Zwischenergebnisse) der arithmetischen
Operationen im Voraus berechnet und in Lookup-Tabellen im RAM gespeichert. Diese spezielle Im-
plementierung hat sich im Laufe der Zeit jedoch als immer problematischer erwiesen. Besonders der
Hauptspeicher hat sich zu einem Flaschenhals in modernen Computern entwickelt, begründet durch
die ungleiche Entwicklung der Prozessorleistung und der Zugriffs-Latenzen des Speichers. Der häufige
Zugriff auf große Datenstrukturen im Hauptspeicher kann daher die Leistung eines Programms stark
beeinträchtigen. Für effiziente Algorithmen kann es daher durchaus vorteilhaft sein, bestimmte Daten
on-the-fly neu zu berechnen, anstatt diese aus dem RAM anzufordern. Immerhin können moderne Pro-
zessoren in der Zeit, die für den Speicherzugriff benötigt wird (falls das entsprechende Wort nicht im
Prozessor-Cache vorhanden ist), einige hundert Instruktionen ausführen [9].

Kern dieser Arbeit ist ein Kodierungsverfahren, das speziell auf moderne Mehrkern-Prozessoren mit
breiten Vektoreinheiten und auf aktuelle Beschleuniger-Architekturen mit Hunderten von Kernen an-
gepasst ist. Die Basis ist ein fehlerkorrigierender Code über einem endlichen Körper (ähnlich den
Reed-Solomon-Codes). Die Lookup-Tabellen für die Multiplikation sind durch einen polynomiellen
Algorithmus (Abbildung 1) ersetzt. Sowohl eine auf den Streaming SIMD Extensions (SSE) basierte
Vektor-Implementierung für Haupt-Prozessoren, als auch eine Implementierung, die moderne Grafik-
prozessoren als Co-Prozessoren verwendet, werden vorgestellt. Hierbei werden lediglich komponen-
tenweise UND und Exklusiv-ODER, sowie Schiebeoperationen und Vergleiche benötigt. Die Elemente
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1: procedure GFMULT_POLY(a,b)
2: p← 0
3: while a 6= 0 AND b 6= 0 do
4: if LSB(b) = 1 then
5: p← p⊕a
6: end if
7: msb_set←MSB(a)
8: a← Le f tShi f tByOne(a)
9: if msb_set = 1 then

10: a← a⊕PP
11: end if
12: b← RightShi f tByOne(b)
13: end while
14: return p
15: end procedure

Abbildung 1.: Polynomielle Multiplikation über einem endlichen Körper. LSB(x) gibt das least signi-
ficant bit von x zurück, MSB(x) liefert das most significant bit von x. PP bezeichnet das primitive
Polynom mit dem der endliche Körper erzeugt wurde.

der Flusskontrolle lassen sich dabei gut auf die Gegebenheit der jeweiligen Architektur abbilden. Eine
genauere Betrachtung des polynomiellen Algorithmus zeigt, dass die Multiplikation bei einer vorteil-
haften Verteilung der polynomiellen Koeffizienten (in zumindest einem der Faktoren) stark beschleu-
nigt werden kann. Da im Bezug auf die zu kodierenden Daten keine Einschränkungen gemacht werden
sollten, bieten sich nur die Elemente der Generatormatrix an, um die beschleunigte Multiplikation nutz-
bar zu machen. Eine eigehende Untersuchung aller primitiven Polynome des gewählten Körpers zeigt,
dass sich mit der ursprünglichen algebraischen Konstruktion der Generatormatrix allein kein zufrie-
denstellendes Ergebnis erzielen lässt. Daher werden verschiedene Heuristiken vorgestellt, mit denen
sich Generatormatrizen von besonderer Güte erzeugen lassen. Besonders vielseitig zeigt sich hierbei
ein Monte-Carlo Verfahren. Damit lassen sich nicht nur Matrizen erzeugen, bei denen der Rechen-
aufwand pro Element besonders gut balanciert ist, sondern auch solche, bei denen sich die Verteilung
der polynomiellen Koeffizienten zwischen verschiedenen Zeilen oder Spalten stark unterscheidet. Es
können also Generatormatrizen mit bestimmten Strukturen erzeugt werden. Ist zum Beispiel eine be-
sonders schnelle Berechnung des ersten Redundanzsymbols gewünscht, so kann der Rechenaufwand
für dieses auf Kosten des Rechenaufwands für die weiteren Symbole reduziert werden (tatsächlich
kann die Berechnung sogar auf die einfache Parität zurückgeführt werden). Diese begünstigt eine ver-
zögerten Berechnung der höhergradigen Fehlertoleranzsymbole, entweder in Zeiten geringerer Last
oder erst nachdem entschieden wurde, dass eine höherer Grad an Ausfallsicherheit für die jeweiligen
Daten gewünscht ist. Damit besitzt das Verfahren eine bisher unbekannte Flexibilität und erlaubt eine
anwendungsspezifische Optimierung. Abbildung 2 zeigt verschiedene Beispiele. Da es sich um einen
systematisch Code handelt, findet sich in den ersten n Zeilen die Identitätsmatrix.
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Abbildung 2.: Illustration der anwendungsspezifischen Generatormatrizen. Die Größe der gefüllten
Quadrate zeigt den Rechenaufwand für das jeweilige Matrixelement an.

Umfangreiche Benchmark-Tests belegen die Leistungsfähigkeit dieses Kodierungsverfahrens. Mit Hil-
fe der vektorisierten Implementierung der Multiplikation ist es möglich die Kodierung und Dekodie-
rung auf handelsüblichen Prozessoren mit ausreichender Leistung durchzuführen. Die erforderlichen
Vektor-Instruktionen sind über eine weite Bandbreite von Prozessoren unterschiedlicher Hersteller und
Preisklassen verfügbar. Zudem belegen die Leistungsmessungen der GPU-Implementierung, dass sich
moderne Grafikkarten als leistungsstarke Co-Prozessoren für Kodierungsaufgaben anbieten. Für eini-
ge Konfigurationen ist deren Kodierungsleistung sogar nur durch die limitierte Bandbreite des PCI
Express-Busses beschränkt. Damit lassen sich Durchsätze erreichen, die vergleichbar mit denen von
modernen Hochgeschwindigkeitsnetzwerken wie zum Beispiel InfiniBand oder 10GbE/40GbE sind.
Die Kombination aus einem arithmetisch intensiven Multiplikationsalgorithmus mit darauf optimierten
Generatormatrizen zeigt sich demnach als besonders geeignet für die verschiedenen aktuellen Prozes-
sorarchitekturen. Im Hinblick auf die zukünftige Entwicklungen in Richtung breiterer Vektoreinheiten
und einer höheren Anzahl an einfachen Ausführungseinheiten zeigen erste Tests, dass das Verfahren
davon stark profitieren kann. Untersuchungen zur tatsächlichen Integration des Kodierungsverfahrens
in großskalige Massenspeichersysteme (zum Beispiel Lustre oder FraunhoferFS) haben bereits begon-
nen.
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1. Introduction

The so-called digital revolution in the past few decades has profoundly changed the access to infor-
mation. Rapid developments in digital computing and communication have marked the beginning
of the information age and today many parts of modern economy and society rely deeply on infor-
mation technology. The rise of electronic commerce, the global development of the communication
and finance sectors, but also the influences on education, health, and even aspects of social life are
consequences of this remarkable transition. Together with rapid advancements in microprocessor tech-
nologies, the innovation in magnetic disk storage has been among the key factors for this development.
Inexpensive, high capacity data storage devices have been the technological basis for both, the ubiqui-
tous personal computing devices, but also for large-scale professional computing and storage systems.
More recently, mass production of solid state storage devices has further enabled portable computing
and communication equipment, as well as high-capacity digital photo and video cameras, and various
portable entertainment devices. Unsurprisingly, the amount of information that is created or captured,
communicated, and stored worldwide has tremendously grown over the past decades. An overview of
the different prefixes that are used subsequently to quantify information is shown in Table 1.1. It is

Table 1.1.: Decimal and binary prefixes for bits and bytes.

Decimal prefix Value Binary prefix Value

kilo 103 kibi 210

mega 106 mebi 220

giga 109 gibi 230

tera 1012 tebi 240

peta 1015 pebi 250

exa 1018 exbi 260

zetta 1021 zebi 270

yotta 1024 yobi 280

estimated that the total amount of (optimally compressed) data which is stored worldwide by the most
widely used analog and digital storage technologies has increased from 2.6 exabytes in 1986 to 295
exabytes in 2007 [1]. Remarkably, the digital storage technologies have only contributed notably to
the overall capacity from the year 2000 on. Only three years later it was estimated that more than 90%
of all new information was stored on magnetic media [2] and by 2007 digital storage had become the
dominant storage technology with 52% of all information stored on hard disks, 28% on optical media,
and 11% on digital tape. More recent studies estimate that in 2011 the total amount of information
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created and replicated surpassed the astonishing mark of 1.8 zettabytes [3][4]. Extrapolating with these
growth rates, the amount of information will soon become comparable to the approximately 1023 bits
that are stored in the DNA of an adult human [1]. Clearly, both numbers are dwarfed by the estimated
1090 bits of storage capacity of the entire observable universe [10].

The enormous growth of information is not only based on personal data. Data-intensive science is
today seen as the fourth major scientific discipline, aiming to connect experimental science, theoret-
ical science, and simulation [11]. In this context data-intensive science is an umbrella term covering
many sub-disciplines including data capturing and curation, as well as data analysis and visualization.
Prominent examples are found in various fields of science: The Large Hadron Collider at the European
Organization for Nuclear Research CERN hosts six detector experiments of different sizes: ALICE, AT-
LAS, CMS, TOTEM, LHCb, and LHCf [5]. The main task of the ALICE experiment, for example, is
the study of lead ion collisions. The peak read-out rate into the front-end electronics of this experiment
is about 6 terabytes/s, which is reduced through various selection steps (the so-called triggers [12]) to
around 1 gigabyte/s. Similar amounts are produced by the other three large experiments, with the result
that the combined amount of recorded data at CERN in 2010 was 13 petabytes [13]. While the data
generation rates in high-energy physics are certainly remarkable, they are not exceptional. The devel-
opment of multi-gigapixel imaging sensors and the increasing size of telescopes also requires the field
of astronomy to manage large data collections in the order of tens of petabytes per year [14]. Modern
high-throughput DNA sequencing systems enable genome analysis at unprecedented time scales, deliv-
ering terabytes of raw data per day from relatively compact machines. This has allowed for cataloging
and processing the genome of several thousands of individuals, followed by widespread distribution
for further scientific analysis [15]. Due to the ever-increasing resolution and complexity of sensors and
detectors, many future projects are expected to fit the category of data intensive problems. The same
is true for the increasing HPC computing capabilities: The transition to exascale science is anticipated
for 2018, with estimated storage requirements between 500 and 1000 petabytes per supercomputer in-
stallation [16]. An added challenge after the immediate capturing and analysis of data is the long-term
storage and preservation of the data. Many guidelines for good scientific practice demand the secure
and durable storage of primary data sets for at at least ten years after publication.

The ability to gather and analyze large amounts of data is not only crucial for science, today various
business models rely heavily on the ability to handle the so-called big data1. The most prominent
example is internet search. The amount of data that is processed to maintain and update an index of the
web is so large, that it cannot be handled by classical database and storage systems. Google claims that
their indexing system stores several tens of petabytes per day, while handling billions of updates [17].
In 2011 it was estimated2 that Google was using around 900,000 individual servers in their global
network of data centers [18]. Many of these search-related problems have been the driving factor for

1Big data is a loosely defined term, covering, generally speaking, all data sets, that are so huge that they require massively
parallel software and hardware to be handled.

2Unfortunately, many companies consider the size and the architecture of their IT infrastructure a trade secret. The numbers
are usually estimated from secondary information (such as power consumption, number of customers, or number of public
IP addresses), nonetheless they are useful to illustrate the size of the data sets that are handled by companies today.
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novel techniques and paradigms for distributed processing of big data which have been quickly applied
to other problems in in business and science. Another example is the electronic commerce company
Amazon. Initially focussed on online retail, the company has become one of the biggest providers for
computing services. They operate a global cloud computing platform using around 450,000 servers
(estimation for 2012 [19]). An essential part of this platform is a fully redundant storage service which
was estimated to store around 566 petabytes of data in 2011 [20]. Several secondary cloud storage
vendors for consumers as well as for enterprises rely on the Amazon platform as underlying storage
system. A last example for big data in the business context is the social network Facebook. They
reported 955 million of monthly active users in June 2012, requiring more than 100 petabytes storage,
mainly for the pictures3 and videos of the users [22].

A large fraction of the data of all these applications is stored on huge collections of magnetic disks for
on-line access. Data management at this scale has become a tremendous challenge. For many of the
large scientific experiments a loss of primary data is a catastrophic event, since the repetition of the
experiment is often simply to expensive. Even unavailability of data for short periods of time can have
significant economic consequences (for example due to lost sales or advertisement). Typically these
dangers are addressed by creating multiple copies, possibly distributed across different geographical
locations. While simple replication is relatively inexpensive in terms of implementation and computa-
tional overhead, it clearly is very expensive regarding the additionally required storage capacity. With
increasing size of storage systems, a sophisticated way to deal with failures (beyond replication) be-
comes crucial. In their famous paper from 1988 on redundant arrays of inexpensive disks (RAID),
Patterson, Gibson, and Katz described several techniques to increase the reliability of collections of
disks beyond replication [6]. Using the horizontal parity over all involved disk has become the stan-
dard for achieving single disk failure tolerance in the following decades. Several two failure resilient
schemes have been proposed as extension to the horizontal parity. As it turns out, all these specialized
approaches can be seen as the edge cases of the very refined theory of linear error-correcting codes.
In this theory, the generation of codes, as well as the encoding of messages and the decoding of code
words are formalized in the language of linear algebra. Hence many familiar techniques and tools can
be applied (this is discussed in depth in Chapter 4). Within the framework of coding theory, sophisti-
cated error and erasure correcting codes with the capability to tolerate an arbitrary, adjustable number
of failures can be constructed. These codes can be designed such that they require only the theoretical
minimum of additional storage space. The price for this flexibility is a higher computational overhead.
Several codes (among them the ubiquitous Reed-Solomon codes [7]) operate on finite fields and their
symbols are seen as coefficients of polynomials over those finite fields. Since polynomial arithmetic
does not map very well onto modern processor architectures, the results of certain arithmetic operations
have traditionally been pre-calculated and stored in lookup tables. The strategy to store results of arith-
metic operations in memory to avoid recalculation has been successful for the last decades. However,
the memory subsystem has become one of the main bottlenecks in commodity systems today. Fre-
quently accessing large in-memory data structures from inner loop code can severely impact the overall
performance. Due to the ever increasing disparity between the instruction throughput of processors

3In December 2011 Facebook published that, on average, 250 million photos are uploaded per day [21].
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and the access times of memories, it is worthwhile to examine whether it is faster to calculate a cer-
tain arithmetic result just-in-time, instead of fetching the pre-calculated result from memory. After all,
modern processors are able to issue in the order of hundred instructions during the time it requires to
load an uncached word from memory [9]. Decoupling the arithmetic code from cached data structures
can also be beneficial for scalability in terms of utilization of vector units and utilization of multiple
processor cores.

In this thesis a novel coding scheme is presented which is designed for modern multi-core commodity
processors with wide vector units, as well as for modern many-core devices (such as GPUs) that are
used in a co-processor fashion. The table-based multiplication algorithm (for finite fields) has been
replaced by a (vectorized) polynomial multiplication with modular reduction. Depending on the distri-
bution of the polynomial coefficients in the factors, the multiplication can be vastly accelerated. Since a
favorable distribution of the polynomial coefficients cannot be assumed for arbitrary data4, the focus of
this thesis has been the distribution of polynomial coefficients in the elements of the generator matrices
of the erasure correcting code. Sine the classical algebraic construction methods of the generator ma-
trices do not produce matrices with elements that are optimal in terms of the distribution of polynomial
coefficients, several heuristics have been developed to find better generator matrices. The most versatile
method follows a Monte-Carlo approach and, therefore, allows to influence the specific shape of the
generator matrix. In this way it is possible to create special purpose generator matrices which have dis-
tinct advantages for special use cases (for example different computational costs for different levels of
fault tolerance). The combination of polynomial multiplication and suitable generator matrices proves
to be very beneficial for both execution on modern CPUs as well as on many-core accelerator devices.
A helpful addition to the coding scheme is an algebraic signature that also operates on finite fields.
These signatures can be used as checksums for larger data blocks and they retain their validity through
the encoding step. In conclusion, the coding scheme presented in this thesis addresses the challenge
of efficient execution of the coding operations on modern off-the-shelf components. Hence it provides
a means to economically increase reliability, availability, and integrity of data in modern large-scale
storage systems.

1.1. Organization of the thesis

The thesis is organized as follows. In Chapter 2 a short review of secondary storage technologies is
presented. Chapter 3 gives an overview about approaches to achieve fault-tolerance and reliability
in current storage systems. An introduction into the theory of error- and erasure-correcting codes is
given in Chapter 4. This is the foundation for a detailed discussion of a novel compute-efficient coding
scheme presented in Chapter 5. Chapter 6 shows the performance characteristics of the coding scheme
for the two different usage scenarios, the vectorized implementation for execution on a modern SIMD-
enabled CPU, and a many-core version which is run on a modern GPU-based co-processor. The final
chapter gives a conclusion and provides an outlook for further research.

4In fact, most high-entropy data storage formats display a uniform distribution of the polynomial coefficients.
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This chapter gives a short overview of the important (secondary) storage technologies and their char-
acteristics. The first sections reviews the hierarchy of storage technologies in relation to access time,
capacity and relative cost. The following sections describe the essentials of magnetic disk and solid
state storage. A micro-benchmark for hard disks is presented subsequently, illustrating the character-
istics of a system composed of rotating disks. In the final section the reliability models of disks and
secondary storage systems composed of disks are discussed.

2.1. Storage hierarchy
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Figure 2.1.: Storage hierarchy [23].

An overview of the hierarchy of storage technologies is shown in Figure 2.1. Access times and available
capacities are increasing while going from the top towards the base, whereas the opposite is true for cost
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Table 2.1.: Capacities and prices for top-of-line storage devices commercially available in 2012

Device Capacity Typical price

CPU registers1 ∼4 KiB 2000 EUR/CPU
CPU cache 24MiB 2000 EUR/CPU
CPU local RAM 256 GiB 3.200 EUR
Multi CPU NUMA RAM 1 TiB 12.800 EUR
Hard disks 4 TB 300 EUR
Solid state disks 512 GB 1000 EUR
Optical media (Blue Ray) 50 GB 10 EUR
Tapes 5 TB 300 EUR
Full tape library [24] 1 EB N/A

per capacity. Capacities and typical prices for several top-of-line products are presented for reference
in Table 2.1. The primary storage devices are used at system level and include mainly volatile memory
system that are rather close to the CPU. Registers and caches are typically a part of the processor and
reside therefore on the same die. On modern multiprocessor systems a fraction of the total random
access memory is usually directly attached to each CPU. These configurations are called non-uniform
memory architecture (NUMA). From the view of the single processor the local memory has lower access
latencies and can be accessed directly, while access to the remote memories requires transfers over
some intermediate system I/O network. The following layer of secondary storage includes persistent
online storage devices such as hard disk drives (HDDs) and solid state drives (SSDs). Due to their
performance characteristics SSDs are often used in a caching layer on top of large scale HDD-based
storage systems. All devices that use exchangeable media, such as optical disks and magnetic tapes and
larger archival libraries that are built thereof, form the layer of tertiary storage devices. Tertiary storage
can be characterized as offline storage, as random access is not always possible and explicit media
change is often necessary. While reliability is evidently a critical issue for all storage components, the
following sections are dedicated to the middle layer of secondary storage devices.

Today there are mainly two technologies for secondary storage: Rotating magnetic disks and solid state
storage. While non-volatile solid state storage devices have been available from the early 1970s [26],
the utilization of solid state devices for (mass market) persistent secondary storage is a relatively new
development. Around the year 2004 several vendors started offering devices with SATA, SAS, and
ATA interfaces on a larger scale, however, capacities were several orders of magnitudes lower than
for hard drives and prices were several orders of magnitudes higher. The origins of magnetic disk
storage on the contrary are in the 1950s [27]. Growing demand for online storage with the possibility
for random access drove the transition from punchcards and magnetic tapes to rotating magnetic disks.

1Counting the 16 general purpose 64-bit registers and the 16 256-bit vector registers. The actual number of registers can be
larger, since not all registers are exposed.
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Figure 2.2.: Development of hard disk capacities and relative costs [25].

The first patent describing a magnetic data storage machine based on a set of rotating disks was granted
in 1964 [28]. Several decades of active research and continuous development and innovation have lead
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to a remarkable role of magnetic disk storage today. In 2003 it was estimated that 92 % of all new
information is stored on magnetic media, primarily hard disks [2], and the total amount of hard disk
storage worldwide at the end of 2008 was estimated at roughly 200 exabytes [29]. The development
of hard disk capacities and relative prices is shown in Figure 2.2. This plot of historical data illustrates
one of the reasons for the success of magnetic disks: the aerial storage density doubles approximately
every 12 to 18 months, in analogy to the well known law for the doubling of the transistor count by
Gordon Moore, this is known as Kryder’s law [30, 31]. The relative price for magnetic disk storage on
the other hand has been decreasing with the same pace.

2.2. Magnetic disk storage

platter

head

actuator arm

voice coil motor

spindle

Figure 2.3.: Top view of a hard disk

A generic view of a hard disk drive is depicted in Figures 2.3 and 2.4. In general it consists of a
collection of platters which rotate on a spindle at a fixed number of revolutions per minute [32]. The
platters themselves are built of three layers: The rigid substrate (based on metal, glass or ceramic), a
layer of magnetic recording material, and a protective overcoat layer [33, 34]. The substrate must be
extremely uniform, free of material defects, and unsusceptible to thermal expansion. The magnetic
recording material consists of several thin film layers [35] (for example containing Cobalt, Chromium,
and Platinum) with different properties. The thin overcoat layer protects against microscopic particles,
dust, and vapors. Multiple platters are arranged on top of each other with enough space between them
to allow both sides of the platter to be accessed by an actuator arm. In principle it is possible to stack as
many platters as needed, however, current disks contain only up to five platters to limit the number of
mechanical components and control the vibration and power consumption. The read and write heads
are positioned at the tip of the actuator arm and the distance between the head and the platter is only
several nanometers in modern disks. The heads are responsible for storing and reading back data on the
magnetic layer. Individual bits are stored in sub-micrometer-sized regions containing a small number
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Figure 2.4.: Hard disk side view.

of magnetic grains. Originally, longitudinal magnetization (parallel to the plane of the disk) was used.
However, starting in 2005 manufacturers switched to perpendicular magnetization in order to achieve
higher storage densities. In 2012 the highest magnetic storage density achieved was one terabit per
square inch [36]. Consecutive bits are stored in the circumferential direction of the platter, forming
the so-called track. Tracks are subdivided into sectors which are the smallest accessible unit for data
storage. Sectors contain header information, the actual data and a field containing information for
error-correction. Traditionally sectors contained space for 512 bytes of user accessible data, however,
starting in 2009 a transition to a capacity of 4096 bytes per sector has begun. This allowed for better
storage efficiency and it was possible to introduce stronger error-correcting capabilities. The concepts
of tracks and sectors are illustrated in Figure 2.5.

All tracks with equal radius on different disks form a cylinder, as shown in Figure 2.6. The write
head consists of a micro-fabricated electromagnet which induces a magnetization in the region of an
individual bit. The read head, on the other hand, uses the giant magnetoresistance (GMR) or tunnel
magnetoresistance (TMR) effects to detect the stray field at the bit region borders. Both are quantum
mechanical effects which manifest as a significant change in the electrical resistance depending on
the parallel or anti-parallel orientation of the magnetization of neighboring ferromagnetic layers [37].
To achieve precise positioning of the read and write heads, the movements of the actuator arm are
controlled by voice coil motors. The platters on the spindle are directly connected to the spindle motor,
which has to maintain a constant speed with minimal vibration. This is achieved by using a servo-
controlled closed loop which reads servo information embedded on the magnetic surface between the
actual data elements. The final component is the disk controller hardware and its associated firmware.
The controller is responsible for actually performing the conversion from the digital information to the
magnetic signal on the media using sophisticated signal amplification and processing. Furthermore, it
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Figure 2.5.: Sector (left) and track (right).

Figure 2.6.: Cylinder.

manages the communication with the host CPU, performs command queueing and scheduling, provides
error-correction and data integrity checks, manages buffering, and also controls the servo loop.

The market for hard disks is divided into three major categories: Desktop, nearline and enterprise disk
drives [38]. These categories reflect different usage models with very different requirements in terms
of robustness, reliability, performance, features, and cost. Desktop (and laptop) drives are designed for
non-contiguous operation and a low duty cycle with a strong focus on power consumption, capacity,
and low cost. Nearline devices provide high storage capacities with increased reliability. They are
designed for continuous availability with a moderately higher workload as desktop drives. Nearline
hard drives are used in scenarios where large amounts of data need to be available at all times without
interruption (bulk storage), but without the highest demands on performance and throughput, such as
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Table 2.2.: Comparison of desktop, nearline, and enterprise disks [38, 40, 41].

Desktop Nearline Enterprise

Capacity (mid 2012) 3 TB 2TB 900 GB
Cost (mid 2012) ∼150EUR ∼300EUR ∼700EUR
Power Consumption (rel) 1x 1.2x 1.5x
Reliability (MTTF) 600kh 1200kh 1600kh
Spindle Speed (RPM) 5.4k-7.2k 7.2k-10k 10-15k
Duty cycle <10% <20% 100%
Power-on hours 2400h/a 8760h/a 8760h/a
Performance (rel) 1x 1x 1.4x - 2.5x
T10 data integrity no no yes
Unrecoverable error rate 10−14 bits−1 10−15 bits−1 10−16 bits−1

backup and reference data sets, cloud and scale-out storage. Enterprise disks aim at applications which
require highest operational availability and workloads. Their platters are usually smaller in diameter to
reduce rotational vibration, head arms and voice coils are designed for 100% duty cycles, and controller
electronics and software are generally more sophisticated (containing for instance dual CPUs and bet-
ter error resilience). They provide the highest performance together with the highest reliability and the
lowest uncorrectable error rate. In addition to the error-correcting codes in the disk itself, enterprise
disks provide end-to-end data integrity mechanisms from the user perspective: Supplementary 8 byte
of information are added to every sector to store user or operating system generated checksums and
reference information [39]. With these boundary conditions, enterprise drives are generally more ex-
pensive while providing less storage capacity. An overview of different properties of desktop, nearline,
and enterprise disks is shown in Table 2.2.

The super-paramagnetic effect sets a lower limit for the volume of the magnetic grains that can be used
in magnetic storage devices [42]. At this limit the magnetization can be spontaneously flipped due
to thermal fluctuation which leads to information loss. To compensate one can increase the magnetic
anisotropy of the medium, which at the same time requires an increased magnetic field for which larger
heads are needed. Because of this trade-off, for a long time the predicted maximum areal density was
several hundreds of gigabits per square inch. However, the transition from longitudinal to perpendic-
ular magnetic recording already allowed for much higher densities of up to 1 terabit per square inch.
The road maps for upcoming magnetic recording technologies include several approaches that promise
several order of magnitudes higher areal storage densities beyond the super-paramagnetic limit: Bit-
patterned magnetic recording (BPMR) uses magnetic nano-islands with well defined positions to store
information, which are assembled with nano-lithographic processes. Heat-assisted magnetic recording
(HAMR) employs an additional laser in the read/write head to locally raise the temperature above the
Curie temperature and to then change the magnetization with a relatively small magnetic field. Re-
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lated is the microwave assisted magnetic recording (MAMR), where the write head contains a nano
microwave oscillator instead of the more complex optical system. With shingled magnetic recording
(SMR) neighboring tracks overlap heavily (more than two thirds of the track are covered by the ad-
jacent track). This technique has no disadvantages in case of reading, but for writing it requires an
extended read-modify-write cycle, since direct write access to an inner overlapped track would damage
the neighbor tracks. SMR can be combined with two dimensional magnetic recording (TDMR) where
a 2D-image is built up from multiple adjacent tracks and sophisticated image detection and decoding
techniques are employed to reconstruct the original data. As a result the problem of destructive inter-
ference of shingled tracks can be resolved. All these proposed technologies indicate that magnetic disc
storage will remain a core component of secondary storage systems in the next decades, even though
alternative non-volatile memory technologies are reaching maturity [31].

