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Abstract 

A controlled layer of multi-wall carbon nanotubes (MWCNT) was grown directly on top of 

fluorine-doped tin oxide (FTO) glass electrodes as a surface modifier for improving the 

performance of polymer solar cells. By using low-temperature chemical vapor deposition with 

short synthesis times, very short MWCNTs were grown, these uniformly decorating the FTO 

surface.  The chemical vapor deposition parameters were carefully refined to balance the tube 

size and density, while minimizing the decrease in conductivity and light harvesting of the 

electrode. As created FTO/CNT electrodes were applied to bulk-heterojunction polymer solar 

cells, both in direct and inverted architecture. Thanks to the inclusion of MWCNT and the 

consequent nano-structuring of the electrode surface, we observe an increase in external 

quantum efficiency in the wavelength range 550÷650 nm. Overall, polymer solar cells 

realized with these FTO/CNT electrodes attain power conversion efficiency higher than 2%, 

outclassing reference cells based on standard FTO electrodes. 

1. Introduction 

Organic photovoltaics has been gaining momentum in recent years and is now one of the 

fastest-developing technologies in the field of green energy. Its success largely hinges upon 

the low manufacturing and material costs, simple fabrication via printing techniques [1], 
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which also opened to the creation of flexible devices by roll-to-roll processing [2, 3], 

providing the access of organic solar cells to market areas generally closed to silicon-based 

solar cells [4]. Thanks to a strong research interest, polymer solar cells have undergone a 

steady increase in power conversion efficiency (PCE) [5, 6], becoming a mature technology 

able to compete in the market [7, 8, 9]. 

Indium tin oxide (ITO) is a transparent conductive oxide commonly used as a standard 

electrode in thin film and organic photovoltaics [10]. However, its electrical/optical properties 

require further optimization to achieve maximum device’s performance. In the past, several 

research groups proposed carbon nanotubes (CNT) in the cell architecture to take advantage 

of their superior electrical and morphological properties [11]. As for electrodes, CNT layers 

have been deposited on glass to replace ITO as electrode material, yet failing to attain a ratio 

between sheet resistance and transparency that would promote an effective replacement of 

ITO [12]. Hybrid configurations combining ITO and CNT proved to be a more effective 

strategy, albeit with a large room for improvement. Freestanding CNT sheets have been 

placed on top of ITO reaching 1.7% of PCE [13]. In order to exploit further such promising 

results, CNTs have been embedded in the cell architecture by growing them directly on the 

ITO surface by chemical vapor deposition (CVD), in an attempt of improving the charge 

collection at the electrode [14, 15]. However, the high temperature required for the CVD 

process (500-600°C) is extremely detrimental to the conductivity and optical transmittance of 

ITO [16], and thus represents a major hindrance to this approach’s application. Therefore, 

although the direct synthesis of CNT on ITO have successfully demonstrated the possibility 

of using a transparent conductive oxide as CVD substrate, the overall PCE of as-built solar 

cells never reached values as high as the references due to the inherent incompatibility in 

material processing, so putting an end to this line of research. 



In order to overcome such an impasse, in this article we explore for the first time the direct 

synthesis of CNT on fluorine-doped tin oxide (FTO). Differently from ITO, FTO can sustain 

a prolonged sintering at temperatures higher than 500°C without changing its properties [17]; 

remarkably, it has been reported even a drop in FTO’s resistivity by 1Ω /sq after a thermal 

treatment in air at 600°C [18]. By analyzing the synthesized materials by electron microscopy 

and Raman spectroscopy, we investigated the impact of a wide range of CVD parameters and 

ultimately found the process conditions providing the best combination of conductivity and 

transparency for FTO/CNT electrodes. We developed polymer solar cells by using these 

modified FTO/CNT electrodes, finding an increased efficiency compared to the conventional 

architectures. 

