## Politecnico di Torino

## Porto Institutional Repository

## [Article] A note on integer polynomials with small integrals

[^0](Article begins on next page)

# A NOTE ON INTEGER POLYNOMIALS WITH SMALL INTEGRALS 

DANILO BAZZANELLA


#### Abstract

The smart method of Gelfond-Shnirelman-Nair allows to obtain in elementary way a lower bound for the prime counting function $\pi(x)$ in terms of integrals of suitable integer polynomials. In this paper we studied the properties of the class of integer polynomials relevant for the method.


This is the authors' post-print version of an article published on Acta Math. Hungar. (2013), DOI:10.1007/s10474-013-0326-8. ${ }^{1}$

## 1. INTRODUCTION

Let $\pi(x)$ be the number of primes not exceeding x. The Prime Number Theorem (PNT), independently proved in 1896 by Hadamard and the de la Vallée Poussin, states that

$$
\pi(N) \sim \frac{N}{\log N} \quad N \rightarrow+\infty
$$

In 1851, Chebyshev [6] made the first step towards the PNT by proving that, given $\varepsilon>0$,

$$
\left(c_{1}-\varepsilon\right) \frac{N}{\log N} \leq \pi(N) \leq\left(c_{2}+\varepsilon\right) \frac{N}{\log N}
$$

where $c_{1}=\log \left(2^{1 / 2} 3^{1 / 3} 5^{1 / 5} / 30^{1 / 30}\right), c_{2}=6 c_{1} / 5$ and $N$ is sufficiently large. This result was proved using an elementary approaches, i.e. without use of complex analysis and the Riemann zeta function. A survey of elementary methods in the study of the distribution of prime numbers may be found in Diamond [7].

In 1936 Gelfond and Shnirelman, see Gelfond's editorial remarks in the 1944 edition of Chebyshev's Collected Works [6, pag. 287-288], proposed a new elementary and clever method for deriving a lower bound for the prime-counting functions $\pi(x)$ and $\psi(x)$. In 1982 the Gelfond-Shnirelman method was rediscovered and developed by Nair, see [9] and [10]. The method of Gelfond-Shnirelman-Nair allows to obtain in elementary way a lower bound for $\pi(x)$ in terms of integrals of suitable integer polynomials and runs as follows.

[^1]Let $d_{N}$ denote the least common multiple of the integers $1,2, \ldots, N$ and observe that

$$
d_{N} \leq \prod_{p \leq N} p^{\log N / \log p}
$$

where $p$ belongs to the set of prime numbers. Taking the logarithm of both sides gives

$$
\log d_{N} \leq \log \left(\prod_{p \leq N} p^{\log N / \log p}\right)=\sum_{p \leq N} \log \left(p^{\log N / \log p}\right)=\pi(N) \log N
$$

and then

$$
\begin{equation*}
\pi(N) \geq \frac{\log d_{N}}{\log N} \tag{1}
\end{equation*}
$$

From this we can obtain a lower bound for the prime counting function $\pi(N)$ from a lower bound for the least common multiple $d_{N}$. An elementary and smart way to proceed is to consider a polynomial with integral coefficients

$$
P(x)=\sum_{n=0}^{N-1} a_{n} x^{n}
$$

and let

$$
I(P)=\int_{0}^{1} P(x) \mathrm{d} x=\sum_{n=0}^{N-1} \frac{a_{n}}{n+1} .
$$

Since $I(P)$ is a rational number whose denominator divides $d_{N}$, we see that $I(P) d_{N}$ is an integer, and hence if $I(P) \neq 0$ we have

$$
d_{N}|I(P)| \geq 1
$$

and then

$$
d_{N} \geq \frac{1}{|I(P)|}
$$

Form the above and (1) we get

$$
\begin{equation*}
\pi(N) \geq \frac{\log (1 /|I(P)|)}{\log N} \tag{2}
\end{equation*}
$$

