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ABSTRACT 

 

Objective: This study examined the impact of increasing automation replanning rates on 

operator performance and workload when supervising a decentralized network of heterogeneous 

unmanned vehicles. Background: Futuristic unmanned vehicles systems will invert the 

operator-to-vehicle ratio so that one operator can control multiple dissimilar vehicles, connected 

through a decentralized network. Significant human-automation collaboration will be needed due 

to automation brittleness, but such collaboration could cause high workload. Method: Three 

increasing levels of replanning were tested on an existing, multiple unmanned vehicle simulation 

environment that leverages decentralized algorithms for vehicle routing and task allocation, in 

conjunction with human supervision. Results: Rapid replanning can cause high operator 

workload, ultimately resulting in poorer overall system performance. Poor performance was 

associated with a lack of operator consensus for when to accept the automation‟s suggested 

prompts for new plan consideration, as well as negative attitudes towards unmanned aerial 

vehicles in general. Participants with video game experience tended to collaborate more with the 

automation, which resulted in better performance. Conclusion: In decentralized unmanned 

vehicle networks, operators who ignore the automation‟s requests for new plan consideration and 

impose rapid replans both increase their own workload and reduce the ability of the vehicle 

network to operate at its maximum capacity. Application: These findings have implications for 

personnel selection and training for futuristic systems involving human collaboration with 

decentralized algorithms embedded in networks of autonomous systems. 

KEYWORDS:  multiple unmanned vehicles, human supervisory control, workload, human-

automation collaboration, scheduling, vehicle routing, trust, human-automation consensus, 

operator-to-vehicle ratio, decentralized network, automation brittleness, task allocation, 

unmanned aerial vehicles 
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INTRODUCTION 

In current unmanned vehicle systems (UxVs), particularly those that include unmanned 

aerial vehicles (UAVs), more than one human operator is required for control and supervision. 

However, futuristic systems will invert the operator-to-UxV ratio so that one operator can control 

multiple UxVs (Cummings, Bruni, Mercier, & Mitchell, 2007; Franke, Zaychik, Spura, & Alves, 

2005). To accomplish this future vision, significant collaborative autonomy must be embedded 

within and across teams of unmanned vehicles so that they can execute basic operational and 

navigation tasks with little human input. This architecture will require automated planners, which 

are faster than humans at path planning and resource allocation in multivariate, dynamic, time-

pressured environments. However, human management of the automated planners will be 

critical, as automated planners cannot always generate accurate solutions in the presence of 

unknown variables. Though fast and able to handle complex computation far better than humans, 

computer optimization algorithms are notoriously “brittle” in that they can only take into account 

those quantifiable variables identified during the design stages as critical (Silverman, 1992; 

Smith, McCoy, & Layton, 1997). 

Networked UxV operations can take the form of decentralized architectures, i.e., because 

of nearly constant sharing of information between and across network agents, no one vehicle is a 

central point of planning. In such decentralized networks, each vehicle computes its best plan 

with locally shared information, and no globally optimal plan exists since each vehicle strives to 

maintain the best plan with possibly limited information. Although the decentralized approach is 

superior to centralized in terms of protection against network vulnerabilities caused by 

bandwidth limitations and reliance on specific vehicles for critical tasks, it presents human 

supervisory control difficulties as operators who attempt to locally control a vehicle will not 
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likely have an understanding of how this action could affect the network, since behavior is 

emergent. 

Another significant concern in this concept of one operator supervising multiple 

collaborative UxVs involves the potential for high workload. Due to the dynamic and uncertain 

nature of the environment, control of decentralized UxVs requires rapid automated schedule 

replanning. Whereas embedded algorithms can typically generate new schedules in just seconds, 

often these schedules are not truly optimal, i.e., the optimized a priori cost function may not 

reflect the true state of all variables in dynamic scenarios. Moreover, automation will consider 

even a solution that is 0.1% better (given its hard coded objective function) as a better solution.  

