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Abstract—The design optimization of synchronous reluctance 
(SyR) machines is considered in this paper by means of a Finite 
Element Analysis-based multi-objective optimization algorithm 
(MOOA). The research focuses on the design of the rotor 
geometry which is the key aspect of SyR machines design. In 
particular, this digest analyzes the performance of several 
popular MOOAs and the impact of their settings on the quality 
of the final design. A procedure to minimize the computational 
burden of the optimization process is introduced and applied 
for the first time to a five layer rotor. A rotor prototype has 
been realized to demonstrate the feasibility of the design 
procedure. 

I. INTRODUCTION 
Synchronous Reluctance (SyR) motors are a viable 

alternative to inverter driven induction motors because they 
allow a size reduction or an improvement in efficiency [1,2]. 
The rotor geometry is characterized by multiple flux barriers 
and many configurations are possible, in terms of number of 
the barriers and their shape and dimensions. The literature of 
SyR motor design is vast but the design guidelines vary with 
the authors [3-4]. Optimization algorithms have been applied 
for the last two decades to the design of such machines [5] 
but, again, a standard procedure has not emerged yet, 
especially for machines having three or more layers. This is 
not a coincidence and it is related to two main causes: the 
many degrees of freedom involved in the rotor design and 
the need for a comprehensive evaluation of steel saturation. 

Linear magnetic models are too simplistic for SyR 
machines, because the rotor iron saturates locally even at 
very little load, e.g. in the structural bridges, and then 
saturates as a whole progressively with the load. For this 
reason, all design approaches make use of Finite Element 
Analysis (FEA), at least for the final verification of the 
machine characteristics [6-7]. 

Apart from [5], FEA-based optimization has not been 
utilized as often in the literature of SyR machines, and it is 
generally dedicated to simpler rotor geometries with 
permanent magnets in, such as the single layer rotor motor in 
[8]. In [9-10] we have presented a multi-objective design 
optimization of multi-barrier rotors based on FEA, aiming to 
provide a comprehensive approach to SyR rotors design 
within a reasonable computation time. The fast FEA 

evaluation of candidate machines [9] and the two-step 
application of the multi-objective optimization algorithm 
(MOOA) [10] where the focuses of past works. 

The goals of this paper are to investigate the impact of 
the MOOA settings on the efficiency of the optimization 
process and to extend the design procedure of [10] to a five 
layer rotor. Different optimization algorithms are applied 
comparatively and general conclusions are drawn. A 
procedure for obtaining the robust convergence of the 
optimization within a given number of iterations is 
formalized. The comparison between the different MOOAs 
refers to the case of a three-layer SyR rotor. The five layers 
rotor is finally used as an example of how the MOOA 
procedure is robust towards the increase of the variables to 
be optimized. 

Two machine prototypes, one with three layers and one 
with five, are designed for optimal torque and torque ripple 
and experimentally evaluated. Iron losses are also compared 
and commented, FEA calculated. 

The paper describes how to set-up the optimization 
procedure so to minimize convergence time and obtain 
statistically repeatable results. The results are confirmed on 
two problems of different size, namely the optimization of 
three and five layer rotors that converge in very similar 
times. Last, the five layer design found by MOOA is 
unconventional with respect to the related literature and 
allows a little improvement of motor efficiency at the 
expenses of rotor mechanical strength. 

II. PROBLEM STATEMENT 
The two objectives to be optimized are the average 

torque and the torque ripple. The stator geometry is defined, 
and it is the one of a PM-assisted machine for compressor 
application. The original ratings of the PM-assisted machine 
are 2.5 Nm at 5400 rpm, liquid cooled at 90°C. The ratings 
of the SyR motor designed here are 4 Nm at 5000 rpm, with 
forced ventilation. The continuous peak current is 16.8 A and 
the rated voltage, at the dc-link level, is 270 V. 

