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Summary

Numerical modelling of non-Newtonian flows usually involves the coupling between equations of motion
characterized by an elliptic character, and the fluid constitutive equation, which defines an advection problem
linked to the fluid history. There are different numerical techniques to treat the hyperbolic advection
equations. In non-recirculating flows, Eulerian discretizations can give a convergent solution within a short
computing time. However, the existence of steady recirculating flow areas induces additional difficulties.
Actually, in these flows neither boundary conditions nor initial conditions are known. In this paper we
compares different advanced strategies (some of them recently proposed and extended here for addressing
complex flows) when they are applied to the solution of the kinetic theory description of a short fiber
suspension fluid flows.

1 Introduction

1.1 Recirculating flows of complex fluids

Understanding recirculating flows of complex fluids is of importance in many areas of poly-
mer processing such as extrusion, injection or mixing. However, in such complex flows it
is difficult to measure the detailed kinematics and stresses that develop during flow. It is
thus necessary to predict them, by making good measurements of basic fluid properties and
using them in the appropriate constitutive equations. This means taking into account the
specific properties of complex fluids. Indeed, viscosity and shear thinning, elasticity and
normal stresses, elongation and strain hardening as well as relaxation phenomena induce
several unusual phenomena, and recirculating flows are one of them.

They have been observed in many flow configurations. In the case of Newtonian and
inelastic fluids, their occurrence and evolution are mainly related to the inertial properties
of the flow. Thus, the Rayleigh-Taylor instability occurs during flow between two coaxial
cylinders [43], the external one being fixed while the internal one rotates. Due to centrifugal
forces, the fluid is pushed from the inner cylinder towards the external one. Beyond a certain
threshold, these forces cause recirculating flows in the form of rollers developing in the gap
between the two cylinders. This is the well known inertial instability of Rayleigh-Taylor.
Notice that the term instability in this case indicates that a secondary effect is superimposed
on the main flow in controlling the kinematics. In fact, the recirculating areas are stable in
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time and space. For a number of years now, many authors have studied the Rayleigh-Taylor
inertial instability. Theoretical studies have analyzed the role of elasticity and showed that
this property could stabilize flow, delaying, if not eliminating, the occurrence of the inertial
instability [33].

It is also possible to observe recirculating flows independently of inertia. In the case of
complex fluids for example, they result from properties such as viscosity, but also elastic-
ity, elongation or relaxation phenomena. Such recirculating areas have been observed for
example in flows through non-circular capillaries, typically of square or ellipsoidal section
[34] [45] [23] [21]. They have also been observed when complex fluids flow through abrupt
or shaped contractions, the fluid being pushed from a large-diameter reservoir, through
a contraction and then into a capillary of smaller diameter. The high ratio between the
capillary and reservoir diameters is defined as the contraction ratio. This flow configuration
was the subject of thorough numerical as well as experimental studies. The reasons for this
are numerous: From an academic point of view, this type of flow is of interest as an appro-
priate test problem. They also allow the elongational properties of complex fluids, which
are generally difficult to measure, to be evaluated [19] [10]. From an industrial point of
view, contraction flows are of great importance in modelling polymer processing involving
many contraction and expansion sections, such as extrusion. The occurrence, evolution,
and geometrical characteristics of the recirculating areas developing upstream of the con-
traction have a great impact in controlling the end-use properties of the material. Indeed,
the recirculating fluid undergoes a thermo-mechanical history which is different from that
of the flowing fluid. This can induce heterogeneities in the final properties of the material,
thus affecting its mechanical characteristics and degradation properties. It is thus essential
to understand and control the origin and development of such recirculating flows, the aim
being to predict and optimize the kinematics with a view to eliminating secondary flows
and regions of high stress.

If Newtonian or shear-thinning inelastic fluids are considered, it has been shown exper-
imentally and by numerical simulation [24] [8] [28] [11] that inertia is responsible for the
appearance of a recirculating area localized in the corner of the contraction.

The scenario is quite different when viscoelastic fluids are considered. The occurrence,
evolution and shape of the recirculating zone are controlled completely by the viscoelastic
properties. At low flow rates, the fluid behaves as a Newtonian fluid, with small vortices
developing due to inertia. As the flow rate increases, the shape and size of the recirculating
area are completely different from what is observed with Newtonian liquids. Two main phe-
nomena are usually observed and are a good demonstration of viscoelastic behavior vortex
enhancement the occurrence of a second recirculating zone, developing at the entrance of
the contraction, called the lip vortex. Compared to Newtonian behavior where only small
recirculating areas are observed, the two vortex areas coexist at low flow rates. As flow
rates are increased, the lip vortex grows significantly, and progressively invades the corner
vortex, leading to a single recirculating area in the upstream flow. The height of this re-
circulating area may reach several reservoir diameters, thus invading a large proportion of
the upstream flow. Thorough quantitative experimental studies, relating basic rheological
measurements to the occurrence and evolution of the recirculating area patterns [20] [37],
suggested that elasticity is responsible for vortex enhancement. Represented in terms of a
Weissenberg number, this was used successfully to explain the variation in vortex size and
in particular to correlate the growth of the recirculating area.

This situation is also encountered when flows involving short fiber suspensions are ad-
dressed. In this case the size of the vortex appearing in abrupt contractions depends on the
suspension concentration and can be accounted without introducing inertia effects [29].

Understanding recirculating flows thus appears to be of great importance in order to
optimize polymer processes as popular as extrusion or injection. Actually many rheometric
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devices involve this type of flows. The ability to predict the characteristics of the ob-
served recirculating areas is highly dependent on: accurate experimental observation made
with adequately characterized material, appropriate constitutive equations reflecting all the
complexity of the material and in particular the extensional properties of the fluid being
studied. Good numerical methods, capable of simulating the flow patterns and accurately
describing the kinematics as well as the level of stresses, are needed for this purpose.

1.2 Mechanical modelling of short fiber suspensions

Numerical modelling of non-Newtonian fluid flows usually involves the coupling between
motion equations, which leads to an elliptic problem, and the fluid constitutive equation,
which introduces an advection problem related to the fluid history.

Thus, the flow model related to a short fiber suspension is given by the the following
equations [7]:

• Equilibrium equation (neglecting mass and inertia terms):

Divσ = 0 (1)

where σ represents the stress tensor.

• Fluid incompressibility:

Divv = 0 (2)

where v is the velocity field.

• The constitutive equation that, for dilute suspensions of high aspect ratio fibers, can
be assumed as:

σ = −pI + 2µD + τ (3)

where p denotes the pressure, I the unit tensor, D the strain rate tensor (symmetric
component of the gradient of velocity tensor) and τ the anisotropic viscous compo-
nent of the stress tensor due to the presence of fibers.
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The fluid microstructure can be defined from the fiber orientation. From now on the
fibers will be considered ellipsoidal rigid particles. If ρ denotes the unit vector aligned in
the fiber axis direction, its evolution, when the fiber is immersed in a Newtonian matrix
whose kinematics is defined by Gradv, is given by the Jeffery’s equation:

dρ

dt
= Ωρ + k(Dρ− (D : (ρ⊗ ρ))ρ) (4)

where k = λ2−1
λ2+1

, being λ the fiber aspect ratio (fiber length to fiber diameter ratio), and
Ω denotes the vorticity tensor. The tensor product ⊗ of vectors a and b is defined by
(a⊗ b)ij = aibj .

Now, we can also define the orientation distribution function Ψ(ρ) given the probability
of finding fibers aligned in the direction ρ. This distribution function, that verifies the
normality condition

∫
Ψ(ρ)dρ = 1, allows the definition of different moments:

• Second order orientation tensor:

a =
∫

ρ⊗ ρΨ(ρ) dρ (5)

• Fourth order orientation tensor:

A =
∫

ρ⊗ ρ⊗ ρ⊗ ρΨ(ρ) dρ (6)

both integrals defined on the unit sphere.

Remark. In fact the distribution function Ψ depends on the physical coordinates x, the
time t and the conformation coordinates ρ, i.e. Ψ(x, t, ρ). Some times, for the sake of
simplicity in the notation, we omit its dependence on x and t.

The evolution of the orientation distribution function is governed by the Fokker-Planck
equation:

dΨ
dt

+
∂

∂ρ

(
Ψ

dρ

dt

)
=

∂

∂ρ

(
Dr

∂Ψ
∂ρ

)
(7)

where the advection field dρ
dt is given by the Jeffery’s equation (4), and dΨ

dt refers to the
material derivative, i.e.

dΨ
dt

=
∂Ψ
∂t

+ v ·GradxΨ (8)

where

GradxΨ =
∂Ψ
∂x

(9)
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Using a spatial homogenization and a statistical averaging as well as other simplifying
hypotheses, tensor τ in Eq. (3) results

τ = 2µNp(A : D) (10)

Instead of the use of the microscopic model defined by Eqs. (10), (6) and (7), macro-
scopic descriptions have been widely used because its lower computational requirements.
Thus, taking the time derivative of Eq. (5) and introducing the Jeffery’s equation (4) as
well as the Fokker-Planck equation (7) it results:

da
dt

= Ω a− a Ω + k(D a + a D− 2(A : D))− 2dDr

(
a− I

d

)
(11)

where d = 2 and d = 3 in 2D and 3D respectively.
However, the equation governing the evolution of the second order orientation tensor

uses the fourth order one, the one governing the volution of the fourth order uses the sixth
order one and so on. In conclusion, a closure relation expressing the fourth order orientation
tensor as a function of the lower order orientation tensors must be introduced, being the
most common relations the quadratic, linear, hybrid and natural [2] [22]. It is today widely
recognized the significant impact that those closure relations can introduce in the computed
solutions. Thus, a purely microscopic approach based on the solution of the Fokker-Planck
equation seems to be an appealing choice for treating short fiber suspension models.

This paper focuses on the resolution of the steady recirculating flows involving a short
fiber suspension whose description is accomplished in the kinetic theory framework from
the introduction of the Fokker-Planck (FP) equation governing the fiber orientation dis-
tribution. In our knowledge, models coupling the flow equations with a description of the
microstructure evolution based on the use of deterministic kinetic theory models, are ex-
tremely rare. In the context of polymer suspensions or entangled polymers, micro-macro
techniques (coupling the flow with the microstructure evolution) are performed by consid-
ering stochastic techniques. These techniques are based in the equivalence between the
deterministic Fokker-Planck equation and the associate Ito stochastic equation. Thus, in-
stead the resolution of the FP equation, one can determine the trajectories related to a
large number of realizations of the stochastic process, number that depends on the model
and flow considered. The main reason for preferring stochastic simulations instead the
resolution of the deterministic FP partial differential equation is that this last equation
involves the distribution function which depends on the physical coordinates, the time, and
the conformation coordinates related to the orientation. As this orientation is defined by
a unit vector, the conformation space involves only two coordinates. Thus, for each point
in the physical space and time, the orientation distribution is defined on the unit sphere.
Standard finite element discretizations fail in this situation due to the highly dimensional
character of the problem.

In this scenario, the first works concerning micro-macro simulations are related to the
CONNFESSIT stochastic method [35], [27] (see also the references therein). This approach
was considered in [42] for treating MBS (multi bead spring) models. A similar technique
was proposed in [44] in the context of MBS kinetic models, which introduces a change
of variable and uses a Monte-Carlo technique for accounting the diffusion term. In these
techniques a high number of particles are introduced in the simulation and a stochastic
technique is used for accounting the Brownian effects. A multi-scale approach using deter-
ministic particles for treating the advection and a different set of particles for accounting
diffusion effects, which leads in fact to a multi-scale approach, was considered in [26]. The
same idea was used in the case of short fibre suspensions flows in [18]. In that work, the
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discretization of the advection dominated Fokker-Planck equation governing the fibre ori-
entation, was carried out using a particle technique, where the diffusion term was modelled
from random walks. It was pointed out that the number of fibres required in this stochastic
simulation to describe the fibre distribution increases significantly with the diffusion coeffi-
cient. Thus, it was argued that for practical applications the use of the particle method in
the framework of a stochastic simulation is restricted to very slight diffusion effects. Other
deterministic particle approach, very close to that proposed in [15], was analyzed in [3]
using smooth particles, but it was noticed that the incidence of smoothing on the solution
can be significant.