2.3. Solid state storage

The success of solid state storage has been driven by the demand for low-power, light, and robust non-
volatile storage for mobile applications. Starting with memory cards for digital cameras, USB thumb
drives, digital audio players, and mobile phones, flash-based storage is today increasingly used for high
performance secondary storage in the form of solid state drives (SSDs). The basic building block of
a flash cell is a floating gate MOS transistor which can be arranged in a NOR-type or NAND-type
configuration to obtain the two fundamental flash architectures [43, 44, 45]. NOR flash delivers a high
read performance, but suffers from low write performance. It can be randomly accessed (similar to
DRAM) and application code can be executed from it. Available capacities are rather low and it is
therefore often used to store the boot code or firmware for computers or embedded systems. NAND
flash, on the other hand, enables much higher cell densities and allow fast erase and write operations,
but it cannot be directly addressed and requires complex controller hardware. It offers larger capacities
and lower cost and is, therefore, better suited for bulk data storage applications. Since almost all solid
state block storage devices are based on NAND-type flash, the architecture and properties of these
memories are reviewed in the following paragraphs.

Figure 2.7 on the facing page shows a NAND flash floating gate transistor and the architecture of
a NAND flash memory. A single level cell (SLC) transistor stores one bit of data, whereas a multi
level cell (MLC) is able to store multiple bits. The value of the bits is determined by the amount of
charge stored in the floating gate. Since the floating gate is surrounded by insulating material, the
charge is transported by a quantum mechanical tunnel mechanism: It is injected into the floating gate
during writing and persistently stored there (in this case the bit value is 0). During erase operations
the charge is released from he floating gate, reverting the bit value to 1. To form a memory device,
the floating gate transistors are assembled into an array: Several of them are connected in series via
a bit line, whereas their control gates are connected to individual word lines. All transistors sharing
the same word line form a page, and all pages make up a block (Figure 2.7 on the next page, right).
In order to read, all but one word line are pulled up above the threshold voltage of the transistors,
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Figure 2.7.: NAND Flash transistor cell (left) and NAND flash memory architecture (right) [43].

the bit line is then conductive or non-conductive depending on state of the singled out transistor. For
writing, a high positive voltage is applied to the control gate, which allows tunneling of electrons in
to the floating gate. Therefore, a page is the smallest amount of data that must be read or written
at a time. Since erasure requires the eviction of electrons from the floating gate by applying a high
voltage to the substrate, it can only be done for the entire block (bulk erasing). In effect, an individual
page in a NAND flash block cannot be directly overwritten, but the write request has to be redirected
to another block by a transparent management layer. If it is clear that all pages in certain block are
not used anymore, the whole block can be erased and used for future write requests. The number of
write or erase cycles, however, is finite due to two wear-out effects: Electrons can be trapped in the
insulating layer around the floating gate or the insulting layer can break down all together. As a result
electrons cannot tunnel anymore between the floating gate and the substrate. The page can then not
be used anymore and has to be added to a list of bad pages (write endurance for flash devices is in the
order of 105−106 cycles). To avoid the breakdown of pages that are frequently written, write counters
and address mapping mechanisms are used to distribute the writes evenly over different blocks (wear-
leveling). All these characteristics of NAND flash require an intermediate software or firmware layer
which organizes the logical to physical mapping, the garbage collection, the wear leveling, the bad
block handling, and the error-correction. Since file systems usually only remove the directory entry
of a file upon deletion, the TRIM command has been implemented to let the management layer know
that the page is not used anymore. This decreases the reorganization of pages that do not contain valid
data anymore and alleviates the performance degradation of background garbage collection. Typical
values for a current enterprise level NAND flash storage device are shown in Table 2.3 on the following
page. While offering significantly higher random access bandwidth and I/O operations per second than
hard disks, capacities and cost differ by at least one order of magnitude. Remarkably, the values for
the mean time to failure and the unrecoverable error rate are at par with those of an enterprise disk
drive (although the SSD does not contain an equally complex mechanical system). In addition to the
problem of limited write endurance due to degradation of the insulation layer, flash storage reliability
is affected by several effects [48, 49]: Especially NAND flash is prone to bit flipping in neighboring
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Table 2.3.: Characteristics of a top-of-line NAND flash SSD in mid 2012 [46, 47].

Typical value

Interface SAS 6 Gb/s
Cell type MLC
Capacity 400 - 800 GB
Page size 4-8 kB
Block size ≥ 256 pages
Random read IOPS (4K) 180k IOPS
Random write IOPS (4K) 75k IOPS
Random read bandwidth 2000 MB/s
Random read bandwidth 1000 MB/s
Unrecoverable error rate 10−16 bits−1

MTTF 2.000.000 h
Write endurance 7-14 PB
Prize ∼ 5 US/GB

cells during read and write operations. Furthermore, the charge in the floating gate can slowly leak
and lead to a wrong interpretation of the bit value. The ability to retain data is also influenced by the
number of experienced erase or write cycles. Flash devices can contain up to 5 % of initial bad blocks
due to production yield constraints, as well as the bad blocks accumulated during operation. Failure to
detect and manage both types can lead to data loss. To increase reliability it is essential to use strong
error-correcting codes (BCH, Reed-Solomon) on a page level, similar to the sector protection scheme
of hard disks.

Solid state storage is often seen complementary to hard disk storage as the top layer in tiered storage
scenarios. While hard disks fulfill the requirements for high capacity and low cost, SSD provide higher
bandwidths and drastically higher rates of I/O operations per second. However, projections show that as
storage densities of flash devices increase, properties such as performance, endurance, energy efficiency
and data retention time could be adversely affected [50].

2.4. Disk micro-benchmark

Listing 2.1: Definition of the sg_io_hdr_t data structure in the linux kernel

1 typedef struct sg_io_hdr

2 {

3 int interface_id; /* [i] \’S\’ for SCSI generic (required) */

4 int dxfer_direction; /* [i] data transfer direction */

5 unsigned char cmd_len; /* [i] SCSI command length ( <= 16 bytes) */
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6 unsigned char mx_sb_len; /* [i] max length to write to sbp */

7 unsigned short iovec_count; /* [i] 0 implies no scatter gather */

8 unsigned int dxfer_len; /* [i] byte count of data transfer */

9 void __user *dxferp; /* [i], [*io] points to data transfer memory

10 or scatter gather list */

11 unsigned char __user *cmdp; /* [i], [*i] points to command to perform */

12 void __user *sbp; /* [i], [*o] points to sense_buffer memory */

13 unsigned int timeout; /* [i] MAX_UINT->no timeout (unit: millisec) */

14 unsigned int flags; /* [i] 0 -> default, see SG_FLAG... */

15 int pack_id; /* [i->o] unused internally (normally) */

16 void __user * usr_ptr; /* [i->o] unused internally */

17 unsigned char status; /* [o] scsi status */

18 unsigned char masked_status;/* [o] shifted, masked scsi status */

19 unsigned char msg_status; /* [o] messaging level data (optional) */

20 unsigned char sb_len_wr; /* [o] byte count actually written to sbp */

21 unsigned short host_status; /* [o] errors from host adapter */

22 unsigned short driver_status;/* [o] errors from software driver */

23 int resid; /* [o] dxfer_len - actual_transferred */

24 unsigned int duration; /* [o] time taken by cmd (unit: millisec) */

25 unsigned int info; /* [o] auxiliary information */

26 } sg_io_hdr_t; /* 64 bytes long (on i386) */

To illustrate the characteristics of direct disk operations a small micro-benchmark was developed for
this thesis. The benchmark utilizes the SCSI Generic (sg) driver found in the linux kernel [51]. The
drivers allows user applications to directly send SCSI commands to the device. Therefore, an ob-
ject of type sg_io_hdr_t (defined in Listing 2.1) is prepared and handed to an ioctl()1. The
sg_io_hdr_t data structure itself contains a low level description of a SCSI request using various
input and return parameters needed to perform the operation. The ioctl() is blocking until the pre-
pared SCSI command is finished. This behavior can be used to probe the internal structure of a disk by
measuring the repeated execution time for different SCSI commands. With this low-level access many
layers of the operation system can be bypassed and the disturbing effect of caching and queueing sys-
tems can be avoided. All benchmarks were performed with an off-the-shelf IBM enterprise-class SCSI
disk2. For this disk an excellent and comprehensive specification and documentation is available [52],
such that the measured properties can be verified. All relevant characteristics are summarized in Ta-
ble 2.4. To reduce noise during the measurement the disk was installed as secondary (non-OS) disk and
used as a pure block device (that is, a file system was not installed on the disk). For all measurements
the disk cache was disabled.

2.4.1. Data zones

The disk characteristic to validate the easiest is the Zone Bit Recording (ZBR). Since the track length
(or circumference) increases with the distance from the center of the disk, it is possible to fit more

1ioctl() is short for input/output control and is special system call for non-generic input/output operations specific to a
certain device.

2Model IC35L018UWD210-0

15



2. Storage Technologies

Table 2.4.: Drive characteristics of the IBM IC35L018UWD210-0 disk [52].

Property Value

label capacity 18.35 GB
number of heads 3
number of disks 2
number of data bytes 18,351,959,040
number of 512-byte sectors 35,843,670
rotational speed 10,000 RPM
data buffer size 4096 KiB
data zones 17
- sector density in zone 0 750 sectors/track
- sector density in zone 16 390 sectors/track
average seek time (read) 4.9 ms
full stroke seek time (read) 10.5 ms
cylinder skew 0.88 ms
head skew 0.72 ms

zone0

zone1

Figure 2.8.: Illustration of hard disk zones. The number of sectors is dependent on the length of the
tracks. Hence outer tracks hold more sectors. As a trade-off tracks are grouped into zones.

sectors on the outer tracks. Disks are therefore partitioned into a certain number of zones with constant
number of sectors per track as illustrated in Figure 2.8. Since during a full revolution the amount of
data read in the outermost zone is larger than in the inner zones, the zoning schema can be directly
seen by observing the data transfer rate of a small number of consecutive sectors in the respective zone.
Figure 2.9 shows the measured data transfer time depending on the sector number and hence depending
on the position of the disk. The arrows indicate the zone borders according to the specification of the
used disk.
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Figure 2.9.: Hard disk zones become visible when measuring the transfer times for a fixed-sized chunk
with different staring positions on the disk. The arrows indicate the zone borders according to the
specification of the used disk.

2.4.2. Seek time

The seek time is measured from the start of the actuator movement to the start of a reliable read or
write operation. The average seek time T is specified in the data sheet [52] as weighed average of all
possible seek combinations3:

T =
1

smax(smax +1)

smax

∑
n=1

(smax +1−n)(T in
n +T out

n ), (2.1)

where smax is the maximum seek length, T in
n is the inward measured seek time to track n, and T out

n is the
outward measured seek time to track n. Figure 2.10 shows the seek times for all destination sectors.

3The definition of the average seek time varies considerably between hard drive manufacturers. Often the average seek time
is calculated as the sum of all possible seek times divided by the number of seeks. It can be shown that this corresponds
to one-third of the full stroke seek time.
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Figure 2.10.: Seek times. The patterns for small sector numbers indicate that the hard disk firmware
employs different strategies for shorter movements of the actuator arm.

2.4.3. Jump time

In this particular test the time to read a particular sector directly after reading sector 0 is measured
(with two consecutive but separate read commands). The head not only has to seek to the correct track,
but also has to wait for the correct sector to be in reach. Figure 2.11 shows the result for the first
7000 sectors. The execution time increases at first with increasing sector number, since the requested
sector is too close to sector 0. After the time needed to process the second read request, the requested
sector has already passed the head. Therefore almost another full rotational delay is required to access
the second sector. When the distance between the two sectors becomes comparable to the distance
corresponding to the request processing time, the execution time drops drastically and is effectively
reduced to the seek time. This pattern repeats periodically as the second read request moves through
the upward tracks. The occasional gaps in the slope correspond to the times required to switch heads
inside a cylinder (head skew) and the times to switch to the next cylinder (cylinder skew).
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Figure 2.11.: Jump time: Read a particular sector directly after reading sector 0 (with two consecutive
but separate read commands).

2.4.4. Window read

The window read benchmark exposes the most information about the structure of the hard disk. The
time to repeatedly read a small chunk of consecutive sectors is measured. If the chunk lies in the
middle of a track, the measured time reflects the time needed to perform a full rotation (the chunk size
is negligible compared to the number of sectors on an outer track). However, if the chunk crosses a
disk border, that is, the next sector still lies on the same cylinder but on another platter, the head skew
time becomes visible. Furthermore, if the chunk crosses a cylinder border one can observe the cylinder
skew. These two penalties show up as distinct peaks in Figure 2.12 and can be used to estimate the
size of tracks and cylinders. The mean time needed for one full rotation is measured as 5999± 31µs,
therefore the number of rotations per minute can be estimated as

RPM =
60s

5.999 ·10−3s
= 10.001±52, (2.2)
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Figure 2.12.: Window read times for chunks of 10 consecutive sectors. The dotted curve indicates the
first read operation, whereas the solid curve shows the average. Head and cylinder skew, as well as
the rotational delay and the track size in zone 0, can be directly estimated.

which is in remarkable accordance with the data sheet. The peaks in execution time indicate head
(platter) switches at sector 750 and 1500, and cylinder switches at sector 2250.

Figure 2.12 shows the average execution time as well as the time needed for the very first access.
The times for the first access are significantly higher, especially when a platter or cylinder switch is
necessary. This indicates an intrinsic caching mechanism which cannot be switched off with the disk
cache.

2.5. Reliability modeling and failure modes

This section provides a short survey of reliability and availability theory, particularly with respect to
storage devices. A comprehensive overview can be found in [53] and [54], on which several parts of
this introduction are based.
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2.5. Reliability modeling and failure modes

2.5.1. Introduction

The failure rate of hardware components is often associated with the so-called bathtub curve, illustrated
in Figure 2.13. In this plot the failure rate is shown over the operational time. During the first period
of operation poorly manufactured or weak components contribute greatly to the high failure rate until
most problematic components have been sorted out and the failure rate stabilizes. This first phase is
often called infant mortality period. The period with a constant intrinsic failure rate is considered the
normal life period of the component. At the end of the normal life period the components enter the
wear out period, associated with a greatly increasing failure rate. Manufacturers often try to reduce the
early failure rate visible to the customer by applying burn-in tests, where the component is exposed to
increased stress for a short period of time.

Time

Fa
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re
 ra

te

EFR

IFR

wear out

normal life period

early 
failure
rate

intrinsic failure rate (constant)

Figure 2.13.: Bathtub curve

In the context of failure rates different mean times are often used: The Mean Time To Failure (MTTF)
is the arithmetic mean of the times from start of the component to the failure. The Mean Time To Repair
(MTTR) is the average time until the component repair is completed. Finally, the Mean Time Between
Failure (MTBF) is the average time between two failures, or simply the sum of MTTF and MTTR. An
illustration of MTTF, MTBF, MTTR is shown in Figure 2.14 on the following page. The availability A
of a repairable system is defined as the probability that the system is operational. With the definitions
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Figure 2.14.: Mean time to failure (MTTF), mean time between failure (MTBF), and mean time to
repair (MTTR).

from above the availability can be written as

A =
MT T F

MT T F +MT T R
=

MT T F
MT BF

. (2.3)

Highly available systems are often grouped into availability classes, depending on the number of nines
in the decimal places of the availability: For example A= 0.99999, referred to as five nines, corresponds
to a combined down time of 5.26 minutes per year of operation.

2.5.2. Reliability theory

The reliability R(t) is the probability that a system is operating correctly until the time t. Let T be a
random variable denoting the time of a failure. The reliability is then the probability that T is greater
than t

R(t) = P(T > t), t ≥ 0. (2.4)

Conversely, the failure probability F(t) is

F(t) = P(T ≤ t), t ≥ 0. (2.5)

F(t) is often called the cumulative failure distribution function (CFDF) and is related to the reliability
function by

R(t) = 1−F(t). (2.6)
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The derivative of F(t) is called the failure density function,

f (t) =
dF(t)

dt
=−dR(t)

dt
. (2.7)

Integration of Equation 2.7 leads to

F(t) =
∫ t

0
f (τ)dτ (2.8)

and
R(t) = 1−

∫ t

0
f (τ)dτ =

∫
∞

t
f (τ)dτ. (2.9)

The relationship can be interpreted as follows: The failure density function gives the probability for a
failure at a given point in time. Integration over the complete time must give 1. Therefore, the failure
probability by time t is the sum of all failure probabilities from time 0 to t. On the other hand, the
survival probability by time t is the remaining part of the integral from time t to infinity.

The expected value of a real valued random variable X with a probability density function f (x) is
defined as

E(X) =
∫

∞

−∞

x f (x)dx. (2.10)

Therefore the Mean time to failure (MTTF) is defined as4

MT T F =
∫

∞

0
t f (t)dt, (2.11)

and it can be shown (details can be found in [53]) that with the above definitions the MTTF can be
expressed as

MT T F =
∫

∞

0
R(t)dt. (2.12)

The hazard function (or instantaneous failure rate function) can then be defined as

h(t) =
f (t)
R(t)

. (2.13)

In many cases an exponential failure distribution is chosen where the failure density function is given
by

f (t) =

{
λe−λ t t > 0

0 t ≤ 0,
(2.14)

where λ is constant. This results in the reliability function

R(t) = e−λ t , (2.15)

4Only t ≥ 0 is relevant for failure analysis.
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and the failure density function
F(t) = 1− e−λ t . (2.16)

The hazard function

h(t) =
λe−λ t

e−λ t = λ (2.17)

is therefore constant and its inverse is the mean time to failure

MT T F =
1
λ
. (2.18)

Inherent to the exponential distribution is the property of memorylessness, meaning that the failure
rate is independent of the history of failures. However, this is not always an appropriate assumption.
The three-parameter Weibull distribution provides a generalization of the exponential distribution. The
shape of the distribution depends significantly on the specific values of the parameters and it is partic-
ularly suitable to model the different phases of the bathtub curve. The failure density function is given
by

f (t,β ,θ) =

 β (t−γ)β−1

θ β
e−(

t−γ

θ )
β

t > γ

0 t ≤ γ

, (2.19)

where β is called the shape parameter, θ is called the scale parameter, and γ is called the location
parameter. Since γ is used to specify a guaranteed failure free period from t = 0 to t = γ , in the
following γ = 0 is assumed.

The reliability function is then

R(t) = e−(
t
θ )

β

for t > 0, β > 0, θ > 0, (2.20)

and the corresponding hazard function

h(t) =
β tβ−1

θ β
for t > 0, β > 0, θ > 0. (2.21)

When β = 1 the Weibull distribution is equivalent to the exponential distribution, since then

f (t) =
1
θ

e−(
t
θ ) (2.22)

and
h(t) =

1
θ
. (2.23)

For β = 2 the failure density function is reduced to a function which is also known as Raleigh distribu-
tion:

f (t) =
2t
θ 2 e−(

t
θ )

2

, (2.24)
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and
h(t) =

2t
θ 2 . (2.25)

In general the shape parameter influences the time dependence of the hazard rate and the interpretation
is as follows:

• β < 1: The hazard rate is decreasing over time. This is used to model the burn-in period.

• β = 1: The hazard rate is constant and as for the exponential distribution. This behavior models
the normal life period.

• β > 1: The hazard rate is increasing over time, which represents the wear-out period.

The hazard rate of the Weibull distribution for different values of β is depicted in Figure 2.15. The
combination of the individual hazard rates can be used to model the characteristic shape of the bathtub
curve.
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Figure 2.15.: Weibull hazard rates and their additive combination to model the bathtub curve.
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2.5.3. RAID reliability

In the original RAID publication [6] the MTTF of a collection of disks, assuming exponentially dis-
tributed time to failure and constant failure rate, is given by

MT T F =
MT T Fsingle disk

N
, (2.26)

where N is the number of disks in the collection. With the 1-error tolerance of the original RAID
systems, the Mean Time To Data Loss (MTTDL) of a RAID array is

MT T DLRAID =
MT T F2

single disk

N · (G−1) ·MT T R
, (2.27)

where N denotes the total number of disks, and G is the number of disks in a (parity) group. MT T R is
the mean time to repair or replace the failed disk and to reconstruct the lost data. Later, this has been
extended for 2-error tolerant RAID-6 arrays [55]:

MT T DLRAID6 =
MT T F3

single disk

N · (G−1) · (G−2) ·MT T R2 . (2.28)

The generalization to a δ -error tolerant array is straight-forward

MT T DLδ =
MT T Fδ+1

single disk

N ·∏δ
i=1(G− i) ·MT T Rδ

. (2.29)

Equation 2.29 can be rewritten to make the benefit of additional error-tolerance in this model more
apparent:

MT T DLδ =
MT T Fsingle disk

N ·∏δ
i=1(G− i)

·
(

MT T Fsingle disk

MT T R

)δ

. (2.30)

The MT T DL for the system is multiplied by the ratio of MT T Fsingle disk and MT T R for every additional
error the system can withstand. Clearly MT T R�MT T Fsingle disk holds, since realistically the MT T R
is in the order of several ten hours (assuming a 2 TiB disk with a moderate reconstruction rate of
50 MiB/s), whereas the order of the MT T Fsingle disk of a modern disks ranges from 105 to 106 hours.
Therefore, the repeated division by the size of the parity group is small against the additional power of
the ratio.

2.5.4. Markov models

Markov models can be used to model the random behavior of systems if the process is stationary (the
behavior must be the same at all points in time independent from the actual point being considered).
Again, the occurrence of failures and the failure recovery must therefore be characterized by constant
failure and recovery rates. System operations, failures and repair efforts are represented by states
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Figure 2.16.: Markov model for a 1-error tolerant array [56].

in a state transition diagram together with events that initiate transitions from one state to another
(represented by the corresponding failure and repair rates). To determine how much time the system
spends in each of the states, a set of equations is constructed: For the steady state the sum of input
and output for each state must vanish. Hence, for every state an equation can be written and together
they can be solved for the probabilities Pi for being in state i (all Pi must sum up to one). Markov
models can also be used if they contain absorbing states, that is, states that are impossible to leave.
Figure 2.16 shows the Markov model for an 1-error tolerant RAID system with unrecoverable read
errors as presented in [56]. The parameters used in the state diagram are:

d - Number of disks in the array,

λ - Drive failure rate, MT T F−1
single disk,

µ - Drive repair rate, MT T R−1
single disk,

h - Probability of an uncorrectable error during rebuild for a single drive.

With the assumption that µ � λ the Markov model can be solved for the MT T DL [57]:

MT T DL =
(2d−1−dh)λ +µ

d(d−1)λ 2 +dλ µh
≈ µ

d(d−1)λ 2 +d(d−1)λ µh
(2.31)

This model introduces the concept of an unrecoverable read error rate as an additional failure source.
In this case the disk does not break completely, but cannot read a typically small amount of sectors.
If this happens during recovery from a previous drive failure, data are lost. By neglecting this error
probability (by assuming h = 0) it is easy to show that Equation 2.31 is equivalent to Equation 2.27.
Since both models take an exponentially distributed time to failure as a basis, the similarity is not
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surprising. Figure 2.17 shows the state diagram for a 2-error tolerant array with the same parameters
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Figure 2.17.: Markov model for a 2-error tolerant array [56].

as above. The solution of the Markov model gives

MT T DL≈ µ2

d(d−1)(d−2)λ 3 +d(d−1)(d−2)λ 2µh
(2.32)

The generalization to a δ -error tolerant array (Figure 2.18) was shown in [57].
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Figure 2.18.: Markov model for a δ -error tolerant array [57].

With the assumptions µ � λ and that h is many magnitudes smaller than d, the authors specify the
approximate MT T DL as

MT T DLδ ≈
µδ

∏
δ
i=0(d− i)λ δ (λ +hµ)

. (2.33)
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Table 2.5 shows some typical values [58] for the parameters in the δ -error tolerant Markov model.
The dependence of MT T DLδ on d is depicted in Figure 2.19. The probability of an uncorrectable error
during rebuild for a single drive is given as h=C ·UER, the product of capacity C and the unrecoverable
bit error rate UER. For simplicity the array sizes are limited, such that d ·h < 1.

Table 2.5.: Typical parameters for the δ -error tolerant Markov model.

Parameter Value

λ 10−6 1
h

µ
1

24
1
h

C 1 TB

UER 10−15 1
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h 0.0086
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Figure 2.19.: δ -error tolerant Markov model with realistic parameters.
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2.5.5. Model checking analysis

The formal method of model checking [59] can be utilized to analyze the design of various protection
schemes. Model checking provides a means to automatically test whether a given model of a system
meets an abstract specification of the system. In the context of storage systems it is used to identify
execution sequences and events in case of a single error that can lead to data loss or data corruption [60].
In contrast to the failure of the entire disk described in the previous sections, the authors examine an
extended set of storage errors and model their behavior:

• Latent sector errors: Data cannot be read reliably from the medium. This error results in an
explicit error code reported to the system.

• Corruptions: Data stored in a disk block are corrupted by an element of the storage stack.

• Torn writes: Only a portion of the sectors of a given request is actually written to the disk (for
instance when a power cycle occurs during the write).

• Lost writes: Due to firmware bugs, a success code is reported to the system although data have,
in fact, not been written to the disk.

• Misdirected writes: Also due to buggy firmware, data are written to a wrong location (either
within a disk or even to another disk). This type of error has the combined effect of lost writes
and data corruptions.

The occurrence of these storage errors (or combinations thereof) can have three outcomes:

• The protection scheme in place is successful and data can be recovered.

• The error can be detected, but it is not possible to recover the data.

• The error cannot be detected. Corrupt data are returned to the user.

Subsequently, the following protection schemes and their combinations are evaluated when errors are
injected: The classical RAID scheme protects only against latent sector errors that are reported by
the disk drive. All other errors lead to corrupt data or parity pollution (in this case incorrect data
are propagated to the parity disk). When data scrubbing is added to the RAID scheme, all blocks of
a stripe are read and reconstructed if an error is detected. Additionally, during scrubbing the parity
is recomputed and compared with the stored redundancy. If an inconsistency is detected, the parity
information is recalculated and updated. While this basically adds an error-detection capability with
the intention to reduce the chances of double errors, it has no effect on the single error. In the case
of an incorrect data block, the inconsistency is detected during scrubbing and the parity information is
subsequently polluted. In order to detect data corruption, three different checksumming techniques can
be added: Checksums can be calculated for every disk sector, for every RAID block, or in form of a
parental checksum, where the checksum is stored in a structure that is read first during user reads (for
instance in the inode of a file). Sector checksums detect corrupt sectors but cannot protect against torn,
lost, or misdirected writes. Block checksums consider a whole RAID block as a consistent unit and can
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therefore protect additionally against torn writes. However, lost or misdirected writes still go unnoticed
in this scenario, since the old data (which was supposed to be overwritten) are still in a consistent state.
Since parental checksums are only verified during user access, parity pollution during scrubbing can
still occur. The authors conclude that block checksumming is most beneficial to prevent corruption. In
order to detect lost writes, write verification can be employed: Immediately after writing, the data are
read back and compared to the originals still in memory. While detecting lost and torn writes, write
verification has two drawbacks: It does not protect against misdirected writes (a misdirected write is
interpreted as a lost write, that is, the original write is simply reissued, and the victim of the misdirected
write is overwritten with wrong data but a consistent checksum) and the read-after-write access pattern
imposes a severe performance penalty. Instead of verification, different identifying characteristics can
be stored along with the data to alleviate the impact on performance. A physical identity in form of
disk and sector number or a logical identity in form of a inode number and file offset are the typical
approaches. The physical identity can (as the sector checksum) not detect against lost writes and corrupt
data can be returned to the user, whereas the logical identity works similar to parental checksums, that
is, parity pollution can occur, but data loss is detected and corrupt data are not returned to the user.
At last, to protect against parity pollution after a lost write, a technique called version mirroring can
be utilized: Every RAID block in a stripe contains a version number, which is incremented with every
write to that particular block. The version number of all blocks are mirrored in the parity block and
with every read of a data block the corresponding version numbers are compared. In case of a version
mismatch, the block with the more recent version can be used to recover from the lost write. All
these techniques can now be combined to decrease the chances of data loss or corruption compared
to the bare-bone RAID. The authors identify a combination of version mirroring, physical and logical
identity, block checksums and RAID as the best scheme for a realistic range of disk errors. However,
the study has also shown that even for the single-error case a variety of problems and corner cases
can lead to error propagation and parity pollution and subsequently to data loss or, sometimes almost
worse, undetected data corruption. In this context data scrubbing can even have a deteriorating effect,
since it spreads originally isolated errors.

