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ABSTRACT 

Differing from those traditional vehicle exhaust heat recovery systems which just provided thermal energy 

directly for cabin warming, integrated Exhaust Energy Recovery (EER) which is researched and developed 

mainly in recent years aims to convert exhaust thermal energy to mechanical or electric energy for increasing 

the total thermal efficiency and the total power of powertrain.  In the study presented in this paper, an analytic 

model was built for examining the environmental and economic benefits of integrated EER systems. Then the 

improvement on the total powertrain efficiency and net reduction of CO2 emissions were investigated, in terms 

of the average vehicle used in the UK. Results show that, for light duty vehicles fitted with thermal cycle EER 

system, the cost increase could be paid back in 10.1 years and CO2 emission could be paid back in just 1.9 

years, compared to Hybrid Electric Vehicle’s (HEV’s) 11.9 years and 1.4 years for cost and CO2 emission, 

respectively. When the annual fuel price increase is considered, the cost pay-back is reduced to 8.1 years for 

EER vehicles and 8.9 years for HEVs. Higher mileage vehicles will have more obvious advantage for fitting 

EER system. When doubled annual mileage is considered, EER system can reduce the cost and CO2 emission 

pay-back times to 2.7 years and 0.6 years, compared to HEV’s 8.5 and 2.7 years, respectively. 
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INTRODUCTION 

In recognition of the need to further reduce vehicle exhaust emissions and the greenhouse gas CO2, there has 

been a quickly increased interest in the development of cleaner and more efficient energy saving vehicle 

powertrain. When the cost for obtaining even a 1% increase on the engine combustion efficiency is significant, 
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technology innovation around vehicle powertrain has involved more on hybrid configuration (such as Hybrid 

Electric Vehicles - HEVs) and integrated Exhaust Energy Recovery (EER) in recent years. In the current 

research, integrated EER refers to those new technologies beyond conventional uses for exhaust waste heat 

such as turbocharger or cabin air-heating. While HEV technology has achieved considerable market share in 

recent years, R&D on EER is being paid more attention, particularly while energy collected by EER can be 

easily applied on HEVs [1, 2, 3]. 

Normally the maximum net brake efficiency of Internal Combustion (IC) engines is difficult to be higher than 

42% [4], large amount fuel energy is rejected from the engine to the surroundings as waste heat in several 

forms, with a significant fraction through the exhaust. A recent study [5] estimated in a typical 2.0 litre gasoline 

engine used on passenger cars, 21% of the released energy is wasted through the exhaust at the most common 

load and speed range. The fraction increases to 44% at the peak power point. On average, about one third of 

energy generated from the fuel is wasted via exhaust gases. Current estimates of waste thermal energy from 

ground vehicle systems range from 20kW to 400 kW, depending on engine size and engine torque-speed 

conditions. This is equivalent to annually 45 billion gallons of gasoline fuel lost through the exhaust pipes of 

the 240 million light-duty passenger (LDP) vehicles in USA alone [6]. 

LDP vehicle exhaust systems operate at gas temperatures from 500 to 900 °C, typically between 600 and 

700 °C. For Heavy-Duty (HD) vehicles, exhaust gas temperatures range from 500 to 650 °C under general 

driving condition. These can be further boosted during periodical regenerations of diesel particulate filter (DPF) 

and other aftertreatment advices [7]. Those high exhaust temperatures provide significant opportunities for EER 

to generate energy for increasing powertrain’s efficiency [6, 8].  

Differing from conventional exhaust energy utilising technologies such as turbocharger, cabin air-heating [9, 

10], desalination [11] and reducing engine warm-up time [12], integrated EER which has been mainly focused 

in recent years mainly include thermal cycle system based on Rankine Cycle (RC) and Thermoelectric (TE) 

regeneration. The latter can directly convert part of the exhaust heat to electric power through the 

thermoelectric phenomenon, without the use of mechanically rotating parts, and providing some advantages 

such as compact package, without noise and vibration, and high reliability. However, there exist significant 

system design challenges during the development of TE system due to its low conversion efficiency and 

relatively high costs of thermoelectric semiconductor materials [13, 14]. 