In command and control scenarios, the notion of “better” can be very different between 

automated and human decision makers. Since typically such algorithms do not account for 

satisficing behavior (Simon, et al., 1986) and cannot consider all variables (especially qualitative 

one), ultimately humans may be able to generate “better” solutions (in their view) than the 

automation. An important, but rarely addressed question in human supervision of collaborative 

networks of UxVs involves the impact of the rate of new plan generation by the automation that 

requires human approval, i.e., how often should the human be tasked to approve and possibly 

modify new UxV schedules that the automation deems to be better? 

Operators engaged in these dynamic, high workload environments must both concentrate 

attention on the primary task (i.e., monitoring vehicle progress and identifying targets) and also 

be prepared for automation replan alerts. This need to concentrate on a task, yet maintain a level 

of attention for alerts requires both interrupt and task-driven processing. The allocation of 

attention between these two incurs cognitive costs that negatively impact overall system 

performance (Miyata & Norman, 1986). Poor attention allocation has been shown to be a 
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significant contributor to poor operator performance in single operator control of multiple 

unmanned vehicles (Crandall & Cummings, 2007; Goodrich, Quigley, & Cosenzo, 2005). 

In order to address these issues, given a simulation of a network of decentralized 

collaborative UxVs (Valenti, Bethke, Fiore, How, & Feron, 2006) supervised by a single 

operator under time pressure, an experiment was conducted to determine how increasing 

automation replanning rates in terms of new plan generation requiring approval affects operator 

and system performance. The assumed mission is one of search, track, and destruction of enemy 

targets, a typical command and control mission. 

METHOD 

Apparatus 

This experiment employed a collaborative multiple UxV simulation environment that 

leverages decentralized algorithms for vehicle routing and task allocation. This simulation 

environment functions as a computer simulation but also supports actual flight and ground 

capabilities (Valenti, et al., 2006); all the decision support displays discussed in this paper have 

operated actual small air and ground UxVs. 

Participants were responsible for one rotary-wing UAV, one fixed wing UAV, one 

Unmanned Surface Vehicle (USV), and a Weaponized UAV (WUAV). The UAVs and USV 

were responsible for searching for targets. Once a target was found, the operator was alerted to 

perform a target identification task (i.e., hostile, unknown, or friendly), along with assigning an 

associated priority level (i.e., high, medium, low). Then, hostile targets were tracked by one or 

more of the vehicles until the human operator approved WUAV missile launches. A primary 

assumption was that operators had minimal time to interact with the displays due to other 

mission-related tasks. 
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Operators had two exclusive tasks that could not be performed by automation: target 

identification and approval of all WUAV weapon launches. Operators also created search tasks, 

which dictated on the map those areas the operator wanted the UxVs to specifically search. 

Operators also had scheduling tasks, but these were performed in collaboration with the 

automation; when the autonomous planner recommended schedules, operators accepted, rejected, 

or modified these plans.  

The autonomous planner only communicated to the vehicles a prioritized task list, and the 

vehicles sorted out the actual assignments among themselves by “bidding” on the tasks they felt 

they could accomplish, which was manifested through a consensus-based auction algorithm 

(Choi, Brunet, & How, 2009). In the course of this market-based auction scheme, vehicles bid on 

tasks while attempting to minimize the revisit times between tasks.  

 Operators were shown the results of this bidding process through the display that showed 

unassigned tasks that could not be completed by one or more of the vehicles. However, if 

unhappy with the UxV-determined search or track patterns, operators could create new tasks, in 

effect forcing the decentralized algorithms to reallocate the tasks across the UxVs. This human-

automation interaction scheme is one of high level goal-based control, as opposed to more low-

level vehicle-based control. Operators could never directly individually task a single vehicle. 