The windings are distributed, not chorded, with two slots 
per pole per phase. The airgap thickness is 0.5 mm, and the 
rotor design is considered here. The peak current density is 
set during the optimization, to a value that can correspond to 



the continuous operation current i0, or to a multiple, 
corresponding to transient overload. The optimization at 
overload current eases the optimization, at will be shown.  

Apart from the selected two objectives, other objectives 
to be optimized could have been the power factor and the 
core losses. However, once the airgap and the current level 
are fixed, a nearly optimized power factor will follow from 
torque optimization, that is also machine saliency 
optimization, in a way [11]. Core loss are important and 
sometimes in competition with torque ripple minimization. 
They have not been included in the optimization not to 
weight the computation burden excessively. The conclusion 
of the paper is that, as for all machines in the literature, the 
geometries found by the MOOAs have a grade of core loss 
that depends on the number of layers in the rotor and the 
number of stator slots [12-14]. 

A. Parametrization of Rotor Geometry 
The rotor geometry is defined in Fig. 1 for an example 

motor with two pole-pairs and 5 layers. The shapes of the 
barriers in the literature are so varied and so full of 
parameters that a strong simplification is necessary, to 
reduce the number of iterations needed to complete the 
optimization process. Each variable should have a reasonable 
impact on at least one of the performance indexes of the 
optimization. It was demonstrated in [10] that rotor layers 
with circular shape, described with only two variables per 
layer, can reach performances similar to those of more 
complex geometries despite the very reduced set of 
parameters. For circular layers such parameters are:  

• the layer angular positions at the airgap Δαj; 
• the layer heights hcj; 
Last, the current phase angle γ is also included in the 

optimization variables, for it is unknown a priori. 
If nlay is the number of rotor layers, the number of 

variables to be optimized is then 2 nlay +1. This makes a 7-
dimensional space of the inputs, for the three layers machine 
and 11 dimensions of the five layers one. 

The set of parameters and the search bounds are reported 
in Table I. Where p.u. is indicated, it means that the value is 
in per-unit of the total space or angle available for the layers. 
The first angular input Δα1 is the most critical one, and it 
decides how much angular space is left for the other layers 
tips. The p.u. angles from 2 to nlay then distribute the layers 
tips over this space. After the barriers tips are placed, their 
thickness hci are evaluated from the p.u. MOOA inputs such 
that if they are all 1 p.u. the layers are all at maximum 
thickness and all thick the same. For maximum width it is 
intended that a minimum thickness of 1.0 mm is guaranteed 
to all the flux guides between barrier and barrier. This way, 
incompatible combinations of the inputs, leading to layers 
overlap are avoided. 

B. Fast FEA evaluation of the candidate machines 
The performance indexes to be optimized, torque and 

torque ripple, are evaluated in a single current condition 
(amplitude and phase angle γ in synchronous coordinates), so 
to reduce computation. 

TABLE I 
LIMITS OF THE SEARCH SPACE FOR THE GLOBAL SEARCH (GS) 

Parameter Min value Max value Units 

hci (i=1,..,nlay) 0.2 1 p.u. 
Δα1 15 27 degrees

Δαj (j=2,..,nlay) 0.33 0.67 p.u. 
γ 20 80 degrees 

 

 
Figure 1.  Rotor geometry with 5 layers: the Δαj angles define the layer 

angular positions, hci are the layer heights. 

The current amplitude selected in the examples is twice 
the machine rated current (2 i0), as a trade-off between 
continuous torque and maximum overload conditions (3 i0). 
This because preliminary investigations revealed that 
machines with a good torque/torque ripple compromise in 
overload conditions perform well also at lower current 
levels, but not vice-versa, because the machines optimized 
at lower currents have a tendency to perform badly at 
overload. 

Dealing with the current phase angle, the correct choice is 
to use the maximum torque per ampere (MTPA) angle 
condition γMTPA. However, this angle is not known a priori 
when a new machine is evaluated and its identification 
normally requires that different trial values of γ are tested, 
with time consumption. To reduce computational time, the 
current phase angle is included into the MOOA inputs, and 
each motor is evaluated for a single current angle that is 
selected by the MOOA. All the tested MOOAs showed to 
be capable of finding to the correct current phase condition 
for all optimized machines. 