2. Experimental methods 

2.1 MWCNT synthesis on FTO electrodes 

MWCNT were synthesized on FTO electrodes. The glass/FTO substrates (Pilkington, 8Ω/□, 

3mm/700nm thick) were cleaned by ultrasonic baths in acetone and isopropyl alcohol. A 3nm 

layer of Ni was deposited in high-vacuum by thermal evaporation at 10-6 mbar. The substrates 

were loaded face-down on top of a Si stage in a CVD system, where the set temperature on 

the stage is reached by Joule effect. The CNT synthesis was performed at 600°C for the 

desired time with an Ar/C2H2 flow (300/30 sccm). When the synthesis was complete, the 

samples were quickly cooled down to room temperature (fast extraction). 

After CVD, the substrates were analyzed by FE-SEM (JEOL JSM-7001F) and TEM (Jeol 

1011 TEM). Raman spectra were collected using an inVia Renishaw Micro-Raman system. 

The 632.8nm line of a He-Ne laser at room temperature were focused on an area of the 

samples about 1 µm wide, choosing a low laser power to prevent heat accumulation. On each 

sample, several areas were probed and the spectra were averaged to rule out possible 

discrepancies in the surface. The transmittance spectra of the electrodes were acquired with a 



UV-Vis spectrophotometer (Shimadzu UV-2550). The sheet-resistance of FTO/CNT 

electrodes were measured with a Keithley 2410 source-meter in four-probe configuration 

2.2 Solar cell assembly and testing 

Bulk-heterojunction (BHJ) solar cells were built in a glove-box filled with nitrogen by using 

standard glass/FTO and glass/FTO/CNT electrodes. A film of poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited by spin coating 

as hole transport layer between FTO and photoactive blend. This is a standard step in the 

polymer solar cell assembly, required to flatten the ITO surface, improve the charge 

collection, align the energy level and increase the VOC) [11], but it is unfeasible on FTO/CNT 

because of the high hydrophobicity of the CNT layer. Therefore, alternate transport layers 

with equal performance were used to adapt the work function energy of the electrodes to the 

HOMO-LUMO levels of the donor/acceptor blend. Two specular configurations of polymer 

solar cells were implemented: inverted (electrode/Cs2CO3/P3HT:PCBM/MoO3/Ag) and direct 

(electrode/MoO3/P3HT:PCBM/Ca/Al). In the inverted cell, a Cs2CO3 electron transport layer, 

deposited via liquid phase processing [19,20], allows the energy level alignment between 

cathode and active layer; similarly, an evaporated MoO3 [21,22] hole transport layer promotes 

the charge transfer between the active layer and the metal anode. In the direct cell, the MoO3 

is at the interface with transparent conductive oxide anode [23]. 

For the inverted cell, the 2nm layer of Cs2CO3 was spin-coated on glass/FTO(/CNT) cathode 

from a solution of 0.2 wt% in 2EE (2-ethoxyethanol) at 5000rpm for 60sec. A 2 wt% solution 

(1:0.7) of regio-regular P3HT (Sigma-Aldrich) and PCBM (Solenne BV) was diluted in DCB 

(dichlorobenzene) and spin-coated at 400 rpm for 60 sec (~100 nm), as active layer. At last, 

5nm of MoO3 and 100nm of Ag were deposited via thermal evaporation at 10-6 mbar, 

respectively as hole transport layer and top metal anode. For the direct structure, both MoO3 

and P3HT:PCBM layers were deposited as before. Finally, 20 nm of Ca and 80 nm of Al were 



deposited via thermal evaporation (10-6 mbar) as top metal cathode. For the two architectures, 

8 devices were realized. All the 16 cells have an active area of 16.6 mm2 and were not 

encapsulated. 

The current-voltage (J-V) characteristics of the cells were measured with a Keithley 2410 

source-meter under AM1.5G (100 mW/cm2) illumination of a Sun 2000 Class A ABET solar 

simulator. To measure the external quantum efficiency (EQE), the devices were illuminated 

by monochromatic light and the photocurrent is recorded by a Keithley 2612B source-meter. 