Participants interacted with the simulation via two displays. The primary interface is a 

map display (Figure 1). The map shows both geo-spatial and temporal mission information (i.e., 

a timeline of mission significant events), and supports an instant messaging “chat” 

communication tool, which provides high level direction and intelligence. Icons represent 

vehicles, targets of all types, and search tasks, and the symbology is consistent with MIL-STD 

2525 (DoD, 1999). 
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In this interface, operators identify targets, approve weapons launches, and insert new 

search tasks as desired or dictated via the chat box. The performance plot in Figure 1 gives 

operators insight into the automated planner performance, as the graph shows expected (red) 

versus observed (blue) performance of the system. Performance for this graphical representation 

is defined as a priority-level weighted sum of the tasks assigned in each plan with decrements to 

the performance score based on deviations from the desired arrival times to each task, i.e., the 

score decreases more when vehicles are late in task execution. When the expected performance 

score is above the observed score, the autonomous planner is effectively proposing that better 

performance could be achieved if the operator accepts the proposed plan (based on the planner‟s 

prediction of how the vehicles will bid on the tasks). When the observed performance curve 

surpasses the expected curve, the human operator has changed the tasking, which causes better 

than expected automation performance.  

For this experiment, the automation‟s a priori cost function was to track targets in order 

of their respective priorities and minimize switching times between vehicles. This cost function, 

as well as bidding iterations between the vehicles, was not explicitly shown to operators, and 

operators were told that their objectives were to search the largest area possible, track all found 

targets, and destroy all known hostile targets. Participants were told that there could be a 

discrepancy between their objectives and those of the automation since this is a realistic 

brittleness problem as previously described.  

The decentralized planning automation can generate a new “improved” plan 

approximately every second based on the static cost function, but these improvements can be 

quite small, e.g., ~.1%, assuming something changed in the environment since the last plan. 

However, when to show a new plan to the human is the subject of the experiment that will be 
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discussed in the next section since a 1s replanning interval is not feasible for operators. When the 

automation generates a new plan that is “better” than the last, the Replan button turns green and 

flashes, and when selected, the operator is taken to the Schedule Comparison Tool (SCT), 

detailed in the next section.  

Operators can elect to select the Replan button at anytime, even when it is not lit. The 

SCT display then appears, showing three geometrical forms colored gray, blue, and green at the 

top of the display (Figure 2), which are configural displays that enable quick comparison of 

schedules. The left form (gray) is the current UxV schedule. The right form (green) is the latest 

automation-proposed schedule. The middle working schedule (blue) is the schedule that results 

from user plan modification. The rectangular grid on the upper half of each shape represents the 

estimated area of the map that the UxVs will search according to the proposed plan. The 

hierarchical priority ladders show the percentage of tasks assigned in high, medium, and low 

priority levels.  

When the operator first enters the SCT, the working schedule is identical to the proposed 

schedule. The operator can conduct a “what if” query process by dragging the desired unassigned 

tasks into the large center triangle. This query forces the automation to generate a new plan if 

possible, which becomes the working schedule. The configural display of the working schedule 

alters to reflect these changes. However, due to resource shortages, not all tasks can be assigned 

to the UxVs, representative of real world constraints. The working schedule configural display 

updates with every individual query so that the operator can leverage direct-perception 

interaction (Gibson, 1979), to quickly compare the three schedules.  

This “what-if” query, which essentially is a preview display (Wickens & Hollands, 

2000), represents a collaborative effort between the human and automation (Layton, Smith, & 
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McCoy, 1994). Operators adjust team coordination at the task level as opposed to individual 

vehicle tasking, which has been shown to improve single operator control of a small number of 

multiple independent robots (Goodrich, et al., 2007). Details of the interface design and usability 

testing can be found in Fisher (2008). 

Participants and Procedure 

Thirty-one participants volunteered for this study (twenty-four men and seven women). 

Ages ranged from 19 to 44 years with a mean of 23.8 years and standard deviation (sd) of 4.8 

years. Sixty-eight percent of participants had military experience (ROTC, military academy, or 

active duty). Each participant filled out a demographic survey prior to the experiment that 

included age, gender, occupation, military experience, video gaming experience, and perception 

of UAVs.  