The easiest way to proceed is to bound the absolute value of the integral $I(P)$

$$
\begin{equation*}
|I(P)|=\left|\int_{0}^{1} P(x) \mathrm{d} x\right| \leq \int_{0}^{1}|P(x)| \mathrm{d} x \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1}|P(x)| \mathrm{d} x \leq \max _{0 \leq x \leq 1}|P(x)|=\|P\|_{[0,1]} \tag{4}
\end{equation*}
$$

obtaining

$$
\pi(N) \geq \frac{\log \left(1 /\|P\|_{[0,1]}\right)}{\log N}
$$

If we could find a sequence of integer polynomials $p_{n}$, of degree $n$, with sufficiently small supremum norms such that

$$
\lim _{n \rightarrow+\infty} \log \left(\left\|p_{n}\right\|_{[0,1]}^{-1 / n}\right)=\lim _{n \rightarrow+\infty}-\frac{1}{n} \log \left\|p_{n}\right\|_{[0,1]}=1
$$

we can obtain the best possible lower bound consistent with the Prime Number Theorem.
This motivates the study of the integer polynomials $P_{N}(x)$ and the quantities $C_{N}$ such that

$$
\left\|P_{N}\right\|_{[0,1]}=\min _{\substack{P(x) \in \mathbb{Z}[x] \\ \operatorname{deg}(P)=N,\|P\|_{[0,1]}>0}}\|P\|_{[0,1]}
$$

and

$$
C_{N}=-\frac{1}{N} \log \left\|P_{N}\right\|_{[0,1]},
$$

the so-called integer Chebyshev problem. Much is known about $P_{N}(x)$ and $C_{N}$. It was proved by Snirelman, see [11], that the sequence $C_{N}$ converges to a limit $C$. Borwein and Erdélyi [5] showed that $C \in(0.85866,0.86577)$ and the lower bound was improved by Flammang [8] to 0.85912. The best known result to date, due to Pritsker [12], is that $C \in(0.85991,0.86441)$. See also [1], [2], [3], [4], [5] and [14].

Therefore, following this line, we can get a lower bound in the form

$$
\pi(N) \geq C \frac{N}{\log N}
$$

only for constant $C$ less than 0.87 , which is quite far from what is expected by the PNT.
In order to avoid the trouble above, in this paper we deal with the problem in a different way. From the definition of $I(P)$ we have that

$$
|I(P)|=\left|\int_{0}^{1} P(x) \mathrm{d} x\right|=\left|\sum_{n=0}^{N-1} \frac{a_{n}}{n+1}\right|=\frac{1}{d_{N}}\left|\sum_{n=0}^{N-1} \frac{d_{N}}{n+1} a_{n}\right| .
$$

Since $d_{N} /(n+1)$ and $a_{n}$ are integers for every $n=0,1, \ldots N_{1}$, we have that

$$
\left|\sum_{n=0}^{N-1} \frac{d_{N}}{n+1} a_{n}\right|
$$

is an integer and then the small positive value of $|I(P)|$ is $1 / d_{N}$ and it is reached if

$$
\sum_{n=0}^{N-1} \frac{d_{N}}{n+1} a_{n}= \pm 1
$$

Without loss of generality we can deal with the linear diophantine equation

$$
\sum_{n=0}^{N-1} \frac{d_{N}}{n+1} x_{n}=1
$$

with integer coefficients $d_{N} /(n+1)$. Observing that the integer coefficients $d_{N}, d_{N} / 2, \ldots, d_{N} / N$ are relatively prime, we obtain that for every $N$ there exists at least one polynomial of degree $N-1$ such that $I(P)=1 / d_{N}$. Note that the set of the integer polynomials of fixed
degree with integral on $[0,1]$ equal to zero is a vector space and then the set of the integer polynomials of fixed degree with integrals on $[0,1]$ equal to a constant is an affine space. This leads to define the following affine space of the polynomials with positive and minimal integral on $[0,1]$.

Definition. Let $S_{N}=\left\{P(x) \in \mathbb{Z}[x], \operatorname{deg}(P)=N-1, I(P)=1 / d_{N}\right\}$
In this paper we studied the properties of such a class of integer polynomials.
Acknowledgement. We would like to thank Professors E. Serra and P. Tilli for the long conversations we had on this subject.