2.5.6. Non-homogeneous Poisson process (NHPP) models

The initial reliability models for RAID systems were created under that assumption that catastrophic
disk failures were the dominant factor. Media degradation, latent sector errors, firmware bugs, or errors
within the storage stack were considered negligible compared to full disk failures. Therefore, these
models are characterized by exponential failure density functions and constant failure rates. Compar-
ison with field data has increasingly shown that the error modes mentioned above have a significant
impact on reliability and that failure rates are not constant in time [61, 62, 63]. As with the initial
MTTDL models, the Markov models presented in Section 2.5.4 also assume that failures follow a ho-
mogeneous Poisson process and that failure and repair rates constant. Consequently, advanced models
have been developed, that correct errors associated with the above assumption [64, 65]. The new mod-
els account for latent defects and allow rates for failures, repair, latent defects and scrubbing to take
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Figure 2.20.: NHPP-latent defect model for a 1-error tolerant array [64]. The grey-filled states indicate
a system failure (data loss).

on any distribution. For these models hard disk failure modes and mechanisms are grouped into cat-
egories: Operational failures and latent defects. Operational failures include all failures where data
cannot be found, such as bad servo-tracks, bad electronics, bad read heads, inability to stay on a track
or the exceedance of certain SMART limits. Latent defects include all failures where data are missing.
Errors can occur during the actual process of writing: The inherent bit error rate of the combination of
all the electrical, mechanical, magnetic, and firmware systems also accounts for write errors. Magnetic
media can be scratched by loose, hard particles that are stuck between the head and the surface, whereas
softer particles can be smeared over the surface. Particles that were embedded during manufacturing
and later on dislodged, can leave pits and voids. All these defects can be the cause for poorly written
data. However, data can also be destroyed after it was successfully written to the media: Short pulses
of extreme heat caused by contact of head and surface can thermally erase data. And again, soft and
hard particles that are stuck between head and surface can cause scratches and smears. Together with
corrosion these effects can render previously written data unreadable.

The NHPP-latent defect model proposed by Elerath and Pecht [64] is depicted in Figure 2.20 and
requires four probability distributions:

• The Time to operational failure is modeled with a Weibull distribution dOF with slightly increas-
ing failure rate, that is, a shape parameter β > 1.

• The Time to restore an operational failure also uses a Weibull distribution drestore with a location
parameter γ > 0, to take into account that an restoration requires a minimum time to complete
given by capacity and bandwidth of the disk.
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• The Time to latent defect is modeled with a exponential distribution dLD.

• The Time to scrub again uses a Weibull distribution dscrub with a non-zero location parameter,
since disk scrubbing also requires a minimum time to finish.

The distribution for dexcessive−OF is not explicit, but included in dOF . The transition corresponds to a
sudden burst of media defects rendering the disk inoperative. The model is evaluated using sequential
Monte-Carlo techniques and appropriate parameters for all distributions, which are derived from field
data. The authors compare the results in terms of data loss due to double disk failures (DDFs) to the
results of the simple MTTDL model (Section 2.5.3) and to field data of over 7000 RAID groups. For
arrays without scrubbing the predicted number of DDFs is more than 2500 times higher in the first year
than in the old model. For a mission of ten years the predicted factor is 4000. The ratio decreases with
decreasing characteristic scrub times, as expected. The model shows excellent correlation the actual
field data and the authors conclude that the NHPP model is more suitable for modeling RAID systems
and that disk scrubbing is imperative to RAID systems. However, as scrubbing is typically done in the
background, higher I/O loads leave less time for scrubbing. Furthermore, increasing disks capacities
also lead to higher characteristic scrubbing times.

2.6. Real world data

Reliability specifications from hard drive vendors vary considerably and are sometimes difficult to
interpret. The manufacturer Seagate estimates the MTTF for a drive as the number of power-on hours
(POH) per year divided by the first year Annualized Failure Rate (AFR) [66] . The AFR is derived from
a reliability test conducted in ovens with an elevated ambient temperature of 43 ◦C and the highest
possible duty cycle, with a run time of 28 days. For a typical data sheet MTTF of 106 hours and
uninterrupted operation the Annualized Failure Rate is

AFR =
8760 h
106 h

= 0.0088. (2.34)

To understand how useful these specified parameters (based on relatively short accelerated failure tests)
actually are, one has to examine large scale field data. Several reliability studies have been published in
recent years presenting field data from very large disk populations. In the following paragraphs some
important results are highlighted.

A study of disks within the Google computing infrastructure by Pinheiro et al. [63] examines the in-
fluence of temperature and utilization on the failure rates. Data are collected from more than 100,000
consumer-grade disk drives with different interfaces, rotational speeds, and sizes. Their analysis gives
the following results:

• AFRs vary significantly between 1.7% in the first year and over 8.6% in the 3-year old population.
The infant mortality phenomenon is noticeable.
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• Only for very young and very old age groups a high utilization also leads to significantly higher
failure rates. Overall the correlation between failure rates and utilization is much weaker than
previously suspected.

• Higher failure rates are only correlated with higher temperatures for older drives and especially
high temperatures (> 40◦C). Surprisingly, for drives younger than 3 years, lower temperatures
are associated with higher AFRs.

• Some of the SMART parameters are correlated with higher AFRs, however, a large fraction of the
failing drives do not show any SMART error. The failure prediction accuracy for the individual
drive is therefore very limited.

Schroeder and Gibson [62] analyze more than 70,000 disk from four different vendors, deployed in
compute clusters at large internet service providers and high performance computing data centers.
They come to a set of conclusions that lead to a better understanding of disks failures in the field:

• Field failure rates of disk drives are significantly larger than indicated by the data sheet MTTF.

• Even younger drives (lifetime < 5 years) exhibit failure rates that are by a factor of 2-12 higher.
For 5-8 year old drives the factor can be as much as 30.

• Failure rates are not constant, they increase continuously starting in year two of operation.

• The early onset of wear-out has a stronger impact on overall failure rates than infant mortality.

• The assumption of exponentially distributed time to failures can be rejected with high confidence.
Instead, the Weibull distribution is more suitable.

• There is strong evidence for correlation between failures with a long range dependence.

Another study by Jiang et al. [67] investigates which components of storage systems are actually the
dominant contributor for storage failures. Instead of focussing solely and the storage component, they
include the whole storage subsystem. They examine about 1,800,000 disk in about 155,000 storage
shelf enclosures. Some of their major findings are:

• In addition to actual disk failures, physical interconnect failures account for a similar fraction of
system failures.

• AFRs for disks and full storage systems do not increase with disk size.

• Storage subsystem failures are not independent. After one failure, the probability of additional
failures is higher.

An analysis of latent sector errors in a population of 1.53 million disks is presented in [61]. Interesting
observations are:

• 3.45 % of the disks developed one or more latent sector errors over 32 months.

• Over 80 % of the erroneous disks show less than 50 latent sector errors.
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• Near-line disks are more likely to develop latent sector errors than enterprise class disks (8.5%
versus 1.9%).

• With increasing disk sizes, the fraction of disks that develop latent sector errors also increases.

• Latent sector errors are not independent. A disks with an existing latent sector error is more
likely to develop additional latent sector errors.

• Latent sector error display a high locality with regard to logical sector addresses.

• Latent sector errors display a high temporal locality.

• Scrubbing detects a large percentage of latent sector errors.

An extended statistical study of the above data was done by [68]. They confirm that nearly all latent
sector errors that are experienced by a drive in its lifetime are in the same 2-week window and conclude
that these errors are caused by the same damaging event rather than by continuous wear-out. The
authors claim that both models for latent sector errors are unrealistic: The workload dependent bit error
rate, as well as a Poisson governed error arrival process. Instead they propose the Pareto distribution.

2.7. Conclusions

Individual storage components (and systems constructed from them) face a set of possible failure modes
and several models of different complexity have been developed to predict their reliability. Comparison
with field data shows, that many simplifying assumptions are not justified. Nearly all studies come
to the conclusion, that the ability to tolerate one error is not nearly sufficient do deal with full disk
failures in large scale storage systems. Partial disk failures such as latent sector errors, or a buggy disk
firmware have a much higher impact on overall reliability than previously thought. In order to handle
them appropriately, additional protecting techniques such as checksumming, scrubbing, versioning and
identities have to be utilized to complement the RAID redundancy mechanism. All these results provide
the motivation for a versatile compute-efficient coding scheme that is presented in one of the following
chapters. If combined with a checksumming method this erasure-resilient scheme protects against an
extended set of storage failure events.
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3. Fault-Tolerance and Reliability in Current
Storage Systems

In the following sections mechanisms for fault tolerance in storage systems are reviewed. At first the
traditional RAID concept is shown. Subsequently, a selection of distributed large-scale storage systems
and their approaches to deal with component failures is presented. Due to the high number of storage
systems available (commercial and academic), only a selection of the different implementations is
shown. Most of these systems can be grouped in classes with respect to their architecture and techniques
to deal with component failures. Therefore, the most prominent representatives of the different classes
are discussed in this chapter.

3.1. RAID (block storage)

The acronym RAID stands for Redundant Array of Inexpensive Disks and was introduced in 1988 [6]. It
establishes a taxonomy of five different organizations of disk arrays (the so-called levels) with different
performance and reliability characteristics. Today it is the prevailing concept for grouping disk into
fault-tolerant arrays and various extensions to the original levels have been proposed. Common to all
levels is an array of disks onto which data and redundant information are placed following different
strategies.

3.1.1. Level 0

The RAID level 0 (shown in Figure 3.1) is strictly not a redundant array and therefore not part of the
original proposition, but for completeness it is mentioned here. In RAID level 0 the data are divided into
blocks (or stripes) and then distributed over the whole array in an interleaved fashion. Consequently,
the blocks can be accessed in parallel which leads to a significant performance improvement. However,
RAID level 0 provides no fault-tolerance.

3.1.2. Level 1

The RAID level 1 uses replication to improve reliability. Every write operation to the data disk is
also replicated to one or more check disks. Level 1 provides a significantly increased reliability while
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0 1 2 3

0 1 2 3

Figure 3.1.: RAID level 0: Data are divided into blocks and distributed over the array.

displaying the highest overhead costs of all RAID levels (the usable storage capacity is 50% at best).
Read performance is on average slightly improved, since data can always be retrieved from either disk,
preferably from the on with shorter seek and rotational delays for accessing the requested sector. Figure
3.2 shows the duplication of every data block onto two disks.

1

0

0 1 2 3

Figure 3.2.: RAID level 1: Data are replicated to at least one more disk.

3.1.3. Level 2 and Level 3

The RAID levels 2 and 3 have no practical relevance today. Data are distributed bitwise or bytewise
over the array and fault-tolerance is achieved by either applying single-error-correcting Hamming codes
(level 2) or by using a parity approach. Level 2 storage efficiency is better than for level 1 (the exact
numbers depend on the used Hamming code and the configuration) but worse than for level 3, since
exactly one more disk for the parity information is needed in every configuration. The use of bit-
interleaved disks has a severe impact on performance in case of small operations, since they always

38



3.1. RAID (block storage)
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Hamming/Parity

Figure 3.3.: RAID level 2 and 3. Data are distributed bitwise over the array together with Hamming
check bits (level 2) or parity bits (level 3).

0 1 2 3

0 1 2 3

P

Parity

Figure 3.4.: RAID level 4. Consecutive data are divided into blocks which are striped horizontally over
the disk array. One parity block is calculated per horizontal stripe.

involve read or writes of the full sector. A level 3 RAID using only two disks is equivalent to a level 1
replication.

3.1.4. Level 4

In level 4 RAID all operations are on larger blocks (ideally multiples of full hard disk sectors). A
dedicated disk stores the horizontal parity of all blocks with the same (vertical) index. The parity
information is calculated as the bitwise XOR of all blocks in the same horizontal group. Data are
typically striped over the whole array to exploit the bandwidth of all disks for large transfers (Figure
3.4). For small write operations where only one block is overwritten, a differential update mechanism
can be used to avoid reading all remaining blocks of the horizontal ensemble:

pnew = (dold⊕dnew)⊕ pold , (3.1)

were pold/new denotes the new and old parity blocks and dold/new the old and new data blocks, respec-
tively. The disadvantage of this level is that the parity disk is involved in all write operations, such that
the effective throughput of the array is limited by the throughput of the parity disk. Furthermore, de-
pending on the ratio between small and large operations the parity disks experiences a higher load than
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the data disks, which puts it at risk of an increased failure probability. In terms of storage efficiency it
is ideal, since only one additional disk is required to provide tolerance of one disk failure.

3.1.5. Level 5

To alleviate the bottleneck of a dedicated parity disk, the RAID level 5 introduces a block-interleaved
scheme, while still calculating one parity block per horizontal stripe ensemble (Figure 3.5). As a result
the I/O load is distributed more evenly over the whole array. Since Equation 3.1 also holds for RAID
level 5, the performance for multiple small writes is improved, while conserving the good performance
for large transfers. Due to its excellent storage efficiency (which is directly correlated to cost efficiency)
of

E =
N−1

N
, (3.2)

where N is the number of equal sized disks in the array, RAID level 5 has been the preferred mode
of achieving fault tolerance in disk arrays for several years. RAID level 5 is often complemented by
additional hot spare disks, in order to keep the window of vulnerability after a disk failure as small
as possible. However, with growing array sizes and disk capacities the risk of data loss through latent
sector errors during reconstruction has also increased, which stipulated the use of multi-error tolerant
schemes.

0 1 2 3

0 1 2 3

P0123

4 5 6 P4567 7

8 9 P891011 10 11

4 5 6 7 8 ...

... ... ... ... ...

Figure 3.5.: RAID level 5. Similar to level 4, consecutive data are divided into blocks and striped over
the array. Parity blocks are interleaved with the data blocks, such that the I/O load is distributed more
evenly.
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3.1.6. Level 6

RAID level 6 is the umbrella term for any form of RAID that can tolerate two simultaneous failures
of disks, while still being able to continue operation1 [69]. Instead of calculating a single parity block
which is interleaved with the data blocks, several methods for efficiently calculating two redundant
blocks have been devised: Horizontal parity can be complemented by some form of diagonal par-
ity [70, 71, 72], such that no two elements of the diagonal ensemble reside in the same horizontal
group. Another approach is to start with a more general coding scheme, such as Reed-Solomon codes,
and to derive a compute efficient version for the case of 2-error tolerance. With a suitable generator
polynomial the costly finite field multiplications can be transformed into a combination of XOR, AND
and shift operations [73]. In practice, similar to levels 4 and 5, data are divided into blocks and striped
horizontally over the array. In addition to the parity P a second redundant block Q is calculated and
interleaved with P and the data blocks. The scheme is depicted in Figure 3.6

0 1 2 P012

0 1 2 3

Q012

3 4 P345 Q345 5

6 P678 Q678 7 8

4 5 6 7 8 ...

... ... ... ... ...

Figure 3.6.: RAID level 6.

3.1.7. Composite levels and variations

Many hybrid versions of the RAID levels exists. The most commonly used ones are combinations of
striping and the higher levels: RAID01 uses a striped array as a basis which is then replicated. RAID10
follows the opposite approach where data are striped over a set of mirrored disks. In a similar fashion
RAID50 stripes data over several level 5 arrays and RAID51 replicates a level 5 array. Double parity is
sometimes not interleaved but stored on dedicated disks similar to RAID level 4. Some storage systems

1In the sense of still being able to accept read and write requests to the exported virtual block device.
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include the hot spare disk into the array for load leveling and perform a reorganization of the array upon
single disk failure.

3.2. ZFS

As an example from the class of local file systems ZFS has been selected, since it incorporates several
advanced fault-tolerance and reliability mechanisms. Originally designed by Sun Microsystems, it is
today developed by the Oracle Corporation and has been released as open-source software [74]. ZFS
is an integrated file system and logical volume manager with a special focus on data integrity trough
end-to-end checksumming. Data are always written following the copy-on-write paradigm, that is,
new data are always written to a new block. The actual file system is decoupled from the physical
storage devices by utilizing the concept of virtual storage pools. As the first file system ZFS uses an
128-bit address space, eliminating any practical limits to scalability which have become problematic
for traditional file systems2. Remarkably, several fault-tolerance mechanisms have been integrated into
the file system: ZFS provides a RAID5, a RAID6 and even a triple parity protection scheme, the latter
one is called RAID-Z3 [75]. Although such a high degree of fault-tolerance is rarely found in current
file systems, the developers have recognized the need for a high-performance generalized n+ k coding
scheme. Another example for an advanced local file system is btrfs (B-tree FS) [76]. It shares many
progressive features with ZFS. A file striping feature with single and dual parity protection schemes is
planned.

3.3. Lustre

The name Lustre is an association of the terms linux and cluster. It is a shared and distributed file
system for clusters with a POSIX interface [77]. Initially designed for the use of future object-based
disks3, it has become the most popular storage architecture for clusters and is today widely deployed
in high performance computing environments and data centers. It is used as site-wide high-capacity
and high-throughput file system in many supercomputers, but also as general purpose backend file
system for business applications. Lustre uses a performance enhanced version of the ext4 file system
to store data and metadata. In addition to standard TCP/IP networking, it supports a variety of high-
performance network technologies that offer low latency and high throughput (such as InfiniBand or
Myrinet) and enables simultaneous operation through routing. High availability is achieved through
active/active and active/passive failover using shared and replicated storage. Lustre offers fine-grained
file and metadata locking mechanisms, in order to allow any client to operate on the same file or its
properties. The distribution of files and directories can be adapted to the application requirements,

2The maximum size of a single file in ZFS is 16 exabytes and the maximum size of one of the virtual storage pools is 256
zettabytes.

3A storage device similar to disks that, instead of providing a block interface, offers a flexible object interface.

42



3.3. Lustre

starting from assignment of files or directories to certain storage locations to a RAID level 0 type
striping of files. Lustre also provides export interfaces using NFS or CIFS to enable access from non-
Linux clients. A Lustre cluster contains three main functional units (Figure 3.7):

• File system clients: The clients access the Lustre file system through a POSIX-compliant inter-
face.

• Object Storage Servers (OSS): The OSS store the actual data in one or more attached Object
Storage Targets (OSTs).

• Metadata Servers (MDS): The MDS manages the namespace, it handles file and directory oper-
ations and stores the metadata of the file system in a Metadata Target (MDT).

Lustre
Clients

Management
Server (MGS)

Metadata
Server (MDS)

Object Storage
Servers (OSSs)

Object Storage
Targets (OSTs)

Metadata
Target (MDT)

Management
Target (MGT)
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Server
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Object Storage
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Directory operations,
file open/close,

metadata, 
concurrency

File I/O,
file locking

Recovery,
file status,

file creation

Figure 3.7.: Basic Lustre setup (left) and interactions of the Lustre components (right) [78].

The clients are usually some kind of compute node and their total number can be scaled up to 100.000.
When a client opens a file it contacts the MDS for the file metadata, in particular the position of the
file or its individual stripes on the various OSTs in the cluster. The intended file I/O is subsequently
performed by communicating directly with the involved OSSs. A Lustre cluster has only one active
MDS (at least in the current implementation), but can have several MDS on standby seeing the same
MDT in order to take over in case of failure of the active MDS. The metadata typically constitute 1-2%
of the total file system capacity. Every OSS can manage up to 8 OSTs and the number os OSS can
practically be scaled up to 500. While Lustre offers several mechanisms for high-availability and fault
tolerance, it lacks a high level approach for performance reasons. Lustre relies on shared and replicated
storage at the target level, data distribution is only possible in RAID level 0 striping mode.
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3.4. Ceph

Ceph is a scalable, high-performance distributed file system that advances the separation between data
and metadata management [79]. Similar to Lustre, the basic architecture of Ceph includes clients,
(multiple) metadata servers and object storage servers. Metadata operations are collectively managed
by a cluster of metadata servers. Instead of keeping allocation lists as metadata, data and replica distri-
bution is calculated using a pseudo-random mapping function. As a result lookups in distributed lists
are replaced with computations which can be performed independently by any involved agent. Re-
sponsibility for managing parts of the file system hierarchy are assigned dynamically to the individual
servers in the metadata cluster using Dynamic Subtree Partitioning. In this way Ceph adapts intelli-
gently to varying metadata workloads and utilizes the available MDS resources much better. Another
advantage of this approach is an almost linear scaling in the number of MDSs. While Lustre relies on
sufficiently reliable object storage devices, Ceph recognizes the inherent unreliability of a large number
of individual storage components. It is designed such that it can handle frequent failures, as well as
continuos addition of new storage devices and decommissioning of older hardware. Responsibility for
failure detection and recovery, data replication and migration is therefore delegated to the cluster of
object storage servers, the so-called Reliable Autonomic Distributed Object Store (RADOS). Below of
RADOS a POSIX-compliant file system with extended attributes is used. To the clients it offers block,
file, and block storage interfaces.

3.5. GoogleFS/HDFS

The Google file system and the Hadoop Distributed File System (HDFS) represent a different class
of storage systems [80, 81]. GoogleFS has been developed in conjunction with the MapReduce dis-
tributed computing framework. The framework allows the distributed processing (for instance index-
ing, searching, or sorting) of large data sets and has become extremely successful for a broad range
of data intensive applications. Hadoop is a free and open source implementation of the framework,
derived from information that was published about MapReduce. HDFS is the open source counterpart
to the Google file system. Booth systems are designed for running on a large number of commodity
components. Therefore, a high rate of component failures is expected and error detection and fault tol-
erance mechanisms are key aspects of the design. In terms of workload, the systems are tailored to the
MapReduce/Hadoop requirements. The file systems are optimized for very large files (typically larger
than 100 MB) which are read often. Write operations are large and sequential and mostly append data
to files. Moreover, high bandwidth is favored over low latency. The architecture of both file systems is
depicted in Figure 3.8. A single master (or namenode) maintains all file system metadata. Files are split
up into fixed-sized chunks (64MB) and then distributed to the chunkservers (datanodes). For reliability
each chunk is replicated at least three times (taking actual network and datacenter layout into account).
Accordingly, metadata also include the file to chunk mapping and the chunk locations and replication
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Figure 3.8.: Schematic view of the Google file system and the related HDFS [80, 81]. Names printed
in bold face follow the naming convention of HDFS, regular print indicates the terms used by
GoogleFS.

status. Clients use this information to directly interact with the chunkservers. The file systems do not
offer POSIX-compliant interfaces, access is handled by the application framework.

3.6. Summary

Reliability and fault-tolerance are key issues for small and large scale storage systems. RAID is the
standard concept for grouping disk into arrays which are able to tolerate up to two disk failures. Many
large scale distributed storage systems built of commodity components address the inherent unreliabil-
ity of their components by data replication. While this is the most straight-forward approach, it requires
a lot more storage capacity and is not as failure-tolerant as a versatile erasure-resilient coding scheme.
In conjunction with the anticipated exponential growth of digital data, this gives the motivation for a
flexible coding scheme which delivers a high performance on commodity hardware.

45





4. Error-Correcting Codes

Whenever digital data have to be transmitted reliably over inherently unreliable channels, techniques for
error detection and correction are indispensable. The theory of error control coding covers all aspects
of detecting and correcting errors introduced into data during transmission through a communication
channel. Unsurprisingly error-correcting codes are ubiquitous when it comes to moving, transforming,
or storing any kind of information. An easy example of how error-correcting codes are used in everyday
life is the International Standard Book Number (ISBN). The ISBN-13 is a unique commercial identifier
for books and publications. It consists of three to five elements of varying length [82] and has 13 digits
in total, for example:

978−0−824−70465−0 (4.1)

• A three digit prefix element (either 978 or 979).

• A group element that identifies country, region or language area (one to five digits).

• A publisher element (up to seven digits).

• A title element (up to 6 digits).

• A single check digit.

The check digit is calculated with a modulus division after summing up the digits with alternating
weights of one and three:

d13 =

(
10−

(
12

∑
i=1

di ·3(i+1) mod 2

)
mod 10

)
mod 10 (4.2)

The check digit helps to detect typographical errors or transposed digits. It has, however, a particular
weakness: If adjacent digits differ by five the check bit is identical when the digits are transposed.

Apart from this simple example, error-correcting codes play an important role in various areas. They
are used in practically every digital transmission such as in the package-based internet communication,
cell phone networks, digital video broadcast, or communication with deep space vessels. They are also
extensively used in data storage technologies, such as hard drives, compact disks, and digital versatile
disks.

In the following chapter a short introduction to the theory of (linear) error- and erasure-correcting
codes is presented, beginning with the basic concepts and ending with the specific ideas that were
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used for a novel coding scheme. Parts of this chapter are based on the presentation of the concepts in
[83, 84, 85].

4.1. Introduction

source source
encoder

encryption
encoder

channel
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sink source
decoder

encryption
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channel
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channel
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security

error protection

Figure 4.1.: General model of a digital communication system

An overview of a generalized digital communication system is shown in Figure 4.1. Data coming from
a source pass the three encoding stages and are modulated for communication over a channel. At the
receiving end of the channel the data are demodulated, decoded, and then delivered to the sink. The
source contains the actual data to be communicated (basically a stream of numbers that is governed
by a certain probability distribution). Each of the three encoders provides a distinct coding technique:
The source encoder removes redundancy from the source, thus performing a lossless data compres-
sion. After compression the data are encrypted, that is they are transformed such that eavesdroppers
cannot determine the transmitted information content. The channel encoder is responsible for adding
redundant symbols to the stream for enabling error detection and correction. Not every encoder is
present in every communication system, but all of them can be classified as a certain type of code. In
the scope of this thesis only channel encoding is considered. After the stream is supplemented with
redundant symbols, the message sequence is converted into signals by the modulator and send over the
noisy channel. At the receiving end, the signals are demodulated and converted back in to a stream
of symbols. The channel decoder then checks for introduced errors and attempts to correct them. The
sequence of symbols is subsequently decrypted and decompressed. At last the data are delivered to
the final destination, the information sink. In the context of storage systems the inherently unreliable
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storage hardware can be seen as the noisy channel. The task of a storage channel encoder is then to
create redundant information that are stored alongside the actual data.

4.2. Basic definitions

Information can be transmitted by a sequence of zeros and ones1. While an individual 0 or 1 is called
a (binary) digit, a sequence of digits is called a (binary) word. The length of a word corresponds to the
number of digits in it. A binary code is a set C of words. The words that belong to C are called code
words.

Definition 1 (Block code)
A code C with all code words having the same length is called a block code. The length of a block code
is equal to the length of its code words and the number of code words in a code C is denoted by |C|
(size of the code).

For example, the code
C1 = {111,000,100,110}

is a block code of length 3 and |C1|= 4.

Definition 2 (Hamming weight)
The Hamming weight wH of a word v is the number of nonzero digits of v.

For example, the Hamming weight of the word v = 10110 is

wH(v) = 3.

Definition 3 (Hamming distance)
The Hamming distance between two words u = u1u2 . . .un and v = v1v2 . . .vn is the number of digits
that they differ:

dH(u,v) =
n

∑
i
[ui 6= vi], (4.3)

where

[ui 6= vi] =

{
1 if ui 6= vi

0 if ui = vi.

For example, the Hamming distance between the words u = 10110 and v = 00111 is

dH(u,v) = 2.

1In the following a binary symmetric channel is assumed, that is, only zeroes and ones are transmitted. The probability for
an error is p and the probability for a correct transmission is 1− p. The error probability is assumed to be independent
from the value of the original bit.
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With K = {0,1} the set of the binary digits, we call Kn the set of all words of the length n. Addition of
two words of Kn is defined as component-wise exclusive OR and (inner) multiplication as component-
wise AND. Multiplication of a scalar element of K with an element of Kn is also defined component-
wise. Together with the zero word with the 0 digit in all components, it can be shown that Kn is a vector
space.

Definition 4 (Field)
A field F is a set of objects together with the addition operation + and the multiplication operation ·
that satisfy the following conditions:

• F is closed under addition and multiplication.

• An identity element exists for both operations.

• Inverse elements exists for both operations.

• Associativity of addition and multiplication.

• Commutativity of addition and multiplication.

• Distributivity of multiplication over addition.