So far, turbochargers and recently developed other turbo-compounding systems have been selected as the first 

option for most exhaust waste energy recovery of IC engines. However, as the increase of exhaust back 

pressure caused by the turbine of turbocharger or turbo-compounding system, the system efficiency is limited, 

compared to RC EER system [15, 16]. On the other hand, as the turbine always needs necessary pressure ratio, 

the exhaust gas sensible heat absorbed by turbocharger or turbo-compounding system is constrained and the 

exhaust temperature from the turbine is always still very high and a lot sensible heat is still contained. This 

allows a RC EER system still being able to be fitted downstream even a turbocharger or turbo-compounding 

system has been installed. A RC EER system does not increase the exhaust back pressure obviously. 
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Meanwhile, it can absorb much higher fraction of exhaust sensible heat than turbochargers or turbo-

compounding system if appropriate heat exchanger and other RC hardware are designed.  

The conversion of exhaust heat energy into useful power by integrated EER system would not just bring 

measurable advantages for improving fuel consumption but also increase engine power output (power density) 

or vehicle downsizing, further reducing CO2 and other harmful exhaust emissions correspondingly. It was 

predicted by Vazaquez et al. [17] that if only 6% of the heat contained in the exhaust gases were converted to 

electric power for replacing the output of alternator, this would mean reduction of fuel consumption by 10% 

due to the decrease in mechanical losses from the resistance of the alternator drive. In addition, the 

experimental work conducted by Honda [18] with a thermal recovery system showed a maximum thermal cycle 

efficiency of 13% could be achieved. At 100 km/h vehicle speed which needs approximately 19.2 kW engine 

powers, the thermal recovery system can yield a power output of 2.5 kW, representing an increase in the 

thermal efficiency of the engine from 28.9% to 32.7%. 

When the benefit on fuel cost and emission reductions provided by EER have been approached more or less, its 

economic benefit has not been depicted clearly. For promoting the development of EER systems and its 

commercialization, it is necessary to provide necessary information about its pay-back times of both cost and 

carbon emissions. In this paper, average EER efficiency based on New European Driving Cycle (NEDC) would 

be estimated by investigating recoverable exhaust sensible heat of a light duty gasoline powertrain. Then the 

environmental and economic benefits of EER vehicles will be analysed by considering average driving 

condition in the UK.  

 

EER EFFICIENCY ANALYSIS 

As the system efficiency of thermoelectric material EER system is still very low but the price is high compared 

to thermal cycle EER systems, the concentration of this research is put on thermal cycle EER systems based on 

Rankine Cycle. As shown in Figure 1, a Rankine Cycle EER system for vehicles can be designed with 

mechanical connection for power transfer between the EER system and the vehicle powertrain. The EER 

system should physically comprise four main components: evaporator/heat exchanger, expander, condenser and 

circulation pump. 

With the evaporator/heat exchanger, the working fluid is superheated by absorbing thermal energy provided 

from the exhaust gas. Flowing out from the evaporator as high temperature steam, the working fluid is driving 

the expander to produce useful work. Then the waste steam from the expander will be cooled down through the 

condenser to return to liquid phase. In the next step, the working fluid is pumped to maintain the circulation. 

For most internal combustion engines, there is approximately 20-40% of total fuel energy which is dissipated 

through exhaust gas, with the majority as sensible enthalpy due to high exhaust temperature and the minority as 

chemical enthalpy due to incomplete combustion. To evaluate possible energy amount which can be recovered 
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by EER system, it is necessary to obtain the exhaust temperature characteristics under different driving 

conditions. In the current research, a 1.4 litre light-duty gasoline engine used for powering passenger car has 

been selected for the analysis. Main specifications of the test engine can be found in Table 1 and the exhaust 

gas temperature variation as function of engine speed and load can be found in Figure 2. It should be noted 

those exhaust temperatures were measured just at the entrance of the EER heat exchanger. The engine 

operation process for those measurements followed the order of fuel loops. At a specified engine speed, the full 

load point was recorded at first. Then the engine load was reduced with appropriate step, until the load close to 

the idle operation. By repeating the fuel loop process with different engine speeds, the full maps of exhaust 

temperature was achieved. When those measurements were carried out, the existence of the EER heat 

exchanger might have more and less influence for increasing exhaust back pressure. Then the exhaust 

temperature might have a little increase, compared to the original engine without an EER system.  