## 2. Some properties of the set $S_{N}$

In the set $S_{N}$ there are integer polynomials with many of the first coefficients equal to zero, and then with $x=0$ as a root of great degree.

Theorem 1. For every $N$, there exists an integer polynomial

$$
P(x)=\sum_{n=K(N)}^{N-1} a_{n} x^{n} \in S_{N}
$$

with

$$
K(N) \sim \frac{N}{2}
$$

Proof. As usual, $\left(a_{1}, a_{2}, \ldots, a_{j}\right)$ denotes the greatest common divisor of the integers $a_{1}, a_{2} \ldots, a_{j}$. We start to observe that if we have

$$
\left(\frac{d_{N}}{k}, \frac{d_{N}}{k+1}, \ldots, \frac{d_{N}}{N}\right)=1,
$$

for a fixed natural $k$, it follows that

$$
\left(\frac{d_{N}}{i}, \frac{d_{N}}{i+1}, \ldots, \frac{d_{N}}{N}\right)=1
$$

for every $1 \leq i \leq k$ and for the same reason if we have

$$
\left(\frac{d_{N}}{k}, \frac{d_{N}}{k+1}, \ldots, \frac{d_{N}}{N}\right)>1
$$

for a fixed natural $k$, it follows that

$$
\left(\frac{d_{N}}{i}, \frac{d_{N}}{i+1}, \ldots, \frac{d_{N}}{N}\right)>1
$$

for every $k \leq i \leq N$. This allows to define $K(N)$ as the natural number such that

$$
\begin{equation*}
\left(\frac{d_{N}}{K(N)+1}, \frac{d_{N}}{K(N)+2}, \ldots, \frac{d_{N}}{N}\right)=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{d_{N}}{K(N)+2}, \frac{d_{N}}{K(N)+3}, \ldots, \frac{d_{N}}{N}\right)>1 \tag{6}
\end{equation*}
$$

From (5) it follows that the linear diophantine equation

$$
\sum_{n=K(N)}^{N-1} \frac{d_{N}}{n+1} x_{n}=1
$$

has solutions and this implies that there exists an integer polynomial

$$
P(x)=\sum_{n=K(N)}^{N-1} a_{n} x^{n} \in S_{N}
$$

Now we prove that

$$
\begin{equation*}
K(N)=\min \left\{p^{m}: p \text { prime }, m \geq 1, p^{m}>N / 2\right\}-1 \tag{7}
\end{equation*}
$$

Let $q=p^{m}$ such that $N / 2<q=p^{m}<N . q \leq N$ implies $q / d_{N}$ and then

$$
\left(\frac{d_{N}}{q+1}, \frac{d_{N}}{q+2}, \ldots, \frac{d_{N}}{N}\right) \geq p
$$

since every natural number between $q+1$ and $N$ has strictly less then $m$ factors $p$ in his prime decomposition. This prove

$$
\begin{equation*}
K(N) \leq \min \left\{p^{m}: p \text { prime }, m \geq 1, p^{m}>N / 2\right\}-1 \tag{8}
\end{equation*}
$$

On the other hand, by the definition of $K(N)$, we have

$$
\left(\frac{d_{N}}{K(N)+2}, \frac{d_{N}}{K(N)+3}, \ldots, \frac{d_{N}}{N}\right)>1
$$

which implies that there exists a prime number $p$ such that

$$
p\left|\frac{d_{N}}{K(N)+2}, p\right| \frac{d_{N}}{K(N)+3}, \ldots, p \left\lvert\, \frac{d_{N}}{N} .\right.
$$

Let $m=\max \left\{i: p^{i} \mid d_{N}\right\}$ and therefore $p^{m} \leq N$. From this follows

$$
p^{m} \times(K(N)+2), p^{m} \times(K(N)+3), \ldots, p^{m} \nmid N
$$

and then

$$
\begin{equation*}
K(N) \geq \min \left\{p^{m}: p \text { prime }, m \geq 1, p^{m}>N / 2\right\}-1 \tag{9}
\end{equation*}
$$

From (8) and (9) it follows (7). Now the difference between $K(N)$ and $N / 2$ can be bound by the maximum of the difference between consecutive elements of the set $\left\{p^{m} \leq N\right.$ : $p$ prime , $m \geq 1\}$, which is less than the maximum of the difference between consecutive primes less than $N$. This allow to write

$$
K(N)=\frac{N}{2}+O\left(N^{7 / 12+\varepsilon}\right)
$$

for every $\varepsilon>0$, which concludes the proof of the theorem.