A finite field with q elements is denoted by Fq.

Codes are not limited to binary digits as symbols. In general the alphabet for the code words is a finite
field Fq.

Definition 5 (Vector space)
Let F be a field of elements called scalars and V a set of elements called vectors. Let there be defined
an addition operation + between vectors and a scalar multiplication · between a scalar a ∈ F and a
vector u ∈ V , such that a · u ∈ V . V is called a vector space over F if + and · satisfy the following
conditions:

• V forms a commutative group under +.

• For all scalars a ∈ F and vectors v ∈V , a · v ∈V .

• The operations + and · are distributive.

• The multiplication · is associative.

Let W ⊂V a vector space, i.e. for any u1,u2 ∈W and any scalars a1,a2 ∈ F and , a1u1 +a2u2 is also
in W. W is then called a subspace.

Definition 6 (Linear combination)
A vector u in a vector space V is called a linear combination of the vectors v1, . . . ,vk ∈ V if scalars
a1, . . . ,ak exist, such that

u = a1v1 + . . .+akvk. (4.4)
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Definition 7 (Linear dependence)
A set of vectors S = {u1, . . . ,uk} is called linearly dependent if there exists a set of scalars {a1, . . . ,ak}
such that

a1u1 + . . .+akuk = 0, (4.5)

where not all ai = 0. If S is not linearly dependent, it is called linearly independent.

Definition 8 (Spanning set and linear span)
Given a vector space V and set of vectors S = {u1, . . . ,uk} with ui ∈ V , the set S is called a spanning
set for V if every vector v ∈V can be represented as a linear combination of vectors in S.

The set formed from all possible linear combinations of vectors in S is called the linear span of S,
span(S). It can be shown that span(S) is a subspace of V.

Definition 9 (Basis and dimension)
Let V be a vector space. A spanning set for V with the smallest possible number of elements is called a
basis for V . The number of vectors in the basis of V is called the dimension of V.

It can be shown that a k-dimensional vector space V over a finite field Fq has exactly qk elements. In
the following only vector spaces of finite dimension are considered.

Definition 10 (Inner product)
Let V be a vector space. The inner product of two vectors u = (u0, . . . ,un−1) and v = (v0, . . . ,vn−1) in
V , where ui,vi ∈ F, is denoted by u · v and is defined as

u · v =
n−1

∑
i=0

ui · vi. (4.6)

Definition 11 (Orthogonality)
Two vectors u and v are called orthogonal, if u ·v = 0. A vector u is called orthogonal to a set of vectors
S, if u · v = 0 for all elements v ∈ S.

The set of all orthogonal vectors to a set S is called the orthogonal complement of S. It can be shown
that for any subset S of a vector space V , the orthogonal complement of S is also a subspace of V .

Definition 12 (Ring)
A ring R is a set of objects together with the addition operation + and the multiplication operation ·
that satisfy the following conditions:

• R is closed under addition.

• An identity element exists for addition.

• Inverse elements exist for addition.

• Associativity of addition.

• Commutativity of addition.
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• Distributivity of multiplication over addition.

An expression of the form

f (x) =
n

∑
i=0

aixi, (4.7)

with an 6= 0 is called polynomial of degree n. The symbol x is called the indeterminate and the constants
ai are called the coefficients of the polynomial.

Definition 13 (Polynomial ring)
Let R be a ring. The set of all polynomials with coefficients ai ∈ R, together with the usual operations
for polynomial addition and multiplication, is called the polynomial ring R[x].

4.3. Linear codes

Every code can be represented by a complete list of message words and their corresponding code
words. However, with growing size of the code the cost for storing the list and for performing decoding
operations also increases. Using mathematical structure to describe codes can reduce the overhead
considerably. One of the most important properties of codes is linearity which makes it possible to
apply tools and techniques from linear algebra.

Definition 14 (Distance of a code)
The distance d of a code C is the smallest Hamming distance between any two code words,

d = min
ci,c j∈C,ci 6=c j

dH(ci,c j). (4.8)

A code C is called linear code if the linear combination of any two words in C is again a word in C. A
more formal definition of a linear code is:

Definition 15 (Linear code)
A block code C over a finite field Fq of distance d, length n, and size qk is called a linear (d,n,k) code,
if and only if its code words form a k-dimensional subspace of the vector space Fn

q of all the n-tuples of
elements of Fq. The number k is called the dimension of the code.

With the properties of a vector space every code word c of a linear (d,n,k) code C can be represented
as a linear combination of the k basis vectors g0, . . . ,gk−1 of the code:

c = m0g0 + . . .+mk−1gk−1, (4.9)

where mi ∈ Fq. Interpreting the scalars m0, . . . ,mk−1 as a k-tuple message word m = (m0 . . .mk−1),
Equation 4.9 describes a method to encode message words into code words of C.
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4.3. Linear codes

The matrix G obtained from packing the basis vectors row-wise into the k× n matrix is called the
generator matrix of C:

G =

 g0
...

gk−1

 . (4.10)

The encoding operation in Equation 4.9 can then be written as

c = mG. (4.11)

Instead of storing all qk code words, a linear code is therefore completely represented by its k basis
vectors of length n (or the k× n generator matrix, respectively). However, this representation of a
code is not unique. A different generator matrix for the same code can for instance be obtained by
performing elementary row operations on the generator matrix.

Definition 16 (Systematic code)
A code generated by a k×n matrix G whose first k columns form the k×k identity matrix Ik is called a
systematic code,

G =
[
Ik,X

]
. (4.12)

Code words c = mG of a systematic code consist of the original message word m in the first k digits.

An arbitrary generator matrix can always be transformed into a systematic generator matrix with Gaus-
sian elimination.
Definition 17 (Dual code)
The orthogonal complement to a linear (d,n,k) code C is called dual code C⊥. The dimension of C⊥ is
n− k.

Since C⊥ is also a vector space there exists a basis with n− k vectors {h0, . . . ,hn−k−1}. The matrix H
formed by stacking the basis vectors as rows is called parity check matrix:

H =

 h0
...

hn−k−1

 . (4.13)

The parity check matrix H is a generator matrix for the dual code C⊥ and satisfies the following:

GHT = 0. (4.14)

A linear (d,n,k) code C over Fq and the corresponding parity check matrix H have the following useful
property: A vector u ∈ Fn

q of length n is a code word of C if and only if

uHT = 0. (4.15)
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4. Error-Correcting Codes

If the generator matrix of C is given in systematic form, then the parity check matrix is determined as

H =
[
In−k,−XT

]
. (4.16)

4.4. Bounds for codes

Definition 18 (Singleton bound)
For any linear (d,n,k) code the distance is bounded by

d−1≤ n− k. (4.17)

A linear (d,n,k) code with d = n− k+1 is called maximum distance separable (or MDS).

Code words and non-code words can be interpreted geometrically: For every code word of a q-ary2

code of length n there are in general

p = (q−1)l
(

n
l

)
(4.18)

vectors at the hamming distance l from the code word. All vectors at Hamming distance d≤ t constitute
the so-called Hamming sphere of radius t. The number of vectors Vq(n, t) inside an Hamming sphere
of radius t for a q-ary code of length n is

Vq(n, t) =
t

∑
j=0

(q−1) j
(

n
j

)
. (4.19)

Any non-code word inside a sphere of radius

t = bd−1
2
c (4.20)

around a code word is decoded to that code word3. In the same manner a code with error-correction
ability of t must have at least a distance of

d ≥ 2t +1. (4.21)

Definition 19 (Hamming bound)
For a q-ary code C of length n and distance d such that

t = bd−1
2
c, (4.22)

2A q-ary code is a set of code words, where each code word is a sequence of symbols which are chosen from q distinct
elements.

3In the sense that the code word with the smallest distance to the non-code word is the most probable candidate.
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(0,0,0)

(1,1,1)

(0,0,1) (1,0,1)

(0,1,1)

(1,0,0)

(1,1,0)(0,1,0)

Hamming sphere of 
radius t=1 around

(0,0,0)

Figure 4.2.: Code words and Hamming spheres can be interpreted geometrically.

the size of C is bounded by

|C| ≤ qn

∑
t
j=0(q−1) j

(n
j

) = qn

Vq(n, t)
. (4.23)

A code that attains the Hamming bound is called a perfect code.

4.5. Error detection and correction

Given a vector r ∈ Fn
q and the parity check matrix H for a linear (d,n,k) code C, the vector

s = rHT (4.24)

is called the syndrome of r. Since the syndrome is the zero vector if and only if r ∈C, it can be used
to detect errors. With the code C over Fq, the code word c ∈C, and the vector r ∈ Fn

q, the transmission
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4. Error-Correcting Codes

over a noisy channel can be written as the addition

r = c+ e. (4.25)

If the code word c is transmitted and subsequently the vector r is received, the vector e is called the
error pattern that is introduced during transmission. The syndrome is then

s = rHT = (c+ e)HT = eHT (4.26)

A syndrome s 6= 0 only contains the information that an error pattern was introduced, finding the correct
code word is in general done using maximum likelihood decoding. For a received vector r the code word
c is selected such that the Hamming distance to r is minimal:

c = arg min
a∈C

dH(a,r) (4.27)

Definition 20 (Complete and bounded distance decoders)
A complete error-correcting decoder selects for every received vector r the code word c such that
dH(c,r) is minimal.

A t-error-correcting bounded distance decoder selects the code word c such that dH(c,r) ≤ t. If no
such c exists, decoding has failed.

A powerful decoding scheme is characterized by an efficient mechanism to perform the maximum
likelihood decoding4.

4.6. Erasure codes

An error where the location of the error is known is called erasure. In general, in the presence of e
errors and ε erasures a code must have at least a distance of

d ≥ 2e+ ε +1 (4.28)

in order to be able to correct them. Erasure coding can be useful in various applications where code
words can be interleaved. A sequence of code words c1, . . . ,cL of length n are written horizontally in
the rows of a matrix as shown in Figure 4.3. The symbols are then read out vertically and stored for
example as blocks of length L on disjunct storage devices or transmitted as packets of length L over a
noisy channel.

4One example is to pre-calculate the syndromes and the associated error patterns, instead of keeping all code words in a
table and performing a minimum distance search for every received non-code word.
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4.7. Cyclic linear codes

c10 c11 c12 . . . c1n−1

c20 c21 c22 . . . c2n−1

...
...

...
...

...

cL0 cL1 cL2 . . . cLn−1

Figure 4.3.: Code words are interleaved an written into rows of a matrix. The symbols are then used
vertically (grey).

If a block or a packet is lost, an entire column of data in the matrix is erased. Due to the interleaving
this corresponds to only one erased symbol in each of the L individual code words, which can be
corrected.

4.7. Cyclic linear codes

For a vector c = (co, . . . ,cn−2,cn−1) ∈ Fn
q we call the vector

π(c) = (cn−1,co, . . . ,cn−2) (4.29)

the cylic shift of c.

Definition 21 (Cyclic linear code)
A linear (d,n,k) code C is called cyclic linear code if for every code word c ∈C, the cyclic shift π(c)
is also in C.

Code words and their cyclic shifts can be conveniently represented by polynomials. The code word
c = (c0,c1, . . . ,cn−1) corresponds to the polynomial

c(x) = c0 + c1x+ . . .+ cn−1xn−1. (4.30)

The cyclic shift of c(x) corresponds to

π(c(x)) = xc(x) (mod xn−1) (4.31)

using the usual division process for polynomials with remainder. For polynomials p(x) and d(x), there
exist polynomials q(x) and r(x) such that p(x) = q(x)d(x)+ r(x), where 0≤ deg(r(x))< deg(d(x)).

For every (d,n,k) cyclic code C there exists a unique generator polynomial g(x) of degree n− k

g(x) = g0 +g1x+ . . .+gn−kxn−k. (4.32)
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4. Error-Correcting Codes

Every code word in C represented as polynomial c(x) can be expressed as product of a message poly-
nomial m(x) with the generator polynomial g(x)

c(x) = m(x)g(x) (4.33)

with deg(m(x))< k and deg(c(x))< n. The generator matrix G for the cyclic code is created with the
generator polynomial and its first k−1 cyclic shifts

G =


g(x)

π(g(x))
π2(g(x))

...
πk−1(g(x))

 , (4.34)

or

G =



g0 g1 . . . gn−k

g0 g1 . . . gn−k

g0 g1 . . . gn−k
. . . . . . . . .

g0 g1 . . . gn−k

g0 g1 . . . gn−k


(4.35)

where all empty elements are zero. Correspondingly, there exists a parity check polynomial h(x) with
deg(h(x)) = k that satisfies

h(x)g(x) = xn−1. (4.36)

The polynomial j(x) is a code word of C, if and only if

j(x)h(x) mod (xn−1) = 0 (4.37)

The polynomial s(x) = j(x)h(x) mod (xn− 1) is called the syndrome polynomial. The (n− k)× n
parity check matrix H is constructed from h(x) = h0 +h1x+ . . .+hkxk as

H =



hk hk−1 . . . h0

hk hk−1 . . . h0

hk hk−1 . . . h0
. . . . . . . . .

hk hk−1 . . . h0

hk hk−1 . . . h0


, (4.38)

where, again, all empty elements are zero.
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4.8. Galois fields

4.8. Galois fields

Since the codes in the subsequent sections utilize specific properties of finite fields, the mathematical
concepts are quickly reviewed in this section. In honor of the French mathematician Évariste Galois,
finite fields are often referred to as Galois fields. A finite field containing q elements Fq is therefore also
denoted by GF(q). The order q of a Galois field must be of the form q= pm, where p is a prime number
and m is a positive integer. For any given q, the field GF(q) is unique up to isomorphisms and therefore
completely described by its size. The elements of a Galois field GF(q = pm) can be represented by
polynomials of maximum degree m− 1 and coefficients in GF(p). Addition of elements is simply
defined according to the conventional rules for polynomial addition. Multiplication, in order to satisfy
all the requirements of a field, requires the additional step of computing the remainder modulo some
special polynomial:

Definition 22 (Irreducible polynomial)
Let f (x), h(x), g(x) ∈ R[x] with the degree of h(x) and g(x) being less than the degree of f (x). The
polynomial h(x) is a divisor of f (x) if f (x) = g(x)h(x). The polynomials h(x) = 1 and h(x) = f (x) are
called trivial divisors.

The non-constant polynomial f (x) is called irreducible over the Ring R, if it has only trivial divisors in
R[x].

With this, the multiplication of elements of a Galois field is defined as the usual multiplication of
polynomials, followed by a modular reduction with an irreducible polynomial. A further requirement
for the irreducible polynomial allows for an elegant construction of the Galois field:

Let α be an element of GF(q). The order of α is the smallest positive integer m for which αm = 1.

Definition 23 (Primitive element)
α ∈ GF(q) is called primitive element, if it has order (q-1).

It can be shown that every Galois field contains at least one primitive element. A polynomial is called
monic if the coefficient of the term of highest degree is equal to 1.

Definition 24 (Primitive polynomial)
Let f (x) be a monic polynomial of degree m with coefficients in GF(p). If f (x) has a primitive element
α ∈ GF(pm) as one of its roots, f (x) is called primitive polynomial.

If a primitive polynomial h(x) is chosen for the modular reduction and α ∈ GF(pm) is a root of h(x),
then the pm−1 consecutive powers of α ,

{1,α,α2, . . . ,α pm−2}, (4.39)

are distinct and they are the pm−1 nonzero elements of GF(pm). This is the so-called power represen-
tation of the Galois field. Since the powers of α are unique, a nonzero element can be represented by
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the exponent, often referred to as the logarithm of the element. The multiplication of two elements αa

and αb can thus be described as

α
a ·αb = α

(a+b) if (a+b)≤ (pm−2) (4.40)

If (a+b)> pm−1, the order of α can be used for the modular reduction:

α
pm−1 = 1⇒ α

a ·αb = α
(a+b) = α

pm−1 ·αa+b−(pm−1). (4.41)

In summary, the multiplication can be written as

α
a ·αb = α

(a+b) mod (pm−1). (4.42)

From the exponential representation of the nonzero elements of GF(pm), the polynomial representation
can be obtained by reduction modulo the primitive polynomial. The polynomial coefficients can also be
conveniently transformed into binary and decimal vector representations. Due to the byte-based nature
of memory, p = 2 is of particular interest. The field GF(24) for the primitive polynomial h(α) =

1+α +α4 and all discussed representations are shown in Table 4.1.

Since for polynomials in GF(2m)[x] the coefficients are elements of GF(2), the polynomial addition
can be performed modulo 2. For most practical applications this corresponds to the bitwise XOR of
the binary representation. The description of the multiplication using the powers of a root of the prim-
itive polynomial gives a second practical implementation: Instead of a full polynomial multiplication
modulo the primitive polynomial, the mapping between the logarithm and the vector representation can
be stored in two tables (for both directions). To multiply two polynomials in vector representation the
table is used to identify their logarithms, and the sum of them (including the reduction) is calculated
according to Equation 4.42. With the reverse table, the vector representation of the result is then found.
For small m the result of all possible multiplications in GF(2m) can also be stored in a table. The prac-
tical usefulness of the table approach, however, depends highly on the hardware architecture. As will
be shown later, a fast polynomial multiplication algorithm which avoids table structures can be faster
and deliver the basis for an optimized coding scheme.

4.9. BCH codes

A class of commonly used cyclic multiple error-correcting codes are the BCH codes, named after Bose,
Ray-Chaudhuri, and Hocquenghem [86, 87]. As any cyclic code the BCH codes can be specified by a
generator polynomial.

Definition 25 (Minimal polynomial)
The minimal polynomial of an element β ∈ GF(pm) with respect to GF(p) is the minimum-degree,
nonzero, monic polynomial f (x) ∈ GF(p)[x], such that f (β ) = 0.

60



4.9. BCH codes

Decimal Binary Polynomial Power of α Logarithm
0 0000 0 - -
1 0001 1 α0 0
2 0010 α α1 1
4 0100 α2 α2 2
8 1000 α3 α3 3
3 0011 α +1 α4 4
6 0110 α2 +α α5 5

12 1100 α3 +α2 α6 6
11 1011 α2 +α +1 α7 7
5 0101 α2 +1 α8 8

10 1010 α3 +α α9 9
7 0111 α2 +α +1 α10 10

14 1110 α3 +α2 +α α11 11
15 1111 α3 +α2 +α +1 α12 12
13 1101 α3 +α2 +1 α13 13
9 1001 α3 +1 α14 14

Table 4.1.: The elements of GF(24) and their different representations, constructed using h(α) = 1+
α +α4.

Definition 26 (Root of unity)
An element β ∈ GF(pm) with β 6= 1 is called nth root of unity if β n = 1. If n is the smallest integer for
which β n = 1, then β is called a primitive nth root of unity.

The coefficients of the generator polynomial (the digits of the code word) are in GF(p), whereas the
roots of the polynomial are in GF(pm). A t-error-correcting BCH code of length n can be constructed
as follows:

1. Find the minimum m, such that GF(pm) has a primitive nth root of unity β .

2. Choose a nonnegative integer b.

3. Create a sequence of the 2t consecutive powers of β ,

β
b,β b+1, . . . ,β b+2t−1,

and determine the minimum polynomial for each of the powers of β with respect to GF(p).

4. The generator polynomial g(x) is given by the least common multiple of all these minimal poly-
nomials.

The dimension of the code is n−deg(g(x)) and the distance satisfies d ≥ 2t +1. Let

c(x) = m(x)g(x) (4.43)
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a code polynomial. Since all 2t selected powers of β are chosen to be the roots of g(x),

c(β i) = m(β i)g(β i) = 0, (4.44)

or,
c0 + c1β

i + . . .+ cn−1(β
i)(n−1) = 0, (4.45)

for i = b,b+1, . . . ,b+2t−1.

With s = 2t +1, the parity-check matrix H is obtained from the set of equations in 4.45 as

H =


1 β b β 2b . . . β (n−1)b

1 β b+1 β 2(b+1) . . . β (n−1)(b+1)

...
...

...
...

1 β b+s−3 β 2(b+s−3) . . . β (n−1)(b+s−3)

1 β b+s−2 β 2(b+s−2) . . . β (n−1)(b+s−2)

 . (4.46)

Let the received polynomial r(x) be the sum of the code polynomial c(x) and the error pattern e(x):

r(x) = c(x)+ e(x). (4.47)

With Equation 4.45 the syndromes S j with j = 1,2, . . . ,2t (assuming b = 1) are obtained by

S j = r(β j) = 0+ e(β j) =
n−1

∑
k=0

ekβ
jk. (4.48)

4.10. Reed-Solomon codes

Reed-Solomon codes have been developed by I. Reed and G. Solomon in 1960 [7]. They are related to
the BCH codes, however, the digits in the code words are no longer elements of the base field GF(p),
but elements of GF(pm).

The original construction method creates a polynomial from the message vector and evaluates this
polynomial at all nonzero elements of GF(pm) (given by the powers of one primitive element α):

Definition 27 (Reed-Solomon codes I)
Let m = (m0,m1, . . . ,mk−1) ∈ GF(pm)k be a message vector with components in GF(pm). The asso-
ciated polynomial is m(x) = m0 +m1x+ . . .+mk−1xk−1 ∈ GF(pm)[x]. With some primitive element
α ∈ GF(pm), n = pm−1 and the code vector c = (c0,c1, . . . ,cn−1), the encoding is defined by:

c = (c0,c1, . . . ,cn−1) = (m(1),m(α),m(α2), . . . ,m(αn−1)) (4.49)
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A complete set of code words is obtained by evaluating all pmk possible message vectors. The Reed-
Solomon code is a (n− k+1,n,k) linear MDS code.

Accordingly to the BCH codes the Reed-Solomon codes can also be formulated with the help of a gen-
erator polynomial. While both formulations are equivalent, the following definition is most commonly
used.

Definition 28 (Reed-Solomon codes II)
For the t-error-correcting Reed-Solomon code of length (pm−1) with symbols in GF(pm) and a non-
negative integer b, the generator polynomial is constructed such that it has the 2t consecutive powers
of some primitive element α ∈ GF(pm) as roots.

g(x) =
b+2t−1

∏
j=b

(x−α
j) (4.50)

It can be shown that deg(g(x)) = 2t and therefore the dimension k = n−2t. Since any of the k “digits”
in the message vector can be any element of GF(pm), the size of the code is pmk.

Similar to equation 4.33, the encoding is done by polynomial multiplication,

c(x) = m(x)g(x). (4.51)

Equation 4.50 can be expanded into

g(x) = g0 +g1x+ . . .+g2t−1x2t−1 + x2t , (4.52)

where all coefficients gi ∈ GF(pm) and a generator matrix can be obtained analogously to Equation
4.35.

4.11. Decoding of BCH and Reed-Solomon codes

The general outline for algebraic decoding of the BCH and the Reed-Solomon codes is as follows:

• Syndrome computation: Using the fact that the 2t consecutive powers of some field element β

are the roots of the generator polynomial, the 2t syndromes can be calculated.

• Calculation of the error locator polynomial.

• Determination of the roots of the error locator polynomial. The roots indicate the location of the
error.

• For non-binary codes the error values have to be determined in order to being able to correct the
errors.
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4. Error-Correcting Codes

The relationship between syndromes and error pattern has been shown in Equation 4.45. Assuming
that ν errors at locations i1, i2, . . . , iν have occurred, the syndromes can be rewritten such that

S j =
n−1

∑
k=0

ekβ
jk =

ν

∑
l=1

eil (β
j)il =

ν

∑
l=1

eil (β
il ) j. (4.53)

With the so-called error locators Xl = β il and the error values eil one gets 2t equations:

S j =
ν

∑
l=1

eil X
j

l j = 1,2, . . . ,2t, (4.54)

or, 
X1 X2 . . . Xν

X2
1 X2

2 . . . X2
ν

...
...

...
X2t

1 X2t
2 . . . X2t

ν




ei1

ei2
...

eiν

=


S1

S2
...

S2t

 (4.55)

In order to find the error locators the error locator polynomial Λ(x) is defined:

Λ(x) =
ν

∏
l=1

(1− xXl) = 1+Λ1x+ . . .+Λν−1xν−1 +Λνxν (4.56)

If x = 1
Xl

, then Λ(x) = 0. That is, the roots of this polynomial are the reciprocals of the error locators.
It can be shown that the syndromes and the coefficients Λi are related by

Sk +Λ1Sk−1 + . . .+Λk−1S1 + kΛk = 0 1≤ k ≤ ν (4.57)

Sk +Λ1Sk−1 + . . .+Λν−1Sk−ν+1 +ΛνSk−ν = 0 k > ν . (4.58)

From this relationship a system of linear equations can be obtained and it can be solved for the coeffi-
cients of the error locator polynomial:


S1 S2 . . . Sν

S2 S3 . . . Sν+1

S3 S4 . . . Sν+2
...

...
...

Sν Sν+1 . . . S2ν−1




Λν

Λν−1

Λν−2
...

Λ1

=−


Sν+1

Sν+2
...

S2ν

 (4.59)

Once the coefficients are determined, the roots of Equation 4.56 can be found, for instance through
exhaustive search. With these roots the error locators are easily obtained. Now Equation 4.55 can be
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solved for the actual error values eil and the original message can be reconstructed by subtracting the
error pattern from the received polynomial.

Since the algebraic decoding method is computationally relatively complex, several algorithms have
been developed to perform certain steps more efficiently: Chien search is a fast algorithm for finding
roots of polynomials over finite fields without evaluating every field element [88]. Forney’s algo-
rithm [89] uses Lagrange interpolation to find the error values, instead of solving the system of linear
equations in 4.55. An iterative procedure for finding the error locator polynomial (especially when the
number of errors is not known) is given by the Berlekamp-Massey algorithm [90, 91]

By design, Reed-Solomon codes are able to correct

t = b(n− k)/2c (4.60)

errors. Provided that the error locators Xl are already known, that is, an erasure has occurred, Equation
4.55 can be solved directly for the error values. In case of a mixture of e errors and ε erasures, a
Reed-Solomon code of distance d is capable of decoding a message vector correctly, if

2e+ ε ≤ d−1. (4.61)

When dealing with erasures only, the maximum number of tolerable erasures τ is related to the dimen-
sion and the length of the code by

τ = d−1 = n− k. (4.62)

4.12. Vandermonde-based Reed-Solomon erasure codes

For an n-tuple (x1,x2, · · · ,xn) of elements of a field the Vandermonde matrix is defined as

V (x1,x2, . . . ,xn) =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
1 x3 x2

3 · · · xn−1
3

...
...

...
. . .

...
1 xn x2

n · · · xn−1
n

 . (4.63)

The determinant of a square Vandermonde matrix can be determined by [92]:

det(V (x1,x2, . . . ,xn)) = ∏
1≤k< j≤n

(x j− xk) (4.64)

With Equation 4.64 it is easy to see that the square Vandermonde matrix is invertible if and only if
the xi are pairwise distinct. This property can now be used to construct a generator matrix for a linear
code:

65



4. Error-Correcting Codes

The Vandermonde matrix is chosen such that

V = (vi, j) = i j, (4.65)

and therefore the n×m Matrix (m < n)

Vi, j =


00 01 · · · 0m−1

10 11 · · · 1m−1

...
...

...
(n−1)0 (n−1)1 · · · (n−1)m−1

 . (4.66)

is obtained (with the definition of 00 = 1). It is evident that this matrix (and any other Vandermonde
matrix) is non-singular if any n−m rows are removed: The remaining square matrix contains still rows
with pairwise distinct xi and is therefore still invertible. In order to use this matrix for generating a
systematic linear code it has to be transformed into an information dispersal matrix where the m×m
matrix in the first n rows is the identity matrix. This can be achieved by applying a sequence of
elementary matrix transformations [93]:

• Any column Ci may be swapped with column C j.

• Any column Ci may be multiplied with non-zero a

• To any column Ci the multiple of another column may be added: Ci ← Ci + a ·C j, where i 6= j
and a 6= 0.

Since elementary matrix transformations do not change the rank of the matrix, the derived matrix
maintains the properties of the Vandermonde matrix and has the following form:

V ∗ =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 . . . 1

v∗m,0 v∗m,1 . . . v∗m,m−1
...

...
...

v∗n−1,0 v∗n−1,1 · · · v∗n−1,m−1


. (4.67)

V ∗ is the generator of the systematic linear Vandermonde-based Reed-Solomon code. Encoding is
performed as usual by multiplying the generator with the vector of data words d = (d0,d1, · · · ,dm−1),
where di ∈ GF(2p) and 2p > n. The results consist of the original data words in the first m− 1 rows
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and the check words c = (c0,c1, · · · ,cn−m−1):

V ∗d =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 . . . 1

v∗m,0 v∗m,1 . . . v∗m,m−1
...