Thus, when the diffusion effects can vary in a large interval, continuous approximations
using fixed or moving meshes seem to be a suitable alternative. In this case accurate
stabilizations are required for dealing with small diffusion effects. However, as just pointed
out, the Fokker-Planck equation is defined in a multidimensional space. Some attempts
for solving the Fokker-Planck equation using a fixed mesh discretization exist [30] [16].
Due to the multidimensional character of the problem, the linear systems obtained after
conventional implicit or semi-implicit space-time discretizations result to be extremely large
for a practical inversion. On the other hand, explicit discretizations, which do not require
matrix inversions, have the constraint of too small time steps.

In this paper we consider a splitting technique that allows to decouple the advection
problem defined in the physical space that is assumed corresponding to a steady recircu-
lating flow, and the advection-diffusion one involving the conformation coordinates. The
last equation is discretized using a stabilized finite element scheme, whereas two different
schemes are analyzed for solving the advection equation in the physical space, one based on
the discontinuous Galerkin method and the other one based on searching directly the steady
solution by imposing the solution periodicity along the closed streamline. In addition, to
alleviate the computing efforts, model reduction techniques (similar to the ones proposed in
[4] and [5]) will be applied and evaluated. The first reduction strategy is based on the use
of a proper orthogonal decomposition within an adaptive scheme, whereas the second one
reduces the the computing efforts by performing separated representations of the unknown
fields.

2 Kinematic solver

As this paper focuses on the driven-cavity flow problem, we assume the flow model defined
in the cavity domain Ω, being the velocity prescribed on its whole boundary Γ. Thus, the
variational formulation related to the flow kinematics (Eqs. (1) and (2)) is given by:

∫

Ω
σ : D∗ dΩ = 0 (12)

where ”:” denotes the tensor product twice contracted, and D∗ represents the strain rate
tensor related to a virtual velocity field v∗ which vanishes on Γ.

Introducing now the constitutive equation (3) it results:

∫

Ω
(−pI + 2µ(D + Np(a : D)) : D∗ dΩ = 0 (13)

The variational formulation related to the incompressibility condition results:
∫

Ω
Divv p∗ dΩ = 0 (14)
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where p∗ is a scalar weighting function.
Eqs. (13) and (14) are then discretized by using the standard Galerkin finite element

method. A P2−P1 interpolation is considered for approximating the velocity and pressure
fields, which verifies the well known LBB stability condition.

The driven-cavity problem considered in this paper defines a fully recirculating flow.
We will prove later that in these recirculating flows some particular numerical strategies
can be more accurate than standard finite elements. Those strategies are based on the
integration along the closed trajectories, which can be accurately described in 2D using the
stream function that we denote by Ξ (there exist other techniques able to compute eventual
closed streamlines in the 3D case). Thus, in the 2D case the velocity field can be written,
accounting the incompressibility, as

{
u = ∂Ξ

∂y

v = −∂Ξ
∂x

(15)

From the above expression the following elliptic problem results:

∆Ξ =
∂u

∂y
− ∂v

∂x
(16)

whose weighted residual form results
∫

Ξ∗∆Ξ dΩ =
∫

Ξ∗
(

∂u

∂y
− ∂v

∂x

)
dΩ (17)

According to the prescribed velocity on the domain boundary, one must search for the
appropriate value of the stream function, or its normal derivative, to be imposed on the
domain boundary.

Usually, in driven-cavity flows problems the component of the velocity vector normal to
the boundaries vanishes, which corresponds to a null tangential stream function derivative
on the boundary. One possibility to verify this last condition consists of taking a null value
of the stream function on the whole domain boundary, which allows to write the following
variation formulation:

−
∫

gradΞ∗ gradΞ dΩ =
∫

Ξ∗(
∂u

∂y
− ∂v

∂x
) dΩ (18)

where Ξ, Ξ∗ ∈ H1
0 , being H1

0 the usual Sobolev’s functional space.

3 Efficient solvers for advection problems defined in a steady recirculating flow

Models governing the microstructure evolution using a macroscopic description (based on
the use of the orientation tensors) or the microscopic one (based on the use of the orientation
distribution function whose evolution is governed by the Fokker-Planck equation) are all of
them defined by an advection equation in the physical coordinates.

In the present paper we use and compare different advanced solvers. The first one based
on the use of a first order discontinuous Galerkin technique in the finite element framework,
and the second one based on a particular application of the method of characteristics.

In this section we will summarize both strategies on a generic advection problem of the
generic vector field a ∈ RM , given by:

da
dt

= A(x) a + B(x) (19)
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whose steady solution is searched. In the above equation the material derivative is given
by

da
dt

=
∂a
∂t

+ (v · grad)a (20)

3.1 A first order discontinuous Galerkin technique

Taking into account the velocity field incompressibility, Eq. (19) can be written as:

∂a
∂t

+ Div(v ⊗ a) = A(x) a + B(x) (21)

Now, we consider a partition of Ω in a set of non-overlapping cells Ωe such that Ω =
∪e=Ne

e=1 Ωe. Integrating Eq. (21) in each cell, and using the divergence theorem, it results:
∫

Ωe

∂a
∂t

dΩ +
∫

Γe

a (v · n) dΓ =
∫

Ωe

(Aa + B) dΩ (22)

where n represents the unit outward vector defined on the cell boundary.
Eq. (22) is equivalent to the weighted residual Galerkin formulation when one considers

a constant approximation of both trial and test functions into each cell (being that approx-
imation discontinuous across the cell boundaries). In this case, the previous equation can
be simplified to:

∂ae

∂t
|Ωe|+

∫

Γ+
e

a (v · n) dΓ +
∫

Γ−e
a (v · n) dΓ =

∫

Ωe

(Aae + B) dΩ (23)

where Γ+
e and Γ−e are the outflow and inflow boundaries of cell Ωe respectively.

As the approximation of a is not defined on the cells boundaries, we assume that ae(x ∈
Γ+

e ) = ae and ae(x ∈ Γ−e ) = ae− , where ae− denotes the value of a in the upstream neighbor
cell with respect to Γ−e . Moreover, the flow incompressibility results in

∫

Γ+
e

v · n dΓ +
∫

Γ−e
v · n dΓ = 0 (24)

Thus, we can finally write:
∫

Γ+
e

a (v · n) dΓ = ae

∫

Γ+
e

v · n dΓ = −ae

∫

Γ−e
v · n dΓ (25)

Now, if we assume the cells boundary composed of ned edges, then it can be stated
∫

Γ−e
a (v · n) dΓ =

i=ned∑

i=1

aei

∫

Γi
e

γi
e (v · n) dΓ (26)

where aei denotes the value of a in the neighbor cell whose common edge with Ωe is Γi
e. In

order to restrict the sum to the inflow contributions we have introduced the parameter γi
e

which is defined by:

γi
e =

{
1 if v · n < 0
0 if v · n > 0 (27)

From all the above expressions, it finally results ∀Ωe:

∂ae

∂t
+

1
|Ωe|

i=ned∑

i=1

(aei − ae)
∫

Γi
e

γi
e (v · n) dΓ =

1
|Ωe|

∫

Ωe

(Aae + B) dΩ (28)
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3.2 A technique based on the method of characteristics

Now, we are considering another kind of technique well adapted to compute steady solutions
of advection problems in steady recirculating flows as encountered in the driven-cavity flow.

We consider, as before, the advection problem for a generic vectorial unknown field
(tensor equations can be rewritten in a vector form):

da
dt

= A(x(t))a + B(x(t)) (29)

In [17] we have proposed an original technique for computing the steady state of that
equation in a steady recirculating flow, that we summarize in the this section. This numer-
ical procedure is based on solving the homogeneous equation and looking for a particular
solution of the complete equation. Then, the searched solution results of imposing its pe-
riodicity along its associated closed streamline. Thus, the following three steps can be
identified.

3.2.1 Computing the general solution of the homogeneous system.

We consider that vector a has M components. We denote by ai
h the solution of the homo-

geneous system (i = 1, · · · ,M)

dai
h

dt
= A(x(t))ai

h (30)

related to the initial condition (ai
h(t = 0))j = δij , where (ai

h)j denotes the jth component
of vector ai

h and δij the Kroenecker’s delta.
For computing one of these solutions we make use of the method of characteristics,

according to the following first order backward algorithm:

• Initialization: t = 0, x(t = 0) = X, (ai
h(t = 0))j = δij ∀i

• First step: t ← t + ∆t, x ← X + v(X) ∆t, ai
h ← ai

h + ∆t(A(X)ai
h)

• While x 6= X

– t ← t + ∆t

– x ← x + v(x) ∆t

– ai
h ← ai

h + ∆t(A(x)ai
h)

Now the general solution of Eq. (30) can be written as:

ah(t) =
i=M∑

i=1

αi ai
h(t) (31)

3.2.2 Computing a particular solution of the complete system.

Now we integrate Eq. (29) from an arbitrary initial condition, as for example ap(t = 0) = 0,
using the previous algorithm, from which we obtain a particular solution of that equation
ap(t)
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3.2.3 Imposing the solution periodicity along the closed streamlines.

As the streamlines are closed, and a steady state is assumed, after a time T (that is
the period associated with the streamline related to point X that we denote by C(X)) an
imaginary fluid particle comes back to the departing point, and now the solution periodicity
implies:

a(t = 0) = ah(t = 0) + ap(t = 0)︸ ︷︷ ︸
=0

=




α1

α2
...

αM


 = a(t = T ) =

=
i=M∑

i=1

αi ai
h(t = T ) + ap(t = T ) (32)

from which the coefficients αi can be obtained and then the steady solution at point X
established. The interested reader can refers to [17] for more details.

3.3 Concluding remarks.

Remark 1. The discontinuous Galerkin technique can be applied in both the steady and
the transient cases. This discretization technique introduces some amount of numerical
diffusion (certainly inevitable) that has a significant impact in the algorithm convergence
in transient resolutions. In fact, it is easy to prove that in absence of diffusion the steady
solution cannot be reached from an arbitrary initial condition [32]. However, due to the
numerical diffusion introduced by the discretization scheme the discontinuous Galerkin
scheme leads to a steady solution (the long time solution) even in absence of real diffusion
effects.

Remark 2. The integration by the method of characteristics has several advantages: (i)
the order of the method can be improved by using high order Runge-Kutta schemes for
example; (ii) the time step considered (which induces a characteristic length l with l =
∆t×maxx∈C(X)(v(x)) does not depend on the size of the mesh considered for the resolution
of the flow kinematics. The integration by characteristics could be also applied for solving
transient advection problems, that now, if we start from an arbitrary initial condition no
steady long time solution is found, in a fully agreement with the theoretical analysis.

4 Solving the kinetic theory description of a short fiber suspension

The kinetic theory description of a short fiber suspension is given by the Fokker-Planck
equation (7), that for a 2D orientation distribution (here considered for the sake of simplic-
ity) can be written using the angular coordinate, as

dΨ
dt

+
∂

∂ϕ

(
Ψ(ϕ)

dϕ

dt

)
−Dr

∂2Ψ
∂ϕ2

= 0 (33)

or

dΨ
dt

+ E0Ψ + E1
∂Ψ
∂ϕ

+ E2
∂2Ψ
∂ϕ2

= 0 (34)
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whose variational formulation in the conformation space results
∫ 2π

0

dΨ
dt

Ψ∗dϕ +
∫ 2π

0
E0ΨΨ∗dϕ +

∫ 2π

0
E1

∂Ψ
∂ϕ

Ψ∗dϕ−
∫ 2π

0
E2

∂Ψ
∂ϕ

∂Ψ∗

∂ϕ
dϕ = 0 (35)

subjected to the periodicity conditions Ψ(ϕ = 0) = Ψ(ϕ = 2π).
As the general form of the Fokker-Planck equation involves an advection term in the

conformation coordinates we will consider a stabilized SUPG finite element approximation
of the advection-diffusion differential operator.

After discretizing the conformation space, the following system of ordinary differential
equations is obtained:

K1Ψ̇ + K2Ψ = 0 (36)

from which it finally results:

Ψ̇ + K−1
1 K2Ψ = 0 (37)

Now, for integrating in the physical space (driven-cavity domain) both strategies pro-
posed in the previous section could be applied, as described in the next paragraphs.

Remark 3. If we assume a uniform mesh in the angular coordinate defined by the nodes ϕi,
i = 1, · · · , Nc, then the i-component of Ψ denotes Ψ(ϕ = ϕi).