The experiment was conducted on a Dell Optiplex GX280 with a Pentium 4 processor 

and an Appian Jeronimo Pro 4-Port graphics card. The display‟s resolution was 1280x1024 

pixels. A self-paced, slide-based tutorial was provided that explained the interfaces, as well as a 

practice session. Training took approximately thirty minutes, followed by three counterbalanced 

ten-minute test sessions, representing three possible replan intervals (detailed below). Each 

scenario was different, but similar in difficulty.  

Experimental Design 

 In order to determine the specific replanning intervals that would result in high operator 

workload, a previously–developed single operator, multiple UxV discrete event simulation 

(DES) model was used (Cummings & Nehme, 2010). Given specific capabilities of different 

unmanned vehicles (i.e., autonomy expressed through neglect times), human operators (i.e., task 

error rates, attention allocation across tasks), and the interface (i.e., expected task response 
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times), this model predicts operator utilization, also known as percent busy time. Utilization 

represents the time operators are required to interact with a system divided by the total time of 

possible interaction. Monitoring time is not included in this metric.  

Prior human performance models using steady state queuing models estimate that 

humans cannot successfully perform at utilization rates > 70% (Rouse, 1983; Schmidt, 1978). 

Empirical studies based in single-operator supervisory control of multiple entities have shown 

this prediction to be a reliable predictor of high workload (Cummings & Guerlain, 2007; 

Cummings & Nehme, 2009). Vehicle performance data from the test bed and preliminary 

operator performance estimates were used to predict the rates of new automation-generated 

schedules requiring operator approval (called “replanning rates”). It was predicted that 

replanning rates of 120s, 45s, and 30s would produce utilization levels of 55%, 70%, and 85%, 

respectively. It was hypothesized that operators would perform satisfactorily at the 45s and 120s 

intervals, but the 30s interval would cause a significant drop in performance due to the increase 

of utilization over 70%.  

For these fixed intervals, the embedded autonomy produced a plan that was, on average, 

7-20% better than the previous plan, but there were no convergent values for each of the three 

replanning intervals, i.e., the 30s interval could produce a plan 20% better, and the 120s a 7% 

better plan, and vice versa. In fact, the automation was brittle in that it occasionally would 

recommend a plan worse that the current plan. In cases where nothing in the environment had 

changed, operators were instructed to create a search task anywhere of their choosing, which 

would then cause the algorithms to compute a new best plan. 

Performance dependent variables included the percentage of area covered, number of 

targets found, number of hostile targets destroyed, and the average operator utilization for a 
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given session. For utilization, operators were considered “busy” when performing one or more of 

the following tasks: creating search tasks, identifying and designating targets, approving 

weapons launches, interacting via the chat box, and replanning in the SCT. All interface 

interactions were via a mouse with the exception of the chat messages, which required keyboard 

input. 

In addition to objective workload, secondary workload was measured via reaction times 

to text message information queries, as well as reaction times when instructed to create search 

tasks via the chat tool. Such embedded secondary tools have been previously shown to be 

effective indicators of workload (Cummings & Guerlain, 2004). 

RESULTS AND DISCUSSION 

A repeated measures Analysis of Variance (ANOVA) model was used for parametric 

dependent variables (α = 0.05). For dependent variables that did not meet ANOVA assumptions, 

non-parametric analyses were used. 

Performance Metrics 

The three mission performance metrics showed the same trend in that the 30s replan 

interval resulted in lower performance than the 45s and 120s intervals (Figure 3). Specifically, 

the omnibus area coverage test was significant (Figure 3a, F(2, 56) = 16.213, p < 0.001), and 

Tukey pairwise comparisons showed significant differences between the 30s and 45s intervals (p 

< 0.001), and between the 30s and 120s intervals (p = 0.001). There was no significant difference 

between the 45s and 120s intervals for area coverage (p = 0.120). In terms of practical utility, 

those participants at the 45s and 120s replanning levels covered on average 10% more area than 

the 30s participants, which is significant in terms of actual military operations, e.g., additional 

missions do not have to be launched to cover this area. 
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As with the area coverage metric, the omnibus percentage of targets found was 

significant (Figure 3b, F(2, 60) = 14.640, p < 0.001). Tukey pairwise comparisons also showed 

that the 30s interval was different from 45s and 120s intervals (p = 0.002 and p < 0.001 

respectively), but once again, the 45s and 120s intervals were not statistically different (p = 

0.096).  