...
...

v∗n−1,0 v∗n−1,1 · · · v∗n−1,m−1




d0

d1
...

dm−1

=



d0

d1
...

dm−1

c0

c1
...

cn−m−1


=

(
d
c

)
(4.68)

In case of an erasure of a data word di, the i-th row of V ∗ and the i-th component of the resulting
vector have to be deleted. After exactly n−m data rows are removed, a non-singular square matrix V †

remains, together with resulting vector of the surviving data and check words (d†,c)T :

V †d =V †


d0

d1
...

dm−1

=

(
d†

c

)
(4.69)

The matrix V † is guaranteed to be invertible and the original vector can be reconstructed as:

(V †)−1V †d = (V †)−1

(
d†

c

)
=


d0

d1
...

dm−1

 (4.70)

In case of erasures of the check symbols ci, the encoding procedure in Equation 4.68 can simply be
repeated.

When one of the data words d j is changed into d′j all check words have to be updated:
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V ∗d =



d0

d1
...

d j
...

dm−1

c0

c1
...

cn−m−1



⇒ V ∗



d0

d1
...

d′j
...

dm−1


=



d0

d1
...

d′ j
...

dm−1

c′0
c′1
...
c′i
...

c′n−m−1



. (4.71)

Subtraction of both systems gives

V ∗



0
...
0

d j−d′j
0
...
0


=



0
...
0

d j−d′j
0
...
0

c0− c′0
c1− c′1

...
cn−m−1− c′n−m−1



. (4.72)

Since the first m rows of V ∗ are the identity matrix only the last (n−m) check words are of interest and
give the following relationship between changed data words and corresponding updates of the check
words:

v∗i, j(d j−d′j) = (ci− c′i) (4.73)

or
c′i = ci− v∗i, j(d j−d′j) (4.74)
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4.13. Cauchy Reed-Solomon codes

Cauchy Reed-Solomon codes [94] are very similar to the Vandermonde-based codes but they come
with two important modifications. Instead of utilizing the Vandermonde matrix as a starting point to
generate the code, they use a Cauchy matrix with similar properties. Conveniently, square n×n Cauchy
matrices may be inverted with O(n2) Galois Field operations [95].

Definition 29 (Cauchy matrix)
Let X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,yn} be two sets of elements of a field F such that

a) ∀i ∈ 1, . . . ,m and ∀ j ∈ 1, . . . ,n: xi + y j 6= 0.

b) ∀i, j ∈ 1, . . . ,m, i 6= j: xi 6= x j and ∀i, j ∈ 1, . . . ,n, i 6= j: yi 6= y j.

The (m×n) Cauchy matrix over F is defined as:

C =



1
x1+y1

1
x1+y2

· · · 1
x1+yn

1
x2+y1

1
x2+y2

· · · 1
x2+yn

...
...

. . .
...

1
xm−1+y1

1
xm−1+y2

· · · 1
xm−1+yn

1
xm+y1

1
xm+y2

· · · 1
xm+yn


(4.75)

The determinant of a square Cauchy matrix can be determined by

det(C) =
∏i< j(xi− x j)∏i< j(yi− y j)

∏
n
i, j=1(xi + y j)

, (4.76)

and it can be shown that every sub-matrix of a Cauchy matrix is again a Cauchy matrix and that every
square sub-matrix of a Cauchy matrix is non-singular [92]. The matrix formed by the identity matrix I
in the first n rows and the a Cauchy matrix C over GF(2p) in the remaining m rows,

G = (gi, j) = (I,C) , (4.77)

is the generator of a systematic code with word size p, where n+m ≤ 2p. The second modification
is to use a special field isomorphism to convert operations over GF(2p) into XOR operations over
GF(2)[x]/(h(x)), the field of polynomials GF(2)[x] modulo an irreducible polynomial h(x) of degree
p:

• Elements α in GF(2p) can be identified with polynomials α0 + α1x + · · ·+ αp−1xp−1 where
αi ∈ GF(2). It can also be represented by a column vector (α0,α1, · · · ,αp−1)

T in GF(2)p.

• An element can also be represented by an (p× p) bit matrix τ(α), where there ith column is the
column vector of αxi−1 mod h(x).
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With these projections the generator matrix of the Cauchy Reed-Solomon codes is simply

G∗ = (τ(gi j)). (4.78)

All arithmetic is subsequently done over GF(2), that is, multiplication can be performed using bitwise
AND operations and addition with XOR operations. Encoding and decoding is performed as usual, af-
ter the data words have been transformed into their bit representation. The costly polynomial arithmetic
has been replaced with a (typically) higher number of modulo 2 operations.

4.14. Summary

The concepts of linear error and erasure correcting codes have been reviewed briefly in this chapter.
Starting with basic block codes, the property of linearity quickly leads to a description of codes in
terms of generator matrices. Cyclic codes allow an even more compact description with the help of
a generator polynomial. The introduction of Galois fields enables the construction of the cyclic BCH
codes with powerful correction capabilities. Finite fields are also required by the Reed-Solomon codes
that are the foundation for several erasure correcting codes suitable for distributed storage systems. The
concepts of non-binary codes over finite fields are essential for the following chapter, where a linear
MDS code specifically tailored to modern processor architectures is constructed.
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In this chapter a novel coding scheme is introduced. The scheme is based on a linear non-binary erasure
correcting code over a finite field (similar to Reed-Solomon codes). For the essential multiplication
operation a polynomial algorithm is presented, which displays a high degree of arithmetic intensity and
is therefore particularly suitable for execution on the vector units of general purpose processors and
on modern many-core accelerator devices. In contrast to previous schemes the generator matrices are
specifically tailored to exploit the features of the processor architectures and avoid their bottlenecks.
This is achieved by aiming for a specific distribution of the polynomial coefficients that represent
the elements of the generator matrix. Several approaches to create suitable generator matrices are
elaborated and their implications are discussed. A Monte-Carlo based construction makes it possible to
influence the specific shape of the matrices and to hereby adapt them to special usage scenarios. Parts
of this chapter have been previously published in [96].

5.1. Introduction

The Galois fields of the form GF(2r) are naturally of particular interest in storage applications. The
efficiency and performance of these applications depend considerably on the implementation of Galois
field arithmetic. While the addition of two elements of GF(2r) can be carried out by a comparatively
inexpensive bitwise XOR of the binary representation of the elements, multiplication of two elements is
performed by multiplying two polynomials which represent the elements. To avoid the computational
cost of a polynomial multiplication, implementations usually use pre-calculated lookup tables for the
logarithm and its inverse. The use of 2-dimensional tables that store the multiplication of any two
elements is also common. However, on modern computer architectures the table-based strategy has
serious shortcomings: Due to the growing disparity between the speed of the CPU and the dynamic
access random memory (DRAM) latencies, also known as the memory wall [97], modern processing
units are able to execute several hundreds of instructions during the time required to service an uncached
memory load [9]. The situation gets worse for modern multiprocessors systems commonly employing
cache coherent non-uniform memory architectures (NUMA). In contrast to the traditional front-side-
bus (FSB) approach, memory is directly connected to a particular CPU in NUMA systems (Figure 5.1).
This increases the totally available memory bandwidth, but also increases the latency when the CPU
is accessing a remote memory region. In this case DRAM latencies can be in the order of a thousand
processor instructions [98]. As a consequence, modern operating systems are equipped with various
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CPU0 CPU1

MCH

Memory

CPU0 CPU1

Memory Memory

FSB

IO Hub

Interconnect

IO Hub

Figure 5.1.: Memory organizations of multiprocessor systems. The traditional frontside bus model is
depicted on the left, the NUMA model is shown on the right [100].

mechanisms to ensure optimal process placement and memory allocation and even allow for migration
of pages between memory domains to minimize NUMA latencies [99].

Another problem arises from the increasing number of individual cores in multiprocessors paired with
the stagnation of processor clock frequencies. The architecture of the memory subsystem, including
memory controllers and caches, necessarily becomes more complex. This introduces serious perfor-
mance limitations and the implications have to be well understood in order to achieve reasonable effi-
ciency. In addition to the scaling in terms of processor cores, modern processors allow for the vector-
ization of applications by extending previously implemented scalar instructions [101] according to the
Single Instruction, Multiple Data (SIMD) [102] paradigm. In particular applications processing large
bit streams can benefit from using such SIMD instructions, while certain classes of (flow-control heavy)
algorithms cannot be efficiently vectorized. A trend of growing vector units (in terms of elements that
can be processed in parallel) in commodity processors can be foreseen for the next years [103]. Another
approach to achieve high performance in a high-throughput computing task, is the use of an external
accelerator. In particular graphics processing units capable of performing general purpose computa-
tions (GPGPUs) have been established as versatile co-processors in the recent years. GPGPUs are
massively parallel many-core devices (with typically hundreds or even thousands of small cores) that
are connected to a host system through PCI Express. GPGPUs have their own private memory and
thus operate in a separate address space. In a typical co-processor model, data have to be transferred
from the host memory to the GPGPU memory, and are then processed on the device. Subsequently
the results have to be transferred back. Due to exceptionally high numbers of execution units (and a
correspondingly high theoretical peak performance), versatile programming models, and relatively low
prices, GPGPUs have become a popular accelerator platform.
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With these boundary conditions in mind, a novel coding scheme for storage applications is presented
in the following sections. The scheme replaces the costly table-lookups for Galois multiplications
with arithmetic instructions in order to limit memory references to a minimum. Furthermore, the
scheme exploits the fact that the execution time of the multiplication is determined by the distribution
of the polynomial coefficients in the multiplicands. The distribution of the corresponding bits in the
generator matrix of a linear block code thus has an impact on the overall performance of the encoding
operation. Therefore, several methods for creating performance-optimized generator matrices with
different characteristics have been evaluated.

5.2. Table-based multiplication

It has been shown in Chapter 4 that a Galois field can be constructed by taking the powers of some
root α of the primitive polynomial that generates the field (α is called a primitive element of the field).
Every element of the field is itself a polynomial and the coefficients can be used to give a binary or
decimal representation of the element. Another representation is given by the powers of the primitive
element: every field element corresponds to a unique power of α . Multiplication of two elements in
GF(2r) can thus be implemented in several ways:

• Multiplication of the polynomials modulo a primitive polynomial.

• Using a full pre-computed multiplication table requiring space for (2r)2 elements.

• Using pre-computed tables for the logarithm and its inverse of the primitive element. This re-
quires space for 2 ·2r elements. The tables provide the mapping between an element of the field
and its corresponding power of α . Multiplication of two elements a = α i and b = α j is then

α
i
α

j = α[logα (α
i)+logα (α

j)] mod (2r−1) = α
[i+ j] mod (2r−1). (5.1)

The pseudocode for this multiplication is shown in Figure 5.2.

Prior implementations have regarded the polynomial multiplication as too costly and the lookup tables
were the preferred method. While this was a successful strategy for several generations of micropro-
cessors, today the memory subsystem has become one of the main bottlenecks in commodity systems.
Accessing large in-memory data structures from inner loop code can thus severely impact the overall
performance and deteriorate scalability. Evidently, the table sizes are highly dependent on the size of
the underlying Galois field. Resulting memory requirements for both table approaches for different
Galois fields are shown in Table 5.1. Because of the byte-based nature of the system memory the com-
parison is limited to the standard word sizes of 8, 16 and 32 bit. Due to the increasing limitations of the
memory subsystem, the lookup strategy can only be efficient if a large fraction of the tables can be kept
in the processor cache. With current L2/L3 cache sizes in the order of several MiB, it is apparent that
this approach is limited to symbol sizes of 8 bit or 16 bit which is only a small fraction of the native
symbol size of modern processors (typically 64 bit).
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1: procedure GFMULT(a,b)
2: if a = 0 OR b = 0 then
3: return 0
4: end if
5: sum← log[a]+ log[b]
6: if sum≥ 2l−1 then
7: sum← sum−2l−1
8: end if
9: return inv_log[sum]

10: end procedure

Figure 5.2.: Multiplication in a Galois field using pre-computed lookup tables. The modulo operation
is implemented as subtraction.

Table 5.1.: Sizes of the lookup tables for logarithm and inverse or the full multiplication depending on
the size of the underlying Galois fields.

GF(2r) Log/Log−1 Full
r = (KiB) (KiB)

8 0.5 64

16 256 8.4 ·106

32 33.6 ·106 7.2 ·1016

5.3. Polynomial implementation

The foundation for the implementation of the polynomial multiplication is the well known Russian
peasant multiplication algorithm [104] (variations are also known as Egyptian multiplication): To mul-
tiply two integers, they are written next to each other into two columns. The left-hand column is
successively halved (rounding down), while simultaneously the right-hand column is doubled, until 1
is reached in the left-hand column. Now each line with even numbers in the left-hand column is crossed
out and the remaining rows of the right-hand column are added up. During the process numbers are
reordered in groups of the left-hand number. The lines with the odd numbers represent the remainders
during the halving step. The sum of the remainders and the final number then corresponds to the prod-
uct of the two integers. Fig. 5.3 and Fig. 5.4 illustrate the manual multiplication of two integers by only
using integer doubling, halving, and addition. The classical multiplication tables for numbers from one
to ten are not required.

This concept can be extended to multiplication of two polynomials in GF(2r) [105]. The algorithm
is shown in Figure 5.5. Multiplying or dividing by two can be easily performed using left and right
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17 32
8 64
4 128
2 256
1 512

0

17 32 +

8 64
4 128
2 256
1 512 =

544

Figure 5.3.: Russian peasant multiplication. An integer multiplication algorithm using only doubling,
halving and addition.

6

5

12

2

+

24

+

Figure 5.4.: Graphical illustration of a Russian peasant multiplication for 5 ·6: groups of 6 are reordered
by halving and doubling. If the halving step leaves a remainder (empty dots), it has to be summed
up with all other remainders to obtain the final result.

shift operators. Halving and doubling is correspondingly implemented with single left (Line 8) and
right shifts (Line 12). If the halving step leaves a remainder (which is the case if the lowest order bit
is set before the right shift is performed), it has to be added to the final sum. The conditional addition
of the remainders is done using a bitwise XOR in Line 5. Since the polynomials represent elements
of a finite field, one has to take care of arithmetic operations which result in non-field elements. This
is in particular the case if the highest order bit is set before a left shift is performed, that is, if the
doubling operation overflows. At this case a modular reduction by the generator polynomial (Line 10)
of the Galois field ensures that the result will again be a polynomial of degree less than r. The rationale
for the elegant implementation using only a single XOR for the modular reduction1 requires some
additional explanation: The left shift operation corresponds to a multiplication by the polynomial α .
The degree of the resulting polynomial q(α) is hence only raised by one and it can thus be represented

1One would expect a costly polynomial division with remainder.
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1: procedure GFMULT_POLY(a,b)
2: p← 0
3: while a 6= 0 AND b 6= 0 do
4: if LSB(b) = 1 then
5: p← p⊕a
6: end if
7: msb_set←MSB(a)
8: a← Le f tShi f tByOne(a)
9: if msb_set = 1 then

10: a← a⊕PP
11: end if
12: b← RightShi f tByOne(b)
13: end while
14: return p
15: end procedure

Figure 5.5.: Modified Russian peasant algorithm for polynomial multiplication in a Galois Field.
LSB(x) gives the least significant bit of x, whereas MSB(x) returns the most significant bit of x.
PP denotes the primitive polynomial that generates the Galois field.

as the sum of the high-order term plus some remainder Rq(α) ∈ GF(2r),

q(α) = α
r +Rq(α). (5.2)

The primitive polynomial h(α), on the other hand, is also of degree r and can be represented simi-
larly:

h(α) = α
r +Rh(α). (5.3)

By definition α has been chosen to be a root of h, and therefore

0 = α
r +Rh(α), (5.4)

or
α

r = Rh(α). (5.5)

Substitution of Equation 5.5 into Equation 5.2 gives

q(α) = Rh(α)+Rq(α). (5.6)

This reduces the modular reduction to a simple XOR of both remainders (which have both degree less
or equal than r−1).
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0 127

128-bit wide
vector unit

Figure 5.6.: Illustration of a 128-bit wide vector arithmetic logic unit.

5.4. Vectorization

In the instruction sets of modern processors vector extensions to many scalar instructions can be found.
Originally designed for data-intensive multimedia applications, these vector instructions can signif-
icantly improve performance also for general-purpose computations. Processing follows the Single
Instruction Multiple Data (SIMD) paradigm, where a single instruction is executed for several data
elements at the same time. Figure 5.6 illustrates a 128-bit wide vector arithmetic unit, where the input
vectors may contain either two 64-bit double, four 32-bit float, eight 16-bit integer, or sixteen 8-bit inte-
ger operands. The vector instructions are performed in parallel on all elements of the vector operands.
In addition to the standard arithmetic vector instructions for floating point and integer numbers, logical
and shift instructions, instructions for loading and storing of vectors, and comparing of vector com-
ponents, several specialized instructions are available. However, not all vector instructions support all
input vector types. The SIMD model works well, if in fact the same instruction sequence is executed
for all vector elements. There exist no direct mechanisms for flow control inside the vectors. However,
conditional execution for different elements within the same vector can be emulated by using masks.
This effectively leads back to a serialization of the execution. In the worst case of divergent execution
paths for all vector elements no performance gain can be achieved, on the contrary, the masking gen-
erates an additional overhead. Since only XOR, AND and shift operations are used, the multiplication
algorithm can be vectorized with the integer part of the Streaming SIMD Extensions (SSE) [101]. The
most direct way to use SIMD instructions is to inline assembly instructions into high-level language
source code. However, this task is complex and error-prone. Many compilers offer API extensions
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for the different vector instruction sets that allow for an easier utilization of SIMD instructions. These
extensions are called intrinsics or intrinsic functions. They use a syntax of C function calls and vari-
ables instead of assembly language and registers [106]. The presented implementation uses intrinsics
of the SSE vector instruction set. The core multiplication code uses only integer SIMD instructions
available in SSE version 2, but some instructions from SSE version 3 and 4 (shuffle, min/max, extract)
can be beneficial for reducing the number of loop cycles. The full implementation therefore mixes
intrinsics of various SSE versions with inlined scalar assembly. The selection of an appropriate size
of the Galois field strongly depends on the available SIMD instructions for the corresponding element
size. As a result the field GF(216) was chosen, such that eight 16-bit field elements can be processed in
parallel inside the 128-bit wide SSE registers. Since the check of the break condition after every loop
cycle imposes a severe branch overhead, it is more efficient to simply execute the while loop 16 times
(which is the worst case for a minimal value of a and a maximum value of b). For the vectorization
approach, it would be beneficial to choose an even smaller field size (for instance GF(28)). This way
the maximum number of loop cycles could be further reduced. However, current SSE versions do not
support the required shift instructions for less than 16-bit wide integers and emulation of the missing
shift instruction is not economical. Figure 5.7 shows an illustration of the vectorized implementation
of the inner loop of the polynomial multiplication algorithm (lines 4 to 12 in the scalar algorithm). The
notation is as follows: The actual data elements in the vector registers are depicted in the white boxes.
SSE instructions are represented by the hatched boxes and take either one or two vector registers as
operands. The result of the instruction is stored in another register or directly fed into another instruc-
tion (both indicated by the solid dashes). Register contents that are used as masks are colored gray.
The dashed arrows indicate the subsequent reuse of the contents of the vector register. In the boxes to
the right an explanation of the vector instruction sequence is presented. With the exception of the mask
operations, the individual steps match the ones in the scalar implementation in Figure 5.5. For a full
encoding and decoding operation (basically a sequence of multiplications and additions over the finite
field) the vectorized implementation can be easily chained.

Before putting the code into application, it is worthwhile to examine whether the overall number of
instructions can be reduced. Since the result of the multiplication is determined as soon as either of the
factors is zero, the first approach is to determine the number of loop cycles dynamically and in advance.
Since one factor is shifted right and the other factor is shifted left, one can either determine the position
of the highest order bit or of the lowest order bit to find after how many shifts the argument reaches the
value of zero. For the scalar version this can be achieved with the scalar bsr (Bit Scan Reverse) or bsf
(Bit Scan Forward) instructions. Instead of applying this instruction sequentially to every element in
the vector, the process can be shortened using vector instructions. Figure 5.8 illustrates the vectorized
search for the maximum loop cycles Lmax for two vectors ai and bi where i ∈ {0, . . . ,7}: Due to the
commutativity of the multiplication it is possible to interchange multiplier and multiplicand, such that
the vector bi holds the smaller of both elements and the vector ai holds the larger. Now the number of
loops that have to be calculated depends on the highest set bit of any bi = b15

i b14
i . . .b0

i :

Lmax = max
i∈{0,...,7}

( max
m∈{0,...,15}

(m ·bm
i )) (5.7)
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Table 5.2.: Typical values of MSSB16 for different types of data. At least 1GiB of the stated data type
has been examined.

data format MSSB Zeroes (%)

bz2 13.99 0.03

gz 14.00 0.02

jpeg 14.03 0.03

mp3 13.93 0.4

Mach-O 64-bit executable 12.49 29.57

man pages 13.81 0.01

To find this bit, all elements in bi are subsequently folded into each other by using the OR and shuffle
vector instructions. At last, the position of the most significant set bit (MSSB) is determined with the
scalar bsr instruction. With this mechanism the number of required loop cycles can be dynamically
reduced if at least one of the factors stored in the individual vector components is sufficiently small (in
terms of its decimal representation). How can this help for the general coding and decoding task? The
mean position of the most significant set bit in all w-bit words excluding the zero word is calculated
as

MSSBw =
1

2w−1

w−1

∑
i=0

i ·2i. (5.8)

For uniformly distributed 16-bit words (without the zero word) the mean MSSB position is therefore
equal to MSSB16 ≈ 14. In general, many file storage formats display a high entropy (for instance
through compression or encryption). A quick examination of standard file formats confirms this as-
sumption (Table 5.2). As will be shown later it is thus more promising to focus on the generator matrix
elements, instead of relying on adequate MSSB distributions of the actual data.
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b0 b1 b2 b3 b4 b5 b6 b7

AND AND AND AND AND AND AND AND

1 1 1 1 1 1 1 1

CMP CMP CMP CMP CMP CMP CMP CMP

1 1 1 1 1 1 1 1

m0 m1 m2 m3 m4 m5 m6 m7

Check for the least significant bit
of bi and create a mask mi.

mi←

{
0x0000 if LSB(bi) = 0
0xFFFF if LSB(bi) = 1

p0 p1 p2 p3 p4 p5 p6 p7

XOR XOR XOR XOR XOR XOR XOR XOR

a0 a1 a2 a3 a4 a5 a6 a7

AND AND AND AND AND AND AND AND

m0 m1 m2 m3 m4 m5 m6 m7

t0 t1 t2 t3 t4 t5 t6 t7

Calculate pi ⊕ ai and use mi to
mask out all results ti for all i
with LSB(bi) = 0:

ti← (pi⊕ai) ·mi.

m0 m1 m2 m3 m4 m5 m6 m7

ANDN ANDN ANDN ANDN ANDN ANDN ANDN ANDN

p0 p1 p2 p3 p4 p5 p6 p7

OR OR OR OR OR OR OR OR

t0 t1 t2 t3 t4 t5 t6 t7

p0 p1 p2 p3 p4 p5 p6 p7

Conserve the masked out val-
ues of pi and fill in the updated
values:

pi← (mi · pi)+ ti.

a0 a1 a2 a3 a4 a5 a6 a7

AND AND AND AND AND AND AND AND

HI HI HI HI HI HI HI HI

CMP CMP CMP CMP CMP CMP CMP CMP

HI HI HI HI HI HI HI HI

m0 m1 m2 m3 m4 m5 m6 m7

Check for the most significant
bit of ai using a HighBit mask
(0x8000) and create a mask mi.

mi←

{
0x0000 if MSB(ai) = 0
0xFFFF if MSB(ai) = 1

a0 a1 a2 a3 a4 a5 a6 a7

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

a0 a1 a2 a3 a4 a5 a6 a7

Left-shift ai by one:

ai← ai� 1.

a0 a1 a2 a3 a4 a5 a6 a7

XOR XOR XOR XOR XOR XOR XOR XOR

PP PP PP PP PP PP PP PP

AND AND AND AND AND AND AND AND

m0 m1 m2 m3 m4 m5 m6 m7

t0 t1 t2 t3 t4 t5 t6 t7

Calculate (ai ⊕ PP) with PP being
the primitive polynomial of the
used Galois Field and use mi to
mask out all results ti for all i
with MSB(ai) = 0:

ti← (ai⊕PP) ·mi.m0 m1 m2 m3 m4 m5 m6 m7

ANDN ANDN ANDN ANDN ANDN ANDN ANDN ANDN

a0 a1 a2 a3 a4 a5 a6 a7

OR OR OR OR OR OR OR OR

t0 t1 t2 t3 t4 t5 t6 t7

a0 a1 a2 a3 a4 a5 a6 a7

Conserve the masked out val-
ues of ai and fill in the updated
values:

ai← (mi ·ai)+ ti.

b0 b1 b2 b3 b4 b5 b6 b7

� 1 � 1 � 1 � 1 � 1 � 1 � 1 � 1

b0 b1 b2 b3 b4 b5 b6 b7

Right-shift bi by one:

bi← bi� 1.

Figure 5.7.: SSE adaption of the loop body of algorithm 5.5 using 128-bit wide XMM registers.
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a0 a1 a2 a3 a4 a5 a6 a7

min min min min min min min min
b0 b1 b2 b3 b4 b5 b6 b7

m0 m1 m2 m3 m4 m5 m6 m7

s0 s1 s2 s3 s4 s5 s6 s7

OR OR OR OR OR OR OR OR
m0 m1 m2 m3 m4 m5 m6 m7

m0 m1 m2 m3 m4 m5 m6 m7m0 m1 m4 m5

s0 s1 s2 s3 s4 s5 s6 s7

OR OR OR OR OR OR OR OR
m0 m1 m2 m3 m4 m5 m6 m7

m0 m1 m2 m3 m4 m5 m6 m7m0 m4

s0 s1 s2 s3 s4 s5 s6 s7

OR OR OR OR OR OR OR OR
m0 m1 m2 m3 m4 m5 m6 m7m0

m0bsr( )

Figure 5.8.: Illustration of the instruction sequence to find the required number if loop cycles. White
boxes represent the values in the vector registers, the gray boxes indicate which remaining elements
need to be ORed and the hatched boxes represent the bitwise SIMD instructions. The arrows show
the order of the SIMD shuffle instructions. Dashed arrows indicate the subsequent reuse of the
contents of the vector register.
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5.5. GPU as co-processor

In addition to the SIMD units of commodity processors, the use of graphics processing units for non-
graphics algorithms has evolved rapidly (graphics cards that are used in this context are often referred
to GPGPUs). Originally, GPUs could only be used for general purpose computation by exploiting pure
graphics APIs such as OpenGL and DirectX with severe constraints on flexibility and portability [107].
With the introduction of the Compute Unified Device Architecture (CUDA) [108] by NIVIDA in 2006,
a comprehensive programing model together with development tools and compilers became available.
In 2009 the Open Computing Language (OpenCL) [109] was standardized, defining a framework for
executing programs across heterogeneous systems containing CPUs, GPGPUs and other kinds of pro-
cessors (e.g. DSPs and FPGAs). Today, GPGPUs display a much higher performance per price ratio
than commodity processors, with typically hundreds or thousands of execution units. Many high-
performance computing systems are therefore cost-effectively complemented with GPGPUs. In gen-
eral, applications with a high degree of data level parallelism can achieve high performance speedups
on these particular many-core architectures. However, the cost of the data transfers between host and
GPU, the memory and cache hierarchies inside the GPU and their limitations, as well as the hard-
ware architecture itself, and finally the execution model have to be well understood in order to develop
efficient parallel algorithms. Figure 5.9 depicts the architecture of the NVIDA Kepler Streaming Mul-
tiprocessor (SM). Every multiprocessor consists of 192 CUDA cores (indicated in the figure with C),
each equipped with a fully pipelined integer and floating point unit [110]. Both single and double pre-
cision floating point arithmetic are supported. Each SM contains 32 load/store units (LD/ST) and the
same number of special function unit (SFU) responsible for execution of transcendental instructions,
such as sine, cosine, as well as reciprocal and square root functions. The Streaming Multiprocessors
are the basic building blocks of a GPU. Depending on the intended performance, multiple of these units
form a GPU, together with the required amount of on-board memory and further supporting graphics
hardware (for instance the texture units). From a developer’s perspective the GPU appears as a highly
multi-threaded compute device which executes threads in a single-instruction, multiple-thread fashion
(SIMT) [111]. Threads are mapped to the scalar cores and execute the same sequence of instructions,
the so called kernel, independently. Kernels are designed in the C/C++ language (with minimal ex-
tensions) and compiled into the instruction set architecture of the GPU. A kernel is invoked with the
help of a runtime system which transfers it and the associated data to the GPU where the kernel is then
executed as a set of parallel threads. The programmer organizes these threads beforehand into blocks
and grids of thread blocks, which are then mapped onto the individual multiprocessors. Every thread
within a block represents an instance of the kernel. The threads are uniquely identified by a combina-
tion of an ID within the thread block and the ID of the block itself. Threads within the same block can
cooperate through synchronization and exchange data through a small, but fast, shared memory. Data
are read from and written to the (onboard) global memory, which is the only way to exchange data
between thread blocks. In principle GPUs also suffer from the high access latencies of their onboard
memory, but they pursue various strategies to overcome this limitation and to enable a massively paral-
lel throughput: GPGPUs typically use large register files which are shared between the active threads
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Figure 5.9.: Architecture of the Kepler Streaming Multiprocessor (SM) [110].

and additionally offer explicitly managed caches to keep data local to the computation. Ideally, the
execution units are overcommitted to a high degree. In conjunction with the ability to perform very fast
thread context switches, this enables an effective hiding of memory access latencies. A prerequisite
is the abundance of arithmetic operations that can be quickly switched to, if a previous load or store
instruction incurred a long access latency. In principle, the polynomial multiplication algorithm in Fig-
ure 5.5 is therefore ideal for the use with a GPGPU accelerator. Unlike the lookup based algorithm, it
uses only arithmetic operations which help hiding the necessary latencies of the load operations of the
factors as well as the store operation of the result.
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For the use as an accelerator for storage applications the performance of the data transfer to the GPU
and back to the host is crucial. The bandwidth is limited by the maximum bandwidth of the PCIe
interface which strongly depends on the maximum packet payload size that is supported by the PCIe
controller. With typical efficiencies between 80% and 85% [112] the theoretically achievable PCIe 2.0
bidirectional bandwidth of 8 GB/s is already significantly reduced. Fig. 5.10 shows the PCIe bandwidth
of a NVIDIA GTX680 GPU depending on the size of the transferred block using page-locked memory.
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Figure 5.10.: PCI express bandwidth in both directions (host to GPU and GPU to host) using page-
locked memory.