4.1 Discontinuous Galerkin approximation.

Using the notation previously introduced, the fully discrete form of Eq. (37) results:

∂Ψe

∂t
+

1
|Ωe|

i=ned∑

i=1

(Ψei −Ψe)
∫

Γi
e

γi (v · n) dΓ +
1
|Ωe|

(∫

Ωe

K−1
1 K2 dΩ

)
Ψe = 0(38)

where the fact that the orientation distribution function is constant into each element has
been taken into account.

4.2 Integration by characteristics.

In this case the integration along C(X) can be expressed as:

Ψ(tn+1) = Ψ(tn) + ∆tK−1
1 K2Ψ(tn) (39)

or

Ψ(tn+1) =
(
I + ∆tK−1

1 K2

)
︸ ︷︷ ︸

M(n,n+1)

Ψ(tn) (40)

and repeating the same reasoning we can finally write:

Ψ(tn+1) =
(
M(0,1) · · · · ·M(n,n+1)

)
Ψ(t0) = M(0,n+1)Ψ(t0) (41)

Now, applying the periodicity constraint Ψ(t = T ) = Ψ(t = 0) and assuming T = m ∆t
it results:

M0,n+1 Ψ0 = Ψ0 ⇒
(
M(0,n+1) − I

)
Ψ0 = 0 (42)

that can be solved with the normality condition
∫ 2π
0 Ψ(ϕ)dϕ = 1 for obtaining the steady

solution Ψ0 at point X.
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5 Numerical tests

We consider in this section some simple flows whose associated Fokker-Planck solution can
be obtained exactly allowing to conclude about the accuracy of the discretization techniques
just proposed.

For this purpose we consider a simple shear flow as well as a simple shear recirculating
flow.

5.1 Simple shear flow

In this first example the flow kinematics is imposed and it remains uncoupled with the
microstructure evolution:

v =
(

Gy
0

)
(43)

In this particular flow the steady solution must be independent on the physical coordi-
nates, and consequently the Fokker-Planck equation reduces to:

∂

∂ϕ

(
Ψ(ϕ)

dϕ

dt

)
−Dr

∂2Ψ
∂ϕ2

= 0 (44)

We can consider two situations according to the value of the diffusion coefficient:

• When diffusion vanishes (Dr = 0):

∂

∂ϕ

(
Ψ(ϕ)

dϕ

dt

)
= 0 → Ψ(ϕ)

dϕ

dt
= A (45)

where dϕ
dt is given by the Jeffery’s equation:

ϕ̇ =
dϕ

dt
=

G

2
(−1 + k cos 2ϕ) (46)

from which it directly results:

Ψ(ϕ) =
A

G/2(−1 + k cos 2ϕ)
(47)

where the constant of integration is computed from the normality condition:

∫ 2π

0
Ψ(ϕ)dϕ = 1 (48)

resulting finally

Ψ(ϕ) =
√

1− k2

2π(1− k cos 2ϕ)
(49)
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• For a non-zero diffusion coefficient the solution of Eq. (44) results:

Ψ(ϕ) =
ez(ϕ)

F1

(∫ ϕ

0
e−z(x)dx + F0

)
(50)

where

z(x) =
∫ x

0

ϕ̇

Dr
dϕ =

G(k sin(2x)− 2x)
4Dr

(51)

F0 =
ez(π)

1− ez(π)

∫ π

0
e−z(x)dx (52)

and

F1 =
∫ 2π

0
ez(ϕ)

(∫ ϕ

0
e−z(x)dx + F0

)
dϕ (53)

For applying the technique based on the imposition of the periodicity condition in the
present problem, that does not involve a recirculating flow, we use the fact that the steady
orientation distribution in a simple shear flow does not evolve in space. Thus, one can apply
that technique by imposing that the solution at point X must be identical to the one found
in any point x located downstream with respect to X (x and X both located on the same
streamline). On the other hand, for the application of the discontinuous Galerkin strategy
we consider that the solution evolves in time but not in the physical space.

Figure 1 compares the solution obtained using both techniques for a unit shear rate, G =
1, and fibers characterized by the parameter k = 0.8: (i) the one based on the discontinuous
Galerkin approximation and (ii) the one related to the integration by characteristics, both
with respect to the exact solution. We can notice that both techniques are very accurate
and that there are not significant differences between them.

5.2 Recirculating shear flow

In this section we consider a bit more complex shear flow which recirculates. The kinematics
is now defined by:

v =
(

u
v

)
=

( −y
√

x2 + y2

x
√

x2 + y2

)
(54)

being the fibers characterized by the parameter k = 0.8. The velocity field is assumed
uncoupled with the orientation distribution in order to derive an exact solution that is then
used to conclude about the performance of both discretization techniques. As previously,
we consider two cases:

• Dr = 0. It is easy to prove that the steady solution verifies dΨ
dt = ∂Ψ

∂ϕ ω, being ω

the rotation velocity that for this flow results ω =
√

x2 + y2, being constant on each
streamline. Thus, the solution of the resulting Fokker-Planck equation turn out:

∂

∂ϕ
((ϕ̇− ω)Ψ) = 0 ⇒ Ψ(ϕ) =

A

ϕ̇− ω
(55)

where the integration constant A is determined again from the normality condition.
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• Dr 6= 0. Now, the Fokker-Planck equation results

∂

∂ϕ
((ϕ̇− ω)Ψ)−Dr

∂2Ψ
∂ϕ2

= 0 (56)

which leads to
(ϕ̇− ω) Ψ−Dr

∂Ψ
∂ϕ

= A

where A is the integration constant.

Eq. (56) is very close to Eq. (44), and then its solution can be written by considering
ϕ̇− ω instead ϕ̇ in the solution previously addressed:





Ψ(ϕ) = ez(ϕ)

F1

(∫ ϕ
0 e−z(x)dx + F0

)

F0 = ez(π)

1−ez(π)

∫ π
0 e−z(x)dx

F1 =
∫ 2π
0 ez(ϕ)

(∫ ϕ
0 e−z(x)dx + F0

)
dϕ

(57)

where

z(x) =
∫ x

0

ϕ̇− ω

Dr
dϕ (58)

In order to use the discontinuous Galerkin strategy a mesh was built in the circular
domain (see figure 2). As the velocity field is tangent to the domain boundary, there are
not fluxes of the orientation distribution across the element edges located on the domain
boundary, and in consequence we don’t need to prescribe any boundary condition (in ad-
vection problems boundary conditions can be only prescribed on the inflow boundary). We
have selected three elements (identified in figure 2) where the solutions computed by using
the different numerical strategies are compared.

The comparison of both techniques in the limit when Dr = 0 is depicted in figure 2,
where we can notice the extremely superior accuracy obtained when the integration by
characteristics is performed. Moreover, as noticed in some of our former works (see [14] for
instance) the quality of the stabilized finite element solution is degraded as we approach
the center of rotation whose singularity diffuses towards its neighborhood along the normal
direction to the streamlines. To overcome this problem very fine meshes must be considered
in this region to capture the high gradients of the velocity (in particular its direction) and
the orientation distribution fields. On the contrary the integration by characteristics is not
affected but the presence of the singularity, but when it will be coupled with a finite element
kinematics solver, finer meshes will be required in the center of rotation neighborhood to
guarantee the solution accuracy.

5.3 The driven cavity flow

In this section the driven cavity flow problem is simulated by using the most accurate in-
tegration procedure of both just analyzed. It consists of an integration by characteristics
(in the physical space) coupled with a standard SUPG finite element discretization in the
conformation space. However, despite the right scheme accuracy, the proposed algorithm
requires significant computing efforts. By this reason, we propose in this section an effi-
cient model reduction, that has been successfully applied in some of our former works for
simulating complex fluid flow problems [4] [41].
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The cavity domain consists of a unit length square. The flow kinematics is computed
in the mesh depicted in figure 4 assuming a Newtonian solvent fluid with unit viscosity.
The fluid velocity is prescribed on the cavity boundary, vanishing on the lower and lateral
walls, and taking a parabolic profile on the upper wall (avoiding velocity discontinuities at
the upper corners):

v(x, y = 1) =
(

16x2(1− x)2Vmax

0

)
(59)

where Vmax was set to Vmax = 10Dr.
Figure 4 depicts the computed velocity field as well as the reconstructed stream function

Ξ(x). The orientation field is depicted in figure 5. In that figure the ellipsoids axes are
related to the second order orientation tensor eigenvalues, that represent the probability of
finding the fiber aligned on the direction of the associated eigenvector.

6 Advanced strategies: techniques based on model reduction

In the previous section the driven cavity flow problem was simulated by using an integration
by characteristics (in the physical space) coupled with a standard SUPG finite element
discretization in the conformation space. However, despite the right scheme accuracy, the
proposed algorithm requires significant computing efforts. By this reason, we propose in
this section some new advanced model reduction strategies, that were successfully applied
in some of our former works for simulating complex fluid flow problems.

The first strategy consists in computing the solution along one or several flow stream-
lines, and then extract the most significant characteristics of the solution in the conforma-
tion space by applying the proper orthogonal decomposition. This technique was success-
fully applied in [4] [41] and throughout the present section will be summarized and applied
for solving the computing the fluid microstructure in the flow cavity problem.

The second strategy that we are analyzing lies in the application of a separated repre-
sentation of the trial and test fields involved in the variational formulation related to the
suspension microstructural state. Separated representations and tensor product approxima-
tion basis were successfully used in some of our former works (see [5] [6] and the references
therein) for solving different kinetic theory models arising in complex fluids modelling.

In the next paragraphs we are summarizing the basic ideas related to the proper orthog-
onal decomposition that will be then applied for solving the kinetic theory model related
to the microstructural state of the fiber suspension in a driven cavity flow.

6.1 The proper orthogonal decomposition revisited

We assume that the evolution of a certain field T (x, t) is known. For the sake of simplicity
we assume in what follows that this field is scalar, but all the developments can be extended
to general tensorial fields. In practical applications, this field is defined at the nodes of a
spatial mesh xi and for some times tm = m×∆t, with i ∈ [1, · · · , N ] and m ∈ [0, · · ·P ]. We
introduce the notation T (xi, t

m) = Tm(xi) ≡ Tm
i (tm). Tm defines the vector containing the

nodal degrees of freedom at time tm. The main idea of the proper orthogonal decomposition
is to obtain the most typical or characteristic structure φ(x) among these Tm(x), ∀m. The
maximization of:

α =

∑m=P
m=1

[ ∑i=N
i=1 φ(xi)Tm(xi)

]2

∑i=N
i=1 (φ(xi))2

(60)
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leads to:

m=P∑

m=1

[( i=N∑

i=1

φ̃(xi)Tm(xi)
)( j=N∑

j=1

φ(xj)Tm(xj)
)]

= α
i=N∑

i=1

φ̃(xi)φ(xi); ∀φ̃ (61)

which can be rewritten in the form

i=N∑

i=1

{
j=N∑

j=1

[ m=P∑

m=1

Tm(xi)Tm(xj)φ(xj)
]
φ̃(xi)

}
= α

i=N∑

i=1

φ̃(xi)φ(xi); ∀φ̃ (62)

Defining the vector φ such that its i-component is φ(xi), Eq. (62) results in the eigen-
value problem (63), whose eigenvectors related to the highest eigenvalues define the char-
acteristic structure of Tm(x),

φ̃
T
c φ = αφ̃

T
φ; ∀φ̃ ⇒ c φ = αφ (63)

where the two points correlation matrix is given by

cij =
m=M∑

m=1

Tm(xi)Tm(xj) ⇔ c =
m=M∑

m=1

Tm(Tm)T (64)

which is symmetric and positive definite. If we define the matrix Q containing the discrete
field history:

Q =




T 1
1 T 2

1 · · · TP
1

T 1
2 T 2

2 · · · TP
2

...
...

. . .
...

T 1
N T 2

N · · · TP
N


 (65)

then it is easy to verify that the matrix c in Eq. (63) results

c = Q QT (66)

6.1.1 A posteriori reduced modelling.

To define a reduced model we start solving the eigenvalue problem defined by Eq. (63)
and then selecting the eigenfunctions φk associated with the eigenvalues belonging to the
interval defined by the highest eigenvalue and that value divided by a large enough value
(108 in our simulations). In practice n is much lower than N . Now, we could try to use
these n eigenfunctions φk for approximating the solution Tm(x), ∀m. For this purpose we
need to define the matrix B = [φ1 · · ·φn]

B =




φ1(x1) φ2(x1) · · · φn(x1)
φ1(x2) φ2(x2) · · · φn(x2)

...
...

