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How much can large-scale Video-On-Demand benefit

from users’ cooperation?

Delia Ciullo, Valentina Martina, Michele Garetto, Emilio Leonardi(∗)

Abstract—We propose an analytical framework to tightly char-
acterize the scaling laws for the additional bandwidth that servers
must supply to guarantee perfect service in peer-assisted Video-on-
Demand systems, taking into account essential aspects such as peer
churn, bandwidth heterogeneity, and Zipf-like video popularity.
Our results reveal that the catalog size and the content popularity
distribution have a huge effect on the system performance. We
show that users’ cooperation can effectively reduce the servers’
burden for a wide range of system parameters, confirming to be an
attractive solution to limit the costs incurred by content providers
as the system scales to large populations of users.

I. INTRODUCTION AND PREVIOUS WORK

According to Cisco [1], by the end of 2016 the sum of all
forms of Internet video (TV, Video-on-Demand, P2P) will be
approximately 86% of global consumer traffic. In particular, the
traffic component due to Video-on-Demand is expected to triple
from 2011 to 2016, reaching the equivalent of 4 billion DVDs
per month.

Increasing traffic volumes force video providers to continu-
ously upgrade the Content Delivery Network (CDN) infrastruc-
ture that feeds the contents to local ISPs. To partially alleviate
this burden, a recent trend of VoD providers is to exploit cloud
services, which permit fine-grained resource reservation [2]. As
an example, in 2010 Netflix decided to migrate its infrastructure
into the Amazon EC2 cloud, as it could not build data centers
fast enough to keep pace with growing demand.

However, any solution based on CDNs has severe limitations
in terms of scalability. CDNs can significantly reduce the traffic
in the Internet core and improve the user-perceived performance
(e.g., by reducing the latency) by “moving” contents close to
the users. Nevertheless, the aggregate resources required at data
centers (bandwidth/storage/processing), and the corresponding
costs incurred by content providers, inevitably scale linearly with
the user demand and data volume.

The only scalable solution proposed so far is to exploit the
peer-to-peer paradigm, according to which users contribute their
resources (bandwidth/storage/processing) to the system while
they use it [3], [4]. Although the peer-assisted approach is an
attractive solution to the scalability problem, and it has already
been experimented in several applications [5], it brings with it
several issues which tend to discourage its adoption by many
content providers: the unpredictable nature of users’ cooperation,
the added complexity on the control plane due to signalling and
chunk scheduling, and the need to provide incentive mechanisms
to the users [6].

Streaming architectures which primarily rely on users’ coop-
eration can hardly guarantee the strict quality-of-service require-
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ments of online video, where a steady download rate no smaller
than the video playback rate is necessary for a smooth watching
experience, and any interruption tends to be very annoying to
the user [7].

For this reasons, we argue that peer-assisted architectures
should be supported by properly dimensioned CDNs (or cloud
services) that intervene whenever the resources provided by
users are not enough to satisfy the current demand. In our
theoretical work, we are specifically interested in characterizing
the additional bandwidth that servers must supply to guarantee
ideal service to all users (i.e., requests are immediately satisfied
and videos can be watched without interruptions till the end). Our
main contribution is a stochastic analytical framework that allows
to derive general upper and lower bounds to the bandwidth re-
quested from the servers in a peer-assisted VoD system, capturing
essential aspects such as peer churn, bandwidth heterogeneity,
and Zipf-like video popularity. Our analysis permits to tightly
characterize the system performance as the number of users (and
the number of available videos) grows large, and thus assess the
scalability of large-scale VoD exploiting users’ cooperation.

In our previous work [8] we have considered the case of a
single-video, providing for the first time an asymptotic charac-
terization of the servers’ bandwidth as the number of watchers
increases. Here we extend the analysis to a multi-video system,
in which users can browse a catalog of available contents, and
asynchronously issue requests to watch videos.

Our main contribution is a precise definition of the conditions
(related to physical system parameters such as the growth rate of
the catalog size, the Zipf’s exponent of video popularity, videos’
characteristics and user behavior) under which the additional
bandwidth requested from the servers asymptotically goes to zero
as the size of the system grows large. When such conditions are
not met, we provide the asymptotic laws for the required servers’
bandwidth.

We consider both the case in which users can only assist the
distribution of the last video they have selected (we call this
the passive system, because the utilization of peer resources is
tied to the video popularity distribution, which is not under the
system control), and the general case in which users can assist
the distribution of any video (we call this the active system,
also referred to in the literature as universal streaming). For the
active system we also devise the resource allocation strategies
that permit to achieve the optimal theoretical performance.

We emphasize that a full exploitation of peers’ upload band-
width is not a trivial task in the presence of high degrees of peer
churn (i.e., when users tend to abandon the system after watching
a few videos), in consideration of the obvious fact that users
can only upload data that they have previously downloaded. For
the same reason unpopular videos, which tend to be scarcely
replicated among peers, can pose a significant stress on the



2

system. Hence another important contribution of our work is
the definition of suitable strategies to mitigate the joint impact
of peer churn and heterogeneous video popularity.

Universal streaming architectures have been analytically stud-
ied in [9], where authors develop queueing network models to
describe multi-channel live streaming systems incorporating peer
churn, bandwidth heterogeneity, and Zipf-like popularity. We re-
mark that VoD systems are different from live streaming systems
in which users join the distribution of a given TV channel at
random points in time, but peers connected to the same channel
watch the content almost synchronously. In VoD, a given video
is watched asynchronously by users, and downloading peers can
only help peers who have started the download later on in time
(sequential delivery). Moreover, asymptotic results in [9] are
restricted to the case of two values of peer upload bandwidth
(low and high), and require finding the solution (if any) to a set
of linear equations. In contrast to [9], we consider VoD systems,
and obtain a simpler characterization of the asymptotic system
performance for general upload bandwidth distribution.

The first mathematical formulation of the server bandwidth
needed by a VoD system based on sequential delivery appeared
in [4], in which authors resort to a Monte Carlo approach to
get basic insights into the system behavior (like surplus and
deficit modes). The same formulation has been considered in
[10], where authors explore by simulation the effectiveness of
different replication strategies to minimize the server load in
the slightly surplus mode, as well as distributed replacement
algorithms to achieve it.

An interesting implementation of the kind of systems con-
sidered in our work is Xunlei [11], a download acceleration
application that is becoming enormously popular in China. Xun-
ley combines both peer-assisted and server-assisted techniques,
letting users download portions of the requested contents from
other peers while also downloading portions from independent
servers. Recently, the Xunlei network started also a peer-assisted
VoD service (Kankan), which generated massive-scale swarms.