For the percentage of hostile targets destroyed (Figure 3c), non-parametric tests were 

needed. The Friedman test showed a significant difference for Hostiles Destroyed (χ
2
(2, N=31) = 

9.152, p = 0.010.) Mann-Whitney Dependent pairwise comparison tests showed the 30s interval 

was significantly different from the 45s interval (p = 0.010). Overall, the performance results 

showed that operators at the 30s replan interval consistently covered less area, found fewer 

targets, and destroyed fewer hostile targets as compared to the 45s and 120s intervals.  

Workload Metrics  

Utilization was significantly different across the three independent replan intervals (F(2, 

60) = 10.601, p < 0.001). Tukey pairwise comparisons showed that the 30s interval was 

significantly different from the 45s and 120s intervals (p = 0.002 and p < 0.001, respectively). As 

with the performance results, the 45s and 120s intervals were not statistically different (p = 

0.354). Overall, the utilization metric showed that operators had a higher workload at the 30s 

replan interval (Figure 4). Non-significant results were obtained for the secondary workload 

metrics (chat reaction time and prompted search task reaction time), as well as subjective 

workload measured on a 4-point Likert scale (from „idle‟ to „extremely busy‟). 
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DISCOVERY OF UNDERLYING SUBPOPULATIONS 

Although these initial results confirmed our original hypothesis that people would 

perform significantly worse under the 30s replanning interval than the 45s and 120s intervals, the 

validation of the previously-discussed queuing-based model‟s predictive capability led to a 

significantly more in-depth analysis. To this end, the discrete event model‟s service time and 

event generation distributions were updated with the actual observed distributions, a common 

practice in simulation modeling (Law & Kelton, 2000). However, fitting of the data was 

unexpectedly a difficult task, which led to discovery of underlying participant populations and 

new insights into the experiment. 

When attempting to fit distributions to both service time and user-generated event arrival 

times, it became apparent that the data were multimodal. Further analysis revealed that a major 

source of the multimodal distribution problem was that in many cases, despite careful training, 

participants often chose to ignore the automated replanning reminders and elected to replan on 

their own schedule. For example, regardless of whether they were prompted to evaluate a new 

schedule in the SCT every 30s, 45s, or 120s, some participants simply ignored the alert and 

performed other tasks like communication or search task creation. These participants also 

entered the SCT at times when the green button was not illuminated and asked the automation 

for a new plan.  

This behavioral trend led to partitioning the participants into three categories: 1) those 

participants with statistically significant different rates of replanning across the three intervals, 

which aligned with the automation‟s prompting, called Consenters, 2) those that had no 

statistically significant differences in the rates of replanning across the three trials, as they 

routinely ignored the automated alerts and chose to enter the SCT at other times, called 
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Dissenters, and lastly 3) Mixed Consenters, whose rates occasionally aligned with the 

automation‟s prompting, but who also used the SCT between the automation‟s 

recommendations. These three populations were fairly evenly split (29%, 39%, and 32%, 

respectively). Table 1 shows the intended replan rates and those rates adopted by participants in 

the three categories. 

The label Consenter does not imply that participants agreed with the automation‟s new 

proposed plan, only that they agreed to consider it. Regardless of consent or dissent status, 

participants were not statistically different in their acceptance of the automation‟s proposed 

plans, in that all three groups modified the automation‟s suggestions ~33% of the time, which 

generally improved the system performance by ~50% in terms of targets found and area covered. 

However, operator changes in the schedule generally did not improve (or detract from) targets 

tracked or hostiles destroyed. The Dissenters under high workload (i.e., 30s replan interval) 

modified proposed plans slightly more, ~43% of the time. Even though under the greatest time 

pressure, the dissenters chose to manipulate the schedule the most often.  