. . .
...

φ1(xN ) φ2(xN ) · · · φn(xN )


 (67)

Now, if we consider the linear system of equations resulting from the semi-implicit
discretization of a generic parabolic partial differential equation:

Gm Tm+1 = Hm (68)
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expressing

Tm+1 =
i=n∑

i=1

ζm+1
i φi = B ζm+1 (69)

equation (68) results

Gm Tm+1 = Hm ⇒ Gm B ζm+1 = Hm (70)

and by multiplying both terms by BT we obtain

BTGm B ζm+1 = BTHm (71)

where the size of BTGm B is n × n, instead N × N . When n ¿ N , as is the case in
numerous physical models, the solution of Eq. (71) is preferred because its reduced size.

Remark 4. Equation (71) can be also deduced by introducing the approximation (69)
into the Galerkin variational form related to the partial differential equation. If trial and
test functions in the vartiational formulation of a parabolic partial differential equation are
approximated using the form (69) then Eq. (71) is easily deduced.

Remark 5. An alternative technique to reduce the size of the eigenvalue problem lies in
the application of the snapshot proper orthogonal decomposition. This technique is based
on finding the significant modes from the application of the POD, but assuming that those
modes can be written as a linear combination of the M snapshots that were used to define
the decomposition. The main advantage of this strategy is that theses modes result from
the eigenproblem defined by

(
QTQ

)
Υ = λ Υ (72)

whose size is P × P instead of N × N . Only the eigenvectors related to large enough
eigenvalues are retained. From these eigenvectors the reduced approximation functions are
computed using the fact that these functions are linear combination of the snapshots, i.e.:

φi = Q Υi (73)

Remark 6. In the previous analysis the reduced basis was built from the computed unknown
field evolution that was carried out solving the discrete evolution problem. Thus, one
could ask about the interest of a such approach. There are two kind of approaches widely
considered. The first approach consists in solving the non-reduced model in a short time
interval, allowing the extraction of the characteristic functions and then the definition of
the reduced approximation basis that is then used to perform the solution of the reduced
evolution model in larger time intervals with the associated computing time savings. The
other approach consists in solving the non-reduced model in the whole time interval, whose
solution allows defining the reduced approximation basis that then could be used for solving
”similar” models, as the ones that involve for example slight variations in some material
parameters or in the boundary conditions. Some recent advances in such approaches can
be found in [36], [31], [39], [40], [41] [9], [13], [25] and the references therein.
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6.1.2 Towards and adaptive strategy: Enriching the approximation basis.

Obviously, accurate simulations require an error evaluation as well as the possibility of
adapting the approximation basis by introducing new functions able to describe the solution
features. Ryckelynck proposed in [39] an adaptive procedure, able to construct or enrich
the reduced approximation basis. For this purpose, he proposed to enrich the reduced
approximation basis by adding some Krylov subspaces generated by the equation residual.
Despite the fact that this enrichment tends to increases the number of approximation
function, when it is combined with a POD decomposition that continuously reduces this
number, the size of the problems is quickly stabilized. This strategy, which was successfully
used in [4] as well as in [41], is summarized in the present section.

We assume the solution accurately described in the interval ]0, ts] by using the reduced
basis B. Now, the solution evolution is performed in the time interval ]ts, ts+1] solving Eq.
(71) making use of the reduced approximation basis defined by matrix B:

ζm+1 =
(
BTGm B

)−1
BTHm (74)

When time ts+1 is reached, a control step is performed in order to evaluate the accuracy
of the solution computed using the reduced basis. The control step is performed only at
the end of each time interval.

We assume that ts+1− ts = M ×∆t and consequently the residual at ts+1, RM , can be
computed from

RM = GM−1 B ζM −HM−1 (75)

If the norm of the residual is small enough ‖RM‖ < ε ‖B ζM‖ (being ε a small enough
parameter) the computed solution can be assumed as good, and the time integration goes
on in ]ts+1, ts+2] using Eq. (74) without changing the reduced approximation basis.

On the contrary, if ‖RM‖ ≥ ε ‖B ζM‖, the approximation must be improved. For
this purpose, we propose to enrich the reduced approximation basis by introducing the just
computed residual (or some Krylov’s subspaces generated by the residual, as proposed in
[39]):

B ← [B RM ] (76)

and now, the evolution is recomputed in the ]ts, ts+1] using Eq. (74) with the just updated
reduced basis B. When the convergence criterion is satisfied (i.e. ‖RM‖ < ε ‖B ζM‖)
we apply a POD on the entire past history ]0, ts+1] for defining the reduced basis able to
represent all the past evolution of the unknown field, which results in an updated B that
can be considered as the optimal reduced basis to describe the evolution of the unknown
field in ]0, ts+1]. Using the just updated reduced basis B the time evolution given by Eq.
(74) is performed in ]ts+1, ts+2] and the solution accuracy is checked at t = ts+2.

If a basis enrichment was needed at the end of the previous time interval, at t = ts+1,
then the length of the present time interval is reduced according to ts+2−ts+1 = (ts+1−ts)/2,
and if not enrichment was needed, then the time interval length is increased according to
ts+2 − ts+1 = 2 (ts+1 − ts) (see [4] for more details on the time interval length adaptation).

The enrichment tends to increase the size of the reduced basis, but the POD reduces
its size. The combination of both procedures allows to stabilize the size of the model as we
noticed in some of our former works [4].
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6.2 Building-up the reduced kinetic theory model of the fiber suspension

We consider an arbitrary point in the flow domain, at which an isotropic fiber distribution
is assumed. Now, the evolution of the orientation distribution is computed along the asso-
ciated streamline using the ”a posteriori” model reduction algorithm just proposed applied
on Eq. (33), and the solution at different times ti are stoked in matrix Σ, whose i-th column
contains the orientation distribution at each node used to discretize the conformation space
at time ti.

Now, we can extract the most significant information related to the orientation distri-
bution evolution by applying a proper orthogonal decomposition. For this purpose we solve
the eigenproblem defined by

(ΣΣT ) V = λ V (77)

which leads to Nc couples Vj , λj (Nc being the number of nodes used in the discretization of
the conformation space). Now, only the must significant eigenvectors are retained V1 · · ·Vr,
with r << Nc according to the criterion:

λi

maxλi
> 10−4 (78)

Then, a good approximation basis can be built from these significant eigenvectors:

Ψ = Ψ0 +
n∑

i=1

Viξi (79)

which can be written in a matrix compact form as:

Ψ = Bξ (80)

that is inserted into the discrete form of the Fokker-Planck equation

BTK1B︸ ︷︷ ︸
K̃1

ξ̇ + BTK2B︸ ︷︷ ︸
K̃2

ξ = 0 (81)

that defines a linear system of size r instead Nc.

6.2.1 Results

To conclude about the accuracy of the just proposed reduced modelling we depict in figure
6 the error associated with the second order orientation tensor, defined in Eq. (5), which
is computed at each element of the flow domain mesh by:

Ee = Tr((ae − ae
red)

2) (82)

where ae is the solution computed at element Ωe using the global approximation basis, and
ae

red the one computed from the reduced model than only contains around 10 approximation
functions.

We can also define the mean error from:

E =
∑Ne

e=1 Ee

Ne
(83)
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that results for the error depicted in figure 6: E = 1.3× 10−5.
We can notice the excellent accuracy obtained using the reduced modelling, despite the

significant reduction of the CPU time. The problem solution using model reduction is 600
times faster.

The solution can be improved by considering different flow streamlines (or the same with
different initial conditions), which lead to different reduced bases: V(j)

i , i ≤ r(j), where (j)
refers to the different computed reduced bases. Now, from these bases we can extract a
global one V1 · · ·VR by adding to the first one V1 · · ·V(1)

r only the vectors contained in
the other reduced bases whose projection on the previous updated basis is lower than a
certain tolerance (to maximize their linear independence).

Thus, when in the flow just analyzed another trajectory closer to the flow domain walls
is considered, the solution is improved as we can notice in figure 7, being the mean error in
this case E = 8× 10−8 (using 15 approximation functions in the reduced basis).

6.3 Empirical natural closure relation

As was indicated in the first section, the description of the microstructure state by means of
the moments of the orientation distribution function (orientation tensors) is suitable from a
computational point of view because the important CPU times savings that its use implies,
but this approach requires the introduction of a closure relation. Today, it is widely accepted
that the use of such a closure relation can have a significant, and sometimes unpredictable,
impact on the computed solution. Numerous closure relations have been proposed, but
there is not a universal or exact relation to be used in any flow conditions.

In this section we are defining an empirical and local natural closure relation that can
be adapted locally to each flow conditions. This procedure was deeply described in [38] and
its main ideas are revisited in the present section.

6.3.1 Fundamentals

Any closure approximation of the fourth order orientation tensor can be written using the
Caley-Hamilton theorem as well as partial normalization and symmetry [22] in the general
form:





A =
∑i=6

i=1 Biβi in 3D

A =
∑i=3

i=1 Biβi in 2D
(84)

where the different fourth order tensors involved in the former expression write:




B1 = S(I⊗ I)
B2 = S(I⊗ a)
B3 = S(a⊗ a)
B4 = S(I⊗ a2)
B5 = S(a⊗ a2)
B6 = S(a2 ⊗ a2)

(85)

where S( ) refers to the symmetric component.
Now, taking into account the normalization conditions, we obtain the relations that the

coefficients βi verify in the three-dimensional case:



10 1 0
0 7 2
0 0 4







β1

β2

β3


 =




1− 2D 4P 4P
0 1− 6D 4(P −D)
7 5 2(3− 4D)







β4

β5

β6


 +




0
6
0


 (86)
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and in two-dimensional:
(

8 1
0 1

) (
β1

β2

)
=

(
4P
−1

)
β3 +

(
0
1

)
(87)

where P = det(a) and D = 1
2

(
1− Tr(a2)

)
.

In the general case, we can write Eqs. (86) and (87) in the matrix form:

fβu = gβd + h (88)

Thus, the matrix form of Eq. (84) becomes

A = Wβ = W
(

βu
βd

)
= W

(
f−1g

I

)
βd + W

(
f−1h

0

)
= W̃βd + W̆ (89)

where now A denotes de vector form of the fourth order orientation tensor.
Now, considering the former equation for the n couples of tensor (Ai,ai) extracted

via the Karhunen-Loève decomposition from the most significant distribution functions
(obtained by solving the Fokker-Planck equation along some streamlines), one could be
interested in determining the optimal value of βd, as originally considered in [22] to derive
the natural closure relation. However, in [22], authors considered only the orientation
distribution related to an initial isotropic distribution of infinite slender fibers, without
diffusion effects, immersed in a simple shear flow.

6.3.2 Computing the local natural closure relation

For computing the unknown beta coefficients we proceed by using a moving least square
technique. For this purpose we define the approximation error

J(a, βd) =
n∑

i=1

δε ( ‖ a− ai ‖ ) γi

[
Ai − W̃iβd − W̆i

]2
(90)

where the weighting coefficient γi scales with the value of the eigenvalue related to the
eigenfunction that served for computing tensors Ai and ai. The window function δε( )
is introduced for increasing the weight of closer couples in the error expression. In our
simulations we have considered the following window function:

δε(d) =
δ
(

d
ε

)

ε
with δ

(
d

ε

)
=

e−( d
ε )

2

√
π

(91)

In the case of ε →∞ we can write δε = 1√
π
. Thus, J becomes independent of a and the

expression (90) reduces to the usual global least squares. In this case the vector βd does
not require to be updated, which results in significant computing time savings.

In the general case, the minimization of the functional (90) leads to:

∂J

∂βd

= 0 = 2
n∑

i=1

δε ( ‖ a− ai ‖ ) γiW̃T
i

[
Ai − W̃iβd − W̆i

]
(92)

which results in:
[

n∑

i=1

δε ( ‖ a− ai ‖ ) γiW̃T
i W̃i

]
βd =

n∑

i=1

δε ( ‖ a− ai ‖ ) γiW̃T
i

[
Ai − W̆i

]
(93)
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or

βd =

[
n∑

i=1

δε ( ‖ a− ai ‖ ) γiW̃T
i W̃i

]−1 n∑

i=1

δε ( ‖ a− ai ‖ ) γiW̃T
i

[
Ai − W̆i

]
(94)

that allows computing for each value of a the coefficients of the empirical closure relation
βd, from which one could compute βu from Eq. (88). Both, βd and βu, define completely
the closure relation:

A = W(a)β(a) (95)

The use of the just described procedure only requires the extraction of the couples
(Ai,ai)

6.3.3 Extracting the characteristic structure of the orientation distribution

For extracting the characteristic structure of the orientation distribution one could solve
the Fokker-Planck equation (that does not involve any closure relation) by using one of the
techniques previously described, along some flow streamlines.