II. SYSTEM ASSUMPTIONS

A. Service specification and users cooperation

We model a VoD system where users run applications that
allow them to browse an online catalog of videos. When a
user selects a video, we assume that the request is immediately
satisfied and the selected video can be watched uninterruptedly
till the end, i.e., the system is able to steadily provide to the user
a data flow greater than or equal to the video playback rate. We
consider that users watch at most one video at a time.

We assume that the system catalog contains K different
videos. Video k (1 ≤ k ≤ K) is characterized by: its size
lk ∈ [lmin, lmax], expressed in bytes; a selection probability pk,
which is the probability that a user selects video k among all
videos in the catalog; a minimum playback rate. We assume that
video k is downloaded at constant rate greater than or equal to
the minimum playback rate. Specifically, we denote by dk the
download rate, where dk ∈ [dmin, dmax] (in bytes/s).

Users contribute their upload bandwidth to the video distri-
bution: they can retrieve part of a requested video (or even the
entire video) from other users, saving servers resources.

We model the amount of upload bandwidth contributed at a
given time by a user by a random variable U with cumulative

distribution function FU and mean U , in this way we take
into account effects related to Internet access heterogeneity and
cross traffic fluctuations. The random variables U ’s denoting the
upload bandwidths of the users are assumed to be i.i.d.

Users contribute to the system also a limited amount of storage
capacity. The exact amount of buffer space available at each user
is not important in our analysis. As a minimum requirement, our
schemes assume that users can store at least one whole video in
addition to the one currently played out.

B. User dynamics

Users join the system when they request the first video.
We denote by λu the arrival rate of new users. While they
are in the system, users can be in two states: {contributing,
sleeping}. The contributing state is defined as the state in which
a user is contributing its upload bandwidth to the system. In
the contributing state, a user can download (and watch) video
contents. Notice that a user can be contributing its upload
bandwidth even if it is not currently downloading/watching any
video, but simply because it keeps its VoD application up and
running.

During the sleeping phase, the user’s application is not run-
ning, hence it is neither downloading nor uploading data. We
assume that users download the entire requested videos (aborted
downloads could be easily included in our model but we have
preferred not to do so for simplicity). Note that, since a video
is retrieved at constant rate, its download time, τk = lk/dk,
is a deterministic attribute of video k, taking values in range
[τmin = lmin/dmax, τmax = lmax/dmin]. After completing a
download, users remain in the contributing state for a random
amount of time Tseed with mean T seed (part of this time can
be spent finishing to watch the video, if the download rate is
larger than the playback rate). Then, they transit to the sleeping
state, where they stay for a random amount of time of mean
T sleep. Users can choose to abandon the system (i.e., to stop the
VoD application and never open it again) after watching just
a single video. We assume that, after watching a video, each
user independently decides to leave the system with probability
pout. It follows that the number of videos requested by a user is
geometrically distributed with mean m = 1/pout. Moreover, the
average time spent by a user in the system can be computed as

T = m · (
∑K

k=1 pkτk + T seed + T sleep).
From the above assumptions, and the fact that the system

provides guaranteed service, the set of videos requested by a
user, the total time spent by a user in the system, as well as
the amounts of time spent by a user in the contributing/sleeping
states are independent from user to user.

C. System scaling

Our goal is to asymptotically characterize the average addi-
tional bandwidth S that servers must supply to guarantee perfect
service to all users, as the system grows large. Let n be the
average number of users in the system. By Little’s law, we have
n = λuT . Note that T is a constant, hence our asymptotic
analysis for increasing number of users is performed by letting
λu (and thus n) go to infinite.

Since the catalog size is expected to grow, just like the number
of users, we consider that the number K of videos available in
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the catalog is tied to the number of users, according to the law
K = Θ(nβ), with β ≤ 11.

As the system grows, new videos are made available to the
users. We assume that the characteristics of new videos inserted
into the catalog, in terms of file size lk and download rate dk,
are random. Hence lk and dk should be regarded as instances of
i.i.d. random variables Lk and Dk, respectively, with assigned
distributions (possibly correlated). Recall from Section II-A that
we (reasonably) assume that the distributions of Lk, Dk have
finite support independent of n.

D. Content popularity

To specify the selection probabilities of videos, we need
to model the relative popularity of the videos in the catalog.
For this, we adopt the standard Zipf’s law, which has been
frequently observed in traffic measurements and widely adopted
in performance evaluation studies [9], [12]. More specifically,
having sorted the videos in decreasing order of popularity, a
request is directed to video k with probability

pk ,
H(K)

kα
, 1 ≤ k ≤ K (1)

where α is the Zipf’s law exponent, and H(K) , (
∑K

i=1 i
−α)−1

is a normalization constant. Depending on the exponent α, we
have:

H(K) =







Θ(1) if α > 1
Θ(logK) if α = 1
Θ(Kα−1) if α < 1

(2)

Let Λ be the aggregate rate at which users request videos. By
construction Λ = λum. The rate at which a specific video k is
requested is λk = Λpk.

E. System load

For a given system catalog, i.e., for given video characteristics
{dk}k and {lk}k, we can compute a fundamental quantity γ
characterizing the global system load (i.e., the load induced by
all videos):

γ ,

∑K
k=1 pk lk

∑K
k=1 pk U (τk + T seed)

(3)

Indeed, consider a large time interval ∆. During this time
interval, a video k will be requested on average λk∆ times.
Each request for video k has a double effect on the system:
it requires an amount of bytes lk to be downloaded; it lets
the requesting user potentially to upload an average amount of
data U (τk + T seed). The ratio between the average amount of
downloaded data and the average amount of uploaded data during
interval ∆, for ∆ → ∞, leads to the expression in (3).

We remark that (3) holds for both passive and active systems
introduced in Section I. However, in the case of active systems
it does not account for the additional data that users might
be instructed to download by the system (data bundling). The
effect of bundling on the system load will be considered later.
Borrowing the terminology adopted in previous work [3], [10]
we say2 that the system operates in deficit mode if γ > 1, and
in surplus mode if γ < 1.

1We leave to future work the case β > 1.
2In this paper we do not consider the special case γ = 1.