A Lot-Oriel IPCE system, comprising a Xe-arc lamp as white light source and a 

monochromator, was used to generate monochromatic light, whose intensity was measured 

using a Thorlabs UV-Enhanced FDS1010 calibrated Si photo-detector. Samples transmittance 

was obtained with a Shimadzu UV2020 spectrophotometer with integrated sphere. 

3. Results and discussion 

3.1 Electrode characterization 

After the CVD synthesis, the electrode was less transparent, with a greyish layer covering the 

FTO area. Upon FE-SEM inspection, the FTO surface appears coated by a layer of multi-wall 

carbon nanotubes (MWCNTs), which are uniformly distributed all over the oxide crystals 

(Fig. 1a). Low CVD temperature (600°C) combined with short time (3 min) gave rise to the 

growth of CNT with small radius of curvature. The CNT length in this case could be 

controlled to a large extent, the nucleation rate on the tin oxide substrate being rather slow (as 

compared for instance to Si or SiO2) [13].  As seen in the SEM micrograph, we managed to 

obtain short MWCNTs, which in some cases appeared to be solely nucleated. On average, the 

tubes had a diameter around 30 nm and are shorter than 100 nm, as confirmed by TEM 

analysis (Figure 1b). The low synthesis temperature led to the growth of defective MWCNTs, 

whose walls were in some cases partially covered by residual amorphous carbon. 



  

Fig. 1 – Analysis of the CNTs grown on glass FTO by CVD at 600°C in Ar/C2H2 (300/30 

sccm). (a) SEM micrograph of the FTO/CNT electrode (3 min CVD). The surface is 

uniformly covered by short MWCNTs (white spots). (b) TEM micrograph of the FTO/CNT 

electrode (3 min CVD). 

 

The Raman spectra taken on the FTO/CNT samples show features in the typical bands of 

graphitic materials as CNT (Fig. 2): D (~1350 cm−1), G (~1580 cm−1), and 2D (~2700 cm−1). 

In carbon-based materials, the D band is usually attributed to defective graphitic structures (as 

carbonaceous impurities with sp3 bonding, broken sp2 bonds in the sidewalls, etc.), bending or 

finite-size effects [24, 25]. The G band arises from the zone center E2g mode and corresponds 

to ordered sp2 bonded carbon; it is enhanced in the case of carbon atoms vibrating along a 

nanotube axis (LO phonon mode) [26]. The 2D band is related to the iTO (in-plane 

transversal optical) branch in the phonon dispersion of sp2 carbon materials [27, 28], and may 

represent an accurate indication of the CNT quality or purity [29]. 



 

Fig. 2 – Raman spectra collected on FTO/CNT electrodes after CVD at 3, 5, 8 min, 

respectively (the negligible background noise in the spectra is due to the glass/FTO substrate). 

 

For all the samples, the G peak (centered at ~1600 cm-1 with FWHM of 70-92 cm-1) is the 

most intense feature but is not very sharp as in the case of single wall carbon nanotubes 

(SWCNT) and graphene, thus confirming the presence of MWCNTs. The peak is also shifted 

from 1580 to 1600 cm−1, indicating the presence of graphitic layers with small crystallite sizes 

or abundant edges. The broad D peak (centered at ~1330 cm-1) is also typical of multi-wall 

carbon nanotubes, which may possess defects between the various walls. The D peak shape is 

also coherent with the low-temperature synthesis process used (<700°C), where the available 

energy can usually allow only the formation of MWCNTs of large diameter (i.e. many walls), 

most likely with imperfect levels of graphitization and more abundant defects [30]. This 

inference is also supported by the presence of the (mesa-like component) weak and broad 2D 

mode (centered at 2780 cm-1). Besides, no radial breathing modes are visible in the spectra, 

further proving that SWCNTs are not grown (as expected for a low-temperature CVD) and 

that the MWCNT diameter is quite large [31]. Overall, there seems to be a superposition 

between the strong MWCNT features and a background signal due to amorphous carbon 



species that are likely to form as a by-product of a low temperature CVD process [32]. This is 

supported by the Raman spectrum of a sample processed at 490°C, shown in the inset of Fig. 