Thus, one could consider different snapshots of the orientation distribution (stored in
the matrix Σ), from which the characteristic structure of the solution evolution could be
determined by direct application of the Karhunen-Loève decomposition.

Now, we could define the couples (Ai,ai) using three different strategies:

1. The simplest alternative lies in applying the Karhunen-Loève decomposition to the
solution history stored in Σ. Obviously, the resulting eigenfunctions do not have
a fully physical meaning, and therefore they are not strictly positives. Thus, if we
compute the second and fourth order moments (Ai,ai) associated with the model
eigenfunctions, then these tensors have unusual properties (e.g. ai do not have a unit
trace, ...). However, one could forget these ”conceptual difficulties” and apply the
procedure described in the previous section to the couples (Ai,ai).

2. Other possibility to avoid these modes without a full physical meaning consists of as-
suming that the orientation distribution can be written everywhere on the considered
streamline as a linear combination of some orientation distributions (snapshots), for
example, those were used for applying the Karhunen-Loève decomposition. In order
to avoid the consideration of two distributions too close, one could start with the ini-
tial distribution, adding a new distribution to the reduced approximation basis only
when it is far enough from all the functions defining the reduced approximation basis.
The advantage of this approach is that all the modes used for approximating the ori-
entation distribution evolutions are real physical distributions and consequently the
associated second order orientation tensors are perfectly defined from all points of
view.

3. Finally, one could consider a third possibility related to the snapshot Karhunen-
Loève decomposition. This technique is based on finding the significant modes from
the application of the Karhunen-Loève decomposition, but assuming that those modes
can be written as a linear combination of the Nsnap snapshots that were used to define
the decomposition. The main advantage of this strategy derives from the fact that it
is easy to prove that theses modes result from the eigenproblem defined by

(
ΣTΣ

)
Υ = λ̃Υ (96)
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whose size is Nsnap×Nsnap instead of Nc×Nc (Nc being the number of degrees of free-
dom used to define the approximation in the configuration space – the one related to
the orientation –), and where only the eigenvectors Υi related to large enough eigen-
values λ̃i are retained. From those eigenvectors the reduced approximation modes are
computed using the fact that those modes are linear combination of the snapshots,
i.e.:

Vi = ΣΥi (97)

6.3.4 Numerical tests

In this section we are addressing two rheometric simple flows as well as the complex driven
cavity flow problem.

• Simple shear flow.

Firstly, we consider the 2D flow defined by the velocity field vT = (γ̇y, 0) with γ̇ = 1.
The fiber aspect ratio was adjusted to have k = 0.8, being the diffusion coefficient
Dr = 0.1.

The 2D orientation distribution is computed using a stabilized SUPG finite elements
discretization in the conformation space, on the mesh associated with the conforma-
tion space that consists of 200 nodes uniformly distributed in [0, 2π[.

When the Fokker-Plank equation is integrated along a trajectory from the isotropic
initial state until reaching the steady state characterized by a small enough variation
between two consecutive time steps, that is:

‖ Ψ(tn+1)−Ψ(tn) ‖≤ 10−6 ‖ Ψ(t1)−Ψ(t0) ‖ (98)

The three procedures described in the previous sections are applied to compute the
characteristic structure of the solution (orientation distribution) evolution, that will
be then used to compute the couples (Ai,ai). The functions defining the reduced ap-
proximation basis obtained by applying the three procedures are depicted in Figs. 8, 9
and 10 respectively. We can notice that only 5 functions are needed for approximating
accurately the evolution of Ψ.

In order to compare these different strategies, we have computed the reference second
order orientation tensor from the resolution of the Fokker-Planck equation, and then
the different orientation tensors using the closures proposed in the previous section.
The reference and approximated second order orientation tensors were compared at
different times, for different values of the diffusion coefficients, using the following
error measure:

E = ‖ aref − aappr ‖ (99)

The table that follows groups the different computed errors at the end of the evolution
process. We can notice that when the diffusion coefficient is small enough the standard
natural closure relation works perfectly because we are close to the hypothesis under
which it was derived. However, when the diffusion coefficient is increased, the solution
accuracy is degraded. On the other hand, the adaptive natural closure that we have
defined works perfectly for any diffusion coefficient, except for the too small values
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that induce numerical difficulties in the finite element discretization of the Fokker-
Planck equation in the conformation space. We must mention that due to the fact
that the Karhunen-Loève and the Snapshot Karhunen-Loève natural closures are built
from modes (approximation functions) that have not a full physical meaning we have
preferred using a global least square technique. Moreover, the global least squares
fitting can be applied without a significant impact on the solution accuracy and with
a considerable computing time reduction.

Diffusion Natural closure Karhunen-Loève Snapshot Snapshot-KL
natural closure natural closure natural closure

1 2.4 10−4 2.3 10−5 2.6 10−5 2.9 10−4

0.1 0.0139 0.0095 0.0091 0.0355
0.01 0.0046 0.0196 0.0113 0.0471

Now, we analyze the effect of moving least square by considering different values of ε
for Dr = 0.1, using the snapshot natural closure. The table that follows summarize
the results.

ε = ∞ ε = 1 ε = 0.3 ε = 0.1 ε = 0.05 ε = 0.03 ε = 0.01
0.091 0.091 0.091 0.093 0.096 0.097 0.097

There is no significative differences between the global and local (moving) least
squares. Because the global least squares is suitable from the computational point of
view (as was indicated above) in that follows we will consider ε = ∞.

• Extensional flow.
We consider a 2D extensional flow whose kinematics is defined by

gradv =
(

ε̇ 0
0 −ε̇

)
(100)

being the elongation rate ε̇ = 1. The fiber suspension is characterized by fibers whose
shape factor leads to k = 0.8. The orientation distribution (assumed 2D) is discretized
using the SUPG finite element method on the mesh associated with the conformation
space that consists of 200 nodes uniformly distributed in [0, 2π[.
Figure 11 depicts the time evolution of the error defined in Eq. (99) for Dr = 0.01
and Dr = 0.1 where only the snapshot natural closure is compared with the standard
natural one. We can notice the superior accuracy of the empirical snapshot natural
closure for both diffusion coefficients.
The table that follows groups the errors, computed at the end of the time simulation,
computed by using the different natural closure relations. Again, the best results are
obtained by using the empirical snapshot natural closure.

Diffusion Natural closure Karhunen-Loève Snapshot Snapshot-KL
natural closure natural closure natural closure

1 2.1 10−3 2 10−4 1.3 10−4 2.5 10−3

0.1 0.0582 0.0439 0.0055 0.6719
0.01 0.0086 0.0948 0.00065 2.84
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• The driven cavity flow problem.
Finally, we consider the complex flow generated in a driven cavity that involves a
short fiber suspension characterized by the same material parameters that in the pre-
vious tests. The velocity is prescribed on the domain boundary according to: v(x =
0, y) = 0, v(x = 1, y) = 0, v(x, y = 0) = 0 and v(x, y = 1) = (16vmaxx2(1 − x)2, 0).
The velocity field is then solved by assuming a Newtonian behavior and by applying
a standard mixed finite element formulation where the velocity and pressure approx-
imations verify the LBB stability condition. The Fokker-Planck equation governing
the evolution of the fiber orientation distribution function is then solved along some
closed streamlines, where the periodicity condition of that distribution function was
imposed as described in Ammar and Chinesta [3]. From the computed orientation
distribution function, the characteristic modes are extracted by using the technique
previously described based on the application of the Karhunen-Loève decomposition,
allowing to fit the empirical snapshot natural closure strategy previously introduced.
Now, the evolution equation associated with the second order orientation tensor is
solved by assuming different closure relations: linear, quadratic, hybrid, natural and
the empirical natural one.
If the Fokker-Planck equation is solved in the whole domain considering a fine enough
mesh, the fiber distribution function can be computed everywhere without address-
ing any closure relation. Thus, the second order orientation tensor related to the
just computed distribution function can be used as reference solution for comparison
purposes.
The error between the computed second order orientation tensor (computed by using
the most usual closure relations) and the reference solution coming from the solution
of the Fokker-Planck equation is reported in the following table, where we can notice
that the empirical snapshot natural closure remains again superior.

Diffusion Linear Quadratic Hybrid Natural Snapshot
1 0.0031 0.0704 0.0062 0.0019 0.0008

0.1 0.1992 0.1516 0.08 0.0353 0.0289
0.01 1.1286 0.1452 0.1048 0.1216 0.1126

7 Advanced strategies: techniques based on separated representations

In general, models arising from the kinetic theory descriptions here defined in moderate or
even highly multidimensional spaces that include the physical space, time and the confor-
mation coordinates whose number depends on the level of richness of the physical model.
Thus, the dimension of models ranges from 6D for the simplest kinetic theory models de-
scribing for example the fiber orientation to thousands or millions of dimensions for those
arising from the kinetic theory of systems involving macromolecules or the ones coming
from quantum chemistry in which the dimension of the space in which the wavefunction is
defined scales linearly with the number of particles involved in the system.

The solution of models like the one just described needs for new strategies, because the
standard ones exhibit curse of dimensionality. Some strategies have been recently proposed
for solving models defined in multi-dimensional spaces. The sparse grid techniques [12] are
one of the most popular, but separated representations were also used for solving the models
encountered in quantum mechanics (Hartree-Fock and post-Hartree-Fock techniques).

The sparse grid are restricted (at least in our knowledge) for treating models involving
up to twenty dimensions [1]. On the other hand, separated representations like the one
considered in the multi-configuration-self-consistent-fields (MCSCF), fix a priori the number
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of products (anti-symmetrized) and also assumes that those products are constructed by
combining a certain number of one-dimensional functions.

Recently we proposed a new strategy able to solve highly multi-dimensional models
circumventing the curse of dimensionality. This technique was successfully applied for
treating some multi-dimensional models encountered in the kinetic theory description of
complex fluids [5] [6]. It allows defining the optimal number of products containing the
optimal one-dimensional functions. In what follows we are summarizing the main ideas
that the aforementioned technique involves. For the sake of simplicity, we are illustrating
the solution procedure by solving the Poisson problem defined in a space of dimension D.

7.1 Illustrating the separated representation of the 2D Poisson’s problem

4T = −f(x1, x2, ..., xD), (101)

where T is a scalar function of (x1, x2, ..., xD). Problem (101) is defined in the domain
(x1, x2, ..., xD) ∈ Ω =]− L,+L[D with vanishing boundary conditions.
The problem solution can be written in the form:

T (x1, x2, ..., xD) =
∞∑

j=1

αj

D∏

k=1

Fkj(xk), (102)

where Fkj is the jth basis function, with unit norm, which only depends on the kth coordi-
nate.

It is well known that the solution of numerous problems can be accurately approximated
using a finite (sometimes very reduced) number of approximation functions, i.e.:

T (x1, x2, ..., xD) =
Q∑

j=1

αj

D∏

k=1

Fkj(xk). (103)

The previous expression implies the same number of approximation functions in each
dimension, but each one of these functions could be expressed in a discrete form using
different number of parameters (nodes of the 1D grids).

Now, an appropriate numerical procedure is needed for computing the coefficients αj as
well as the Q approximations functions in each dimension.