Corollary 2. For every $N$, there exists an integer polynomial $P(x) \in S_{N}$ with $x=1$ as a root of degree $K(N)$ and

$$
K(N) \sim \frac{N}{2}
$$

Proof. The corollary follows immediately from the Theorem 1, observing that the change of variable $x \rightarrow(1-x)$ don't change the absolute value of the integral $I(P)$.

The second result is about the number of roots and the number of changes of sign of the integer polynomials in $S_{N}$.

Theorem 3. For all even $N$, there exists an integer polynomial $P(x) \in S_{N}$ with $N-1$ roots on $(0,1)$ and $N-1$ changes of sign.

Proof. Let $N$ even number and $R(x)=(N x-1)(N x-2) \cdots(N x-(N-1)) . R(x)$ is a polynomial with integer coefficients of degree $N-1$, has $N-1$ roots on $(0,1),(N-2) / 2$ local maxima, $(N-2) / 2$ local minima and

$$
I(R)=\int_{0}^{1} R(x) \mathrm{d} x=0
$$

since the symmetry of the function. Let $P(x)$ a fixed polynomial in $S_{N}, k \in \mathbb{Z}$ and $Q_{k}(x)=$ $P(x)+k R(x)$. For every $k \in \mathbb{Z}$ we have $I\left(Q_{k}\right)=I(P)=1 / d_{N}$ and then $Q_{k}(x) \in S_{N}$. For every $N$ there exists a constant $k$ such that $Q_{k}(x)$ has $N-1$ roots on $(0,1)$ and $N-1$ changes of sign.

Corollary 4. For every $N$, there exists an integer polynomial $P(x) \in S_{N}$ with at least $N-2$ roots on $(0,1)$ and $N-2$ changes of sign.

On the other side we can prove that in the set $S_{N}$ there are also integer polynomials with at most one root and one change of sign.

Theorem 5. For every $N$, there exists an integer polynomial $P(x) \in S_{N}$ with at most one root on $(0,1)$ and at most one change of sign on $(0,1)$.

Proof. Let $P(x)$ a fixed polynomial in $S_{N}, k \in \mathbb{Z}$ and $Q_{k}(x)=P(x)+k(2 x-1)$. For every $k \in \mathbb{Z}$ we have $I\left(Q_{k}\right)=I(P)=1 / d_{N}$ and then $Q_{k}(x) \in S_{N}$. Now we observe that $Q_{k}(0)=P(0)-k, Q_{k}(1)=P(1)+k$ and $Q_{k}^{\prime}(x)=P^{\prime}(x)+2 k$ for every $x \in[0,1]$.

For every $N$ there exists a constant $k$ such that $Q_{k}(0)<0, Q_{k}(1)>0$ and $Q_{k}^{\prime}(x)>0$ for every $x \in[0,1]$ and this implies that the polynomial $Q_{k}(x)$ has exactly one root and one change of sign on $(0,1)$.

## 3. Open problem

In the standard method of Gelfond-Shnirelman-Nair we bound the absolute value of the integral

$$
\begin{equation*}
|I(P)|=\left|\int_{0}^{1} P(x) \mathrm{d} x\right| \leq \int_{0}^{1}|P(x)| \mathrm{d} x \tag{10}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{0}^{1}|P(x)| \mathrm{d} x \leq \max _{0 \leq x \leq 1}|P(x)|=\|P\|_{[0,1]} \tag{11}
\end{equation*}
$$

to obtain

$$
\pi(N) \geq \frac{\log \left(1 /\|P\|_{[0,1]}\right)}{\log N}
$$

As observed in the introduction, following this line we can get a lower bound in the form

$$
\pi(N) \geq C \frac{N}{\log N}
$$

only for constant $C$ much less than 1 . It is not clear if this is only a consequence of the use of supremum norm on the interval $[0,1]$ in $(11)$ or if the inequality $(10)$ is also involved.