TABLE I

Symbol Definition

λu user’s arrival rate

T average time spent by users in the system

n average number of users

K catalog size (number of available videos)

β scaling exponent of K = nβ

Λ aggregate video request rate

λk request rate of video k
dk download rate of video k
τk download time of video k

U average user upload bandwidth

T seed average time spent in the contributing state

after downloading a video

Nd,k average number of users downloading video k

N seed,k average number of seeds for video k

S average bandwidth requested from the servers

γ system load

γk load associated to video k
m average number of videos requested by a user

We emphasize that, since video characteristics are random, γ
should be itself interpreted as an instance of a random variable
Γ obtained de-conditioning (3) with respect to {dk} and {lk}.

We will also use a video-specific notion of load, denoted by
γk, and its corresponding random variable Γk:

γk ,
dk τk

U (τk + T seed)
(4)

We observe that γk would coincide with γ if all γk were equal.
With abuse of language, we say that a video is in deficit mode
if γk > 1, and in surplus mode if γk < 1.

Table I summarizes the notation introduced so far.

III. SUMMARY OF RESULTS

First we observe that, in the worst possible case, the servers
have to transmit at rate dmax to all downloading users. It follows
that a trivial upper bound to the bandwidth requested from the
servers is S = O(n). A trivial lower bound is S ≥ 0.

For the passive system, we obtain the following results. If the
probability to include in the catalog a video with load γk > 1
is greater than zero, i.e., P(Γk > 1) > 0, we have S = Θ(n).
If, instead, there exists an arbitrarily small constant σ such that
P(Γk < 1 − σ) = 1, we obtain the asymptotic upper bounds
reported in the second column of Table II, which depend on the
Zipf’s exponent α and the catalog growth rate exponent β.

For the active system, we obtain the following results. If Γ > 1
with non vanishing probability as the system size increases, we
have S = Θ(n). If Γ < 1 − σ (w.h.p.)3, for some σ > 0, we
obtain the asymptotic upper bounds reported in the third column
of Table II, which depend on the Zipf’s exponent α and the
catalog growth rate exponent β, while δ is an arbitrarily small
positive number.

The fourth column of Table II reports corresponding lower
bounds for S, which are valid also for the extreme case in which
the user upload bandwidth is arbitrarily large.

Our results for the active system provide the following funda-
mental insights: if β < 1, i.e., if the number of contents in the
system scales sub-linearly with respect to the average number
of users, an active system operating (globally) in surplus mode
can asymptotically eliminate the need of additional bandwidth
from the servers (i.e., S tends to zero as the number of users

3With high probability, i.e., with probability that tends to 1 as n → ∞.
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TABLE II
AVERAGE BANDWIDTH REQUESTED FROM THE SERVERS, S

Upper bound Lower bound

Passive system Active system

Conditions P(Γk < 1− σ) = 1 P(Γ < 1− σ) → 1

(α ≤ 1 ∧ β < 1)
∨ (α > 1, β < 1/α) o(1) o(1) 0

α > 1 ∧ 1/α < β < 1 O(n1/α) o(1) 0

α > 1 ∧ β = 1 O(n1/α) O
(

n2−α(log n)
α−1
1−δ

)

Ω(n2−α)

α ≤ 1 ∧ β = 1 O(n) O(n) Θ(n)

increases), for any value of α. This can be done even under the
sequential delivery scheme (i.e., when downloading users can
only help future downloaders of the same file). We remark that
the only requirement to achieve this desirable behavior is that
the global system load is smaller than one, which does not imply
that all videos are individually in the surplus mode.

If, instead, β = 1, (i.e., when the number of contents in the
system scales as fast as the number of users)4, the exploitation
of users’ cooperation is more difficult and depends on the Zipf’s
exponent: for α ≤ 1 we cannot do any better than the worst
case S = Θ(n). For α > 1 (and Γ < 1− σ), we approximately
need n2−α additional servers’ bandwidth (notice that in this case
upper and lower bounds differ only by a poly-log term), which
unfortunately goes to infinite for any α < 2. This is essentially
due to the fact that, for β = 1, there are too many contents
available in the system (whose aggregate data volume becomes
comparable to the total buffer space available at users). In this
case, contents cannot be distributed/replicated at peers in such a
way that the distribution of all of them can be effectively assisted
by the users, considering also the effect of peer churn.

Passive systems perform, obviously, worse than active sys-
tems. First of all, they can lead to something better than
S = Θ(n) only when all videos are in surplus mode, which
is a rather restrictive condition. Nevertheless, if this condition
is satisfied, for β < 1 we still obtain that S = o(1), provided
that α ≤ 1 or β < 1/α. Instead, the servers’ bandwidth goes to

infinite as n1/α for β > 1/α, and the same occurs if β = 1 (of

course without exceeding the worst case S = Θ(n)).

IV. PASSIVE SYSTEM

We start considering the passive system, in which users are
constrained to assist only the distribution of the last selected
video. This means that, after requesting a video, they can only
download/upload data belonging to the selected video (until they
request a new content from the catalog). A passive system is
conceptually simple to implement and manage, since swarms of
different videos are decoupled, and can be controlled indepen-
dently of each other.

A. Preliminaries

We can describe the dynamics of users in the system by
the open queueing network illustrated in Fig. 1. We consider
a separate queue for all users downloading the same video.
When the download is complete, users who keep the application
running continue contributing their uploading bandwidth to the
system, transiting to queues arranged in the second column of the
network. Users who stop the application transit to the sleeping
state, represented by a single queue on the right hand side.

4Our results could be extended to the case β > 1, reaching identical
conclusions.

Lemma 1: At any time, the number of users who are down-
loading a given video, the number of users who remain in the
contributing state after downloading a video, and the number of
users in the sleeping state, follow independent Poisson distribu-
tions.

Proof: The dynamics of users in the open queueing network
(in terms of transitions among the queues and sojourn times at
queues) are decoupled, since users behave independently of each
other5. The resulting queueing network admits a product-form
solution by the BCMP theorem. Since all queues have infinite
servers, the numbers of users in the queues follow independent
Poisson distributions.

... ...

...

...

...

...

...
... ...

u
λ Λ

Zipf

video 1 video 1

video 2 video 2

video K video K

uploading
downloading

uploading

SLEEPING

CONTRIBUTING

out
p

1−p
out

Fig. 1. Open network of ·/G/∞ queues modeling users’ dynamics.

Let N(t) be the total number of users in the system at
time t. Note that N(t) is itself Poisson distributed, with mean

n = λuT . We denote by Nd,k = λkτk the average number

of users downloading file k, and by N seed,k = λkT seed the
average number of users remaining in the contributing state after
downloading file k. In a passive system, N seed,k represents also
the average number of users acting as seeds for video k.