The proposed numerical scheme consists of an iteration procedure that solves at each
iteration n the following three steps:

Step 1: Projection of the solution in a discrete basis

If we assume the functions Fkj(∀j ∈ [1, ..., n];∀k ∈ [1, ..., D]) known (verifying the boundary
conditions), the coefficients αj can be computed by introducing the approximation of T into
the Galerkin variational formulation associated with Eq. (101):

∫

Ω
∇T ∗ · ∇TdΩ =

∫

Ω
T ∗f dΩ. (104)

Introducing the approximation of T and T ∗:

T (x1, x2, ..., xD) =
n∑

j=1

αj

D∏

k=1

Fkj(xk), (105)
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and

T ∗(x1, x2, ..., xD) =
n∑

j=1

α∗j
D∏

k=1

Fkj(xk), (106)

we have

∫

Ω
∇




n∑

j=1

α∗j
D∏

k=1

Fkj(xk)


 · ∇




n∑

j=1

αj

D∏

k=1

Fkj(xk)


 dΩ =

=
∫

Ω




n∑

j=1

α∗j
D∏

k=1

Fkj(xk)


 f dΩ. (107)

Now, we assume that f(x1, · · · , xD) can be written in the form

f(x1, · · · , xD) =
m∑

h=1

D∏

k=1

fkh(xk). (108)

Eq. (107) involves integrals of a product of D functions each one defined in a different
dimension. Let

∏D
k=1 gk(xk) be one of these functions to be integrated. The integral over Ω

can be performed by integrating each function in its definition interval and then multiplying
the D computed integrals according to:

∫

Ω

D∏

k=1

gk(xk) dΩ =
D∏

k=1

∫ L

−L
gk(xk)dxk, (109)

which makes possible the numerical integration in highly dimensional spaces.
Now, due to the arbitrariness of the coefficients α∗j , Eq. (107) allows to compute the

n-approximation coefficients αj , solving the resulting linear system of size n×n. This prob-
lem is linear and moreover rarely exceeds the order of tens of degrees of freedom. Thus,
even if the resulting coefficient matrix is densely populated, the time required for its solu-
tion is negligible with respect to the one required for performing the approximation basis
enrichment (step 3).

Step 2: Checking convergence

From the solution of T at iteration n given by Eq. (105) we compute the residual Re
related to Eq. (101):

Re =

√∫
Ω (4T + f(x1, · · · , xD))2

‖T‖ . (110)

If Re < ε (epsilon is a small enough parameter) the iteration process stops, yielding the
solution T (x1, · · · , xD) given by Eq. (105). Otherwise, the iteration procedure continues.

The integral in Eq. (110) can be written as the product of one-dimensional integrals by
performing a separated representation of the square of the residual.
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Step 3: Enrichment of the approximation basis

From the coefficients αj just computed the approximation basis can be enriched by adding
the new function

∏N
k=1 Fk(n+1)(xk). For this purpose we solve the non-linear Galerkin

variational formulation related to Eq. (101):
∫

Ω
∇T ∗ · ∇TdΩ =

∫

Ω
T ∗f dΩ, (111)

using the approximation of T given by:

T (x1, x2, ..., xD) =
n∑

j=1

αj

D∏

k=1

Fkj(xk) +
D∏

k=1

Rk(xk). (112)

The solution of Eq. (111) can be expressed from the stationarity of functional J(T ):

J(T ) =
∫

Ω

1
2
(∇T )2dΩ−

∫

Ω
T f dΩ, (113)

which results in:

δJ =
∫

Ω
∇δT · ∇TdΩ−

∫

Ω
δT f dΩ = 0, (114)

that corresponds to Eq. (111) by putting δT = T ∗.
Now, taking the variation of T according to its expression given by Eq. (112), where

the variation of the known functions Fkj vanishes, we have:

δT = δ(R1(x1) · · ·RD(xD)) =

= δR1(x1)R2(x2) · · ·RD(xD) + · · ·+ R1(x1)R2(x2) · · · δRD(xD), (115)

that can be written as

T ∗(x1, x2, ..., xD) =

= R∗
1(x1)R2(x2) · · ·RD(xD) + · · ·+ R1(x1)R2(x2) · · ·R∗

D(xD). (116)

This leads to a non-linear variational problem, whose solution allows to compute the N
functions Rk(xk). Functions Fk(n+1)(xk) are finally obtained by normalizing, after conver-
gence of the non-linear problem, the functions R1, R2, ..., RD.

To solve this problem we introduce a discretization of those functions Rk(xk). Each one
of these functions is approximated using piecewise 1D linear functions. If we assume than
pk nodes are used to construct the interpolation of function Rk(xk) in the interval [−L,L],
then the size of the resulting discrete non-linear problem is

∑k=D
k=1 pk. The price to pay

for avoiding a whole mesh in the multidimensional domain is the solution of a non-linear
problem. However, even in high dimensions the size of the non-linear problems remains
moderate and no particular difficulties have been found in its solution.

Concerning the computation time, even when the non-linear solver converges quickly,
this step consumes the main part of the global computing time. Different non-linear solvers
have been analyzed: fixed-point, Newton or one based on an alternating directions fixed-
point scheme.



Recirculating flows involving short fiber suspensions: advanced micro-macro solvers 29

First convergence analysis reveals that even when one uses piecewise linear 1D finite
elements for approximation all the one dimensional functions involved by the separated
representation, the convergence rate (in the energy norms) is fourth order. This results is a
little bit strange because we expected the usual second order convergence. We are perform-
ing further analysis to check if there is some super-convergence phenomena. At the same
time one could modify the one-dimensional approximations to enhance the approximation
consistency and then the convergence rates.

7.2 Matrix form of the 2D Poisson’s problem separated representation

In what follows we give the matrix form of both steps of the numerical procedure. From a
practical point of view all the functions must be defined in a discrete form. Thus, functions
Fj(x) (respectively Gj(y)) and R(x) (respectively S(y)) are defined using a 1D finite element
interpolation that in our simulations is assumed piecewise linear. We denote by N (resp.
M) the vector containing the value of the p (resp. q) shape functions Np(x) (resp. Mq(y)).
Finally Fj , Gj , R and S are the nodal description of those functions.

• Computing of the alpha coefficients: Projection stage.
At iteration n we can write T in the following matrix form :

T (x, y) =
[

NTF1MTG1 NTF2MTG2 . . . NTFnMTGn

]



α1

α2
...

αn


 (117)

from which the gradient reads:
[ ∂T

∂x
∂T
∂y

]
= B α =

=
[

dNTF1MTG1 dNTF2MTG2 . . . dNTFnMTGn

NTF1dMTG1 NTF2dMTG2 . . . NTFndMTGn

]



α1

α2
...

αn


 , (118)

where dN (resp. dM) represents the vector containing the value of the shape func-
tions derivatives with respect to the coordinate x (resp. y) at point x (resp. y).
The weighting function related to the Galerkin’s variational formulation T ∗ can be
expressed in the same form

T ∗(x, y) =
[

α∗1 α∗2 . . . α∗n
]



FT
1 NGT

1 M
FT

2 NGT
2 M

...
FT

nNGT
nM


 , (119)

and its gradient reads

[
∂T ∗
∂x

∂T ∗
∂y

]
=

[
α∗1 α∗2 . . . α∗n

]



FT
1 dNGT

1 M FT
1 NGT

1 dM
FT

2 dNGT
2 M FT

2 NGT
2 dM

...
...

FT
ndNGT

nM FT
nNGT

ndM


 =
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= α ∗T BT . (120)

Now, we consider the variational formulation related to Eq. (101)

∫

Ω
GradT GradT ∗dΩ =

∫

Ω
f(x, y) T ∗dΩ, (121)

where the fact that T ∗ vanishes at the domain boundary has been introduced (both
the trial and the test functions are in the Sobolev’s space H1

0 (Ω)). Moreover, we
assume that f(x, y) can be also written in the form:

f(x, y) =
m∑

h=1

ah(x)bh(y). (122)

This particular form will be justified later. Thus, Eq. (121) yields:

∫

Ω
[
∂T ∗

∂x

∂T ∗

∂y
]
[ ∂T

∂x
∂T
∂y

]
dΩ =

m∑

h=1

∫

Ω
ah(x)bh(y)T ∗(x, y)dΩ. (123)

Introducing the discrete form of the trial and test functions as well as their derivatives,
we obtain:

∫

Ω
α∗TBTB α dΩ =

=
m∑

h=1

∫

Ω

[
α∗1 α∗2 ... α∗n

]



ah(x)FT
1 N bh(y)GT

1 M
ah(x)FT

2 N bh(y)GT
2 M

...
ah(x)FT

nN bh(y)GT
nM


dΩ, (124)

where the components of matrix BTB are given by:

(BTB)ij = FT
i dNdNTFj GT

i MMTGj +

+ FT
i NNTFj GT

i dMdMTGj . (125)

Because all the terms in Eq. (124) are the product of functions of x and functions of
y, the integral in the domain Ω can be separated as the product of integrals in x and
y. Thus, we have:

α∗T K α = α∗T V ⇒ K α = V, (126)

where

Kij = FT
i

(∫ x=+L

x=−L
dNdNT dx

)
Fj GT

i

(∫ y=+L

y=−L
MMT dy

)
Gj +
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+FT
i

(∫ x=+L

x=−L
NNT dx

)
Fj GT

i

(∫ y=+L

y=−L
dMdMT dy

)
Gj , (127)

and

Vi =
m∑

h=1

FT
i

(∫ x=+L

x=−L
N ah(x)dx

)
GT

i

(∫ y=+L

y=−L
M bh(y)dy

)
. (128)

The linear system (126) can be solved for computing the coefficients α. The inver-
sion of matrix K is very simple due its reduced dimension. Of course the iteration
procedure stops when αn+1/max(α1, · · · , αn) < ε (ε being a small enough parameter).

• Enrichment of the approximation basis:

At this stage, we are looking for a solution such that:

{
T (x, y) =

∑j=n
j=1 αjFj(x)Gj(y) + R(x)S(y)

T ∗(x, y) = R∗(x)S(y) + R(x)S∗(y)
. (129)

In order to compute both R and S from the associated vartiational formulation (Eq.
(121)), we start by writing both functions as well their gradients using a matrix form:

[ ∂T
∂x
∂T
∂y

]
=

n∑

j=1

αj

[
dNTFjMTGj

NTFjdMTGj

]
+

[
MTSdNT 0(1,q)

0(1,p) NTRdMT

] [
R
S

]
=

=
n∑

j=1

αjDj + E
[

R
S

]
, (130)

T ∗(x, y) =
[

R∗T S∗T
] [

STMN
RTNM

]
, (131)

[
∂T ∗
∂x

∂T ∗
∂y

]
=

[
R∗T S∗T

] [
STMdN STdMN
RTdNM RTNdM

]
=

=
[
R∗TS∗T

]
FT . (132)

Using these expressions the variational formulation becomes:

∫

Ω

[
R∗T S∗T

] n∑

j=1

αj FTDj dΩ +
∫

Ω

[
R∗T S∗T

]
FTE

[
R
S

]
dΩ =

=
m∑

h=1

∫

Ω

[
R∗T S∗T

] [
STMbh(y)Nah(x)
RTNah(x)Mbh(y)

]
dΩ, (133)
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where

FTDj =
[

dNdNTFjSTMMTGj + NNTFjSTdMdMTGj

RTdNdNTFjMMTGj + RTNNTFjdMdMTGj

]
, (134)

FTE =
[

dNdNTSTMMTS NNTRSTdMdMT

MMTSRTdNdNT RTNNTRdMdMT

]
. (135)

Again, each integral in Eq. (133) can be separated in one integral in the coordinate
x and another one in the coordinate y as illustrated in the following expressions:

∫

Ω
FTDj dΩ =




(∫ x=+L
x=−L dNdNT dx

)
Fj ST

(∫ y=+L
y=−L MMT dy

)
Gj

RT
(∫ x=+L

x=−L dNdNT dx
)
Fj

(∫ y=+L
y=−L MMT dy

)
Gj


+

+




(∫ x=+L
x=−L NNT dx

)
Fj ST

(∫ y=+L
y=−L dMdMT dy

)
Gj

RT
(∫ x=+L

x=−L NNT dx
)
Fj

(∫ y=+L
y=−L dMdMT dy

)
Gj


 , (136)

the integrals of the four submatrices of FTE being given by:

∫

Ω
(FTE)11 dΩ =

(∫ x=+L

x=−L
dNdNT dx

)
ST

(∫ y=+L

y=−L
MMT dy

)
S, (137)

∫

Ω
(FTE)12 dΩ =

(∫ x=+L

x=−L
NNT dx

)
RST

(∫ y=+L

y=−L
dMdMT dy

)
, (138)

∫

Ω
(FTE)21 dΩ =

(∫ y=+L

y=−L
MMT dy

)
SRT

(∫ x=+L

x=−L
dNdNT dx

)
, (139)

∫

Ω
(FTE)22 dΩ = RT

(∫ x=+L

x=−L
NNT dx

)
R

(∫ y=+L

y=−L
dMdMT dy

)
, (140)

and the last term in Eq. (133)

m∑

h=1


 ST

(∫ y=+L
y=−L M bh(y) dy

) (∫ x=+L
x=−L N ah(x) dx

)

RT
(∫ x=+L

x=−L N ah(x) dx
) (∫ y=+L

y=−L M bh(y) dy
)


. (141)

Eq. (133) can then be expressed in the compact form:

V1(R,S) + K(R,S)
[

R
S

]
= V2(R,S). (142)

After imposing the vanishing of both functions R and S on their respective domain
boundaries, the non-linear system (142) can be solved by applying a Newton strategy,
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the size of the linearized systems being p + q. As the solution of such problem is not
unique, we can impose for example that the norm of S is one by introducing the
associated Lagrange multiplier. To accelerate the convergence the first approximated
field T is constructed by using the functions ah and bh.