In Figure 2, it can be found that under peak power area, the engine has the highest exhaust temperature over 

800˚C which is indubitably very suitable for EER. But for passenger cars, normally the engine just operates 

part load with speed between 1500 rpm and 3000 rpm (for gasoline engines) and torque between 20% and 50% 

of full load torque. In the operating range, the exhaust temperature is just between 400˚C and 650˚C and the 

EER system efficiency and recoverable energy amount under this condition would be mainly examined. 

Based on exhaust gas analysis to find amounts of main component (H2O, CO2, O2, N2) in the exhaust gas under 

different operating condition, the exhaust sensible heat qexh can be estimated by summing up each gas 

component’s specific enthalpy. The fraction of exhaust heat qexh in the total fuel energy could be given by:  
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where hf is the fuel heating value and fm&
is the fuel mass flow rate, respectively. 

With the above definition, the fraction of exhaust heat in the total fuel energy is produced for the test engine 

and the result is plotted in Figure 3.
 

In this research, the EER Rankine Cycle efficiency ηRC is defined as the useful work output from the Rankine 

Cycle to the total sensible exhaust heat, expressed as:
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where qev is the heat energy provided by the evaporator (the heat exchanger) to the expander. ηexp is the working 

efficiency of the expander and wpump is the work consumed by the pump of working fluid in the EER system, 

respectively. 

Then the fraction of the net output work from EER Rankine Cycle in the total fuel energy can be expressed as:
 

 RCexhEER xx η=
          (3)

 

This fraction is considered as the EER efficiency in the current research when the energy lost from the 

expander to the energy final use was not taken into account. The map of the EER efficiency for the test engine 

is shown in Figure 4.
 

From Figure 4, it can be seen, though the maximum EER system efficiency can be up to 14%, in the general 

operating range of passenger car engines, the value is between 1% and 10% for the test engine in the present 

research. Based on New European Driving Cycle (NEDC), it is estimated approximately 3.9% of fuel energy 

can be recovered by the thermal cycle EER system for the test engine. This is equivalent approximately 17.5% 

fuel saving for the test engine which has an approximately 22.3% total engine efficiency under NEDC.
 

Considering the possible loss for transferring the EER work to the vehicle powertrain system, the net EER 

efficiency can be around 20% for the powertrain used in the current research. Combined those EER efficiency 

data presented in last section, 20% could be an appropriate figure for representing most EER systems which 

will be used on passenger cars. This figure will be used for the following section for estimating the cost and 

carbon emissions of EER vehicles (vehicles fitted with EER system) and their pay-back times of cost and 

carbon emissions, though it is understood that there is some difference for the efficiency for different vehicles 

regarding their powertrain configurations and operating conditions. 

 

ANALYSIS OF COST AND CO2 EMISSIONS OF EER VEHICLES 

After the EER system efficiency is estimated, environmental and economic benefits of EER vehicles can be 

analysed. In addition to compare EER vehicles (vehicles fitted with EER system) with pure Internal 

Combustion Engine (ICE) vehicles, Hybrid Electric Vehicles (HEVs) and HEV+EER vehicles are also 

considered, while EER system can be electrically connected with HEV for its work output. Powertrain system 

setup of two configurations of HEV and HEV+EER can be used as shown in Figure 5. 
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In Figure 5, the power contribution from different energy sources are represented as the shape size. For 

example, from HEV to HEV+EER, the engine can get further downsizing. Then the engine size and fuel tank 

size become smaller and the battery size of HEV+EER gets bigger.  

In Figure 6, it shows total cost variations with used years for ICE vehicles, EER vehicles, HEVs and 

HEV+EER vehicles. Those results are achieved from an analysis based on vehicles sold and used in the UK 

where the average new passenger car price is approximately £27500 in 2011. For HEV, 20% higher average 

price is added by considering the actual cost of HEVs in the current market. Those data come from DivenData 

whose published data can be found at www.drivendata.co.uk. For EER vehicles, the cost increase of 10% is 

estimated by including costs of all mechanical hardware (evaporator, expander, condenser, pump and gearbox) 

and control system.  For HEV+EER vehicles, only 25% average cost increase rather than 30% (20% for HEV 

and 10% for EER) is added since the electrical work output of EER system could be easily implemented 

compared to EER mechanical work output configuration.   