This bandwidth sets the upper theoretical limit for differential encoding, for full encoding or decoding
significantly more data has to be transferred from the host to the GPU than back and the overall perfor-
mance is reduced accordingly. The next generation PCI Express 3.0 standard effectively delivers twice
the bandwidth compared to the previous version, achieved by increasing transfer rate and reducing the
overhead for symbol encoding at the same time. To hide PCIe latencies kernel execution and transfer in
CUDA can be overlapped by defining multiple streams. Figure 5.11 shows the asynchronous execution
of a multiplication kernel with four overlapping streams. In this case two third of the communication
can be hidden behind the kernel execution.
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A short kernel performing the scalar polynomial multiplication is shown in Listing 5.1. In this case
every threads performs exactly one multiplication of two factors. The factors a and b are stored as
consecutive buffers in the GPU global memory. Additionally, one result buffer has been set up. Pointers
to these buffers are passed as parameters to the kernel. Since possibly thousands of instances of the
kernel are executed, the first step involves the identification of the correct input data. Therefore, the
thread and block IDs are used to create a globally unique offset. This offset determines the address
of the input factors and the address within the result buffer for the multiplication results. Otherwise
the kernel resembles the scalar implementation of the multiplication. Since a single piece of code is
executed on several multiprocessor at the same time, it is difficult to reduce the number of loop cycles in
reasonable way. Inspecting the factors for the MSSB within an entire thread block and communicating
the result would require a significant amount of synchronization. Simply executing the full number of
loops cycles is therefore much more performant. If a general limit for the MSSB of one of the factors
can be specified, the thread synchronization can be avoided altogether.

Figure 5.11.: Asynchronous execution of a multiplication kernel with four streams. The plot was cre-
ated with the CUDA visual profiler.
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Listing 5.1: CUDA multiplication kernel

1 __global__ void gmul_poly_16_gpu(ushort *a, ushort *b, ushort *res)

2 {

3 unsigned int prim_poly_16 = 0210013;

4 int tx = threadIdx.x;

5 int bx = blockIdx.x;

6 int gx = tx + blockDim.x * bx;

7

8 ushort counter;

9 ushort p=0;

10 ushort hi_bit_set;

11

12 #pragma unroll

13

14 for(counter = 0; counter < 16; counter++) {

15 if((b[gx] & 1) == 1)

16 p ^= a[gx];

17 hi_bit_set = (a[gx] & 0x8000);

18 a[gx] <<= 1;

19 if(hi_bit_set == 0x8000)

20 a[gx] ^= prim_poly_16;

21 b[gx] >>= 1;

22 }

23

24 res[gx]=p;

25 }

5.6. Low MSSB generator matrices

The previous sections have shown that the polynomial multiplication can be significantly accelerated
if at least one of the factors displays a low MSSB. Since no assumptions about the data that is to be
encoded can be made, the focus shifts to the generator matrix of the code. A variant of the ubiqui-
tous Reed-Solomon codes is generated by a matrix which is obtained by starting with a Vandermonde
matrix

V = (vi, j) = i j, (5.9)

and by applying a series of elementary transformations to it until the matrix has a systematic form.
In the following, n denotes the number of the message symbols and k represents the number of the
check symbols. The resulting matrix is called information dispersal matrix and its specific form can
be different for different combinations of n and k. An illustration of the MSSB distribution for a Van-
dermonde matrix and the derived information dispersal matrix is shown in Figure 5.12. Larger boxes
reflect a higher MSSB of the matrix element. Empty spaces indicate that the matrix element is zero (no
bit is set). After the transformation the first n rows become the identity matrix and the actual coding
part contains elements of various size. In order to benefit from the MSSB dependent multiplication
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Figure 5.12.: Visualization of the MSSB distribution of the Vandermonde matrix (left) and the corre-
sponding information dispersal matrix (right). Larger sized boxes indicate a higher MSSB.

algorithm, it is important to use generator matrices that display a low average MSSB in the systematic
part. At first, it is of interest how the MSSB distribution of the information dispersal matrix varies
depending on the underlying Vandermonde matrix. Figure 5.13 shows the MSSB distribution of the
non-identity matrix elements for different values of n and k in the generator Matrix for a Vandermonde-
based Reed-Solomon code. The code was constructed for the Galois field generated by the polynomial
h(α) = 1+α4 +α13 +α15 +α16. The MSSB distribution of the matrix elements shows a remarkable
structure. The figure shows the maximum, the minimum, as well as the average MSSB. Certain combi-
nations of n and k lead to matrices with particular small elements. With growing k the average MSSB
also increases and the minima are not as distinct anymore.

To answer the question whether the chosen primitive polynomial for the underlying Galois field can
also have an influence on the distribution, one has to examine all primitive polynomials. It can be
shown [84] that the number of irreducible polynomials of degree m (denoted by Im) is related to the
order of the field qr by

qr = ∑
m|r

m · Im, (5.10)
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Table 5.3.: Number of irreducible (Ir) and primitive (Pr) polynomials for the Galois Fields GF(2r),
r ≤ 16. See also [114]

r Order Ir Pr

1 2 1 1
2 4 1 1
3 8 2 2
4 16 3 2
5 32 6 6
6 64 9 6
7 128 18 18
8 256 30 16
9 512 56 48
10 1024 99 60
11 2048 186 176
12 4096 335 144
13 8192 630 630
14 16384 1161 756
15 32768 2182 1800
16 65536 4080 2048

where m|r denotes all m which divide r (including 1 and r). Equation (5.10) can be used to iteratively
determine the number of irreducible polynomials. Furthermore, the number of primitive polynomials
is given by

Pr =
φ(qr−1)

r
, (5.11)

where φ is Euler’s totient function [113]. Table 5.3 shows Ir and the corresponding number of primitive
polynomials Pr for the fields with q = 2 and 1≤ r ≤ 16.

A full list of the primitive polynomials (in decimal representation) of GF(216) is shown for reference
in Appendix A.1.

Figure 5.14 shows the average MSSB of the systematic part of the information dispersal matrix for all
primitive polynomials in GF(216) with a fixed value of n = 20 and variable k. A decimal representa-
tion of the primitive polynomial is used for the abscissa. The plot shows that the average MSSB can
be slightly lower for selected polynomials. However, this selection is not consistent with changing k.
Furthermore, the window of the average MSSB positions is relatively narrow (which means, that the
potential gain for the multiplication through selection of an appropriate primitive polynomial is rela-
tively low). However, this plot is only a snapshot for a fixed value of n. To confirm that this observation
is also true for a broad range of n and k, Figure 5.15 combines both perspectives into a single plot. It
shows bands of average MSSB positions for all 2048 primitive polynomials in GF(216) for different
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Figure 5.13.: MSSB distribution in the non-identity elements of a Vandermonde-based Reed-Solomon
generator matrix for given n and k in GF(216). The field was constructed with the primitive polyno-
mial h(α) = 1+α4 +α13 +α15 +α16.
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Figure 5.14.: Average MSSB in the systematic part of the Vandermonde-based generator matrices for
all primitive polynomials in GF(216), n = 20 and variable k.
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Figure 5.15.: Range of average MSSB positions of the Vandermonde-based generator matrices for all
2048 primitive generator polynomials of GF(216). The dotted lines indicate the mean values over all
primitive polynomials.
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values of n+k and k 2. The dotted line inside each band indicates the average over all primitive polyno-
mials at this point. Especially for larger k and larger n+ k the band are relatively narrow and centered
around high values for the MSSB. With this plot it becomes apparent that the Vandermonde-based in-
formation dispersal matrices are not the best choice in order to take full advantage of the polynomial
multiplication.

5.7. Generating low average MSSB matrices

An exhaustive enumeration of all matrices that could be qualified as generators for a Reed-Solomon-
type linear block code is more than impractical due to the combinatorial explosion. In the following
paragraph two heuristic methods for finding suitable matrices for polynomial multiplication are pre-
sented:

• A known generator matrix is transformed in a certain way in order to reduce the average MSSB.

• A matrix is randomly created and it is examined whether it can be used as generator. If so, the
properties of this matrix serve as upper limit for a next round of random sampling.

The reason for beginning with a Vandermonde matrix of the form (vi, j) = i j is the following: Since all i
are naturally pairwise distinct, the determinant for a square matrix of this form is guaranteed to vanish.
This property is preserved under elementary matrix transformations. Extending the square matrix by k
additional rows (which are also pairwise distinct) gives a rectangular matrix which cannot be inverted.
However, when k arbitrary rows are removed, the matrix is again a square Vandermonde matrix. Since
all rows are pairwise distinct, there are no restrictions which k rows can be deleted. Therefore, it is an
ideal foundation for the generator matrix of a linear systematic block code.

The first approach for generating a more suitable generator matrix is to start with the information
dispersal matrix derived from a Vandermonde matrix. An element in the systematic part is chosen and
it is manipulated in a suitable way to reduce the average MSSB. The key question is then, whether the
new matrix is still invertible if any k rows are removed. Therefore, one has to check all

(n+k
k

)
square

matrices that are obtained by deleting k rows from the modified rectangular matrix. One way to check
for invertibility is to examine the determinant of the matrix, which can be efficiently computed using
LU decomposition [115]: If the matrix A can be factorized into two matrices

A = L ·U, (5.12)

where L is in lower triangular form3 and U is in upper triangular form, it can be shown that the deter-
minant is equivalent to the product of the diagonal elements of U :

det(A) = ∏
j

u j j. (5.13)

2A version with for even higher values of n+ k is shown in the Appendix in Figure A.1
3 It can be shown that L can be always chosen with all diagonal elements equal to one.
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Figure 5.16.: Flowchart of the Vandermonde-based matrix finding algorithm.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 5.17.: Sequence of generator matrices. Larger sized boxes indicate a higher MSSB.
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With these techniques an iterative algorithm to reduce the average MSSB in the systematic part of
a code generating matrix can be formulated. A flowchart of the algorithm is shown in Figure 5.16.
After generation of the Vandermonde matrix and the corresponding information dispersal matrix, a
random element of the systematic part is selected. If the MSSB of this element is already at bit position
0, another element is selected. The element is then logically right-shifted, which reduces the MSSB
position by one. The invertibility of the resulting matrix is then examined. If the new matrix is not
invertible, all changes are reverted and another element is selected for manipulation. If invertibility
has been preserved, the matrix is recorded and then used for the next iteration of the algorithm. This
algorithm has the advantage that it immediately produces a valid generator matrix. However, due to the
random selection of elements the matrices tend be not well balanced. Furthermore, the decision when
to abort the search is difficult. Certain sequences result in matrices with a higher average MSSB, which
cannot be reduced any further. It is therefore necessary to perform many rounds of this algorithm and
then select the best matrix. Figure 5.17 illustrates the MSSB distribution of one sequence of generator
matrices that are found by this algorithm. Only valid matrices are shown, between two steps several
steps of manipulating and reverting to an earlier matrix are hidden.

Another approach is to use randomly generated elements in the systematic part. This results in con-
sistently balanced and low average MSSB matrices. The algorithm is depicted in Figure 5.18. Two
parameters are used to create the random elements: A maximum value for the random numbers (max-
elem), and a limit for the average MSSB position (lim). A matrix is created randomly with all elements
between one and the maxelem. If the average MSSB position of all elements in the systematic part is
below lim, the matrix is evaluated for its invertibility. If any square matrix is not invertible, another
random matrix is created with the old parameters. However, if the matrix is a valid generator matrix, it
is recorded and the parameters are updated with the values of the found matrix. Then the

m = bk
2
c(b(log2(maxelem)c−1) (5.14)

largest elements in the systematic part are right-shifted and the invertibility check is performed again.
This additional manipulation step accelerates the algorithm dramatically in its starting phase (if initially
the parameters are set to their upper limits). The number of element manipulations is dynamically re-
duced depending on the current maximum value for the elements4. Since with every step the range of
allowed values for the matrix elements is reduced, the probability increases, that concurrent manipula-
tion creates rows that are linearly dependent.

Figure 5.20 illustrates the MSSB distribution of one sequence of generator matrices that are found by
the randomized algorithm.

4The value of m can be tuned better for particularly small or large matrices. The factor given in Equation (5.14) is suitable
for ranges of n and k that were used to generate the matrices in Appendix A.2.
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Figure 5.18.: Flowchart of the randomized matrix finding algorithm.
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Figure 5.19.: Comparison of matrix finding with element manipulation (triangles) and without (rhombi)
for two different values of n and k. The last row shows the number of allowed element manipulations
in the corresponding time step.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 5.20.: Sequence of generator matrices for the randomized algorithm in Figure 5.18. Larger sized
boxes indicate a higher MSSB.
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5.8. Special-purpose generator matrices

A great advantage of the randomized matrix generation method is that it is possible to create matrices
in a specific shape. In the general case a well balanced MSSB distribution might be desirable to ensure
equal computational cost for the generation of redundancy information. However, there are several
scenarios in which specific MSSB distributions can be beneficial. Figure 5.21 shows three different
special-purpose matrices:

Figure 5.21.: Illustration of special-purpose matrices.

(1) One row of the systematic part can be fixed to contain only ones. Random elements are only
selected for the remaining rows. Since

a ·1 = a, ∀a ∈ GF(2p), (5.15)

the symbol is effectively calculated by only adding up all data symbols. This is equivalent to
the plain parity calculation of the standard RAID. As a consequence the average MSSB of the
additional k− 1 rows is increased. Yet it can be desirable to create the 1-error tolerance as fast
as possible, whereas the degree of fault tolerance is gradually increased at later points in time
(possibly by a different, dedicated subsystem or during system idle times). Another application
scenario is archival: If the increased cost of a higher degree of fault tolerance is only justifiable
for files that have been selected for long term storage, redundancy symbols can be added on
demand without requiring full recalculation.
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(2) Similar to the approach in (1) it could be beneficial to trade a fully balanced matrix for a version
with increasing average row MSSB. In this scenario computational cost increases with every
additional tolerable error. On average, the cost for the first rows can be chosen lower than for
the fully balanced matrix. Again, this can be used for different fault-tolerance levels: For files
that are frequently changing, only the lowest fault-tolerance could be chosen. As soon as the file
becomes more stable the level could be gradually increased.

(3) Instead of balancing the rows it is also possible to use different average column MSSB positions.
These larger matrix element could be reserved for devices that are most likely not in use (for
instance as an option to increase the capacity of the system). Since then all data elements can be
considered zero, the multiplications with these elements do not need to be executed. If for some
reason theses additional devices become active, the additional computational cost is justifiable.
According to Equation 4.74 this would require the update of all check symbols without needing
to collect all corresponding data symbols. Another scenario is to compensate for different com-
putational capabilities of the storage or client nodes. Load could be intentionally shifted to nodes
with a higher number of cores, wider vector units, or dedicated accelerators. At the same time
the load for less powerful nodes would be lowered.

Apart from the three examples any kind of special purpose matrix is imaginable. However, due to the
randomized creation process, it must be assured that the matrix is securely recorded, for instance as
part of the system metadata.

5.9. Algebraic signatures

In addition to the ability of reconstructing lost data due to entire disk failures it is also essential to
detect data corruption. An important tool is end-to-end data protection through checksumming (Sec-
tion 2.5.5). Modern enterprise disks offer therefore user-writeable data protection fields at the end of
every sector. As a checksumming method the ubiquitous cyclic redundancy check (CRC) is commonly
used. The implementation of a CRC16 checksum in the Linux kernel for this purpose [116] uses mainly
shift, bitwise XOR and AND operations, but also relies on a small table, to generate a 2 byte check-
sum. Several different implementations with different generator polynomials exist. For cryptographic
purposes special hash functions have been developed (for instance the SHA or MD families). Mainly
designed to protect against intentional data manipulation, these could also be used as checksums for ac-
cidental data corruption. However, compared to the cyclic codes the cryptographic hash functions have
a much higher computational cost. Another class of checksums that are suitable for the silent errors
modes in storage systems are the so-called Galois Power Series Signatures (GPSS) [117, 118, 119].
GPSS belong to the class of algebraic signatures and they display several useful algebraic properties.
As the name suggests the checksum is obtain by calculating a power series over a Galois field GF(2r).
The block of data to be checksummed D is written as a series of l symbols, each r-bit wide:

D = d0d1d2 . . .dl−1, (5.16)
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Let β be a primitive element of the Galois field, that is, it is a root of the primitive generator polynomial
and it generates all non-zero elements of the field:

GFβ (2
r) =

{
0,1,β ,β 2, . . . ,β 2r−2

}
. (5.17)

The β -signature of the block D is defined as

sigβ (D) =
l−1

∑
i=0

diβ
i (5.18)

and is itself a single element of the Galois field. The n-fold β -signature is defined as

sigβ ,n(D) =
(

sigβ (D),sigβ 2(D), . . . ,sigβ n(D)
)
. (5.19)

Correspondingly, the n-fold signature is a vector with n elements of size r bits. Some remarkable
properties are:

• sigβ ,n detects any changes up to n symbols for sure, given that the block length is less than 2r−1
symbols.

• The probability for two uniformly distributed random blocks to have an equal sigβ ,n is 2−nr.

• If two blocks D and E of length lD and lE are concatenated into one block D|E and lD + lE ≤
2r−1, the signature of D|E is then calculated as

sigβ (D|E) = sigβ (D)+β
lD · sigβ (E). (5.20)

• If the block D is modified in m symbols starting at position s such that the vector of differences
is δ = (δ0,δ1, . . . ,δm−1) with δi = dnew

i −dold
i , then

sigβ (D
new) = sigβ (D

old)+β
s−1 · sigβ (δ ). (5.21)

• If the horizontal parity p of n equal sized data blocks ai is formed,

p =
n−1⊕
i=0

ai, (5.22)

then the signature of the parity block sigβ ,n(p) is equal to the parity of the signatures of the data
blocks,

sigβ ,n(p) =
n−1⊕
i=0

sigβ ,n(ai). (5.23)

This is also true in case of generalized Reed-Solomon codes.
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Especially the last feature is immensely useful. It allows to check the consistency of an ensemble of
data and check storage devices by only transmitting the β -signatures and performing the verification on
them. The signatures for the individual blocks can be computed locally and compared to the signatures
that have been recorded when the block was written. Conventionally, one agent has to collect all blocks
from all data and check storage devices and perform the full computation. With the β -signature the
computational load is distributed over all nodes and at the same time the network load is dramatically
reduced since only the signatures have to be transmitted.

Current implementations utilize the power representation of the Galois field to perform up the com-
putation. This involves once again the use of lookup tables. However, the power of the primitive
element is already given as a factor in Equation 5.18 and the data symbols can be directly interpreted
as logarithms. This way both table look-ups for the logarithms can be avoided. Figure 5.22 shows
the pseudocode of the signature scheme specified in [117]. In this algorithm log(0) is set to 2r− 1,
therefore data blocks with this value are not accumulated.

1: procedure SIGNATURE(len,block[len])
2: sig← 0
3: for i← 0, len−1 do
4: if block[i] 6= 2r−1 then
5: sig← inv_log(i+block[i])⊕ sig
6: end if
7: end for
8: return sig
9: end procedure

Figure 5.22.: Table-based single signature calculation.

Since two table look-ups are already eliminated, the signature scheme is does not really benefit from
the polynomial algorithm. Since a mapping of the powers of β to the corresponding field element is not
kept (this is the purpose of the logarithm look-up table), these powers of β would have to be computed
on the fly. With wider vector units the cost for the calculation of the subsequent set of powers of β could
eventually amortize. The maximum amount of 16-bit symbols than can be usefully processed into a
single β -signature is 216− 2 = 65534. In practice this is sufficient for many applications. The ANSI
T10 data integrity field of modern enterprise discs protects every 512-byte sector with an additional
2-byte checksum inside an 8-byte data structure5.

5The more recent 4k sectors are complemented accordingly with a 64-byte field.
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5.10. Summary

In this chapter a novel erasure-resilient coding scheme has been presented. Instead of accelerating the
existing multiplication operations over finite fields, a polynomial version has been proposed whose
execution time depends on the MSSB in the factors. In order to fully exploit this property, it has
been shown that the algebraically derived generator matrices for the linear systematic code can be
replaced with matrices which are optimized for low average MSSBs in the elements of the systematic
part. To find these matrices two algorithms have been presented: One based on transformations of
the algebraically derived generator matrices, the other based on a Monte-Carlo approach. The latter
approach has the advantage that it allows to control the MSSB distribution in the rows or the columns
of the matrices. This enables special-purpose generator matrices, tailored to a specific usage scenario.
The erasure-resilient code is complemented with an algebraic signature which provides an increasingly
important protection against (silent) data corruption.
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6. Results and Benchmarks

This chapter provides an overview of the performance of the proposed coding scheme. At first, the
performance of the accelerated polynomial multiplication algorithm is evaluated individually. There-
after, the properties of a selection of suitable matrices are presented. Vectorized multiplication and low
MSSB generator matrices are then combined into a novel coding scheme. The resulting performance
of the encoding and decoding operations are finally shown for the vectorized CPU and many-core GPU
implementations.

6.1. Testbeds

For the measurements in this section the following setups were used. The testbed for all CPU related
measurements is described in Table A.2. The details about the GPGPU testbed are shown in Table
A.3.

To better interpret the subsequently presented results, it is worthwhile to understand the limitations of
the memory subsystem of the testbed. Let the XOR throughput be defined as follows: One buffer of
size w is XORed with another buffer of the same size. The XOR throughput is equal to w divided by
the execution time. The single thread XOR throughput for the testbed machine is

TXOR = 5929±27
MiB

s
, (6.1)

with w larger than 10 MiB. Figure 6.1 shows the memory bandwidth for various access patterns of
the testbed system. All memory accesses use 128-bit loads and stores. Writes are also performed in
the non-temporal fashion (that is, the cache is bypassed and data are directly written into memory).
The accesses can be either sequential or random. The plots reveal several details about the memory
hierarchy of the system. The sharp drop around 32 kiB for cached accesses is due to the L1 cache.
Another drop occurs at around 256 kiB, matching the L2 cache size of the processor. The final drop
between 5 and 6 MiB is caused by the L3 cache, which is shared between all cores and the integrated
GPU. The lower plot shows a close up of the region that is most relevant for the streaming access
pattern. For transfer sizes beyond 10 MiB the sequential read bandwidth is around 14.5 GiB/s, the
sequential write bandwidth is around 8.4 GiB/s and the cache-bypassing sequential write bandwidth is
a around 17 GiB/s. These numbers are later used to determine a limit for the achievable encoding and
decoding performances, for both CPU- and GPU-based implementations.
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Figure 6.1.: Memory (subsystem) read and write bandwidth of the testbed machine for different access
modes. Measurements were performed with [120]. The lower plot shows a close up of the relevant
region beyond 1MiB transfer size.
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6.2. Multiplication

6.2.1. SSE implementation

The vectorized polynomial multiplication is the basis for the low MSSB coding scheme and it is there-
fore of interest, to examine the (isolated) multiplication performance. In case of the differential encod-
ing of data symbols, a single multiplication and two XORs are sufficient to recalculate a check symbol.
The performance of the polynomial multiplication depends on the number of loop cycles (given by the
MSSB) that have to be calculated. The multiplication performance with pseudo-random numbers for
three different implementations is shown Figure 6.2: Lmax can be determined dynamically as described
in Figure 5.8, which introduces a fixed number of SSE instructions before the actual multiplication. In
case of differential encoding one factor is a fixed matrix element and the number of loop cycles can be
identified in advance for a large number of elements and simply passed to the multiplication routine
as an argument. The most obvious implementation contains a conditional branch to break out of the
loop in case one of the vector registers has become zero during the execution of the algorithm. De-
pending on the actual number of loop cycles the performance is much better than for a logarithm-based
lookup table. All measurements were performed with buffer sizes beyond 50 MiB, giving thereby the
table-based implementation the full benefit of the sizable processor caches in the testbed system. The
polynomial implementation on the other hand works largely cache-independent (except for read-ahead
of the multiplication arguments). The write-back is using non-temporal stores, in order to bypass the
cache. This is reasonable for stream computing patterns, where the processed data only display little
temporal locality. Figure 6.2 illustrates the behavior of both algorithms at startup. The 64-bit Time
Stamp Counter available on x86 processors [121] can be periodically sampled and used as a probe into
the code execution at cycle level. In every time step 32 multiplications are performed and the number of
processor cycles are measured (processes are pinned to a fixed CPU core and executed with real-time
priority. The power saving and dynamic overclocking features of the processor are disabled). Cold
cache misses affect both algorithms in the very beginning. The polynomial multiplication performance
then immediately steadies, whereas for the table-based multiplication the caches have to be slowly
populated with the tables for logarithm and inverse logarithm. Even though the testbed system already
supports the wider 256-bit vector registers, the presented implementation is using 128-bit vector in-
structions due to the lack of appropriate wide integer instructions. These will be available in future
processor generations and nominally provide double the multiplication performance.
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Figure 6.2.: Performance of both algorithms during startup (top). Multiplication performance for dif-
ferent implementations depending on the number of loop cycles (bottom).
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6.2.2. GPGPU performance

Similar to the vectorized multiplication the GPGPU multiplication is examined in this section. Two
buffers containing the multiplication arguments are transferred to the GPU. Every individual multipli-
cation is then assigned to one thread and the buffer containing the multiplication result is transferred
back. In order to avoid divergent execution paths of threads on the same multiprocessor (which results
in serialized execution), the full multiplication is performed (with the maximum number of loop cy-
cles). The communication cost between GPU and host limits the achievable throughput rate. Assuming
comparable up- and down-stream PCI bandwidths BPCI,up/down ∼ BPCI, the transfer throughput alone
(without any computation on the GPU) is

Ttransfer =
1

2
BPCI,up

+ 1
BPCI,down

∼ 1
3
·BPCI. (6.2)

In accordance with this limit Figure 6.3 shows the overall performance (including all communication
overhead) for up to four overlapping streams depending on the block size of the argument and re-
sult buffers. The product ai · bi = ci is calculated using n streams, with n kernels for chunks of size
blocksize/n. The throughput is then the amount of result data divided by the total time. The total time
includes the time to transfer buffers a and b to the GPU, the time to perform the multiplication on
the GPU and the time to transfer buffer c back to the host. The cost for setup and transfer of kernel
and buffers is significant, but can be amortized by using large block sizes beyond 1MiB. The streamed
execution helps to overlap communication and computation, such that the transfer limit is reached.
For comparison a table-based implementation (log/inv_log) is shown (the tables are transferred to and
stored on the GPU beforehand and do therefore not count for the calculation of the throughput).