If the set $S_{N}$ contains polynomials of constant sign in $(0,1)$ for all $N$, or at least for infinite values of $N$, the limit of the method would be only due to the inequality (11).

It is simple to verify that for very small values of $N$ these positive polynomials exist. For $S_{3}, \operatorname{deg}(P)=2$ and $d_{3}=6$, we have the positive polynomial $P(x)=x(1-x)$ and for $S_{4}, \operatorname{deg}(P)=3$ and $d_{3}=12$, we have the positive polynomial $P(x)=x^{2}(1-x)$. For $S_{N}$ with greater values of $N$ is not simple to determine what happens, and this leads to the following question.

Problem: for every $N$, or at least for infinite values of N , there exists an integer polynomial $P(x) \in S_{N}$ such that $P(x) \geq 0$ ?

## References

[1] F. Amoroso, Sur le diamètre transfini entier dun intervalle réel, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 885-911.
[2] B. E. Aparicio, On the asymptotic structure of the polynomials of minimal Diophantic deviation from zero, J. Approx. Theory 55 (1988), no. 3, 270-278.
[3] P. B. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics 161, Springer-Verlag, New York, 1995.
[4] P. B. Borwein, I. E. Pritsker, The multivariate integer Chebyshev problem, Constr. Approx. 30 (2009), no. 2, 299-310.
[5] P. B. Borwein, T. Erdélyi, The integer Chebyshev problem, Math. Comp. 65 (1996), no. 214, 661-681.
[6] P. L. Chebyshev, Collected Works, Vol. 1, Theory of Numbers, Akad. Nauk. SSSR, Moskow,1944.
[7] H. G. Diamond, Elementary methods in the study of the distribution of prime numbers, Bull. Amer. Math. Soc. 7 (1982), 553-589.
[8] V. Flammang, Sur le diamètre transfini entier d'un intervalle à extrémités rationnelles, Annales de l'Institut Fourier 45 (1995), no. 3, 779-793.
[9] M. Nair, On Chebyshev's-type inequalities for primes, Amer. Math. Montly 89 (1982), 126-129.
[10] M. Nair, A new method in elementary prime number theory, J. London Math. Soc. (2) 25 (1982), 385-391.
[11] H. L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, AMS, CBMS Series No. 84, 1994.
[12] I. E. Pritsker, Small polynomials with integer coefficients, J. Anal. Math., 96 (2005), pp. 151-190.
[13] I. E. Pritsker, The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. 57 (2005), no. 5, 1080-1101.
[14] I. E. Pritsker, Distribution of primes and a weighted energy problem, Electron. Trans. Numer. Anal. 25 (2006), 259-277.

Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino - Italy

E-mail address: danilo.bazzanella@polito.it


[^0]:    Original Citation:
    Bazzanella D. (2013). A note on integer polynomials with small integrals. In: ACTA MATHEMATICA HUNGARICA, vol. 141 n. 4, pp. 320-328. - ISSN 0236-5294
    Availability:
    This version is available at : http://porto.polito.it/2517108/ since: October 2013
    Publisher:
    Springer
    Published version:
    DOI:10.1007/s10474-013-0326-8
    Terms of use:
    This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto. polito.it/terms_and_conditions. html
    Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

[^1]:    2010 Mathematics Subject Classification. 11C08, 11A41.
    Key words and phrases. Integer polynomials, Chebyshev problem, Prime counting function.
    ${ }^{1}$ This version does not contain journal formatting and may contain minor changes with respect to the published version. The final publication is available at http://dx.doi.org/10.1007/s10474-013-03268. The present version is accessible on PORTO, the Open Access Repository of Politecnico di Torino (http://porto.polito.it), in compliance with the Publisher's copyright policy as reported in the SHERPAROMEO website: http://www.sherpa.ac.uk/romeo/issn/0236-5294/