B. Asymptotic results for single video system

Before considering the bandwidth requested from the servers
to support the distribution of all videos available in the catalog,
we analyze the simple case in which there is just one video (i.e.,
K = 1), whose request rate λ tends to infinite. Notice that in
this case γ in (3) equals γ1 in (4).

The following theorem, which is unfortunately a bit technical
and strongly based on our previous work [8], characterizes how
the servers’ bandwidth S scales with λ:
Theorem 1: Assume the following properties hold for U : i)

U > 0, ii) E[eθU ] is finite in a neighborhood of the origin, iii)
FU (w) > 0 for every w > 0. The average bandwidth requested

from the servers, S, satisfies the following asymptotic bound as
λ → ∞: if γ < 1, for any δ ∈ (0, 1),

S ≤

{

2λδe−C1λ
1−δ

if d > U
C3e

−C2λ if d ≤ U,
(5)

with C1 = 1
2τ

d(1−γ)
γ , C2 =

(

d
Uγ

− 1
)

τ(1 − e−θ∗d),

C3 = (d+ 1/θ∗)eθ
∗d, where θ∗ is the only strictly positive

5Notice that here we are not considering as part of user dynamics the data
downloaded/uploaded by a user, which obviously depend on which videos the
other users have requested.
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solution of the equation E[eθ(d−U)] = 1. Furthermore (5) holds
uniformly with respect to Ū , d and γ as long as γ < 1− σ for
any σ > 0. If, on the other hand, γ > 1, the average bandwidth
requested from the servers grows linearly with the number of
users, namely, S = Θ(λ).

A detailed proof of Theorem 1 is reported in Appendix A.
We emphasize that Theorem 1 is not a straightforward extension
of the results in [8], where we have only shown that S → 0 as
λ → ∞ (provided that γ < 1). Indeed, Theorem 1 characterizes
also how S scales with λ, providing a basic building block of
our analysis.

Considering the constants specified in Theorem 1, we observe
that C1 is insensitive to the distribution of U , and it does not
depend explicitly from U . Actually, its dependency from U is
mediated by γ. As consequence, the expression of the bound for
d > U is robust to the distribution of U and its mean, provided
that γ < 1−σ. Instead, C2 and C3 are sensitive to the distribution
of U , through the quantity θ∗. For this reason, the upper bound
on S for d ≤ U is more delicate. In particular, note that if θ∗

becomes arbitrarily small or large the bound C3e
−C2λ becomes

arbitrarily weak.
Corollary 1: Under the same assumptions on U of Theo-

rem 1, if γ < 1 − σ for some σ > 0, uniformly over U , d
and γ a λ0 > 0 can be found such that:

S ≤ 2λδe−C1(d,τ,γ
′)λ1−δ

∀δ ∈ (0, 1) and λ > λ0 (6)

with γ′ = γ(1 + σ/2).
Proof: Exploiting the definition of θ∗, we can derive the

following lower and upper bound for θ∗: θ∗ > 2E[U−d]
E[(U−d)2] and

θ∗ < supx<d −
log P(U<d−x)

x , which guarantees that θ∗ can not
be arbitrarily small or large when d is sufficiently smaller than
U , let us say when d(1 + σ/2) ≤ U . Therefore, whenever U >
d(1+σ/2) we can jointly lower bound C2 by a positive constant,
and upper bound C3 by a constant. It follows that C3e

−C2λ =
o(λδe−C1λ

1−δ

), as λ → ∞, ∀δ ∈ (0, 1).
When U → d from the right, θ∗ → 0 and the bound in

Theorem 1 becomes arbitrarily weak (it tends to infinite). To
overcome this problem, we exploit the following trick to get a
useful bound also for d ≤ U < d(1 + σ/2): we assume that
peers contribute only a fraction 2

2+σ of their upload bandwidth
to the video distribution. By so doing, we waste a small fraction
of the peers upload bandwidth, increasing the video load to
γ′ = γ(1 + σ/2) < 1. Moreover, we end up with a system in
which the average effective upload bandwidth becomes smaller
than d. For this system, we can bound S by the expression valid
for d > U , obtaining a bound clearly valid also for the case in
which the peer upload bandwidth is fully utilized.

The upper bound stated in Theorem 1 (and Corollary 1) is
valid for λ → ∞. If we want to apply this result to a multi-
video system, we must be careful that the video request rates
λk might not all tend to infinite as n → ∞. In general, we can
divide the video catalog into two portions: the hottest portion of
the catalog comprises videos whose request rate tends to infinite
as n → ∞; the coldest portion of the catalog (which could be
empty) comprises videos whose request rate remains constant or
eventually drops to zero as n → ∞.

For videos in the coldest portion, we need a different bound,
since for them we cannot apply the result in Corollary 1. Notice
that, for any cold video, peer assistance is rather ineffective (in

a passive system), because it is even possible that at a given
time there are no seeds supporting its distribution (e.g., they
might be all sleeping). A very crude bound that we can use
for cold videos is based on the pessimistic assumption that
the entire bandwidth necessary to sustain their downloads is
provided by servers (i.e., neglecting the contribution of seeds
and simultaneously downloading users):
Lemma 2: A universal upper bound to the bandwidth re-

quested from the servers is: S ≤ dτλ.
Although this bound may appear particularly coarse, it captures
well (in order sense) the impact that cold videos have on the
aggregate bandwidth requested from the servers, as we will see.
Combining Corollary 1 and Lemma 2, we get:
Corollary 2: Under the assumptions on U of Theorem 1, if

γ < 1 − σ, for some σ > 0, then uniformly over U , d and γ a
λ0 > 0 can be found such that

S ≤

{

dτλ if λ < λ0

2λδe−C1(d,τ,γ
′)λ1−δ

∀δ ∈ (0, 1) if λ ≥ λ0
(7)

with γ′ = γ(1 + σ/2).