When the solution R and S is obtained (after convergence of the Newton procedure)
the new approximation functions can be determined by normalizing:





Fn+1=
R√

RT (∫ x=+L
x=−L

NNT dx)R
Gn+1=

S√
ST (∫ y=+L

y=−L
MMT dy)S

. (143)

If the normality of S has been used, then the second expression of Eq. (143) reduces
to Gn+1 = S .

7.3 Matrix form of the multidimensional Poisson’s problem

We summarize in this section the matrix form in the case of multidimensional Poisson
problems.

• Projection stage

In this case Eqs. (127) and (128) result

Kij =
N∑

k=1

FT
ki

(∫ +L

−L
dNkdNT

k dxk

)
Fkj ×

N∏

l=1
l 6=k

FT
li

(∫ +L

−L
NlNT

l dxl

)
Flj (144)

Vi =
m∑

h=1

N∏

k=1

FT
ki

(∫ +L

−L
Nkakh(xk)dxk

)
(145)

• Basis enrichment

We assume that matrix K and vectors V1 and V2 can be written as:

K =




χ11 χ12
χ21 χ22

. . .
χNN


 , (146)

V1 =




λ1
...

λN


 , (147)

V2 =




γ1
...

γN


 . (148)
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In those expressions χk1k2
is a matrix with dimensions (pk1 , pk2) and λk1 and γk1

are
vectors of dimension (pk1 , 1). Thus, is easy to verify that:





χk1k1 =
(∫ +L
−L dNk1dNT

k1
dxk1

) N∏
l=1
l 6=k1

RT
l

(∫ +L
−L NlNT

l dxl

)
Rl

χ k1k2
k1 6=k2

=
(∫ +L
−L Nk1N

T
k1

dxk1

)
Rk1 RT

k2

(∫ +L
−L dNk2dNT

k2
dxk2

)
×

×
N∏

l=1
l 6=k1
l 6=k2

RT
l

(∫ +L
−L NlNT

l dxl

)
Rl

(149)

λk1 =
n∑

j=1

αj




(∫ +L
−L dNk1dNT

k1
dxk1

)
Fk1j×

×
N∏

l=1
l 6=k1

RT
l

(∫ +L
−L NlNT

l dxl

)
Flj+

+
N∑

k2=1
k2 6=k1




(∫ +L
−L Nk1N

T
k1

dxk1

)
Fk1j×

×RT
k2

(∫ +L
−L dNk2dNT

k2
dxk2

)
Fk2j ×

×
N∏

l=1
l 6=k1
l 6=k2

RT
l

(∫ +L
−L NlNT

l dxl

)
Flj







, (150)

γk1 =
m∑

h=1




(∫ +L

−L
Nk1 ak1h(xk1) dxk1

)
×

N∏

l=1
l 6=k1

RT
l

(∫ +L

−L
Nl alh(xl) dxl

)

 (151)

The enrichment functions are then computed by:

Fk(n+1) =
Rk√

RT
k

(∫ +L
−L NkNT

k dxk

)
Rk

. (152)

7.4 Building-up a separated representation of the kinetic model of the fiber
suspension in complex flows

The Fokker-Planck equation associated to the fiber orientation can be written as a generic
advection-diffusion equation whose solution can be searched using a separated representa-
tion and the algorithm just described. For the sake of simplicity we assume in what follows
a steady sate 2D flow as well as a 2D steady state orientation distribution.

The kinetic theory model related to the fiber suspension was given in Eq. (34) that
under the steady state assumption writes:

v · ∂Ψ
∂x

+ E0(ϕ,x)Ψ + E1(ϕ,x)
∂Ψ
∂ϕ

+ E2(ϕ,x)
∂2Ψ
∂ϕ2

= 0 (153)
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where the components of velocity field depend on the spatial coordinates x, i.e. vT (x) =
(u(x), v(x)), and





E0 = k(∂v
∂y − ∂u

∂x) cos(2ϕ)− k(∂u
∂y + ∂v

∂x) sin(2ϕ))
E1 = k

2 (∂v
∂y − ∂u

∂x) sin(2ϕ) + 1
2(∂u

∂y + ∂v
∂x)(1 + k cos(2ϕ))

E2 = −Dr

(154)

Functions E0 and E1 can be written in the general form:
{

E0 = e11(ϕ)∂u
∂x(x) + e12(ϕ)∂u

∂y (x) + e21(ϕ) ∂v
∂x(x) + e22(ϕ)∂v

∂y (x)
E1 = f11(ϕ)∂u

∂x(x) + f12(ϕ)∂u
∂y (x) + f21(ϕ) ∂v

∂x(x) + f22(ϕ)∂v
∂y (x)

(155)

In what follows complex flows will be addressed. In that cases, the solution of the
kinetic theory model needs the prescription of the orientation distribution on the inflow
boundary. For the sake of simplicity we assume an isotropic orientation distribution on the
inflow boundary. Thus, to facilitate the prescription of the boundary conditions one could
proceed to define a new variable Ψ̃, according to:

Ψ̃(ϕ,x) = Ψ(ϕ,x)−Ψ0(ϕ) (156)

where Ψ0 = 1
2π to account the assumed isotropy.

Thus, Eq. (153) becomes:

v · ∂Ψ̃
∂x

+ E0(ϕ,x)Ψ̃ + E1(ϕ,x)
∂Ψ̃
∂ϕ

+ E2(ϕ,x)
∂2Ψ̃
∂ϕ2

= −E0(ϕ,x)Ψ0 (157)

Now, introducing the separated representation of Ψ̃:

Ψ̃(ϕ,x) =
∑

i

αiFi(ϕ)Gi(x) (158)

As previously indicated the construction of this separated representation needs for an
iteration procedure, each iteration consisting of two steps:

• Step 1: Projection step. At this step we assume the functions Fi and Gi known
∀i ∈ [1, ..., n]. We are looking for optimal approximation coefficients αi.

For that purpose, we consider the variational formulation of Eq. (157) that writes:

∫∫
v·∂Ψ̃

∂x
Ψ∗+

∫∫
E0Ψ̃Ψ∗+

∫∫
E1

∂Ψ̃
∂ϕ

Ψ∗+
∫∫

E2
∂Ψ̃
∂ϕ

∂Ψ∗

∂ϕ
= −

∫∫
E0Ψ0Ψ∗(159)

Prior to define the discrete form related to this variational formulation, we must
express functions Fi et Gi in a discrete form. For this purpose we define the vectors
N et M containing the shape functions related to the one-dimensional linear piecewise
finite element ϕ and x approximations, respectively. Thus, Fi and Gi can be written:

{
Fi(ϕ) = NT (ϕ)Fi

Gi(x) = MT (x)Gi
(160)

being Fi and Gi the vectors containing the nodal values of Fi and Gi respectively.



36 E. Pruliere, A. Ammar, N. El Kissi, F. Chinesta

Using Eq. (160), Eq. (158) writes:

Ψ̃ =
(
NTF1MTG1 NTF2MTG2 · · · NTFnMTGn

)



α1

α2
...
αn


 = AT α (161)

If we define the vectors dN and dM containing the shape functions derivatives of N
and M respectively, the gradient of Ψ̃ results:

(
∂Ψ̃
∂ϕ
∂Ψ̃
∂x

)
=

(
dNTF1MTG1 dNTF2MTG2 · · · dNTFnMTGn

NTF1dMTG1 NTF2dMTG2 · · · NTFndMTGn

)



α1

α2
...

αn


 =

=
(
Bϕ

T

Bx
T

)
α (162)

Now, the weighting functions are approximated as:

Ψ∗ =
(
α∗1 α∗2 · · · α∗n

)



FT
1 NGT

1 M
FT

2 NGT
2 M

...
FT

nNGT
nM


 = α∗TA (163)

whose gradient writes:

(
∂Ψ∗
∂ϕ

∂Ψ∗
∂x

)
=

(
α∗1 α∗2 · · · α∗n

)



dNTF1MTG1 NTF1dMTG1

dNTF2MTG2 NTF2dMTG2
...

...
dNTFnMTGn NTFndMTGn


 =

= α∗T
(
Bϕ Bx

)
(164)

Introducing these expressions in the variational formulation we obtain:
∫∫

α∗T
(
AvTBT

x + E0AAT + E1ABϕ
T + E2BϕBT

ϕ

)
α =

= −
∫∫

α∗T E0Ψ0A (165)

or

α∗T
(∫∫

AvTBT
x + E0AAT + E1ABϕ

T + E2BϕBT
ϕ

)

︸ ︷︷ ︸
K

α =
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= −α∗T
(∫∫

E0Ψ0A
)

︸ ︷︷ ︸
L

(166)

that taking into account the arbitrariness of α∗ leads to the linear system:

Kα = L (167)

The separated representation of each component of K and L simplifies the integration
procedure, which writes:

Kij = FT
i

(∫

Ωϕ

NNT dϕ

)
Fi ×GT

i

(∫

Ωx

MvdMT dx
)

Gi +

+FT
i

(∫

Ωϕ

Ne11NT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vx

∂x
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Ne12NT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vx

∂y
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Ne21NT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vy

∂x
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Ne22NT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vy

∂y
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Nf11dNT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vx

∂x
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Nf12dNT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vx

∂y
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Nf21dNT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vy

∂x
MT dx

)
Gi +

+FT
i

(∫

Ωϕ

Nf22dNT dϕ

)
Fi ×GT

i

(∫

Ωx

M
∂vy

∂y
MT dx

)
Gi +

+E2FT
i

(∫

Ωϕ

dNdNT dϕ

)
Fi ×GT

i

(∫

Ωx

MMT dx
)

Gi (168)
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and

Li = FT
i

(∫

Ωϕ

Ne11Ψ0dϕ

)
×GT

i

(∫

Ωvx

M
∂vx

∂x
dvx

)
+

+FT
i

(∫

Ωϕ

Ne12Ψ0dϕ

)
×GT

i

(∫

Ωvx

M
∂vx

∂y
dvx

)
+

+FT
i

(∫

Ωϕ

Ne21Ψ0dϕ

)
×GT

i

(∫

Ωvx

M
∂vy

∂x
dvx

)
+

+FT
i

(∫

Ωϕ

Ne22Ψ0dϕ

)
×GT

i

(∫

Ωvx

M
∂vy

∂y
dvx

)
(169)

• Step 2: Basis enrichment. Knowing the n functional products, we look for the an
additional couple R(ϕ)S(x):

Ψ̃(ϕ,x) =
n∑

i=1

αiFi(ϕ)Gi(x) + R(ϕ)S(x) (170)

whose discrete form writes:

Ψ̃(ϕ,x) =

(
n∑

i=1

NT (ϕ)FiMT (x)Gi

)
+ NT (ϕ)RMT (x)S (171)

At this stage the unknowns are the new functions R and S. The problem becomes
non-linear, needing for an appropriate linearization strategy. We have investigated in
our former works the application of the Newton-Raphson algorithm, however a simple
linearization based on a kind of alternation directions fixed point strategy seem robust
and simple to implement. It consist of alternating the search of S (with R assumed
known, in general it comes from the previous iteration) and the search of S using the
just computed function R. In that follows we are illustrate the first step that consist
of computing R by assuming S known:

Ψ∗(ϕ,x) = R∗(ϕ)S(x) = NT (ϕ)R∗MT (x)S (172)

The gradients of the unknown and weighting functions write:
(

∂Ψ̃
∂ϕ
∂Ψ̃
∂x

)
=

n∑

i=1

(
dNTFiMTGi

NTFidMTGi

)
+

(
MTSdNT

dMTSNT

)
R (173)

and
(∂Ψ∗

∂ϕ
∂Ψ∗
∂x

)
=

(
MTSdNT

dMTSNT

)
R∗ (174)
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Using the previous expressions, the variational formulation results:

[ (∫
Ωϕ

NNT
)
ST

(∫
Ωx

vMdMT
)
S+

+
∑2

k=1

∑2
l=1

(∫
Ωϕ

eklNNT
)
ST

(∫
Ωx

(∇v)klMMT
)
S+

+
∑2

k=1

∑2
l=1

(∫
Ωϕ

fklNdNT
)
ST

(∫
Ωx

(∇v)klMMT
)
S+

+E2

(∫
Ωϕ

dNdNT
)
ST

(∫
Ωx

MMT
)
S
]
R =

=
∑n

i=1

[
αi

(∫
Ωϕ

NNT
)
FiST

(∫
Ωx

vMdMT
)
Gi+

+αi
∑2

k=1

∑2
l=1

(∫
Ωϕ

eklNNT
)
FiST

(∫
Ωx

(∇v)klMMT
)
Gi+

+αi
∑2

k=1

∑2
l=1

(∫
Ωϕ

fklNdNT
)
FiST

(∫
Ωx

(∇v)klMMT
)
Gi+

+αiE2

(∫
Ωϕ

dNdNT
)
FiST

(∫
Ωx

MMT
)
Gi

]

−
[∑2

k=1

∑2
l=1

(∫
Ωϕ

NeklΨ0

)
ST

(∫
Ωx

M(∇v)kl

)]

(175)

The resulting linear system is solved under the constraint:
∫

Ωϕ

NT R = 0 (176)

that leads to:
∫

Ωϕ

NT Fi = 0; ∀i (177)

allowing the verification of the normality condition:

∫

Ωϕ

Ψ(ϕ,x)dϕ = MT (x)Gi

(∫

Ωϕ

NT (ϕ)Fidϕ

)

︸ ︷︷ ︸
=0

+
∫

Ωϕ

Ψ0dϕ

︸ ︷︷ ︸
=1

= 1; ∀x (178)

7.4.1 Application to the solution of the driven cavity flow problem

Figures 12 and 13 depict the different functions Fi(ϕ) and Gi(x) related to the driven
cavity flow problem previously defined, built by the solution method just described. We
can notice that the combination of 6 functional products is enough for accurately represent
the searched orientation distribution function Ψ(x, ϕ), i.e.

Ψ(x, ϕ) ≈
i=6∑

i=1

αi Fi(ϕ) Gi(x) (179)

In this case instead of solving a problem in a space of dimension three (the two spatial
dimensions x and y and the conformation coordinate ϕ, we look for a separated represen-
tation that defines the solution from functional products each one involving a 2D functions
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(defined in the physical space x) and a one dimensional function defined in the conformation
space (the planar orientation in the example here addressed).

From these functional products we can reconstruct the orientation distribution function
that allows computing the second order orientation tensor whose eigenvalues and eigen-
vectors lead to the ellipses depicted in figure 14 that is in perfect agreement with the
solution computed using the method of characteristics in the physical space coupled with
a discontinuous Galerkin representation in the conformation space depicted in Fig. 5.

8 Conclusions

In this work the solution of anisotropic fluids in steady recirculating flows (widely encoun-
tered in industrial applications) is revisited. The fluid model is described at the microscopic
scale (kinetic theory framework) whereas the flow kinematics is modelled at the macroscopic
scale (anisotropic Stokes).

Two standard techniques: the first one based on the application of a discontinuous
Galerkin discretization and the second one exploiting the periodicity of the solution along
the closed streamlines, are analyzed and compared. The second technique seems more
accurate (for a given mesh) but it also involves higher computational efforts.

To alleviate the computational efforts two new efficient advanced strategies are described
and analyzed. The first technique lies in the use of a model reduction based on the applica-
tion of the so called proper orthogonal decomposition (or Karhunen-Loève decomposition).
It allows significant computing savings for a given accuracy. Moreover, its use allows to
define empirical closure approximation leading to accurate macroscopic modelling derived
from the microscopic description.

The second advanced technique here described and applied to the solution of complex
flows of complex fluids lies in the use of finite sums decompositions (separated representa-
tions) of the distribution function involved in the microscopic modelling of the suspension.

These strategies open new perspectives for the treatment of complex flows of complex
fluids others than the short fiber suspensions. This natural extension will be addressed in
some oncoming works.

REFERENCES

1 Y. Achdou, O. Pironneau, Computational methods for option pricing, Siam Frontiers in Applied
Mathematics, 2005.

2 S.G. Advani, Ch.L.Tucker III, Closure approximations for three-dimensional structure tensors,
J. Rheol., 34, 1990, 367-386.

3 A. Ammar, F. Chinesta, A particle strategy for solving the Fokker-Planck equation governing
the fiber orientation distribution in steady recirculating flows involving short fiber suspensions,
Lectures Notes on Computational Science and Engineering, Springer, 43, 2005, 1-16.

4 A. Ammar, D. Ryckelynck, F. Chinesta, R. Keunings, On the reduction of kinetic theory models
related to finitely extensible dumbbells, 134, 2006, 136-147.

5 A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some clases of
multidimensional partial differential equations encountered in kinetic theory modeling of complex
fluids, Journal of Non-Newtonian Fluid Mechanics, 139, 2006, 153-176.

6 A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of
multidimensional partial differential equations encountered in kinetic theory modeling of complex
fluids. Part II: Transient simulation using space-time separated representation, Journal of Non-
Newtonian Fluid Mechanics, 144, 2007, 98-121.



Recirculating flows involving short fiber suspensions: advanced micro-macro solvers 41

7 J. Azaiez, K. Chiba, F. Chinesta, A. Poitou, State-of-the-Art on numerical simulation of fiber-
reinforced thermoplastic forming processes, Archives of Computational Methods in Engineering,
9/2, 2002, 141-198.

8 T.F. Ballenger, J.L. White, Flow patterns in polymer melts in the reservoir of a capillary rheome-
ter, Chem. Eng. Sci., 25, 1971, 1191.

9 R.A. Bialecki, A.J. Kassab, A. Fic, Proper orthogonal decomposition and modal analysis for
acceleration of transient FEM thermal analysis, Int. J. Numer. Meth. Engng., 62, 2005 774797.

10 D.M. Binding, An approximate analysis for contraction and converging flows, J. Non-Newton.
Fluid Mech., 27, 1988, 173.

11 D.V. Boger, Viscoelastic flows through contractions, Annu. Rev. Fluid Mech., 19, 1987, 157.

12 H.J. Bungartz, M. Griebel, Sparse grids, Acta Numerica, 13, 2004, 1-123.

13 J. Burkardt, M. Gunzburger, H-Ch Lee, POD and CVT-based reduced-order modeling of Navier-
Stokes flows, Comput. Methods Appl. Mech. Engrg., 196, 2006, 337355.

14 G. Chaidron, F. Chinesta, On the periodicity of the extra-stress tensor in steady recirculating
viscoelastic flows, Proceedings of the First MIT Conference on Computational Fluid and Solid
Mechanics, MIT, USA, 2001.

15 C.V. Chaubal, A. Srinivasan, O. Egecioglu, L.G. Leal, Smoothed particle hydrodynamics tech-
niques for the solution of kinetic theory problems, J. Non-Newtonian Fluid Mech., 70, 1997,
125-154.

16 C. Chauviere, A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equa-
tion, Computer and Fluids, 33, 2004, 687-696.

17 F. Chinesta, G. Chaidron, On the steady solution of linear advection problems in steady recir-
culating flows, Journal of Non Newtonian Fluid Mechanics, 98, 2001, 65-80.

18 F. Chinesta, G. Chaidron, A. Poitou, On the solution of the Fokker-Planck equation in steady
recirculating flows involving short fiber suspensions, J. Non-Newtonian Fluid Mech., 113, 2003,
97-125.

19 F.N. Cogswell, Converging flow of polymer melts in extrusion dies, Polymer Eng. Sci., 12, 1973,
64.

20 M.T. Dennison, Flow instability in polymer melts: a review, Plast. Inst. Trans., 35, 1967, 803.

21 A.G. Dodson, P. Townsend, K. Walters, Non-Newtonian flow in pipes of non-circular cross-
section, Comput. Fluids, 2, 1974, 317.

22 F. Dupret, V. Verleye, Modelling the flow of fiber suspensions in narrows gaps. In Advances in
the Flow and Rheology of Non-Newtonian Fluids. D.A. Siginer, D. De Kee and R.P. Chabra
editors, Rheology Series, Elsevier, 1999, 1347-1398.

23 H. Giesekus, Zur Stabilitt von Strmungen viskoelastischer Flssigkeiten, Rheologica Acta, 5, 1966,
239.

24 H. Giesekus, Verschiedene Phnomene in Strmungen viskoelastischer Flssigkeiten durch Dsen,
Rheologica Acta, 8, 1969, 411.

25 M.D. Gunzburger, J.S. Peterson, J.N. Shadid, Reduced-order modeling of time-dependent PDEs
with multiple parameters in the boundary data, Comput. Methods Appl. Mech. Engrg. 196,
2007, 10301047.

26 R. Jendrejack, J. de Pablo, M. Graham, A method for multiscale simulation of flowing complex
fluids, J. Non-Newtonian Fluid Mech., 108, 2002 123142.



42 E. Pruliere, A. Ammar, N. El Kissi, F. Chinesta

27 R. Keunings, Micro-macro methods for the multiscale simulation viscoelastic flow using molec-
ular models of kinetic theory, Rheology Reviews, D.M. Binding and K. Walters (Edts.), British
Society of Rheology, 2004, 67-98.

28 M.E. Kim-E, R.A. Brown, R.C. Armstrong, The roles of inertia and shear-thinning in flow of
an inelastic liquid through an axisymmetric sudden contractionJ, J. Non-Newton. Fluid Mech.,
13, 1983, 341.

29 G.G. Lipscomb II, M.M. Denn, D.H. Hur, D.H. Boger, The flow of fiber suspensions in complex
geometries, J. Non-Newtonian Fluid Mech., 26, 1988, 297-325.

30 A. Lozinski, C. Chauviere, A fast solver for Fokker-Planck equation applied to viscoelastic flows
calculations: 2D FENE model, Journal of Computational Physics, 189, 2003, 607-625.

31 Y. Maday, E.M. Ronquist, The reduced basis element method: application to a thermal fin
problem, SIAM J. Sci. Comput., 26/1, 2004, 240-258.

32 M. Manhart, Rheology of suspensions of rigid-rod like particles in turbulent channel flow, Journal
of Non-Newtonian Fluid Mech., 12, 2003, 269-293.

33 S.J. Muller, R.G. Larson, E.S.G. Shaqfeh, A purely elastic transition in Taylor-Couette flow,
Rheol. Acta, 28, 1999, 499.

34 J.G. Oldroyd, Some steady flows of the general elastic-viscous liquid, Proc. Royal Soc. London,
A283, 1965, 115.
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Figure 1.
Orientation distribution in a simple shear flow (G = 1) involving fibers

characterized by the factor k = 0.8. Dr = 0 (up) and Dr = 0.1 (down).
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Figure 2.
Shear recirculating flow domain: elements where the solution computed

with the different numerical techniques are compared.
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Figure 3.
Comparison of the different orientation distributions computed in the

elements pointed in figure 2: element 1 (up); element 2 (middle) and

element 3 (down).
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Figure 4. Mesh, velocity field and the associated stream function.
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Figure 5. Orientation distribution.
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Figure 6.
Reduced modelling error when a single flow streamlines is considered

for defining the reduced model
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Figure 7.
Reduced modelling error when two flow streamlines are used for defining

the reduced model
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Figure 8.
Simple shear flow: characteristic functions resulting from the

Karhunen-Loève decomposition (first strategy described in section 6.3.3)
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Figure 9.
Simple shear flow: characteristic functions extracted form the retained

snapshots (second strategy described in section 6.3.3)
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Figure 10.
Simple shear flow: characteristic functions extracted form snapshot

Karhunen-Loève decomposition (third strategy described in section

6.3.3)
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Figure 11.
Error evolution in a simple extensional flow. Comparison of the stan-

dard and the empirical snapshot natural closure relations
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Figure 12.
Separated representation: functions Fi(u) (here u represents the con-

formation coordinate ϕ).
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Figure 13. Separated representation: functions Gi(x).
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Figure 14.
Separated representation: reconstructed orientation distribution.