The torque of each candidate machine is FEA calculated 
in n equally spaced rotor positions, covering one stator slot 
pitch (τst). The average value and the standard deviation of 
the torque waveform are the two cost functions of the 
optimization. The stator slot pitch has been chosen for it is 
representative of the most significant torque ripple harmonic 
component. The number of simulations required to avoid the 
aliasing of significant torque harmonics is discussed in [10], 
where a random offset has been introduced. This permits to 
minimize the aliasing of the main ripple harmonics when 
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very few positions are simulated. In this case, five rotor 
positions are simulated per each candidate evaluation. 

In turn, each machine is evaluated by the MOOAs via the 
FEA calculation of its torque in a single current amplitude 
and phase condition, and for five rotor positions with the 
first position decided randomly. All the final Pareto fronts 
evaluated so far showed that: 
1. the γMTPA angle is correctly estimated by the MOOA. 
2. The torque ripple of all output machines is minimized. 
3. Specifically, torque ripple is minimum along the MTPA 

trajectory, also at current amplitudes that are different 
from the simulated one. 

C. Optimization procedure and MOOA settings 
The proposed MOOA-based design procedure consists 

of a first stage called global search (GS) and a successive 
local search refinement stage (LS). During the GS, the 
bounds of the search space are kept quite large, meaning 
that all the feasible rotors are considered as potential 
solutions. Table I reports the bounds values used for the GS 
optimization. At the end of the GS stage, one of the 
optimized machines is selected for further refinement. The 
LS stage is a successive MOOA run, with the bounds of the 
inputs restricted around the set of inputs that define the GS-
selected machine. 

III. META-HEURISTIC ALGORITHMS 
There are many meta-heuristic algorithms for single- and 

multi-objective optimization problems. They have in 
common the use of a set of candidate solutions (population) 
that are iteratively modified according to some probabilistic 
rules and that converge to the global minimum of the 
objective function with a certain degree of probability. It is 
well known that no best algorithm exists, being valid for any 
class of problems (no free-lunch theorem [15]) and that no 
algorithm can avoid the risk of premature convergence to 
sub-optimal solutions.  

A. Genetic Algorithms 
Genetic algorithms (GAs) are a particular class of meta-

heuristic algorithms that use techniques inspired by 
evolutionary biology such as mutation, selection, and 
crossover. Genetic algorithms are implemented as a 
computer program in which a population of candidate 
solutions (called individuals) to an optimization problem 
evolves toward better solutions. Usually individuals are 
represented by a vector of Ng real or binary numbers (called 
genes). An initial sampling of Np individuals is performed 
randomly with a uniform distribution function within the 
decision space D. All the individuals xk, k=1,…, Np are 
evaluated and a fitness value (performance index) f(xk) is 
associated to each of them. A couple of individuals (called 
parents) are selected from the population. Individuals with 
better fitness values are more likely to be selected according 
to well-known criteria (roulette wheel, rank selection). Two 
provisional offspring are generated applying a crossover 
operator to the parents. According to the uniform crossover, 
each gene of the first parent is randomly assigned to the first 

or second child. The empty genes are filled with those of the 
second parent. Finally, a mutation operator is applied to the 
provisional offspring. A few randomly selected genes of the 
offspring are replaced with random values. 

After several iterations (parent selection, crossover and 
mutation) Np offspring are generated and their fitness values 
calculated. The algorithm is referred to as elitist when the 
worst part of the offspring is replaced by the best parents. 
The grade of elitism can be strict (only offspring better than 
the parents survive) or mild (parents are excluded after being 
in the population for a maximum number of generations, 
independently of their performance). Strong elitism can 
accelerate convergence in the initial steps but it could also 
lead to premature convergence (the explorative effect of 
crossover vanishes). 