C. Asymptotic results for multi-video system

Corollary 2 can be readily exploited to compute the aggregate
bandwidth requested from the servers in the case of multi-video
systems. Indeed, we basically have to add up the contributions
of individual videos to the bandwidth requested from the servers.
We obtain:
Theorem 2: Under the same assumptions on U of Theorem 1,

if there exists an arbitrarily small constant σ > 0 such that
P(Γk < 1 − σ) = 1, than the average bandwidth S requested
from the servers satisfies the following asymptotic bound w.h.p.
as the number of users n tends to ∞:

S =







O(n1/α) if α > 1, 1/α < β ≤ 1
o(1) if (α ≤ 1, β < 1) ∨ (α > 1, β < 1/α)
O(n) if α ≤ 1, β = 1

If, instead, P(Γk ≥ 1) > 0, then S = Θ(n) w.h.p., ∀β > 0.
A detailed proof is reported in Appendix B.
Remarks. We emphasize that when all videos are in the sur-

plus mode, the dominant contribution to the bandwidth requested
from the servers is always due to the coldest portion of the video
catalog. In particular, when α > 1, 1/α < β < 1, the scaling law

of S is determined by videos whose request rate either remains
constant or decays to zero.

Although a passive system is conceptually simple to imple-
ment and manage, it is a very rigid (and potentially suboptimal)
scheme, since users are constrained to devote their entire upload
bandwidth to the last requested video, and by so doing their
resources might not be fully utilized. In the next section, guided
by the insights gained from the analysis of passive systems, we
will investigate the performance achievable by active systems.

V. ACTIVE SYSTEMS

In active systems, users can be instructed to essentially down-
load/upload data belonging to arbitrary videos, with the obvious
constraints that: i) they must at least download (at constant rate)
the videos that they want to watch; ii) they can upload only data
previously downloaded. In particular, users can download/upload
chunks or stripes belonging to videos they have not requested
(data bundling). However, we will not consider the extreme case
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in which chunks/stripes can be made arbitrarily small (fluid
limit), i.e., chunks/stripes whose size asymptotically goes to zero,
because this is not implementable in practice.

We will show that, even with this restriction (i.e., the size
of chunks/stripes can not go to zero) we can devise efficient
active strategies that can overcome the fundamental limitations of
passive systems. In particular, we need to solve two orthogonal
problems: i) the possible presence of videos in deficit mode,
which prevents any passive system to scale (we call this the
load balancing problem); the possible presence of cold videos,
which are especially detrimental to the system (we call this the
catalog warming problem). For each problem, we will present
more than one solution, reporting the main results and the basic
intuition about how they work. We anticipate that, once we solve
both problems above, the computation of the resulting system
performance will be an easy task. Due to the lack of space,
missing proofs can be found in [13].

A. Load balancing by seed reallocation

The goal of video equalization is to make the loads induced
by individual videos equal to the global system load (3). The
simplest approach to redistribute the peer upload resources to
achieve this goal is to remove the constraint that peers must act
as seed only for the last downloaded video. In this way, we can
allocate extra seeds to those videos having γk > γ in the passive
system. Although the approach is simple (it does not require any
chunk/stripe bundling), the performance of this strategy is clearly
limited by the fact that users download only a finite number of
videos m before leaving the system, hence they cannot act as
seed for arbitrary videos.

We propose a seed reallocation strategy that works as follows:
i) all videos are downloaded at the same speed dmax; this way we
decrease the download time (that becomes τ ′k = lk/dmax) and
increase the average time during which peers may act as seed
after downloading video k (we denote this quantity by T cont,k =
T seed + τk − τ ′k). ii) peers acting as seeds are divided into K+1
categories: seeds assigned to a specific video and unassigned
seeds. Seeds assigned to video k act as seed for video k for all
their residual lifetime in the system; unassigned seeds, instead,
act as seeds for the last downloaded video. Every fresh new
peer joining the system is initially unassigned. An unassigned
peer, after downloading video k, is assigned to video k with
probability qk, while it remains unassigned with probability 1−
qk.
Theorem 3: Given {dk}k, {lk}k, the proposed seed reallo-

cation strategy guarantees perfect load balancing (by properly
selecting probabilities qk), iff γ < 1, and the following condition
on τ ′k, T cont,k is satisfied:

max
k

[

τ ′k ·max
h

[

T cont,h

τ ′h

]

− T cont,k

]

≤ (m− 1)T cont (8)

where T cont =
∑

k pkT cont,k.
De-conditioning with respect to dk and lk we obtain that a perfect
balance of video loads is feasible w.h.p. iff

lmax

(

T seed

lmin
−

T seed

lmax
+

1

dmin
−

1

dmax

)

≤ (m− 1) E
Lk,Dk

[T cont]

Note that, if users stayed indefinitely in the system, they would
sooner or later download any video that requires additional seeds,
hence by properly setting probabilities qk we would surely be

able to equalize the loads. Theorem 3 provides the sufficient
and necessary condition on the average number of videos m
downloaded by a user (which is proportional to average residence
time in the system) such that perfect load balancing is still
possible. Previous approach can be further boosted by allowing
view-upload decoupling, i.e., by letting users assigned to video k
to act as seed for it also while they are downloading a different
video. The resulting condition on m is obtained by replacing

T cont with T cont + τ ′, where τ ′ ,
∑

pklk/dmax, on the right
hand side of (8).

B. Load balancing by stripe bundling

This technique is based on the following idea: each video
is divided into M stripes (substreams), which have to be down-
loaded in parallel by a user requesting the video (the distribution
of each stripe can be assisted by a different set of peers), and re-
assembled by the decoder. Users who are downloading a video in
surplus mode are forced to download also one stripe of a video
in deficit mode, and devote a fraction of their upload bandwidth
(actually, all of their excess bandwidth with respect to the
target average system load) to the bundled stripe. The following
theorem guarantees that, by making M large enough (but not
infinite), we can approximately balance the loads bringing all
videos in surplus mode.
Theorem 4: For any value γ′ such that γ < γ′ < 1, there

exists a value M∗ < ∞ for the number of stripes such that for
all M > M∗ a stripe bundling scheme can be found that brings
the system to operate at global load smaller than γ′. At the same
time, the load associated to each video becomes smaller than or
equal to γ′ (the same holds considering the load induced by
individual stripes).
We limit ourselves to providing an intuitive understanding of
why this strategy turns out to be very effective to balance the
video loads while minimally increasing the global system load.
Indeed, while on the one hand some users (those requesting a
video in surplus mode) have to download additional unwanted
data (but this additional amount of data, corresponding to a
single stripe, can be made smaller and smaller by increasing
M ), on the other hand these users can exploit all of their excess
upload bandwidth to assist the distribution of the bundled stripe,
typically retransmitting many copies of it to other peers before
leaving the system, with an obvious gain in terms of system
performance. This technique is more complex to implement than
the previous one based only on seed reallocation. However, it
has the great advantage that it does not require any additional
condition on the system parameters. In particular, it works also
in the extreme case in which users leave the system after
downloading just one video (m = 1).