Table 1 reveals two interesting points. First is the observed replan rate for the Consenters 

at the 120s replan interval, which is well below the expected interval. Only two participants 

consistently waited the full two minutes for the automation‟s new proposed plan. Even though 

the Consenters generally followed the automation‟s suggestions for new plan consideration for 

the 30s and 45s replan intervals (which were counterbalanced), they generally could not wait the 

full 120s.  

Of additional interest in Table 1 is the nearly identical self-imposed replanning rate of the 

Dissenters. On average, regardless of whether the automated replan alert signaled that a new plan 

was available, the Dissenters entered the SCT to query the automation for a new plan 
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approximately every 30 seconds. As discussed previously, participants could query the 

automation for a “what-if” solution anytime. Dissenters elected to do this far more often than the 

other groups. However, there was no statistical difference between the Consenters and Dissenters 

in terms of how long they spent using the SCT once they actually decided to replan.  

Given the three distinct sub-populations of Consenters, Dissenters, and Mixed 

Consenters, an additional analysis was conducted to determine how the degree of consent or 

dissent influenced performance. Using Spearman Rho correlations, increasing dissent led to 

increased utilization (ρ = 0.331, p = 0.001), as well as decreased area coverage (ρ = -0.251, p = 

0.017). There were no significant correlations with other performance variables. These 

relationships are depicted in Figures 5a and 5b. Dissenters worked more than the other groups, 

but their performance declined in terms of area coverage. Despite their efforts, the Dissenters did 

not perform as well as those participants who collaborated with the autonomous planner in terms 

of reviewing (but not necessarily accepting) proposed schedule changes.  

In an attempt to shed light on any possible associations that could elucidate this finding, 

several demographic factors were examined. Spearman Rho correlations showed no significant 

correlations for military experience (either the presence or amount of experience), nor for age in 

terms of consent/dissent status. Participants were fairly homogenous in these demographics, as 

most were in their middle twenties, and the majority had some form of military experience. One 

interesting correlation involved participants‟ views of UAVs in general. Prior to the experiment, 

participants were asked to give general impressions of UAVs, which were coded into a 5-point 

Likert scale (1 = intense dislike, 5 = really like). The Spearman Rho correlation between this 

response and the degree of consent was -0.234 (p = 0.024). Not surprisingly, dissenters weakly 

correlated with those who did not like UAVs. 
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One additional important correlation was the association between degree of consent and 

video game experience, which was moderate-strong (ρ= -0.372, p< 0.001). The Consenters and 

Mixed Consenters had the most amount of video game experience, on average reporting weekly 

to monthly gaming experience, whereas the Dissenters reported significantly less (none to 

monthly). Previous studies have shown that there are possibly neural bases for improved 

performance in video game environments, such as increased dopamine release (Koepp, et al., 

1998) and increased activation and connectivity in the mesocorticolimbic system, particularly for 

males (Hoeft, Watson, Kesler, Bettinger, & Reiss, 2008). Additional research has shown that 

video game play can improve visual attentional processing in divided attention, multi-task 

environments similar to the one described here (Green & Bavelier, 2003). However, other 

research has shown that people who are heavy multi-taskers in multimedia environments do not 

perform as well as those who are not (Ophir, Nass, & Wagner, 2009).  

It appears that the gamers in this study were able to self-regulate their pace so that they 

were able to effectively divide their attention. The Dissenters, however, elected to rapidly task 

themselves with marked regularity, and in doing so, performed significantly worse. Thus the 

gamers in this study seemed to have more patience and were willing to allow the automation to 

do its job, which ultimately led to better performance than those with little to no gaming 

experience.  

As has been noted in several other related studies (Lee & See, 2004; Moray, Inagaki, & 

Itoh, 2000), trust is a critical component of any supervisory control system with embedded 

automation. Although some component of trust is no doubt a factor in this study given the weak 

correlation between dislike of UAVs and Dissenters, from a performance perspective, the 

Consenters did not trust the system any more than the Dissenters. Whereas the Consenters and 



 

17 

 

Dissenters each modified the automated plans about 33% of the time, the Consenters simply 

agreed to the pace of replanning and were not task switching as frequently as the Dissenters.  