6.3. Matrices

In this section the properties of the best found low-MSSB generator matrices are examined. Figure 6.4
illustrates a low-MSSB generator matrix and a corresponding decode matrix. Figure 6.5 shows the
MSSB position for a range of matrices. A selection of these matrices and their properties are given
in Appendix A.2. All of these matrices are fully balanced, without any privileged rows. The average
MSSB position for every corresponding decoding matrix is shown in Figure 6.6.
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Figure 6.3.: GPGPU implementation of polynomial and table-based multiplication running on a Nvidia
GTX 680 GPU with page-locked host memory.
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Figure 6.4.: Visualization of the MSSB distribution of a low MSSB generator matrix (left) and one of
the corresponding decoding matrices (right). Larger sized boxes indicate a higher MSSB.
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Figure 6.5.: Average MSSB position of the systematic part of the low-MSSB generator matrices.
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Figure 6.6.: Average MSSB position in the relevant rows of the decoding matrix. Unfortunately, the
property of low average MSSB positions is not conserved.
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6.4. SIMD coding

In this section the actual coding performance is presented. Figure 6.7 shows the basic task of creating k
check buffers c0, . . . ,ck−1 for n− k data buffers d0, . . . ,dn−k−1. The problem is independent of the size
of the buffers, but for the following results it is assumed that the individual buffer size is at least B =4
KiB.

d0 d1 dn-1 c0 dk-1... ...

Figure 6.7.: Encoding: For n data buffers, k buffers with check symbols have to be calculated.

It is evident that the performance of the coding operations is limited by the available memory band-
width. Every data symbol has to be read, multiplied with a matrix element in a row corresponding to
a check symbol, and finally all multiplication results have to be XORed to obtain the check symbol.
A good upper limit of the achievable performance is therefore the pure XOR throughput: the Galois
multiplication is omitted and all data symbols are XORed horizontally. As a result the identical parity
for every check symbol is obtained. Figure 6.8 shows the performance of this procedure for different
values of n and k. The throughput is the total size of all data buffers divided by the processing time
tp:

T =
n ·B
tp

(6.3)

Figure 6.9 shows the performance of the encoding procedure with a low-MSSB generator matrix using
polynomial SIMD multiplication. The result is compared to the XOR throughput in Figure 6.10. For
the given parameter range the low-MSSB approach achieves between 20% and 80% of the XOR perfor-
mance. Figure 6.11 shows the encoding performance with a Vandermonde generator matrix using the
table-based multiplication. As expected, the encoding performance is not dependent on n+ k. At last
the relative performance with respect to the performance of the Cauchy-Reed-Solomon implementation
in the Jerasure [122] library is shown. For the projection parameter w = 16, the low-MSSB approach
is up to a factor of 2.8 faster. For w = 8 the performance is still considerably higher for smaller k and
becomes more comparable to the Jerasure performance for large n+ k. Absolute results are shown for
both one and four participating cores (all four cores share the same memory). The multicore paralleliza-
tion was achieved by using OpenMP (Open Multiprocessing) [123], a multi-platform shared memory
multiprocessing API. Chunks of the data to be encoded are assigned to the participating threads. Since
all vertical data symbols are independent no further synchronization between the threads is required.
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Figure 6.8.: Pure XOR throughput.
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Figure 6.9.: Encoding performance for polynomial SIMD multiplication.
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Figure 6.10.: Relative performance of the polynomial SIMD multiplication with respect to the pure
XOR throughput.
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Figure 6.11.: Log/inv_log table-based encoding performance.
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Figure 6.12.: Relative performance of the polynomial SIMD multiplication with respect to an available
Cauchy-Reed-Solomon coding library. w is the projection parameter of the Cauchy-Reed-Solomon
codes.
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6.5. GPGPU coding

The performance of a GPGPU co-processor is highly dependent on the actual application [124], in
particular of the memory access patterns of the application. Encoding clearly belongs to the class of
throughput oriented problems. The data flow is from the host computer memory to the main memory
of the GPGPU, from there to the processing units of the GPU and all the way back after comparably
short amount of computation. Clearly, the slowest segment in the communication path (in terms of
bandwidth) limits the overall performance. To understand what performance can be expected from a
GPGPU co-processor, it is helpful to model only the transfers from host to GPGPU memory and from
GPGPU memory to the processing units. The (non-pipelined) transfer throughput to the execution units
of the GPGPU and back into the main memory of the host (without any calculations on the GPGPU) is
dependent on n, k, and the different memory bandwidths (BPCI, BGPU):

Ttransfer =
n

n
BPCI,up

+ k
BPCI,down

+ n+k
BGPU

(6.4)

With the reasonable assumption that the GPGPU memory bandwidth is higher by a constant factor of
α than the PCI bandwidth, and that BPCI,up = BPCI,down, Equation 6.4 can be written as

Ttransfer =
n

(n+ k) · (1+α−1)
·BPCI (6.5)

To simulate the computational execution time, a delay parameter δ is introduced, which specifies a de-
lay as a multiple of the PCI transfer time. For instance, δ = 1 indicates that the computation consumes
the same amount of time as the PCI transfer.

Ttransfer,delay =
n

(n+ k) · (δ +1+α−1)
·BPCI (6.6)

Figure 6.13 illustrates the achievable transfer throughput for different values of n and k, BPCI = 6
GiB/s, α = 10, and δ = {0,2}. This highlights that the overall performance is tied to the PCI Express
bandwidth. Even when the computational part is ignored, the communication pattern alone has a severe
influence on the overall performance. The goal is therefore to hide the computational part entirely
behind communication by using a streamed execution pattern. The low-MSSB generator approach
proves to be ideal for this. The maximum MSSB position for all elements in the systematic part of the
matrix can be used to limit the number of loop cycles in the polynomial multiplication on the GPGPU.
Figure 6.14 shows the performance of the GPGPU implementation of the encoding procedure with a
low-MSSB generator matrix for different values of n and k. For k = 2 and k = 3 the computation can
be almost completely hidden behind the data transfers and the encoding performance surpasses 5 GiB/s
for larger n+ k. Starting from k = 4 an additional penalty for computation becomes significant. The
visual profile of the two kernel executions for fixed n = 24 in Figure 6.17 illustrates how the penalty
accumulates. For k = 2 (top) the computation can always begin immediately after the transfer and can
also be immediately overlapped with the transfer of the following stream. For k = 4 (bottom) the kernel
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Figure 6.13.: GPGPU transfer throughput with and without artificial delay δ = {2,0}.

execution time is longer than the transfer time. This leads to ever increasing intervals between the end of
the host-to-device transfer and the beginning of the kernel execution of the corresponding stream. The
steps that are visible are due to an increasing δ with increasing n+ k. Since the execution time of the
multiplication is determined by the largest matrix element, the overall performance drops whenever the
maximum of the elements of the following matrix is increased. Some of this additional computational
overhead can be hidden for the larger number of streams (as a trade-off between increased kernel
execution time and reduced non-overlapped back transfer time). For k = 2 and k = 3 and with 16
streams encoding throughputs beyond 5 GiB/s can be achieved, close to the upper bound set by the
presented model. For larger k the effects of the stepwise increase of computational load are more
prominent. Figure 6.15 shows the performance of the corresponding dual table-based implementation.
The increased pressure on the memory subsystem of the GPU caused by the additional look-ups has a
drastic impact on the overall performance. The comparison of both approaches is shown in Figure 6.16.
Particularly for larger k the low-MSSB approach is significantly faster, up to a factor of 7.5.
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Figure 6.14.: GPGPU encoding performance for the low-MSSB approach with polynomial multiplica-
tion.
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Figure 6.15.: GPGPU encoding performance for the table-based approach.
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Figure 6.16.: Relative performance of the low-MSSB approach with polynomial multiplication with
respect to the table-based implementation.
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Figure 6.17.: Visual profile of a streamed encoding for n = 24 and k = 2 (top) and k = 4 (bottom). The
plots use a different scale.
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6.6. Decoding

In principle encoding and decoding are symmetrical. For each of the k check symbols the n elements in
a row of the matrix have to multiplied and XORed with a vector of n elements. In case of encoding the
matrix rows are the systematic part of the generator matrix and the vector consists of all data symbols.
In case of decoding the matrix rows are those rows in the inverted matrix which correspond to the erased
data symbols, and the vector contains the surviving data and check symbols. After the failure of a device
that holds check symbols, the reconstruction is equivalent to the initial encoding step for that particular
device. While the coding step usually contains the calculation of all check symbols, the reconstruction
is generally initiated as soon as the failure of a device is detected. Therefore, it is reasonable to treat the
single device reconstruction as the common case. The analysis of the properties of the decode matrices
that are obtained from the low-MSSB generator matrices (Figure 6.6) has shown that the multiplications
with elements of the decode matrices are on average more costly. Instead of enumerating all possible
decode matrices and evaluating the performance that is achieved with them, a worst-case estimation of
the decode performance is given. All multiplications (both on the CPU and the GPU) are adjusted such
that the full number of 16 loop cycles have to be carried out. Figure 6.18 shows the worst-case single
device decoding performance for both implementations. The CPU implementation again uses OpenMP
for the work distribution to multiple cores. The throughput in these plots is given as the (minimum)
amount of surviving data symbols divided by the time required to reconstruct the lost symbol. Therefore
the throughput is also modeled by Equation 6.3, where the processing time tp is equivalent to the time
required to reconstruct one check buffer in this case. This number is an indicator how much data need
to be transferred to the decoding agent in order to saturate the reconstruction. The plots also show that,
in case of the GPU, the reconstruction can be completely hidden behind the streamed communication
(for the presented set of parameters). The decoding throughput is higher than what most data center
and high-performance interconnects, such as 10GbE/40GbE or 40Gb InfiniBand, are able to deliver
over a single link.
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Figure 6.18.: Reconstruction of a single device with the full number of loop cycles on the CPU (top)
and the GPU (bottom).
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6.7. Algebraic signatures

The implementation presented in [117] already eliminates the logarithm look-up table entirely and
also avoids one memory reference. Since the power series practically traverses the entire field, no
restrictions on the distribution of the MSSB can be made. The adaption of the polynomial multiplication
for the algebraic signature is therefore not worthwhile. The single core CPU performance for sigβ ,1 of
the cited algorithm is

1754.6±18.5MiB/s. (6.7)

This is sufficient to complement the erasure coding. Depending on the usage scenario, the signature
calculation requires the same data as the erasure coding and can therefore benefit from temporal and
spatial locality if both are properly interleaved.

6.8. Related work

The use of GPUs for Reed-Solomon coding with a log/inv_log-based multiplication has been demon-
strated by Curry et al. [125]. Brinkmann and Eschweiler have demonstrated the use of GPUs for coding
tasks from within the Linux Kernel [126]. Optimization of Galois field arithmetic has also been stud-
ied by Greenan et al. [127]. The authors propose the use of composite fields where multiplication
in GF((2r)2) is performed with a series of multiplications in GF(2r) (which still use table lookups).
They observe a large influence of the cache size and the frequent cache eviction of the tables in real
application scenarios. Huang and Xu [128] show improvements of the table-based multiplications by
augmentation which increases the table sizes. An implementation of the Cauchy bit-matrix representa-
tion of the Reed-Solomon generator matrix has been proposed by Plank and Xu [129]. As mentioned in
Chapter 4, in this scheme the polynomial multiplication is transformed into a larger sequence of XOR
(and AND) operations. A performance comparison has been performed with the Jerasure Cauchy-
Reed-Solomon coding library [122] along with the classical table-based implementation.

6.9. Outlook to upcoming vector instructions

The most current vector instructions are the Advanced Vector Extensions (AVX) in version 1 [130, 131].
Their vector registers are 256-bit wide and would therefore allow to compute 16 coding symbols at
a time. Unfortunately, the current AVX version does not include the integer vector instructions nec-
essary for the polynomial multiplication (for instance parallel XOR, AND, Shift). These instructions
are announced for the second version of AVX and some compilers are already able to generate code
with these instructions. Since CPUs that execute these instructions are not yet available1 it is only
possible to run the code with the help of an emulator. To demonstrate the benefit of the wider vector

1The first processor with confirmed support is an Intel CPU codenamed “Haswell”, announced for release in 2013.
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registers, the polynomial multiplication has been implemented for AVX version 2 and profiled with the
software development emulator by Intel [132, 103]. Results of the emulated multiplication are shown
in Figure 6.19. To encode the identical amount of data only 54.3 % of overall instructions are required.
While this does not translate directly into performance, it indicates the possible benefit of wider vector
units for the particular task of low-MSSB encoding.
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Figure 6.19.: Frequency of the relevant vector instructions for the SSE implementation (light bars) and
the corresponding AVX2 implementation (dark bars) for the same amount of encoded data.

6.10. Summary

The performance of Galois field multiplication based on a polynomial multiplication algorithm (instead
of using pre-computed lookup tables) has been studied. Therefore, a vectorized implementation for the
Streaming SIMD units of modern x86 processors has been developed. Depending on the distribution
of the polynomial coefficients in the input data, the performance can be improved by a factor of up to
10 compared to the table-based implementation. The multiplication has also been implemented as a
GPU kernel using the CUDA framework and it was benchmarked against a table-based multiplication
kernel. Both approaches are able to reach the limit imposed by the communication cost. A suitable
choice of low-MSSB generator matrices reduces the average number of loop cycles significantly. A set
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of low-MSSB matrices has been identified and used in a novel coding scheme. The SIMD implementa-
tion achieves between 80% and 20% of the performance of an identical multi-parity scheme and is up
to a factor of 2.8 faster than the corresponding alternative implementations. The GPU implementation
of the coding scheme is up to a factor of 7.5 faster than the corresponding classical table-based imple-
mentation. For certain sets of parameters the coding calculations can be completely hidden behind the
data transfers. This is the optimal case in which the overall throughput is limited by the PCI bandwidth
only. Both approaches promise to scale with future developments: Compute performance of GPUs as
well as PCI Express bandwidth will increase much faster than memory access latencies. Utilization
of multiple GPUs with independent PCI links is also feasible, since matrix rows are independent. In
the SIMD case the wider vector units are already included in upcoming processor designs and are the
dominant contributor to a higher per-core performance.
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Fault-tolerance and erasure-resilience are critical properties for future large-scale storage systems at
peta- and exascale, easily exceeding tens of thousands of individual storage components. In this thesis
a novel erasure-resilient and compute-efficient coding scheme has been presented. Instead of trying to
accommodate existing, computationally expensive coding schemes to modern processor architectures,
an architecture-centric coding scheme has been designed, aiming at the highest performance on mod-
ern multi-core processors and GPGPU co-processors. It exploits specific features of these architectures,
such as the vector units in modern CPUs and the exceptionally high number of in-order execution units
in GPGPUs. The basis of the coding scheme is a polynomial multiplication algorithm which replaces
traditional lookup-tables with a sequence of (vectorizable) logical and shift instructions to perform the
multiplication over a finite field. By replacing the memory accesses, the ever increasing memory la-
tency bottleneck is alleviated and the problem is moved into the computational domain. The length
of the instruction sequence is dependent on the distribution of the binary polynomial coefficients in
the factors: the lower the position of the most significant set bit (MSSB) is in one of the factors, the
shorter is the instruction sequence for the multiplication1. The encoding step of a linear block code
consists of a multiplication of the generator matrix with the actual data symbols. By choosing a gener-
ator matrix whose elements are suitable in terms of the distribution of their polynomial coefficients, the
performance of the coding scheme can be greatly improved. Unsurprisingly, the choice of the generator
matrix is not arbitrary. It must possess certain important algebraic properties. As has been shown in this
thesis, the traditional algebraic construction methods for the generator matrices do not produce matrices
with the desired distribution of polynomial coefficients in their elements. Therefore, several heuristics
for finding better generator matrices (in terms of computational efficiency) have been developed. Suit-
able generator matrices for a wide range of parameters that have been discovered using these heuristics
are documented in the appendix. The use of a Monte-Carlo heuristic offers an important advantage:
It allows the creation of special purpose generator matrices with specific shapes. Usage scenarios are,
for example, generator matrices with exceptionally low computational cost for the first check symbol
(similar to standard RAID), but with increasing cost for the following symbols. Such matrices would
be suitable for creating a 1-error fault-tolerance very quickly and a deferred calculation of the higher
degrees of fault-tolerance (for instance as a background activity during system idle times). In this thesis
it has been shown, that for the decoding matrices that are obtained from the carefully selected generator
matrices, the low average MSSB property is not preserved. However, since the most common case is
a single device reconstruction, the coding scheme still performs very well, due to the reduced number

1In fact, the multiplication algorithm can also be optimized for a high position of the least significant set bit (LSSB).
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of processed symbols. Furthermore, depending on the usage scenario, it opens the possibility to de-
ploy one or more dedicated decoding agents equipped with powerful GPGPU accelerators and network
links, that provide a high-performance on-the-fly or background reconstruction service.

The performance benchmarks presented in this thesis stress the observation, that the memory subsys-
tem has become one of the main bottlenecks in commodity systems today. Consequently, it is of great
importance to avoid accessing large in-memory data structures from inner loop code. This thesis also
shows that it is feasible to create a Reed-Solomon based coding scheme which efficiently utilizes the
vector units of modern commodity processors. This is the most cost-effective approach, since even
entry-level commodity CPUs are equipped with the required vector units and instruction sets. Fur-
thermore, it suggests that modern GPGPUs can be used as high-performance coding co-processors,
for many configurations effectively limited by the bandwidth of the current PCI Express interconnect
only. Therewith the coding throughput becomes comparable to the single-link bandwidth of modern
data center and high-performance interconnects, such as 10GbE/40GbE or QDR/FDR InfiniBand. This
is an important perquisite for the widespread adoption of sophisticated coding techniques in storage
systems.

Both approaches were chosen with the anticipated future developments of microprocessor architectures
in mind: the roadmaps of commodity CPUs show a steady increase of the width of the vector units and
continuous enhancements of their vector instruction sets. Clock frequencies, as well as memory and
cache performances on the other hand are not expected to increase significantly. The same holds true for
GPGPUs: The number of small parallel execution units is growing considerably with every generation,
while the memory latency is only slightly improving. A great leap forward for the use of GPGPUs as
a coding co-processors is the upcoming transition to PCI Express 3.0, which effectively doubles the
host-to-GPGPU bandwidth compared to the previous revision of PCI Express. The presented concepts
could also benefit from the progressing consolidation of CPU and GPGPU into a single-die device,
sometimes referred to as accelerated processing unit (APU). APUs promise improved data transfer
rates, lower power consumption, and an increased cost effectiveness, recommending themselves as
accelerators for storage systems build of commodity components.

Directions for future work include improved techniques for obtaining the generator matrices. In gen-
eral, a many-core framework for finding or creating generator matrices with the help of accelerator
devices could be very useful for creating an exhaustive catalog of matrices. As already outlined in
Chapter 6.9, the multiplication algorithm can be easily adapted to future vector instruction sets. There-
fore, the library will be extended with every new processor generation to ensure highest achievable
performance. Finally, some research efforts have to be directed towards the actual integration into large
scale storage systems. Studies on how to use these kind of sophisticated erase-resilient coding schemes
within modern parallel file systems, such as Lustre or FraunhoferFS, have already begun.
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A. Appendix

A.1. The Galois field GF(216)

Table A.1.: Hexadecimal representation of the primitive generator polynomials of GF(216)

1 2 3 4 5 6 7 8 9 10 11 12

1002d 10039 1003f 10053 100bd 100d7 1012f 1013d 1014f 1015d 10197 101a1
101ad 101bf 101c7 10215 10219 10225 1022f 1025d 1026d 10285 10291 102a1
102e5 1031d 1034b 10369 10371 10387 1038d 1039f 103a3 103dd 103f9 10429
10457 10467 10483 10489 10491 104bf 104c1 10533 10547 10569 10587 105c3
105dd 105eb 10641 1064b 10653 1068b 106c3 1076b 1076d 10779 10783 107f1
1080d 10861 108bf 108d5 108df 108e3 108f1 108fb 10939 1097d 1098b 109a5
109af 109c3 109c5 109e7 109f3 10a7d 10a81 10abb 10ac5 10b01 10b13 10b15
10b51 10b5d 10bcd 10bd3 10be5 10c0f 10c1d 10c21 10c69 10c71 10c7b 10c8d
10c95 10ca3 10caf 10cf3 10d43 10d83 10d8f 10dd3 10de5 10e45 10e85 10e9d
10ea7 10f05 10f09 10f1b 10f69 10f77 10f87 10f95 10fb1 10fcf 10fdb 1100b
11043 1104f 1105d 1107f 11083 11085 11097 1111d 1116f 111c9 111db 111f3
11241 11253 11263 11277 11281 1128b 112af 112c5 112db 112ed 112f3 1133b
1133d 11375 11379 1139d 11409 1141b 1144d 11487 11493 114af 114c9 114d1
114ed 114f9 11507 1158f 115a1 115ab 115d5 115fb 1161f 11637 1163d 11643
11651 1169b 116ab 116d9 116fd 1173f 11747 11753 11799 117a3 117a9 117d7
1186f 1188d 11893 118a9 118bb 118f9 118ff 11923 11925 1196b 11975 11979
119b3 119e5 119fd 11a07 11a57 11a6b 11a89 11ae3 11ae5 11b09 11b2b 11b47
11b4b 11baf 11bbb 11bbd 11bc3 11bd7 11be1 11c29 11c61 11c85 11c9d 11cb5
11ccb 11ccd 11ce9 11cef 11cf1 11d17 11d3f 11d53 11d59 11d5f 11d65 11d77
11d81 11d87 11dff 11e21 11e3f 11e5f 11e71 11e7b 11e99 11e9f 11ec3 11ecf
11ee7 11ef3 11f29 11f3b 11f57 11f75 11f83 11f9b 11fb9 11fbf 11fc1 1203d
12051 1208f 1209b 120b9 120c7 12105 12187 12195 121a9 121b1 121e1 12227
12235 12241 12253 1228b 12293 122af 122b1 12329 12345 12357 1236d 123e3
1240f 1242d 12439 1244b 12499 1249f 124e7 124ff 12515 12557 1255d 12573
12579 1259b 125e5 12607 12615 12623 1263d 12651 1267f 12683 126fb 12711
12739 12759 12763 12787 127a5 127c5 127ed 1281d 12841 12871 1287b 128a9
128c5 128f5 1290b 12919 12943 12945 12983 12989 1299d 129b9 129c7 129d5
129f1 12a25 12a29 12a31 12a3b 12a7f 12a85 12aa7 12acd 12ad9 12b09 12b27
12b53 12b7b 12b7d 12b99 12bd1 12bdb 12c1f 12c3b 12c4f 12c5d 12c61 12c6b
12c73 12c79 12cb9 12ce3 12cf7 12cfb 12d35 12d41 12d65 12d81 12ddb 12de1
12e0f 12e47 12e4b 12e4d 12e71 12ec5 12ef9 12eff 12f3d 12f43 12f5b 12f67
12fa7 12fd3 13017 13027 13077 13081 130af 130c3 130dd 130ed 130f5 13107
1310d 13129 13173 131a7 131ab 131cd 131d9 1322f 13237 1323d 13249 13257
1325b 13275 1329d 132b5 132d9 132ef 132f1 13305 1331b 13339 1339f 133a9
133c5 133d1 133f3 13415 13425 1349b 134fd 13505 1351d 1354b 13571 1357d
135a3 135c9 135d7 1361b 13635 1366f 13699 136a9 136c3 136d1 136ed 13707
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1370b 13719 13743 137cd 137e3 13801 1380d 1381f 13837 13849 1385d 1386d
138c7 138cb 138df 138fb 13921 1393f 1394d 13953 1395f 13965 13999 139b7
139bd 139c9 139ff 13a09 13a1b 13a55 13a65 13a69 13a77 13abd 13acf 13af3
13b29 13b45 13b5b 13b9d 13bcb 13bd3 13bef 13bf1 13c47 13c4b 13c69 13c6f
13c93 13d07 13d13 13d23 13d31 13d3d 13d43 13d49 13d67 13d6b 13d83 13d91
13db3 13dc1 13dcd 13e31 13e43 13e45 13e51 13e57 13e8f 13ed3 13edf 13ee9
13efb 13f1d 13f81 13fa5 13fc5 14075 1409d 140cd 14109 1413f 1414b 14153
14159 14193 14199 141af 141bb 141bd 141e1 141e7 141f3 141ff 14203 14211
1424b 14271 14281 142a9 142cf 142e1 142ed 1430b 14343 1437f 14383 143bf
143ef 143fb 1440f 14447 14477 14495 1449f 144a3 144bb 144c5 144e1 144f9
1450b 14529 14537 14573 14589 1458f 1459b 1459d 145b5 145b9 145f7 145fd
14629 14645 1465d 14673 14691 146a1 146cb 146d5 146df 146e9 146fd 14721
1477d 14793 14799 147c3 147c9 147f9 1481d 14835 1483f 14859 14881 148a9
148c3 148db 148ff 1490b 14915 1492f 14931 149df 149e5 149fb 14a13 14a15
14a2f 14a6d 14a75 14aad 14ab5 14acb 14adf 14af7 14afb 14b21 14b4d 14b63
14b7d 14bb7 14bc9 14bcf 14bdd 14bf3 14bf9 14bff 14c1f 14c67 14c73 14ca7
14cb9 14cc7 14cf7 14cfd 14d0f 14d39 14d4d 14d5f 14d69 14d71 14d8b 14d8d
14de7 14deb 14df3 14e4b 14e6f 14e81 14e87 14ea3 14eaf 14eb1 14eeb 14ef5
14f25 14f31 14f49 14f57 14f5b 14f61 14f6d 14f8f 14fa1 14fe3 15003 1500f
15059 15081 150a5 150b7 150bb 150c9 150d7 150eb 15107 15125 15149 1515d
1516d 151a1 151a7 151d3 151df 1520b 15245 1525d 15261 15297 15309 15327
15363 15377 153e1 15457 1545b 1547f 15483 154b5 154b9 154df 15527 1552d
1554b 15593 155af 155f5 15621 1562b 1562d 15647 1569f 156c5 156f5 15729
15751 157ab 15807 15825 1583d 15889 158b3 158d3 158d9 158df 1592b 1594b
1594d 15969 1598d 15993 1599f 159a3 159cf 159d7 159ff 15a55 15a71 15a7d
15a99 15aa5 15ab7 15ad7 15b45 15b4f 15b57 15bab 15bc7 15bdf 15c05 15c99
15ca3 15ca5 15ceb 15d07 15d31 15d37 15d3b 15d7f 15d91 15dab 15dc7 15df1
15dfd 15e0b 15e19 15e29 15e37 15e57 15e67 15eab 15ed5 15ee5 15f55 15f8d
15fbd 16021 16039 16063 16077 1609f 160dd 1610b 16119 1613d 16143 16167
1617f 161ad 161d3 16213 16231 1623b 16261 1626b 16273 1628f 16297 1632d
16333 16335 16353 16365 1637b 16381 163ed 163f5 16407 1641f 1643b 16443
16451 16497 1649b 164e9 164f7 1650f 1652b 16535 16539 1653f 16565 16593
165a5 165e7 165f3 16605 16671 166a9 166bb 166d7 16707 16719 1676b 16779
167a1 167bf 167d9 167df 167f7 16801 1680b 1681f 16849 1689d 168cb 168d3
168d5 16917 16947 16955 1698d 169af 169cf 169d7 16a77 16aa5 16ae7 16b01
16b0d 16b23 16b57 16b6b 16b8f 16b9d 16bab 16bc7 16bfb 16c03 16c1d 16c39
16c6f 16c81 16c93 16ca5 16ce7 16d15 16d3b 16d43 16d89 16d9d 16db3 16dbf
16dc1 16de5 16e19 16e51 16e5d 16e67 16e7f 16e85 16e91 16e97 16e9b 16ed9
16efd 16f47 16f8d 16fc9 16fdb 16fff 17025 17029 17057 1705b 17061 1706b
1706d 1709d 170b3 170fd 17111 17159 1715f 1716f 17181 171c3 171dd 171f9
17205 1721d 1722d 1725f 17263 17271 17299 172a3 172af 172cf 172dd 172e1
17329 17345 1736d 17391 1739b 173ad 173b9 17411 17439 17469 1747d 17481
17487 17495 174b7 174c5 174d7 174ed 17501 17515 17523 17549 17583 1759b
175a1 175a7 1760d 17619 1763b 1763d 17643 17657 1769d 176c7 176df 1771b
1771d 17741 1774b 17781 177a5 177b7 17809 17835 1783f 17899 178c9 178d1
178db 178dd 178eb 17901 1790d 17979 1797f 17991 17997 179e9 179ef 17a01
17a1f 17aa7 17aab 17ab9 17af7 17b05 17b39 17b63 17bb1 17bbb 17bf5 17c37
17c4f 17c5d 17ca1 17cb5 17cbf 17ccb 17cd3 17d21 17d47 17d59 17d87 17da5
17da9 17dc5 17dd7 17e1d 17e2b 17e4b 17e59 17e65 17e8b 17e93 17eaf 17ebb
17ec5 17ed1 17eed 17f0b 17f2f 17f31 17f45 17f75 17fb3 17fc7 17fd3 18013
18015 1806d 18085 180f7 18117 1812b 181b7 18211 1821b 18241 18255 1828b
18293 1829f 182bb 182c9 182f3 182ff 18307 18329 18357 1835d 18361 18379