B. Differential Evolution 
According to its original definition (see [16]), the 

differential evolution (DE) algorithm consists of the 
following steps. An initial population is generated as already 
described for genetic algorithms. At each generation, for 
each individual xk of the Np, other three individuals (xr, xs, 
and xt) are randomly extracted from the population. 
According to the differential evolution logic, a provisional 
offspring  is generated by mutation as 

  (1) 

where F ∈ [0, 2] is a scale factor which controls the length of 
the exploration vector  and thus determines how 
far from point xt the offspring should be generated. Other 
variants of the mutation rule have been subsequently 
proposed in literature. When the provisional offspring �

has been generated, each of his genes is exchanged or not 
with the corresponding gene of  with a random decision 
ruled by the crossover rate parameter Cr. The final offspring 

�is generated according to the crossover procedure (2): 

 
         (2) 

where rand is a random number between 0 and 1; i is the 
index of the gene under examination; Cr is a the crossover 
rate. This crossover strategy is known as binomial crossover. 
The resulting offspring  is evaluated and, according to a 
one-to-one spawning strategy, it replaces  if and only if the 
fitness values has been improved, otherwise no replacement 
occurs. 

C. Simulated annealing 
Also the simulated annealing (SA) algorithm shares the 

same initialization procedure with the aforementioned 
algorithms. SA is inspired to annealing in metallurgy and is 
based on a random perturbation of each individual in the 
population according to the following rule 
 √   (3) 



where  is a vector of Ng random numbers, and T is 
the current “equivalent temperature”. The resulting offspring 
is evaluated and it replaces  if the fitness value has been 
improved. The offspring also replaces  when the fitness is 
not improved but  

  (4) 

where  is the difference in fitness value 
before and after the perturbation. At the end of each iteration 
the temperature is decreased with a linear or logarithmic rule. 
At the beginning of the search perturbations are large and the 
algorithm tends to explore the search domain, at the end it 
exploits the information with small changes of the potential 
solutions.  

D. Multi-objective Algotithms 
All the mentioned algorithms have been firstly 

introduced as single-objective but can adapt to multi-
objective problems by introduction of the concept of 
dominance. In multi-objective problems a solution is non-
dominated when there is no other solution that has better 
fitness values of this one for all the objective functions. All 
non-dominated solutions form the Pareto front of the 
optimization and are all ranked as current best solutions. 
Among the remaining solutions it is possible to define a 
second Pareto front. All the solutions that belong to this front 
are ranked ‘‘two’’ and so on. The initial population is 
randomly selected and after fitness evaluation all the 
solutions are ranked according to the front to which they 
belong. Solutions are modified using the specific operators 
of the selected algorithm that have been previously 
introduced. Generally speaking, offspring substitute the 
parents when they belong to a better ranked Pareto front. To 
avoid premature convergence, the number of solutions 
belonging to the first Pareto front is usually limited by 
discarding solutions too close each other. When the stopping 
criterion is reached (usually a maximum number of fitness 
evaluation is fixed) the solutions of the first Pareto front 
represent the possible compromise among the chosen 
objectives. 

IV. SIMULATION RESULTS 
In this section the just described three MOOAs are 

applied to the optimization of a five layer SyR rotors, with 
the machines specifications reported in Table II. The 
MOOAs acronyms are: 

• MOGA: multi-objective genetic algorithm; 
• MODE: multi-objective differential evolution; 
• MOSA: multi-objective simulated annealing. 

Other algorithms could have been considered but, to the 
authors’ knowledge, the ones used here represent a good 
compromise between effectiveness and simplicity. They are 
the state-of-the-art of multi-objective optimization 
algorithms and can be easily implemented thanks to the wide 
references available in the literature and they are available 
open source [17]. A special mention is deserved to 
GODLIKE [19] that is a multi-algorithm approach. It 
consists of running multiple algorithms in parallel and 

randomly exchange solutions among them so to counteract 
the premature convergence. In such a way it is possible to 
take the most of different algorithms but the advantages 
become evident only with very long optimization runs, that 
is not the case here. 