These findings have implications for personnel selection and training for futuristic 

systems involving human collaboration with networks of unmanned systems with embedded 

autonomous planners. Although a positive association was found between performance and 

video game experience in this study, causality is still unclear. Gamers could be an attractive 

population for future unmanned vehicle operators, but recent research has also shown that people 

can improve their visual attentional processing after just 10 days of playing video games (Green 

& Bavelier, 2003). Thus, the cognitive benefits of video gaming could be gained through 

training.  

In addition, the possible influence of participants‟ attitudes towards unmanned systems 

cannot be ignored. Previous research has shown that there are cultural barriers to acceptance of 

unmanned vehicles in some military populations (Cummings, 2008; Cummings & Morales, 

2005). This present study indicates that such a lack of acceptance not only has cultural 

implications, but performance ones as well. 

CONCLUSIONS 

An experiment was conducted to investigate the impact of automated planning rates for 

single operator control of multiple unmanned vehicles in a decentralized network. Participants 

performed significantly better when the automation prompted them to replan every 45s and 120s, 

as compared to replanning every 30s. In determining probability distributions to validate a 

discrete event operator workload model based on this experimental data, three distinct sub-

groups were unexpectedly discovered, almost evenly split across the data: (1) Consenters who 

generally followed the automation‟s prompting for when to consider new plans (29%), (2) 
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Dissenters who almost always ignored the automation‟s prompts (39%), and lastly (3) Mixed 

Consenters whose behaviors were split between these two extremes (32%). A lack of replanning 

rate consensus between the automation and operators was significantly correlated with degraded 

performance and a dislike of UAVs in general. In contrast, higher degrees of consent were 

associated with better performance as well as video game experience. 

Networks of unmanned vehicles will most likely be operated in the future with similar 

decentralized planners since such planners are not as vulnerable as centralized planners and can 

offer performance guarantees such as conflict-free task assignment (Alighanbari & How, 2006). 

This significant level of autonomy onboard each UxV will cause operators to supervise the 

system from a goal-based perspective as opposed to more vehicle-based control seen in today‟s 

UAV systems. Because of the nearly-constant replanning that must occur on the part of the 

decentralized UxV planners, operators will have to adapt a more collaborative approach to 

mission supervision. As shown in this study, operators who ignore the automation‟s requests for 

new plan consideration and self-impose rapid replans both increase their own workload and 

reduce the ability of the network of vehicles to operate at its maximum capacity.  

This study raises several important areas of future research in unmanned vehicle 

supervision, such as the need for human-computer collaboration in decentralized automated 

planning environments, the influence of video game experience in such collaborative 

environments, the negative impact of rapid multi-tasking, and the role underlying attitudes have 

on overall system performance. These questions are not just critical for unmanned vehicle 

systems, but for all supervisory control systems, especially as they grow more complex with 

increasing embedded autonomy. 
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Table 1: Consensus Status and Replan Intervals 

 30s Replan 

Interval 

45s Replan 

Interval 

120s Replan 

Interval 

Dissenters 32 ± 6.9s   37 ± 13.6s 38 ± 11.7s 

Mixed Consenters 35 ± 6.5s 36 ± 8.8s 65 ± 26.1s 

Consenters 33 ± 6.3s 46 ± 6.3s 79 ± 18.7s 
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Figure 1. Map display. UxV = unmanned vehicle system. 
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Figure 2. The schedule comparison tool.  
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Figure 3. Performance metric comparison: (A) area coverage, (B) targets found, (C) hostiles destroyed. 
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Figure 4. Utilization results.  



 

30 

 

 
 

Figure 5. The impact of consensus on performance: (A) utilization, (B) area coverage. 

C = consenters; MC = mixed consenters; D = dissenters. 
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