C. Catalog warming by video bundling

While analysing the case of a passive system, we learnt that
cold videos (videos whose request rate does not increase with
n) are responsible for the dominant component of the band-
width requested from the servers. Hence, if we could artificially
increase the request rate of cold videos, we would expect to get
a significant reduction of S. Now, it turns out that we do not
need to warm up the coldest portion of the catalog too much:
optimal performance is already achieved when the request rate
of videos go to infinite at least as fast as a poly-log function, i.e.,
when λk = Ω((log n)z), ∀k (actually, this is needed only for a
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‘critical’ portion of the catalog) where z is a suitable constant.
The amount of data bundling necessary to achieve this goal is
rather small, hence it is possible to warm the catalog up enough,
while at the same time increasing the global system load to a
value γ′ such that

γ′ − γ = ∆γ → 0, for n → ∞ (9)

The simplest approach to achieve this goal is to make some
peers in the contributing state to download entire (unrequested)
videos while they are not downloading any other content. This
mechanism does not require any video chunking/striping, and
can be superposed to the load balancing strategy described
in Section V-A. In essence, the strategy works as follows.
Let λ′

k be the target new rate at which video k should be
downloaded in the active system. Peers who have just finished
to download a hot video h ≤ K0 (for a specific constant K0),
without been assigned to it by the seed reallocation strategy, are
induced to start the download of a cold video k > K0 with

probability p′k =
(λ′

k−λk)
∑

h≤K0
λuph(1−qh)

(note that, by construction,

pd =
∑

k>K0
p′k → 0 as n → ∞). If the download of the

bundled video is interrupted because the peer goes into the
sleeping state, the download is promptly resumed as soon as
the peer restarts contributing to the system without concurrently
downloading any other video (they can not be assigned to any
video they possibly download in the meanwhile). Since pd → 0,
the negative effect that this strategy has on the load induced by
hot videos (those videos whose request rate is not increased,
and from which the mechanism subtracts some seeds) becomes
negligible for n → ∞. Our strategy has a potential effect also
on the load of videos whose request rate is artificially increased.
However, it guarantees that the new load γ′

k of such videos is
maintained less than 1, provided that the average upload band-
width of adjoint seeds exceeds the average bandwidth consumed
to download them, i.e., dk min(mT cont, lk/dk) < UmT cont.
When this condition is met with probability 1, i.e.,

P

(

dmax min(mT cont, lmax/dmax)

mUT cont

> 1

)

= 1, (10)

the above scheme can be effectively employed, in sufficiently
large systems, without bringing any video in deficit mode.

D. Catalog warming by chunk bundling

The previous technique imposes again a constraint on the sys-
tem parameters (10). When (10) is violated, the same approach
can be applied to individual pieces of cold videos (chunks),
instead of entire videos, with less stringent constraint. Indeed,
peers who are forced to contribute to an unrequested video,
neither need to completely retrieve it, nor to download it sequen-
tially. Thus, we can cut a cold video in M chunks, and ask some
peers to download just a randomly chosen chunk contributing to
its distribution. Chunkization reduces the bandwidth that every
artificial downloader consumes by a factor M , while keeping
constant its potential contribution on the upload.

E. Catalog warming by stripe bundling

A similar idea can be applied to stripes, instead of chunks,
and superposed to the load balancing technique proposed in V-B.
Essentially, peers who request for the first time a hot content k ≤

K0 (for some constant K0), with probability p′k =
λ′
k−λk

∑

h≤K0
λh

are

forced to download also a randomly chosen stripe of cold video

k, contributing to its distribution for the rest of their stay into
the system, with an opportunely chosen fraction of their upload
bandwidth. Observe that by construction the load on every cold
content can be maintained constant by properly selecting the
fraction of peer upload bandwidth contributed to its distribution,
while the load increase for hot videos (due to the subtraction of
some upload bandwidth) vanishes as the system size increases,
since p′d =

∑

k>K0
p′k → 0 as n → ∞. As a consequence this

scheme can always be applied in sufficiently large systems.

F. Asymptotic bandwidth requested from the servers

At last, we can evaluate the asymptotic performance achiev-
able by applying the active schemes described in previous
sections.

Theorem 5: Under the same assumptions on U of Theorem 1,
if there exists an arbitrarily small constant σ > 0 such that
P(Γ < 1− σ) → 1 for some σ > 0, the bandwidth S requested
from the servers satisfies the following asymptotic bound w.h.p.
as the number of users n tends to ∞:

S =

{

o(1) if α > 1, β < 1

O(n2−α(log n)
α−1
1−δ ) if α > 1, β = 1

(11)

provided that a suitable combination of active techniques is
employed i) to balance the loads induce by individual videos;
ii) to sufficiently increase the download rate of cold videos.

Due to the lack of space, the proof of Theorem 5 is reported in
our technical report [13], which includes also a precise definition
of the desired rates λ′

k and the constants needed to implement
the catalog warming techniques. The proof of Theorem 5 goes
essentially along the same lines as in the proof of Theorem 2.

VI. LOWER BOUND

Here we present a simple universal lower bound to the
bandwidth requested from the servers. Notice however that this
bound holds under the assumption that the size of chunk/stripe
cannot go to zero. Consider first the case in which videos are
not divided into chunk/stripes. For any video k the servers must
provide at least a bandwidth equal to dk when the following two
conditions jointly occur: i) there is at least one user downloading
the video; ii) there are no seeds assisting its distribution. Thus,
we can write:

S ≥
∑K

k=1 dkP(Nd,k > 0)P(Nseed,k = 0) (12)

Previous argument can be extended to the case in which videos
are divided into a finite number of chunks/stripes, considering
every chunk/stripe as an individual object. By algebraically
manipulating (12), we obtain:

Theorem 6: The average bandwidth requested from the
servers, S, satisfies the following asymptotic bound as the
number of active users n tends to ∞:

S =







Ω
(

n2−α
)

if α > 1, β = 1
Θ(n) if α ≤ 1, β = 1
0 if β < 1

(13)

We report the proof of Theorem 6 in our technical report [13].
Essentially the proof consists in finding a lower bound for (12),
that uniformly holds under any possible distribution of seeds to
videos (i.e., satisfying

∑

k N seed,k = O(N)).
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VII. CONCLUSIONS