TABLE II – SYR MACHINES PROTOTYPES RATINGS 

Continuous torque 4.5 Nm 

Rated speed 5000 rpm 

Rated voltage 270 V (dc-link) 

Continuous current 16.8 A (pk) 

Stack outer diameter 101 mm 

Rotor diameter 58.6 mm 

Airgap 0.5 mm 

Stack length 65 mm 

Steel grade M470-50 
M250-35 

(Stator) 
(rotor) 

A. Description of the simulation set-up 
As said, each function evaluation (i.e. the evaluation of 

one candidate) consists of five FEA simulations in five rotor 
positions. Static-magnetic simulations have been used [20]. 
The evaluation of one candidate requires 2.6 seconds on a 
Intel Xeon E5-1620 workstation (4 cores, 3.60 GHz, 16 GB 
ram), thanks to the 5-core parallel calculation (note that the 
fifth core is emulated by the Xeon processor). 

It is worth to underline that, beside the stochastic nature 
of the candidates’ choice by the algorithm, also the 
evaluation of the fitness function is stochastic due to the 
random selection of the simulated rotor positions offset. On 
the one hand the random offset approach speeds the 
evaluation time. On the other hand, however, it implies that 
the machine performances can be under- or over-estimated. 
If a strong over-estimate occurs, a non-optimal machine can 
remain in the Pareto front till the end of the optimization due 
to the algorithms’ elitism. 

The defect of being too elitist is noticed here. All the 
machines of the final population of each run are re-evaluated 
more accurately using 15 time-stepped simulations instead of 
5. The re-evaluated front can differ from the one given by the 
MOOA, as it happens that the solutions that were over-
estimated during the optimization are not non-dominated in 
the re-estimated front. Such solutions can be disregarded 
after the post-processing. Although the approach proposed 
here gives satisfactory results, some modification to 
algorithms are currently under investigation so to avoid the 
final re-evaluation of the Pareto front. 

The two main parameters to be selected for all the 
algorithms are the size of the population and the total 
number of function calls (or number of evaluations). In 
theory, larger numbers lead to more accurate solutions. In 
practice, due to the stochastic nature of the algorithms, a very 
large single run does not guarantee to find the actual Pareto 
front and repeated runs are anyway necessary to tackle the 
premature convergence of single runs. 

Having in mind that the aim of this work is to formulate a 
software tool capable of supporting industrial motor 
designers, the quicker is the response of the optimization 



procedure, the most helpful will be the automatic design 
proposed here. In this paper we investigate different values 
of population size and number of evaluations so to find the 
best compromise between computational burden and quality 
of the final design. 

All the algorithms are tested in different conditions and, 
for sake of brevity, some of the most representative results 
are showed here, the ones using a population of solutions 
equal to 60, a number of function calls limited to 1200 (see 
fig. 2) and to 3000 (see fig. 3). The search bounds are the 
ones referred to as global search (GS), reported in Table I. 
The shorter runs (1200 calls) require about one hour while 
the longer ones (3000 runs) less than 2.5 hours on the 
selected processor and including the re-evaluation of the 
final population. To keep low the population size with no 
loss of performance, a penalty function has been applied: all 
the solutions with a torque ripple greater than 6% or an 
average torque lower than 4 Nm are penalized. In this way 
the final solutions are concentrated in the portion of interest 
of the whole Pareto front, and the small population size is not 
a problem. 

B. Analysis of the simulation results 
The performance of the algorithms has been investigated 

through ten GS runs for each MOOA, a first time with 1200 
evaluations (Fig. 2) and then again with 3000 evaluations 
(Fig. 3). The figures report all the obtained Pareto fronts in 
the torque vs. the torque ripple domain. Negative torque 
values are used so to obtain a more conventional shape of the 
Pareto estimates. Figures 2 and 3 give a quick comparative 
overview of the performances of the algorithms. The best 
algorithm is the one giving machines with high torque and 
low torque ripple but, even more important, it is the one 
giving repeatable Pareto fronts from one run to another. This 
latter quality is needed here, to allow for the reduction of the 
number of GS runs needed to complete the GS stage of the 
optimization. The Pareto front estimates are more 
concentrated when the number of function calls increases, 
for all the algorithms. MODE gives the best results in terms 
of torque/torque ripple values and repeatability of the 
estimates, and its Pareto fronts are already stable with just 
1200 evaluations. MOSA has a great improvement from Fig. 
2 to Fig. 3. MOGA has more sparse fronts and does not 
improve with 3000 evaluations. 