The annual average cost of vehicles is calculated by including fuel, service, annual authority inspection (in the 

UK this is named as MOT – Ministry of Transport), insurance and tax. For vehicles used in the UK, the fuel 

cost is based on the average annual mileage of 12000 miles for the first year new cars, 10000 miles the second 

year and 8000 miles per year for the following years [19]. ICE vehicles’ average fuel consumption is currently 

about 0.09 litre/mile, compared to 40% of HEV’s saving which was reported by NREL (National Renewable 

Energy Laboratory) [20] and Ting et al. [21]. From the study in the last section, EER’s 20% saving on fuel 

consumption is selected. Combining HEV’s and EER’s individual savings, 50% saving is assumed for 

HEV+EER in the present analysis. With regard to the average fuel cost, the current price £1.40/litre in the UK 

market is used for the calculation. For other annual costs, tax exemption but increased service cost for HEV 

vehicles are considered. 

Then cumulative CO2 emissions and cumulative cost can be formulated as: 

 12/4422 ××××+= −− cfuelcumulativeembeddedcumulative xFCSCOCO ρ
    (4) 

Where Scumulative is the cumulative mileage. FC is the fuel consumption (litre/mile). ρfuel is fuel density (kg/litre).  

xc is carbon content rate of fuel. 44 and 12 are the molecular weight of carbon dioxide and that of carbon, 

respectively.  

 ∑ ++++××+=
n

fuelcumulativeembeddedcumulative ServiceMOTTaxInsPFCSCostCost
0

)(  
(5)

 

Where Pfuel is fuel price (pound/litre) and Ins represents annual insurance cost, respectively.  
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In Figure 6, it can be found that with fixed fuel price, the saving on fuel cost from HEV vehicles could not pay 

back the cost increase in 10 years due to the high purchase cost. With further estimate, the cost pay-back time 

for HEV vehicles is about 11.9 years. For EER vehicles, it roughly needs 10.0 years for paying back the cost 

increase. It suggests EER vehicle would probably be a more attractive option than HEV vehicle for customers, 

if their concerns are more on the vehicle and operating costs, rather than the fuel saving or carbon emission 

reduction. When customers make an estimate for the total vehicle cost (purchase cost and operating cost), the 

current fuel price is always cited since the future of fuel price is always difficult to predict. Therefore, from the 

analysis shown in Figure 6, it can be assumed that EER vehicles could be promoted for the purpose of fuel or 

carbon emission saving, at least compared to HEV vehicles. As EER vehicles may be more popular than HEV 

vehicles, their possible high market share would be helpful to get more CO2 emission reduction, although EER 

vehicles’ fuel saving rate is lower than HEV vehicles. 

The estimated pay-back times of various vehicles for CO2 emissions are shown in Figure 7. The average 

embedded CO2 emissions from vehicle production were estimated with the simple calculation method initially 

proposed by Berners-Lee [22]. But his figure of 720 kg CO2 per £1000 car price was replaced by what Ricardo 

published 350 kg CO2 per £1000 car price [23]. In Figure 7, it can be seen, with HEV vehicle’s big saving rate, 

it could pay-back CO2 emissions in just 1.4 years. EER need approximately 1.9 years to pay back CO2 

emissions. Because of a higher embedded CO2 amount, HEV+EER has a similar CO2 pay-back time as EER, 

though it has a fast pay-back rate. By 5 years (46000 miles), an EER vehicle could save approximately 1.1 

tonnes CO2 in average, compared to HEV’s average saving of 2.6 tonnes per vehicle and HEV+EER’s average 

saving of 2.7 tonnes. By 10 years (86000 miles), the average CO2 saving per EER vehicle could be 

approximately 2.8 tonnes CO2, compared to HEV’s average saving of 6.2 tonnes and HEV+EER’s average 

saving of 7.0 tonnes. 

In Figure 8, it shows the pay-back times when the increase of fuel price is taken into account. Considering the 

average fuel price increase of 8% in the UK in last ten years, both EER vehicles and HEV vehicles’ pay-back 

times for cost are reduced to 8.1 years and 8.9 years. HEV+EER has a similar cost pay-back time as HEV, 

because HEV+EER has higher embedded cost but a higher cost pay-back rate.  