144



A.1. The Galois field GF(216)

18385 183bf 183c1 183df 183f1 18411 1841b 18433 1844d 1846f 184af 184cf
184d1 184dd 184f9 1850d 18513 18529 18537 18561 1856d 18579 1857f 18585
185c7 185d9 185e9 185fb 1860b 18619 18625 18637 186ab 186c1 186d9 186f1
186f7 1870f 1871d 18721 18733 18741 18753 187af 187b1 187c5 18833 1885f
18863 188c9 1892f 18931 1895d 18979 1897f 1899b 189a7 189ad 189ef 189fb
18a45 18a61 18a67 18a73 18a75 18a9d 18ae5 18b35 18b59 18b63 18b81 18bb7
18bd1 18bdb 18c0d 18c23 18c91 18c97 18c9d 18ccb 18cef 18d27 18d95 18da3
18da5 18dbd 18dc9 18de7 18e21 18e47 18e69 18eb1 18f57 18f89 18fd3 18fd9
18fe5 18fef 19003 1900f 1901b 19027 19047 1908d 190a5 190e7 1911f 19143
1916b 19179 1919b 191a1 19231 19251 1926d 19279 19283 19289 192a7 192fd
19305 19317 19327 19335 1934d 19355 1939f 193c5 193db 193eb 193f3 19401
1943b 19473 19489 19491 194a7 194c1 19505 1951b 1952b 19539 19547 19571
1958b 1958d 195a9 195c3 195d1 1962d 19635 1965f 19677 1967d 196b7 196db
196f9 1970d 19715 1971f 19761 197a1 197ab 197b9 197e3 197e9 197fd 1980b
19823 1982f 19843 1990f 1992b 19941 19947 1998b 1998d 199c3 199ff 19a0f
19a1d 19a35 19a6f 19ad7 19b31 19b37 19b5b 19b6d 19b79 19b7f 19bcb 19bdf
19bef 19bfd 19c53 19c65 19c69 19c8d 19ca3 19cc5 19d19 19d45 19d49 19d8f
19df7 19e07 19e4f 19e57 19e61 19e83 19e91 19ea7 19eb9 19ec7 19edf 19ef1
19f05 19f11 19f21 19f4d 19f65 19f7b 19f93 19f99 19fa5 19fb7 1a011 1a02d
1a033 1a06f 1a07b 1a095 1a0c3 1a0cf 1a0f5 1a107 1a10d 1a125 1a129 1a137
1a145 1a185 1a1d9 1a1fd 1a23b 1a283 1a289 1a291 1a2bf 1a2c1 1a2fd 1a31b
1a321 1a32b 1a333 1a353 1a365 1a3cf 1a449 1a44f 1a467 1a479 1a485 1a4bf
1a4c1 1a4cb 1a4e5 1a4e9 1a4fd 1a505 1a517 1a527 1a52b 1a535 1a555 1a559
1a581 1a5b1 1a5b7 1a5bb 1a5dd 1a62d 1a639 1a64b 1a663 1a671 1a67d 1a6a5
1a6b7 1a6c5 1a71f 1a767 1a797 1a7b3 1a7b9 1a7bf 1a83b 1a8d5 1a8df 1a8fd
1a903 1a933 1a935 1a94b 1a94d 1a953 1a98b 1a9af 1a9b1 1a9e7 1aa77 1aa9f
1aabd 1aac3 1aad1 1aaf5 1ab19 1ab1f 1ab51 1ab57 1ab75 1aba7 1abad 1abb5
1abd3 1abd5 1ac1d 1ac27 1ac5f 1ac69 1ac8d 1acb1 1accf 1ad13 1ad31 1ad4f
1ad5b 1ad79 1adad 1adc1 1adcd 1adfb 1ae15 1ae3d 1ae75 1ae97 1ae9b 1aedf
1aee5 1af41 1af65 1af93 1afaf 1afff 1b013 1b03b 1b043 1b051 1b05b 1b07f
1b083 1b09b 1b0b9 1b0c7 1b0d9 1b0ef 1b153 1b177 1b18b 1b199 1b1bb 1b1dd
1b1e1 1b1e7 1b209 1b21b 1b24d 1b259 1b287 1b2d1 1b2db 1b2eb 1b2ed 1b313
1b323 1b345 1b349 1b34f 1b35d 1b37f 1b38f 1b39d 1b3f1 1b40f 1b41b 1b41d
1b455 1b46f 1b499 1b53b 1b56b 1b5b3 1b5b9 1b5bf 1b5c7 1b5e5 1b5e9 1b625
1b63d 1b64f 1b691 1b69b 1b6d3 1b6ef 1b711 1b769 1b76f 1b793 1b7a3 1b7a9
1b7d7 1b7e1 1b7ed 1b81b 1b82b 1b84d 1b853 1b869 1b88b 1b88d 1b8a9 1b8dd
1b8e7 1b92f 1b95b 1b96d 1b975 1b991 1b9f1 1b9f7 1ba15 1ba31 1ba45 1ba57
1ba83 1ba97 1baa1 1bacd 1bafd 1bb05 1bb1b 1bb27 1bb3f 1bb4b 1bb6f 1bbb1
1bbbd 1bbcf 1bc07 1bc0b 1bc29 1bc61 1bc67 1bcf1 1bcf7 1bd8d 1bda9 1bdaf
1bdf3 1be17 1be21 1be39 1be5f 1be69 1bea5 1bec9 1bef9 1bf23 1bf25 1bf2f
1bf37 1bf43 1bf51 1bf6b 1bf85 1bfa7 1bfad 1bfdf 1c035 1c04d 1c07b 1c0b1
1c0c9 1c0cf 1c0f3 1c10b 1c115 1c119 1c137 1c151 1c175 1c179 1c183 1c1cd
1c1d9 1c251 1c25d 1c267 1c29b 1c2df 1c2e5 1c309 1c341 1c371 1c37d 1c381
1c39f 1c3b7 1c3c9 1c3e1 1c413 1c445 1c479 1c4d5 1c4e3 1c4e9 1c52d 1c533
1c541 1c553 1c577 1c57d 1c5b1 1c5b7 1c5d1 1c5ed 1c609 1c61b 1c639 1c665
1c6dd 1c6f3 1c701 1c729 1c743 1c75b 1c775 1c7ad 1c7b5 1c7fd 1c813 1c819
1c837 1c867 1c86b 1c889 1c8df 1c94b 1c955 1c95f 1c963 1c96f 1c993 1c995
1c9a9 1c9bb 1ca53 1ca65 1ca93 1caa9 1cabd 1cae1 1cae7 1caf3 1cb15 1cb19
1cb1f 1cb23 1cb5d 1cbab 1cbe9 1cbfb 1cc27 1cc41 1cc4b 1cc65 1cc6f 1cc7b
1cc87 1cca3 1cced 1ccf5 1cd0d 1cd37 1cd57 1cd79 1cdcb 1cde9 1ce13 1ce3b
1ce49 1ce57 1ce6d 1cea7 1cead 1cebf 1cef1 1cf05 1cf1b 1cf21 1cf2b 1cf4d
1cf63 1cf65 1d019 1d0fb 1d103 1d10f 1d12d 1d14b 1d171 1d193 1d19f 1d1d7
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1d211 1d24d 1d263 1d28d 1d295 1d2bb 1d2eb 1d2ed 1d301 1d33d 1d3cb 1d3ef
1d41d 1d441 1d455 1d499 1d4b1 1d4bb 1d4dd 1d4e7 1d4f3 1d4f5 1d4f9 1d52f
1d549 1d567 1d583 1d589 1d5ab 1d5ad 1d5b5 1d5bf 1d5e3 1d5e5 1d5ef 1d5f1
1d5f7 1d601 1d615 1d65d 1d6b3 1d6b5 1d6cd 1d717 1d72d 1d735 1d759 1d75f
1d77d 1d7b1 1d7b7 1d7d1 1d7db 1d80f 1d827 1d839 1d87d 1d899 1d8c3 1d8d1
1d8f5 1d907 1d90b 1d91f 1d943 1d945 1d94f 1d967 1d975 1d9b3 1d9f7 1d9fb
1da15 1da5d 1dab5 1dacb 1dad3 1db03 1db0f 1db39 1db47 1db4b 1db87 1dba3
1dba5 1dbd7 1dbdd 1dbf3 1dc0d 1dc19 1dc2f 1dc45 1dc91 1dcab 1dcad 1dcb9
1dcd3 1dd1b 1dd47 1dd71 1dd95 1dde1 1de03 1de4d 1de65 1de69 1de7b 1dea5
1debd 1dec3 1df37 1df3b 1df45 1df57 1df73 1dfcd 1dfef 1e013 1e015 1e037
1e045 1e049 1e05b 1e061 1e07f 1e0b3 1e0df 1e0e9 1e117 1e133 1e14d 1e165
1e1b7 1e1c3 1e209 1e25f 1e28d 1e2f9 1e345 1e351 1e361 1e373 1e39b 1e3ad
1e3e5 1e411 1e44b 1e469 1e47d 1e4db 1e4f3 1e501 1e537 1e56b 1e59b 1e5b5
1e5df 1e607 1e60b 1e62f 1e643 1e66b 1e685 1e69d 1e6b9 1e6f1 1e72d 1e735
1e78b 1e79f 1e7a5 1e7af 1e7bb 1e7e1 1e833 1e86f 1e877 1e881 1e899 1e8a5
1e8cf 1e901 1e923 1e925 1e93b 1e957 1e9fb 1e9fd 1ea19 1ea1f 1ea43 1ea51
1ea61 1ea89 1ea91 1ea9d 1eae5 1eaef 1eafd 1eb05 1eb21 1eb2b 1eb2d 1eb55
1eb7b 1eb9f 1ebb1 1ebc3 1ebcf 1ebeb 1ec0b 1ec2f 1ec31 1ec43 1ec5b 1ec67
1ec6d 1ec79 1ecb3 1ecd9 1ece5 1ed11 1ed1d 1ed27 1edbb 1eddb 1ee1b 1ee63
1ee71 1ee99 1eeaf 1eedb 1ef23 1ef3d 1ef57 1ef85 1ef97 1efb3 1efb9 1efdf
1efe3 1eff7 1f02d 1f039 1f04d 1f05f 1f065 1f069 1f0af 1f0bd 1f0d1 1f113
1f137 1f1a7 1f1ab 1f1cb 1f1d3 1f20d 1f245 1f249 1f27f 1f283 1f2ab 1f2d5
1f2df 1f2f1 1f317 1f335 1f381 1f387 1f393 1f399 1f3af 1f3cf 1f41f 1f423
1f46b 1f48f 1f49d 1f4d3 1f4f1 1f4fb 1f51d 1f527 1f539 1f565 1f571 1f5d7
1f60f 1f621 1f627 1f62b 1f635 1f639 1f655 1f687 1f69f 1f6a5 1f6c5 1f6dd
1f6eb 1f6f3 1f6f9 1f715 1f725 1f74f 1f783 1f7b3 1f7b5 1f7cd 1f7ef 1f7fb
1f801 1f825 1f83d 1f8f1 1f905 1f939 1f94d 1f971 1f9bb 1f9d1 1fa21 1fa41
1fa4b 1fa7d 1fa8b 1fae7 1fb01 1fb57 1fb5b 1fb6d 1fb7f 1fb83 1fb85 1fbcb
1fbcd 1fbf1 1fc0f 1fc11 1fc1b 1fc55 1fc9f 1fca9 1fcc9 1fced 1fd0d 1fd23
1fd3d 1fd43 1fd75 1fd85 1fd9b 1fdb3 1fdbf 1fe25 1fe31 1fe49 1fe83 1fee9
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A.2. Low MSSB generator matrices

In the following sections low weight generator matrices for different values of k and n are listed. The
matrices have been found with the algorithm described in Figure 5.18. The notation is as follows:

(n+ k,k),average MSSB position, maxelem (A.1)

Only the systematic part of the n+ k×n generator matrix is printed, i.e. the first n rows contain the
identity matrix:

1 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1

g0,0 g0,1 . . . g0,n−1

g1,0 g1,1 . . . g1,n−1
...

...
...

gk−1,0 gk−1,1 . . . gk−1,n−1


(A.2)

A.2.1. k=2

(8,2), 0.5, 3(
1 3 2 1 1 2
1 1 1 3 2 3

)
(A.3)

(12,2), 0.7, 5(
2 4 5 1 3 2 1 3 1 1
1 1 1 3 2 3 1 1 2 4

)
(A.4)

(16,2), 0.89, 7(
4 3 1 7 3 1 3 7 2 3 1 1 1 2
1 2 2 2 7 7 4 1 3 1 1 5 3 1

)
(A.5)

(20,2), 1.06, 7(
4 1 3 2 3 1 7 5 6 1 1 2 4 6 4 1 2 7
3 4 2 1 7 5 1 1 1 3 2 7 1 2 5 1 3 2

)
(A.6)
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(24,2), 1.16, 7
1 4 2 4 3 1 1 3 1 1 1 4 2 7 5 7 1 3

7 7 2 5
3 7 1 5 7 1 5 1 2 6 7 1 5 2 2 6 4 2

1 5 7 1

 (A.7)

(28,2), 1.40, 9
2 2 9 7 7 6 4 2 1 9 1 8 1 7 7 1 4 5

8 4 2 5 5 3 3 7
1 4 1 6 5 1 1 5 1 3 7 3 3 8 2 4 7 3

1 5 3 4 1 2 7 3

 (A.8)

(32,2), 1.65, 13
8 11 1 10 10 2 12 1 7 3 1 2 3 1 1 3 12 4

4 6 13 8 11 11 2 13 11 3 2 12
3 4 10 1 7 11 13 9 3 2 5 7 3 7 2 1 9 1

3 1 1 1 2 1 12 4 3 12 1 10

 (A.9)

A.2.2. k=3

(6,3), 0.33, 21 2 1
2 1 1
1 1 2

 (A.10)

(8,3), 0.47, 31 1 3 1 2
3 2 1 1 3
2 1 1 3 1

 (A.11)

(12,3), 0.89, 51 1 1 2 2 3 3 2 5
3 4 2 1 2 1 4 3 1
1 5 4 3 1 4 1 4 1

 (A.12)
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(16,3), 1.31, 85 8 1 3 1 2 5 6 7 4 1 1 1
3 2 8 2 4 5 1 6 1 3 3 2 5
1 1 5 8 8 1 7 1 3 8 3 7 6

 (A.13)

(20,3), 1.65, 11 1 2 3 3 4 8 2 10 7 3 2 3 10 1 8 3 3
11 5 3 5 3 10 1 1 4 8 11 9 6 2 1 7 4
6 5 8 4 7 7 8 3 2 2 1 1 2 10 2 11 5

 (A.14)

(24,3), 2.02, 16

9 8 10 16 11 11 13 5 12 2 6 11 1 2 14 3 3
5 11 1 5

1 5 2 15 8 5 10 2 1 3 15 3 13 11 2 15 14
14 1 15 6

7 15 5 3 9 3 3 7 5 4 1 2 6 3 13 7 11
2 15 4 13


(A.15)

(28,3), 2.32, 21

1 2 1 4 15 10 11 1 9 12 17 4 12 3 15 3 16
13 1 2 15 2 5 9 11

16 9 19 7 5 2 19 8 16 1 2 6 7 14 11 15 3
6 3 1 12 8 2 10 3

7 3 11 12 16 5 8 10 6 2 16 21 13 3 4 20 1
18 16 11 9 8 9 2 15


(A.16)

(32,3), 2.56, 25

1 6 1 18 3 11 5 20 24 11 20 8 1 1 10 1 1
1 14 22 15 5 1 21 18 3 23 22 10

5 25 10 11 25 3 13 11 7 10 1 11 22 8 2 16 11
21 7 14 10 8 23 15 13 3 24 1 20

10 11 14 4 4 25 10 24 2 5 18 3 17 1 5 11 9
7 11 25 21 22 3 5 11 13 19 14 3


(A.17)
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A.2.3. k=4

(8,4), 0.5, 3
2 1 3 1
3 2 1 1
1 3 1 2
1 1 2 3

 (A.18)

(12,4), 1.16, 8
1 2 2 1 1 3 2 6
4 6 3 1 8 1 1 1
1 5 8 6 3 7 1 2
6 3 8 7 2 3 5 1

 (A.19)

(16,4), 1.71, 13
1 9 1 10 2 1 3 11 5 1 4 10
3 1 6 3 7 9 11 13 2 7 10 7
13 5 11 4 3 9 2 8 1 2 1 13
8 4 3 1 9 2 1 1 11 6 9 2

 (A.20)

(20,4), 2.16, 20
13 3 3 1 10 12 1 1 1 14 13 6 12 15 10 20
10 12 1 16 3 15 11 10 5 7 4 20 17 2 8 14
1 11 4 12 19 2 8 2 10 10 6 9 14 7 10 1
7 1 8 4 7 9 7 1 13 16 9 1 13 3 1 3

 (A.21)

(24,4), 2.64, 31

7 11 11 1 16 8 1 23 2 3 1 7 27 23 22 25
12 17 7 16

5 1 31 24 9 2 28 11 28 27 17 3 6 27 4 22
4 4 13 6

6 14 12 2 5 3 26 17 20 2 1 24 2 1 17 11
3 13 21 31

8 6 2 13 1 6 4 4 9 16 9 15 29 21 16 3
23 11 19 11


(A.22)
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(28,4), 2.88, 34

19 14 10 11 24 5 33 10 16 19 7 1 16 29 2 29
1 1 1 15 30 28 20 27

11 2 11 26 14 30 5 32 10 15 8 33 20 7 9 1
26 15 1 7 10 2 1 10

3 1 25 32 28 11 24 4 13 1 30 26 30 34 24 5
14 32 4 33 4 13 34 29

27 1 2 3 3 2 12 5 3 3 3 30 13 27 34 25
27 29 16 23 29 6 28 8


(A.23)

(32,4), 3.15, 40

23 21 5 9 35 4 21 30 37 32 25 37 19 11 4 34
2 14 12 8 29 32 17 14 4 15 10 27

29 6 17 5 2 25 11 38 1 30 3 22 40 21 13 1
40 38 21 34 4 19 19 7 10 22 26 13

5 32 21 30 7 2 16 22 20 23 32 2 23 3 37 3
26 28 4 34 23 20 7 37 25 8 3 7

1 19 18 35 8 25 10 6 3 27 1 10 37 27 22 7
27 13 1 3 2 9 1 2 1 4 28 40


(A.24)

A.2.4. k=5

(10,5), 0.92, 7
4 3 1 1 1
3 6 6 1 7
1 1 6 2 3
3 1 4 3 1
1 4 1 3 5

 (A.25)

(12,5), 1.26, 8
2 6 1 1 2 1 6
3 4 7 3 1 1 1
4 6 6 3 7 4 5
1 2 3 4 2 6 1
6 7 6 7 3 1 8

 (A.26)
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(16,5), 2.04, 18
14 3 10 1 7 10 18 2 15 2 13
7 11 13 5 2 12 14 17 3 5 1
16 15 15 2 6 1 14 6 9 7 2
1 2 13 15 11 1 5 3 2 1 17
5 14 2 7 8 17 1 1 1 8 17

 (A.27)

(20,5), 2.59, 27
1 2 25 14 9 8 7 4 22 27 15 10 22 7 2
7 23 16 11 10 21 9 13 2 1 1 8 10 7 21
6 8 23 4 21 5 11 1 8 6 1 22 15 22 2
16 1 24 5 12 6 26 20 19 27 21 20 8 3 26
2 9 7 24 12 27 1 22 1 8 1 1 3 15 23

 (A.28)

(24,5), 2.96, 37

8 21 7 1 29 16 27 2 26 19 19 25 19 21 3
4 1 21 7

11 14 15 1 1 35 2 28 10 12 30 21 2 8 19
9 18 3 19

22 13 14 34 8 2 8 21 1 17 12 7 9 31 20
1 35 28 22

4 22 35 26 6 3 2 25 9 35 24 16 1 19 29
35 14 5 2

26 12 19 37 25 1 3 9 25 28 1 8 14 23 19
12 11 6 6



(A.29)

(28,5), 3.35, 48

33 3 20 34 37 1 13 32 1 18 6 2 5 11 27
24 8 47 21 8 21 33 26

16 1 46 2 9 4 12 6 2 45 10 1 25 7 37
34 15 11 44 1 11 2 37

29 35 21 41 1 29 19 43 16 6 19 1 21 23 10
24 23 33 26 41 48 34 46

6 19 2 4 4 45 3 5 7 13 12 46 33 44 11
16 35 15 4 1 43 9 22

1 24 47 22 7 45 22 3 2 44 21 29 27 29 33
19 43 45 13 34 20 35 2



(A.30)
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(32,5), 3.99, 82

27 1 11 70 22 3 65 76 19 51 36 67 66 20 29
82 17 70 71 57 2 58 13 9 13 41 66

8 61 52 9 58 10 24 1 8 10 52 76 46 16 2
17 81 30 8 15 32 35 11 48 24 77 61

29 13 2 47 30 80 11 46 66 11 6 3 56 20 1
80 2 27 37 25 15 14 63 76 21 14 21

34 78 5 61 3 27 78 2 31 13 21 75 1 23 42
55 45 49 24 56 37 4 19 4 42 25 39

2 60 9 1 19 64 65 38 20 67 8 48 22 56 66
13 12 20 57 12 6 45 1 39 10 39 41



(A.31)

A.2.5. k=6

(12,6), 1.36, 9

5 1 3 1 3 1
9 1 1 7 2 4
1 7 5 6 3 2
2 6 1 3 3 9
6 5 7 7 6 1
7 7 6 8 1 6


(A.32)

(16,6), 2.15, 19

16 7 1 14 2 8 19 16 5 12
5 17 1 19 1 14 14 17 7 16
6 14 3 4 1 19 9 2 14 9
12 15 7 1 19 1 9 1 6 7
1 1 9 5 3 1 7 13 15 2
10 1 6 18 11 3 1 8 11 7


(A.33)

(20,6), 2.89, 36

18 30 1 17 1 1 28 2 7 34 11 10 25 19
30 33 3 26 13 2 12 3 18 29 15 29 3 15
1 13 25 10 1 4 9 26 20 13 27 19 5 16
22 30 3 12 27 10 1 12 1 36 13 2 26 21
6 2 34 11 15 5 5 16 4 11 30 27 32 23
14 4 11 1 3 15 12 28 10 19 9 32 14 25


(A.34)
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(24,6), 3.54, 61

41 15 1 7 1 55 12 48 23 52 26 39 10 9
4 1 16 14

1 3 34 23 24 48 41 14 60 27 43 47 12 21
61 18 13 20

1 57 36 1 8 9 24 50 19 15 29 24 25 27
15 21 5 52

21 14 2 32 21 1 33 5 43 59 12 42 37 54
7 23 38 52

39 30 31 34 1 20 1 16 19 50 7 43 46 61
11 3 15 26

11 1 46 8 49 6 42 23 29 4 45 24 56 40
60 1 8 40



(A.35)

(28,6), 4.43, 113

78 62 28 50 49 21 2 27 16 93 36 1 61 85
37 38 61 47 3 25 59 4

59 81 33 15 56 47 36 81 12 54 52 103 28 15
8 39 62 1 72 7 106 1

69 49 20 19 44 103 43 30 113 90 15 39 3 92
22 26 77 54 65 55 3 96

38 1 63 15 31 75 40 68 7 27 18 73 112 56
2 82 24 2 93 46 4 24

97 84 97 66 25 4 99 72 95 95 62 8 42 11
100 111 51 7 65 92 43 95

1 31 37 27 5 50 34 73 11 49 70 96 51 64
5 1 53 38 58 26 111 83



(A.36)
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(32,6),9.09, 2033

1837 1662 1273 1488 1500 525 923 1118 1709 1598 1957
1810 171 228 1351 16 1723 1941 736 1038 678
1686 1291 1185 1525 1104

1012 1938 614 1643 1337 404 1257 563 1891 710 1087
767 1828 749 317 1738 512 487 1965 1862 503
1641 1755 1239 631 386

877 1922 1570 355 979 534 246 1592 130 1583 1995
1387 98 1838 50 1185 558 1877 1933 874 1567
397 1360 1485 212 1863

1079 1967 1054 1710 305 1931 1584 1875 238 515 362
484 60 491 19 8 1878 116 1846 1927 1301
356 1756 1186 1229 1276

1583 541 714 1795 357 1792 1714 1410 1455 2019 1294
992 1846 1531 1506 160 2014 1566 651 2033 1573
481 101 1371 360 1402

1726 69 540 907 1345 76 1448 11 1871 1804 1803
1537 1167 1211 1508 413 155 1306 1944 1661 1466
1911 1179 69 1896 704



(A.37)
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A.3. Vandermonde matrices

Figure A.1.: Range of the average MSSB positions of the Vandermonde-based generator matrices for
all 2048 primitive generator polynomials of GF(216). The dotted lines indicate the mean values over
all primitive polynomials.
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A.4. Testbeds

A.4.1. CPU testbed

Table A.2.: CPU Testbed

Intel Core i5-2500K
micro architecture Sandy Bridge
clock speed 3.3 GHz
cores 4
L1/core 32 kiB data

32 kiB inst
L2/core 256 kiB
L3 (shared) 6 MiB

Memory
type DDR3
capcity 2 * 4 GiB
clock speed 1333 MHz
peak bandwidth 2* 10667 MiB/s

Mainboard
model Asus P8H67-V

Software
gcc 4.5.0
kernel 3.0.0
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A.4.2. GPU testbed

Table A.3.: GPU Testbed

Intel Core i7-930
micro architecture Nehalem
clock speed 2.8 GHz
cores 4
L1/core 32 kiB data

32 kiB inst
L2/core 256 kiB
L3 (shared) 8 MiB

Memory
type DDR3
capacity 6 * 2 GiB
clock speed 1066 MHz
peak bandwidth 25.6 GiB/s

Mainboard
model ASUSTeK P6T7 WS SUPERCOMPUTER

Software
gcc 4.5.2
kernel 2.6.38-13
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Table A.4.: Output of the NVIDIA deviceQuery tool for the GeForce GTX 680 GPU.

CUDA Driver Version / Runtime Version 4.2 / 4.2
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 2048 MBytes
(8) Multiprocessors x (192) CUDA Cores/MP: 1536 CUDA Cores
GPU Clock rate: 706 MHz (0.71 GHz)
Memory Clock rate: 3004 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 524288 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536),

2D=(65536,65536),
3D=(4096,4096,4096)

Max Layered Texture Size (dim) x layers 1D=(16384) x 2048,
2D=(16384,16384) x 2048

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and execution: Yes with 1 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Concurrent kernel execution: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support enabled: No
Device is using TCC driver mode: No
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 5 / 0
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