2. At such a low temperature, amorphous carbon is the principal species synthesized, its 

spectrum being composed of a small G band peak which is smeared by a very broad D band. 

The intensity ratio between D and G band peaks (ID/IG) can be used as an indicator of the 

quality on the MWNT samples, since the relative changes in the two peak intensities correlate 

with the amount of carbonaceous impurities in a given sample [33]. An ID/IG ratio of 0.9 is 

consistent with the low-temperature growth of CNTs and is even lower than previously 

reported [34], attesting the optimal choice of the CVD process conditions. The crystallite size 

of the grown nanographitic species, La (nm), can be calculated by Raman spectroscopy using 

the general equation , where λl is the laser wavelength in nm, as reported 

by Cancado et al. [35]. For our three samples, the equation gives graphitic domain sizes 

between 41-43 nm. This is consistent with the FE-SEM and TEM investigations, and also 

reasonable enough considering the mean Ni cluster size of a few tens of nm that is likely to 

coalesce at 600°C (on which the tubes nucleate). 

The transmittance and measured sheet-resistance (RS) of the different electrodes are reported 

in Fig. 3. The pristine glass/FTO samples show an overall transmitted power (T%) of 78%, in 

the range 300÷800 nm. After the deposition of 3nm of Ni on top of FTO, the transmittance 

shape changes, retaining a higher transparency at lower wavelengths, as expected for an 

evaporated thin metal film [36], while the overall T% decreases to 65%. After the CVD, the 

transmittance spectrum of the new electrode (FTO/CNT) recovers the shape of pristine 

glass/FTO, but T% is further reduced to an average value of 51% (53÷48%). As expected, the 

Ni’s signature is no longer present in the spectrum, since the Ni layer is likely to fragment 

into small clusters during the CVD synthesis; these give rise to the CNT’s nucleation and end 

up embedded in them. The transmittance spectrum of the CNT layer itself (extracted from the 



spectra of glass/FTO samples with and without CNT film) is also presented for comparison. 

As shown in the inset in Fig. 3, the sheet-resistance of the FTO/CNT electrodes is close to 

that of pristine glass/FTO substrates (~8 Ω/□) and increases with the electrode opacity, which 

in turn reflects the CNT coverage, reaching an average value of 10.4 Ω/□ (9.7÷10.7Ω/□). 

 

Fig. 3 - Transmittances of the different substrates: (■) bare FTO on glass; (●) FTO with 3nm 

layer of Ni; (▲) FTO with CNT layer (a range of possible transmittance curves are shown 

because the FTO/CNT electrodes slightly differs one another); (◊) transmittance of the CNT 

layer alone (calculated). In the inset, a table with the overall transmitted power (T%) and the 

sheet resistance of the samples are reported (see SI for details). The inverse dependence 

between T% and RS is apparent. 

 

From the comprehensive characterization of our samples, some considerations can be drawn. 

By low temperature CVD with acetylene (at atmospheric pressure), short and sparse MWCNT 

can be easily grown on a transparent conductive oxide surface. The combination of surface 

roughness, short synthesis time and low nucleation rate hinders the formation of a dense layer 

of CNTs as a carpet. Moreover, in this case the van der Waals forces between such sparse 

nanotubes are too weak to play a role in their vertical alignment. In turn, the electrode 



transmittance is retained at acceptable values. Moreover, thanks to process’s short duration 

and the fast extraction from the heating-stage the electrodes retain a good balance between 

conductivity and transparency. To this extent, we have specifically avoided the use of H2 

(along with Ar) as carrier gas, because of its detrimental effect on the oxide film properties, as 

already reported in the case of ITO [15]. We further characterized the properties of the 

FTO/CNT electrodes, evaluating their work function by Kelvin Probe method. An increase of 

100÷200meV (~150meV) is measured for FTO/CNT in respect to untreated FTO, similarly to 

the case of ITO [15]. As for the absolute values, we can refer to the work function of the 

tantalum probe used in the measurement (4.2 eV), indicating a value of 5.1 eV for FTO/CNT 

with respect to 4.9÷5.0 eV of bare FTO, in line with several reports [37, 38]. Such a 

modification in work function for FTO/CNT electrodes is expected to affect the performance 

of cells based on two different architectures. 