In Figure 9, the analysis shows the cost pay-back times for EER vehicles could be significantly reduced to 2.7 

years, if doubled mileages (24000 miles for the first year, 20000 miles for the second year and 16000 miles per 

year for following years) is used, compared to the average mileage used for the previous analysis. It should be 

noted average fuel consumptions used in this part are still same as used in the previous analysis for those four 

vehicle configurations, such as 0.09 litre/mile for ICE vehicles. As those high mileage operations involve more 

motorway driving, HEV’s fuel saving rate is faded due to reduced brake regeneration etc. But EER’s saving 

rate can be enhanced (as shown in Figure 4). Results shows HEV still needs at least 8.5 years for cost pay-back. 

But EER vehicles only need 2.7 years for cost pay-back. For this category of customers, EER vehicles would 

obviously be a more popular option.  
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In Figure 10, it shows EER vehicles with high mileage driving have also obvious advantage of CO2 emissions 

compared to HEVs. By 5 years (92000 miles), EER vehicle’s average CO2 emission saving would be 

approximately 5.2 tonnes, compared to HEV vehicle’s less than 2.6 tonnes.  This suggests EER vehicles is very 

worth to develop for cost benefit and carbon emission benefit, in particular for high mileage vehicles. 

 

CONCLUSIONS 

With experimental measurement of exhaust gas temperature and assessment of exhaust sensible heat and its 

fraction in the total fuel energy, the recoverable energy by a thermal cycle Exhaust Energy Recovery (EER) 

system based on Rankine Cycle was analysed for achieving EER efficiency of ground vehicles. Then the cost 

and carbon emission pay-back times of EER vehicles (vehicles fitted with EER system) were examined and 

compared with Hybrid Electric Vehicles (HEVs) and HEV+EER vehicles, by considering fixed fuel price, 

variable fuel price and possible high mileage. From those results, the following conclusions have been derived.  

• From the individual light duty vehicle model fitted with an Internal Combustion Engine (ICE) powertrain 

and a Rankine Cycle EER system, the maximum EER efficiency (to the total fuel energy) can be up to 14% 

under high engine power condition. During general passenger car driving range, the efficiency is roughly 

between 1% and 10% depending on the engine operating condition. 

• Considering average light duty vehicle annual mileage, fuel price, other subsistence costs (such as insur-

ance, service, tax etc.) in the UK market, an EER vehicle needs 10.1 years for cost pay-back and 1.9 years 

for carbon emission pay-back, compared to HEV’s 11.9 year for cost pay-back and 1.4 year for carbon 

emission pay-back. 

• When 8% annual fuel price increase is considered, the cost payback for EER vehicles is 8.1 years, com-

pared to HEV’s 8.9 years.  

• Increased mileage due to more motorway driving would obviously reduce cost and carbon emission pay-

back time for EER vehicles due to high EER efficiency for motorway driving. But for HEV vehicles, simi-

lar result would be difficult to achieve due to faded advantage of HEV vehicles on motorway. 
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FIGURES 

 

 

 

 

 

Figure 1 Vehicle EER system with mechanical power output 

 

 

 

 

 

 

 

 

Figure 2 Distribution of exhaust gases temperature of the test engine as function of engine speed and torque 
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Figure 3 Distribution of the ratio of exhaust sensible heat to the total fuel energy 

 

 

 

 

 

 

 

 

 

Figure 4 EER system efficiency distributions as function of engine speed and load 
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(a)      (b) 

Figure 5 (a) General HEV system layout; (b) EER system with electrical power output to HEV 

 

 

 

 

 

 

 

 

 

 

Figure 6 Cost pay-back times for different powertrain configurations 
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Figure 7 CO2 emission pay-back times for different powertrain configurations 

 

 

 

 

 

 

 

 

Figure 8 Cost pay-back times of different powertrain configurations with fuel price increase 8% annually 
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Figure 9 Cost pay-back times of different powertrain configurations with fuel price increase 8% annually and 

doubled mileages 

 

 

 

 

 

 

 

 

 

Figure 10 CO2 emission pay-back times with doubled mileages 
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Tables 

Table 1 Main specifications of the test engine 

Engine type CA4GA1 

Number of cylinders 4 

Bore×Stroke (mm) 73×80 

Displacement (L) 1.339 

Compression ratio 10 

Number of valves 16 

Rated power/speed (kW/rpm) 67/6000 

Maximum torque/speed (Nm/rpm) 120/4200 

 

 

 