The MODE gives the best results, and its Pareto fronts 
are stabilized already after 1200 evaluations. One of the GS-
1200-MODE fronts (not the best one, purposely) is chosen, 
and one machine is selected out of the front (hereinafter GS-
selected machine), to be the benchmark for the comparison 
with the other MOOAs. The GS-selected machine is worth 
an average 7.93 Nm, with 3.97% ripple. Table III reports the 
rate of success of each algorithm calculated as the percentage 
of GS runs that give at least a machine on the estimated 
Pareto front with a minimum torque of 7.8 Nm and 4% as 
maximum ripple. Again, 9 out of 10 MODE runs are over the 
benchmark already at 1200 function calls, while the other 
MOOAs are less performing. 

TABLE III - PERCENTAGE OF SATISFACTORY GS RUNS 
(TORQUE>7.8, TORQUE RIPPLE<4%) 

Algorithm 1200 function calls 3000 function calls 

MODE 90% 100% 
MOGA 40% 80%
MOSA 60% 100% 

The single LS run is performed starting from the GS-
selected solution, using the MODE algorithm stopped at 
1200 function calls and with the search bounds restricted to 
±15% with respect to GS-selected machine inputs. Figure 4 
shows the Pareto front of the LS run (re-evaluated over 15 
rotor positions) compared with the MODE-GS one the GS-
selected machine belongs to. On this final Pareto front a 
machine was selected (hereinafter LS-machine) that 
improves by 1% the average torque and by 35% the torque 
ripple with respect to GS-machine. 

It is important to put in evidence that none of the GS runs 
had any solution better than the final LS-machine. The whole 
procedure would require about 5 hours to be completed. 
When a very low ripple is not specifically required by the 
application, the LS-stage can be avoided with no practical 
loss of average torque. 

V. EXPERIMENTAL RESULTS 
Two SyR rotor prototypes have been built for validating 

the proposed design procedure. The one with 5 layers is the 
LS-machine of Fig.4. A three-layer rotor is also tested, 
designed with the same 4GS+LS procedure [10]. The two 
machines are indicated with 5C and 3C, respectively. 

A. Discussion of the layers geometries 
Fig. 5 reports a comparative section of the laminations. 

The 3C rotor has a regular pitch, consistently with the 
literature of minimum ripple machines [2,4]. The rotor pitch 
in the area where this is regular would correspond to rotor 
with 32 equivalent slots, that is one of the good combinations 
suggested in [4]. Dealing with the 5C rotor, the five layers 
thicknesses are neither progressive [4] or all equal [3]. The 
MOOA has designed a machine with three main layers (1, 3, 
5), plus two very thin layers in between. This layer 
distribution has no equal in the literature, and it seems that 
the MOOA tried to group the layers together to form a three-
layer like distribution. The positions at airgap of the main 
layers (1, 3, 5) are almost coincident with those expected 
from a rotor with 32 regular slots. The thin layers in between 
are positioned in the middle of the two contiguous larger 
layers. Such two extra layer, however, mitigate the harmonic 
content produced by the rotor reaction to the q-axis current, 
as demonstrated by the fact that the MOOAs converges very 
easily to low ripple solutions, despite of the many degrees of 
freedom. The more complicate problem (5C) with 10 
geometric inputs has a convergence time that is very similar 
to the one of the simpler problem (3C – 6 inputs). The total 
computation time needed for running the 4GS+LS procedure 
is practically the same for both the 3C and the 5C rotors.  