 

3.2 Solar cell testing  

After the substrate characterization, we selected 16 FTO/CNT electrodes with similar 

properties (transmittance ~51%, sheet resistance ~10.4 Ω/□) to build both inverted and direct 

polymer solar cells, in order to test the cell performance and investigate the CNT effect on the 

two cell architectures, reported in Fig. 4. 

 

 

Fig. 4 - Structure scheme, energy level diagram [17,21,37,38], and EQE (symbol+line) vs 

Transmittance (line) comparison of the PSC architectures used in this work: (a) inverted and 

(b) direct.  In the inset, a table with the ratio values (T% and JSC extracted from EQE) between 

FTO with and without CNT is reported. 

 

We measured the EQE of our polymer solar cells to study the effect of the CNT layer on 

FTO. The graphs are shown in Fig. 4, along with the reference transmittance spectra of the 

electrodes (FTO and FTO/CNT). The FTOfiltered curve in the graphs simulates the EQE of a 

cell made with a CNT/glass/FTO electrode, that is, a cell with an external CNT layer (an 



optical filter in this case) on glass. This simulation helps in appreciating the decrease in 

efficiency for a cell collecting a T% of only 53%, elucidating the impact of the CNT on the 

device properties. 

It can be noted that the FTO/CNT cell with inverted architecture (Fig. 4a) presents an EQE 

with a different shape in respect to the reference cell, with the maximum downshifted at 550 

nm. The EQE has lower values in the wavelength range 300<λ<570 nm, but outperforms the 

reference cell at λ>570 nm. Overall, the average decrease in EQE is not as severe as it should 

be for a cell electrode with a T% of 53%, as remarked by the FTOfiltered curve, which is much 

lower the FTO/CNT itself (max of 18% vs 24%, respectively). 

Interestingly, the FTO/CNT cell with direct architecture shows an EQE higher than the 

reference almost throughout the whole range 300-800 nm (Fig. 4b). The two spectra have a 

similar shape, but the EQE of FTO/CNT cell rises markedly over the reference in the range 

λ>450 nm. 

In order to understand the possible contribution of CNT to the cell performance, it is useful to 

remind that the EQE derives from the product of the light transmitted to the cell and four 

efficiencies corresponding to each step in the charge generation process: photon absorption, 

exciton diffusion, exciton dissociation and charge collection [39]. The absorption efficiency, 

related to the composition and processing of the photoactive material, should stay the same in 

all our experiments, while the exciton dissociation efficiency can be in general treated as 

unity. Consequently, the EQE improvement for the FTO/CNT cells, considering also their 

lower transmittance, can be in principle related to higher efficiency in exciton diffusion or 

charge collection, or to a combination of both. However, the exciton diffusion is mostly 

related to the segregation of donor and acceptor domains, and a thin and sparse layer of CNT 

can hardly affect the blend formation process (besides, the active layer is deposited on top of 

the buffer layers and not directly on the CNT surface). Therefore, in our understanding, the 



inclusion of CNT in the cell architecture aids in particular the charge collection process, 

which is also the charge generation step depending the most on the interfaces formed between 

photoactive layer and electrodes. The charge extraction might also be facilitated by the 

additional electric field created by the MWCNTs [40]. The contribution of the MWCNTs to 

such an electrical optimization is particularly intense at lower photon energies (i.e. λ>450 

nm). In order to quantify this effect, we extracted the JSC from the EQE curves (JSC_EQE) and 

calculated the JSC ratio between the FTO/CNT and the FTO cell. These values (shown in the 

table in Fig 4, for both architectures) are compared to the T% ratio of the two cells (0.68). For 

the inverted structure, the JSC_EQE ratio is 0.86, confirming that the CNT are able to offset the 

decrease in transmittance by improving the charge collection. For the direct structure, the 

JSC_EQE ratio is much higher and more than 1 (~1.06). 