Our results indicate that users’ cooperation can dramatically
reduce the servers’ burden in large-scale VoD systems. Although
peer-assisted architectures incur several issues related to the
added complexity on the control plane, the need to provide
incentive mechanism to the users and to protect the system
against attacks and misbehavior, nevertheless we believe they
should be taken seriously into consideration in the coming years,
as they are the only known solution (up to now) to make
VoD systems arbitrarily scalable. However, we have shown that
the potential gains deriving by users’ cooperation are reduced
when the service is targeted to the distribution of user-generated
contents (especially for small values of the Zipf’s law exponent),
since in this case the number of videos intrinsically scales
linearly with the number of users.
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APPENDIX A
PROOF OF THEOREM 1

The proof of this theorem exploits some intermediate results
from [8], which are briefly recalled. The following upper bound
holds for the bandwidth requested from the servers:

S ≤ (d+
1

θ∗
e−θ∗AeNd(e

θ∗A
−1)) e−N seed(1−φU (−θ∗))eθ

∗d (14)

where φU be the moment generating function of U , ǫ is an

arbitrary positive constant less than U and A , d − U + ǫ.
Moreover, θ∗ is the unique strictly positive solution to the

equation E[eθ(d−U−A)] = E[eθ(U−U−ǫ)] = 1.
The following two propositions from [8] establish important

properties of θ∗ as function6 of ǫ:
Proposition 1: If d > U , the equation E[eθ(U−U−ǫ)] = 1

(in θ) admits a unique solution for ǫ ∈ (0, U). Furthermore,

θ∗(ǫ) = argθ>0(e
−θǫ

E[eθ(U−U)] = 1) is strictly increasing and

C1 on the interval (0, U). Moreover, it holds limǫ→0 θ
∗(ǫ) = 0.

6In the following, whenever not necessary, we use θ∗ instead of θ∗(ǫ).

Proposition 2: Provided that d > U , and U is not constant,
the image of θ∗(ǫ) for 0 < ǫ < U is R

+ \ {0}.

Our goal is to tightly characterize the asymptotic behavior of
bound (14) as λ → ∞. We first focus on the case d > U . In this
case we will make ǫ → 0 as λ → ∞, exploiting Propositions 1
and 2.

Consider, first, quantity e−θ∗AeNd(e
θ∗A

−1) in (14). Note that
e−θ∗A ≤ 1, and eθ

∗A − 1 > θ∗A. Thus, for all η ∈ (0, 1), there

exists θ∗0(η) > 0 such that if θ∗ ∈ (0, θ∗0) then eθ
∗A − 1 ≤

θ∗A/(1− η). In particular, θ∗0(η) = − 1−η+W((η−1)eη−1)
A , where

W(·) is the Lambert function.We obtain:

e−θ∗AeNd(e
θ∗A−1) ≤ eNd

θ∗A
1−η . (15)

Consider now quantity e−N seed(1−φU (−θ∗)) in (14). Since for
ǫ → 0 we have θ∗ → 0 (Proposition 1), 1 − φU (−θ∗) = 1 −
E[e−θ∗U ] = θ∗U +R(θ∗), where R(θ∗) is the Taylor remainder.
If we express R(θ∗) in the Lagrange form we immediately
obtain: |R(θ∗)| ≤ E[U2]θ∗2/2.

After some elementary algebra it is possible to show that for

every η′ > 0, defining θ∗1(η
′) = η′

1+η′
2U

E[U2] we have that if θ∗ ∈

(0, θ∗1) it holds: 1− η′ ≤
θ∗U

1− φU (−θ∗)
≤ 1 + η′, and therefore

1− φU (−θ∗) ≥
θ∗U

1 + η′
. (16)

Consider now quantity eθ
∗d in (14): defining θ∗2 = (log 2)/d, it

is immediate to see that for θ∗ ∈ (0, θ∗2), it holds:

eθ
∗d ≤ 2. (17)

By (14), (15), (16) and (17), we can conclude that for all
θ∗ ∈ (0,min{θ∗0 , θ

∗

1 , θ
∗

2}), it holds

S ≤ 2

(

d+
eNd

θ∗A
1−η

θ∗

)

e
−N seed

θ∗U
1+η′ (18)

From (3) we can derive a relation between the number of
downloaders, Nd = λτ , and the number of seeds:

N seed =

(

d

Uγ
− 1

)

Nd =

(

d

Uγ
− 1

)

λτ (19)

Substituting (19) in (18) we get:

S ≤ 2

(

d+
eλτ

θ∗A
1−η

θ∗

)

e
−

(

d
Uγ

−1
)

λτ θ∗U
1+η′ (20)

Recall from Proposition 1 that, for d > U and ǫ → 0, we have
θ∗ → 0. Moreover, by Propositions 1 and 2, as λ → ∞, we can
set θ∗ ∼ λ−δ (i.e., we can find the proper law for ǫ that leads
to θ∗ ∼ λ−δ) for all δ ∈ (0, 1).

Thus, there exists a λ0 > 0 such that ∀λ > λ0, we have that
θ∗ ∈ (0,min{θ∗0 , θ

∗

1 , θ
∗

2}). Then, if λ > λ0, for all η, η′ > 0 we
have:

S ≤ 2
(

d+ λδeλ
1−δτ A

1−η

)

e
−

(

d
Uγ

−1
)

τ U
1+η′ λ

1−δ

=

= 2 d e
−λ1−δτ d−Uγ

γ(1+η′) + 2λδe
−λ1−δτ

(d−Uγ)(1−η)−Aγ(1+η′)

(1+η′)(1−η)γ (21)

Remembering that A , d − U + ǫ, for all ǫ > 0, η, η′ ∈ (0, 1)
we define the quantity

f(ǫ, η, η′, d, γ, U) , τ
(d− Uγ)(1− η)−Aγ(1 + η′)

(1 + η′)(1− η)γ
(22)
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that appears in (21). We compute now f(ǫ, η, η′, d, γ, U) for
ǫ, η, η′ → 0:

lim
ǫ,η,η′

→0
f(ǫ, η, η′, d, γ, U) = τ

d(1− γ)

γ
> 0.