(a) 

(b) 

(c) 
Figure 2.  Pareto fronts obtained using (a) MODE, (b) MOGA, (c) MOSA: 

results obtained with ten runs, each one stopped at 1200 function calls. 

(a) 

(b) 

(c) 
Figure 3.  Pareto fronts obtained using (a) MODE, (b) MOGA, (c) MOSA: 

results obtained with ten runs, each one stopped at 3000 function calls 

 
Figure 4.  Selected GS run and LS run Pareto fronts obtained using 

MODE and 1200 function calls. GS- and LS-machines are evidenced with 
red and green diamonds. 

B. Measured and simulated torque 
The torque ripple maps versus the id, iq current components 
have been measured using a dedicated test bench (see Fig. 6). 
The rotor speed is imposed to 10 rpm by a geared DC 
machine during the test. The motor under test is vector 
current controlled, using a dSPACE 1104 board. The current 
set-points and the torque log along one motor revolution are 
managed automatically by means of a Matlab script. The 
rating of the torque-meter has imposed not to exceed the 20 
A per 30 A current area. The measured torque and torque 

ripple values are reported in Figs. 7 to 10 and compared with 
the magneto-static FE results. The average torque matches 
very well the simulation results. The torque ripple evaluated 
experimentally is higher than the simulated one, but both in 
FEA and experiments present a similar minimum-ripple 
trajectory in the id, iq domain (Figs. 8 and 9). Even if the 
laminations have been realized using a high precision wire 
cut Electric Discharge Machining (EDM), it is reasonable 
that the increased torque ripple is justified by the prototypes’ 
non-idealities due to the not exact knowledge of the 
materials characteristic in saturation, the non-ideal steel 
behavior in the areas close to laminations cuts, tolerances of 
manufacturing and assembling. The actual thickness of the 
inter layer bridges, for example, is very critical for the ripple 
waveform. Finally, the 5-layer rotor is fragile mechanical-
wise, and withstood some partial damages in the steel area 
on top of the layers, where some of the laminations have 
disconnected bridges. All these considerations justify the 
differences between the ripple waveforms, when FEA and 
experimentally evaluated, in particular for prototype 5C (Fig. 
10). However, one important results of this analysis is that 
the minimum ripple trajectory in the id, iq plane is very close 
to the MTPA, and this also in experiments (Figs. 8 and 9). 
The efficiency maps of the two prototypes are reported in 
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Figure 12.  Losses distribution at 5000 rpm: a) 1 Nm; b) 4.5 Nm 

VI. CONCLUSION 
The paper presented a procedure for the automatic design 

of multi-layer synchronous reluctance rotors based on FEA 
and MOOAs of different nature. Three popular MOOAs 
selected from the literature have been compared, and 
Differential Evolution gave the best results in terms of time 
to converge and repeatability of the results. A comprehensive 
rotor design procedure has been formulated, obtaining a 
robust optimization of the performance within short time. 
This procedure is based on the fast FEA evaluation of 
candidate machines and on the unconventional use of the 
MOOA, with repeated Global Search runs and the 
refinement of the best solution via a further Local Search 
MOOA run. The two-stage 4GS+LS procedure has been 
validated on two example rotors, producing machines with 
comparable performance within similar computation times. 
The experimental results show that the optimized machines 
have a minimum ripple area along the MTPA control 
trajectory, and this is a consequence of the proposed 
MOOA+FEA approach. The conclusions on the 3- and 5- 
layer machines are consistent with the literature, showing 
that when the stator has two slots per pole per phase, there is 
no particular performance improvement when passing to the 
more complicated five layers geometry. However, the 
MOOA-FEA approach has produced a competitive five layer 
machine, using a non-standard distribution of the five layers 
widths and positions. As a last confirmation of the literature: 
the three layer rotor is the best match for this number of 
stator slots, and in fact the geometry found by the MOOA is 
similar to the ones in the literature. Five layers are non-
optimal, according to the literature, but yet the MOOA has 
produced a competitive machine using a non-standard 
distribution of the layers. 
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