In particular, the remarkable increase in EQE provided by the FTO/CNT electrode to the 

direct cell could be explained by an additional effect of the CNT layer, not related to its 

favored morphology: The FTO/CNT electrode is expected to have an increased work 

function, and this would ease the hole collection by providing an improved energy level 

alignment with the hole transport layer (MoO3). 

In this framework, it seems likely that the CNT coating on FTO, although partially decreasing 

the transmitted power to the active layer, may have a twofold, positive effect on the cell’s 

electrical properties: i) creating nanostructured paths on the electrode able to collect charge 

carriers closer the point of generation/separation in the photoactive layer; ii) favoring the band 

energy alignment in the direct cell. Overall, the inclusion of CNT has a beneficial effect on 

the EQE, especially in the direct architecture, by improving the charge carrier collection at the 

electrode and possibly, to a lesser extent, the exciton diffusion efficiency. 

Fig. 5 shows the J-V curves of the realized devices measured under an illumination of 1 sun 

(AM1.5G); the electrical parameters are reported in Table 1. 



 

Fig. 5 - J-V curves of the solar cells realized with different architectures: (●) FTO/Cs2CO3, 

(▲) FTO/CNT/Cs2CO3, (◄) FTO/CNT/MoO3, (■) FTO/CNT/MoO3. 

 

As can be noted, the inverted cell made with FTO/CNT shows a decrease of both VOC (106 

mV less) and JSC (1.4 mA/cm2 less), which leads to a PCE of 0.8%, as opposed to 1.1% of the 

reference. However, the decrease in PCE is not large, considering the low T% of the 

FTO/CNT electrode (32% less than the FTO cell). The current density remains relatively high 

thanks to the improved charge carrier collection at the FTO/CNT surface. 

The situation drastically changes for the solar cell made with direct architecture. In this case 

the JSC increases by more than 10% while the VOC and FF remain constant; therefore, the 

FTO/CNT cell outperforms the FTO one, so attesting a PCE of 2.1% (vs 2.0%). Such a result 

is highly significant for cells made with electrodes with a T% of around 50%. 

 

 



Table 1 - Electrical parameters of both inverted and direct architectures of organic solar cells 

made with or without CNTs on top of FTO. 

 

These results confirm our speculation about the energy band level of the FTO/CNT 

electrodes. Indeed, a work function increased to 5 eV has an opposite effect on energy band 

alignment of the two different cell architectures: in an inverted cell, the inclusion of the CNT 

layer between FTO and Cs2CO3 is likely to add a higher energy barrier for electrons, thus 

lowering the device’s electrical performance (essentially VOC, see figure 4a); conversely, a 

direct cell with FTO/CNT should benefit from an anode work function closer to the energy 

level of the hole transport layer (5.3 eV for MoO3), thus reducing the hole collection losses 

(figure 4b). 

4. Conclusion 

We successfully modified the surface of FTO by directly growing CNTs at low temperature 

on top of it. Optimal CVD parameters were selected, making it possible to obtain a uniform 

yet transparent MWCNT coating while preserving the FTO conductivity. We built and tested 

direct and inverted solar cells with FTO/CNT electrodes to elucidate the effect of CNT on two 

cell architectures with opposite band energy alignment. The CNT coating on the FTO 

increased the EQE of the cells, mainly on the account of an improved charge carrier collection 

to the electrode. In the direct architecture, the beneficial impact of the CNTs can be not only 

related to the nano-structuring of the electrode, but also connected to a more favorable 

energy-band alignment between FTO/CNT and photoactive blend. 
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