Since f(ǫ, η, η′, d, γ, U) for γ 6= 0 and η 6= 1 is a continuous
function and hence a uniformly continuous one over compact
sets that do not contain points either with γ = 0 or η = 1, three
strictly positive constants ǫ0, η1, η2 > 0 can be found such that,
for all 0 < ǫ < ǫ0, 0 < η < η1 and 0 < η′ < η2, we have

f(ǫ, η, η′, d, γ, U) >
1

2
τ
d(1− γ)

γ
> 0.

uniformly with respect to parameters d, γ and U as long as they
take values over a compact set that does not contain the points
with γ = 0 (as in our case). Defining the constant

C1 ,
1

2
τ
d(1− γ)

γ
, (23)

we can conclude that, uniformly with respect to the parameters,
for d > U it holds:

S = O
(

λδe−C1λ
1−δ
)

as λ → ∞ (24)

since the fist term in (21) is negligible with respect to the second

one, in light of the fact that τ d−Uγ
γ(1+η′) > C1 = 1

2τ
d(1−γ)

γ .

Consider now the case d < U . From Theorem 1 in paper [8],
we have that θ∗ is a constant as λ → ∞, and we can set ǫ in
such a way that A = 0. Using a similar reasoning as for the case
d > U , after some calculations we get

S ≤ C3e
−C2λ as λ → ∞, (25)

where C3 , (d+ 1/θ∗)eθ
∗d and

C2 ,

(

d
Uγ

− 1
)

τ(1− φU (−θ∗))) =
(

d
Uγ

− 1
)

τ(1− e−θ∗d).

At last we consider the case γ > 1 (i.e., the deficit mode). In
this case the bandwidth requested from servers scales as Θ(n),
as shown in [8]. Indeed, the servers have to provide at least the
bandwidth deficit.

APPENDIX B
PROOF OF THEOREM 2

First we assume P(Γk < 1 − σ) = 1. In this case all γk are
deterministically smaller than 1−σ, and by Corollary 2 for each
video we get:

Sk ≤

{

dkτkλk if λk < λ0

2λδ
ke

−C1,kλ
1−δ
k ∀δ ∈ (0, 1) if λk ≥ λ0,

(26)

where C1,k , C1(dk, τk, γ
′

k), γ′

k = (1 + σ/2)γk. We divide
videos in two categories, depending on the request rate λk. Video
k belongs to the first category if 0 ≤ k ≤ K1, with K1 such that
λK1

= λ0, where λ0 is the threshold defined in Corollary 2. We

thus obtain that K1 = λ
−1/α
0 n1/αH(K)1/α. We distinguish the

following cases depending on α:

K1 =







Θ(n1/α) if α > 1
Θ(n log n) if α = 1

Θ(n
1+β(α−1)

α ) if α < 1

(27)

Videos k such that K1 ≤ k ≤ K belong to the second category.
Comparing asymptotically K1 with K, we obtain:

K1 = o(K) if α ≥ 1, 1/α < β ≤ 1
K1 = ω(K) if α ≥ 1, β ≤ 1/α or α < 1, β ≤ 1

(28)

Therefore, when α < 1, we set K1 ≡ K, and we have only
one video category. Now, to compute S we can just sum up the
contributions of all videos, obtaining:

S =
∑K

k=1 Sk

≤
∑K1−1

k=1 2λδ
ke

−C1,kλ
1−δ
k +

∑K
k=K1

dkτkλk.
(29)

We define C , dmaxτmax, and substitute λk with its value npk =
nH(K)k−α. We obtain:

S ≤ 2(nH(K))δ
∑K1−1

k=1 k−αδe−C1,k(nH(K)k−α)1−δ

+C nH(K)
∑K

k=K1
k−α.

(30)
Let Sup,1 be the first term in (30). Furthermore, since by (23)

C1,k , 1
2τk

dk(1−γk)
γk

, we have C1,inf , infk C1,k ≥ 1
2στmindmin.

Thus, we have:

Sup,1 ≤ 2
∑K1−1

k=1 (nH(K)k−α)δe−C1,inf (nH(K)k−α)1−δ

< Θ
(

∫K1−1

1
(nH(K)x−α)δe−C1,inf (nH(K)x−α)1−δ

dx
)

Now we make the substitution y = (nH(K)x−α)1−δ and get

dx = (nH(K))
1
α

α(1−δ)y
1+ 1

α(1−δ)
dy. We have:

Sup,1 < Θ

(

(nH(K))
1
α

α(1−δ)

∫ (nH(K))1−δ

(nH(K)(K1(n)−1)−α)1−δ

e−yC1,inf
y

δ
1−δ

y1+
1

α(1−δ)

dy

)

If y
2αδ−α−1
α(1−δ) < 1, that is if δ < 1/(2α) + 1/2, we obtain

Sup,1 < Θ

(

(nH(K))
1
α

α(1−δ)

∫ (nH(K))1−δ

(nH(K)(K1−1)−α)1−δ

e−yC1,infdy

)

< Θ
(

(nH(K))
1
α e−C1,inf (nH(K)(K1(n))

−α)1−δ
)

From (27) and (28), we get:

Sup,1 <























































Θ(n
1
α e

−C1,inf ) = O(n1/α) if α > 1, β > 1/α

Θ(n
1
α e

−C1,infn
(1−αβ)(1−δ)

) = o(1) if α > 1, β < 1/α

Θ(n log ne
−C1,inf ) = O(n log n) if α = 1, β = 1

Θ(n log nβe
−C1,inf (n

1−β log nβ)(1−δ)
) = o(1) if α = 1, β < 1

Θ(ne
−C1,inf ) = O(n) if α < 1, β = 1

Θ(nβ(α−1)+1e
−C1,infn

1−β
) = o(1) if α < 1, β < 1

Now we consider the second term in (30), Sup,2 ,

CnH(K)
∑K

k=K1
k−α. Note that this term exists only when

K1 = o(K), see (28). Since function f(x) = x−α is decreasing,
by the integral test for series we obtain, for α > 1,

Sup,2 < nH(K)
(

K−α
1 +

∫K

K1
x−α dx

)

= Θ
(

n
1
α

)

If α = 1, with the same calculation as above we obtain

Sup,2 < Θ
(

n log2 n
)

Noting that a trivial upper bound to S is n, given the above
bounds on Sup,1 and Sup,2, we obtain:

S =







O(n1/α) if α > 1, β > 1/α
o(1) if (α > 1, β < 1/α) ∨ (α ≤ 1, β < 1)
O(n) if α ≤ 1, β = 1

When, instead, P(Γk ≤ 1) < 1, for any β > 0 standard
concentration arguments allow to say that for any function
f(n) → ∞, a finite fraction of videos with index k ≤ f(n)
will have w.h.p. an associated load γk > 1. Since the associated
request rate for such videos scales linearly with n (i.e., it scales
faster that any sub-linear function), as immediate consequence
S scales also linearly with n.


